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Prelude

Given a space X , which probability measure on X deserves to be called the
‘uniform distribution’ on X?

The answer is obvious for certain classes of space X . E.g.:

• finite spaces

• suitably symmetric spaces : the unique symmetric measure

• subsets of Rn with 0 < Vol(X ) <∞: normalized Lebesgue measure.

And clearly there’s no sensible uniform distribution for some X , e.g. R or Z.

Is there a good general answer?
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1. Measuring diversity

Tom Leinster and Christina Cobbold,
Measuring diversity: the importance of species similarity,
Ecology 93 (2012), 477–89.
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The maximum entropy of a metric space,
Quarterly Journal of Mathematics, to appear.
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Spaces with similarities

Motivating examples:

• Given a finite set X of species, there are various ways to quantify the
similarity K (x , y) between species x , y ∈ X : genetic, phylogenetic, . . . .
Or very crudely, can put

K (x , y) = δ(x , y) =

{
1 if x = y ,

0 otherwise.

• Given a metric space X = (X , d), define the ‘similarity’ between points
x and y to be

K (x , y) = e−d(x ,y).

Definition A similarity kernel K on a topological space X is a continuous
symmetric function K : X × X → R+ such that K (x , x) > 0 for all x ∈ X .

The pair (X ,K ) is called a space with similarities.

We’ll always assume that X is compact Hausdorff.



How spread out is a probability distribution?

Let (X ,K ) be a space with similarities and P a probability measure on X .

The typicality of a point x ∈ X is

KP(x) =

∫
X
K (x , y) dP(y).

It measures how much mass is nearby.

Here x is more typical than y :

The atypicality of x is
1

KP(x)
.



How spread out is a probability distribution?

Let (X ,K ) be a space with similarities and P a probability measure on X .

Spread can be quantified as the average atypicality of a point in X .

Here ‘average’ could be the ordinary arithmetic mean∫
X

1

KP(x)
dP(x),

but it’s useful to consider all power means:

Definition Let q ∈ [0,∞]. The diversity of order q of P is

Dq(P) =

(∫
X

(
1

KP(x)

)1−q
dP(x)

) 1
1−q

.

This is undefined for q = 1,∞, but can take limits in q to get the right
definitions there.

The entropy of order q of P is Hq(P) = logDq(P).



Example: finite probability distributions

Let X be a finite set with a probability distribution P.

Use the crude similarity kernel K = δ.

Then Hq(P) is the Rényi entropy of order q of P.

In particular, H1(P) is the Shannon entropy of P.



Example: biological diversity

Take X to be a finite set of species and K (x , y) to be the similarity between
species x and y .

Then Dq(P) measures the diversity of a community with species abundance
distribution P.

This encompasses and unifies many of the biodiversity measures used by
ecologists.



Example: the case q = 2

For any space with similarities (X ,K ), and any probability measure P on it,

D2(P) =
1∫

X

∫
X K (x , y) dP(x) dP(y)

.

The denominator is the expected similarity between a random pair of points.

Intuition High expected similarity means high concentration, or low diversity.



The role of q

In the definition of diversity Dq(P) and entropy Hq(P) = logDq(P), there is
a real parameter q. What does it do?

Example Take X = {1, . . . , 8} with the crude similarity kernel K = δ.

Take P to be the frequencies of the eight species of great ape on the planet.

Let Q be the 50-50 distribution of chimpanzees and bonobos only.

Moral: You can’t ask whether
one probability measure has
higher diversity/entropy than
another.

The answer may depend on q.



2. Maximizing diversity
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The maximum diversity theorem
Let (X ,K ) be a space with similarities.

Which probability measure on X achieves the maximum possible diversity (or
entropy) on X? What is that maximum?

In principle, both answers depend on q.

Theorem (with Mark Meckes [finite case] and Emily Roff [general case])
Both answers are independent of q. That is:

• there is a probability measure P maximizing Dq(P) for all q ∈ [0,∞]
simultaneously

• supPDq(P) is independent of q

(and the same for entropy Hq).

If P maximizes Dq(P) for all q, we call P a maximizing measure. It is usually
unique.

Warning Even when X is finite, the maximizing measure is not usually
uniform!



Example: frogs and newts

Take a three-species system (X = {1, 2, 3}) with these similarities:

K =

 1 0.9 0.4
0.9 1 0.4
0.4 0.4 1

 newt

frog species A

frog species B
0.9

0.4

0.4

Which distribution on X maximizes diversity?

• Not (1/3, 1/3, 1/3), because then we’d have 2/3 frog and 1/3 newt.

• Not (1/4, 1/4, 1/2), because the frog species aren’t quite identical.

• It should be somewhere in between. And it is: it’s (0.261, 0.261, 0.478).

In particular, the maximizing distribution is not uniform.



Example: real interval

Take a real interval [0, L] of length L with its usual metric, so that
K (x , y) = e−|x−y |.

