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Preview of the main theorem

Theorem

Let A be an algebra, of finite dimension and finite global dimension, over an
algebraically closed field.

Then the magnitude of the linear category of projective indecomposable
A-modules is equal to

χA(S ,S),

where

• χA is the Euler form of A;

• S is the direct sum of the simple A-modules (one per iso class).

But first, I will:

• explain why you might care;

• define the terms in red.



Why you might care

Many mathematical structures come with a canonical notion of size, e.g.
cardinality of sets, dimension of vector spaces, volume of subsets of Rn.

Schanuel, Rota and others made a convincing case that Euler characteristic
belongs to this family.

Euler’s analysis, which demonstrated that in counting suitably
‘finite’ spaces one can get well-defined negative integers, was a
revolutionary advance in the idea of cardinal number—perhaps
even more important than Cantor’s extension to infinite sets, if we
judge by the number of areas in mathematics where the impact is
pervasive.

—Stephen Schanuel

We might seek the canonical notion of size for associative algebras.
Perhaps it will resemble other things that we call ‘Euler characteristic’.
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1. Categorical background



Monoidal categories

Informal definition A monoidal category V is a category equipped with an
operation ⊗ of multiplication on the objects (and maps). It is required to be
associative (in a reasonable sense) and have a unit object I .

Examples

• V = Set, ⊗ = ×, I = {?}. Or similarly with V = FinSet.

• V = VectK , ⊗ = ⊗K , I = K . Or similarly with V = FDVect.

• V is the category whose objects are the elements of [0,∞],
with one map x −→ y if x ≥ y , and with no maps x −→ y otherwise.
This is monoidal with ⊗ = + and I = 0.



Enriched categories

Fix a monoidal category V.

Definition A

V-

category A consists of:

• a set/class obA of objects

• for each a, b ∈ obA, a set Hom(a, b)

of V

• for each a, b, c ∈ obA, a map

Hom(a, b)× Hom(b, c) −→ Hom(a, c)

• for each a ∈ obA, a map

{?} −→ Hom(a, a),

all subject to associativity and identity axioms.

Examples

• A Set-category is an ordinary category.

• A Vect-category is a linear category: hom-sets are vector spaces and
multiplication is bilinear.

• Any metric space can be viewed as a [0,∞]-category.
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The magnitude of an enriched category
Fix a monoidal category V = (V,⊗, I ).

Idea: Notion of size for V-objects 7→ notion of size for V-categories.

Suppose we have a semiring R and a monoid homomorphism

| · | : (obV/∼=,⊗, I ) −→ (R, ·, 1).

(E.g. V = FinSet, R = Q, | · | = cardinality.)

Let A be a V-category with finite object-set. Define an obA× obA matrix

ZA =
(
|A(a, b)|

)
a,b∈A

over R.

Assuming ZA is invertible, the magnitude of A is

|A| =
∑
a,b∈A

(Z−1A )(a, b) ∈ R.



Ordinary categories

Let V = FinSet, R = Q, and |X | = card(X ).

We obtain a notion of the magnitude |A| ∈ Q of a finite category A.

Example: If A is discrete then |A| = card(obA).

Example: Every small category A has a classifying space BA ∈ Top.

And under reasonable finiteness hypotheses, it is a theorem that

|A| = χ(BA).

For this reason, |A| is also called the Euler characteristic of A.

(So Euler characteristic arises naturally here as a notion of size,
in accordance with Schanuel’s vision.)



Metric spaces

Let V = ([0,∞],≥), ⊗ = + and I = 0. Let R = R and |x | = e−x .
(Why e−x? So that x 7→ |x | is a monoid homomorphism).

We obtain a notion of the magnitude |A| ∈ R of a finite metric space A.

The definition extends to compact subsets A ⊆ Rn.

It is geometrically informative. For example:

Theorem (Meckes): Let A ⊆ Rn be compact. The asymptotic growth of the
function t 7→ |tA| is equal to the Minkowski dimension of A.

