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Back in 2007. . .
A talk in Nice about the Euler characteristic of a category led to this. . .

Since 2007, progress has been made in two directions:

• Euler characteristic for enriched categories, renamed as magnitude

• magnitude homology of enriched categories, categorifying magnitude.
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1. Magnitude, generally



Size
For many types of mathematical object, there is a canonical notion of size.

• Sets have cardinality. It satisfies

|A ∪ B| = |A|+ |B| − |A ∩ B|
|A× B| = |A| × |B| .

• Subsets of Rn have volume. It satisfies

vol(A ∪ B) = vol(A) + vol(B)− vol(A ∩ B)

vol(A× B) = vol(A)× vol(B).

• Topological spaces have Euler characteristic. It satisfies

χ(A ∪ B) = χ(A) + χ(B)− χ(A ∩ B) (under hypotheses)

χ(A× B) = χ(A)× χ(B).

Challenge Find a general definition of ‘size’, including these and other
examples.

One answer The magnitude of an enriched category.



Enriched categories
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Usually, our enriched categories will have only finitely many objects.



The magnitude of an enriched category
Let V = (V ,⊗, I ) be a monoidal category.

Suppose we have a notion of the size of each object of V .

Formally: suppose we have a semiring k and a monoid homomorphism

| · | : ((ob V )/∼=,⊗, I )→ (k, ·, 1).

Let A be a V -enriched category with finitely many objects.

There is an ob A× ob A matrix ZA with (a, b)-entry

ZA(a, b) = |A(a, b)| .

Definition When Z−1
A exists, the magnitude of A is

|A| =
∑
a,b∈A

Z−1
A (a, b) ∈ k .

(The definition can be extended to many cases where Z−1
A does not exist.)



The magnitude of an ordinary category

Take V = FinSet and define | · | : ob (FinSet)→ Q to be cardinality.

We obtain a definition of the magnitude (or Euler characteristic) of a finite
category. It is a rational number.

Example Let A =
(
•⇒ •

)
.

Then

ZA =

(
1 2
0 1

)
, so Z−1

A =

(
1 −2
0 1

)
and so

|A| = 1 + (−2) + 0 + 1 = 0.

Generally, let A be a finite category, with classifying space BA.

Theorem |A| = χ(BA), under finiteness conditions ensuring that χ(BA) is
well-defined.



The magnitude of a poset

The magnitude of a poset is better known as its Euler characteristic (1960s).

Example Let M be a triangulated manifold.

Write A for the poset of simplices in the triangulation, ordered by inclusion.

Then
|A| = χ(M).



The magnitude of a linear category

. . . is related to the Euler form in commutative algebra.



Metric spaces

A metric space can be seen as an enriched category, as follows.

View the ordered set ([0,∞),≥) as a monoidal category under +.

A metric space can be seen as a category enriched in [0,∞):

• the objects are the points

• the hom-objects are the distances d(a, b) ∈ [0,∞)

• composition is the triangle inequality d(a, b) + d(b, c) ≥ d(a, c),

etc.



The magnitude of a metric space

Metric spaces are categories enriched in [0,∞).

But to talk about the magnitude of a finite metric space, we need a ‘size
function’: a monoid homomorphism

| · | : ([0,∞),+, 0)→ (k, ·, 1)

for some semiring k .

Take k = R.

Essentially the only choice of | · | is |x | = C x for some constant C ≥ 0.

Up to rescaling of the metric, the only nontrivial possibilities are C = e±1.

Take C = e−1, so that |x | = e−x .

Outcome: we get a definition of the magnitude of a finite metric space. It’s
a real number.

But what does it mean?



2. The magnitude of a
metric space

— done explicitly —



The magnitude of a finite metric space

Let A be a finite metric space.

Write ZA for the A× A matrix with entries

ZA(a, b) = e−d(a,b)

(a, b ∈ A).

If ZA is invertible (which it is if A ⊆ Rn), the magnitude of A is

|A| =
∑
a,b∈A

Z−1
A (a, b) ∈ R

—the sum of all the entries of the inverse matrix of ZA.



First examples

• |∅| = 0.

• |•| = 1.

•
∣∣•← `→•

∣∣ = sum of entries of

(
e−0 e−`

e−` e−0

)−1

=
2

1 + e−`

0

1

2

`

• If d(a, b) =∞ for all a 6= b then |A| = cardinality(A).

Slogan: Magnitude is the ‘effective number of points’.



Example: a 3-point space (Simon Willerton)
Take the 3-point space

A =

• When t is small, A looks like a 1-point space.
• When t is moderate, A looks like a 2-point space.
• When t is large, A looks like a 3-point space.

•

• •

•
•

•

Indeed, the magnitude of A as a function of t is:



Magnitude functions

Magnitude assigns to each metric space not just a number, but a function.

For t > 0, write tA for A scaled up by a factor of t.

The magnitude function of a metric space A is the partially-defined function

(0,∞) → R
t 7→ |tA| .