Which probability measure on [0, L] maximizes diversity (or equivalently,
entropy)?

• One guess: 1
2(δ0 + δL) (push all the mass to the ends).

• Another guess: the uniform distribution, i.e. the normalization of
Lebesgue measure λ[0,L].

• In fact, it’s a linear combination of these. It’s the normalization of

δ0 + λ[0,L] + δL.

Warning The maximizing measure is scale-dependent!

Small L: Large L:



3. The uniform measure

Tom Leinster and Emily Roff,
The maximum entropy of a metric space,
Quarterly Journal of Mathematics, to appear.

https://arxiv.org/abs/1908.11184


Overview

Goal Given a space X of a suitable kind, assign to it a ‘uniform probability
measure’ UX in some canonical way.

Wishlist:

• It should agree with the existing notions of uniform measure when X is
finite, or symmetric, or ⊆ Rn.

• It should be scale-independent: scaling the metric on X up or down
should not affect UX .

We’ll achieve this by combining two ideas:

• Maximize diversity (⇔ entropy). Intuition: maximum diversity
distributions are maximally spread out, or maximally uniform.

• Scale up to infinity. This removes the scale-dependence.



The definition

Let X be a compact metric space. For t > 0, we write tX for X equipped
with the similarity kernel

K t(x , y) = e−td(x ,y).

So t acts as a scale factor.

Assume that for each t > 0, the maximizing measure Pt on tX is unique,
and that limt→∞ Pt exists (in the weak∗ topology).

Definition The uniform measure on X is UX = limt→∞ Pt .

This definition is scale-invariant: UtX = UX for all t > 0.



Easy case 1: finite spaces

Let X be a finite metric space. Then the uniform measure UX on X is the
uniform measure in the usual sense.

Why?

For t <∞, the maximizing measure Pt on tX is not uniform (remember the
frogs and newts).

But as t →∞, all the similarities K t(x , y) = e−td(x ,y) → 0 for x 6= y .
Hence K → δ. And the maximizing measure for K = δ is uniform.



Easy case 2: symmetric spaces

Let X be a compact metric space that’s symmetric in the sense that for all
x , y ∈ X , there is some distance-preserving symmetry of X that maps x to y .

The Haar measure theorem implies that there is a unique symmetry-invariant
probability measure on X . And that’s what UX is.

Why? Because Pt is this unique symmetric measure for each finite t.



Slightly less easy case: the interval

Let L > 0 and consider the real interval [0, L].

We saw that the maximizing measure on [0, L] is the normalization of
δ0 + λ[0,L] + δL.

When we scale up by a large factor t, the point masses at the endpoints
become negligible.

So the uniform measure U[0,L] is the normalization of Lebesgue measure,
λ[0,L]/L.

That is, it’s the uniform distribution in the usual sense.



Way harder case: subsets of Rn

Let X be a compact subset of Rn.

Problem Unlike for the interval, we have no description of the maximizing
measure on X — even when X is a 2-dimensional disc!

So unlike for the interval, we can’t find the uniform measure on X by directly
calculating the maximizing measure on tX for each finite t, then letting
t →∞.

Nevertheless. . .

Theorem Assuming that X has nonzero measure, the uniform measure UX

is normalized Lebesgue measure on X .

Proof Lots of analysis.



Example: the Jeffreys prior
Let M be a measure space and let (ft)t∈I be a smooth family of probability
density functions on M, indexed over a real interval I .

I
t

ft

probability
density functions
on M

Question Is there an ‘objective prior’ on I , i.e. a ‘canonical’ probability
measure on I associated with this family?

One answer: take the distribution on I proportional to the square root of the
Fisher information. This Jeffreys prior has excellent invariance properties.

It also comes out of our framework. . .

Put the Fisher metric on the set of PDFs on M.Give I the metric

d(t1, t2) = arclength from ft1 to ft2 (wrt Fisher metric on M).

So (I , d) is a metric space, and we can ask what its uniform measure is.

It’s the Jeffreys prior!



Conclusion



Summary

• For a probability measure P on a metric space (or more generally, on a
space with some notion of ‘similarity’ between points), there is a
one-parameter family (Dq(P))q>0 of diversities, quantifying how spread
out the measure is.

• These diversities Dq are used in ecology to quantify biodiversity, and
logDq is a kind of entropy.

• Miraculously, there is a single probability measure on the space that
maximizes Dq for all parameters q simultaneously!

• This maximizing measure changes as you scale the space up.

• Taking the large-scale limit gives a probability measure UX on our space
X , which deserves to be called the uniform measure on X .

• For spaces X where there’s already an obvious notion of uniform
measure, this definition agrees.



Open questions

• What properties does the uniform measure have?

• What properties would you want something with that name to have?

• What other examples of the uniform measure are there?

• What other examples would you want there to be?
Are there any spaces that you’d like to be able to put some kind of
canonical probability distribution on, but don’t know how?



Thanks


