‘“Think how primitive a machine your Per-
sonal Computer is, yet it completely out-
wits you on simple mathematical problems
like deciding if a ten digit number is an exact
square.

These computers are really very stupid things,’
she said.

—David Ruelle, Conversations on mathemat-
ics with a visitor from outer space, Math-
ematics: Frontiers and Perspectives, AMS,
2000.



In general we seem to make up for inadequa-
cies of the human mind [...] by a search for
‘order’ or ‘meaning’ often pushed to absurd
limits. T he unceasing, obsessional search for

regularities is certainly fundamental to hu-
man intelligence.

—David Ruelle



The use of geometric intuition has no logical
necessity in mathematics [...]. If one had to
construct a mathematical brain, one would
probably use resources more efficiently than
creating a visual system. But the system is
there already, it is used to great advantage by
human mathematicians, and it gives a special
flavor to human mathematics.

—David Ruelle



Ahlifors told me that in his youth, his the-
sis director [...] had made him read the
memoirs of Fatou and Julia [...]. Ahilfors
told me that at the time, they struck him
as ‘the pits of complex analysis.” Further, he
said that he only understood what Fatou and
Julia had been getting at when he saw the
pictures Mandelbrot and I were showing.

Today, it is hard to imagine how incompre-
hensible the suject must have been before
computer pictures (and even harder to imag-
ine how Fatou and Julia managed to write
their papers).

—John Hubbard



Mathematics is a part of physics.
—V.1I. Arnold

It is only possible to understand the com-
mutativity of multiplication by counting and
re-counting soldiers by ranks and files or by

calculating the area of a rectangle in the two
ways.

—V.1I. Arnold
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1
(1,-1,1,-1,1,-1,...)

= (1,1,0,0,0,0,...)



1
(1,-1,1,-1,1,-1,...)

= (1,1,0,0,0,0,...)

1
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Names like ‘Prone’ and ‘Supine’' correspond
[...] to only one of the many aspects of the
concept of cartesian and [...] cocartesian.

I am also against the habit [of naming] a new
mathematical concept with words that have
a precise meaning in everyday language (as
prone, supine, etc).

Precisely, I do not know what does it mean
exactly ‘Cartesian’ (has something to do with
Descartes ...), but I know precisely what is
a 'Cartesian arrow’ (in mathematics).

—Eduardo Dubuc



That Hermite was not used to thinking in the
concrete is certain. He had a kind of posi-
tive hatred for geometry and once curiously

reproached me with having made a geomet-
rical memoir.

Methods always seem to be born in his mind
in some mysterious way. In his lectures [...]
he liked to begin his argument by: ‘Let us
start from the identity...’ and here he was
writing a formula the accuracy of which was
certain, but whose origin in his brain and way
of discovery he did not explain and we could
not guess.

—Jacques Hadamard



duction

ain general theorems on Lie Algebras are covered, roughly the content
baki’s Chapter I.

ve added some results on free Lie algebras, which are useful, both
theory itself (Campbell-Hausdorff formula) and for applications to
groups.

of time prevented me from including the more precise theory of
ple Lie algebras (roots, weights, etc.); but, at least, I have given, as a
hapter, the typical case of sl,,.

ais part has been written with the help of F. Raggi and J. Tate. I want
nk them, and also Sue Golan, who did the typing for both parts.

Jean-Pierre Serre

rd, Fall 1964
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54 Introduction to Mathematical Philosophy (Russell)(ae

to another, the correlate of the one has the relation Q to the
correlate of the other, and vire versa. A figure will make this
clearer. Let x and y be two

X P y . . .

. - terms having the relation P.
Then there are to be two terms
z, w, such that x has the rela-
tion S to z, 4 has the relation
S to w, and z has the relation
: -> Q to w. If this happens with
’ Q “ every pair of terms such as x
and y, and if the converse happens with every pair of terms such
as z and w, it is clear that for every instance in which the relation
P holds there is a corresponding instance in which the relation
Q holds, and vice versa ; and this is what we desire to secure by
our definition. We can eliminate some redundancies in the
above sketch of a definition, by observing that, when the above
conditions are realised, the relation P is the same as the relative
product of S and Q and the converse of S, 7.e. the P-step from
x to y may be replaced by the succession of the S-step from
x to z, the Q-step from z to w, and the backward S-step from
w to y. Thus we may set up the following definitions :—

A relation S is said to be a * correlator” or an * ordinal
correlator ” of two relations P and Q if S is one-one, has the
field of Q for its converse domain, and is such that P is the
relative product of S and Q and the converse of S.

