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Chapter 1 of the notes is called ‘An overview of Galois theory’.

This lecture is an overview of the overview.



The most important idea in Galois theory

Every polynomial has a
symmetry group



The rough idea

It’s impossible to tell i and −i apart.

Anything true of i is also true of −i .

The polynomial t2 + 1 has roots ±i .
Because i and −i are indistinguishable, the symmetry group of t2 + 1 is C2.
Its elements are the identity on {i ,−i} and the transposition i ↔ −i .

Note We’re going to focus on polynomials over Q.

Polynomials over R turn out to be a bit trivial.



Conjugate tuples
Let (α1, . . . , αk) and (β1, . . . , βk) be k-tuples of complex numbers.

We say these two k-tuples are conjugate if they satisfy the same polynomials
over Q: that is, for all polynomials p(t1, . . . , tk) over Q,

p(α1, . . . , αk) = 0 ⇐⇒ p(β1, . . . , βk) = 0.

Example I claim that (i ,−i) is conjugate to (−i , i).

Let’s try some example polynomials p to see if this plausible:

• t1 + t2 = 0 when (t1, t2) = (i ,−i). . . and also when (t1, t2) = (−i , i).

• 3t51 t2 − t21 − 4t42 = 0 when (t1, t2) = (i ,−i). . . and also when
(t1, t2) = (−i , i).

Now the actual proof: for any polynomial
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The Galois group of a polynomial

The symmetry group of a polynomial is called its ‘Galois group’.

Definition Let f (t) ∈ Q[t], with distinct roots α1, . . . , αk ∈ C.

The Galois group of f is

Gal(f ) =
{
σ ∈ Sk : (α1, . . . , αk) and (ασ(1), . . . , ασ(k)) are conjugate

}
.

Example Let f (t) = t2 + 1.

Then f has roots α1 = i and α2 = −i .
So k = 2 and Gal(f ) is a subgroup of S2.

Which subgroup?

• Certainly id ∈ Gal(f ).

• Since (i ,−i) and (−i , i) are conjugate, (1 2) ∈ Gal(f ).

Hence Gal(f ) = S2.



A not so simple example
Let f (t) = t5−1

t−1 = t4 + t3 + t2 + t + 1.

Its roots are ω = e2πi/5, ω2, ω3, ω4.

What is Gal(f )?

By definition, the elements of Gal(f ) are the permutations σ ∈ S4 such that(
ω, ω2, ω3, ω4

)
and

(
ωσ(1), ωσ(2), ωσ(3), ωσ(4)

)
satisfy the same polynomials over Q. For instance:

• (1 2) 6∈ Gal(f ), since t21 − t2 = 0 when

(t1, t2, t3, t4) = (ω, ω2, ω3, ω4)

but not when
(t1, t2, t3, t4) = (ω2, ω, ω3, ω4).

• In fact, Gal(f ) is the cyclic group C4, generated by (1 2 4 3).



What use is the Galois group? (One answer)
A radical number is one that can be constructed from the rationals using +,
−, ×, /, and taking nth roots for any n ∈ N. E.g.:(
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The roots of any quadratic over Q are radical:(
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)
/2a.

In fact, the roots of any polynomial of degree 3 or 4 are radical too.

But this fails in degrees 5 and higher!

A polynomial f over Q is solvable by radicals if all its roots are radical.

Theorem (Galois) f is solvable by radicals ⇐⇒ the group Gal(f ) is solvable.

Some quintics have unsolvable Galois group. They’re not solvable by radicals.

Hence there’s no ‘quintic formula’ like the quadratic formula.



Bird’s eye view of this course

polynomial 7→ field 7→ group
over K containing K

f (t) ∈ Q[t] smallest subfield M of C {automorphisms of M}
containing the roots of f

t2 + 1 {a + bi : a, b ∈ Q} {id, complex conj} ∼= C2

t5 − 1

t − 1
smallest subfield of C C4

containing e2πi/5

t5 − 6t + 3 censored S5
(not solvable (not solvable)
by radicals)



What we’ll need, what we’ll touch, what we’ll learn

We’ll need. . .

group theory

ring theory

linear algebra

We’ll touch. . .

number theory

classical Euclidean geometry

We’ll learn. . .

lots of general lessons about abstract algebra.



Before Thursday’s class:

• read Chapter 1 of the notes

• write down one question on a slip of paper.


