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1. Background



Size
For many types of mathematical object, there is a canonical notion of size.

• Sets have cardinality. It satisfies

|A ∪ B| = |A|+ |B| − |A ∩ B|
|A× B| = |A| × |B| .

• Subsets of Rn have volume. It satisfies

vol(A ∪ B) = vol(A) + vol(B)− vol(A ∩ B)

vol(A× B) = vol(A)× vol(B).

• Topological spaces have Euler characteristic. It satisfies

χ(A ∪ B) = χ(A) + χ(B)− χ(A ∩ B) (under hypotheses)

χ(A× B) = χ(A)× χ(B).

Challenge Find a general definition of ‘size’, including these and other
examples.

One answer The magnitude of an “enriched category”.
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The magnitude of a compact metric space

Let A be a compact metric space, e.g. a closed bounded
subset of Rn.

The magnitude |A| of A is a real number measuring the ‘size’ of A.
(Definition later.)

Olaf, yesterday: ‘There is no privileged scale!’ So. . .

Given t > 0, write tA for A scaled up by a factor of t.

The magnitude function of A is the function t 7→ |tA|.

Thus, magnitude assigns to each space not just a number, but a function.



The magnitude of a line segment

Example: Let A be a straight line of length L.

The magnitude function of A is

t

|tA|
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slope L/2
t 7→ |tA| = 1

H

Euler characteristic

+ 1
2L
H

length

· t1J
dimension



The magnitude of a compact metric space: theorems
Let A be a compact subset of Rn.

Theorem (Meckes) The asymptotic growth rate of |tA| as t →∞ is the
Minkowski dimension of A.

E.g.

∣∣∣∣t ∣∣∣∣ grows like t2 and

∣∣∣∣t ∣∣∣∣ grows like t1.261...,

for large t.

Theorem (Barceló and Carbery; Gimperlein and Goffeng) Under technical
hypotheses,

|tA| = cn voln(A) · tn + cn−1 voln−1(∂A) · tn−1 + O(tn−2)

as t →∞, where cn and cn−1 are known constants.

E.g. If n = 3 then voln(A) and voln−1(∂A) are the volume and surface area
of A.

So: if you know the magnitude function of a space, you know its dimension,
volume and surface area.



The magnitude of a compact metric space: theorems

Theorem (Willerton) Let A be a homogeneous Riemannian n-manifold.
Then

|tA| = Cn voln(A) · tn + Cn−2TotalScalarCurvature(A) · tn−2 + O(tn−4)

as t →∞, where Cn and Cn−2 are known constants. In particular, when
n = 2,

|tA| = 1
2πarea(A) · t2 + χ(A) + O(t−2).

Theorem (Barceló and Carbery) The magnitude of an odd-dimensional
Euclidean ball is a rational function of its radius. Specifically:∣∣tB1

∣∣ = 1 + t,∣∣tB3
∣∣ =

1

3!
(6 + 12t + 6t2 + t3),∣∣tB5

∣∣ =
1

5!

360 + 1080t + 525t2 + 135t4 + 18t5 + t6

3 + t
.



The moral

For geometrically interesting subsets of Rn, the magnitude function conveys
geometrically interesting information.

(Despite—or because of?—its very general, abstract categorical origins.)

What information does the magnitude function contain for finite sets of
points?



2. The magnitude of a
finite set of points



The definition

Let A be a finite metric space with points 1, . . . , n and distance dij from
point i to point j .

Write ZA = Z for the n × n matrix with entries

Zij = e−dij .

Assuming Z is invertible (which it usually is), the magnitude of A is

|A| =
∑
i ,j

(Z−1)ij

—the sum of all n2 entries of Z−1.



First examples

• |∅| = 0.

• |•| = 1.

•
∣∣•← `→•

∣∣ = sum of entries of

(
e−0 e−`

e−` e−0

)−1
=

2

1 + e−`
.

