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Filteredness is geometric

Consider a functor F on a small category C.

Filteredness of (the dual of) the category of elements
of F is expressible in geometric logic in the language of
functors on C:

•
∨

C∈C

∃x : C (x = x)

• ∀x′ : C ′ ∀x′′ : C ′′
∨

C

∨

u′ : C−→C′

u′′ : C−→C′′

∃x : C (u′(x) = x′ ∧ u′′(x) = x′′)

• ∀x : C ′ (u(x) = v(x) −→
∨

C

∨

w : C−→C′

u◦w=v◦w

∃y : C (w(y) = x))

Thus it can be attributed to functors with values in any
site (K, j)

Examples: The filtering functors from a weakly lex cat-
egory to an exact one (equipped with the topology of
singleton epi-coverings), the multilimit-merging functors
from a familially lex category to a lextensive one (equipped
with the topology of sums), the fm-limit-merging functors
from an fm-complete* category to a pretopos (equipped
with the precanonical topology)

* it means that, for all finite diagrams D the cone functor

Cone(D): Cop −→ Set is finite colimit of representables
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Left exact Kan extensions

In all the above examples filteredness implies flatness, i.e
the left Kan extension

C
y //

F

##GGGGGGGGGGGGGGGGGGGGG [Cop,Set]

LanyF

��

K

preserves finite limits (and so do the restrictions of LanyF
to the exact, lextensive, pretopos completion of C, respec-
tively).

This happens because the colimits used in the calculation
of LanyF have the correct behaviour: They are postulated

in the sense of A. Kock, i.e they satisfy in the internal
logic of (K, j), for all diagrams C : I −→ C with colimit
(L, l : C ⇒ L), the geometric axioms

∀x : L
∨

i∈I

∃y : Ci (lC(y) = x) and

∀x :C∀y :C ′(lC(x) = lC ′(y) −→
∨

Z(C,C ′)

∃z1 :C1...∃zn :Cn (d1,0(z1) =

x ∧ d1,1(z1) = d2,0(z2) ∧ ... ∧ dn,1(zn) = y))

where the (infinite) disjunction runs over all the zig-zags

C1
d1,0

~~||
||

||
|| d1,1

��?
??

??
??

??
Cn

dn,0

����
��

��
��

� dn,1

!!CC
CC

CC
CC

C . . C ′

from D(C) to D(C ′).
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A general form of Diaconescu’s theorem

Theorem: (A. Kock) Let (K, j) be a cocomplete, finitely
complete, subcanonical site and let F : C −→ K be a flat
functor. Let D : I −→ [Cop,Set] be a finite diagram. If the
colimits used for constructing (LanyF )(Di) are postulated,
for all i ∈ I, then LanyF preserves the limit of the diagram
D.

Remarks: 1.The proof given by Kock relies on the clas-
sical Diaconescu’s theorem. We give a direct proof and
obtain the classical theorem as a corollary. Our proof is
”local”. Shows that existence of cones for cospans (and
parallel pairs) in the category of elts implies preservation
of pb’s by LanyF (and equalizers, respectively).

2. K need not really be cocomplete. E.g extending
along inclusion into the exact completion every diagram
y ↓ Di −→ C −→ K, used in the calculation of (LanyF )(Di),
has a final subcategory which is an equivalence relation.

3. We are particularly interested in the preservation of
limits of equalizer diagrams

E // colimi<nyCi
g

//

f
//

X

These in turn are reduced to

E
e // yC

g
//

f //
colimjyCj

(The previous equalizers are retractions of colimits of the
above.)

The general result will then follow (in the applications in

mind) by the commutation of such equalizers with filtered

colimits (which in turn may be a consequence of postu-

latedness) but doesn’t require local cartesian closedness.
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A description of equalizers of presheaves

If f and g are represented by arrows f̌ : C −→ Ci and
ǧ : C −→ Cj, respectively, in C, then

E ∼= colimzcolimk yPk,z,

where Pk,z is a final family of cones for the diagram Dz

consisting of f̌ , ǧ and a zig-zag z from Ci to Cj:

C
f̌

��

ǧ

��

C1

d1,0~~||
||

||
||

d1,1
��>

>>
>>

>>
>>

Cn

dn,0
����

��
��

��
�

dn,1 !!B
BB

BB
BB

B

Ci
. . Cj

Remarks: 1. The final family of cones can be singleton
if C has (weak) limits or finite, as it is the case with ∆:
Given m, n in ∆ consider the family of pairs of surjective,
order-preserving maps α : m + n −→ m, β : m + n −→ n.
They correspond to maximal paths on the m × n grid on
the plane, where motion is allowed only upwards and to
the right, since α and β are order-preserving:

. . . . .