Two relations P and Q are said to be “ similar,” or to have
“likeness,” when there is at least one correlator of P and Q.

These definitions will be found to yield what we above decided
to be necessary.

It will be found that, when two relations are similar, they
share all properties which do not depend upon the actual terms
in their fields. For instance, if one implies diversity, so does
the other; if one is transitive, so is the other; if one is con-
nected, so is the other. Hence if one is serial, so is the other.
Again, if one is one-many or one-one, the other is one-many




R. GORDON, A. J. POWER, AND ROSS STREET

(TA1) (nonabelian 4-cocycle condition) for all (z,y,2,u,v) € T(s,t) x T(r,s) x T(q.r) X

T(p,q) x T(o0,p), the equation
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JOYAL AND STREET

W illustrated by the following diagram:
\ N

L m J L n ]

This can also be depicted as follows:

n m

m n

The picture for ¢, , = (c,,,) " is then as follows:

- n m

m n

Naturalness of ¢,, , is proved pictorially by the equality

a p

/ n
/ m

m n
;

for all xe®B,,, B B,. Axiom (B2) is proved pictorially by the equality




Wa = (188)(cp* A®1)(cy 4*01)(N81) : A——A ,
which is natural in those objects A which have duals; the inverse is given by
WA.I = (1@E)(].@CA"A_l)(l@CM‘-l)(T]Q].) tA—>A,
Using the geometry of braided tensor categories [2; Chapter 3], we can represent
Y, by the left-hand 3D diagram below. The other two diagrams are deformations,

and so give the same value y,,

P

This gives the following two formulas for y, which, of course, can also be
verified algebraically :

Wa = (€81)(ca 2*@1)(18c, 2 )(187) = (18€)(18cy 4 I(1®C 4* . )M@1).

The corresponding three diagrams for y,-1 are obtained from the above three by
changing all the crossings. We also have the formula

\VA-I = (1@8)(1®CA',A—1)(CM®1)(1@1]),
as represented by the following diagram which can be seen to be a deformation of
the other diagrams for 1.




(Lowdo)

3 CATEGORIFICATION 46

object in pAdj, namely B. Hence, by the universal property of the Eilenberg-
Moore completion, we get a Gray-functor A: EMp(K) — pAdj that preserves
Eilenberg-Moore objects. It is easy to see that A and A define an isomorphism
of Gray-categories. O

3.4 The walking pseudo ambijunction

An ambidextrous pseudoadjunction, or pseudo ambijunction for short, is a 2-
sided pseudoadjunction. This means that we have the additional 2-morphisms
Jilp=> RL and k: LR — 14 and the additional 3-morphisms

These 3-morphisms must satisfy the coherence conditions that the composite:

k—-l
U B . |

i equal to the composite:

Definition 23 The walking ambideztrous pseudoadjunction pAmbi is semistrict
F-category freely generated by a pseudo ambijunction.

We now define a pseudo Frobenius algebra by categorifying the relationship
between Frobenius algebras and adjunctions.

46
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Figure 2: Proof that pFrob satisfies the relations of the F,.
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We can now write a complete formula for j% in terms of graphs:

.1 ads
() = det? ___smh 2

NI

J adz
2

1 sinh 24z
= exp(; tr(log —az))
2

= exp(% tl‘(z b2n(ad z)Zn))

n=0

= exp() _ baawan(2))

1 1 T T 1 r r
e (E O ~ 550, L * 3538w zﬂxw )

Relation 3 (Single lasso). Let C be a circus with a single lasso and C’ be the same circus with a the
single lasso replaced by a double lasso whose two loops are parallel to the old single lasso. Then

2 Diag(C) = Diag(C").

(D)) )= f-o()

Froof.

The b, were defined in Equation 1.2. The wy, are as in Equation 1.3, with z placed on the legs.

21




( @o OS)

Die Graphen der Springer’schen Formel aufgefasst in Mor(9, {z,y, z}) erge-
ben

(5a) =(d-4)0O /\

und auch

(5b) =(d-4)O \/

wenn man sie als Elemente von Mor, ({z,¥, z},0) auffasst.

Kleben wir die linke Seite von (5a) mit der linken von (5b) und die beiden
rechten Seiten zusammen, finden wir

(6) = (d - 4)O (D = —d0(d — 1)0(d — 4)%.

Hier ist (d — 4)? als (d — 4)0(d — 4) zu verstehen ist. Die zweite Gleichung
folgt aus (3).

Wir zeichnen auch noch (5b) o v, was

()

ergibt.

Nun betrachten wir noch eine weitere Konsequenz von (R4), aus der wir
schliesslich und endlich die gewiinschte Identitit folgern kénnen. Wir bilden
den Graphen a o (yOv) o (IO(R4)C1) o (v'04%) 0 a.