0

1

2

`

• If d(i , j) =∞ for all i 6= j then |A| = n (number of points).

Slogan: Magnitude is the ‘effective number of points’
(or clusters, or modules, . . . )



Magnitude functions
Let A be a finite metric space. The magnitude function of A is the
(partially-defined) function t 7→ |tA| (t > 0).

Example:

1

|tA|

0

5

t
0 4

Properties:

• The magnitude function has only finitely many singularities
(none if A ⊆ Rn)

• limt→∞ |tA| is equal to n, the number of points

• |tA| is increasing in t for t � 0.



Detecting clusters at different scales (Willerton)

Magnitude: 1

As the points get further apart, the magnitude gets closer to 3.

Precise version: the magnitude function of the 3-point space

is

Rubinov & Sporns

Observation
Magnitude can be seen as ‘effective number of clusters’, but it’s
not always an integer! Awkward reality: ‘clusters’ are ill-defined.



Detecting clusters at different scales (Willerton)

Magnitude: 1.01

As the points get further apart, the magnitude gets closer to 3.

Precise version: the magnitude function of the 3-point space

is

Rubinov & Sporns

Observation
Magnitude can be seen as ‘effective number of clusters’, but it’s
not always an integer! Awkward reality: ‘clusters’ are ill-defined.



Detecting clusters at different scales (Willerton)

Magnitude: 1.2

As the points get further apart, the magnitude gets closer to 3.

Precise version: the magnitude function of the 3-point space

is

Rubinov & Sporns

Observation
Magnitude can be seen as ‘effective number of clusters’, but it’s
not always an integer! Awkward reality: ‘clusters’ are ill-defined.



Detecting clusters at different scales (Willerton)

Magnitude: 1.6

As the points get further apart, the magnitude gets closer to 3.

Precise version: the magnitude function of the 3-point space

is

Rubinov & Sporns

Observation
Magnitude can be seen as ‘effective number of clusters’, but it’s
not always an integer! Awkward reality: ‘clusters’ are ill-defined.



Detecting clusters at different scales (Willerton)

Magnitude: 2.3

As the points get further apart, the magnitude gets closer to 3.

Precise version: the magnitude function of the 3-point space

is

Rubinov & Sporns

Observation
Magnitude can be seen as ‘effective number of clusters’, but it’s
not always an integer! Awkward reality: ‘clusters’ are ill-defined.



Detecting the critical nodes and edges
View a graph as a metric space: the points are the nodes, and the distance
between nodes is the length of a shortest path between them.

whole graph

MAG FUNCN

one edge on
left deleted

(two near-
identical
curves)

bridge deleted



Detecting dimension at multiple scales
Definition (Willerton) The dimension of A at scale t is dim(A, t) = d(log|tA|)

d(log t) .

E.g. A =

0 10 20 30 40 500

0.5

1.0

t

dim(A, t)

E.g. A ≈
⊆ R3

grid is 100× 100× 100,
with 100:1 ratio of
horizontal:vertical spacing.

−6 −4 −2 0 2
0

1

2

log t

dim(A, t)



An appeal

The only ‘results’ we have on the ability of magnitude functions to detect
features of data-sets are a handful of specific examples. We need:

1. More empirical exploration

2. Theorems. . . or at least, conjectures!



Back to compact spaces

There are several equivalent ways to define the magnitude of a compact
metric space X (assuming a technical hypothesis).

The simplest:
|X | = sup

{
|A| : finite A ⊆ X

}
.

With this definition, and lots of analysis, we get all the results on geometric
invariants stated earlier.



3. Diversity

Joint with Christina Cobbold (Ecology, 2012)



A brief history of diversity measurement

Challenge Given a biological community, derive a single real number
measuring its ‘diversity’ (whatever that means).

There are practical problems . . . which we’ll ignore.

There are statistical problems . . . which we’ll ignore.

There are conceptual problems . . . which we’ll focus on.

