
Counting, measure and metrics

Tom Leinster (Glasgow/EPSRC)

Making free use of ideas of:

John Baez (Riverside)
Andreas Blass (Michigan)

Christina Cobbold (Glasgow)
André Joyal (Montréal)

Stephen Schanuel (Buffalo)
...

The size of a finite set

The size of a finite set

size

= 7

The size of a finite set

What counts as ‘1’? Let’s declare: size
()

= 1.

Other rules:

• size() = 0

The size of a finite set

What counts as ‘1’? Let’s declare: size
()

= 1.

Other rules:

• size() = 0

The size of a finite set

What counts as ‘1’? Let’s declare: size
()

= 1.

Other rules:

• size() = 0

The size of a finite set

What counts as ‘1’? Let’s declare: size
()

= 1.

Other rules:

• size() = 0

The size of a finite set

What counts as ‘1’? Let’s declare: size
()

= 1.

Other rules:

• size() = 0

The size of a finite set

What counts as ‘1’? Let’s declare: size
()

= 1.

Other rules:

• size() = 0

The size of a finite set

What counts as ‘1’? Let’s declare: size
()

= 1.

Other rules:

• size() = 0

• size

= size

 + size

 − size

size(A ∪ B) = size(A) + size(B)− size(A ∩ B)

The size of a finite set

What counts as ‘1’? Let’s declare: size
()

= 1.

Other rules:

• size() = 0

• size

 = size

+ size

 − size

size(A ∪ B) = size(A) + size(B)− size(A ∩ B)

The size of a finite set

What counts as ‘1’? Let’s declare: size
()

= 1.

Other rules:

• size() = 0

• size

 = size

 + size

− size

size(A ∪ B) = size(A) + size(B)− size(A ∩ B)

The size of a finite set

What counts as ‘1’? Let’s declare: size
()

= 1.

Other rules:

• size() = 0

• size

 = size

 + size

 − size

size(A ∪ B) = size(A) + size(B)− size(A ∩ B)

The size of a finite set

What counts as ‘1’? Let’s declare: size
()

= 1.

Other rules:

• size() = 0

• size

 = size

 + size

 − size

size(A ∪ B) = size(A) + size(B)− size(A ∩ B)

The size of a finite set

What counts as ‘1’? Let’s declare: size
()

= 1.

Other rules:

• size() = 0

• size

 = size

 + size

 − size

size(A ∪ B) = size(A) + size(B)− size(A ∩ B)

The size of a finite set

What counts as ‘1’? Let’s declare: size
()

= 1.

Other rules:

• size() = 0

• size

 = size

 + size

 − size

size(A ∪ B) = size(A) + size(B)− size(A ∩ B)

4� -

3

6

?

The size of a finite set

What counts as ‘1’? Let’s declare: size
()

= 1.

Other rules:

• size() = 0

• size

 = size

 + size

 − size

size(A ∪ B) = size(A) + size(B)− size(A ∩ B)

• size

()

= size
()

× size

()
size(A× B) = size(A)× size(B)

The size of a finite set

What counts as ‘1’? Let’s declare: size
()

= 1.

Other rules:

• size() = 0

• size

 = size

 + size

 − size

size(A ∪ B) = size(A) + size(B)− size(A ∩ B)

• size

()
= size

()

× size

()
size(A× B) = size(A)× size(B)

The size of a finite set

What counts as ‘1’? Let’s declare: size
()

= 1.

Other rules:

• size() = 0

• size

 = size

 + size

 − size

size(A ∪ B) = size(A) + size(B)− size(A ∩ B)

• size

()
= size

()
× size

()

size(A× B) = size(A)× size(B)

The size of a finite set

What counts as ‘1’? Let’s declare: size
()

= 1.

Other rules:

• size() = 0

• size

 = size

 + size

 − size

size(A ∪ B) = size(A) + size(B)− size(A ∩ B)

• size

()
= size

()
× size

()
size(A× B) = size(A)× size(B)

The size of a topological space

What counts as ‘1’? Let’s declare: size

()
= .

Now use the same rules as before! Some consequences:

• size
()

= size
()

+ size
()

− size ()

= 1 + 1− 0 = 2

The size of a topological space

What counts as ‘1’? Let’s declare: size

()
= 1.

Now use the same rules as before! Some consequences:

• size
()

= size
()

+ size
()

− size ()

= 1 + 1− 0 = 2

The size of a topological space

What counts as ‘1’? Let’s declare: size

()
= size

()
= 1.

Now use the same rules as before! Some consequences:

• size
()

= size
()

+ size
()

− size ()

= 1 + 1− 0 = 2

The size of a topological space

What counts as ‘1’? Let’s declare: size

()
= size

()
= 1.