.

n

. . . // // .

OOOO

.2 . // // . . .

.1 .

OOOO

. . .

.0 // // .

OOOO

1
.
2

.
m
.

2. The indexing family of the zig-zags is usually countable

but it is finite when C has BTH of reflexive symmetric

relations (as it is the case with ∆!).
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Sketch of Proof:

colimzcolimk FPk,z −→ Eq(|f |, |g|) is “one - one”: Given
T− elements u, v that get identified in Eq(|f |, |g|) we show
that they are equal.

The colimit is postulated so there is {tα : Tα −→ T | α ∈
A} ∈ Cov(T) and FPz,k, FPz′,k′ so that, for all α ∈ A, there
are factorizations

Tα
uα

uujjjjjjjjjjjjjjjjjjjj

vα

))TTTTTTTTTTTTTTTTTTTT

��
FPz,k

))SSSSSSSSSSSSSSSS T

u
��

v
��

FPz′,k′

uujjjjjjjjjjjjjjjj

colimzcolimk FPk,z

Every Tα is a cone for FDz (edges λ) and FDz′ (edges µ).
Thus Tα is a cone for FDz∪z′, the diagram of F f̌ , F ǧ and
the concatenation of Fz, Fz′.

From flatness of F , for all α ∈ A, there are {tξ,α : Tξ,α −→
Tα | ξ ∈ Ξ} such that, for all ξ, there are factorizations

Tα,ξ

��
w

		

Tα
uα

xxpppppppppppp
vα

**UUUUUUUUUUUUUUUUUUUUUUU

FPz,k

λC

��



 ��

FPz∪z′,k′′oo // FPz′,k′

µC

��



 ��

FC
F f̌

��
F ǧ

��

FC
F f̌

��
F ǧ

��

FCi Fz
/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o FCj FCi Fz′

/o/o/o/o/o/o/o/o/o/o/o/o/o FCj
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It means that

λ ◦ uα ◦ tξ,α = λ ◦ Fpk′′,k ◦ w

and

µ ◦ vα ◦ tξ,α = µ ◦ Fpk′′,k′ ◦ w,

i.e we have two factorizations of Tξ,α, qua cones for FDz

and FDz′, via FPz,k and FPz′,k′, respectively.

Thus there are compatibility zig-zags z1, z2 connecting
them through the same cone in the final family:

Tξ,α

uα◦tξ,α

||xxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxx

wξ,α,z∪z′ ,k′′

��
vα◦tξ,α

##GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG

FPz∪z′,k′′

Fpk′′,kxxqqqqqqqqqq

Fpk′′,k′ &&NNNNNNNNNNN

FPz,k z1

/o/o/o FPz,k FPz′,k′
z2

/o/o/o FPz′,k′

We have found a composite covering

{tα ◦ tξ,α : Tξ,α −→ T | (α, ξ) ∈ A × Ξ}, so that

for all (α, ξ), the Tα,ξ-elements

inz,k ◦ uα ◦ tξ,α = u ◦ tα ◦ tξ,α

and

inz′,k′ ◦ vα ◦ tξ,α = v ◦ tα ◦ tξ,α

of the colimit become connected via a zig-zag among the
components, thus they are equal. Thus u = v.
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Examples:

1. [KRV], JPAA 196, 229-250, show that when C has
finite final families of cones for finite diagrams and BTH
for reflexive symmetric relations then finitely presentable
presheaves on it are closed under finite limits. If C is, in
particular, a pretopos with coequalizers and BTH then

E = Lex(Cop,Set)

has postulated finite colimits for the topology of finite reg-
ular epi coverings (essentially by older work of Day and
Street), while I : C −→ E is trivially flat (for all topolo-
gies!). Thus the result of Borceux and Pedicchio that E

is a topos follows (the reflexion from presheaves is left
exact).

2. Kock shows that if finite (all) colimits are postulated
w.r.t a subcanonical topology on K then K is a(n ∞-)
pretopos. On the other hand Cagliari, Mantovani and Vi-
tale show that the category of Kelley spaces is not exact.
So there seems to be no hope for the left exactness of
geometric realization of simplicial sets to fit in our ex-
planatory scheme. But: By the above remarks on ∆, the
colimits used in the calculation of geometric realization
of a finite simplicial set X are of the form

∐
i<k ∆[ni]

g
//

f
// ∐

j<l ∆[mj] // |X|

and such sequences are exact, thus the colimit is postu-
lated.

3. The method appears to be applicable in the case of

“connected- limit- flat” functors from finite categories to

compact Hausdorff spaces (or other categories...)
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