Category Theory 3 Adjoints

This is to accompany the reading of 17–24 October. Please report mistakes and obscurities to T.Leinster@maths.gla.ac.uk.

Some questions on these sheets require knowledge of other areas of mathematics; skip any that you haven't the background for. That aside, I encourage you to do *all* the questions, and remind you that the exam questions are likely to bear a strong resemblance to the questions here.

- 1. Write down two examples of (a) adjunctions, (b) initial objects, and (c) terminal objects, that aren't in the notes.
- 2. What can you say about adjunctions between discrete categories?
- 3. What is an **adjunction**? Show that left adjoints preserve initial objects, that is, if $\mathcal{A} \xrightarrow[]{L}{G} \mathcal{B}$ and

I is an initial object of \mathcal{A} , then F(I) is an initial object of \mathcal{B} . Dually, show that right adjoints preserve terminal objects.

(Later we'll see this as part of a bigger picture: right adjoints preserve limits and left adjoints preserve colimits.)

- 4.(a) Let $\mathcal{A} \xrightarrow[G]{} \stackrel{F}{\underset{G}{\perp}} \mathcal{B}$ be an adjunction. Define the **unit** η and **counit** ε of the adjunction. Prove the triangle identities, $(\varepsilon F) \circ (F\eta) = 1_F$ and $(G\varepsilon) \circ (\eta G) = 1_G$.
 - (b) Prove that given functors $\mathcal{A} \xrightarrow[G]{F} \mathcal{B}$ and natural transformations $\eta : 1 \longrightarrow GF$, $\varepsilon : FG \longrightarrow 1$ satisfying the triangle identities, there is a unique adjunction between F and G with η as its unit and ε as its counit.
- 5. Let $\mathcal{A} \xrightarrow[G]{} \mathcal{B}$ be an adjunction with unit η and counit ε . Let $\mathbf{Fix}(GF)$ be the full subcategory

of \mathcal{A} whose objects are those $A \in \mathcal{A}$ for which η_A is an isomorphism, and dually $\mathbf{Fix}(FG) \subseteq \mathcal{B}$. Prove that the adjunction $(F, G, \eta, \varepsilon)$ restricts to an equivalence $(F', G', \eta', \varepsilon')$ between $\mathbf{Fix}(GF)$ and $\mathbf{Fix}(FG)$.

In this way, any adjunction restricts to an equivalence between full subcategories. Take some examples of adjunctions and work out what this equivalence is.