

The functoriality of the reflexive completion

- 1. What is the reflexive completion?
 - 2. How is it functorial?
 - 3. A mystery
 - 4. The mystery resolved

1. What is the reflexive completion?

Isbell conjugacy for small categories

Let A be a small category.

Given $X: \mathcal{A}^{op} \longrightarrow \mathbf{Set}$, define $X^{\vee}: \mathcal{A} \longrightarrow \mathbf{Set}$ by

$$X^{\vee}(a) = [\mathcal{A}^{\mathsf{op}}, \mathbf{Set}](X, \mathcal{A}(-, a)).$$

Note! X is contravariant but X^{\vee} is covariant.

Substitute \mathcal{A}^{op} for \mathcal{A} : then from $Y: \mathcal{A} \longrightarrow \mathbf{Set}$, we get $Y^{\vee}: \mathcal{A}^{op} \longrightarrow \mathbf{Set}$, given by

$$Y^{ee}(a) = [\mathcal{A}, \mathbf{Set}](Y, \mathcal{A}(a, -)).$$

E.g.
$$\mathcal{A}(-,b)^{\vee} \cong \mathcal{A}(b,-)$$
 and $\mathcal{A}(b,-)^{\vee} \cong \mathcal{A}(-,b)$.

Reflexive functors on small categories

For $X: \mathcal{A}^{op} \longrightarrow \mathbf{Set}$ and $Y: \mathcal{A} \longrightarrow \mathbf{Set}$,

$$\mathsf{Hom}(X,Y^\vee)\cong \mathsf{Hom}(Y,X^\vee).$$

So there is an adjunction

$$[\mathcal{A}^{op}, \textbf{Set}] \xrightarrow[\sqrt{op}]{} [\mathcal{A}, \textbf{Set}]^{op}$$

whose unit and counit maps look like

$$\eta_X: X \longrightarrow X^{\vee\vee}, \quad \eta_Y: Y \longrightarrow Y^{\vee\vee}.$$

The functor X is reflexive if η_X is an isomorphism. Then $X \cong X^{\vee\vee}$.

Similarly for Y.

The reflexive completion of a small category

The reflexive completion $\mathcal{R}(A)$ of A is the full subcategory of $[A^{op}, \mathbf{Set}]$ consisting of the reflexive functors.

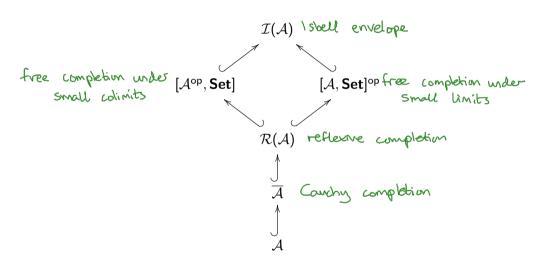
Equivalently, $\mathcal{R}(A)$ is the full subcategory of $[A, \mathbf{Set}]^{op}$ consisting of the reflexive functors.

That is, $\mathcal{R}(\mathcal{A})$ is the fixed category (invariant part) of the conjugacy adjunction

$$[\mathcal{A}^{op}, \mathbf{Set}] \xrightarrow{\vee} [\mathcal{A}, \mathbf{Set}]^{op}$$

E.g. Representables are reflexive, so there is a natural embedding $J_A: A \hookrightarrow \mathcal{R}(A)$.

The reflexive completion versus other kinds of completion



From small to locally small

Let A be any category, locally small but not necessarily small.

For $X: \mathcal{A}^{op} \longrightarrow \mathbf{Set}$, the formula

"
$$X^{\vee}(a) = [\mathcal{A}^{\mathsf{op}}, \mathbf{Set}](X, \mathcal{A}(-, a))$$
"

doesn't necessarily define a functor $\mathcal{A} \longrightarrow \mathbf{Set}$, since the right-hand side need not be a set.

Small functors

A **Set**-valued functor is small if it is a small colimit of representables.

Examples

- If \mathcal{A} is small then every functor $\mathcal{A}^{(op)} \longrightarrow \mathbf{Set}$ is small.
- If \mathcal{A} is large and discrete then the terminal functor $\mathcal{A} \longrightarrow \mathbf{Set}$ is not small.

Write

$$\widehat{\mathcal{A}} = (\mathsf{small} \; \mathsf{functors} \; \mathcal{A}^\mathsf{op} \longrightarrow \mathsf{Set}) \subseteq_{\mathsf{full}} [\mathcal{A}^\mathsf{op}, \mathsf{Set}]$$

(free completion of ${\cal A}$ under small colimits), and

$$oldsymbol{\widecheck{\mathcal{A}}} = (\mathsf{small}\ \mathsf{functors}\ \mathcal{A} \longrightarrow \mathbf{Set})^\mathsf{op} \subseteq_\mathsf{full} [\mathcal{A}, \mathbf{Set}]^\mathsf{op}$$

(free completion of A under small limits).

