
Category Theory 1
Categories and functors

This is to accompany the reading of 1–7 October and the lecture of 8 October. Please report
mistakes and obscurities to T.Leinster@maths.gla.ac.uk.

Some questions on these sheets require knowledge of other areas of mathematics; skip over any
that you haven’t the background for. That aside, I encourage you to do all the questions, and
remind you that the exam questions are likely to bear a strong resemblance to the questions here.

1. Write down three examples of (a) categories, and (b) functors, that weren’t given in lectures.

2. Show that functors preserve isomorphism. That is, prove that if F : A - B is a functor and
A,A′ ∈ A with A ∼= A′, then F (A) ∼= F (A′).

3. Two categories A and B are isomorphic, written A ∼= B, if they are isomorphic as objects of
CAT.

(a) Let G be a group, regarded as a one-object category. What is the opposite of G? Prove that G
is isomorphic to Gop.

(b) Find a monoid not isomorphic to its opposite.

4. Is there a functor Z : Gp - Gp with the property that Z(G) is the centre of G for all groups
G?

5. Sometimes we meet functors whose domain is a product A×B of categories. In this question we’ll
show that such a functor can be regarded as an interlocking pair of families of functors, one defined
on A and one defined on B. This is very like the situation with bilinear and linear maps.

Let F : A × B - C be a functor. For each A ∈ A, there is an induced functor FA : B -

C defined on objects B ∈ B by FA(B) = F (A,B) and on arrows g of B by FA(g) = F (1A, g).
Similarly, for each B ∈ B there is an induced functor FB : A - C. Show that the families of
functors (FA)A∈A and (FB)B∈B satisfy the following conditions:

• if A ∈ A and B ∈ B then FA(B) = FB(A)

• if f : A - A′ in A and g : B - B′ in B then FA′
(g) ◦FB(f) = FB′(f) ◦FA(g).

Then show that given families (FA)A∈A and (FB)B∈B of functors satisfying these two conditions,
there is a unique functor F : A×B - C inducing them.



Category Theory 2
Natural transformations and equivalence

This is to accompany the reading of 11–17 October. Please report mistakes and obscurities to
T.Leinster@maths.gla.ac.uk.

Some questions on these sheets require knowledge of other areas of mathematics; skip over any
that you haven’t the background for. That aside, I encourage you to do all the questions, and
remind you that the exam questions are likely to bear a strong resemblance to the questions here.

1. Write down three examples of natural transformations that aren’t in the notes.

2. Prove that a natural transformation is a natural isomorphism if and only if each of its components
is an isomorphism (Lemma 1.3.6).

3. Linear algebra can be done equivalently with matrices or with linear maps. . .

Fix a field k. Let Mat be the category whose objects are the natural numbers and with

Mat(m,n) = {n×m matrices over k}.

Prove that Mat is equivalent to FDVect, the category of finite-dimensional vector spaces over
k. Does your equivalence involve a canonical functor from Mat to FDVect, or from FDVect to
Mat?
(Hints: (i) Part of the exercise is to work out what composition in the category Mat is supposed to
be; there’s only one sensible possibility. (ii) It’s easier if you use 1.3.12. (iii) The word ‘canonical’
means something like ‘God-given’ or ‘definable without making any arbitrary choices’.)

4. Let G be a group. For any g ∈ G there is a unique homomorphism φ : Z - G satisfying φ(1) = g,
so elements of G are essentially the same as homomorphisms Z - G. These in turn are the same
as functors Z - G, where groups are regarded as one-object categories. Natural isomorphism
therefore defines an equivalence relation on the elements of G. What is this equivalence relation,
in group-theoretic terms?
(First have a guess. For a general group G, what equivalence relations on G can you think of?)

5. A permutation on a set X is a bijection X - X. Let Sym(X) be the set of permutations on
X. A total order on a set X is an order ≤ such that for all x, y ∈ X, either x ≤ y or y ≤ x; so
a total order on a finite set amounts to a way of placing its elements in sequence. Let Ord(X) be
the set of total orders on X.
Let B be the category of finite sets and bijections.

(a) Give a definition of Sym on morphisms of B so that Sym becomes a functor B - Set. Do
the same for Ord. Both your definitions should be canonical (no arbitrary choices).

(b) Show that there is no natural transformation Sym - Ord. (Hint: consider the identity
permutation.)

(c) If X is an n-element set, how many elements do the sets Sym(X) and Ord(X) have?

Conclude that Sym(X) ∼= Ord(X) for all X ∈ B, but not naturally in X.



Category Theory 3
Adjoints

This is to accompany the reading of 17–24 October. Please report mistakes and obscurities to
T.Leinster@maths.gla.ac.uk.

