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Abstract

It has long been known that every weak monoidal category A is equiv-
alent via monoidal functors and monoidal natural transformations to a
strict monoidal category st(A). We extend this result to weak P -categories,
for any strongly regular (operadic) theory P .

1 Introduction

Many definitions exist of categories with some kind of “weakened” algebraic
structure, in which the defining equations hold only up to coherent isomor-
phism. The paradigmatic example is the theory of weak monoidal categories,
as presented in [9], but there are also definitions of categories with weakened
versions of the structure of groups [3], Lie algebras [2], crossed monoids [1], sets
acted on by a monoid [10], rigs [7], and others. A general definition of such
categories-with-structure is obviously desirable, but hard in the general case.
In this paper, we restrict our attention to the case of strongly regular theories
(equivalently, those given by non-symmetric operads) and present possible def-
initions of weak P -category and weak P -functor for any non-symmetric operad
P . In support of this definition, we present a generalisation of Joyal and Street’s
result from [5] that every weak monoidal category is monoidally equivalent to a
strict monoidal category.

The idea is to consider the strict models of our theory as algebras for an
operad, then to obtain the weak models as (strict) algebras for a weakened
version of that operad (which will be a Cat-operad). We weaken the operad
using a similar approach to that used in Penon’s definition of n-category: see
[11], or [4] for a non-rigorous summary. The weak P -categories obtained are the
“unbiased” ones: for instance, if P is the terminal operad (whose strict algebras
are monoids), then the weak P -categories will have composites of all arities, not
just 0 and 2.

In section 2, we present our definitions of weak P -category and weak P -
functor. In section 3 we extend Joyal and Street’s proof (or rather, Leinster’s
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unbiased version) to the more general case of weak P -categories. In section 4, we
examine the strictification functor defined in section 3, and show that it has an
interesting universal property. In section 5, we explain why our approach cannot
be straightforwardly extended to theories which are not given by operads, and
outline some of the approaches that could be taken to deal with this.

2 Weak P -categories

By a plain operad, we mean what is elsewhere called a “non-symmetric” or
“non-Σ” operad, that is one with no symmetric group action defined on it.
Throughout, let P be a plain operad. A Cat-operad is an operad enriched
in Cat, i.e. a sequence of categories Q(0), Q(1), . . . and composition functors,
satisfying the usual operad axioms, as given, for instance, in [8] section 2.2.
More generally, a V-operad is an operad enriched in V . Since operads can be
thought of as one-object multicategories, we shall refer to the objects of the
categories Q(i) as 1-cells and the arrows of these categories as 2-cells of Q.

A strongly regular algebraic theory is one that can be presented using
equations that use the same variables in the same order on both sides, with
each variable appearing only once on each side. For instance, the theory of
monoids is strongly regular, as is the theory of sets acted on by a given monoid
M . The theory of commutative monoids is not strongly regular (intuitively,
because of the equation a · b = b · a) and the theory of groups is not strongly
regular (again intuitively, because of the equation g · g−1 = 1). It can be shown,
for instance as in [8] section C.1, that the strongly regular theories are exactly
those given by plain operads.

Plain operads are algebras for a straightforward multi-sorted algebraic the-
ory, so there is an adjunction

SetN
F //

Operad
U

⊥oo

The left adjoint is given by taking labelled trees, as described in [8] section 3.2.
Let D : Operad→ Cat-Operad be the functor which takes discrete categories
aritywise.

Definition 2.1. The weakening of P , Wk(P ), is the Cat-operad with the
same 1-cells as FUP , and the unique category structure such that the extension
of the counit is a map of Cat-operads and is full and faithful aritywise.

More concretely, take FUP , and, for any A,B ∈ FUP (n), place an arrow
A→ B iff ε(A) = ε(B). The composite of two arrows A→ B → C is the unique
arrow A → C. In particular, the arrows A → B and B → A are inverses. See
Fig. 1.

An algebra for a V-operad Q is an object A ∈ V and an arrow h : Q ◦ A→
A which commutes with composition in Q, where Q ◦ A is the coproduct∐
n∈NQ(n)×An (this notation was introduced by Kelly in [6] for clubs). This

leads us immediately to the following definition:
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Figure 1: Part of Wk(P )(3) with P = 1

Definition 2.2. A weak P -category is an algebra for Wk(P ).