Conjecture (with Willerton): Let A ⊆ R2 be compact convex. For t > 0,

|tA| = χ(A) +
perimeter(A)

4
· t +

area(A)

2π
· t2.



Linear categories

Let V = FDVect, R = Q, and |X | = dim X .

We obtain a notion of the magnitude |A| of a finite linear category.

Our main theorem will provide an example. . .



2. Algebraic background



Conventions

Throughout, we fix:

• an algebraically closed field K ;

• a finite-dimensional associative K -algebra A (unital, but maybe not
commutative).

We will consider finite-dimensional A-modules.



The atoms of the module world

Question: Which A-modules deserve to be thought of as ‘atomic’?

Answer 1: The simple modules.
(A module is simple if it is nonzero and has no nontrivial submodules.)

Some facts about simple modules:

• There are only finitely many (up to isomorphism), and they are
finite-dimensional.

• If S and T are simple then

HomA(S ,T ) ∼=

{
K if S ∼= T

0 otherwise

(using the assumption that K is algebraically closed).



The atoms of the module world

Question: Which A-modules deserve to be thought of as ‘atomic’?

Answer 2: The projective indecomposable modules.

Some facts about projective indecomposables:

• There are only finitely many (up to isomorphism), and they are
finite-dimensional.
So the linear category ProjIndec(A) of projective indecomposable
modules is essentially finite.

• The A-module A is a direct sum of projective indecomposable modules.
Every projective indecomposable appears at least once in this sum.

• The linear category ProjIndec(A) has the same representations as the
algebra A. That is,

[ProjIndec(A),Vect] ' A-Mod

where [−,−] denotes the category of linear functors.



The atoms of the module world
How do these two answers compare?

Simple
6=⇒
6⇐=

projective indecomposable.

But there is a natural bijection

{simple modules}/∼= ←→ {projective indecomposables}/∼=

given by S ↔ P iff S is a quotient of P. (It is not an equivalence of cats!)

Choose representative families

(Si )i∈I of the iso classes of simple modules,

(Pi )i∈I of the iso classes of projective indecomposable modules,

with Si a quotient of Pi . Then

HomA(Pi ,Sj) ∼=

{
K if i = j

0 otherwise.



Ext and the Euler form
For each n ≥ 0, we have the functor

ExtnA : A-Modop × A-Mod −→ Vect.

Assume now that A has finite global dimension, i.e. ExtnA = 0 for all n� 0.

For finite-dimensional modules X and Y , define

χA(X ,Y ) =
∞∑
n=0

(−1)n dim ExtnA(X ,Y ) ∈ Z.

This χA is the Euler form of A. It is biadditive.

Crucial fact: χA(Pi ,Sj) = δij .

Also, writing S =
⊕

i∈I Si ,

χA(S , S) =
∑
i ,j∈I

∞∑
n=0

(−1)n dim ExtnA(Si ,Sj).

And although HomA(Si ,Sj) is trivial, ExtnA(Si ,Sj) is interesting.



3. The theorem



Statement of the theorem (again)
Recall: A is an algebra, of finite dimension and finite global dimension,
over an algebraically closed field. We write:

• ProjIndec(A) for the linear category of projective indecomposable
A-modules, which is essentially finite;
• χA for the Euler form of A;
• |A| for the magnitude of an (enriched) category A;
• S =

⊕
i∈I Si , where (Si )i∈I is a representative family of the

isomorphism classes of simple A-modules.

Theorem |ProjIndec(A)| = χA(S , S).

Explicitly, this means: define a matrix

ZA =
(
dim HomA(Pi ,Pj)

)
i ,j∈I .

Then ∑
i ,j∈I

(Z−1A )(i , j) =
∑
i ,j∈I

∞∑
n=0

(−1)n dim ExtnA(Sj ,Si ).



Example: Koszul algebras (Stroppel)

Let A be a Koszul algebra.

Then A is naturally graded, and S = A0.

Hence

|ProjIndec(A)| =
∞∑
n=0

(−1)n dim ExtnA(A0,A0).

This was the first known case of the theorem.



Example: path algebras
Let (Q1 ⇒ Q0) be a finite acyclic quiver.

