Studying the Shape of Data Using Topology

BY MICHAEL LESNICK

he story of the “data explosion” is by now a familiar

one: throughout science, engineering, commerce,
and government, we are collecting and storing data at an
ever-increasing rate. We can hardly read the news or turn
on a computer without encountering reminders of the
ubiquity of big data sets in the many corners of our mod-
ern world and the important implications of this for our
lives and society.

Our data often encodes extremely valuable informa-
tion, but is typically large, noisy, and complex, so that
extracting useful information from the data can be a real
challenge. I am one of several researchers who worked at
the Institute this year in a relatively new and still devel-
oping branch of statistics called topological data analysis
(TDA), which seeks to address aspects of this challenge.

In the last fifteen years, there has been a surge of
interest and activity in TDA, yielding not only practical
new tools for studying data, but also some pleasant
mathematical surprises. There have been applications of
TDA to several areas of science and engineering, including
oncology, astronomy, neuroscience, image processing,
and biophyics.

The basic goal of TDA is to apply topology, one of
the major branches of mathematics, to develop tools for
studying geometric features of data. In what follows, I'll
make clear what we mean by “geometric features of
data,” explain what topology is, and discuss how we use
topology to study geometric features of data. To finish,
I'll describe one application of TDA to oncology, where
insight into the geometric features of data offered by
TDA led researchers to the discovery of a new subtype
of breast cancer.

In this article, by “data” I simply mean a finite set of
points in space. In general, the space in which our points
lie can have many dimensions, but for now the reader
may think of the points as sitting in two or three dimen-
sions. For a concrete example, each point in a data set in
3-D space might correspond to a tumor in a cancer study,
and the x, vy, and z coordinates of the point might each
correspond to the level of expression of a different gene
in a tissue sample of the tumor.

What, then, do I mean by “geometric features of
data?” Rather than offer a formal definition, I'll give
three representative examples of the sorts of geometric
features of data we study in TDA. I'll take the data in
each of the examples to lie in 2-D space.
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Figure 1: A data set with three clusters

As a first example, consider the data set in Figure 1.
We see that the data breaks up into three distinct clus-
ters. Clusters like these are a first type of geometric fea-
ture of data we study in TDA. We'd like to count the
number of distinct clusters in the data and partition the
data into its clusters. We’d like to be able to do this even
when the cluster structure of the data is corrupted by
noise, as in Figure 2.

The problem of detecting clusters in data is in fact an
old and well-studied problem in statistics and computer
science, but TDA has recently introduced some new
ideas and tools to the problem.!
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Figure 2: A data set with three noisy clusters

A second kind of geometric feature of data we study
in topological data analysis is a “loop.” Figure 3 gives
an example of a loop in a data set. Again, we’d like to
be able to detect a loop in a data set even when it is
corrupted by noise, as in Figure 4.
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Figure 4: A data set with a noisy loop

A third kind of geometric feature we study in TDA is
a “tendril.” Figure 5 depicts a data set with three tendrils
emanating from a central core. In a data set with this
sort of structure, we'd like to detect the presence of the
tendrils, count the tendrils, and partition the data into
its different tendrils.

The objective of research in TDA is to develop tools
to detect and visualize these kinds of geometric features,
and to develop methodology for quantifying the statisti-
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Figure 5: A data set with three tendrils emanating from
a central core

cal significance of such features in randomly sampled
data. Because much of the data arising in scientific
applications lives in high-dimensional spaces, the focus
is on developing tools suitable for studying geometric
features in high-dimensional data.
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Why, though, should we be interested in studying
such features of data in the first place? The key premise
behind this line of research is that insight into the shape of
scientifically relevant data has a good chance of giving insight
into the science itself.

Experience has shown that this premise is a reason-
able one. Cluster analysis is used as a matter of course
throughout the experimental sciences to extract scien-
tific information from data;? the study of loops and their
higher-dimensional analogues has recently offered
insight into questions in biophysics® and natural-scene
statistics;* and, as I will describe in the last section of
this article, the study of tendrils has recently offered
insight into oncology.®

As noted above, TDA studies the geometric features of
data using topology. Topology is the study of the proper-
ties of a geometric object that are preserved when we
bend, twist, stretch, and otherwise deform the object
without tearing it. The primary example of such a prop-
erty is the presence of holes in the object; as such, topol-
ogy is concerned largely with the formal study of holes.
(Homotopy theory, discussed in the article about the
Institute’s univalent foundations program on page 1, is a
central part of topology. However, homotopy theory also
admits an axiomatic formulation that abstracts away
from the topological setting and provides a framework
for the adaption of topological ideas to settings outside
of topology.)

