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1. The big categorical picture



The idea
For many types of mathematical object, there is a canonical notion of size.

• Sets have cardinality. It satisfies

|S ∪ T | = |S |+ |T | − |S ∩ T |
|S × T | = |S | × |T | .

• Subsets of Rn have volume. It satisfies

vol(S ∪ T ) = vol(S) + vol(T )− vol(S ∩ T )

vol(S × T ) = vol(S)× vol(T ).

• Topological spaces have Euler characteristic. It satisfies

χ(S ∪ T ) = χ(S) + χ(T )− χ(S ∩ T ) (under hypotheses)

χ(S × T ) = χ(S)× χ(T ).

Stephen Schanuel:
Euler characteristic is the topological analogue of cardinality.
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Challenge Find a general definition of ‘size’, including these and other
examples.
One answer The magnitude of an enriched category.



The magnitude of a matrix

Let Z be a matrix.

If Z is invertible, the magnitude of Z is

|Z | =
∑
i ,j

(Z−1)ij

—the sum of all the entries of Z−1.

(The definition can be extended to many non-invertible matrices. . .
but we won’t need this refinement today.)



Enriched categories (informally)

A monoidal category is a category V equipped with some kind of product.

A category enriched in V is like an ordinary category, with a set/class of
objects, but the ‘hom-sets’ Hom(A,B) are now objects of V.
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The magnitude of an enriched category (informally)

Let V be a monoidal category.

Suppose we have a notion of the ‘size’ of each object of V:
a multiplicative function | · | from obV to some field k .

E.g. V = FinSet, k = Q, | · | = cardinality;
V = FDVect, k = Q, | · | = dimension.

Then we get a notion of the ‘size’ of a category A enriched in V:

• write ZA for the matrix
(
|Hom(A,B)|

)
A,B∈obA over k

• define the magnitude of the enriched category A to be

|A| = |ZA| ∈ k

—i.e. the magnitude of the matrix ZA.

(Here assume A has only finitely many objects and ZA is invertible.)



Examples not involving metric spaces

Ordinary finite categories (i.e. V = FinSet):

• For a finite category A satisfying mild conditions, |A| is χ(BA) ∈ Z, the
Euler characteristic of the classifying space of A.

• For a finite group G seen as a one-object category, |G | = 1/order(G ).

• For a finitely triangulated manifold X , its poset A of simplices has
magnitude |A| = χ(X ) ∈ Z.

• For a finitely triangulated orbifold X , its category A of simplices has
magnitude |A| = χ(X ) ∈ Q. (Joint result with Ieke Moerdijk.)

Linear categories (i.e. V = Vect):

• For a suitably finite associative algebra E , let IP(E ) denote the linear
category of indecomposable projective E -modules.
Then the magnitude of IP(E ) is a certain Euler form associated with E .
(Joint result with Joe Chuang and Alastair King.)



Metric spaces as enriched categories

There’s at least an analogy between categories and metric spaces:

A category has: A metric space has:

objects a, b, . . . points a, b, . . .
sets Hom(a, b) numbers d(a, b)
composition operations triangle inequalities

Hom(a, b)× Hom(b, c)→ Hom(a, c) d(a, b) + d(b, c) ≥ d(a, c)

In fact, both are special cases of the concept of enriched category.

(A metric space is a category enriched in the poset ([0,∞],≥) with ⊗ = +.)



2. The magnitude of a
metric space



The magnitude of a finite metric space (concretely)

To compute the magnitude of a finite metric space A = {a1, . . . , an}:

• write down the n × n matrix with (i , j)-entry e−d(ai ,aj )

• invert it

• add up all n2 entries.

And that’s the magnitude |A|.



The magnitude of a finite metric space: first examples

• |∅| = 0.

• |•| = 1.

•
∣∣•← `→•

∣∣ = sum of entries of

(
e−0 e−`

e−` e−0

)−1
=

2

1 + e−`

0

1

2

`

• If d(a, b) =∞ for all a 6= b then |A| = cardinality(A).

Slogan: Magnitude is the ‘effective number of points’



Magnitude functions

Magnitude assigns to each metric space not just a number, but a function.

For t > 0, write tA for A scaled up by a factor of t.

The magnitude function of a metric space A is the partial function

(0,∞) → R
t 7→ |tA| .

E.g.: the magnitude function of A = (•← `→•) is

0

1

2
|tA|

t

2/(1 + e−`t)

A magnitude function has only finitely many singularities (none if A ⊆ Rn).

It is increasing for t � 0, and lim
t→∞

|tA| = cardinality(A).



The magnitude of a compact metric space
In principle, magnitude is only defined for enriched categories with finitely
many objects — here, finite metric spaces.

Can the definition be extended to, say, compact metric spaces?