Some questions on these sheets require knowledge of other areas of mathematics; skip any that
you haven’t the background for. That aside, I encourage you to do all the questions, and remind
you that the exam questions are likely to bear a strong resemblance to the questions here.

1. Write down two examples of (a) adjunctions, (b) initial objects, and (c) terminal objects, that
aren’t in the notes.

2. What can you say about adjunctions between discrete categories?

3. What is an adjunction? Show that left adjoints preserve initial objects, that is, if A

F-
⊥�
G

B and

I is an initial object of A, then F (I) is an initial object of B. Dually, show that right adjoints
preserve terminal objects.

(Later we’ll see this as part of a bigger picture: right adjoints preserve limits and left adjoints
preserve colimits.)

4.(a) Let A

F-
⊥�
G

B be an adjunction. Define the unit η and counit ε of the adjunction. Prove the

triangle identities, (εF ) ◦ (Fη) = 1F and (Gε) ◦ (ηG) = 1G.

(b) Prove that given functors A
F-�
G

B and natural transformations η : 1 - GF , ε : FG -

1 satisfying the triangle identities, there is a unique adjunction between F and G with η as its
unit and ε as its counit.

5. Let A

F-
⊥�
G

B be an adjunction with unit η and counit ε. Let Fix(GF ) be the full subcategory

of A whose objects are those A ∈ A for which ηA is an isomorphism, and dually Fix(FG) ⊆ B.
Prove that the adjunction (F,G, η, ε) restricts to an equivalence (F ′, G′, η′, ε′) between Fix(GF )
and Fix(FG).

In this way, any adjunction restricts to an equivalence between full subcategories. Take some
examples of adjunctions and work out what this equivalence is.



Category Theory 4
Adjoints and sets

This is to accompany the reading of 24–31 October. Please report mistakes and obscurities to
T.Leinster@maths.gla.ac.uk.

Some questions on these sheets require knowledge of other areas of mathematics; skip any that
you haven’t the background for. That aside, I encourage you to do all the questions, and remind
you that the exam questions are likely to bear a strong resemblance to the questions here.

1. Let G : B - A be a functor.

(a) For A ∈ A, define the comma category (A ⇒ G).

(b) Suppose that G has a left adjoint F , and let η be the unit of the adjunction. Show that ηA is
an initial object of (A ⇒ G), for each A ∈ A.

(c) Conversely, suppose that for each A ∈ A, the category (A ⇒ G) has an initial object. Show
that G has a left adjoint.

2. State the dual of Corollary 2.3.6. What would you do if someone asked you to prove your dual
statement? (Duality is discussed in Remark 2.1.7.)

3. The diagonal functor ∆ : Set - Set2 is defined by ∆(A) = (A,A) for all sets A. Exhibit left
and right adjoints to ∆.

4. Let O : Cat - Set be the functor sending a small category to its set of objects. Exhibit a chain
of adjoints

C a D a O a I.



Category Theory 5
Representables

This is to accompany the reading of 31 October–7 November. Please report mistakes and obscurities
to T.Leinster@maths.gla.ac.uk.

Some questions on these sheets require knowledge of other areas of mathematics; skip any that
you haven’t the background for. That aside, I encourage you to do all the questions, and remind
you that the exam questions are likely to bear a strong resemblance to the questions here.

1. Let A be a locally small category. What does it mean for a presheaf X on A to be representable?
What is a representation of X?

2. Write down five examples of representable functors. (It’s possible to answer this with almost no
inventiveness at all: just look at the definition of representability.)

3. Let A be a locally small category and A,B ∈ A. Show that if HA
∼= HB then A ∼= B.

4. One way to understand the Yoneda Lemma is to think about special cases. Here we think about
one-object categories.

Let M be a monoid. The underlying set of M can be given a right M -action by multiplication:
x · m = xm for all x,m ∈ M . This M -set is called the right regular representation of M . I
will write it as M .

(a) When M is regarded as a one-object category, functors Mop - Set correspond to right
M -sets. Show that the M -set corresponding to the unique representable functor Mop - Set
is the right regular representation.

(b) Now let X be any right M -set. Show that for each x ∈ X, there is a unique map α : M - X
of right M -sets such that α(1) = x. (See 1.3.3(b) for the definition of a map of M -sets; those
are left M -sets but you can dualize.) Deduce that there is a bijection between {maps M -

X of right M -sets} and X.
(c) Deduce the Yoneda Lemma for one-object categories.

5. Here we consider natural transformations between functors whose domain is a product category
A × B. Your task is to show that naturality in two variables simultaneously is equivalent to
naturality in each variable separately.

