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Why enrichement?

1 A general statement of intentions

a plausible categorical approach/interpetation of QM should have to consider quantum

mechanical systems as structured and even more importantly as varying objects

2 Enrichment is the narural environment to treat structured objects,
particularly so when these objects are categories of categories

• provides typing of the homobjects of the enriched categories.

• sustains the organisation of quantum mechanical systems into 2-
categories of their enriched ’abstraction’ (like the 2-category V-Cat of
the enriched categories and their functors or the bicategory V-Mod of
the V-enriched categories and the modules (also known as distributors
or profunctors) among them. We call these 2-categorical structures of
the enriched quantum mechanical systems as meta-systems.

• relates intrinsically to variation, as has been elaborated for instance in
a series of papers by Betti, Carboni, Street, Walters and others (see for
instance the Variation through enrichement or the Axiomatics of bicategories
of modules).

Why bicategorical enrichement?

Well, there are some very strong conceptual and formal reasons that en-
richement should be done not just on a monoidal category but rather on a
bicategory:

On the conceptual side:
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3 bicategories are profound in abstracting higher order structures

Carboni, Street and Sabadini in Bicategories of processes:
“...are bicategories rather than categories necessary for mod-
elling processes? While the objects of any abstract category
can be thought as states, and the arrows as processes, the
kind of processes discussed above have internal stucture
and can be compared. As these comparisons naturally
arise as 2-cells, the above question must be answered in the
affirmative. In most systems is the internal structure that is
interesting...Bicategories play an essential role in modelling
these structures.”

Lawvere also points out the distinctive role of bicategories
"Just as category theory can explicitly encapsulate much
more mathematics than pure set theory, while yet remaining
universal, so bicategories contain qualitatively more infor-
mation than pure categories. On the other hand, the notion
of tricategory (and even∞-category) which has been proved
useful in homotopy theory, has the striking feature that
even there the concept of bicategory is central, since it is the
structure relating any two levels" (emphasis in the original,
[1], p.181-182)

From a more formal point of view:

4 enrichement over a monoidal category:

• does not provide typing for objects in the enriched systems-categories

• does not suffice to represent variation when the varying structure is a
category itself, which is really what we would like at least the enriched
quantum mechanical systems to be. In particular sheaves-which we
regard as the canonical notion of a varying structure-are actually (equiv-
alent to) enriched categories over an appropriate bicategory even in the
case of varying sets. Their 2-dimensional generalisation in the context
of variable categories (eg. stacks) is naturally bicategorical.

• usually presupposes symmetry of the background category (which in
general is not the case for bicategories)

• is anyway a special case of bicategorical enrichement, since monoidal
categories are in fact (equivalent to) bicategories with a single object.
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Why beyond quantaloids?

5 What is a quantaloid?

A quantale Q is a (non-commutative) complete suplattice endowed with a
monoidal structure. A quantaloidQ is its bicategorical generalisation, namely:

a bicategory enriched in the monoidal category of complete suplattices SL, ie. a lo-
cally small cocomplete bicategory whose hom-categories are complete suplattices.a

aViewed as a monoidal category (ie. as a monoid object in SL) a quantale is a
single-object quantaloid.

6 Quantaloids have certain advantages:

• to be a Q-enriched category is a property of Q being a quantaloid rather
than extra structure upon it (see for instance [7]).

• this is reflected in the simplicity of the resulting calculus for distribu-
tors, idempotents etc. 2-cells are just inequalities and every diagram
involving 2-cells automatically commutes.

• quite explicit quantum mechanical connotations (recall that a quantale,
which is a key algebraic structure underlying QM, is the single-object
version of a quantaloid).

• sustain to certain extent a generalisation of the notion of sheaf both in
the commutative (ordinary set-valued sheaves are symmetric Q-enriched
categories for an appropriate quantaloid of relations) as well as the
much more involved non-commutative case (eg. sheaves over a proper
quantale) in the form of appropriately defined "Q-orders".

7 However they are also a bit restrictive:

For instance, Ross Street has long ago observed that:

"To be relevant to cohomology, enriched category theory must
be developed over a base bicategory which does not necessarily
have posetal homs." ([4], p.5)

Here we would like though to bring out a more intuitive aspect of the
restrictiveness of quantaloids observing that:

what appears to be advantageous in quantaloidal enrichement proves also

to be its limitation. The rather rudimentary posetal structure of Q which is,

moreover, inherited (or induced) at the level of the 2-categorical structures

built upon it (ie. what we have called the metasystems) has the effect that

only structures of limited complexity can be represented by means of such an

enrichement.
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The structure of homarrows

To make more comprehensible the restrictive nature of quantaloidal enriche-
ment we need to be a bit more explicit about the structure of bicategory-
enriched categories, especially in terms of their homarrows.