Take its path algebra A, which is of finite dimension and global dimension.

The simple and projective indecomposable modules are indexed by the
vertex-set Q0:

• Pi is the submodule of A spanned by the paths beginning at i

• its unique maximal submodule Ni is spanned by the nontrivial paths

• Si = Pi/Ni is therefore one-dimensional.

Computing with long exact sequences for Ext, we end up with

χA(S , S) = |Q0| − |Q1|.

On the other hand, consider the magnitude of ProjIndec(A):

• each path from j to i induces a map Pi −→ Pj

• every map Pi −→ Pj is a unique linear combination of such

• so Zij = dim HomA(Pi ,Pj) is the number of paths from j to i in Q.

So in this case, the theorem states that
∑

i ,j(Z−1)ij = |Q0| − |Q1|.



4. The proof



The Grothendieck group

The Grothendieck group K (A) is the abelian group generated by all
finite-dimensional A-modules, subject to

Y = X + Z

whenever
0 −→ X −→ Y −→ Z −→ 0

is a short sequence. It follows that more generally,

n∑
r=1

(−1)rXr = 0

in K (A) whenever

0 −→ X1 −→ X2 −→ · · · −→ Xn −→ 0

is an exact sequence.



Euler on Grothendieck

Previously, we defined χA(X ,Y ) ∈ Z for any finite-dimensional A-modules X
and Y .

In fact, χA is a well-defined bilinear form on K (A): e.g. given a SES

0 −→ X −→ Y −→ Z −→ 0

and another finite-dimensional module V , we have

χA(V ,Y ) = χA(V ,X ) + χA(V ,Z ).

(Proof: use the LES for Ext∗A(V ,−).)



Two bases for the Grothendieck group

The family (Si ) of simple modules spans K (A).

Proof: for any finite-dimensional A-module X , we may take a composition
series

0 = Xn < · · · < X1 < X0 = X ,

and then X =
∑

r Xr−1/Xr in K (A).

The family (Pi ) of projective indecomposable modules also spans K (A).

Proof: for any finite-dimensional A-module X , we may take a projective
resolution

0 −→ QN −→ · · · −→ Q1 −→ X −→ 0,

and then X =
∑

r (−1)r+1Qr in K (A). On the other hand, each Qr is a sum
of indecomposables, which are projective since Qr is.

Both (Si ) and (Pi ) are Z-linear bases for K (A).

Proof: χA is bilinear and χA(Pi ,Sj) = δij .



Proof of the theorem
We prove that the inverse of the matrix

Z =
(

dim HomA(Pi ,Pj)
)
i ,j∈I

=
(

dimχA(Pi ,Pj)
)
i ,j∈I

is the matrix
E =

(
χA(Sj , Si )

)
i ,j∈I

.

It will follow that |ProjIndec(A)| =
∑

i ,j(Z−1)ij = χA(S ,S).

Proof Since (Pi ) and (Si ) are both bases of K (A) (over Z), there is an
invertible matrix C such that

Pj =
∑
k∈I

CkjSk , Sj =
∑
k∈I

(C−1)kjPk

in K (A) for all j ∈ I .

Applying χA(Pi ,−) to the first equation gives χA(Pi ,Pj) = Cij , i.e. Z = C .

Applying χA(−, Si ) to the second equation gives E = C−1. QED.



Conclusion
What is the right definition of the Euler characteristic of an algebra A?

A category theorist’s answer:

• Schanuel taught us: Euler characteristic is the canonical measure of size.

• There is a general definition of the magnitude/Euler characteristic/size
of an enriched category.

• An important enriched category associated with A is ProjIndec(A).

• So, define the Euler characteristic of A as the magnitude of
ProjIndec(A).

An algebraist’s answer:

• We know the importance of the Euler form of A, defined by a
homological formula: χA(−,−) =

∑
(−1)n dim ExtnA(−,−).

• We know the importance of the simple modules, and their direct sum S .

• So, define the Euler characteristic of A as χA(S ,S).

The theorem states that the two answers are the same.