Take functors F,G : A × B - C. For each A ∈ A there are functors FA, GA : B - C, as in
Sheet 1, q.5; similarly, for each B ∈ B, there are functors FB , GB : A - C.
Let (αA,B : F (A,B) - G(A,B))A∈A,B∈B be any family of maps. Show that this family is a
natural transformation F - G if and only if

• for each A ∈ A, the family (αA,B : FA(B) - GA(B))B∈B is a natural transformation
FA - GA, and

• for each B ∈ B, the family (αA,B : FB(A) - GB(A))A∈A is a natural transformation
FB

- GB .



Category Theory 6
The Yoneda Lemma

This is to accompany the reading of 7 November–14 November. Please report mistakes and obscu-
rities to T.Leinster@maths.gla.ac.uk.

I encourage you to do all the questions, and remind you that the exam questions are likely to bear
a strong resemblance to the questions here.

1. State and prove the Yoneda Lemma.

2. Let A be a locally small category. Define the Yoneda embedding H• : A - [Aop,Set]. Prove
each of the following directly (without using the Yoneda Lemma):

(a) H• is faithful

(b) H• is full

(c) if X : Aop - Set, A ∈ A, and X(A) has an element u that is ‘universal’ in a sense that you
should make precise, then X ∼= HA.

3. Prove Lemma 3.3.8.

4. Let B be a category and J : C - D a functor. There is an induced functor

J ◦− : [B,C] - [B,D]

defined by composition with J . (If you can’t see how J is defined on maps, look back at Re-
mark 1.3.14.)

(a) Show that if J is full and faithful then so is J ◦−. (Typical category theory question. It’s
straightforward in the sense that nothing sneaky’s involved: you just follow your nose. On the
other hand, it may take you a while to get oriented. Remain calm.)

(b) Deduce that if J is full and faithful and G, G′ : B - C with J ◦ G ∼= J ◦ G′ then G ∼= G′.

(c) Now deduce that right adjoints are unique: if F : A - B and G, G′ : B - A with F a G
and F a G′ then G ∼= G′. (Hint: the Yoneda embedding is full and faithful.)



Category Theory 7
Limits

This is to accompany the reading of 14–21 November. Please report mistakes and obscurities to
T.Leinster@maths.gla.ac.uk.

I encourage you to do all the questions, and remind you that the exam questions are likely to bear
a strong resemblance to the questions here.

1. Define the term limit. In what sense are limits unique? Prove your uniqueness statement.

2. Limit is a process that takes a diagram of shape I in a category A, and produces from it a new
object of A. Later we’ll see that this process is functorial. Here we show this in the special case of
binary products.

Let A be a category with binary products. Choose for each pair (X, Y ) of objects a product cone

X �p
X,Y
1 X × Y

pX,Y
2- Y.

Show that once this choice is made, we have a canonical functor A×A - A defined on objects
by (X, Y ) 7−→ X × Y .

3. Take a commutative diagram
· - · - ·

·
?

- ·
?

- ·
?

in some category. Suppose that the right-hand square is a pullback. Show that the left-hand square
is a pullback if and only if the outer rectangle is a pullback.

4. Let E
i- X

f-

g
- Y be an equalizer (in some category). Is

E
i- X

X

i
?

f
- Y

g
?

necessarily a pullback? Give a proof or a counterexample.

5. A map m : A - B in a category is regular monic if there exist an object C and maps
B -- C of which m is an equalizer. It is split monic if there exists a map e : B - A such
that em = 1A.

(a) Show that split monic ⇒ regular monic ⇒ monic.
(b) In Ab, show that all monics are regular but not all monics are split. (Hint for the first part:

equalizers in Ab are calculated as in Vectk.)

(c) In Top, describe the regular monics and find a monic that is not regular.



Category Theory 8
Limits and colimits

This is to accompany the reading of 21–28 November. Please report mistakes and obscurities to
T.Leinster@maths.gla.ac.uk.

I encourage you to do all the questions, and remind you that the exam questions are likely to bear
a strong resemblance to the questions here.

1. Let I be a small category and D : I - Set a diagram of shape I in Set. Describe explicitly a
limit cone and a colimit cocone for D.

2. What does it mean for a functor to preserve, reflect or strictly create limits? Show that if
F : A - B strictly creates limits and B has all limits, then A has all limits and F preserves
them.

3. Let A be a category with binary products. Show that

A(A,B × C) ∼= A(A,B)×A(A,C)

naturally in A,B, C ∈ A.

(I’m assuming implicitly that we’ve chosen for each B and C a product cone on (B,C). By Sheet 7,
q.2, the assignment (B,C) 7−→ B × C is then functorial—which it would have to be in order for
the word ‘naturally’ in the question to make sense.)

