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The moral of this talk

Whenever you meet a functor,
ask
“What is its codensity monad?”




Plan

1. What codensity monads are
With codensity monads as part of our toolkit:

The notion of ... automatically gives rise to

2. finiteness of a set
3. finite-dimensionality of a vector space
4. finiteness of a family

the notion of ...

ultrafilter
double dualization
ultraproduct



1. What codensity monads are
(Isbell, Ulmer; Appelgate & Tierney, A. Kock)



Loosely

The codensity monad of a functor G: 8 — &/
is what the composite of G with its left adjoint would be
if G had a left adjoint

Grammar: given a functor G: % —» 4/, the codensity monad TC of G is
a certain monad on 7.

It is defined as long as &/ has enough limits.

The definition will be given later.



Characterization of the codensity monad

Motivation: Let G: 4 — o7 be a functor that does have a left adjoint, F.
We have categories and functors
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and this is initial among all maps in CAT /< from G to a monadic functor.

Theorem (Dubuc) Let G: 8 — o/ be a functor whose codensity monad
TC is defined. Then
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is initial among all maps in CAT/% from G to a monadic functor.

Corollary Let G be a functor with a left adjoint, F. Then T¢ = Go F



Three definitions of the codensity monad
Let G: & — &/ be a functor. Three equivalent definitions:

e The codensity monad of G is the right Kan extension of G along itself:

B—> o
17
PN
4
(and is defined iff the Kan extension exists).
TN = [ [#(AGENGE) = Im  G(E)

BEB, f: A—G(B)
e Recall: if F: o/ — 7 with o/ small and % cocomplete, get adjunction

Hom(F,—) singular
B T [«7°P, Set], e.g. Top_ T [A°P,Set].
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Three definitions of the codensity monad
Let G: & — &/ be a functor. Three equivalent definitions:

e The codensity monad of G is the right Kan extension of G along itself:

B—> o
17
PN
4
(and is defined iff the Kan extension exists).
TN = [ [#(AGENGE) = Im  G(E)

Be#, f: A—G(B)
o If A is small and & is complete, get adjunction
Hom(—,G)

ST |, Set]”,
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and T is the induced monad on &7



Two short but nontrivial examples

1. Let & be a category and X € /. The codensity monad of 1 X o is
the endomorphism monad End(X) of X, given by

(End(X))(A) = [« (A, X), X].

By Dubuc, for any monad S on &7, an S-algebra structure on X amounts to
a map of monads S — End(X).

2. The codensity monad of G: Field — CRing is given by

TC(A)= [ Frac(A/p)

pESpec(A)
(A € CRing). For example,

TC(Z) = Qx(Z/2Z) x (Z/3Z) x (Z/5Z) x - - -,
TC(Z/nZ) = Z/rad(n)Z

where rad(n) is the product of the distinct prime factors of n.



2. Ultrafilters



What ultrafilters are

Lemma (Galvin and Horn) Let X be a set and % C 22(X).
The following are equivalent:

e 7/ is an ultrafilter
e whenever X = Xy II---II X, there is a unique / such that X; € Z .

There is a monad U on Set, the ultrafilter monad, with

U(X) = {ultrafilters on X}

(X € Set).



Ultrafilters as measures
Let X € Set and % € U(X). Think of elements of % as ‘sets of measure 1'.

Lemma (everyone) An ultrafilter on a set X is essentially the same thing as
a finitely additive probability measure on X taking values in {0,1}.

If an ultrafilter is a kind of measure, what is integration?

Given a finite set B, define
/ —d% : Set(X,B) — B
X

as follows:

for f € Set(X, B), let [, f d% be the unique element of B
whose fibre under f belongs to % .

Justification of terminology: This ‘integration’ is uniquely characterized by:

e the integral of a constant function is that constant; and

e changing a function on a set of measure 0 doesn't change its integral.



Measures correspond to integration operators
Let X be a set. Given % € U(X), we obtain a family of maps

—du
<Set(X, B)IX—>B>
BeFinSet

natural in B. That is: given % € U(X), we obtain an element
/ —du € T¢(X)
X

where T€ is the codensity monad of G: FinSet — Set. So, we have

UX) — TEX)
U — [—dU.

In fact, this defines an isomorphism of monads U — T¢. Hence:

Theorem (i) (Kennison and Gildenhuys) The codensity monad of
FinSet — Set is the ultrafilter monad.
(ii) (Manes) The algebras for this monad are the compact Hausdorff spaces.



Moral of this section

The notion of finiteness of a set
automatically gives rise to the notions of
ultrafilter
and
compact Hausdorff space




3. Double dualization



The linear analogue of the ultrafilter theorem

Theorem (i) The codensity monad of FDVect — Vect is double dualization.
(ii) The algebras for this monad are the linearly compact vector spaces
(certain topological vector spaces).

Table of analogues:

sets vector spaces
finite sets finite-dimensional vector spaces
ultrafilters elements of the double dual

compact Hausdorff spaces linearly compact vector spaces.



Moral of this section

The notion of finite-dimensionality of a vector space
automatically gives rise to the notions of
double dualization
and
linearly compact vector space




4. Ultraproducts



What ultraproducts are
Let S = (S«)xex be a family of sets.

An element of the product [] S = ], cx Sx is a family of elements (s, )xex-
Now let 7% be an ultrafilter on X. We'll define the ultraproduct [],, S.

Informally: An element of [],, S is a family of elements (s,) defined almost
everywhere and taken up to almost everywhere equality.

Formally: An element of [],, S is an equivalence class of families (sc)xcy
with Y € %, where

(Sx)xey ~ (tx)xez <= {x€YNZ : sx=t}e«.

Alternatively: ], S is the colimit of

(%,C)® —»  Set

Y — ][ S«
xeY

Can define ultraproducts similarly in any category with enough (co)limits.



The ultraproduct monad

Let & be a category with small products and filtered colimits.

Define a category Fam(&") as follows:

e an object is a family (Sx)xex of objects of &, indexed over some set X

e a map (Sx)xex — (Ry)ycy is a map of sets f: X — Y together with
a map Ry — Sx for each x € X.

Given a family S = (S5x)xex of objects of &, we get a new family

<H7/ S) % cU(X)

of objects of &.

Fact (Ellerman; Kennison) This assignation is part of a monad on Fam(&),
the ultraproduct monad for &.



Ultraproducts are inevitable

Let FinFam(&") be the full subcategory of Fam(&’) consisting of the families
(Sx)xex in which X is finite.

Theorem (i) (with Anon.) The codensity monad of FinFam(&') — Fam(&)
is the ultraproduct monad.

(ii) (Kennison) When & = Set, the algebras for this monad are the sheaves
on compact Hausdorff spaces.



Moral of this section

The notion of finiteness of a family
automatically gives rise to the notions of
ultraproduct
and
sheaf on a compact Hausdorff space.




Summary



Summary

The codensity monad of a functor G is a substitute for G o F
(where F - G) that makes sense even when G has no left adjoint.

Routinely asking ‘what is the codensity monad?’ is worthwhile.

For example, it establishes that the following concepts are
categorically inevitable:

ultrafilter compact Hausdorff space
double dual vector space linearly compact vector space
ultraproduct sheaf on a compact Hausdorff space.