Now use the same rules as before! Some consequences:

• size
()

= size
()

+ size
()

− size ()

= 1 + 1− 0 = 2

The size of a topological space

What counts as ‘1’? Let’s declare: size

()
= size

()
= 1.

Now use the same rules as before! Some consequences:

• size
()

= size
()

+ size
()

− size ()

= 1 + 1− 0 = 2

The size of a topological space

What counts as ‘1’? Let’s declare: size

()
= size

()
= 1.

Now use the same rules as before! Some consequences:

• size
()

= size
()

+ size
()

− size ()

= 1 + 1− 0 = 2

The size of a topological space

What counts as ‘1’? Let’s declare: size

()
= size

()
= 1.

Now use the same rules as before! Some consequences:

• size
()

= size
()

+ size
()

− size ()

= 1 + 1− 0 = 2

The size of a topological space

What counts as ‘1’? Let’s declare: size

()
= size

()
= 1.

Now use the same rules as before! Some consequences:

• size
()

= size
()

+ size
()

− size ()

= 1 + 1− 0 = 2

The size of a topological space

What counts as ‘1’? Let’s declare: size

()
= size

()
= 1.

Now use the same rules as before! Some consequences:

• size
()

= size
()

+ size
()

− size ()

= 1 + 1− 0 = 2

The size of a topological space

What counts as ‘1’? Let’s declare: size

()
= size

()
= 1.

Now use the same rules as before! Some consequences:

• size
()

= size
()

+ size
()

− size ()

= 1 + 1− 0 = 2

The size of a topological space

What counts as ‘1’? Let’s declare: size

()
= size

()
= 1.

Now use the same rules as before! Some consequences:

• size
()

= size
()

+ size
()

− size ()

= 1 + 1− 0 = 2

The size of a topological space

What counts as ‘1’? Let’s declare: size

()
= size

()
= 1.

Now use the same rules as before! Some consequences:

• size
()

= size
()

+ size
()

− size ()

= 1 + 1− 0 = 2

• size
()

= size
()

+ size
()

− size
()

= 1 + 1− 2 = 0

The size of a topological space

What counts as ‘1’? Let’s declare: size

()
= size

()
= 1.

Now use the same rules as before! Some consequences:

• size
()

= size
()

+ size
()

− size ()

= 1 + 1− 0 = 2

• size
()

= size
()

+ size
()

− size
()

= 1 + 1− 2 = 0

The size of a topological space

What counts as ‘1’? Let’s declare: size

()
= size

()
= 1.

Now use the same rules as before! Some consequences:

• size
()

= size
()

+ size
()

− size ()

= 1 + 1− 0 = 2

• size
()

= size
()

+ size
()

− size
()

= 1 + 1− 2 = 0

• size
()

N

hollow

= size
()

+ size
()

− size
()

= size
()

+ size
()

− size
()

= 1 + 1− 0 = 2

The size of a topological space

What counts as ‘1’? Let’s declare: size

()
= size

()
= 1.

Now use the same rules as before! Some consequences:

• size
()

= size
()

+ size
()

− size ()

= 1 + 1− 0 = 2

• size
()

= size
()

+ size
()

− size
()

= 1 + 1− 2 = 0

• size
()

N

hollow

= size
()

+ size
()

− size
()

= size
()

+ size
()

− size
()

= 1 + 1− 0 = 2

The size of a topological space

What counts as ‘1’? Let’s declare: size

()
= size

()
= 1.

Now use the same rules as before! Some consequences:

• size
()

= size
()

+ size
()

− size ()

= 1 + 1− 0 = 2

• size
()

= size
()

+ size
()

− size
()

= 1 + 1− 2 = 0

• size
()

N

hollow

= size
()

+ size
()

− size
()

= size
()

+ size
()

− size
()

= 1 + 1− 0 = 2

The size of a topological space

What counts as ‘1’? Let’s declare: size

()
= size

()
= 1.

Now use the same rules as before! Some consequences:

• size
()

= size
()

+ size
()

− size ()

= 1 + 1− 0 = 2

• size
()

= size
()

+ size
()

− size
()

= 1 + 1− 2 = 0

• By similar calculations, size

()
= 1, size

 = 0,

size

 = −1, size

 = −2.

The size of a subset of Rn

We’ll need a ruler, say of length 1 cm: 0 1 .

Let’s use a real interval: 0 1 .

But should we include the endpoints, 0 and 1?

Including just one endpoint (• ◦H

included

H

excluded

) gives a good ruler:

• ◦1 cm

∪ • ◦1 cm = • ◦2 cm

So we declare: size(• ◦1 cm) = 1 cm, and more generally,

size(• ◦` cm) = ` cm.

We also declare: size(•) = 1 point = 1 cm0 = 1.

The size of a subset of Rn

We’ll need a ruler, say of length 1 cm: 0 1 .

