Category Theory 6

The Yoneda Lemma

This is to accompany the reading of 7 November–14 November. Please report mistakes and obscurities to T.Leinster@maths.gla.ac.uk.

I encourage you to do *all* the questions, and remind you that the exam questions are likely to bear a strong resemblance to the questions here.

- 1. State and prove the Yoneda Lemma.
- 2. Let \mathcal{A} be a locally small category. Define the **Yoneda embedding** $H_{\bullet}: \mathcal{A} \longrightarrow [\mathcal{A}^{\text{op}}, \mathbf{Set}]$. Prove each of the following directly (without using the Yoneda Lemma):
 - (a) H_{\bullet} is faithful
 - (b) H_{\bullet} is full
 - (c) if $X : \mathcal{A}^{\mathrm{op}} \longrightarrow \mathbf{Set}$, $A \in \mathcal{A}$, and X(A) has an element u that is 'universal' in a sense that you should make precise, then $X \cong H_A$.
- 3. Prove Lemma 3.3.8.
- 4. Let \mathcal{B} be a category and $J:\mathcal{C}\longrightarrow\mathcal{D}$ a functor. There is an induced functor

$$J \circ - : [\mathcal{B}, \mathcal{C}] \longrightarrow [\mathcal{B}, \mathcal{D}]$$

defined by composition with J. (If you can't see how J is defined on maps, look back at Remark 1.3.14.)

- (a) Show that if J is full and faithful then so is $J \circ -$. (Typical category theory question. It's straightforward in the sense that nothing sneaky's involved: you just follow your nose. On the other hand, it may take you a while to get oriented. Remain calm.)
- (b) Deduce that if J is full and faithful and $G, G' : \mathcal{B} \longrightarrow \mathcal{C}$ with $J \circ G \cong J \circ G'$ then $G \cong G'$.
- (c) Now deduce that right adjoints are unique: if $F: \mathcal{A} \longrightarrow \mathcal{B}$ and $G, G': \mathcal{B} \longrightarrow \mathcal{A}$ with $F \dashv G$ and $F \dashv G'$ then $G \cong G'$. (Hint: the Yoneda embedding is full and faithful.)