4. Let I be a small category. Show that a category A has all limits of shape I if and only if the
diagonal functor ∆ : A - [I,A] has a right adjoint.

5. Recall the definitions of regular monic and split monic from Sheet 7, q.5.

(a) Give an example, with proof, of a map in a category that is monic and epic but not an isomor-
phism.

(b) Prove that in any category, a map is an isomorphism if and only if it is both monic and regular
epic.

(c) Assuming that our category of sets satisfies the Axiom of Choice (page 40 of the notes), show
that

epic ⇐⇒ regular epic ⇐⇒ split epic

in Set.

(You can say that a category A ‘satisfies the Axiom of Choice’ if all epics in A are split. For
example, the Axiom of Choice is not satisfied in Top or in Gp.)



Category Theory 9
Limits and colimits of presheaves

This is to accompany the reading of 28 November–5 December. Please report mistakes and obscu-
rities to T.Leinster@maths.gla.ac.uk.

I encourage you to do all the questions, and remind you that the exam questions are likely to bear
a strong resemblance to the questions here.

1. Let A be a small category.

(a) What does it mean to say that limits and colimits are computed pointwise in [Aop,Set]? Prove
that this is so.

(b) Describe explicitly the monics and epics in [Aop,Set]. (Now see if you can do this without the
aid of (a).)

2. Let A be a small category.

(a) Show that for each A ∈ A, the representable functor HA : A - Set preserves limits.

(b) Show that the Yoneda embedding H• : A - [Aop,Set] preserves limits.

3. Let A be a small category and A,B ∈ A. Show that the sum HA + HB in [Aop,Set] is never
representable.

(Warning 5.1.13 might give a clue. You might also want to use the description of representability
in terms of universal elements, though you don’t need to.)

4. Let X be a presheaf on a small category. Show that X is representable if and only if its category
of elements E (X) has a terminal object.

Since a terminal object is a limit of the empty diagram, this means that the concept of repre-
sentability can be derived from the concept of limit. Since a terminal object of a category E is a
right adjoint to the unique functor E - 1, representability can also be derived from the concept
of adjoint.

5. Let A be a category and A ∈ A. A subobject of A is an isomorphism class of monics into A.
More precisely, let Monic(A) be the category whose objects are the monics with codomain A
and whose maps are commutative triangles; this is a full subcategory of the slice category A/A
(Example 2.3.3(a)). Then a subobject of A is an isomorphism class of objects of Monic(A).

(a) Let X
m- A and X ′ m′

- A be monics in Set. Show that m and m′ are isomorphic in
Monic(A) if and only if they have the same image. Deduce that subobjects of A correspond
one-to-one with subsets of A.

(b) Part (a) says that in Set, subobjects are subsets. What are subobjects in Gp, Ring and
Vectk? How about in Top? (Careful!)



Category Theory 10
Interaction of (co)limits with adjunctions

This is to accompany the final batch of reading, beginning on 5 December. In the week of 7–11
January, there will be a lecture on this material and a tutorial on this sheet. Please report mistakes
and obscurities to T.Leinster@maths.gla.ac.uk.

I encourage you to do all the questions, and remind you that the exam questions are likely to bear
a strong resemblance to the questions here.

1. Consider the following three conditions on a functor U from a locally small category A to Set:

A. U has a left adjoint R. U is representable L. U preserves limits.

(a) Show that A ⇒ R ⇒ L.
(b) Show that if A has sums then R ⇒ A.

(If A satisfies the hypotheses of the Special Adjoint Functor Theorem then L ⇒ A and the three
conditions are equivalent.)

2.(a) Prove that left adjoints preserve colimits and right adjoints preserve limits.
(b) Prove that the forgetful functor U : Gp - Set has no right adjoint.
(c) Prove that the chain of adjunctions C a D a O a I in Sheet 4, q.4 extends no further in either

direction.

3.(a) Show that every presheaf on a small category is a colimit of representable presheaves.
(b) What does it mean for a category to be cartesian closed? Show that for any small category A,

the presheaf category [Aop,Set] is cartesian closed. (You may assume that limits and colimits
in presheaf categories exist and are computed pointwise.)

4.(a) Let

X ′ f ′
- X

A′

m′
?

f
- A

m
?

be a pullback square in some category. Show that if m is monic then so is m′. (We already
know that this holds in the category of sets: Example 4.1.16.)

A category A is well-powered if for each A ∈ A, the class of subobjects of A is small—that is, a
set. All of our usual examples of categories are well-powered. Let A be a well-powered category
with pullbacks, and write Sub(A) for the set of subobjects of an object A ∈ A.

