Chapter 4: Field extensions

(1) Field extensions Multiple Choice One answer only True or false? For every monic irreducible polynomial $f \in \mathbb{Q}[t]$, there is some element of \mathbb{C} whose minimal polynomial over \mathbb{Q} is f. a. True b. False (2) Field extensions Multiple Choice One answer only True or false? The complex conjugation map $\mathbb{C} \to \mathbb{C}$, given by $z \mapsto \overline{z}$, defines a field extension of $\mathbb C$ over itself. a. False b. True (3) Field extensions MULTIPLE CHOICE One answer only True or false? The set $\{a + b\sqrt{2} : a, b \in \mathbb{Q}\}$ is a subfield of \mathbb{C} . a. True b. False (4) Field extensions Multiple Choice One answer only True or false? The set $\{a + b\sqrt{4} : a, b \in \mathbb{Q}\}$ is a subfield of \mathbb{C} . a. False b. True (5) Field extensions MULTIPLE CHOICE One answer only True or false? The set $\{a + b\sqrt[3]{2} : a, b \in \mathbb{Q}\}$ is a subfield of \mathbb{C} . a. True b. False (6) Field extensions Multiple Choice One answer only

True or false? For every field K, there exists a field containing K[t] as a subring.

a. True

b. False

(7) Field extensions MULTIPLE CHOICE One answer only

True or false? Let K be a field and $X \subseteq K$. If X is finite then the subfield of K generated by X is finite.

a. True

b. False

(8) Field extensions MULTIPLE CHOICE One answer only

True or false? Let K be a field and $X \subseteq K$. If X is finite then the subfield of K generated by X is countable.

a. True

b. False

(9) Field extensions MULTIPLE CHOICE One answer only

True or false? Let K be a field. The union of any family of subfields of K is a subfield.

a. True

b. False

(10) Field extensions MULTIPLE CHOICE One answer only

True or false? The subfield of \mathbb{C} generated by $\{i\}$ is \mathbb{C} itself.

- a. True
- b. False
- (11) Field extensions MULTIPLE CHOICE One answer only

True or false? Let M : K be a field extension and $Y \subseteq M$. Then K(Y) is the largest subfield of M containing $K \cup Y$.

a. False

b. True

(12) Field extensions MULTIPLE CHOICE One answer only

True or false? Let M : K be a field extension and $Y \subseteq M$. Then K(Y) is the smallest subfield of M containing $K \cup Y$.

- a. True
- b. False

(13) Field extensions MULTIPLE CHOICE One answer only

True or false? Let M : K be a field extension and $Y \subseteq M$. Then K(Y) is the smallest subfield of M containing Y.

- a. False
- b. True

(14) Field extensions Multiple Choice One answer only

True or false? Let $M : \mathbb{Q}$ be a field extension and $Y \subseteq M$. Then $\mathbb{Q}(Y)$ is the smallest subfield of M containing Y.

- a. False
- b. True

(15) Field extensions MULTIPLE CHOICE One answer only

True or false? Let $M : \mathbb{F}_p$ be a field extension and $Y \subseteq M$. Then $\mathbb{F}_p(Y)$ is the smallest subfield of M containing Y.

- a. False
- b. True

(16) Field extensions MULTIPLE CHOICE One answer only

True or false? Let M : K be a field extension and $X \subseteq Y \subseteq M$. Then $K(X) \subseteq K(Y)$.

- a. True
- b. False

(17) Field extensions MULTIPLE CHOICE One answer only

True or false? Let M : L : K be field extensions and $\alpha \in M$. If α is algebraic over K then α is algebraic over L.

- a. False
- b. True

(18) Field extensions MULTIPLE CHOICE One answer only

True or false? Let M : L : K be field extensions and $\alpha \in M$. If α is algebraic over L then α is algebraic over K.

- a. True
- b. False

(19) Field extensions MULTIPLE CHOICE One answer only

True or false? For a field K, every element of the complement $K(t) \setminus K$ is transcendental over K.

- a. True
- b. False

(20) Field extensions MULTIPLE CHOICE One answer only

True or false? Let M : K be a field extension and $\alpha, \beta \in M$. If α and β have the same sets of annihilating polynomials then either both are algebraic over K or both are transcendental over K.

- a. False
- b. True
- (21) Field extensions Multiple Choice One answer only

True or false? There is an element of \mathbb{C} whose minimal polynomial over \mathbb{Q} is $1 + 2t + 3t^2 + 4t^3 + 5t^4$.

