










Prelude:
How important is composition in a category?

How important is the topology of a topological space?

• A cell complex is a gluing of balls: · · ·

• Its topology depends entirely on how they are glued.

• But its Euler characteristic does not.

Let A be a small category. Write BA = |NA| for its classifying space.

Suppose that A is suitably finite, so that χ(BA) is defined.

Theorem

χ(BA) is independent of the composition and identities in A.

That is, if A and A′ have the same underlying graph then χ(BA) = χ(BA′).
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1. A simplified history of Möbius inversion
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Number-theoretic Möbius inversion
(Möbius 1832)
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(Rota 1964, et al.)

�
�

��	

Fine M. inversion for categories

(Leroux et al. 1975, 1980;

Haigh 1980)

@
@

@@R

Coarse M. inversion for categories

(Haigh 1980;

Leinster 2008)



Overview

Number-theoretic Möbius inversion
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Number-theoretic Möbius inversion

For α, β : Z+ → Z, define α ∗ β : Z+ → Z by

(α ∗ β)(n) =
∑

km=n

α(k)β(m).

The unit for the product ∗ is δ : Z+ → Z, given by

δ(n) =

{
1 if n = 1

0 otherwise.

Define ζ : Z+ → Z by ζ(n) = 1 for all n.

The Möbius function µ : Z+ → Z is the inverse ζ−1 of ζ. Explicitly,

µ(n) =

{
(−1)r if n is a product of r distinct primes

0 otherwise.

Important in number theory, e.g.

1
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Möbius inversion for posets

Let A be a suitably finite poset. Let k be a (commutative) ring.

The incidence algebra kA is the set of functions

{(a, b) ∈ A× A | a ≤ b} → k,

with multiplication ∗ defined by

(α ∗ β)(a, c) =
∑

b : a≤b≤c

α(a, b) β(b, c)

(α, β ∈ kA), and unit δ given by

δ(a, b) =

{
1 if a = b

0 otherwise.

Define ζ ∈ kA by ζ(a, b) = 1 for all a, b.

The Möbius function µ is ζ−1. (It always exists.) Explicitly,

µ(a, b) =
∑
n∈N

(−1)n|{chains a = a0 < · · · < an = b}|.

E.g.: (A,≤) = (Z+, |): then µ(a, b) = µclassical(b/a).
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The Möbius function µ is ζ−1. (It always exists.) Explicitly,

µ(a, b) =
∑
n∈N

(−1)n|{chains a = a0 < · · · < an = b}|.

E.g.: (A,≤) = (Z+, |): then µ(a, b) = µclassical(b/a).
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Fine Möbius inversion for categories

Let A be a suitably finite category. Let k be a ring.

The fine incidence algebra kA is the set of functions

arr(A)→ k,

with multiplication ∗ defined by

(α ∗ β)(f ) =
∑

g ,h : hg=f

α(g)β(h)

(α, β ∈ kA), and unit δ given by

δ(f ) =

{
1 if f is an identity

0 otherwise.

Define ζ ∈ kA by ζ(f ) = 1 for all f .

The fine Möbius function µ is ζ−1, if it exists. Then A has fine Möbius
inversion.

E.g.: A = (A,≤). Then kA = kA, with ζ, µ∈kA corresponding to ζ, µ∈kA.
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Fine and coarse: summary

A: suitably finite category. k: ring.

Fine Coarse

Incidence algebra kA = kcA =
{fns arr(A)→ k} {fns ob(A)× ob(A)→ k}

Multiplication (α ∗ β)(f ) = (α ∗ β)(a, b) =∑
hg=f α(g)β(h)

∑
b α(a, b)β(b, c)

Zeta function ζ(f ) ≡ 1 ζ(a, b) = |Hom(a, b)|

Inverse of ζ fine Möbius function µ coarse Möbius function µ

Have M. inv. for:
posets? X X
monoids? x X
groupoids? x X
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2. Fine vs. coarse Möbius inversion



Overview

Number-theoretic Möbius inversion
(Möbius 1832)

?