(b) Deduce from (a) that any map A′ f- A in A induces a map Sub(A)
Sub(f)- Sub(A′).

(c) Show that this determines a functor Sub : Aop - Set. (Hint: Sheet 7, q.3.)

(d) For some categories A, Sub is representable. A subobject classifier for A is an object Ω ∈ A

such that Sub ∼= HΩ. Prove that 2 is a subobject classifier for Set.



Category Theory
Hints on the problem sheets

I’ve written varying amounts about each question. Sometimes it’s just a quick
hint and sometimes it’s something more detailed—but almost none of my an-
swers are up to the level of detail expected in an exam.

General hint Before you look here for a hint,

make sure you understand the question in full.

In category theory, maybe more than in most subjects, you really have to com-
pletely understand every piece of terminology used in the question before trying
to answer it. If you don’t, you’re extremely unlikely to produce a correct an-
swer. But once you do, you may well find the answer a pushover. The purpose
of these questions is to deepen and test your understanding, not to exercise
your problem-solving skills. It’s not like number theory or combinatorics, where
there are many questions that can be stated in simple terms but are very hard
to answer.

So, the questions are often harder than the answers! This is particularly
true of the questions on the earlier sheets.

Sheet 1: Categories and functors

1. For everyday examples of categories and functors, browse library or web. Or
you can make up examples in the following manner. There’s a category

A = (A
p- B)

—that is, A has two objects, A and B, and just one non-identity map, p :
A - B. (No need to say what composition is, as that’s uniquely determined.)
Or (random example) there’s a category B with objects and maps

C
f- C ′

E �
l

lh

�
D

h
?

g
- D′

k
?

m
-

where gh = kf = m and I’ve omitted identity maps. There’s a functor F :
A - B defined by F (A) = C, F (B) = C ′, and F (p) = f .

2. See ‘General hint’ above.

3.(a) Same set but multiplication reversed: (a, b) 7−→ b · a. Isomorphism G -

Gop provided by g 7−→ g−1.

(b) Let M be the monoid of maps 2 - 2 where 2 is a two-element set and
multiplication is composition. Then the statement ∃m ∈M : ∀x ∈M,mx =
m is true, but becomes false when M is replaced by Mop. So M 6∼= Mop.



4. No. Main point: a homomorphism φ : G - H doesn’t restrict to a map
Z(G) - Z(H) (e.g. take an injection φ : C2

⊂ - S3). So the obvious way
of defining Z on maps fails. In fact there’s no way to do it: for if there were,
the commutative diagram

C2
1 - C2

S3

ψ

-

φ -

(where ψ is the quotient map for A3 P S3) would become a commutative dia-
gram

Z(C2)
1 - Z(C2)

Z(S3)

-
-

which is impossible as Z(C2) = C2 and Z(S3) ∼= 1.

5. Easy once you fully understand the question. Write out the definition of A×B

in full : what the objects, maps, composition and identities are. Write down in
full what a functor A×B - C is. Then try it.

Sheet 2: Natural transformations and equivalence

1. For examples that occur mathematical practice, browse library or web. Can
also make up examples as in hints to Sheet 1, q.1. E.g. if 1 is the category with
one object and one map (the identity) then a functor from 1 to a category A is
just an object of A, and a natural transformation

1
R

�∨
A

between two such functors is a map in A between the corresponding two objects.
Or, take the categories A and B defined in the hints to Sheet 1, q.1: then there
is a functor F as defined there, another functor G defined by G(p) = g, and a
natural transformation α : F - G given by αA = h and αB = k.

2. See ‘General hint’ above.

3. Define F : Mat - FDVect as follows: F (n) = kn, and if M ∈ Mat(m,n)
then F (M) is the linear map km - kn corresponding to the matrix M (with
respect to the standard bases). Show functorial. Show full and faithful and
essentially surjective on objects. Invoke 1.3.12.

This functor F is canonical, but there’s no canonical functor G : FDVect -

Mat satisfying FG ∼= 1 and GF ∼= 1: for such a G must send every finite-
dimensional vector space V to dimV (fine), but to specify G on maps, you’d
have to choose a basis for every finite-dimensional vector space, which can’t be
done in a canonical way.

2



4. Conjugacy.

5.(a) Let f : X - Y be a map in B. Then Sym(f) : Sym(X) - Sym(Y )
is defined by σ 7−→ fσf−1. Also Ord(f) : Ord(X) - Ord(Y ) is defined
by ≤ 7−→≤′ where y1 ≤′ y2 ⇐⇒ f−1(y1) ≤ f−1(y2). Check functoriality.