- a. True
- b. False

(22) Field extensions MULTIPLE CHOICE One answer only

True or false? Let M : K be a field extension and $\alpha, \beta \in M$. If α and β are both algebraic and have the same minimal polynomial, then they have the same sets of annihilating polynomials.

- a. True
- b. False

(23) Field extensions MULTIPLE CHOICE One answer only

True or false? Let α and β be complex numbers algebraic over \mathbb{Q} . Then α and β are conjugate over \mathbb{Q} if and only if they have the same minimal polynomial.

- a. False
- b. True

(24) Field extensions MULTIPLE CHOICE One answer only

True or false? For every monic polynomial $f \in \mathbb{Q}[t]$, there is an element of \mathbb{C} whose minimal polynomial over \mathbb{Q} is f.

- a. True
- b. False
- (25) Field extensions Multiple Choice One answer only

True or false? Let M : K be a field extension, let α be an element of the complement $M \setminus K$, and let $f \in K[t]$ be a monic quadratic that annihilates α . Then f is the minimal polynomial of α over K.

- a. False
- b. True

(26) Field extensions MULTIPLE CHOICE One answer only

Let M : K be a field extension and let α be an element of M algebraic over K. What is the smallest possible degree of the minimal polynomial of α ?

- a. 2
- b. 1
- c. None of the other answers is correct.
- d. 0

(27) Field extensions MULTIPLE CHOICE One answer only

True or false? Let M : K be a field extension and let $\alpha \in K$. Then the minimal polynomial of α over K has degree 0.

- a. False
- b. True

(28) Field extensions MULTIPLE CHOICE One answer only

True or false? For a prime p, the minimal polynomial of $e^{2\pi i/p}$ over \mathbb{Q} is $t^p - 1$.

- a. True
- b. False

(29) Field extensions MULTIPLE CHOICE One answer only

True or false? Let M : K be a field extension and $\alpha, \beta \in M$. If $K(\alpha) \cong K(\beta)$ then $\alpha = \beta$.

- a. True
- b. False

(30) Field extensions MULTIPLE CHOICE One answer only

Let M : K be a field extension and let α and β be elements of M algebraic over K. Suppose that α and β have the same minimal polynomial. What is the relationship between $K(\alpha)$ and $K(\beta)$?

- a. They are equal as subfields of M.
- b. They are isomorphic as abstract fields, but not necessarily isomorphic over K.
- c. They are isomorphic over K, but not necessarily equal as subfields of M.
- d. None of the other answers is correct.
- e. They are not necessarily isomorphic as abstract fields.

(31) Field extensions MULTIPLE CHOICE One answer only

True or false? $\mathbb{Q}(i) = \mathbb{Q}(1+i)$ as subfields of \mathbb{C} .

- a. True
- b. False

(32) Field extensions MULTIPLE CHOICE One answer only

True or false? $\mathbb{Q}(\sqrt{5}+5) = \mathbb{Q}(\sqrt{5}-5)$ as subfields of \mathbb{C} .

- a. False
- b. True

(33) Field extensions MULTIPLE CHOICE One answer only

True or false? The extension K(t) : K is simple for all fields K, where K(t) is the field of rational expressions over K.

- a. False
- b. True

(34) Field extensions MULTIPLE CHOICE One answer only

True or false? Let M : K be a field extension and let α, β be distinct elements of M such that $M = K(\alpha, \beta)$. Then M : K is not simple.

- a. True
- b. False

(35) Field extensions MULTIPLE CHOICE One answer only

True or false? Let K be a field and $m \in K[t]$. Then $K[t]/\langle m \rangle$ is a field.

- a. True
- b. False
- (36) Field extensions MULTIPLE CHOICE One answer only

True or false? Let K be a field and let M : K and M' : K be extensions of K. If M and M' each contain an element transcendental over K, then $M \cong M'$.

- a. False
- b. True

(37) Field extensions MULTIPLE CHOICE One answer only

True or false? For every field K, there exists an extension M : K such that 2 has a square root in M.

- a. True
- b. False
- (38) Field extensions MULTIPLE CHOICE One answer only

True or false? For every field K, there exists an extension M : K such that the equation $t^2 + t + 1 = 0$ has a solution in M.

- a. True
- b. False

(39) Field extensions Multiple CHOICE One answer only

True or false? For every field K, there exists an extension M: K such that the polynomial $t^5 - 6t + 3$ has a root in M.

- a. False
- b. True
- (40) Field extensions MULTIPLE CHOICE One answer only

True or false? For every field K and nonconstant polynomial f over K, there exists an extension M : K such that f has at least one root in M.

a. True

b. False

Total of marks: 40