In the case P = 1, this reduces exactly to Leinster’s definition of unbiased
monoidal category in [8] section 3.1. There, two 1-cells φ and ψ have the same
image under ε iff they have the same arity, so the categories Wk(1)(i) are indis-
crete. We refer to the image under h of a map q → q′ in Wk(P ) as δq,q′ . This
is clearly a natural transformation h(q, )→ h(q′, ). As a special case, we write
δq for δq,ε(q).

Definition 2.3. A strict P -category is an algebra for DP , or equivalently a
weak P -category in which every component of δ is an identity arrow.

Definition 2.4. Let (A, h′) and (B, h) be weak P -categories. A weak P -
functor from (A, h′) to (B, h) is a pair (G,ψ), where G : A → B is a functor
and ψ is a sequence of natural transformations ψi : hi(1×Gi)→ Gh′i, satisfying
the following:

1×G
P
ki

��

h′k1
×···×h′kn //

����
;Cψk1

×···×ψkn1×Gn

��

h′n //

����
;Cψn

G

��
hk1
×···×hkn

//
h

//

= 1×G
P
ki

��

h′P ki //

����
;CψP ki G

��
hP ki

//

(1)

Definition 2.5. Let (F, φ) and (G,ψ) be weak P -functors (A, h)→ (B, h′). A
P -transformation σ : (F, φ) → (G,ψ) is a natural transformation

A

F
&&

G

88
�� ��
�� σ B
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such that

Wk(P ) ◦A h //

1◦G

��

1◦F

��

____ +3σ

A

G

��
Wk(P ) ◦B h′ // B

����
?Gψ =

Wk(P ) ◦A h //

1◦F

��

A

G

��

F

��

____ +3σ

Wk(P ) ◦B h′ // B

����
?Gφ

(2)

Note that there is only one possible level of strictness here. There is a 2-
category, Wk-P -Cat, whose objects are weak P -categories, whose 1-cells are
weak P -functors, and whose 2-cells are P -transformations. Similarly, there
is a 2-category Str-P -Cat of strict P -categories, strict P -functors, and P -
transformations, which can be considered a sub-2-category of Wk-P -Cat.

Lemma 2.6. A P -transformation σ : (F, φ) → (G,ψ) is invertible as a P -
transformation if and only if it is invertible as a natural transformation.

Proof. “Only if” is obvious: we concentrate on “if”. It’s enough to show that
σ−1 is a P -transformation, which is to say that

h(q,Ga•)
ψ //

h(q,σ−1
a• )

��

Gh(q, a•)

σ−1
h(q,a• )

��
h(q, Fa•)

φ // Fh(q, a•)

(3)

commutes for all (q, a•) ∈ Wk(P ) ◦ A, and this follows from the fact that
σh(q,a•) ◦ φ = ψ ◦ h(q, σa•).

3 Main Theorem

Let P be a plain operad, and Q = Wk(P ), with π : Q→ P the projection map.
We write composition in P as p◦(p1 . . . pn), and composition in Q as q〈q1 . . . qn〉.
We also adopt the • notation from chain complexes and write, for instance, p•
for a sequence of objects in P and p•• for a double sequence. Let Q◦A h−→A be a
weak P -category. We construct a strict P -category st(A) and a weak P -functor
(F, φ) : st(A) → A whose underlying functor F is full, faithful and essentially
surjective on objects, and hence an equivalence of weak P -categories.

In fact, st is functorial, and is left adjoint to the forgetful functor Str-P -Cat
→ Wk-P -Cat. The theorem then says that the unit of this adjunction is
pseudo-invertible, and that the strict P -categories and strict P -functors form a
weakly coreflective sub-2-category of Wk-P -Cat.

Definition 3.1. Let P , Q, A be as above. The strictification of A, st(A), is
defined as follows:
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• An object of st(A) is an object of P (i)×Ai for some i ∈ N.

• An arrow (p, a•)→ (p′, a′•) in st(A) is an arrow h(p, a•)→ h(p′, a′•) in A.
Composition and identities are as in A.

We define an action h′ of Q on st(A) as follows:

• On objects, h′ acts by h′(q, (p, a•)•) = (π(q〈p•〉), a••).

• Let fi : (pi, ai)→ (p′i, a
′
i) for i = 0 . . . n. Then h′(p, f•) is the composite

h(p ◦ (p•), a•)
δ−1
p〈p•〉−→ h(p〈p•〉, a•) = h(p, h(p0, a0), . . . , h(pn, an))

h(p,f•)−→ h(p, h(p′0, a
′
0), . . . , h(p′n, a

′
n)) = h(p〈p′•〉, a′•)

δp〈p′•〉−→ h(p ◦ (p′•), a
′
•).