(b) Take α : Sym - Ord. Draw naturality square for α with respect to the
map f : 2 - 2 in B where 2 is a two-element set and f interchanges its
elements. Work out what its commutativity says when you take the identity
permutation 1 ∈ Sym(2): get contradiction.

Sheet 3: Adjoints

1. Same comments as for Sheet 1, q.1 and Sheet 2, q.1.

2. They are just bijections between sets (or strictly speaking, classes): if F a G is
an adjunction between discrete categories A and B then F is an isomorphism
and G = F−1.

3. For all B, the set B(F (I), B) ∼= A(I,G(B)) has one element. And dually.

4. Bookwork.

5. The substantial parts are (i) understanding the concepts behind the question,
and (ii) observing that if ηA is an isomorphism then so is εF (A) (by a triangle
identity) and dually.

The equivalence you restrict to can be completely trivial, e.g. the adjunc-
tion Vectk

-� Set becomes the equivalence ∅ -� ∅ (where ∅ is the

empty category). Slightly less trivial: Top
U-�
D

Set gives the equivalence

(discrete spaces) ' Set.

Sheet 4: Adjoints and sets

1. Bookwork.

2. Let F : A - B be a functor. Then F has a right adjoint if and only if for
each B ∈ B, the category (F ⇒ B) has a terminal object.

Proof: can just say ‘by duality’.

3. Left: (A,B) 7−→ A+B. Right: (A,B) 7−→ A×B.

4. I can think of three general strategies for finding adjoints. You can use them to
find D, I and C respectively.

Guess it We’re given O : Cat - Set and want to know what its adjoints
are. Have a guess: what functors Set - Cat do we already know? In
other words, what methods do we know for constructing a category out of
a set? One is the discrete category construction (1.3.3(a)), which defines a
functor D : Set - Cat. Check that this is left adjoint to O.

3



Probe it We’re told that O has a right adjoint I. We can try to figure out
what it must be by using adjointness. Given a set S, an object of I(S) is a
functor 1 - I(S), which is a function O(1) - S, which is an element
of S. So the object-set of I(S) is S. An arrow in I(S) is a functor 2 -

I(S) (where 2 is the category A in the hint to Sheet 1, q.1), which is a
function O(2) - S, which is a pair of elements of S. So the arrow-set
of I(S) is S × S. You could carry on with this method to figure out what
domain, codomain, composition and identities are in I(S), but perhaps you
can now make the leap and guess it: I(S) is the category whose objects are
the elements of S, where for each A,B ∈ S there is exactly one map A -

B, and where composition and identities are defined in the only possible way.
It’s called the indiscrete category on S.

Stare at it We’ll use this to find C. Let A be a category and S a set. A
functor F : A - D(S) is supposed to be the same thing as a function
C(A) - S, whatever C is. Well, what is a functor F : A - D(S)? It’s
a way of assigning to every object A ∈ A an element F (A) of S, with the
property that for every map A

f- B in A we have F (A) = F (B). In other
words (aha!), it’s a function O(A)/∼ - S where ∼ is the equivalence
relation on O(A) generated by A ∼ B whenever there’s a map A - B. So
C(A) = O(A)/∼. This is called the set of connected-components of A.

Sheet 5: Representables

1. Bookwork.

2. The non-inventive answer: by definition, theere’s one representable for every
pair (A, A) where A is a category and A ∈ A, namely HA. So to give five
examples of representable functors, you can just write down five examples of
objects of categories!

For more interesting answers, browse library/web.

3. Take isomorphism α : HA
- HB . We have to define maps A

f-
�

g
B and

prove gf = 1A and fg = 1B . Define f = αA(1A) and g = αB(1B). (What else
could we possibly do?) Get gf = 1A and fg = 1B from naturality of α.

4.(a) Pushover once you fully understand the question: e.g. make sure you fully
understand how monoids are one-object categories and M -sets are functors
M - Set. If it helps, use a different letter (M, say) for the one-object
category corresponding to the monoid M .

(b) The unique map α is m 7−→ xm. The bijection is φ 7−→ φ(1). (Moral:
unique existence statements can be rephrased as saying that some function
is a bijection.)

(c) This is just (b) rephrased.
(Well, the statement of the Yoneda Lemma also includes naturality in X and
in the object (usually called ‘A’). We haven’t proved this part, although we
know that our bijection is natural in the sense of being canonically defined—
no random choices involved.)

5. Same kind of comments as for Sheet 1, q.5.
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Sheet 6: The Yoneda Lemma

1. Bookwork.

2. Definition of Yoneda embedding: bookwork.

(a) If f : A - B is a map in A then f = Hf (1A).
(b) Given α : HA

- HB , define f = αA(1A); show Hf = α.
(c) Definition of universality: see 3.3.2. Isomorphism α : HA

- X given by
αB(g) = (Xg)(x).

