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Nick Gurski’s new book addresses some central concerns of the subject
known as higher category theory; and yet, it is some distance from what many
people now understand by that term. This may puzzle some. I will therefore
begin by locating Gurski’s book within the mathematical landscape.

Let n ∈ N ∪ {∞}. Roughly, an n-category consists of some objects, some
1-morphisms between objects, some 2-morphisms between 1-morphisms (when
those 1-morphisms have the same domain and codomain), and so on, up to
n-morphisms between (n − 1)-morphisms, or without end if n = ∞. These
morphisms can be composed in various ways, and composition satisfies axioms.
Thus, a 0-category is a set and a 1-category is a category.

The devil is in the detail. If we ask that the various compositions satisfy
strict axioms, such as h ◦ (g ◦ f) = (h ◦ g) ◦ f , then we arrive at the definition of
a so-called strict n-category. These are very well understood, but the definition
excludes many natural examples. For instance, given a topological space X
and n ∈ N ∪ {∞}, we would like there to be an n-category Πn(X) in which
the objects are the points of X, the 1-morphisms are paths, 2-morphisms are
homotopies between paths, 3-morphisms are homotopies between homotopies,
and so on. But concatenation of homotopies is not strictly associative or unital,
so Πn(X) is not a strict n-category. We are therefore led to seek a definition of
non-strict, or weak, n-category, that includes such examples.

This is where the landscape opens up. On one side, there are algebraic
approaches to the problem. Here, an n-category is conceived as an algebraic
structure, consisting of a collection of morphisms of each dimension, equipped
with various operations satisfying universally quantified equations. On the other
side, the non-algebraic approach does not attempt to assign a definite composite
to each composable pair of morphisms, but merely asserts the existence of some
third morphism satisfying a suitable universal property.

This distinction can be explained by analogy with cartesian products of sets.
One person might take the approach that any two sets X and Y have a definite
product X × Y ; but it should then be observed that the products X × (Y ×Z)
and (X × Y ) × Z are not actually equal, only canonically isomorphic, and
that, moreover, these isomorphisms satisfy equations of their own (such as a
pentagonal identity for four-fold products). A different person might assert
that the product is only defined up to isomorphism; but then they need to
state its characterizing universal property, and they lose the right to speak of a
specific set called X × Y , at least without further justification.

The algebraic approach goes back half a century, to Bénabou’s definition
of bicategory (weak 2-category) [1]. His work made plain one difficulty of this
approach: in the definitions of bicategory, functor between bicategories, and so
on, the coherence axioms (such as the aforementioned pentagon) are quite com-
plicated. The complications multiply in dimension 3, as demonstrated by the
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1995 definition of tricategory (weak 3-category) by Gordon, Power and Street [2].
Their work, of which Gurski’s is a successor, established a crucial fact: that while
every bicategory is biequivalent to some strict 2-category, not every tricategory
is triequivalent to some strict 3-category. The theory of weak 3-categories is,
therefore, substantially deeper than the theory of strict 3-categories.

Once that had been discovered, the race was on to frame a definition of
weak n-category for arbitrary n. Algebraic definitions were proposed by, among
others, Penon, Batanin, and Leinster, all using techniques of categorical uni-
versal algebra to sidestep the ballooning complexity of the coherence diagrams.
Non-algebraic definitions were also stated, by Simpson and Tamsamani (using
simplicial sets), and by Baez and Dolan on the one hand and Hermida, Makkai,
and Power on the other (using a different cell shape). References and a survey of
the state of the art in 2001 can be found in [6]. All these proposed definitions are
well-motivated, but the relationships between them are not fully understood.

However, many naturally occurring n-categories have the special property
of being (n, 1)-categories, meaning that all m-morphisms for m > 1 are invert-
ible (in a suitably weak sense). For instance, this is true of the ∞-category of
topological spaces, continuous maps, homotopies, homotopies between homo-
topies, and so on. This suggests developing a free-standing theory of (n, 1)-
categories, thus avoiding some of the difficulties associated with general n-
categories. Joyal, building on Boardman and Vogt’s work on weak Kan com-
plexes, did just that [3], and his theory was further developed in the now
well-known work of Lurie [7]. (Confusion has been caused by Lurie using ‘∞-
category’ to mean (∞, 1)-category; thus, his ‘∞-categories’ are a narrower con-
cept than ∞-categories in general.)

A great strength of category theory is that it transcends the divides between
different branches of mathematics. It is no more tied to topology, say, than it is
to algebra or analysis or combinatorics. One early expression of the hoped-for
unification that higher category theory would bring was Grothendieck’s ho-
motopy hypothesis. Roughly, this states that ∞-groupoids (that is, (∞, 0)-
categories) are essentially the same thing as topological spaces (of the kind that
homotopy theorists like to consider), the correspondence being provided by Π∞.
It therefore asserts an equivalence between algebra (∞-groupoids) and topology
(spaces).

The homotopy hypothesis can be made trivial by interpreting both ‘∞-
groupoid’ and ‘space’ to mean Kan complex. Both interpretations are reason-
able in isolation. But for the homotopy hypothesis to have maximum substance,
embodying ‘algebra = topology’ to the full, ‘∞-groupoid’ must be interpreted
algebraically and ‘space’ topologically (Figure 1).

Much recent work in higher category theory emphasizes an understanding
of n-categories that is non-algebraic. As the case of the homotopy hypothesis
illustrates, something is thereby missed. Similarly, for instance, it would be
wasteful to discard the insight into n-categories provided by Penon’s proposed
definition, which pinpoints the position of the theory of n-categories within
the world of all higher-dimensional algebraic theories. The conception of n-
categories as algebraic structures risks not getting the attention it deserves.
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Figure 1: Algebraic and non-algebraic notions of ∞-groupoid and space.

