
Minimal Polynomial and Jordan Form

Tom Leinster

The idea of these notes is to provide a summary of some of the results you
need for this course, as well as a different perspective from the lectures.

Minimal Polynomial

Let V be a vector space over some field k, and let α : V - V be a linear map
(an ‘endomorphism of V ’). Given any polynomial p with coefficients in k, there
is an endomorphism p(α) of V , and we say that p is an annihilating polynomial
for α if p(α) = 0.

Our first major goal is to see that for any α, the annihilating polynomials
can easily be classified: they’re precisely the multiples of a certain polynomial
mα. We reach this goal on the next page.

Let us say that a polynomial m is a minimal polynomial for α (note: ‘a’,
not ‘the’) if:

• m(α) = 0

• if p is any non-zero polynomial with p(α) = 0, then deg(m) ≤ deg(p)

• the leading coefficient of m is 1 (i.e. m is monic).

(We don’t assign a degree to the zero polynomial. Note that the last condition
implies m 6= 0.)

We’d like to be able to talk about the minimal polynomial of α, and the
following result legitimizes this:

Proposition 1 There is precisely one minimal polynomial for α.

Sketch Proof Existence: First prove that there exists a non-zero annihilating
polynomial, as in your notes (using the fact that the space of endomorphisms
on V is finite-dimensional). There is then a non-zero annihilating polynomial
M of least degree, and if c is the leading coefficient of M then 1

cM is a minimal
polynomial.

Uniqueness: Suppose that m and m′ are different minimial polynomials.
Then m − m′ is non-zero by assumption, and is an annihilating polynomial.
But m and m′ have the same degree, and each has leading coefficient 1, so
m − m′ has degree less than that of m. This contradicts minimality of the
degree of m. 2
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I will write mα for the minimal polynomial of α. More important than the
fact that it has minimal degree is this result (our ‘first major goal’):

Proposition 2 For any polynomial p, p(α) = 0⇔ mα|p.

Proof ⇐ is easy. For ⇒, we use the result you might know as ‘Euclid’s
algorithm’ or ‘the division algorithm’: there are polynomials q and r such that
p = q ·mα + r and r is either 0 or has degree less than that of mα. Now,

r(α) = p(α)− q(α) ·mα(α) = 0− 0 = 0,

so by definition of minimal polynomial, r = 0. Hence mα|p. 2

You might compare this result to a similar one about least common multiples:
if a and b are two natural numbers and l their least common multiple, then what
matters most about l is not that it’s ‘least’ in the literal sense of the word, but
that a number is a common multiple of a and b if and only if it is a multiple of
l. In other words, the common multiples are precisely the multiples of l.

An example of Proposition 2 in action: the Cayley-Hamilton Theorem says
that χα(α) = 0, where χα is the characteristic polynomial of α, and so we
conclude that mα|χα.

From now on, let’s assume that the field k we are working over is the field
of complex numbers, C. This makes life much easier, because all polynomials
split into linear factors. In particular, we can write

χα(t) = ±(t− λ1)r1 · · · (t− λk)rk

where λ1, . . . , λk are distinct scalars and ri ≥ 1 for each i. Of course, λ1, . . . , λk
are the distinct eigenvalues of α.

The big theorem concerning minimal polynomials, which tells you pretty
much everything you need to know about them, is as follows:

Theorem 3 The minimal polynomial has the form

mα(t) = (t− λ1)s1 · · · (t− λk)sk (∗)

for some numbers si with 1 ≤ si ≤ ri. Moreover, α is diagonalizable if and only
if each si = 1.

Lots of things go into the proof. Let’s take it step by step.
First of all, we know the Cayley-Hamilton Theorem (itself quite a large

result); and as observed above, this tells us that mα has the form (∗) with
si ≤ ri.

Secondly, we need to see that each si ≥ 1, i.e. that every eigenvalue is a root
of the minimal polynomial. So, let i ∈ {1, . . . , k} and let v be a λi-eigenvector.
For any polynomial p, we have p(α)v = p(λi)v, and in particular this holds
for p = mα: hence mα(λi)v = 0. But v is nonzero (being an eigenvector), so
mα(λi) = 0, as required.
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Thirdly, suppose we know that α is diagonalizable. This means it has a basis
of eigenvectors, whose eigenvalues are λ1, . . . , λk, and it’s easy to calculate that

(t− λ1) · · · (t− λk)

is an annihilating polynomial for α. So this is the minimal polynomial.
Finally, then, we have to show that if all the si’s are 1 (i.e. the minimal

polynomial splits into distinct linear factors) then α is diagonalizable. There’s
a proof of this which I like and I believe is different to the one in your notes, so
I’ll write it out in full. It goes via a lemma:

Lemma 4 If U
β- V

γ- W are finite-dimensional vector spaces and linear
maps, then

dim Ker(γ◦β) ≤ dim Ker(γ) + dim Ker(β).