E.g.: the magnitude function of A = (•← `→•) is

0

1

2
|tA|

t

2/(1 + e−`t)

A magnitude function has only finitely many singularities (none if A ⊆ Rn).

It is increasing for t � 0, and lim
t→∞

|tA| = cardinality(A).



The magnitude of a compact metric space

A metric space M is positive definite if for every finite B ⊆ M, the matrix
ZB is positive definite.

E.g.: Rn with Euclidean or `1 metric; sphere with geodesic metric; hyperbolic
space; any ultrametric space.

Theorem (Mark Meckes)
All sensible ways of extending the definition of magnitude
from finite metric spaces to compact positive definite spaces
are equivalent.

For a compact positive definite space X ,

|A| = sup{|B| : finite B ⊆ A}.



Magnitude encodes geometric information

Theorem (Juan-Antonio Barceló & Tony Carbery)
For compact A ⊆ Rn,

voln(A) = Cn lim
t→∞

|tA|
tn

where Cn is a known constant.

Theorem (Heiko Gimperlein & Magnus Goffeng)
Assume n is odd. For ‘nice’ compact A ⊆ Rn,

|tA| = cn voln(A)tn + cn−1 voln−1(∂A)tn−1 + O(tn−2)

as t →∞, where cn and cn−1 are known constants.

The magnitude function knows the volume and the
surface area.



Magnitude encodes geometric information
Magnitude satisfies an asymptotic inclusion-exclusion principle:

Theorem (Gimperlein & Goffeng)
Assume n is odd. Let A,B ⊆ Rn with A, B and A ∩ B nice. Then

|t(A ∪ B)|+ |t(A ∩ B)| − |tA| − |tB| → 0

as t →∞.

But not all results are asymptotic! Write Bn for the unit ball in Rn.

Theorem (Barceló & Carbery; Willerton)
Assume n is odd. Then |tBn| is a known rational function of t over Z.

Examples

•
∣∣tB1

∣∣ = |[−t, t]| = 1 + t

•
∣∣tB3

∣∣ = 1 + 2t + t2 + 1
3! t

3

•
∣∣tB5

∣∣ =
24 + 72t2 + 35t3 + 9t4 + t5

8(3 + t)
+

t5

5!
.



A different point of view
Write q = e−1 and treat it as a formal symbol.

A formal calculation shows that the magnitude of a finite metric space A is∑
`∈[0,∞)

[∑
n∈N

(−1)n
∣∣{(a0, . . . , an) : a0 6= · · · 6= an, d(a0, . . . , an) = `

}∣∣] q`,
where d(a0, . . . , an) means d(a0, a1) + · · ·+ d(an−1, an).

Treat this as a formal expression, like a power series but with real exponents.

“Well-behaved” expressions
∑

`∈[0,∞) c`q
` (c` ∈ Z) are called Novikov series,

and form a ring.

The ring of Novikov series is a subset of Z[0,∞) (consider ` 7→ c`).

E.g. q` corresponds to δ` : [0,∞)→ Z, where

δ`(k) =

{
1 if k = `

0 otherwise.

Multiplication of Novikov series corresponds to convolution of functions
[0,∞)→ Z.



3. Magnitude homology, generally

Richard Hepworth and Simon Willerton,
Categorifying the magnitude of a graph, 2017.

Tom Leinster and Michael Shulman, Magnitude
homology of enriched categories and metric spaces,
2021.



Two perspectives on Euler characteristic

So far: Euler characteristic has been treated as an analogue of cardinality.

Alternatively: Given any homology theory H∗ of any kind of object X ,
we can define

χ(X ) =
∞∑
n=0

(−1)n rankHn(X ).

• χ(X ) is a number

• H∗(X ) is an algebraic structure, and functorial in X .

That is, H∗ is a categorification of χ.

So, homology categorifies Euler characteristic.



Warm-up: homology of an ordinary category

Any ordinary category A gives rise to a chain complex C∗(A):

Cn(A) =
∐

a0,...,an∈A
Z ·
(
A(a0, a1)× · · · × A(an−1, an)

)
where Z · − : Set→ Ab is the free abelian group functor.

The homology H∗(A) of A is the homology of C∗(A).

Theorem H∗(A) = H∗(BA).

Key features of the definition of homology of a category:

• (Set,×, 1) is a monoidal category, whose unit object 1 is terminal.

• Ab is both abelian and monoidal.

• Z · − is a strong monoidal functor.



The magnitude homology of an enriched category: setup

Imitating the unenriched case, the context for magnitude homology is:

• a monoidal category V whose unit object is terminal (generalizing Set)

• a monoidal abelian category K (generalizing Ab)

• a strong monoidal functor Σ: V → K (generalizing Z · −).

Analogy This is a categorification of the context for magnitude, which was:

• a monoidal category V
• a semiring k

• a monoid homomorphism (ob V )/∼=→ k .