Let’s use a real interval: 0 1 .

But should we include the endpoints, 0 and 1?

Including just one endpoint (• ◦H

included

H

excluded

) gives a good ruler:

• ◦1 cm

∪ • ◦1 cm = • ◦2 cm

So we declare: size(• ◦1 cm) = 1 cm, and more generally,

size(• ◦` cm) = ` cm.

We also declare: size(•) = 1 point = 1 cm0 = 1.

The size of a subset of Rn

We’ll need a ruler, say of length 1 cm: 0 1 .

Let’s use a real interval: 0 1 .

But should we include the endpoints, 0 and 1?

Including just one endpoint (• ◦H

included

H

excluded

) gives a good ruler:

• ◦1 cm

∪ • ◦1 cm = • ◦2 cm

So we declare: size(• ◦1 cm) = 1 cm, and more generally,

size(• ◦` cm) = ` cm.

We also declare: size(•) = 1 point = 1 cm0 = 1.

The size of a subset of Rn

We’ll need a ruler, say of length 1 cm: 0 1 .

Let’s use a real interval: 0 1 .

But should we include the endpoints, 0 and 1?

Including just one endpoint (• ◦H

included

H

excluded

) gives a good ruler:

• ◦1 cm

∪ • ◦1 cm = • ◦2 cm

So we declare: size(• ◦1 cm) = 1 cm, and more generally,

size(• ◦` cm) = ` cm.

We also declare: size(•) = 1 point = 1 cm0 = 1.

The size of a subset of Rn

We’ll need a ruler, say of length 1 cm: 0 1 .

Let’s use a real interval: 0 1 .

But should we include the endpoints, 0 and 1?

Including just one endpoint (• ◦H

included

H

excluded

) gives a good ruler:

• ◦1 cm

∪ • ◦1 cm = • ◦2 cm

So we declare: size(• ◦1 cm) = 1 cm, and more generally,

size(• ◦` cm) = ` cm.

We also declare: size(•) = 1 point = 1 cm0 = 1.

The size of a subset of Rn

We’ll need a ruler, say of length 1 cm: 0 1 .

Let’s use a real interval: 0 1 .

But should we include the endpoints, 0 and 1?

Including just one endpoint (• ◦H

included

H

excluded

) gives a good ruler:

• ◦1 cm

∪ • ◦1 cm = • ◦2 cm

So we declare: size(• ◦1 cm) = 1 cm, and more generally,

size(• ◦` cm) = ` cm.

We also declare: size(•) = 1 point

= 1 cm0 = 1.

The size of a subset of Rn

We’ll need a ruler, say of length 1 cm: 0 1 .

Let’s use a real interval: 0 1 .

But should we include the endpoints, 0 and 1?

Including just one endpoint (• ◦H

included

H

excluded

) gives a good ruler:

• ◦1 cm

∪ • ◦1 cm = • ◦2 cm

So we declare: size(• ◦1 cm) = 1 cm, and more generally,

size(• ◦` cm) = ` cm.

We also declare: size(•) = 1 point = 1 cm0

= 1.

The size of a subset of Rn

We’ll need a ruler, say of length 1 cm: 0 1 .

Let’s use a real interval: 0 1 .

But should we include the endpoints, 0 and 1?

Including just one endpoint (• ◦H

included

H

excluded

) gives a good ruler:

• ◦1 cm

∪ • ◦1 cm = • ◦2 cm

So we declare: size(• ◦1 cm) = 1 cm, and more generally,

size(• ◦` cm) = ` cm.

We also declare: size(•) = 1 point = 1 cm0 = 1.

The size of a subset of Rn

We declared: size(• ◦` cm) = ` cm and size(•) = 1.

Now let’s use the same rules as before, and calculate some sizes.

Usually we like to include endpoints/boundaries of figures.

• size(• •` cm) = size(• ◦` cm) + size(•) = ` cm + 1.

• size

` cm

k cmN

boundaries included

 = size(• •k cm)× size

•

•
` cm

= (k cm + 1)(` cm + 1) = k` cm2 + (k + `) cm + 1.

• Similarly, can compute sizes of , , , . . .

The size of a subset of Rn

We declared: size(• ◦` cm) = ` cm and size(•) = 1.

Now let’s use the same rules as before, and calculate some sizes.

Usually we like to include endpoints/boundaries of figures.

• size(• •` cm) = size(• ◦` cm) + size(•) = ` cm + 1.

• size

` cm

k cmN

boundaries included

 = size(• •k cm)× size

•

•
` cm

= (k cm + 1)(` cm + 1) = k` cm2 + (k + `) cm + 1.

• Similarly, can compute sizes of , , , . . .

The size of a subset of Rn

We declared: size(• ◦` cm) = ` cm and size(•) = 1.