Proof Observe that Ker(γ◦β) = β−1(Ker(γ)). (By using ‘β−1’ I am not sug-
gesting that β is invertible; this is the notation for the pre-image or inverse
image of a subset under a function, as explained in Numbers and Sets.)

Now, consider the function

β′ : β−1(Ker(γ)) - Ker(γ),
u 7−→ β(u).

Applying the rank-nullity formula we get

dimβ−1(Ker(γ)) = dim Im(β′) + dim Ker(β′),

and adding to this our initial observation and the facts that Im(β′) ≤ Ker(γ)
and Ker(β′) ≤ Ker(β), the lemma is proved. 2

The hard work is now done. Supposing that all the si are 1, the composite
of the maps

V
α−λkI- V

α−λk−1I- · · · α−λ1I- V

is 0. So

dim(V ) = dim Ker((α− λ1I)◦ · · · ◦(α− λkI))
≤ dim Ker(α− λ1I) + · · ·+ dim Ker(α− λkI)
= dim(Ker(α− λ1I)⊕ · · · ⊕Ker(α− λkI)),

where the inequality comes from the Lemma (and an easy induction), and the
second equality is justified by the fact that the sum of the eigenspaces is a direct
sum. Hence the sum of the eigenspaces has the same dimension as V , i.e. this
sum is V , and α is diagonalizable.

3



Invariants

When two square matrices are conjugate, you ought to think of them as essen-
tially the same. It’s just a matter of change of basis: if B = P−1AP then A
and B are ‘the same but viewed from a different angle’. (The change of basis,
or change of perspective, is provided by P .)

A similar point is that the matrix of a linear map depends on a choice of
basis; a different choice of basis gives a different but conjugate matrix. So, for
instance, if we want to define the trace of a linear endomorphism as the trace
of the matrix representing it, then in order for this to make sense we have to
check that

trace(P−1AP ) = trace(A)

for any n × n matrices A,P with P invertible. A fancy way of putting this
is ‘trace is invariant under conjugation’. The things which are invariant under
conjugation tend to be the things which are important.

So, what are the interesting ‘invariants’ of linear endomorphisms (or square
matrices, if you prefer)? Certainly:

• the eigenvalues

• their algebraic multiplicities

• their geometric multiplicities (i.e. the dimensions of the eigenspaces)

• the characteristic polynomial

• the minimal polynomial.

(In fact, the characteristic polynomial tells you exactly what the eigenvalues
and algebraic multiplicities are, so it wasn’t really necessary to mention them
separately. Recall that the algebraic multiplicity of an eigenvalue λ is the power
of (t− λ) occurring in χα(t).) To this list we might also add:

• the trace

• the determinant

• the rank

• the nullity.

However, these four are already covered by the first list. The trace of an endo-
morphism α of an n-dimensional space is

(−1)n−1.(coefficient of tn−1 in χα(t)).

The determinant of α is det(α− 0.I) = χα(0). The rank is n minus the nullity;
and the nullity is dim Ker(α − 0.I), which is 0 if 0 is not an eigenvalue, and is
the geometric multiplicity of 0 if it is an eigenvalue.
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Moreover, a look at the minimal polynomial tells you at a glance whether the
matrix (or map) is diagonalizable—another important property, again invariant
under conjugation.

So, the conclusion is that the characteristic polynomial, minimal polynomial
and geometric multiplicities tell you a great deal of interesting information about
a matrix or map, including probably all the invariants you can think of. Usually
it takes an appreciable amount of work to calculate these invariants for a given
matrix. In the next section, we’ll see that for a matrix in Jordan canonical form
they can be read off instantly.

Be warned that the invariants I’ve mentioned don’t tell you everything: there
exist pairs of matrices for which all these invariants are the same, and yet the
matrices are not conjugate. An example is given in the next section.

Jordan Canonical Form

In this section I’ll mostly work with matrices rather than linear maps, just for
a change. You should be fairly happy about switching between the two modes
of thought.

I’ll state the main theorem (the proof of which is off the syllabus), then I’ll
try to explain what the point is and how the finer details work.

First we need some notation. Let A1, . . . , Am be square matrices, and let

A =


A1 0 · · · 0

0 A2
. . .

...
...

. . . . . . 0
0 · · · 0 Am

 . (†)

The square matrices Ai can be of different sizes; thus if Ai is a ni × ni matrix
then A is a n× n matrix, where n = n1 + · · ·+ nm. The entries ‘0’ denote zero
matrices of the appropriate sizes. For convenience, I will write the matrix on
the right-hand side of (†) as

A1 ⊕ · · · ⊕Am.