Conjugacy for general categories

Let A be a locally small category.

When $X: \mathcal{A}^{op} \longrightarrow \mathbf{Set}$ is small, we *can* define $X^{\vee}: \mathcal{A} \longrightarrow \mathbf{Set}$ by the usual formula,

$$X^{\vee}(a) = [\mathcal{A}^{\mathsf{op}}, \mathbf{Set}](X, \mathcal{A}(-, a))$$

 \dots although $X^{\vee} \colon \mathcal{A} \longrightarrow \mathbf{Set}$ needn't be small itself.

And dually.

We still have

$$\mathsf{Hom}(X,Y^\vee)\cong \mathsf{Hom}(Y,X^\vee)$$

and we still have unit maps $\eta_X : X \longrightarrow X^{\vee\vee}$ and $\eta_Y : Y \longrightarrow Y^{\vee\vee}$.

The reflexive completion of a general category

Let \mathcal{A} be a locally small category.

A functor $X \colon \mathcal{A}^{\mathrm{op}} \longrightarrow \mathbf{Set}$ is reflexive if X and X^{\vee} are small and $\eta_X \colon X \longrightarrow X^{\vee \vee}$ is an isomorphism.

And dually for $Y: \mathcal{A} \longrightarrow \mathbf{Set}$.

The reflexive completion $\mathcal{R}(\mathcal{A})$ of \mathcal{A} is the full subcategory of $\widehat{\mathcal{A}}$ consisting of the reflexive functors $\mathcal{A}^{\mathsf{op}} \longrightarrow \mathbf{Set}$.

Equivalently, it is the full subcategory of $\check{\mathcal{A}}$ consisting of the reflexive functors $\mathcal{A} \longrightarrow \mathbf{Set}$.

E.g. Representables are still reflexive, so we still have an embedding $J_A: A \hookrightarrow \mathcal{R}(A)$.

The reflexive completion has a universal property, as follows. . .

Dense and adequate functors

A functor $F: \mathcal{A} \longrightarrow \mathcal{B}$ is dense if its nerve functor

$$N_F: \quad \mathcal{B} \quad \longrightarrow \quad [\mathcal{A}^{op}, \mathbf{Set}]$$
 $b \quad \mapsto \quad \mathcal{B}(F-, b)$

is full and faithful.

E.g. Yoneda: $\mathcal{A} \hookrightarrow [\mathcal{A}^{op}, \textbf{Set}]$ is dense.

F is small-dense if it is dense and $\mathcal{B}(F-,b)$ is small for each b. Then $N_F\colon B\longrightarrow \widehat{\mathcal{A}}.$

E.g. Yoneda: $A \hookrightarrow \widehat{A}$ is small-dense.

F is [small-]adequate if full, faithful, [small-]dense and [small-]codense.

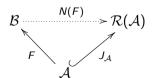
E.g. $J_A: A \longrightarrow \mathcal{R}(A)$ is small-adequate.

The universal property of the reflexive completion

Theorem (Isbell, more or less) $\mathcal{R}(A)$ is the largest category containing A as a small-adequate subcategory.

Analogy The completion of a metric space A is the largest space containing A as a dense subspace.

Precise statement: for any small-adequate functor $F: \mathcal{A} \longrightarrow \mathcal{B}$, there is a unique full and faithful functor $N(F): \mathcal{B} \longrightarrow \mathcal{R}(\mathcal{A})$ such that



commutes. Moreover, N(F) is adequate.

2. How is the reflexive completion functorial?

A no-go theorem

Most kinds of completion are functorial. Is reflexive completion?

Not in the obvious way:

Theorem There is no functor (or even pseudofunctor) **CAT** \longrightarrow **CAT** or **CA**

How the reflexive completion is functorial

But \mathcal{R} is functorial in a more restricted way: any *small-adequate* functor $F \colon \mathcal{A} \longrightarrow \mathcal{B}$ induces an adequate functor

$$\mathcal{R}(\mathcal{A}) \overset{\mathcal{R}(F)}{\longleftarrow} \mathcal{R}(\mathcal{B})$$

$$J_{\mathcal{A}} \downarrow \qquad \qquad \downarrow J_{\mathcal{B}}$$

$$\mathcal{A} \xrightarrow{F} \mathcal{B},$$

which is unique such that the square commutes. This follows from the universal property.