Theorem (Mark Meckes)
All sensible ways of extending the definition of magnitude
from finite metric spaces to compact ‘positive definite’ spaces
are equivalent.

Proof Uses functional analysis.

Positive definite spaces include all subspaces of Rn with Euclidean or `1

(taxicab) metric, and many other common spaces.

The magnitude of a compact positive definite space A is

|A| = sup{|B| : finite B ⊆ A}.



First examples

E.g. Line segment: |t[0, `]| = 1 + 1
2` · t.

E.g. Let A ⊆ R2 be an axis-parallel rectangle with the `1 (taxicab) metric.
Then

|tA| = χ(A) + 1
4perimeter(A) · t + 1

4area(A) · t2.



Magnitude encodes geometric information

Theorem (Meckes) Let A be a compact subset of Rn, with Euclidean metric.

From the magnitude function of A, you can recover its Minkowski dimension.

Proof Uses a deep theorem from potential analysis, plus the notion of
maximum diversity.

Theorem (Willerton) Let A be a homogeneous Riemannian
n-manifold. Then as t →∞,

|tA| = an vol(A) · tn + bn tsc(A) · tn−2 + O(tn−4),

where an and bn are constants and tsc is total scalar curvature.

Proof Uses some asymptotic analysis.



Magnitude encodes geometric information

Theorem (Barceló and Carbery) From the magnitude
function of A, you can recover the volume of A.

Proof Uses PDEs and Fourier analysis.

Theorem (Barceló and Carbery) The magnitude function of the Euclidean
ball Bn (for odd n) is a rational function over Q.

Specifically:∣∣tB1
∣∣ = 1 + t∣∣tB3
∣∣ = 1 + 2t + t2 + 1

6 t3∣∣tB5
∣∣ =

360 + 1080t + 1080t2 + 525t3 + 135t4 + 18t5 + t6

120(3 + t)



Magnitude encodes geometric information

Theorem (Gimperlein and Goffeng) From the magnitude
function of A, you can recover the surface area of A.

(Needs n odd and some regularity hypotheses.)

Proof Uses heat trace asymptotics (techniques related to heat equation
proof of Atiyah–Singer index theorem) and treats t as a complex parameter.

Theorem (Gimperlein and Goffeng) Let A,B ⊆ Rn, subject to technical
hypotheses. Then

|t(A ∪ B)|+ |t(A ∩ B)| − |tA| − |tB| → 0

as t →∞.

Magnitude of metric spaces doesn’t literally obey inclusion-exclusion, as that
would make it trivial. But it asymptotically does.



3. The magnitude homology of a
metric space



The idea in brief

Find a homology theory for enriched categories that categorifies magnitude.

This was first done for graphs (seen as metric spaces via shortest paths) by
Hepworth and Willerton in 2015: given a graph G ,

• they defined a group Hn,`(G ) for all integers n, ` ≥ 0 (a graded
homology theory);

• writing χ`(G ) =
∑

n(−1)n rank(Hn,`(G )), the magnitude function of G
equals

t 7→
∑
`

χ`(G )e−`t .

So: the Euler characteristic of magnitude homology is magnitude.

The definition was extended to enriched categories in work with
Mike Shulman in 2017.

General definition omitted. . .



The definition for metric spaces (concretely)

In the case of metric spaces A, magnitude homology looks like this.

For each integer n ≥ 0 and real ` ≥ 0, put

Cn,`(A) = Z · {(a0, . . . , an) : d(a0, a1) + · · ·+ d(an−1, an) = `, a0 6= · · · 6= an}.

Then C∗,`(A) is a chain complex for each `, with ∂ =
∑

0<i<n(−1)i∂i and

∂i (a0, . . . , an) =

{
(a0, . . . , ai−1, ai+1, . . . , an) if ai is between ai−1 and ai+1

0 otherwise.

(Between means d(ai−1, ai ) + d(ai , ai+1) = d(ai−1, ai+1).)

The magnitude homology of A at scale ` ∈ [0,∞) is H∗,`(A) = H(C∗,`(A)).



Properties of magnitude homology

• For finite metric spaces, magnitude homology categorifies magnitude:

|tA| =
∑

`∈[0,∞)

χ`(A)e−`t

(interpreted suitably), where χ`(A) =
∑

n(−1)n rank(Hn,`(A)) as before.

• Magnitude homology detects convexity: for closed A ⊆ Rn,

A is convex ⇐⇒ H1,`(A) = 0 for all ` > 0.

• While ordinary homology detects holes, magnitude homology
detects the diameter of holes (Kaneta and Yoshinaga).

•
There is a precise relationship between magnitude homology
and persistent homology—but they detect different information
(Otter).



4. The maximum entropy of a
metric space

joint with Emily Roff



How spread out is a probability distribution?