For any d ≥ 1 and complex number λ, let J (d)
λ be the d× d matrix

J
(d)
λ =



λ 1
λ 1

λ 1
. . . . . .

λ 1
λ 1

λ


where all the unmarked entries are 0. This is a so-called Jordan block. (Note
that when d = 1, it is just the 1× 1 matrix (λ).)
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The big theorem is:

Theorem 5 Let A be a square matrix of complex numbers. Then there are
natural numbers m,n1, . . . , nm ≥ 1 and complex numbers µ1, . . . , µm such that
A is conjugate to

J (n1)
µ1
⊕ · · · ⊕ J (nm)

µm . (‡)

Moreover, if A is also conjugate to

J
(n′1)

µ′1
⊕ · · · ⊕ J (n′

m′ )

µ′
m′

then m′ = m and there is a permutation σ ∈ Sm such that for all i, we have
n′i = nσ(i) and µ′i = µσ(i).

You are not required to know the proof. A matrix of the form (‡) is said to
be in Jordan canonical form, or Jordan normal form. The ‘moreover’ part says
that the Jordan canonical form of a matrix is as unique as it possibly could be:
that is, unique up to permutation of the blocks. There’s no way it could be
genuinely unique, since for any square matrices C and D (perhaps of different
sizes), the two matrices C ⊕D and D ⊕ C are conjugate.

So, what’s the point of the Jordan canonical form? Here are three answers:

An approximation to diagonalizability If a square matrix or linear endo-
morphism can be put into diagonal form then it is very easy to work with,
and one might at first hope that every matrix is diagonalizable. But this
isn’t true. An easy example is (

0 1
0 0

)
:

its characteristic polynomial is t2, so its only eigenvalue is 0; but the
eigenvalues of a diagonal matrix are the entries on the diagonal, so the
only diagonal matrix it might be conjugate to is 0. However, the only
matrix conjugate to 0 is 0 itself.

So not every matrix is diagonalizable. But we do know that every com-
plex matrix (square, as usual) is triangularizable, which is some sort of
approximation. The Jordan theorem is a much, much more incisive state-
ment than this. Of course, every matrix in Jordan canonical form is upper
triangular; in fact, it looks like

∗ #
∗ #

.. . . . .
∗ #
∗


where the entries labelled ∗ are any complex numbers, the entries labelled
# are either 0 or 1, and all the unlabelled entries are 0. (But not every
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matrix of this form is in Jordan canonical form: exercise.) In summary, we
can view the Jordan theorem as being the next-best thing to the statement
‘every matrix is diagonalizable’, and it has the advantage of being true.

A convenient way of displaying invariants Earlier we discussed the im-
portant ‘invariants’ of square matrices: those quantities which don’t change
under conjugation (and can therefore be assigned to linear endomorphisms).
All the ones we (probably) know about can, as we saw, be derived from
the characteristic polynomial, the minimal polynomial and the geometric
multiplicities of the eigenvalues. Given a matrix in Jordan canonical form,
these can be read off immediately, without any need for calculation. I’ll
show you how to do this in a moment.

Like prime factorization Any natural number n ≥ 1 is equal to p1p2 · · · pm
for some sequence p1, . . . , pm of prime numbers; this sequence is unique,
but for the obvious fact that the prime factors can be permuted. This
statement has a clear resemblance to the Jordan theorem, where the Jor-
dan blocks J (d)

λ play the role of the prime numbers. They are the ‘building
blocks’ of square matrices, just as the primes are the building blocks of
natural numbers.

This provides a neat way to think about the theorem. In fact, there is a
very general theorem which has as special cases both the Jordan theorem
and the unique prime factorization of natural numbers, but that’s way
beyond this course. (It’s a result from the theory of rings and modules:
namely, the classification of finitely generated modules over a principal
ideal domain.)

I promised to show you how lots of interesting invariants can be read off
immediately from a matrix in Jordan canonical form. I’ll lead you up to this
via a sequence of exercises:

Exercise 1 Show that for any d ≥ 1 and λ ∈ C, the matrix J (d)
λ has:

a. λ as its only eigenvalue

b. minimal polynomial (t− λ)d

c. characteristic polynomial (t− λ)d, and that

d. the geometric multiplicity of λ is 1.

