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Preview of the main theorem

Theorem

Let A be an algebra, of finite dimension and finite global dimension, over an
algebraically closed field.

Then the magnitude of the Vect-category of projective indecomposable
A-modules is equal to

XA(Sa 5)7

where

e Y4 is the Euler form of A;

e S is the direct sum of the simple A-modules (one per iso class).
But first, | will:

e define the terms in red (and some of the others);

e explain why you might care.
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1. The magnitude of an
enriched category




The definition
Let (V,®, /) be a monoidal category.

Idea: Notion of size for V-objects — notion of size for V-categories.

Suppose we have a semiring R and a monoid homomorphism
|| (ObV/g,(@, l) — (Rval)

(E.g. V =FinSet, R = Q, |- | = cardinality.)
Let A be a V-category with finite object-set. Define an ob A x ob A matrix

Zn = (IA(a, b)Da,beA

over R.

Assuming Zp is invertible, the magnitude of A is

Al= Y (ZM)ab) e R

a,beA



Ordinary categories

Let V = FinSet, R = Q, and |X| = card(X).

We obtain a notion of the magnitude |A| € Q of a finite category A.
Example: If A is discrete then |A| = card(ob A).

Example: Every small category A has a classifying space BA € Top.

And assuming certain finiteness hypotheses,
|A] = x(BA).

For this reason, |A| is also called the Euler characteristic of A.

Fundamental idea (Schanuel):

Euler characteristic is the topological analogue of cardinality.



Ordered sets

Let V = 2 = {false < true}. Let R =Z,
We obtain a notion of the magnitude |P| € Z of a finite poset P.

false| = 0 and [true| = 1.

(It is equal to what is called x(P) in poset homology.)
The matrix Z5 ! is the ‘Mé&bius function’ of P (Rota et al—combinatorics).
Example: If (P,<) = (N, |) (not finite, but never mind...) then

Z5'(a, b) = {/g(b/a) if alb

otherwise

where 1 is the classical number-theoretic Mébius function.



Metric spaces

Let V=([0,¢],>), ® =+ and | =0. Let R=R and |x| = e~ (why?
so that x — |x| is a monoid homomorphism).

We obtain a notion of the magnitude |A| € R of a finite metric space A.
The definition extends to compact subsets A C R".
It is geometrically informative. For example:

Theorem (Meckes): Let A C R" be compact. The asymptotic growth of the
function t — |tA| is equal to the Minkowski dimension of A.

Conjecture (with Willerton): Let A C R? be compact convex. For t > 0,

perimeter(A) H_area(A) 2

Al = x(A :
oA = x(4) + B =



Linear categories

Let V = FDVect, R = Q, and |X| = dim X.

We obtain a notion of the magnitude |A| of a finite linear category
(V-category).

Our main theorem will provide an example. ..



2. Algebraic background




Conventions

Throughout, we fix:

e an algebraically closed field K;

e a finite-dimensional associative K-algebra A (unital, but not necessarily
commutative).

We will consider finite-dimensional A-modules.



The atoms of the module world

Question: Which A-modules deserve to be thought of as ‘atomic’?

Answer 1:  The simple modules.
(A module is simple if it is nonzero and has no nontrivial submodules.)
Some facts about simple modules:

e There are only finitely many (up to isomorphism), and they are
finite-dimensional.

e If S and T are simple then

K ifS=T

0 otherwise.

HomA(S, T) = {



The atoms of the module world

Question: Which A-modules deserve to be thought of as ‘atomic’?

Answer 2:  The projective indecomposable modules.
(A module P is projective if Homa(P, —) preserves epimorphisms, and
indecomposable if it is nonzero and has no nontrivial direct summands.)

Some facts about projective indecomposables:

e There are only finitely many (up to isomorphism), and they are
finite-dimensional.
So the linear category Projlndec(A) of projective indecomposable
modules is essentially finite.

e The A-module A is a direct sum of projective indecomposable modules.
Every projective indecomposable appears at least once in this sum.
e The linear category Projlndec(A) has the same representations as the
algebra A. That is,
[Projindec(A), Vect] ~ A-Mod.



The atoms of the module world

How do these two answers compare?
Simple z projective indecomposable.
But there is a natural bijection
{simple modules} /= <«+—  {projective indecomposables} /=

given by S < P iff S is a quotient of P.
(It is not an equivalence of categories!)

Choose representative families

(S;)icr of the iso classes of simple modules,

(P;)ics of the iso classes of projective indecomposable modules,

with S; a quotient of P;.



Ext and the Euler form

For each n > 0, we have the functor
Ext}: A-Mod°? x A-Mod — Vect.

Assume now that A has finite global dimension, i.e. Ext; = 0 for all n>> 0.

For finite-dimensional modules X and Y, define
Xa(X, Y) = (~1)"dimExta(X, Y) € Z.
n=0
Algebraists call x4 the Euler form of A. It is biadditive.
Remark: Writing S = @, Si, we have

Xa(S,8) =) ) (~1)"dimExtx(S;, S)).

ijel n=0

And although Homx(S;, S;) is trivial, Ext(S;, S;) is interesting.



3. The theorem




Statement of the theorem (again)

Recall: A is an algebra, of finite dimension and finite global dimension,
over an algebraically closed field. We write:

e Projlndec(A) for the linear category of projective indecomposable
A-modules, which is essentially finite;

e |A| for the magnitude of an (enriched) category A;

o S =@, Si. where (5;)ics is a representative family of the
isomorphism classes of simple A-modules.

Theorem |Projlndec(A)| = xa(S, S).

Explicitly, this means: define a matrix

ZA = (dim HomA(P,-, Pj))i,jel'

Then
SEZ ) = ST S (~1)" dimExt)(S;, ).

ijel ijel n=0



Examples

Example (Stroppel): Let A be a Koszul algebra. Then A is naturally graded,
and S = Ag. Hence

Projindec(A)| = > "(—1)" dim Extj(Ao, Ao).
n=0

Example: Let (Q1 = Qo) be a finite acyclic quiver (directed graph).
Take its path algebra A.

The simple/projective indecomposable modules are indexed by the
vertex-set (g, and one can calculate homologically that

xa(S,S) = card(Qo) — card(@1).

Hence
|Projindec(A)| = card(Qy) — card(Q1).



Proof of the theorem: the strategy

The theorem is proved by moving between several different descriptions
of the matrix Zx:

o Zu(i,j) = dimHoma(P;, P;) (by definition).
o Za(i,j) = xa(Pi, Pj).

o Za(i,j) is the multiplicity of S; as a composition factor of P;
(in the jargon: Zj is the Cartan matrix of A).

e Both (S5i)ics and (P;)jec; are bases of the Grothendieck group of
finite-dimensional A-modules, and Z4 is the change-of-basis matrix.



Conclusion
What is the right definition of the Euler characteristic of an algebra A?

A category theorist's answer:

e Schanuel taught us: Euler characteristic is the canonical measure of size.

e There is a general definition of the magnitude/Euler characteristic/size
of an enriched category.

e An important enriched category associated with A is Projlndec(A).

So, define the Euler characteristic of A as the magnitude of
Projindec(A).

An algebraist’s answer:

e We know the importance of the Euler form of A, defined by a
homological formula: xa(—,—) = > (—1)"dim Ext}(—, —).
e We know the importance of the simple modules, and their direct sum S.

e So, define the Euler characteristic of A as xa(S, S).

The theorem states that the two answers are the same.