Lemma 3.2. st(A) is a strict P -category.

Proof. The associativity of the action on objects is obvious, as are the identity
and strictness conditions. We must show that the action on arrows is associative.
Let f ji : (pji , a

j
i•) → (qji , b

j
i•), σ ∈ Q(n), and τi ∈ Q(ki) for j = 1 . . . ki and i =

1 . . . n. We wish to show that h′(σ ◦ (τ•), f•• ) = h′(σ, h′(τ1, f•1 ), . . . , h′(τn, f•n))
The LHS is

h(σ ◦ (τ•) ◦ (p••), a
•
•)

δ−1
σ◦(τi)〈p••〉−→ h(σ ◦ (τ•), h(p1

1, a
1
1•), . . . , h(pknn , aknn•))

h(σ◦(τ•),f•• )−→ h(σ ◦ (τ•), h(q1
1 , b

1
1•), . . . , h(q

k′n
n , b

k′n
n•))

δσ◦(τ•)〈q••〉−→ h(σ ◦ (τ•) ◦ (q••), b
•
•).

The RHS is

h(σ ◦ (τ•) ◦ (p••), a
•
•)

δ−1
σ〈τi◦(p••)〉−→ h(σ, h(τ1 ◦ (p•1), a•1•), . . . , h(τn ◦ (p•n), a•n•))

h(σ,h′(τ•,f
•
• ))−→ h(σ, h(τ1 ◦ (q•1), b•1•), . . . h(τn ◦ (q•n), b•n•))

δσ〈τi◦(p••)〉−→ h(σ ◦ (τ•) ◦ (q••), b
•
•),

where each h′(τi, f•i ) is

h(τi ◦ (p•i ), a
•
i ))

δ−1

τi〈p•i 〉−→ h(τi, h(p1
i , a

1
i•), . . . h(pkii , a

ki
i•))

h(τi,f
•
i )−→ h(τi, h(q1

i , b
1
i•), . . . h(qkii , b

ki
i•)

δτi〈p•i 〉−→ ) h(τi ◦ (q•i ), b•i ).

So the equation holds if the following diagram commutes:
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h(σ ◦ (τ•) ◦ (p••), a
•
•)

δ−1
σ◦(τi)〈p••〉

))RRRRRRRRRRRRRRRRRRR
δ−1
σ〈τi◦(p••)〉

uulllllllllllllllllll

δ−1
σ〈τ•〉〈p••〉

��
h(σ ◦ (τ•), h(p••, a

•
•))
h(σ,δ−1

τ•〈p••〉
)

//

h(σ,h′(τ•,f
•
• ))

��

h(σ, h(τ• ◦ (p••), a
•
•)) δσ〈τ•〉

//

h(σ,h(τi,f
•
i ))

��

'&%$ !"#1 '&%$ !"#2

h(σ ◦ (τ•), h(p••, a
•
•))

h(σ◦(τ•),f•• )

��
h(σ, h(τ• ◦ (q••), b

•
•)

δσ〈τ•◦(q••)〉
))RRRRRRRRRRRRRRRRRRR

h(σ, h(τ• ◦ (q••), b
•
•)

δσ〈τ•◦(q••)〉

��

δσ〈τ•〉
//

h(σ,δτi〈p•i 〉
)

oo h(σ ◦ (τ•), h(q•• , b
•
•))

δσ◦(τ•)〈q••〉
uulllllllllllllllllll

h(σ ◦ (τ•) ◦ (q••), b
•
•)

The triangles all commute because all δs are images of arrows in Q, and there is
at most one 2-cell between any two 1-cells in Q. '&%$ !"#1 commutes by the definition

of h′(τi, f•i ), and '&%$ !"#2 commutes by naturality of δ.

Lemma 3.3. Let Q ◦ A h−→A and Q ◦ B h′−→B be weak P -categories, (F, π) :
A→ B be a weak P -functor, and (F,G, η, ε) be an adjoint equivalence. Then G
naturally carries the structure of a weak P -functor, and (F,G, η, ε) is an adjoint
equivalence in Wk-P -Cat.

