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How important is composition in a category?

How important is the topology of a topological space?

e A cell complex is a gluing of balls: ) . ) . ) ‘ ‘ ‘ . .

e Its topology depends entirely on how they are glued.

e But its Euler characteristic does not.

Let A be a small category. Write BA = |NA| for its classifying space.
Suppose that A is suitably finite, so that x(BA) is defined.

Theorem
X(BA) is independent of the composition and identities in A.

That is, if A and A’ have the same underlying graph then x(BA) = x(BA’).
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For o, B: " — Z, define o+ 3: Z* — Z by

(s B)(n) = D a(k)B(m).

km=n

The unit for the product * is : ZT — Z, given by

5(n):{1 ifn=1

0 otherwise.

Define ¢: ZT — Z by ((n) = 1 for all n.
The Mobius function ji: Zt — Z is the inverse (% of ¢. Explicitly,

(=1)" if nis a product of r distinct primes
p(n) = .
0 otherwise.

Important in number theory, e.g.

YT -2
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Mobius inversion for posets
Let A be a suitably finite poset. Let k be a (commutative) ring.
The incidence algebra kA is the set of functions
{(a,b) e AX A| a<b}—k,
with multiplication * defined by
(axf)(ac)= >, afab)f(bc)
b: a<b<c

(a, B € kA), and unit 0 given by

(0. b) — {1 ifa=b

0 otherwise.
Define ¢ € kA by ((a, b) =1 for all a, b.
The Mébius function g is (1. (It always exists.) Explicitly,

w(a, b) = Z(—l)”]{chains a=ap <---<ap=b}|
neN

Eg.: (A7 S) = (Z+v ‘) then N(a7 b) = Mclassical(b/a)-
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Functoriality

Let F : A — B be a suitably finite functor.

There is an induced linear map

F: kA — kB
a — Fa

defined by

(g € arr(B)).

Proposition

Fi is an algebra homomorphism for all k <= F is bijective on objects.
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Comparison theorem
Let A be a suitably finite category. Let k be a ring.

Write CA for the codiscrete category with the same objects as A. Then:

e k(CA) = kA
e the identity-on-objects functor F : A — CA induces a homomorphism

Y =F: kA — kA,
given by

(Za)(a,b) = > off).

f:a—b
Proposition (Haigh)

If A has fine Mobius inversion then A has coarse Mébius inversion, with

Ncoarse a, b g Mfme
f:a—b

Proof Ccoarse = ZCﬁney SO [coarse = Z,Ufine-
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How important is composition for fine Mobius inversion?
Proposition (Haigh) If A has fine M. inv. then A has coarse M. inv., with

/~Lcoarse a, b E Hfme
f:a—b

Corollary (Menni) If A has fine Mébius inversion then, for all a, b € A,

> u(f)

f:a—b

is independent of the composition and identities in A.

Corollary If A has fine Mébius inversion then

> ulf)

fearr(A)

is independent of the composition and identities in A.
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Let A be a suitably finite category with coarse Mobius inversion.

The Euler characteristic of A is

(A) =3 (a, b).
a,b

Theorem x(A) = x(BA).
Corollary x(BA) is independent of the composition and identities in A.
Corollary If A has fine Mébius inversion then

> u(f) = x(BA).

fearr(A)



4. Postscript:

A theorem of Beck—Chevalley type
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Functoriality revisited

Recall: A bijective-on-objects functor F : A — B induces a homomorphism
kA L kB

where (Fi)(g) = S pr_g o).
Also: A functor F : A — B induces a linear map

kA < kB

where (F*3)(f) = B(Ff). It is an algebra homomorphism if F has unique
lifting of factorizations.

Question: How are these covariant and contravariant processes related?



A theorem of Beck—Chevalley type



A theorem of Beck—Chevalley type
Proposition Let
F/
—

G/

><—0
N<—W
)

—
F

be a pullback square of suitably finite categories,
such that F is bijective on objects and G has unique lifting of factorizations.



A theorem of Beck—Chevalley type

Proposition Let

F/
—

Q
><—0
N<—mw

)

—
F

be a pullback square of suitably finite categories,
such that F is bijective on objects and G has unique lifting of factorizations.

Then F’ is bijective on objects, G' has unique lifting of factorizations,



A theorem of Beck—Chevalley type
Proposition Let
F/
—

G/

><—0
N<—W
)

—
F

be a pullback square of suitably finite categories,
such that F is bijective on objects and G has unique lifting of factorizations.

Then F’ is bijective on objects, G' has unique lifting of factorizations,

and the square
F/

kD —'> kB

Gl* G*

—
—

kA —> kC
F

commutes.
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Summary

Number-theoretic M. inversion is generalized by M. inversion for posets
M. inversion for posets can be generalized to categories in two ways:

o Fine Mobius inversion:
- depends on the composition in the category
- does not exist for many categories

o Coarse Mobius inversion:

- does not depend on the composition in the category
- exists for most categories

Fine M. inversion = coarse M. inversion, with u(a, b) = > pu(f)
f:a—b

The Euler characteristic of a category A:
o is x(BA) = Z%u(a, b) = Efiﬂ(f)
o does not depénd on the composition in A.

Throwing away the composition of a category might seem extravagant,
but it's surprising how much remains.
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