Category Theory 1

Categories and functors

This is to accompany the reading of 1–7 October and the lecture of 8 October. Please report mistakes and obscurities to T.Leinster@maths.gla.ac.uk.

Some questions on these sheets require knowledge of other areas of mathematics; skip over any that you haven't the background for. That aside, I encourage you to do *all* the questions, and remind you that the exam questions are likely to bear a strong resemblance to the questions here.

- 1. Write down three examples of (a) categories, and (b) functors, that weren't given in lectures.
- 2. Show that functors preserve isomorphism. That is, prove that if $F: \mathcal{A} \longrightarrow \mathcal{B}$ is a functor and $A, A' \in \mathcal{A}$ with $A \cong A'$, then $F(A) \cong F(A')$.
- 3. Two categories \mathcal{A} and \mathcal{B} are **isomorphic**, written $\mathcal{A} \cong \mathcal{B}$, if they are isomorphic as objects of **CAT**.
 - (a) Let G be a group, regarded as a one-object category. What is the opposite of G? Prove that G is isomorphic to G^{op} .
 - (b) Find a monoid not isomorphic to its opposite.
- 4. Is there a functor $Z : \mathbf{Gp} \longrightarrow \mathbf{Gp}$ with the property that Z(G) is the centre of G for all groups G?
- 5. Sometimes we meet functors whose domain is a product $A \times B$ of categories. In this question we'll show that such a functor can be regarded as an interlocking pair of families of functors, one defined on A and one defined on B. This is very like the situation with bilinear and linear maps.

Let $F: \mathcal{A} \times \mathcal{B} \longrightarrow \mathcal{C}$ be a functor. For each $A \in \mathcal{A}$, there is an induced functor $F^A: \mathcal{B} \longrightarrow \mathcal{C}$ defined on objects $B \in \mathcal{B}$ by $F^A(B) = F(A,B)$ and on arrows g of \mathcal{B} by $F^A(g) = F(1_A,g)$. Similarly, for each $B \in \mathcal{B}$ there is an induced functor $F_B: \mathcal{A} \longrightarrow \mathcal{C}$. Show that the families of functors $(F^A)_{A \in \mathcal{A}}$ and $(F_B)_{B \in \mathcal{B}}$ satisfy the following conditions:

- if $A \in \mathcal{A}$ and $B \in \mathcal{B}$ then $F^A(B) = F_B(A)$
- if $f: A \longrightarrow A'$ in \mathcal{A} and $g: B \longrightarrow B'$ in \mathcal{B} then $F^{A'}(g) \circ F_B(f) = F_{B'}(f) \circ F^A(g)$.

Then show that given families $(F^A)_{A \in \mathcal{A}}$ and $(F_B)_{B \in \mathcal{B}}$ of functors satisfying these two conditions, there is a unique functor $F : \mathcal{A} \times \mathcal{B} \longrightarrow \mathcal{C}$ inducing them.