Enrichad Categories

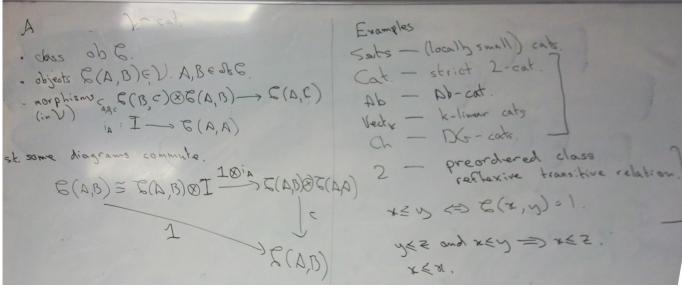
Hom sets:

Hom objects

Acot \mathcal{V} I e \mathcal{V} I e \mathcal{V} I isomorphisms.

A \mathcal{V} A $\mathcal{V$





Examples
$$S(y,z) + S(x,y) \ge S(x,z)$$

$$C(A,B)$$

$$C$$

A Definition File of the following the for each perfect one conditions.

The conditions conditions and follows the following the

Set, Cat, Ab, Veck, Ch - ordinary not trans between underlying.	Ordinany.	"a way of getting from A to B"
2- F,G: 6-02	E(A,8)	"the set of ways
$F \rightarrow G'$ if $F_x \in G_x$. $1 \rightarrow \mathfrak{D}(F_x, G_x)$	Enriched B(A,B)	"some into about " Setting from A to B"
$[c, \infty)$ $t \rightarrow c$. Let $\mathcal{D}(L^{x}, C^{x}) \leq 0$.	2- can y	en get from A to B" Fort

From now an assume V sugn closed man cat $C : A \in B \cap B \otimes A$. $C : A \cap B \cap B \otimes A$.