
Galois Theory Workshop 4

From splitting fields to the fundamental theorem

There are more questions here than you’ll have time for in the workshop. I suggest
you start from the beginning and do whatever you do in the time, without hurrying.
Keep the other ones for practice another day.

In all questions, you’re strongly encouraged to use results from the notes—and this
will make your life much easier!

1. Let M : K be a field extension. Let 0 ̸= f ∈ K[t], and let α ∈ M be a roof of
f ; then f(t) = (t− α)g(t) for some g(t) ∈ K(α)[t]. Prove that

M is a splitting field of g over K(α) ⇐⇒ M is a splitting field of f over K.

You can do this without using any results on the existence or uniqueness of
splitting fields.

2. Let K be a field and let f ∈ K[t] be an irreducible polynomial.

(i) Prove that the order of GalK(f) is divisible by the number of distinct roots
of f in its splitting field.

(ii) Deduce that if charK = 0 then deg(f) divides |GalK(f)|.

3. Let M : K be a finite normal separable field extension. Let H be a subgroup
of G = Gal(M : K). Prove that H is a normal subgroup of G if and only
if Fix(H) is a normal extension of K, and that if these conditions hold then
G/H ∼= Gal(Fix(H) : K).

Can be done very quickly using the fundamental theorem.

4. Prove that every field extension of degree 2 is normal.

This should remind you of the fact that every subgroup of index 2 is normal.

5. Show that any automorphism of a field M is an automorphism over the prime
subfield of M .

6. Show by example that for field extensions M : L : K,

M : L and L : K normal ̸⇒M : K normal.

Hint: start by trying the simplest possible examples.

7. (i) Let K be a field and let f and g be nonzero polynomials over K. Put
L = SFK(g). Show that SFL(f) and SFK(fg) are isomorphic over K.

(ii) Let f and g be nonzero polynomials over Q. Prove that SFQ(fg) is the
compositum of SFQ(f) and SFQ(g), where all three splitting fields are
viewed as subfields of C.

8. Let 0 ̸= f ∈ Q[t] with distinct complex roots α1, . . . , αk. Prove that
∑n

i=1 α
10
i

is rational. (Hint: Corollary 8.2.7.)

9. Say whether each of the following statements is true or false.

(i) Let M : K be a field extension of degree 10. Then it is not possible to find
extensions M : L2 : L1 : K that are all nontrivial.

(ii) Let f(t) ∈ K[t] be an irreducible polynomial of degree n. Then [SFK(f) :
K] ≤ n.

(iii) Let M : K be a field extension and α, β ∈ M . Then [K(αβ) : K] ≤
[K(α, β) : K].



(iv) Let (x, y) ∈ R2 and suppose that x and y each have an annihilating polyno-
mial of degree 4 over Q. Then (x, y) is constructible by ruler and compass
from (0, 0) and (1, 0).

(v) For all nontrivial finite field extensionsM : Q, the Galois group Gal(M : Q)
is nontrivial.

(vi) For all finite extensionsM : K andM ′ : K ′, every isomorphism ψ : K → K ′

can be extended to a homomorphism φ : M →M ′.

(vii) A regular 1020-sided polygon can be constructed by ruler and compass,
given two points in the plane.

(viii) Let f ∈ Q[t] and let S = SFQ(f). Then the splitting field of f over Q( 3
√
2)

is S( 3
√
2).

(ix) Let f be a polynomial over a fieldK and let θ, φ ∈ GalK(f). If θ(α) = φ(α)
for all roots α of f in the splitting field of f , then θ = φ.

(x) The Galois group of (t4 − 2t3 + t2 − 4t+ 1)3 over Q is solvable.

10. Let L : K be an algebraic extension. Prove that L : K is normal if and only if
it has the following property: for every extension M : L, the field L is a union
of conjugacy classes in M over K.

(Conjugacy over K defines an equivalence relation onM , and a ‘conjugacy class
in M over K’ means an equivalence class of this equivalence relation.)