Exercise 2 (Shorter than it looks.) Let C and D be any square matrices.

a. Show that

{eigenvalues of C ⊕D} = {eigenvalues of C} ∪ {eigenvalues of D}.
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b. Show that for any polynomial p, p(C⊕D) = 0 if and only if p(C) = 0 and
p(D) = 0, and deduce that mC⊕D|p if and only if mC |p and mD|p. (In an
appropriate sense, mC⊕D is the least common multiple of mC and mD.)
Then deduce that for any complex number λ,

s′′ = max{s, s′}

where s′′ is the power of (t − λ) occurring in mC⊕D(t) (when it’s been
written as a product of linear factors), and similarly s for mC and s′ for
mD.

c. Show that χC⊕D(t) = χC(t).χD(t). Deduce that for any complex number
λ,

r′′ = r + r′

where r, r′ and r′′ are defined as in the previous part of the question, but
with the characteristic polynomial instead of the minimal polynomial.

d. Show that for any complex number λ,

g′′ = g + g′

where g′′ is the geometric multiplicity of λ in C ⊕D, and similarly g for
C and g′ for D. (If λ is not an eigenvalue of C then g is by definition 0:
so in any case, g = dim Ker(C − λI). The same convention applies to g′

and g′′.)

Exercise 3 Let λ be a complex number, let g, d1, . . . dg be natural numbers,
and let A = J

(d1)
λ ⊕ · · · ⊕ J (dg)

λ . Show that for the matrix A,

a. the only eigenvalue is λ

b. the power of (t− λ) in mA is max{d1, . . . , dg}

c. the power of (t− λ) in χA is d1 + · · ·+ dg

d. the geometric multiplicity of λ is g.

Exercise 4 Let λ1, . . . , λk be complex numbers, let d1
1, . . . , d

g1
1 , . . . , d

1
k, . . . d

gk
k

be natural numbers (superscripts don’t indicate powers), and let

A = (J (d1
1)

λ1
⊕ · · · ⊕ J (d

g1
1 )

λ1
)⊕ · · · ⊕ (J (d1

k)
λk
⊕ · · · ⊕ J (d

gk
k

)

λk
).

Show that for the matrix A,

a. the eigenvalues are λ1, . . . , λk

b. the power of (t− λi) in mA is max{d1
i , . . . , d

gi
i }

c. the power of (t− λi) in χA is d1
i + · · ·+ dgii

d. the geometric multiplicity of λi is gi.
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Let’s re-express the results of this final exercise. It says that given a matrix
in Jordan canonical form,

• the eigenvalues are the entries down the diagonal

• mA(t) = (t−λ1)s1 · · · (t−λk)sk where si is the size of the largest λi-block
in A (and the λi’s are the distinct eigenvalues)

• χA(t) = (t− λ1)r1 · · · (t− λk)rk where ri is the number of occurrences of
λi on the diagonal

• the geometric multiplicity of λi is the number of λi-blocks in A.

This covers all the major theory, and if you’ve got this far then you can be
pleased with yourself. Here are are a couple of further points.

Some of you asked me for an efficient method of calculating the Jordan form
of a given matrix. The bad news is that there isn’t one that I know of. The good
news, however, is that for square matrices of size 6×6 or less, you can work out
the Jordan form by calculating the characteristic and minimal polynomials and
the dimensions of the eigenspaces. For example, suppose you’re given a 6 × 6
matrix and you calculate that its characteristic polynomial is (t−3)4(t−i)2, that
its minimal polynomial is (t−3)2(t− i)2, that the 3-eigenspace is 3-dimensional,
and that the i-eigenspace is 1-dimensional. Then the diagonal is made up of 4
copies of 3 and 2 of i. There are 3 Jordan 3-blocks, the largest of which is 2×2,
which means that their sizes are 2, 1 and 1 (since they add up to 4). Similarly,
there is just one Jordan i-block, which is 2 × 2. So the Jordan canonical form
of the matrix is 

3 1 0 0 0 0
0 3 0 0 0 0
0 0 3 0 0 0
0 0 0 3 0 0
0 0 0 0 i 1
0 0 0 0 0 i

 .

As a rather tedious exercise, you can show that this line of reasoning will
always tell you exactly what the Jordan canonical form of a square matrix is
when it is at most 6×6. However, it doesn’t always work for larger matrices. For
example, suppose you’re told that a 7× 7 matrix has characteristic polynomial
t7, minimal polynomial t3, and that the dimension of the 0-eigenspace is 3. Then
the matrix could be conjugate to either one of the Jordan canonical forms

J
(3)
0 ⊕ J (3)

0 ⊕ J (1)
0 , J

(3)
0 ⊕ J (2)

0 ⊕ J (2)
0 ,

which are not conjugate to each other (by the uniqueness part of the Jordan
theorem).

The moral of this last example is that if you have two n × n matrices in
front of you, then even if all the invariants you can think of are the same for
each (e.g. eigenvalues, rank, nullity, characteristic polynomial, trace, determi-
nant, minimal polynomial, geometric multiplicities), it does not follow that the
matrices are conjugate to each other.
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