Now let’s use the same rules as before, and calculate some sizes.

Usually we like to include endpoints/boundaries of figures.

• size(• •` cm)

= size(• ◦` cm) + size(•) = ` cm + 1.

• size

` cm

k cmN

boundaries included

 = size(• •k cm)× size

•

•
` cm

= (k cm + 1)(` cm + 1) = k` cm2 + (k + `) cm + 1.

• Similarly, can compute sizes of , , , . . .

The size of a subset of Rn

We declared: size(• ◦` cm) = ` cm and size(•) = 1.

Now let’s use the same rules as before, and calculate some sizes.

Usually we like to include endpoints/boundaries of figures.

• size(• •` cm) = size(• ◦` cm) + size(•)

= ` cm + 1.

• size

` cm

k cmN

boundaries included

 = size(• •k cm)× size

•

•
` cm

= (k cm + 1)(` cm + 1) = k` cm2 + (k + `) cm + 1.

• Similarly, can compute sizes of , , , . . .

The size of a subset of Rn

We declared: size(• ◦` cm) = ` cm and size(•) = 1.

Now let’s use the same rules as before, and calculate some sizes.

Usually we like to include endpoints/boundaries of figures.

• size(• •` cm) = size(• ◦` cm) + size(•) = ` cm + 1.

• size

` cm

k cmN

boundaries included

 = size(• •k cm)× size

•

•
` cm

= (k cm + 1)(` cm + 1) = k` cm2 + (k + `) cm + 1.

• Similarly, can compute sizes of , , , . . .

The size of a subset of Rn

We declared: size(• ◦` cm) = ` cm and size(•) = 1.

Now let’s use the same rules as before, and calculate some sizes.

Usually we like to include endpoints/boundaries of figures.

• size(• •` cm) = size(• ◦` cm) + size(•) = ` cm + 1.

• size

` cm

k cmN

boundaries included

= size(• •k cm)× size

•

•
` cm

= (k cm + 1)(` cm + 1) = k` cm2 + (k + `) cm + 1.

• Similarly, can compute sizes of , , , . . .

The size of a subset of Rn

We declared: size(• ◦` cm) = ` cm and size(•) = 1.

Now let’s use the same rules as before, and calculate some sizes.

Usually we like to include endpoints/boundaries of figures.

• size(• •` cm) = size(• ◦` cm) + size(•) = ` cm + 1.

• size

` cm

k cmN

boundaries included

 = size(• •k cm)× size

•

•
` cm

= (k cm + 1)(` cm + 1) = k` cm2 + (k + `) cm + 1.

• Similarly, can compute sizes of , , , . . .

The size of a subset of Rn

We declared: size(• ◦` cm) = ` cm and size(•) = 1.

Now let’s use the same rules as before, and calculate some sizes.

Usually we like to include endpoints/boundaries of figures.

• size(• •` cm) = size(• ◦` cm) + size(•) = ` cm + 1.

• size

` cm

k cmN

boundaries included

 = size(• •k cm)× size

•

•
` cm

= (k cm + 1)(` cm + 1)

= k` cm2 + (k + `) cm + 1.

• Similarly, can compute sizes of , , , . . .

The size of a subset of Rn

We declared: size(• ◦` cm) = ` cm and size(•) = 1.

Now let’s use the same rules as before, and calculate some sizes.

Usually we like to include endpoints/boundaries of figures.

• size(• •` cm) = size(• ◦` cm) + size(•) = ` cm + 1.

• size

` cm

k cmN

boundaries included

 = size(• •k cm)× size

•

•
` cm

= (k cm + 1)(` cm + 1) = k` cm2 + (k + `) cm + 1.

• Similarly, can compute sizes of , , , . . .

The size of a subset of Rn

We declared: size(• ◦` cm) = ` cm and size(•) = 1.

Now let’s use the same rules as before, and calculate some sizes.

Usually we like to include endpoints/boundaries of figures.

• size(• •` cm) = size(• ◦` cm) + size(•) = ` cm + 1.

• size

` cm

k cmN

boundaries included

 = size(• •k cm)× size

•

•
` cm

= (k cm + 1)(` cm + 1) = k
H

area

` cm2 + (k
H

1
2×perimeter

+ `) cm +
H

Euler characteristic

1.

• Similarly, can compute sizes of , , , . . .

The size of a subset of Rn

We declared: size(• ◦` cm) = ` cm and size(•) = 1.

Now let’s use the same rules as before, and calculate some sizes.

Usually we like to include endpoints/boundaries of figures.

• size(• •` cm) = size(• ◦` cm) + size(•) = ` cm + 1.