This should remind you of the fact that a subgroup is normal if and only if it is
a union of conjugacy classes in the group-theoretic sense.

11. Look back at Example 1.2.8. There I claimed that the Galois group of an
irreducible cubic f over Q is given by a very strange formula. Here you’ll prove
it.

Write α1, α2, α3 for the complex roots of f , and put

δ = (α1 − α2)(α1 − α3)(α2 − α3).

(i) Show that GalQ(f) is isomorphic to A3 or S3.

(ii) Show that δ ̸= 0.

(iii) Show that θ(δ) = ±δ for all θ ∈ GalQ(f).

(iv) Show that

G ∼=

{
A3 if δ ∈ Q,
S3 otherwise.

(Hint: for the second case, warm up by doing q. 8 first.)

(v) Define
∆ = δ2 = (α1 − α2)

2(α1 − α3)
2(α2 − α3)

2.

(This is called the discriminant of f .) It is tedious but straightforward
to check that if we write

B = −(α1 + α2 + α3), C = α1α2 + α1α3 + α2α3, D = −α1α2α3

then
∆ = −27D2 + 18BCD − 4C3 − 4B3D +B2C2.

I’m not asking you to do this check, but convince yourself that you could
do it if need be. Also, this identity implies that ∆ ∈ Q, but which result
from Chapter 8 also implies that ∆ ∈ Q, with zero calculation?

(vi) Deduce that if we write f(t) as t3 + bt2 + ct+ d then

GalQ(f) ∼=

{
A3 if

√
−27d2 + 18bcd− 4c3 − 4b3d+ b2c2 ∈ Q,

S3 otherwise.
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(vii) Find the Galois group of t3 − 3t− 1.

12. Work through the details of the Galois correspondence for t4 − 2t2 + 9 ∈ Q[t].

A hint: if you find yourself handling the square roots of a non-real complex
number z, don’t just call them ±

√
z, which is arguably illegitimate anyway

(Warning 9.1.1). Instead, put them in the form x+ yi with x, y ∈ R.

13. Let p be a prime. Prove that GalQ(t
p − 1) ∼= Cp−1.

Hint: begin by rereading Example 7.1.13. Then find an isomorphism between
GalQ(t

p − 1) and the multiplicative group of Fp.

14. Let n ≥ 1. A primitive nth root of unity is an element of order n of the
multiplicative group C×. Equivalently, it is a complex number α such that n is
the least positive integer satisfying αn = 1. The nth cyclotomic polynomial
is

Φn(t) =
∏
α

(t− α),

where the product is over all primitive nth roots of unity α.

The coefficients of Φn are complex numbers. In this question, you’ll show that
they’re actually integers.

(i) Show that when p is prime, Φp(t) = tp−1+· · ·+t+1 (as in Example 3.3.16).

(ii) Calculate Φn for n = 1, . . . , 7.

(iii) By considering θ∗Φn for θ ∈ GalQ(t
n − 1), prove that Φn ∈ Q[t].

(iv) Show that
∏

d|n Φd(t) = tn − 1, where the product is over all positive
integers d dividing n.

If you did Introduction to Number Theory, you’ll know about the Euler
function φ. The degree of Φn is φ(n), and taking degrees on each side
of the equation between polynomials

∏
d|n Φd = tn − 1 gives an equation

between numbers that you may already know:
∑

d|n φ(d) = n.

(v) Use Gauss’s lemma on primitive polynomials to show that whenever f, g ∈
Q[t] are monic polynomials such that fg ∈ Z[t], then f, g ∈ Z[t]. (The two
usages of ‘primitive’ in this question are unrelated.)

(vi) Put together the previous parts to conclude that Φn ∈ Z[t].

One can go further and show that every cyclotomic polynomial Φn is irreducible
over Q. This is harder. Another way to say it is that the primitive nth roots of
unity are all conjugate to one another over Q.
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