The magnitude homology of an enriched category:
definition

We start with:

• a monoidal category V whose unit object is terminal

• a monoidal abelian category K
• a strong monoidal functor Σ: V → K .

Let A be a V -category.

Define a chain complex CΣ
∗ (A) = C∗(A) by

Cn(A) =
∐

a0,...,an

Σ
(
A(a0, a1)⊗ · · · ⊗ A(an−1, an)

)
.

It has differential ∂ =
∑n

i=0(−1)i∂i , where ∂i either composes at ai or
forgets the first/last factor.

Definition The magnitude homology MH∗(A) of A is the homology of
C∗(A).

Magnitude homology categorifies magnitude. . . we’ll come back to this.



4. The magnitude homology
of a metric space



Setup
We will define the magnitude homology of a metric space, treating it as a
category enriched in the monoidal category ([0,∞),+, 0).

We need a monoidal abelian category K and a strong monoidal functor
Σ: [0,∞)→ K .

What should we take K and Σ to be?

Recall: for the magnitude of metric spaces, we can view the size function | · |
as taking values in a ring ⊆ Z[0,∞) of formal expressions

∑
`∈[0,∞) c`q

`.

Then |`| = δ` : [0,∞)→ Z and multiplication is by convolution.

Categorifying this idea, take K = Ab[0,∞) with convolution as ⊗, and define

Σ: [0,∞) → Ab[0,∞)

` 7→ δ`

where

δ`(k) =

{
Z if k = `

0 otherwise
(k , ` ∈ [0,∞)).



The magnitude homology of a metric space, explicitly
Let A be a metric space. Use the coefficients functor Σ above.

The chain complex C∗(A) in Ab[0,∞) is given by

C `
n(A) = Z · {(a0, . . . , an) : d(a0, . . . , an) = `}

(n ∈ N, ` ∈ [0,∞)).

Equivalently, we can replace C∗(A) by a normalized version, Ĉ∗(A):

Ĉ `
n(A) = Z · {(a0, . . . , an) : a0 6= · · · 6= an, d(a0, . . . , an) = `}.

The differential ∂ : Ĉn(A)→ Ĉn−1(A) is ∂ =
∑

0<i<n(−1)i∂i , where

∂i (a0, . . . , an) =

{
(a0, . . . , ai−1, ai+1, . . . , an) if ai is between ai−1 and ai+1

0 otherwise.

Then MH∗(A) is the homology of the chain complex Ĉ∗(A) in Ab[0,∞).



Magnitude homology is graded!

Magnitude homology of a metric space is a [0,∞)-graded homology theory.

That is, when A is a metric space and n is a natural number, MHn(A) is not
just an abelian group, but an object of Ab[0,∞) — a family(

MH`
n(A)

)
`∈[0,∞)

of abelian groups.

(Compare Khovanov homology. . . )



Sample results
• 1st magnitude homology detects convexity:

Theorem Let A be a closed subset of Rn. Then

A is convex ⇐⇒ MH`
1(A) = 0 for all ` > 0.

• Work of Kyonori Gomi substantiates the slogan:

The more geodesics are unique, the more magnitude homology is trivial.

• Ordinary homology detects the existence of holes.

Magnitude homology detects the size of holes.

Example (Ryuki Kaneta & Masahiko Yoshinaga) Let r > 0 and

A = {x ∈ RN : ‖x‖ ≥ r}.

Then H`
n(A) = 0 ⇐⇒ `/n > 2r .



Magnitude homology categorifies magnitude, in finite case
That is, its Euler characteristic is magnitude, in the following sense.

Since magnitude homology is a [0,∞)-graded theory, there is one Euler
characteristic for each ` ∈ [0,∞):

χ`(A) =
∑
n∈N

(−1)n rank(H`
n(A)).

Then

χ`(A) =
∑
n∈N

(−1)n rank(Ĉ `
n(A))

=
∑
n∈N

(−1)n
∣∣{(a0, . . . , an) : a0 6= · · · 6= an, d(a0, . . . , an) = `

}∣∣.
Put all the χ`(A)s into a single expression: χ(A) =

∑
`∈[0,∞) χ`(A)q`. Then

χ(A) =
∑

`∈[0,∞)

∑
n∈N

(−1)n |{(a0, . . . , an) : . . . }| q` = |A| ,

where the last step follows from earlier. So χ(A) = |A|.



Some bad news — and the big open question

For metric spaces, magnitude homology categorifies magnitude. . . but only
when the space is finite.

For infinite spaces, something goes wrong.

Theorem (Kaneta and Yoshinaga) Whenever A ⊆ RN is convex, MH`
n(A) = 0

for all n, ` > 0.

Since different convex sets have different magnitudes, it seems impossible to
recover magnitude from magnitude homology as its Euler characteristic (or
in any other way).

Question How can the definitions be fixed so that magnitude homology
categorifies magnitude for infinite spaces too?