Consider, for instance, what does it really mean to enrich in a bicate-
gorical rather than a monoidal environment:

• objects in the enriched categories are typed by the objects of the bicate-
goryW.

• as a result, homobjects become homarrows, ie. objects in the hom-
categoriesW(U,V) determined by the corresponding types.

• the structure of the underlying categories and the relations between
homarrows become more involved.

8 Underlying category of an enriched category: the monoidal case

LetA be aV-category. We call its underlying categoryA0 the ordinary category
A0 = (V-Cat)(I,A) inV-Cat, where I is the unitV-category, namely theV-
category with a single object {∗} and with the single homobject I(∗, ∗) = I, ie.
the unit object of the monoidal structure ofV.

A V-functor A: I → A is then thought of as an object of A, while a natural

transformation between two such functors f : A⇒ B has the single component

f : I→A(A,B), ie. a map inA0.

This enables us effectively to speak indirectly as if it were about "mor-
phisms" in the enriched category, in the way that has been pointed out by
Kelly already in his seminal Bacic Concepts of Enriched Category Theory:

"Finally, since strictly speaking there are no "morphisms" in the

V-categoryA, it is harmless to call a map f : A→ B inA0 which is an

element f : I→A(A,B) ofA(A,B), a "map f : A→ B inA"" ([2], p.11)

It is then worth considering how much of this framework ‘carries’ over
in the context of bicategorical enrichement.

In particular, if A is a category enriched over the bicategory W, can we still

pick out ‘individual arrows’ (ie. elements) in the homarrow A(A,B) and how

exactly do homarrows relate with each other?

It is not hard to see that a key difference from the monoidal case is that
since the objects of the W-enriched categories are now typed by the objects of
W, we have to examine two distinct cases depending on whether the objects in the
enriched category A have the same or different types.
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9 the objects A,B are of the same type, eg. U

• in any bicategoryW, the hom-categoryW(U,U) is a monoidal category,
the monoidal structure being provided by the composition of 1-cells.

The unit category inW(U,U)-Cat, denoted as ∗U (or sometimes as Û), is
obviously theW(U,U)-category with a single-object {∗U} of type U and a
single homobject ∗U(∗, ∗) = 1U, ie. the identity 1-cell on U, which is the
unit of the monoidal categoryW(U,U).

A category AU enriched over W(U,U) is a category whose homobjects
are objects ofW(U,U), ie. endomorphisms on U. Just like in ordinary
monoidal enrichement, its objects will correspond toW(U,U)-functors
∗U → AU, whereas aW(U,U)-natural transformation between two such
functors A,B, ie. a 2-cell σ: A ⇒ B: ∗U → A inW(U,U)-Cat will have
a single component corresponding to a global element of the homobject
AU(A,B).

• This category can also be seen, however, as aW-category, whose objects
are all of the same type U, while its homarrows, being endomorphisms
on U are just 1-cells in the bicategoryW. It is the category of the objects
of A of type U.

It seems that in the case of bicategorical enrichement, we cannot define an
underlying category for aW-category A as a whole but rather only for the
categories AU for each type U. In the context of such a category and its
underlying category (AU)0, we may consider individual ‘morphisms’ of
the homarrow A(A,B) to be the 2-cells σ: 1U ⇒ A(A,B) inW.

Recall that a category A enriched over the bicategoryW is defined as:

• For each object U in W, a set AU of objects over or of type U. We write
U = tA to denote that the object A ∈ A is of type U.

• for objects A,B over U,V respectively, a 1-cell A(B,A): U→ V inW

• for objects A,B,C over U,V,W respectively, identity and composability
2-cells jA and µ inW defined by:

U U

1U

��

A(A,A)

DD
jA

��
W

V

U

A(B,A)

FF

A(C,B)

��1
11

11
11

A(C,A)
//

µ

��

and satisfying appropriate axioms for the left and right identities as well
as associativity.
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10 C is an object of a different type, eg. V

Suppose we are given objects A,B in A with tA = tB = U and C with tC = V , U.
Let us call a homarrow determined by two objects in A of different type a mixed
homarrow. It is not difficult to see that we cannot directly ‘identify’ morphisms
in a mixed homarrow like A(C,A), simply because there can be no W-natural
transformation σ: C ⇒ A between theW-functors C: ∗V → A and A: ∗U → A
picking out the objects C and A respectively. These functors act now on different
W-categories.
However, we can still define (for instance as in Street’s [4], p.7) what we may
call comparisona 2-cells A(C, f ): A(C,A)⇒ A(C,B) (and dually A( f ,C): A(B,C)⇒
A(A,C)) corresponding to the composites: µ • (A(C,A) ◦ f ) and µ • ( f ◦A(B,C))
and given, eg. for A(C, f ), diagramatically byb:

U U

1U

��

A(A,B)
//

f��
U V

A(C,A)

��

A(C,A)
//

id��
U V

A(C,B)

GG

µ

��

= U V

A(C,A)

��

A(C,B)

FF
A(C, f )

��

athe term comparison is used to put an emphasis on the specific case when such
2-cells ‘compare’ mixed type homarrows, although the definition holds of course for
the objects A,B,C being of any type.

bNotice that by abuse of notation we identify A(C,A) with the identity 2-cell on itself
idA(C,A). We also denote by • the vertical and by ◦ the horizontal composition of 2-cells.

From a more conceptual standpoint

Let us see what these formalities may imply for a perspective bicategorical
interpetation/approach to QM. A declaration is appropriate here:

11 Objectives of BiQM

Bicategorical QM intends to provide mainly an abstraction for:

• quantum mechanical systems as enriched categories unfolded in various
levels of structural complexity (features which reflect the inherently
implicative and contextual nature of quantum mechanical processes)

• the distinctive role of measurement processes and observables

• the non-trivial nature of composite quantum mechanical systems (ie.
quantum mechanical entaglement)

A point of departure towards the elaboration of the formal framework of BiQM
seems to be Ross Street’s work on Cosmoi, appropriately adapted to notions of

metasystems of enriched/variable quantum mechanical systems.
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12 So what is restrictive in quantaloidal enrichement after all?

• A basic intuition in our approach is that a homarrow A(A,B) can be
interpeted as representing a collective transition amplitude for the cor-
responding processes f : A → B in the enriched system A. This is a
generalisation of the quite standard view of homsets as sets of paths be-
tween the domain and codomain objects. More abstractly, a homarrow
represents a higher order or implicated process, which enfolds the collection
of processes A→ B in A to a single meta-transition in the hom-category
W(U,V).

• For a generic bicategoryW, our analysis suggests that (when tA = tB =
U) the more the 2-cells f : 1U ⇒ A(A,B) in the underlying hom-category
W(U,U), the more the individual morphisms that can be ‘picked out’ or
‘identified’ in the collective transition A(A,B) and hence so much the
more the comparison 2-cells A(C, f ) amongst (mixed type) homarrows,
since the latter are in fact contextualised or induced by the former.

• If W is a quantaloid 2-cells are expressed as inequalities and there-
fore there can be at most one ‘identifiable’ morphism f : B → A in the
homarrow A(A,B) just in case when 1U ≤ A(A,B), and consequently at
most one comparison 2-cell A(C, f ): A(C,A)⇒ A(C,B) precisely when the
inequality A(C,A) ≤ A(C,B) holds.

• If the interpetation of a homarrow as a transition amplitude seems
quite abstract in the setting of a generic bicategory, it looks almost self-
suggestive when W is a quantaloid. The suplattice structure of the
hom-categories indicates us to take a further step and interpet homar-
rows not just as abstract transition amplitudes but in fact as probabilities for
the occurence of transitions f : A→ B, naturally ordered by means of the
partial order of the 1-cells in each hom-category, which provides thus
a natural notion of comparability of probability amplitudes for collective
transitions.

• This is a subtle point though. Because a more thoughtful inspection
shows that this ‘suggestive’ probabilistic interpetation is rather void of
physical meaning. Indeed, let us make the reasonable assumption that
ordering the probability amplitudes/homarrows is physically grounded
somehow on an appropriate notion of density (or intensity) of the corre-
sponding transitions. In other words, the more the transitions f : A → B
the greater the probability assigned to the homarrow A(A,B).

• However this is exactly what we are not able to know whenW is a quan-
taloid, because in this case there are not enough 2-cells available to pick out
‘individual’ transitions A→ B so much less to afford a representation of
their density! All we can know is whether there can be some transition
A → B or a comparison 2-cell A(C,A) ≤ A(C,B) with respect to a third
object C.a

aComparison 2-cells worth further study. They seem more informative in the case of mixed
homarrows, but even when A,B,C are all of the same type U andW is a quantaloid, comparison
cells actually determine the underlying order of the category AU (see for instance [7], pp. 11). It is
interesting to see how such a notion of order induced by comparison 2-cells may apply in the case
of a generic bicategory or how may be interpeted in the case of mixed type homarrows.
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• In a sense, the naturally provided structure for the probability ampli-
tudes, namely the homarrows, at the level of system transitions, ie. of
the 1-cells inW, does not suffice to convey (or does not support) some visible
physical meaning for the transitions at the level of the enriched system
A itself. The internal structure of the homarrows is completely enfolded
or suppressed, as if it were, by the posetal structure of the quantaloid.