• size

` cm

k cmN

boundaries included

 = size(• •k cm)× size

•

•
` cm

= (k cm + 1)(` cm + 1) = k
H

area

` cm2 + (k
H

1
2×perimeter

+ `) cm +
H

Euler characteristic

1.

• Similarly, can compute sizes of , , , . . .

The size of a type

Data in a computer can be arranged in many ways: lists, arrays, trees,
These are ‘datatypes’, or ‘types’.

Consider (rooted, binary) trees, e.g.:

A tree is either the trivial tree:

A tree is or two trees joined together: .

The size of a type

Data in a computer can be arranged in many ways: lists, arrays, trees,
These are ‘datatypes’, or ‘types’.

Consider (rooted, binary) trees, e.g.:

A tree is either the trivial tree:

A tree is or two trees joined together: .

The size of a type

Data in a computer can be arranged in many ways: lists, arrays, trees,
These are ‘datatypes’, or ‘types’.

Consider (rooted, binary) trees, e.g.:

A tree is either the trivial tree:

A tree is or two trees joined together: .

The size of a type

Data in a computer can be arranged in many ways: lists, arrays, trees,
These are ‘datatypes’, or ‘types’.

Consider (rooted, binary) trees, e.g.:

A tree is either the trivial tree:

A tree is or two trees joined together: .

The size of a type

Data in a computer can be arranged in many ways: lists, arrays, trees,
These are ‘datatypes’, or ‘types’.

Consider (rooted, binary) trees, e.g.:

A tree is either the trivial tree:

A tree is or two trees joined together: .

The size of a type

Data in a computer can be arranged in many ways: lists, arrays, trees,
These are ‘datatypes’, or ‘types’.

Consider (rooted, binary) trees, e.g.:

A tree is either the trivial tree:

A tree is or two trees joined together: .

The size of a type

A tree is either the trivial tree or two trees joined together: .

Let T be the type ‘tree’. Then T ∼= 1 + T 2, so

size(T) = 1 + size(T)2.

Solving the quadratic,

size(T) =
1

2
±
√

3

2
i = e±πi/3.

So size(T)7 = size(T). This might lead you to suspect that T 7 ∼= T . . .

. . . which really is true! A tree is ‘the same as’ a 7-tuple of trees.

The size of a type

A tree is either the trivial tree or two trees joined together: .

Let T be the type ‘tree’.

Then T ∼= 1 + T 2, so

size(T) = 1 + size(T)2.

Solving the quadratic,

size(T) =
1

2
±
√

3

2
i = e±πi/3.

So size(T)7 = size(T). This might lead you to suspect that T 7 ∼= T . . .

. . . which really is true! A tree is ‘the same as’ a 7-tuple of trees.

The size of a type

A tree is either the trivial tree or two trees joined together: .

Let T be the type ‘tree’. Then T ∼= 1 + T 2

, so

size(T) = 1 + size(T)2.

Solving the quadratic,

size(T) =
1

2
±
√

3

2
i = e±πi/3.

So size(T)7 = size(T). This might lead you to suspect that T 7 ∼= T . . .

. . . which really is true! A tree is ‘the same as’ a 7-tuple of trees.

The size of a type

A tree is either the trivial tree or two trees joined together: .

Let T be the type ‘tree’. Then T ∼= 1 + T 2, so

size(T) = 1 + size(T)2.

Solving the quadratic,

size(T) =
1

2
±
√

3

2
i = e±πi/3.

So size(T)7 = size(T). This might lead you to suspect that T 7 ∼= T . . .

. . . which really is true! A tree is ‘the same as’ a 7-tuple of trees.

The size of a type

A tree is either the trivial tree or two trees joined together: .

Let T be the type ‘tree’. Then T ∼= 1 + T 2, so

size(T) = 1 + size(T)2.

Solving the quadratic,

size(T) =
1

2
±
√

3

2
i = e±πi/3.

So size(T)7 = size(T). This might lead you to suspect that T 7 ∼= T . . .

. . . which really is true! A tree is ‘the same as’ a 7-tuple of trees.

The size of a type

A tree is either the trivial tree or two trees joined together: .

Let T be the type ‘tree’. Then T ∼= 1 + T 2, so

size(T) = 1 + size(T)2.

Solving the quadratic,

size(T) =
1

2
±
√

3

2
i = e±πi/3.

So size(T)7 = size(T).

This might lead you to suspect that T 7 ∼= T . . .

. . . which really is true! A tree is ‘the same as’ a 7-tuple of trees.

The size of a type

A tree is either the trivial tree or two trees joined together: .

Let T be the type ‘tree’. Then T ∼= 1 + T 2, so

size(T) = 1 + size(T)2.

Solving the quadratic,

size(T) =
1

2
±
√

3

2
i = e±πi/3.

So size(T)7 = size(T). This might lead you to suspect that T 7 ∼= T . . .