So we have a pseudofunctor

$$\mathcal{R}$$
: (cats + small-adequate functors)^{op} \longrightarrow (cats + adequate functors).

If $\mathcal{R}(\mathcal{A})$ is seen as $\subseteq [\mathcal{A}^{op}, \mathbf{Set}]$, and similarly $\mathcal{R}(\mathcal{B})$, then $\mathcal{R}(F) = - \circ F$.

3. A mystery

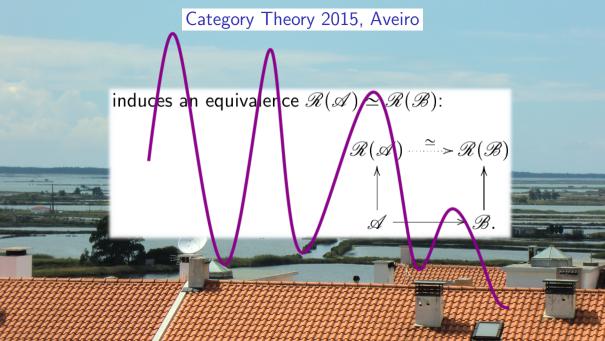
The difficulty of giving examples

We know that every small-adequate functor $F: \mathcal{A} \longrightarrow \mathcal{B}$ induces an adequate functor $\mathcal{R}(F): \mathcal{R}(\mathcal{B}) \longrightarrow \mathcal{R}(\mathcal{A})$.

But it's hard to find any nontrivial examples!

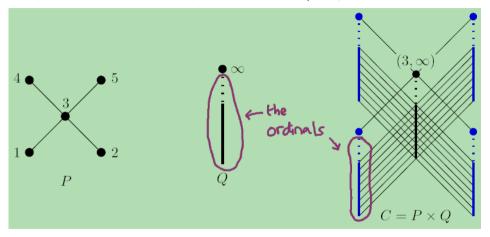
For almost every small-adequate F you can think of, $\mathcal{R}(F)$ is an equivalence.

A confession...



$\mathcal{R}(F)$ is not always an equivalence

... but the simplest known counterexample is complicated (Avery and Leinster, TAC, 2021):



So it seems that $\mathcal{R}(F)$ is *very often* an equivalence.

What explains this?

4. The mystery resolved

Adequacy versus small-adequacy

Recall how the functorial action of $\mathcal R$ was defined. . .

But $\mathcal R$ is functorial in a more restricted way: any small-adequate functor $F:\mathcal A\longrightarrow B$ induces an adequate functor

$$\mathcal{R}(\mathcal{A}) \stackrel{\mathcal{R}(F)}{\longleftarrow} \mathcal{R}(\mathcal{B})$$

$$J_{\mathcal{A}} \downarrow \qquad \qquad \downarrow J_{\mathcal{B}}$$

$$\mathcal{A} \stackrel{\mathcal{F}}{\longrightarrow} \mathcal{B},$$

which is unique such that the square commutes. This follows from the universal property.

So we have a pseudofunctor

$$\mathcal{R}$$
: $(cats + \frac{small-adequate}{small-adequate})^{op} \longrightarrow (cats + \frac{small-adequate}{small-adequate})$.

... and recall that small-adequacy is stronger than adequacy.

Lemma $\mathcal{R}(F)$ is *small*-adequate $\iff \mathcal{R}(F)$ is an equivalence.

Moral Whether $\mathcal{R}(F)$ is an equivalence comes down to a *size condition*.

Why $\mathcal{R}(F)$ is so often an equivalence

Call a category A gentle if:

- its free cocompletion $\widehat{\mathcal{A}}$ is complete, and
- its free completion $\check{\mathcal{A}}$ is cocomplete.

Very many categories are gentle! Examples:

- Small categories are gentle, since $\widehat{A} = [A^{op}, \mathbf{Set}]$ etc.
- Theorem of Day and Lack: complete & cocomplete \Rightarrow gentle.

Take a small-adequate functor $F: \mathcal{A} \longrightarrow \mathcal{B}$.

Although $\mathcal{R}(F) \colon \mathcal{R}(\mathcal{B}) \longrightarrow \mathcal{R}(\mathcal{A})$ is not always an equivalence, we do have:

Theorem If \mathcal{B} is gentle then $\mathcal{R}(F)$ is an equivalence.

Since so many categories are gentle, this explains why $\mathcal{R}(F)$ is so often an equivalence.

References

- John Isbell. Adequate subcategories. *Illinois Journal of Mathematics* 4 (1960), 541–552.
- Tom Avery and Tom Leinster. Isbell conjugacy and the reflexive completion. *Theory and Applications of Categories* 36 (2021), 306–347.