Category Theory 8 Limits and colimits

This is to accompany the reading of 21–28 November. Please report mistakes and obscurities to T.Leinster@maths.gla.ac.uk.

I encourage you to do *all* the questions, and remind you that the exam questions are likely to bear a strong resemblance to the questions here.

- 1. Let \mathbb{I} be a small category and $D : \mathbb{I} \longrightarrow \mathbf{Set}$ a diagram of shape \mathbb{I} in **Set**. Describe explicitly a limit cone and a colimit cocone for D.
- 2. What does it mean for a functor to **preserve**, **reflect** or **strictly create** limits? Show that if $F : \mathcal{A} \longrightarrow \mathcal{B}$ strictly creates limits and \mathcal{B} has all limits, then \mathcal{A} has all limits and F preserves them.
- 3. Let \mathcal{A} be a category with binary products. Show that

$$\mathcal{A}(A, B \times C) \cong \mathcal{A}(A, B) \times \mathcal{A}(A, C)$$

naturally in $A, B, C \in \mathcal{A}$.

(I'm assuming implicitly that we've chosen for each B and C a product cone on (B, C). By Sheet 7, q.2, the assignment $(B, C) \mapsto B \times C$ is then functorial—which it would have to be in order for the word 'naturally' in the question to make sense.)

- 4. Let \mathbb{I} be a small category. Show that a category \mathcal{A} has all limits of shape \mathbb{I} if and only if the diagonal functor $\Delta : \mathcal{A} \longrightarrow [\mathbb{I}, \mathcal{A}]$ has a right adjoint.
- 5. Recall the definitions of regular monic and split monic from Sheet 7, q.5.
 - (a) Give an example, with proof, of a map in a category that is monic and epic but not an isomorphism.
 - (b) Prove that in any category, a map is an isomorphism if and only if it is both monic and regular epic.
 - (c) Assuming that our category of sets satisfies the Axiom of Choice (page 40 of the notes), show that

$$epic \iff regular epic \iff split epic$$

in Set.

(You can say that a category \mathcal{A} 'satisfies the Axiom of Choice' if all epics in \mathcal{A} are split. For example, the Axiom of Choice is not satisfied in **Top** or in **Gp**.)