. . . which really is true! A tree is ‘the same as’ a 7-tuple of trees.

The size of a type

A tree is either the trivial tree or two trees joined together: .

Let T be the type ‘tree’. Then T ∼= 1 + T 2, so

size(T) = 1 + size(T)2.

Solving the quadratic,

size(T) =
1

2
±
√

3

2
i = e±πi/3.

So size(T)7 = size(T). This might lead you to suspect that T 7 ∼= T . . .

. . . which really is true! A tree is ‘the same as’ a 7-tuple of trees.

The size of a metric space

Consider finite metric spaces.
6

7
2

There is a formula for the ‘size’ of almost any finite metric space.

(It extends to many other compact spaces, too.)

Examples:

size() = 0 and size(•) = 1.

size(•← d →•) = 1 + tanh(d) :

0

1

2

size

d

The size of a metric space

Consider finite metric spaces.
6

7
2

There is a formula for the ‘size’ of almost any finite metric space.

(It extends to many other compact spaces, too.)

Examples:

size() = 0 and size(•) = 1.

size(•← d →•) = 1 + tanh(d) :

0

1

2

size

d

The size of a metric space

Consider finite metric spaces.
6

7
2

There is a formula for the ‘size’ of almost any finite metric space.

(It extends to many other compact spaces, too.)

Examples:

size() = 0 and size(•) = 1.

size(•← d →•) = 1 + tanh(d) :

0

1

2

size

d

The size of a metric space

Consider finite metric spaces.
6

7
2

There is a formula for the ‘size’ of almost any finite metric space.

(It extends to many other compact spaces, too.)

Examples:

size() = 0 and size(•) = 1.

size(•← d →•) = 1 + tanh(d) :

0

1

2

size

d

The size of a metric space

Consider finite metric spaces.
6

7
2

There is a formula for the ‘size’ of almost any finite metric space.

(It extends to many other compact spaces, too.)

Examples:

size() = 0 and size(•) = 1.

size(•← d →•) = 1 + tanh(d) :

0

1

2

size

d

The size of a metric space

Consider finite metric spaces.
6

7
2

There is a formula for the ‘size’ of almost any finite metric space.

(It extends to many other compact spaces, too.)

Examples:

size() = 0 and size(•) = 1.

size(•← d →•) = 1 + tanh(d) :

0

1

2

size

d

The size of an ecosystem

Hundreds of numerical measures of biodiversity have been proposed.

Important factors: proportions of species and similarity of species.

The size of an ecosystem

Hundreds of numerical measures of biodiversity have been proposed.

Important factors: proportions of species and similarity of species.

The size of an ecosystem

Hundreds of numerical measures of biodiversity have been proposed.

Important factors: proportions of species and similarity of species.

Example of a measure taking only proportions into account

Suppose that our ecosystem E contains n species occurring in proportions
p1, p2, . . . , pn (where p1 + p2 + · · ·+ pn = 1).

We can define the ‘diversity’ or ‘size’ of E by

size(E) = 1/pp1
1 pp2

2 · · · p
pn
n .

(This is the exponential of the Shannon entropy.)

The size is least when one pi is 1 and the rest are 0 (a monoculture): then
size(E) = 1.

The size is greatest when p1 = p2 = · · · = pn = 1/n (uniform distribution):
then size(E) = n.

The size of an ecosystem

Hundreds of numerical measures of biodiversity have been proposed.

Important factors: proportions of species and similarity of species.

Example of a measure taking only proportions into account

Suppose that our ecosystem E contains n species occurring in proportions
p1, p2, . . . , pn (where p1 + p2 + · · ·+ pn = 1).

We can define the ‘diversity’ or ‘size’ of E by

size(E) = 1/pp1
1 pp2

2 · · · p
pn
n .

(This is the exponential of the Shannon entropy.)

The size is least when one pi is 1 and the rest are 0 (a monoculture): then
size(E) = 1.

The size is greatest when p1 = p2 = · · · = pn = 1/n (uniform distribution):
then size(E) = n.

The size of an ecosystem

Hundreds of numerical measures of biodiversity have been proposed.

Important factors: proportions of species and similarity of species.

Example of a measure taking only proportions into account

Suppose that our ecosystem E contains n species occurring in proportions
p1, p2, . . . , pn (where p1 + p2 + · · ·+ pn = 1).

We can define the ‘diversity’ or ‘size’ of E by

size(E) = 1/pp1
1 pp2

2 · · · p
pn
n .

(This is the exponential of the Shannon entropy.)

The size is least when one pi is 1 and the rest are 0 (a monoculture): then
size(E) = 1.

The size is greatest when p1 = p2 = · · · = pn = 1/n (uniform distribution):
then size(E) = n.

The size of an ecosystem

Hundreds of numerical measures of biodiversity have been proposed.