Some conceptual questions:

• How much importance to attach to rare species?
E.g. there are 8 species of great ape, but 99.99% are humans.

• How to incorporate the varying similarities between species?
E.g. 10 species of pine vs. 10 very different tree species.



Lots of measures of diversity have been proposed. . .

We’ll meet a family of measures that encompasses many of them.



Lots of measures of diversity have been proposed. . .

We’ll meet a family of measures that encompasses many of them.



Lots of measures of diversity have been proposed. . .

We’ll meet a family of measures that encompasses many of them.



Modelling a community
Model a biological community mathematically as follows:

• The organisms are classified into n species.

• They have relative abundances p =

(
p1
...
pn

)
(with

∑
pi = 1).

• The similarity between species i and j is Zij ∈ [0, 1].
Here 0 means totally dissimilar and 1 means identical.
Assume Zii = 1 and Zij = Zji , so have symmetric n × n matrix Z .

Similarity can be measured in many ways, including:

• Naive model Z = I : distinct species have nothing in common.

• Percentage genetic similarity.

• Taxonomically, e.g. Zij =


1 if same species

0.7 if different species but same genus

0 otherwise.

• Zij = e−dij if (dij) is a metric on species.



A unifying family of diversity measures

Recap: We model a community by a relative abundance vector p =

(
p1
...
pn

)
and an n × n similarity matrix Z .

• (Zp)i =
∑

j Zijpj is the expected similarity between a random organism
and one of species i . It measures the ordinariness of species i .

• So 1/(Zp)i is the distinctiveness of species i .

A community is diverse if it contains many distinctive individuals.

So one measure of diversity is the average distinctiveness:∑
i

pi
1

(Zp)i
.

More generally, it’s worth considering the power mean(∑
i

pi

(
1

(Zp)i

)1−q
)1/(1−q)

for every real q (but we’ll stick to q ≥ 0).



A unifying family of diversity measures

Definition
The diversity of the community, of order q ≥ 0, is

DZ
q (p) =

(∑
i

pi (Zp)q−1i

)1/(1−q)

.

When q = 1, this doesn’t make sense. Instead, define

DZ
1 (p) = lim

q→1
DZ
q (p) = exp

(
−
∑

pi log(Zp)i

)
.

E.g. Naive model Z = I : then DZ
1 (p) = exp(Shannon entropy of p).



Properties of these diversity measures

• This family of diversity measures encompasses
many of the measures already defined and used by
ecologists, geneticists, etc.

• They behave sensibly when species are reclassified
(don’t jump suddenly).

• They behave smoothly under change of resolution
(e.g. if we go down to the subspecies level).

• They can be used in situations where we don’t
have species classifications at all (often the case
for microbial communities).

Influenza strains,
1968–2002



Comparing communities
The diversity profile of a community is the graph of DZ

q (p) against q.

E.g. Great apes worldwide, with naive similarity matrix (Z = I ):

The parameter q controls the relative emphasis on rare or common species.



Maximizing diversity

Problem: Fix a list of species (i.e. a similarity matrix Z ), and suppose we
are free to choose their relative abundances p.

• Which distribution p maximizes the diversity DZ
q (p)?

• What is the value of the maximum diversity, sup
p

DZ
q (p)?

Diversity profiles can cross, so in principle, both answers depend on q.

Theorem (with Mark Meckes, Entropy, 2016)

Neither does. That is:

• There is a single distribution pmax maximizing diversity of all orders q
simultaneously (a ‘best of all possible worlds’).

• The maximum diversity DZ
q (pmax) is the same for all q. Call it Dmax(Z ).



Consequences of the maximum diversity theorem

Any n × n similarity matrix Z (e.g. coming from a metric via Zij = e−dij )
gives rise canonically to:

• a probability distribution pmax on {1, . . . , n} (usually unique)

• a real number Dmax(Z ).