Möbius inversion for posets

(Rota 1964, et al.)
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Fine M. inv. for categories

(Leroux et al. 1975, 1980;

Haigh 1980)
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Coarse M. inv. for categories

(Haigh 1980;

Leinster 2008)
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Functoriality

Let F : A→ B be a suitably finite functor.

There is an induced linear map

F! : kA → kB
α 7→ F!α

defined by

(F!α)(g) =
∑

f : F (f )=g

α(f )

(g ∈ arr(B)).

Proposition

F! is an algebra homomorphism for all k ⇐⇒ F is bijective on objects.
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Comparison theorem

Let A be a suitably finite category. Let k be a ring.

Write CA for the codiscrete category with the same objects as A. Then:

• k(CA) = kcA
• the identity-on-objects functor F : A→ CA induces a homomorphism

Σ = F! : kA→ kcA,

given by

(Σα)(a, b) =
∑

f : a→b

α(f ).

Proposition (Haigh)

If A has fine Möbius inversion then A has coarse Möbius inversion, with

µcoarse(a, b) =
∑

f : a→b

µfine(f ).

Proof ζcoarse = Σζfine, so µcoarse = Σµfine.
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µcoarse(a, b) =
∑

f : a→b

µfine(f ).

Proof ζcoarse = Σζfine, so µcoarse = Σµfine.



Comparison theorem

Let A be a suitably finite category. Let k be a ring.

Write CA for the codiscrete category with the same objects as A. Then:

• k(CA) = kcA
• the identity-on-objects functor F : A→ CA induces a homomorphism

Σ = F! : kA→ kcA

,

given by

(Σα)(a, b) =
∑

f : a→b

α(f ).

Proposition (Haigh)
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3. How important is

composition in a category?



How important is composition for fine Möbius inversion?

Proposition (Haigh) If A has fine M. inv. then A has coarse M. inv., with

µcoarse(a, b) =
∑

f : a→b

µfine(f ).

Corollary (Menni) If A has fine Möbius inversion then, for all a, b ∈ A,∑
f : a→b

µ(f )

is independent of the composition and identities in A.

Corollary If A has fine Möbius inversion then∑
f ∈arr(A)

µ(f )

is independent of the composition and identities in A.
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Let A be a suitably finite category with coarse Möbius inversion.

The Euler characteristic of A is

χ(A) =
∑
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4. Postscript:

A theorem of Beck–Chevalley type



Functoriality revisited

Recall: A bijective-on-objects functor F : A→ B induces a homomorphism

kA
F!−→ kB

where (F!α)(g) =
∑

f : Ff =g α(f ).

Also: A functor F : A→ B induces a linear map

kA
F∗
←− kB

where (F ∗β)(f ) = β(Ff ). It is an algebra homomorphism if F has unique
lifting of factorizations.

Question: How are these covariant and contravariant processes related?
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A theorem of Beck–Chevalley type

Proposition Let

D
F ′

> B

A

G ′

∨

F
> C

G
∨

be a pullback square of suitably finite categories,
such that F is bijective on objects and G has unique lifting of factorizations.

Then F ′ is bijective on objects, G ′ has unique lifting of factorizations,
and the square

kD
F ′!> kB

kA

G ′∗
∧

F!
> kC

G ∗
∧

commutes.
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Summary

• Number-theoretic M. inversion is generalized by M. inversion for posets

• M. inversion for posets can be generalized to categories in two ways:

◦ Fine Möbius inversion:

· depends on the composition in the category
· does not exist for many categories

◦ Coarse Möbius inversion:

· does not depend on the composition in the category
· exists for most categories

• Fine M. inversion ⇒ coarse M. inversion, with µ(a, b) =
∑

f : a→b

µ(f )

• The Euler characteristic of a category A:

◦ is χ(BA) =
∑
a,b

µ(a, b) =
∑
f

µ(f )

◦ does not depend on the composition in A.

• Throwing away the composition of a category might seem extravagant,
but it’s surprising how much remains.
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◦ Fine Möbius inversion:

· depends on the composition in the category
· does not exist for many categories
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