3.(a) If J(f) is an isomorphism then by fullness, there exists a map f ′ : C ′ - C
such that J(f ′) = J(f)−1; then check that J(f ′f) = 1, which by faithfulness
implies f ′f = 1, and similarly ff ′ = 1.

(b) Use (a).
(c) Follows from (b).

4.(a) As the hint on the problem sheet suggests, it’s easy once you understand the
question. If you’re having trouble, try writing out in full the definition of the
functor J ◦− (i.e. what it does to objects and to maps).

(b) Follows from (a) and q.3.
(c) Take C = A and J = H• in (b).

Sheet 7: Limits

1. Definition of limit: bookwork.

Uniqueness: there are at least three statements you might make. Let D : I -

A be a diagram and take limit cones (L
pI- D(I))I∈I and (L′

p′I- D(I))I∈I.

Weakest L ∼= L′.
Stronger There is a unique isomorphism j : L - L′ such that p′I ◦ j = pI

for all I.
Strongest There is a unique map j : L - L′ such that p′I ◦ j = pI for all I,

and j is an isomorphism.

I’ll prove the strongest. First half of statement holds because (L′
p′I- D(I))I∈I

is a limit cone. Similarly, have unique map j′ : L′ - L such that pI ◦ j′ = p′I
for all I. Then j′j : L - L satisfies pI ◦ j′j = pI for all I, and 1L satisfies
pI ◦ 1L = pI for all I; but (L

pI- D(I))I∈I is a limit cone, so j′j = 1L.
Similarly, jj′ = 1L. So j is an isomorphism.

2. We define a functor F : A×A - A given on objects by F (X,Y ) = X × Y .

Given a map (X,Y )
(f,g)- (X ′, Y ′) in A × A, there is a unique map h : X ×

Y - X ′ × Y ′ such that

X × Y
pX,Y
1 - X

X ′ × Y ′

h
?

pX′,Y ′

1

- X ′

f
?

and

X × Y
pX,Y
2 - Y

X ′ × Y ′

h
?

pX′,Y ′

2

- Y ′

g
?
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commute, since (X ′ �pX′,Y ′
1 X ′ × Y ′ pX′,Y ′

2 - Y ′) is a product cone. Define
F (f, g) = h. Check functoriality. To justify the word ‘canonical’, observe
that in this answer we’ve done nothing random (unlike the question-setter, who
randomly chose a product cone on every pair of objects).

3. Do ‘if’ and ‘only if’ separately. The only thing you’ve got to work with is the
definition of pullback, and there’s only one way to proceed.

4. No. E.g. if f = g then i is an isomorphism, but then the square is a pullback
if and only if f is monic (see 4.1.31). So we get a counterexample from any
non-monic map. For instance, take f and g both to be the unique map 2 -

1 in Set.

5.(a) If m is split monic with em = 1 then m is equalizer of B
me-

1
- B. If m is

regular monic then the uniqueness part of the definition of equalizer implies
that m is monic.

(b) Any monic m : A - B in Ab is the equalizer of B
q-

0
- B/im(m) where

q is the quotient map (much as in 4.1.15(c)). The map m : Z - Z defined
by m(x) = 2x is injective, therefore monic. It is not split monic: if em = 1
then e(2) = 1, so 2e(1) = 1, and there is no integer x satisfying 2x = 1.

(c) In Top, a map is monic iff injective (arguing as in 4.1.30(a)). A map
m : A - B is regular monic iff the induced map A - m(A) is a
homeomorphism. (So up to isomorphism, the regular monics are the inclu-
sions of subspaces.) In particular, a bijection m is regular monic if and only
if it is a homeomorphism, so we get an example by writing down any example
of a continuous bijection that is not a homeomorphism. For instance, let A
be R with the discrete topology, let B be R with the usual topology, and let
m be the map that is the identity on underlying sets. Or let A = [0, 1), let
B be the circle, thought of as consisting of the complex numbers of modulus
1, and put m(t) = e2πit.

Sheet 8: Limits and colimits

1. Bookwork.

2. Definitions: bookwork. Second part is straight manipulation of definitions.

3. Choose a product cone on every pair (B,C), with notation as in Sheet 7, q.2.
For each A,B,C, define a function

αA,B,C : A(A,B × C) - A(A,B)×A(A,C)
q 7−→ (pB,C

1 ◦ q, pB,C
2 ◦ q),

which is bijective by definition of limit. Prove α natural.

4. ‘Only if’ is bookwork. For ‘if’, write R for the right adjoint of ∆. Let D ∈ [I,A].
Then [I,A](∆A,D) ∼= A(A,R(D)) naturally in A ∈ A. Applying 4.4.2, conclude
that R(D) is a limit of D.

