Codensity and the ultrafilter monad

Tom Leinster Edinburgh

These slides: available on my web page *n*-Category Café posts: 1, 2, 3, 4

Paper: Theory and Applications of Categories 28 (2013), 332–370

The moral of this talk

Whenever you meet a functor, ask "What is its codensity monad?"

Plan

1. What codensity monads are

With codensity monads as part of our toolkit:

The notion of ... automatically gives rise to the notion of ...

- 2. finiteness of a set
- 3. finite-dimensionality of a vector space
- 4. finiteness of a family

ultrafilter double dualization ultraproduct 1. What codensity monads are (Isbell, Ulmer; Appelgate & Tierney, A. Kock)

Loosely

The codensity monad of a functor $G: \mathscr{B} \longrightarrow \mathscr{A}$ is what the composite of G with its left adjoint would be if G had a left adjoint

Grammar: given a functor $G: \mathscr{B} \longrightarrow \mathscr{A}$, the codensity monad T^G of G is a certain monad on \mathscr{A} .

It is defined as long as \mathscr{A} has enough limits.

The definition will be given later.

Characterization of the codensity monad

Motivation: Let $G: \mathscr{B} \longrightarrow \mathscr{A}$ be a functor that *does* have a left adjoint, F. We have categories and functors

and this is initial among all maps in CAT/\mathscr{A} from G to a monadic functor. Theorem (Dubuc) Let $G: \mathscr{B} \longrightarrow \mathscr{A}$ be a functor whose codensity monad T^G is defined. Then

is initial among all maps in **CAT**/ \mathscr{A} from G to a monadic functor. Corollary Let G be a functor with a left adjoint, F. Then $T^G = G \circ F$.

Three definitions of the codensity monad

Let $G: \mathscr{B} \longrightarrow \mathscr{A}$ be a functor. Three equivalent definitions:

• The codensity monad of G is the right Kan extension of G along itself:

(and is defined iff the Kan extension exists).

•
$$T^{G}(A) = \int_{B} \left[\mathscr{A}(A, G(B)), G(B) \right] = \lim_{B \in \mathscr{B}, f : A \longrightarrow G(B)} G(B).$$

• Recall: if $F: \mathscr{A} \longrightarrow \mathscr{B}$ with \mathscr{A} small and \mathscr{B} cocomplete, get adjunction

$$\mathscr{B}_{\overbrace{\neg \bigtriangledown F}}^{\operatorname{Hom}(F,-)}[\mathscr{A}^{\operatorname{op}},\operatorname{Set}], \quad \text{e.g.} \quad \operatorname{Top}_{\overbrace{\neg }}^{\underset{\operatorname{singular}}{\operatorname{Top}}}[\Delta^{\operatorname{op}},\operatorname{Set}].$$

Three definitions of the codensity monad

Let $G: \mathscr{B} \longrightarrow \mathscr{A}$ be a functor. Three equivalent definitions:

• The codensity monad of G is the right Kan extension of G along itself:

(and is defined iff the Kan extension exists).

•
$$T^{G}(A) = \int_{B} \left[\mathscr{A}(A, G(B)), G(B) \right] = \varprojlim_{B \in \mathscr{B}, f : A \longrightarrow G(B)} G(B).$$

• If ${\mathscr B}$ is small and ${\mathscr A}$ is complete, get adjunction

$$\mathscr{A} \xrightarrow[\mathsf{Hom}(-,G)]{} [\mathscr{B}, \mathbf{Set}]^{\mathrm{op}},$$

and T^{G} is the induced monad on \mathscr{A} .

Two short but nontrivial examples

1. Let \mathscr{A} be a category and $X \in \mathscr{A}$. The codensity monad of $\mathbf{1} \xrightarrow{X} \mathscr{A}$ is the endomorphism monad End(X) of X, given by

$$(\operatorname{End}(X))(A) = [\mathscr{A}(A,X),X].$$

By Dubuc, for any monad S on \mathscr{A} , an S-algebra structure on X amounts to a map of monads $S \longrightarrow \operatorname{End}(X)$.

2. The codensity monad of G: **Field** \hookrightarrow **CRing** is given by

$$\mathcal{T}^{G}(A) = \prod_{\mathfrak{p}\in \operatorname{Spec}(A)} \operatorname{Frac}(A/\mathfrak{p})$$

 $(A \in \mathbf{CRing})$. For example,

$$T^{G}(\mathbb{Z}) = \mathbb{Q} \times (\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/3\mathbb{Z}) \times (\mathbb{Z}/5\mathbb{Z}) \times \cdots,$$

$$T^{G}(\mathbb{Z}/n\mathbb{Z}) = \mathbb{Z}/\mathsf{rad}(n)\mathbb{Z}$$

where rad(n) is the product of the distinct prime factors of n.

2. Ultrafilters

What ultrafilters are

Lemma (Galvin and Horn) Let X be a set and $\mathscr{U} \subseteq \mathscr{P}(X)$. The following are equivalent:

- \mathscr{U} is an ultrafilter
- whenever $X = X_1 \amalg \cdots \amalg X_n$, there is a unique *i* such that $X_i \in \mathscr{U}$.

There is a monad U on **Set**, the ultrafilter monad, with

 $U(X) = \{$ ultrafilters on $X\}$

 $(X \in \mathbf{Set}).$

Ultrafilters as measures

Let $X \in$ **Set** and $\mathscr{U} \in U(X)$. Think of elements of \mathscr{U} as 'sets of measure 1'.