Proof. We want a sequence (ψ•) of natural transformations:

q(i)× bi

1×Gi
��

h′i //

����
>Fψi

b

G

��
q(i)× ai

hi

// a

let ψi be given by Gh′(1× εi) ◦Gπ−1
i ◦ ηh′ , i.e.

q(i)× bi

1×Gi

��

h′i //

~~~~
;Cψi

b

G

��
q(i)× ai 1 // a

=

q(i)× bi 1 //

1×Gi

��

q(i)× bi
h′i //

2222U]
1×εi

b

G

��
6666W_

η

q(i)× ai

1×F irrrrrr

88rrrrrr

h
//

) )) )PX
π−1
i

a

F

::vvvvvvvvvvvvvvvv 1 // a
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We must check that ψ satisfies eq. 1:

1×G
P
ki

��

h′k1
×···×h′kn //

����
;Cψk1

×···×ψkn1×Gn

��

h′n //

����
;Cψn

G

��
hk1
×···×hkn

//
h

//

=

1 //

1×G
P
ki

��

h′k1
×···×h′kn //

????[c
1×ε

P
ki

????[c
ηn

1 //

1×Gn

��

h′n //

????[c
1×εn

G

��
????[c

η

1×F
P
ki

������

??������

hk1
×···×hkn

//

////S[
πk1
×···×πkn

1×Fn

??�������������� 1 //

1×Fn������

??������

h
//

////S[
π−1
n

F

??�������������� 1 //

=

1 //

1×G
P
ki

��

h′k1
×···×h′kn //

????[c
1×ε

P
ki

1 // h′n //

G

��
????[c

η

1×F
P
ki

������

??������

hk1
×···×hkn

//

////S[
π−1
k1
×···×π−1

kn
1×Fn������

??������

1 //

//
// 1×Fn������

??������

h
//

////S[
π−1
n

F

??�������������� 1 //

=

1 //

1×G
P
ki

��

h′k1
×...h′kn //

????[c
1×ε

P
ki

h′n //

G

��
????[c

η

1×F
P
ki

������

??������

hk1
×···×hkn

//

////S[
π−1
k1
×···×π−1

kn
1×Fn������

??������

h
//

////S[
π−1
n

F

??�������������� 1 //

=

1 //

1×G
P
ki

��

h′Pki //

????[c
1×ε

P
ki

G

��
????[c

η

1×F
P
ki

������

??������

hP ki

//

////S[
π−1P

ki

F

??�������������� 1 //

= 1×G
P
ki

��

h′P ki //

����
;CψP ki G

��
hP ki

//

To see that (F,G, η, ε) is a P -equivalence, it is now enough to show that η and
ε are P -transformations, since they satisfy the triangle identities by hypothesis.

Write (GF, χ) = (G,ψ) ◦ (F, π). Then each χq,a• is the composite

h(q,GFa•)
ψ // Gh(q, Fa•)

Gπ // GFh(q, a•)
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Applying the definition of ψ, this is

h(q,GFa•)
η // GFh(q,GFa•)

Gπ−1
// Gh(q, FGFa•)

GhqεF // Gh(q, Fa•)
Gπ // GFh(q, a•)

The axiom on η is the outside of the commutative diagram

h(q, a•)
1 //

h(q,η)

��

η

((PPPPPPPPPPPP
h(q, a•)

η

��

GFh(q, a•)
Gπ−1

//

GFh(q,η)

��

'&%$ !"#1 '&%$ !"#2

Gh(q, Fa•)

Gh(q,Fη)

��

1

((PPPPPPPPPPPP
'&%$ !"#3

h(q,GFa•)
η // GFh(q,GFa•)

Gπ−1
// Gh(q, FGFa•)

Gh(q,εF )// Gh(q, Fa•)
Gπ // GFh(q, a•)'&%$ !"#1 commutes by naturality of η, '&%$ !"#2 commutes by naturality of π−1, and '&%$ !"#3

commutes since Gπ ◦Gπ−1 = G(π ◦ π−1) = G1 = 1G. The triangle commutes
by the triangle identities. So the whole diagram commutes, and η is a P -
transformation. By Lemma 2.6, η−1 is also a P -transformation. Similarly, ε
and ε−1 are P -transformations.

Theorem 3.4. Let Q ◦A h−→A be a weak P -category. Then A is equivalent to
st(A) via weak P -functors and P -transformations.

Proof. Let F : st(A) → A be given by F (p, a•) = h(p, a•) and identification of
maps. This is certainly full and faithful, and it’s essentially surjective on objects
because δ−1

1q
: h(1p, a)→ a is an isomorphism. Claim it’s a weak P -functor.

We must find a sequence (φi : hi(1×F i)→ Fh′) of natural transformations
satisfying equation 1. We can take (φi)q,a• = (δq)a• . We must show that

1×F
P
ki

��

h′k1
×···×h′kn //

����
;Cφk1

×···×φkn1×Fn

��

h′n //

����
;Cφn

F

��
hk1
×···×hkn

//
h

//

= 1×F
P
ki

��

h′P ki //

����
;CφP ki F

��
hP ki

//

(4)

All 2-cells in this diagram are instances of δ. Since there is at most one
arrow between two 1-cells in Q, they are equal. So (F, φ) is a weak P -functor.

By Lemma 3.3, A is equivalent to st(A) via weak P -functors and P -transformations.