+ =2 - -

Die beiden Graphen ganz links und die beiden Graphen ganz rechts sind iso-
morph. Also erhalten wir

® - - ’

nachdem wir durch 2 geteilt haben.

39




28 CARTER, RIEGER, AND SAITO

sl

FiG. 27. A double arc passes over a fold lin

06

FiG. 28. Removing redundant double points crossing the fold lines.
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F1G. 29. A triple point near a fold line.
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(Corter, Rieger, Sait)



2.3 Frobenius algebras and comultiplication 123

IKS

first step was to insert three new twist maps: the two maps %g just give
identity, and the third map, inserted just before @, is justified by commu-
sity. In step (2) we changed the order of the three rightmost twist maps,
ording to the ‘symmetric-group-relation’ — it is an instance of the naturality
he twist map. Equation (3) expressed another two instances of naturality,
time with respect to comultiplication and multiplication — the twist maps
he middle move outwards past comult and mult. Step (4) is the Frobenius
tion, and finally in (5) we used commutativity of the multiplication map
k again. O

30 Symmetric Frobenius algebras. If (A, B) is a Frobenius algebra then
can also picture the condition of being a symmetric one (that S satisfies the

e condition):

Tensor calculus (linear algebra in coordinates)

til now we have carefully avoided coordlnates In this subsection we will

1 4. 3o o laest 2aont Fre




(Jouge, Shreek, Vety)

. C(X,U), X ,uUn
X, U) ®" (X', U) > (X', U) ®' (X,U)
8 e o 0
XU e xX,U) . o)
x,u), X,U)
XU)® X'\ U) < (X, U @' (X, U)

commutes. This amounts to the following equality which, again, we leave to the reader.

We now turn our attention to the duality conditions. Commutativity of the triangle

1®'n
(U,X) > (U, X) @ (X, U) ® (U,X)
1 E®'1
(UX)

is proved by the following equality, and the other duality triangle is left to the reader.
18



{humanly-interesting provable statements}
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{provable statements}

N

{true statements}



{humanly-interesting humanly-provable statements}

N

{humanly-interesting provable statements}

M

{provable statements}

N

{true statements}
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Teaching ideals to students who have never
seen a hypocycloid is as ridiculous as teach-
ing addition of fractions to children who have
never cut (at least mentally) a cake or an ap-
ple into equal parts.

—V.1I. Arnold



Grothendieck changed the landscape of math-
ematics with a viewpoint that is ‘cosmically
general’, in the words of Hyman Bass [...].
This viewpoint has been so thoroughly ab-
sorbed into mathematics that nowadays it is
difficult for newcomers to imagine that the
field was not always this way.

—Allyn Jackson

¥igl



It is thus hard to exclude that some very in-
teresting results are inherently off limits to
the unaided human brain, and might only be-
come accessible when sufficiently intelligent
computers take over. As long, however, as
humans use their own brains to do mathe-
matics, some areas will be privileged.

—David Ruelle



136 4 Applications of generating functiong

Theorem 4.4.2. (The Pfaff-Saalschiitz identity)
(a+k)!(b+k)!(c-a—b+n——1—k)!
5; (k+ DY(n —k)!(c+ k)!
(a—Db-D(c—a-b-1lc—a+ n)(c—b+n)
(c—a—Dl(c—b—Dl(n+1)c+n) '

Proof: Take
(b+k)(a+k)

(c—b+n+1l)(c—a+n+1)

R(n,k) = —

A :
4
5
2
5
1
|

3

(Q\\C—)



Instead of wasting our time proving things
[...], let's dedicate our time to program-
ming the computer to prove things. [...]
Let's take pride, for some time, in our pro-
gramming skills. Soon, of course, comput-
ers will also beat us there, and once they
learn how to program, the race would be lost,
since they would be able to teach themselves
how to program to program. Then we would
be able to wean ourselves of our competi-
tive spirit, and do proofs (or programs) just
for fun, like working out, or doing crossword
puzzles.

—Doron Zeilberger



Our brains have evolved to get us out of the
rain, find where the berries are, and keep us
from getting killed. [...] I've had this image
of a creature, in another galaxy perhaps, a
child creature, and he's playing a game with
his friends. For a moment he’s distracted.
He just thinks about numbers, primes, a sim-
ple proof of the twin-prime conjecture, and
much more. Then he loses interest and re-
turns to his game.

—Ron Graham

33



If I were a medical man, I should prescribe
a holiday to any patient who considered his
work important.

—Bertrand Russell
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