Let A be a compact metric space and µ a (Radon) probability measure on A.
The typicality of a point a ∈ A is

(Zµ)(a) =

∫
A

e−d(a,b) dµ(b).

It measures how much mass is nearby.

Here a is more typical than b:

The atypicality of a is
1

(Zµ)(a)
.



How spread out is a probability distribution?

Let A be a compact metric space and µ a probability measure on A.

We quantify spread as the average atypicality of a point in A.

Here ‘average’ could be the ordinary arithmetic mean∫
A

1

Zµ
dµ,

but it’s useful to consider all power means:

Definition Let q ∈ [0,∞]. The diversity of µ of order q is

Dq(µ) =

(∫
A

(
1

Zµ

)1−q
dµ

) 1
1−q

taking limits in q for the values q = 1,∞ where this is undefined.

The entropy of µ of order q is Hq(µ) = log Dq(µ).



Special cases

• Let A be a finite set; give it the metric d(a, b) =∞ for all a 6= b.
Then Hq(µ) is the Rényi entropy of a probability distribution µ on A,
and H1(µ) is its Shannon entropy.

•
(Joint work with Christina Cobbold.)

Let A be a finite set, with any metric. Can interpret points
of A as species, with distance measured e.g. genetically.

Then Dq(µ) measures the diversity of a community with species
abundances µ.

This subsumes many of the biodiversity measures used by ecologists.

• Any compact metric space A, with q = 2:

D2(µ) =
1∫

A

∫
A e−d(a,b) dµ(a) dµ(b)

.

Denominator is expected ‘similarity’ (e−distance) between a random pair
of points.



The role of q

In the definition of diversity Dq(µ) and entropy Hq(µ) there is a real
parameter q. What does it do?

Example Take A = {1, . . . , 8} with d(a, b) =∞ for all a 6= b.

Take µ to be the frequencies of the eight species of great ape on the planet.

Let ν be the 50-50 distribution of chimpanzees and bonobos only.

Moral: You can’t ask whether
one probability measure has
higher diversity/entropy than
another.

The answer may depend on q.



The maximum diversity theorem
Let A be a compact metric space.

What is the maximum possible diversity (or entropy) achievable by a
probability measure on A? What is that maximum?

In principle, both answers depend on q.

Theorem (with Mark Meckes [finite case] and Emily Roff [general case])
Both answers are independent of q. That is:

• there is a probability measure µ maximizing Dq(µ) for all q ∈ [0,∞]
simultaneously

• supµ Dq(µ) is independent of q

(and the same for entropy Hq).

Hence on a compact metric space, we have:

• a canonical probability measure (the maximizer, which is usually unique)

• a canonical real number, Dmax(A) = supµ Dq(µ).



A little on maximum diversity

Maximum diversity is closely related to magnitude. In fact, for any compact
metric space A,

Dmax(A) = |B|

for some closed B ⊆ A.

As for magnitude, the large-t asymptotics of Dmax(tA) encode geometric
information about the space A. E.g.:

• The asymptotic growth rate of Dmax(tA) is the Minkowski dimension of
A (Meckes).

• For A ⊆ Rn,

vol(A) = cn lim
t→∞

Dmax(tA)

tn
,

where cn is a known constant.

But the maximum diversity of even some very simple spaces is unknown,
e.g. Euclidean balls of dimension > 1.



The obvious probability measure

Some spaces carry an obvious probability measure—the first one everyone
thinks of. E.g.:

• For finite spaces, it’s the uniform probability measure.

• For homogeneous spaces, it’s Haar probability measure.

• For subsets of Rn, it’s normalized Lebesgue measure.

We’ll give a formal definition of the ‘uniform’ measure on a space, capturing
all these examples.



Maximizing entropy on an interval

The unique probability measure on [0, t] that maximizes all the entropies Hq

(or equivalently all the diversities Dq) is the normalization of

δ0 + λ[0,t] + δt .

Here λA means the restriction of Lebesgue measure to A.

For large t, the two deltas make no contribution to µt .

So ‘in the limit’, the maximizing measure is just normalized Lebesgue.

Formally: recall that for a metric space A = (A, d), we write tA for the set A
with the metric td . (E.g. t[0, 1] ∼= [0, t].)

Let µt denote the unique entropy-maximizing measure on t[0, 1]. Then

lim
t→∞

µt = normalization of λ[0,1].



The uniform measure

Definition Let A be a compact metric space. Suppose that tA has a unique
entropy-maximizing measure µt for all t � 0.

The uniform measure on A is µA = limt→∞ µt , if it exists.

Examples

• When A is finite, µA is the uniform probability measure in the usual
sense.

• When A is homogeneous (isometry group acts transitively), µA is the
Haar probability measure.

• When A ⊆ Rn, with nonzero finite volume, µA is normalized Lebesgue.

And the uniform measure is scale-invariant (µA = µtA).



Summary
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