• Is it possible to sustain such a physical interpetation of the homarrows
as transition amplitudes in terms of some appropriate notion of density
or, more generally, in terms of their internal structure? Our analysis
thus far indicates that an affirmative answer requires the underlying
bicategory W to be structurally richer than a quantaloid or even any
posetal bicategory.

This rise in complexity does not have necessarily to be made at the
expense of abolishing the convenient probability structure explicit in a
quantaloid. It may mean though that our notion of probability has to
be much refined and elaborated in order to reflect the more subtle and
complex relations between objects, both at the level of the system as well
as of the metasystem.

• The analysis of the plausibility of a physical interpetation of homarrows-
as-transition-amplitudes in the case of W being a quantaloid is quite
reminiscent of the so-called standard or statistical interpetation of QM.
According to that interpetation, the aim of QM is to discover the prob-
abilities related with various quantum mechanical transitions. These
probabilities are calculated by the mathematical apparatus of the theory
on a collective basis (eg. as outcomes of the measurement of a physical
observable for a large number of identically prepared systems) without
any reference to individual processes or any assumption of some ontologi-
cal background that would account for these probabilities in terms of real
properties of real quantum mechanical systems or objects. The detailed
dynamics and development of quantum mechanical systems ‘collapse’
once more to some coarse meaning of probability as synomymous to the
lack of knowledge of their deeper structure.

• What we suggest here is that in order to make proper physical sense
of such probabilities, we have to go beyond this quantaloidal represen-
tation of the collective transition amplitudes and introduce a calculus
based on more complex and richer bicategorical structures. This can be
adapted to a more realistic interpetation of QM, where subtler or im-
plicated quantum mechanical systems and processes can be probed by
means of fine tuning or fine graining their representation, namely by varying
or making richer the background bicategoryW. This kind of dynamical con-
textuality could provide for instance an explanation of the probabilistic
apparatus of the standard interpetation of QM in terms of a ‘deeper’
or underlying subquantum level of the reality, much along the line of
thought introduced by David Bohm in his ontological interpetation of QM.

8



A 15 minutes course in QM

The basic formalism and its intended physical meaning

• The main mathematical tool in QM is the Hilbert spaceH . Its elements
(vectors) represent the states of a quantum mechanical system. Using
the Dirac notation we denote a state as |ψ〉 (a ket). We may take them
to be normalised, ie. |ψ| = 1. The dual of a Hilbert space, H ∗, is the
space of the linear functionalsH → C. Its elements are the bras, 〈ψ|.

• Physical observables are represented by self-adjoint (hermitean) oper-
ators onH , ie. operators M : H → H satisfying: M† = M. Adjointness
has an obvious categorical connotation since for a self-adjoint operator
it holds:

〈ψ|Mφ〉 = 〈Mψ|φ〉 = 〈φ|Mψ〉

(〈〉 denotes the complex conjugate value)

• Evolution of quantum mechanical systems occurs in two forms:

1. Unitary, ie. dictated by the action of unitary operators U† = U−1

which are basically isomorphisms on the Hilbert space preserv-
ing the internal product: 〈Uψ|Uφ〉 = 〈ψ|φ〉. They describe deter-
mininstic, reversible evolution of quantum mechanical systems.

2. projection or collapse. ie. the actual process of measurement which
is non-determininstic and irreversible. It is described by special op-
erators, the projectors, namely idempotent self-adjoint operators:
P2 = P = P†.

• The Spectral Theorem: The eigenvectors of a self-adjoint operator M
form an orthonormal basis {mi} for (the finite-dimensional) H . As a
result, a state ψ can be decomposed like:

ψ =
∑

i

〈mi|ψ〉|mi〉

Consequently, M itself can be decomposed to its projector components
Pmi

corresponding to these eigenvectors.

• According to the fundamental Projection Postulate, every measure-
ment projects (or reduces or collapses) a stateψ to one of the eigenvectors
|mi〉with probability given by:

pi = 〈mi|ψ〉

these probabilities all sum up to the unit:
∑

i |p
2
i
| = 1.

9



• the tensor structure accounts to great extent for the non-classical fea-
tures of QM, in particular entaglement and non-locality. A compound
system in a composite state ψ⊗φ in the tensor Hilbert spaceH1 ⊗H2,
cannot always decompose into its components.

• The formalism of QM was associated (mostly due to the work of
von Neumann) with the lattice L(H ) of the orthogonal projectors
corresponding to disjunctive outcomes of measurements represented
by the Projection Postulate. This latiice is essentially a quantale and its
non-commutativity is the main source of perplexities both to physicists
as well as category theorists!
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