Gurski’s book is thoroughly algebraic. It is also a book-length endorsement
of Gelfand’s maxim: study the simplest nontrivial example. As the author says
on page 1:

From the perspective of a “hands-on” approach to defining weak
n-categories, tricategories represent the most complicated kind of
higher category that the community at large seems comfortable
working with. On the other hand, dimension three is the lowest
dimension in which strict n-categories are genuinely more restrictive
than fully weak ones, so tricategories should be a sort of jumping off
point for understanding general higher dimensional phenomena.

‘Hands-on’ is exactly what this book is: sophisticated abstract methods are used,
but they are consistently given concrete expression in the three-dimensional
setting. In fact, consistency of approach is one of the virtues of this work. For
instance, Gordon, Power and Street’s definition of tricategory falls just short
of being fully algebraic; Gurski modifies it so that it is, which complicates the
definition a little, but the resulting conceptual purity pays dividends later.

The book begins with a brisk forty-page review of the theory of bicategories.
Assuming that the reader knows the basic definitions, it includes such topics
as coherence for both bicategories and functors between them, and the Gray
tensor product. It is no-nonsense, well-written, and covers a lot.

(Incidentally, the definition of orthogonal factorization system given as Def-
inition 3.18 is much shorter than the usual one, but equivalent. It deserves to
be better known. I believe it is due to Joyal [4].)

Part II, ‘Tricategories’, occupies nearly half the book. Its central theme is
coherence (again building on the seminal work of Gordon, Power and Street).
The word ‘coherence’ has two different but closely related meanings. The first is
that ‘all’ diagrams commute. For example, the standard definition of monoidal
category involves two axioms on the associativity and unit isomorphisms (one
pentagonal and one triangular), and we know that no more are needed because
it can be proved from just those two that any diagram built from these isomor-
phisms commutes.
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The second meaning of coherence is that every weak structure is equivalent
to some strict (or stricter) structure. For example, every monoidal category is
equivalent to a strict monoidal category, and every bicategory is biequivalent to
a strict 2-category. Although not every tricategory is triequivalent to a strict
3-category, a weaker coherence theorem holds: every tricategory is equivalent to
a Gray-category (more on which below). An alternative coherence theorem has
also been conjectured by Simpson and partially proved by Joyal and Kock [5]:
every tricategory is triequivalent to one in which everything except the identities
is strict.

Gurski takes pains to compare and contrast these two types of coherence.
For example, the tricategory axioms are chosen in such a way that all sensible
diagrams commute; that is why the axioms are what they are. But ‘sensible’
must be interpreted with care, and Gurski makes this point vividly with a
specific example of a diagram that does not commute.

The rest of Part II consists largely of explanations of tricategorical facts,
bridging the gap between the abstract and the concrete. Some of these facts
are known, or at least folklore; almost everything is very clearly explained.
The author is modest in not drawing attention to the substantial mathematical
clarifications that he has contributed.

One of the highlights of Part II is the careful examination in Chapter 5 of
three important tricategories: the tricategory of bicategories, the tricategory of
topological spaces, and the fundamental 3-groupoid of a space. Another, occu-
pying Chapters 9 and 10, is the sequence of coherence theorems for tricategories
and for functors between them.

By the start of Part III, ‘Gray-monads’, the book has moved definitively
from creative exposition to new research. As noted above, Gray-categories can
be viewed as semi-strict tricategories. But importantly, they are also categories
enriched in the category Gray of 2-categories with the Gray tensor product,
and this allows one to tap into the enormous power of enriched category theory.

In an especially lucid passage of the Introduction, Gurski describes the
strengths and limitations of the enriched approach. One dimension down, he
notes, a similar strategy has been exploited very effectively by the Sydney cat-
egory theory school (especially Kelly and Lack) to study 2-categories and 2-
monads on them. The author is explicit about which parts of that theory he
has succeeded in reproducing in three dimensions, and which he has not.

Part III is technically sophisticated and, as Gurski frankly concedes, free of
examples. An important role is played by codescent diagrams, which ‘should
be considered higher dimensional versions of coequalizers’. Just as every group
has a canonical presentation (take all possible generators and relations), and
more generally every algebra for a monad is canonically a coequalizer of free
algebras, every lax algebra for a Gray-monad has a canonical codescent dia-
gram. Following this train of thought leads to a canonical way of turning a lax
algebra into a strict algebra—and eventually to a general coherence result for
pseudo-algebras, the subject of the final chapter.

Throughout, the writing is disciplined, unfussy and direct, with no rambling.
Many authors of research monographs cannot resist the temptation to digress,
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to loosen their belts a little. Gurski resists.
My greatest criticism concerns the index. At barely more than a page, there

is not nearly enough of it, and there is no index of notation at all. A reader
who wants to find out what the author means by ‘functor of bicategories’ or
Hom(A,B), or know where the cited work of Joyal and Kock is discussed,
will find no help here. Occasional slip-ups are inevitable, and poor indexing
can exacerbate them. For instance, one might reach page 17 and read of ‘the
functor bicategory Bicat(B,C)’, thus far undefined. Ideally, one would turn to
the index or index of notation and discover that it is defined on page 21, thus
recovering gracefully from the error. But in reality, the index does not help.

Overall, though, this is a very well-written book, containing many signifi-
cant new results and gems of exposition, as well as representing an important
perspective on higher category theory.
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