To anyone who’s ever eaten a slice of swiss cheese or
a doughnut, the notion of a hole in a geometric object is
a familiar and intuitive one; the idea that the number of
holes in a geometric object doesn’t change when we
bend, twist, and stretch the object is similarly intuitive.

In topology, we distinguish between several different
kinds of holes. A hole at the center of a donut is an
example of a first kind of hole; the hollow space inside an
inflated, tied ballon is an example of a second kind of
hole. In geometric objects in more than three dimen-
sions, we may also encounter other kinds of holes that
cannot appear in objects in our three-dimensional world.

As intuitive as the notion of a hole is, there is quite a
lot to say about holes, mathematically speaking. In the
last century, topologists have put great effort into the
study of holes, and have developed a rich theory with
fundamental connections to most other areas of modern
mathematics. One feature of this theory is a well-devel-
oped set of formal tools for computing the number of
holes of different kinds in a geometric object. TDA aims
to put this set of tools to use in the study of data. Com-
putations of the number of holes in a geometric object
can be done automatically on a computer, even when
the object lives in a high-dimensional space and cannot
be visualized directly.

Besides the number of holes in an object, another
(very simple) property of a geometric object that is
preserved under bending, twisting, and stretching is the
number of components (i.e. separate pieces) making up
the object. For example, a plus sign + is made up of
one component, an equals sign = is made up of two
components, and a division sign + is made up of three
components. Deforming any of these symbols without
tearing does not change the number of components in
the symbol. We regard the problem of computing the
number of components that make up a geometric object
as part of topology. In fact, in a formal sense, this prob-
lem turns out to be closely related to the problem of
computing the number of holes in a geometric object,
and topologists think of these two problems as two sides
of the same coin.

How do we use topology to study the geometric features
of data? Without pretending to give a full answer to this
question, I'll mention some of the basic ideas. To begin,

(Continued on page 11)



SHAPE OF DATA (Continued from page 10)

I'll describe a primitive strategy for studying data using
topology that, while unsatisfactory for most applications,
is the starting point for what is done in practice.

As mentioned above, topology offers tools for comput-
ing numbers of holes and components in a geometric
object; we would like to apply these tools to our study of
data. However, a data set X of n points in space has n com-
ponents and no holes at all, so directly computing the
numbers of holes and components of X will not tell us
anything interesting about the geometric features of X.

To study X using topology then, we will consider not
the topological properties of X directly, but rather the
topological properties of a “thickening” of X.

I'll explain this in detail. Assume that X is a finite set
of points in the plane (2-D space). Let 0 be a positive
number, and let T(X, d) be the set of all points in the
plane within distance d from some point in X; we think
of T(X, ) as a “thickening” of the data set X.

For example, let X; be the data set of Figure 1. Figure
6 shows T(X;, ;) in red for some choice of positive
number d,, together with the original data X in black.
For a second example, let X, be the data set of Figure 3.
Figure 7 shows T(X,, d,) in red, for some choice of pos-
itive number 9,, together with X, in black. For especial-
ly nice data sets X and good choices of 9, the clusters in
X will correspond to components of T(X, d) and the
loops in X will correspond to holes in T(X, d). For
instance, in Figure 6 the clusters in X; correspond to the
components of T(X}, d;), and in Figure 7 the loop in X,
corresponds to the hole in T(X,, 6,).
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Figure 6: T(X,,0,), for some choice of §,, is shown in red;
X is shown in black.
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Figure 7: T(X,,0,), for some choice of 8,, is shown in red;
X, is shown in black.

Thus, for nice data sets X, we can get insight into the
geometric features of X by studying the topological prop-
erties of T(X, d). The same strategy also works for study-
ing the geometric features of a data set sitting in a
high-dimensional space, in which case the data cannot
be visualized directly.