Lemma (everyone) An ultrafilter on a set X is essentially the same thing as a finitely additive probability measure on X taking values in $\{0, 1\}$.

If an ultrafilter is a kind of measure, what is integration?

Given a finite set B, define

$$\int_{X} - d\mathscr{U} : \operatorname{Set}(X, B) \longrightarrow B$$

as follows:

for $f \in \mathbf{Set}(X, B)$, let $\int_X f d\mathcal{U}$ be the unique element of B whose fibre under f belongs to \mathcal{U} .

Justification of terminology: This 'integration' is uniquely characterized by:

- the integral of a constant function is that constant; and
- changing a function on a set of measure 0 doesn't change its integral.

Measures correspond to integration operators Let X be a set. Given $\mathscr{U} \in U(X)$, we obtain a family of maps

$$\left(\operatorname{Set}(X,B) \xrightarrow{\int_X - d\mathscr{U}} B\right)_{B \in \operatorname{FinSet}}$$

natural in B. That is: given $\mathscr{U} \in U(X)$, we obtain an element

$$\int_X - d\mathscr{U} \in T^G(X)$$

where T^{G} is the codensity monad of G: **FinSet** \hookrightarrow **Set**. So, we have

$$\begin{array}{rccc} U(X) & \longrightarrow & T^G(X) \\ \mathscr{U} & \longmapsto & \int_X - d\mathscr{U}. \end{array}$$

In fact, this defines an isomorphism of monads $U \longrightarrow T^{G}$. Hence:

Theorem (i) (Kennison and Gildenhuys) The codensity monad of
FinSet → Set is the ultrafilter monad.
(ii) (Manes) The algebras for this monad are the compact Hausdorff spaces.

Moral of this section

The notion of finiteness of a set automatically gives rise to the notions of ultrafilter and compact Hausdorff space

3. Double dualization

The linear analogue of the ultrafilter theorem

Theorem (i) The codensity monad of **FDVect** \hookrightarrow **Vect** is double dualization. (ii) The algebras for this monad are the linearly compact vector spaces (certain topological vector spaces).

Table of analogues:

sets	vector spaces
finite sets	finite-dimensional vector spaces
ultrafilters	elements of the double dual
compact Hausdorff spaces	linearly compact vector spaces.

Moral of this section

The notion of finite-dimensionality of a vector space automatically gives rise to the notions of double dualization and linearly compact vector space

4. Ultraproducts

What ultraproducts are

Let $S = (S_x)_{x \in X}$ be a family of sets.

An element of the product $\prod S = \prod_{x \in X} S_x$ is a family of elements $(s_x)_{x \in X}$.

Now let \mathscr{U} be an ultrafilter on X. We'll define the ultraproduct $\prod_{\mathscr{U}} S$.

Informally: An element of $\prod_{\mathscr{U}} S$ is a family of elements (s_x) defined almost everywhere and taken up to almost everywhere equality.

Formally: An element of $\prod_{\mathscr{U}} S$ is an equivalence class of families $(s_x)_{x \in Y}$ with $Y \in \mathscr{U}$, where

$$(s_x)_{x\in Y} \sim (t_x)_{x\in Z} \iff \{x\in Y\cap Z : s_x = t_x\} \in \mathscr{U}.$$

Alternatively: $\prod_{\mathscr{U}} S$ is the colimit of

$$\begin{array}{cccc} (\mathscr{U},\subseteq)^{\mathsf{op}} & \longrightarrow & \mathbf{Set} \\ Y & \longmapsto & \prod_{x\in Y} S_x. \end{array}$$

Can define ultraproducts similarly in any category with enough (co)limits.

The ultraproduct monad

Let $\ensuremath{\mathscr{E}}$ be a category with small products and filtered colimits.

Define a category $Fam(\mathscr{E})$ as follows:

- an object is a family $(S_x)_{x \in X}$ of objects of \mathscr{E} , indexed over some set X
- a map $(S_x)_{x \in X} \longrightarrow (R_y)_{y \in Y}$ is a map of sets $f: X \longrightarrow Y$ together with a map $R_{f(x)} \longrightarrow S_x$ for each $x \in X$.

Given a family $S = (S_x)_{x \in X}$ of objects of \mathscr{E} , we get a new family

$$\left(\prod_{\mathscr{U}}S\right)_{\mathscr{U}\in U(X)}$$

of objects of \mathscr{E} .

Fact (Ellerman; Kennison) This assignation is part of a monad on $Fam(\mathscr{E})$, the ultraproduct monad for \mathscr{E} .

Ultraproducts are inevitable

- Let **FinFam**(\mathscr{E}) be the full subcategory of **Fam**(\mathscr{E}) consisting of the families $(S_x)_{x \in X}$ in which X is finite.
- Theorem (i) (with Anon.) The codensity monad of $FinFam(\mathscr{E}) \hookrightarrow Fam(\mathscr{E})$ is the ultraproduct monad.
- (ii) (Kennison) When $\mathscr{E} = \mathbf{Set}$, the algebras for this monad are the sheaves on compact Hausdorff spaces.

Moral of this section

The notion of finiteness of a family automatically gives rise to the notions of ultraproduct and sheaf on a compact Hausdorff space.

Summary

Summary

- The codensity monad of a functor G is a substitute for G ∘ F (where F ⊢ G) that makes sense even when G has no left adjoint.
- Routinely asking 'what is the codensity monad?' is worthwhile.
- For example, it establishes that the following concepts are categorically inevitable:

ultrafilter double dual vector space ultraproduct compact Hausdorff space linearly compact vector space sheaf on a compact Hausdorff space.