5.(a) Simplest of many possibilities: take the unique non-identity map in the cat-
egory A = (• - •).

6



(b) Follows from observation that X
p-

p
- Y

q- Z is a coequalizer if and only

if q is an isomorphism.

(c) Axiom of Choice (page 40) says exactly that epic ⇒ split epic in Set. Then
use dual of Sheet 7, q.5.

Sheet 9: Limits and colimits of presheaves

1.(a) The meaning of ‘computed pointwise’ is the statement of Theorem 5.1.5 (with
A changed to Aop and S to Set).

(b) Applying Lemma 4.1.31, a map α in [Aop,Set] is monic iff a certain square
involving α is a pullback, iff for each A ∈ A the analogous square involving
αA is a pullback (since pullbacks are computed pointwise), iff for each A ∈ A
the map αA is monic. The monics in Set are the injections, so α is monic iff
each αA is injective. Similarly, the epics are the pointwise surjections.
Without using (a), can still figure out what the monics are: do a direct proof
by considering maps out of representables. But I know of no way of proving
the result on epics without (a).

2. Bookwork.

3. Something stronger is true: every representable HC is connected, meaning
that whenever HC

∼= X + Y for presheaves X and Y , then X ∼= 0 or Y ∼= 0.
(Here 0 = ∆∅ is the initial presheaf.) This implies the result in the question
because HA 6∼= 0 (since we have 1A ∈ HA(A)) and similarly HB 6∼= 0.

(Actually, connectedness also includes the condition of not being isomorphic to
0. This is very like the condition that 1 is not a prime number.)

To prove that HC is connected, suppose HC = X + Y . Then have universal
element u ∈ (X+Y )(C) ∼= X(C)+Y (C). Viewing X(C) and Y (C) as subsets of
(X+Y )(C), either u ∈ X(C) or u ∈ Y (C). If u ∈ X(C) then ((X+Y )(f))(u) ∈
X(D) for all maps D

f- C, which implies (by definition of universality) that
Y (D) = ∅ for all D; hence Y ∼= 0. Similarly, if u ∈ Y (C) then X ∼= 0.

4. Follows immediately from 3.3.2 and definition of E (X).

5.(a) If you’re having trouble with ‘only if’, make sure you understand the def-
inition of Monic(A); perhaps 2.3.3(a) will help. For ‘if’, write I for the
common image of m and m′; then since monic = injective in Set, there is a
bijection j : X - I defined by j(x) = m(x), and similarly j′ : X ′ - I;
show (j′)−1 ◦ j is an isomorphism from m to m′.

(b) Subgroups, subrings, vector subspaces. In Top, a subobject is a subset
equipped with a topology containing the subspace topology. (If you’d prefer
the answer to be ‘subspaces’, take regular subobjects instead: equivalence
classes of regular monics. See Sheet 7, q.5(c).)

Sheet 10: Interaction of (co)limits with adjunctions

1.(a) Bookwork.
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(b) Given A ∈ A, have to find left adjoint to HA : A - Set. For S ∈ Set and
B ∈ A, a map S - HA(B) is a family (A

fs- B)s∈S of maps in A, or
equivalently a map

∑
s∈S A

- B. So the left adjoint is S 7−→
∑

s∈S A.
We usually write

∑
s∈S A as S × A and call it a copower of A; compare

powers (page 70). To explain the notation, if 2 is a two-element set then
2× A = A+ A, and similarly for other numbers. Also, if A = Set then the
copower S ×A is the same as the product S ×A.

2.(a) Bookwork.

(b) U does not preserve initial objects.

(c) I does not preserve the sum 1 + 1.
C does not preserve the equalizer of the two distinct functors 1 -

- 2, where
2 = (• - •).

3. Bookwork.

4.(a) Straight application of definitions of pullback and monic.

(b) Just need to confirm that if X1
m1- A and X2

m2- A are monics rep-

resenting same subobject of A then the monics X ′
1

m′
1- A and X ′

2

m′
2-

A obtained by pulling back along f represent same subobject of A′. Can
do this directly or prove a more general—and morally obvious—statement
about isomorphic cones having isomorphic limits.

(c) Just need to check that Sub preserves identities (easy) and composition (di-
rect from hint in question).

(d) Saw in Sheet 9, q.5 that in Set, subobjects are subsets. Saw in 4.1.16 that
inverse images of subsets correspond to pullbacks of inclusions. From this,
deduce that Sub ∼= P, where P is as in 3.1.10(b). But saw there that P ∼= H2,
so Sub ∼= H2.
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