
Galois Theory Workshop 4

The fundamental theorem of Galois theory

There are more questions here than you’re likely to have time for in the workshop. I
suggest you start from the beginning and do whatever you do in the time, without
hurrying, then keep the other ones for practice another day.

In all questions, you’re strongly encouraged to use results from the notes—and this
will make your life much easier!

1. Prove that every field extension of degree 2 is normal.

This should remind you of the fact that every subgroup of index 2 is normal.

2. Let L : K be an algebraic extension. Prove that L : K is normal if and only if
it has the following property: for every extension M : L, the field L is a union
of conjugacy classes in M over K.

(Conjugacy over K defines an equivalence relation on M , and a ‘conjugacy class
in M over K’ means an equivalence class of this equivalence relation.)

This should remind you of the fact that a subgroup is normal if and only if it is
a union of conjugacy classes in the group-theoretic sense.

3. Work through the details of the Galois correspondence for the polynomial t3−2
over Q. By ‘work through the details’, I mean that you should do all the things
I did for t4 − 2 in Section 8.3 of the notes. Example 7.1.15 gets you started.

4. Show by example that for field extensions M : L : K,

M : L and L : K normal 6⇒M : K normal.

Hint: start by trying the simplest possible examples.

5. Let M : K be a finite normal separable field extension. Let H be a subgroup
of G = Gal(M : K). Prove that H is a normal subgroup of G if and only
if Fix(H) is a normal extension of K, and that if these conditions hold then
G/H ∼= Gal(Fix(H) : K).

Can be done very quickly using the fundamental theorem.

6. Let M : K be a field extension and let S be any subset of Gal(M : K). Write

Fix(S) = {α ∈M : ϕ(α) = ϕ for all ϕ ∈ S}.

(In the notes, I only defined Fix for subgroups of Gal(M : K).)

(i) Prove that Fix(S) is a subfield of M . (Hint: you can reduce work by using
what you know about equalizers.)

(ii) Prove that Fix(S) = Fix(〈S〉), where 〈S〉 is the subgroup of Gal(M : K)
generated by S.

7. Show that any automorphism of a field M is an automorphism over the prime
subfield of M .

8. Work through the details of the Galois correspondence for t4 − 2t2 + 9 ∈ Q[t]
(in the same sense as in question 3).

A hint: it’s arguably illegitimate to use the notation ‘
√
z’ when z is a complex

number, since z has two square roots and there’s no systematic way to decide
which one

√
z should denote. The only exception is when z ∈ R+, in which

case the convention is that
√
z denotes the nonnegative square root. If you find

yourself handling the square roots of a complex number not in R+, it may help
you to put them in the form x+ yi with x, y ∈ R.



9. Let n ≥ 1. A primitive nth root of unity is an element of order n of the
multiplicative group C×. Equivalently, it is a complex number α such that n is
the least positive integer satisfying αn = 1. The nth cyclotomic polynomial
is

Φn(t) =
∏
α

(t− α),

where the product is over all primitive nth roots of unity α.

The coefficients of Φn are complex numbers. In this question, you’ll show that
they’re actually integers.

(i) Show that when p is prime, Φp(t) = tp−1+· · ·+t+1 (as in Example 3.3.16).

(ii) Calculate Φn for n = 1, . . . , 7.

(iii) By considering θ∗(Φn) for θ ∈ GalQ(tn − 1), prove that Φn ∈ Q[t].

(iv) Show that
∏
d|n Φd(t) = tn − 1, where the product is over all positive

integers d dividing n.

If you did Introduction to Number Theory, you’ll know about the Euler
function ϕ. The degree of Φn is ϕ(n), and taking degrees on each side of
the equation of polynomials

∏
d|n Φd = tn−1 gives an equation of numbers

you may already be familiar with:
∑
d|n ϕ(d) = n.

(v) Use Gauss’s lemma on primitive polynomials to show that whenever f, g ∈
Q[t] are monic polynomials such that fg ∈ Z[t], then f, g ∈ Z[t]. (The two
usages of ‘primitive’ in this question are unrelated.)

(vi) Put together the previous parts to conclude that Φn ∈ Z[t].

One can go further and show that every cyclotomic polynomial Φn is irreducible
over Q. This is harder. Another way to say it is that the primitive nth roots of
unity are all conjugate to one another over Q.
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