Most data sets we encounter in practice are not as
nice as those of Figures 1 and 3, and though the primi-
tive TDA strategy we have described does extend to
data in high-dimensional spaces, for typical data sets X
in any dimension, the strategy has several critical short-
comings. For one, the topological properties of T(X, d)
can depend in a very sensitive way on the choice of 9,
and a priori it is not clear what the correct choice of d

should be, or if a correct choice of d exists at all, in any
sense. Also, the topological properties of T(X, d) are not
at all robust to noise in X, so that this strategy will not
work for studying the geometric features of noisy data
sets, such as those in Figures 2 and 4. Moreover, this
approach to TDA is not good at distinguishing small
geometric features in the data from large ones.

Thus, for dealing with most data one encounters in
practice, more sophisticated variants of this basic strate-
gy are required. Much of the recent research in TDA has
been focused on developing such variants. One central
idea in this direction is that it is much better to consid-
er at once the topological properties of the entire family
of objects T(X, ) as O varies than it is to consider the
topological properties of T(X, d) for a single choice of d.
This is the idea behind persistent homology, a key techni-
cal tool in TDA.

The problem of studying tendrils in data is closely
related to the problem of studying clusters. To see this,
consider Figure 8, where the points in the central core of
the data in Figure 5 are shown in green. If we were to
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Figure 8: The central core of the data set of Figure 5

have a principled way of identifying the central core of
the data, then by removing that central core, we would
obtain a data set with three distinct clusters, as in Figure
9, where each cluster corresponds to a tendril in the
original data set. It is natural to expect, then, that some
of the topological tools that are useful for studying clus-
ters can be extended to the study’ of tendrils, and in fact
this is the case.

.
®
:.: o~l
o. .o :..
... .: °°
@ (3
[ ]
‘ [ ]
%
o®®
o

Figure 9: When we remove the central core of the data set of
Figure 5, we get a data set with three clusters.

In work published in 2011 by Monica Nicolau, Gunnar
Carlsson, and Arnold Levine (Professor Emeritus in the
School of Natural Sciences),’ insight offered by TDA
into the geometric features of data led the authors to the
discovery of a new subtype of breast cancer.

The authors studied a data set describing the gene
expression profiles of 295 breast cancer tumors, each from
a unique patient. The data set consists of 295 points sitting
in a 24,479-dimensional space: each point corresponds to
one tumor and, roughly speaking, each of the 24,479 coor-
dinates of the point specifies the level of expression of one
gene in a tissue sample of the corresponding tumor.

To begin their analysis of the data, the researchers
mapped the data from the 24,479-dimensional space into a
262-dimensional space in a way that preserved aspects of
the geometric structure of the data relevant to cancer, while

11

eliminating aspects
of that structure not
relevant to cancer.

The researchers
then studied the
geometric features
of the data in 262-
dimensional space using a TDA tool called Mapper.® They
discovered a three-tendril structure in the data loosely
analogous to that in the data of Figure 5. In addition, they
found that one of these tendrils decomposes further, in a
sense, into three clusters. One of these three clusters,
they observed, corresponds to a distinct subtype of breast
cancer tumor that had hitherto not been identified. This
subtype, which the authors named c-MYB*, comprises 7.5
percent of the data set (22 tumors). Tumors belonging to
the c-MYB* subtype are genetically quite different than
normal tissue, yet patients whose tumors belonged to this
subtype had excellent outcomes: their cancers never
metastasized, and their survival rate was 100 percent.

A standard approach to the classification of breast
cancers, based on clustering, divides breast cancers into
five groups. The c-MYB* subtype does not fit neatly into
this classification scheme: the ¢-MYB* tumors divide
among three of the five groups. The results of Nicolau,
Carlsson, and Levine thus suggest a nuance to the
taxonomy of breast cancer not accounted for in the
standard classification model.

These results illustrate how the tools of TDA can be
useful in helping researchers tease out some of the sci-
entific information encoded in their high-dimensional
data. They are just one of a growing number of examples
where TDA has facilitated the discovery of interesting
scientific information from data. Still, in spite of good
progress in the field over the last several years, there’s
still much to be done in terms of fleshing out the math-
ematical and statistical foundations of TDA, and in
terms of algorithm and software development. The
shared hope among researchers in the field is that by
advancing the theory and tools of TDA, we can lay the
groundwork for the discovery of new applications of
TDA to the sciences.

For further details about TDA, see any of the several
surveys available on TDA,™ or the book.'® M
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