Category Theory 4

Adjoints and sets

This is to accompany the reading of 24–31 October. Please report mistakes and obscurities to T.Leinster@maths.gla.ac.uk.

Some questions on these sheets require knowledge of other areas of mathematics; skip any that you haven't the background for. That aside, I encourage you to do *all* the questions, and remind you that the exam questions are likely to bear a strong resemblance to the questions here.

- 1. Let $G: \mathcal{B} \longrightarrow \mathcal{A}$ be a functor.
 - (a) For $A \in \mathcal{A}$, define the comma category $(A \Rightarrow G)$.
 - (b) Suppose that G has a left adjoint F, and let η be the unit of the adjunction. Show that η_A is an initial object of $(A \Rightarrow G)$, for each $A \in \mathcal{A}$.
 - (c) Conversely, suppose that for each $A \in \mathcal{A}$, the category $(A \Rightarrow G)$ has an initial object. Show that G has a left adjoint.
- 2. State the dual of Corollary 2.3.6. What would you do if someone asked you to prove your dual statement? (Duality is discussed in Remark 2.1.7.)
- 3. The **diagonal functor** $\Delta : \mathbf{Set} \longrightarrow \mathbf{Set}^2$ is defined by $\Delta(A) = (A, A)$ for all sets A. Exhibit left and right adjoints to Δ .
- 4. Let *O* : Cat → Set be the functor sending a small category to its set of objects. Exhibit a chain of adjoints

$$C \dashv D \dashv O \dashv I$$
.