Important factors: proportions of species and similarity of species.

Example of a measure taking only proportions into account

Suppose that our ecosystem E contains n species occurring in proportions
p1, p2, . . . , pn (where p1 + p2 + · · ·+ pn = 1).

We can define the ‘diversity’ or ‘size’ of E by

size(E) = 1/pp1
1 pp2

2 · · · p
pn
n .

(This is the exponential of the Shannon entropy.)

The size is least when one pi is 1 and the rest are 0 (a monoculture): then
size(E) = 1.

The size is greatest when p1 = p2 = · · · = pn = 1/n (uniform distribution):
then size(E) = n.

The size of an ecosystem

Hundreds of numerical measures of biodiversity have been proposed.

Important factors: proportions of species and similarity of species.

Example of a measure taking only proportions into account

Suppose that our ecosystem E contains n species occurring in proportions
p1, p2, . . . , pn (where p1 + p2 + · · ·+ pn = 1).

We can define the ‘diversity’ or ‘size’ of E by

size(E) = 1/pp1
1 pp2

2 · · · p
pn
n .

(This is the exponential of the Shannon entropy.)

The size is least when one pi is 1 and the rest are 0 (a monoculture): then
size(E) = 1.

The size is greatest when p1 = p2 = · · · = pn = 1/n (uniform distribution):
then size(E) = n.

The size of an ecosystem

Hundreds of numerical measures of biodiversity have been proposed.

Important factors: proportions of species and similarity of species.

Example of a measure taking only similarity into account

diversity:

‘Effective number of species’

‘Measuring biological diversity’,
Andrew Solow (Marine Policy Center, Woods Hole),
Stephen Polasky (Agricultural and Resource Economics, Oregon State),
Environmental and Ecological Statistics 1 (1994), 95–107.

The size of an ecosystem

Hundreds of numerical measures of biodiversity have been proposed.

Important factors: proportions of species and similarity of species.

Example of a measure taking only similarity into account

diversity: low

‘Effective number of species’

‘Measuring biological diversity’,
Andrew Solow (Marine Policy Center, Woods Hole),
Stephen Polasky (Agricultural and Resource Economics, Oregon State),
Environmental and Ecological Statistics 1 (1994), 95–107.

The size of an ecosystem

Hundreds of numerical measures of biodiversity have been proposed.

Important factors: proportions of species and similarity of species.

Example of a measure taking only similarity into account

diversity: higher

‘Effective number of species’

‘Measuring biological diversity’,
Andrew Solow (Marine Policy Center, Woods Hole),
Stephen Polasky (Agricultural and Resource Economics, Oregon State),
Environmental and Ecological Statistics 1 (1994), 95–107.

The size of an ecosystem

Hundreds of numerical measures of biodiversity have been proposed.

Important factors: proportions of species and similarity of species.

Example of a measure taking only similarity into account

diversity:

‘Effective number of species’

‘Measuring biological diversity’,
Andrew Solow (Marine Policy Center, Woods Hole),
Stephen Polasky (Agricultural and Resource Economics, Oregon State),
Environmental and Ecological Statistics 1 (1994), 95–107.

The size of an ecosystem

Hundreds of numerical measures of biodiversity have been proposed.

Important factors: proportions of species and similarity of species.

Example of a measure taking only similarity into account

diversity:

‘Effective number of species’

‘Measuring biological diversity’,
Andrew Solow (Marine Policy Center, Woods Hole),
Stephen Polasky (Agricultural and Resource Economics, Oregon State),
Environmental and Ecological Statistics 1 (1994), 95–107.

The size of an ecosystem

Hundreds of numerical measures of biodiversity have been proposed.

Important factors: proportions of species and similarity of species.

Example of a measure taking only similarity into account

diversity:

‘Effective number of species’ = size of the metric space of species

‘Measuring biological diversity’,
Andrew Solow (Marine Policy Center, Woods Hole),
Stephen Polasky (Agricultural and Resource Economics, Oregon State),
Environmental and Ecological Statistics 1 (1994), 95–107.

Notes and references

These slides are available at www.maths.gla.ac.uk/∼tl

Sets: The basic idea of this talk is to take the elementary rules of arithmetic
and use them in contexts where they do not obviously apply. This idea has
doubtless been explored by many people; I have learned most about it from

John Baez, The mysteries of counting: Euler characteristic versus
homotopy cardinality, http://math.ucr.edu/home/baez/counting

and

Daniel A. Klain, Gian-Carlo Rota, Introduction to Geometric
Probability, Lezioni Lincee, Cambridge University Press, 1997

and the papers of Schanuel cited below.

http://www.maths.gla.ac.uk/~tl/fims
http://math.ucr.edu/home/baez/counting

Notes and references
Topological spaces: Stephen Schanuel seems to have been the first person to
have really pushed the thought that Euler characteristic is to topological
spaces as cardinality is to sets. Indeed, much of the theory of Euler
characteristic (with compact support) follows from the simple axioms on
‘size’ above. See

Stephen H. Schanuel, Negative sets have Euler characteristic and
dimension, Category Theory (Como, 1990), 379–385, Lecture
Notes in Mathematics 1488, Springer, 1991

and

Stephen H. Schanuel, What is the length of a potato? An
introduction to geometric measure theory, in Categories in
Continuum Physics, Lecture Notes in Mathematics 1174, Springer,
1986

as well as Klain and Rota (op. cit.).