Often, Dmax(Z ) is equal to the magnitude |Z | =
∑

i ,j(Z−1)ij .

It’s always equal to the magnitude of Z restricted to some subset of
{1, . . . , n}.

In a slogan:

Magnitude ≈ maximum diversity



4. Graphs, revisited (briefly)



The magnitude of a graph

We’ve seen that any graph G can be understood as a special metric space,
where all distances are integers.

(For simplicity, I’ll stick to undirected graphs—but can do directed.)

Special property of graphs Write x = e−t . Then the magnitude function
t 7→ |tG | is a rational function of x.

E.g. , and all have magnitude function

5 + 5x − 4x2

(1 + x)(1 + 2x)
.

The magnitude of a graph can be studied as a graph invariant, and shares
some invariance properties with the Tutte polynomial.



The magnitude of a graph
Lemma The magnitude function of a graph can also be expressed as a
power series with integer coefficients.

E.g. , and have magnitude function

5− 10x + 16x2 − 28x3 + 52x4 − 100x5 + · · · .

In general, the magnitude function of a graph G is

c0 + c1x + c2x2 + · · ·
where

c0 = number of nodes

c1 = −2 · (number of edges)

c2 =
∑

i ,j :dij=2

(
(num of configurations i—•—j)− 1

)
︸ ︷︷ ︸

redundancy

+ 6 · (num of triangles) + 2 · (num of edges).



5. The future:
magnitude homology



Two points of view on Euler characteristic

So far: Euler characteristic has been treated as an analogue of cardinality.

Alternatively: Given any homology theory H∗ of any kind of object X ,
can define

χ(X ) =
∞∑
n=0

(−1)n rank Hn(X ).

Note:

• χ(X ) is a number

• H∗(X ) is an algebraic structure, and functorial in X .

In this sense, homology improves on (“categorifies”) Euler characteristic.



The magnitude homology of a graph (Hepworth–Willerton)

There is a definition (omitted) of the magnitude homology of a graph.

It is a graded homology theory. That is, for each graph G and integer k ≥ 0,
it gives a sequence

Hk,0(G ),Hk,1(G ),Hk,2(G ), . . .

of abelian groups.

So for each k ≥ 0, we have a power series

rank(Hk,0(G )) + rank(Hk,1(G ))x + rank(Hk,2(G ))x2 + · · ·

The Euler characteristic χ(G ) for this homology theory is (inevitably) defined
as the alternating sum of these power series over k = 0, 1, . . ..

Theorem (Hepworth, Willerton)χ(G ) is exactly the magnitude function of G.

So: magnitude is the Euler characteristic of magnitude homology.



The magnitude homology of a metric space

The definition of magnitude homology can be generalized from graphs to
enriched categories (Shulman).

In particular, there is a magnitude homology of metric spaces.

Sample Theorem For a closed set A ⊆ Rn,

A is convex ⇐⇒ H1(A) = 0.

Otter (2018) has done a comparison of magnitude homology with persistent
homology:

• She proves a relationship between persistent homology and a ‘blurred
version’ of magnitude homology. . .

• but concludes that ‘morally, these are very different homology theories’,
conveying different information.



Summary



Summary
Magnitude is a numerical invariant of metric spaces (e.g. data sets, networks,
and the kinds of space that geometers like thinking about).

By considering rescalings, magnitude assigns a function to each space.

• For geometrically interesting spaces, the magnitude function carries
geometrically interesting information (volume, dimension, etc).

• For finite spaces, it seems—empirically—to carry multiscale information
on number of clusters and dimensionality.

We can also measure the diversity (∼ entropy) of any probability distribution
on a finite metric space. . .

. . . and magnitude is closely related to maximum diversity.

There is a theory of magnitude homology for metric spaces.

It is related to persistent homology, but expresses different information about
the space. . . Lots to explore here!

References and further reading: www.maths.ed.ac.uk/∼tl/magbib