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4 Significance of st

Theorem 4.1. Let U ′ be the forgetful functor Str-P -Cat→Wk-P -Cat (con-
sidering both of these as 1-categories). Then st is left adjoint to U ′.

Proof. We exhibit A
(F ′,ψ)−→ st(A) as an initial object of (A ↓ U ′), thus showing

that st is functorial and that st a U ′ (and that (F ′, ψ) is the component of the
unit at A). Let h′′ : Q ◦ B → B be a strict P -category, and (G, γ) : A → U ′B
be a weak P -functor. We must show that there is a unique strict P -functor H
making the following diagram commute:

A

(F ′,ψ)

����������������

(G,γ)

��33333333333333

U ′ st(A)
(H,id) //_______ U ′B

(5)

(F ′, ψ) is given as follows:

• If a ∈ A, then F ′(a) = (1, a).

• If f : a → a′ in A then F ′f is the lifting of h(1, f) with source (1, a) and
target (1, a′).

• ψ(p,a•) is the lifting of (δ|)h(p,a•) : h(p, a•)→ h(1, h(p, a•)) to a morphism
h′(p, F ′(a)•) = (p, a•)→ (1, h(p, a•)) = F ′(h(p, a•)).

For commutativity of (5), we must have H(1, a) = G(a), and for strictness of
H , we must have H(p, a•) = h′′(p,H(1, a)•). These two conditions completely
define H on objects.

Now, take a morphism f : (p, a•)→ (p′, a′•), which is a lifting of a morphism
g : h(p, a•) → h(p′, a′•) in A. Hf is a morphism h′′(p,Ga•) → h′′(p′, Ga′•): the
obvious thing for it to be is the composite

h′′(p,Ga•)
γ // Gh′′(p, a•)

Gg // Gh′′(p′, a′•)
γ−1

// h′′(p′, Ga′•)

and we shall show that this is in fact the only possibility. Consider the composite

(1, h(p, a•))
ψ−1

// (p, a•)
f // (p′, a•)

ψ // (1, h(p′, a′•))

in st(A). Composition in st(A) is given by composition in A, so this is equal to
the lifting of δ| ◦ g ◦ δ−1

| = h(1, g) to a morphism (1, h(p, a•)) → (1, h(p′, a′•)),

namely F ′g. So f = ψ−1 ◦ F ′g ◦ ψ, and Hf = Hψ−1 ◦ HF ′g ◦ Hψ. By
commutativity of (5), HF ′ = G and Hψ = γ, so Hf = γ−1 ◦Gg ◦γ as required.

This completely defines H . So we have constructed a unique H which makes
(5) commute and which is strict. Hence (F ′, ψ) : A → U ′ st(A) is initial in
(A ↓ U ′), and so st a U ′.
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The P -functor (F, φ) : st(A) → A constructed in Theorem 3.4 is pseudo-
inverse to (F ′, ψ), which we have just shown to be the A-component of the
unit of the adjunction st a U ′. We can therefore say that Str-P -Cat is a
weakly coreflective sub-2-category of Wk-P -Cat. Note that the counit is not
pseudo-invertible, so this is not a 2-equivalence.

5 Further Work

Very few interesting theories are strongly regular, so this definition is not of
much interest on its own. It can be straightforwardly extended to theories given
by symmetric operads, but to deal with the interesting cases of groups, rings, Lie
algebras, etc, we must either abandon operads and move to a more expressive
formalism (for instance that of Lawvere theories), or extend the notion of an
operad until it is sufficiently expressive. I have taken the latter approach: by
allowing any function of finite sets, and not just permutations, to act on the
sets P (i), we obtain a notion of operad that is equivalent in power to clones or
Lawvere theories (as was proved by Tronin in [12]).

However, näıvely extending definition 2.1 to these “distributive” operads
doesn’t work, as weakening the theory of commutative monoids gives the theory
of strictly symmetric weak monoidal categories, rather than that of symmetric
weak monoidal categories as desired. I have been working off and on on vari-
ous other approaches, mainly concerned with constructing Wk(P ) using some
universal property, and have obtained some interesting early results.
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