Subsets of Rn: This section draws very heavily on Schanuel’s ‘What is the
length of a potato?’ See also Klain and Rota.

Notes and references

Types: The isomorphism T 7 ∼= T was first established in

Andreas Blass, Seven trees in one, Journal of Pure and Applied
Algebra 103 (1995), 1–21, arXiv:math.LO/9405205,

following a remark of Lawvere. There is a precise sense in which T 7 ∼= T but
T n 6∼= T for any other value of n > 1, except of course 13, 19, 25,

To state this correctly is a little delicate. Of course, the set of trees is
countably infinite, so there is trivially a bijection T n ∼= T for any n ≥ 1; but
that is not what is meant. Blass’s result is, roughly, that there is an
algorithm giving a one-to-one correspondence between 7-tuples of trees and
single trees, and which only explores each tree to finite depth.

In this situation, we have size(T)7 = size(T) and, in fact, T 7 ∼= T . This
raises the question: is there some general principle allowing one to deduce
the latter from the former? The answer is yes, as shown in

http://arxiv.org/abs/math.LO/9405205

Notes and references

Marcelo Fiore, Tom Leinster, Objects of categories as complex
numbers, Advances in Mathematics 190 (2005), 264–277,
arXiv:math.CT/0212377.

Metric spaces: The slide refers to a notion of the ‘size’ of a metric space. For
mathematicians this seems to be a new concept (but see the notes below on
Ecosystems); it has yet to be written up formally. The existing sources are

Tom Leinster, The cardinality of a metric space, post at The
n-Category Café, 9 February 2008,
http://golem.ph.utexas.edu/category/2008/02/metric spaces.html

(which is detailed but contains some mistakes) and

Tom Leinster, The cardinality of a metric space, talk at CT08,
Calais, www.maths.gla.ac.uk/∼tl/calais

http://arxiv.org/abs/math.CT/0212377
http://golem.ph.utexas.edu/category/2008/02/metric_spaces.html
http://www.maths.gla.ac.uk/~tl/calais

Notes and references

First one defines the cardinality (size) of a finite metric space; then, by using
an approximating sequence of finite subspaces, one defines the cardinality of
a compact metric space. This appears to coincide with the notion of ‘size’
described in the section on subsets of Rn.

All of the notions of size discussed so far, except perhaps that for types, are
closely related to the notion of the size (or cardinality, or Euler
characteristic) of a category, introduced in

Tom Leinster, The Euler characteristic of a category, Documenta
Mathematica 13 (2008), 21–49,
www.math.uni–bielefeld.de/documenta/vol–13/02.html

For an overview, see

Tom Leinster, New perspectives on Euler characteristic, talk at
British Mathematical Colloquium 2007, Swansea,
www.maths.gla.ac.uk/∼tl/swansea

http://www.math.uni-bielefeld.de/documenta/vol-13/02.html
http://www.maths.gla.ac.uk/~tl/swansea

Notes and references

Ecosystems: For this section I am very grateful to André Joyal, who pointed
out to me that the exponential of entropy behaves much like cardinality, and
to Christina Cobbold, who then suggested that there might be a relation
between diversity measures in ecology and the cardinality of metric spaces —
as indeed there is.

The Shannon entropy of the system E is −
∑

i pi log(pi). Often the
logarithm is taken to base 2 rather than base e.

For an introduction to measures of biodiversity, see, for instance, Chapter 7
of

Russell Lande, Steinar Engen, Bernt-Erik Sæther, Stochastic
Population Dynamics in Ecology and Conservation, Oxford
University Press, 2003,

or

Lou Jost, Entropy and diversity, Oikos 113, No. 2 (2006), 363–375.

http://www.professeurs.uqam.ca/pages/joyal.andre.htm
http://www.maths.gla.ac.uk/~cc

Notes and references

The paper of Solow and Polasky cited in the talk introduces the notion of
‘effective number of species’, which was later rediscovered under the name
‘cardinality of a metric space’ (see the notes on Metric spaces). Naturally,
they only consider situations in which there is a finite number of species,
which corresponds to considering only finite metric spaces.

