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The moral of this talk

Whenever you meet a functor,
ask

“What is its codensity monad?”



Plan

1. What codensity monads are

With codensity monads as part of our toolkit:

The notion of . . . automatically gives rise to the notion of . . .

2. finiteness of a set ultrafilter
3. finite-dimensionality of a vector space double dualization
4. finiteness of a family ultraproduct



1. What codensity monads are

(Isbell, Ulmer; Appelgate & Tierney, A. Kock)



Loosely

The codensity monad of a functor G : B −→ A
is what the composite of G with its left adjoint would be

if G had a left adjoint

Grammar: given a functor G : B −→ A , the codensity monad TG of G is
a certain monad on A .

It is defined as long as A has enough limits.

The definition will be given later.



Characterization of the codensity monad
Motivation: Let G : B −→ A be a functor that does have a left adjoint, F .
We have categories and functors
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and this is initial among all maps in CAT/A from G to a monadic functor.

Theorem (Dubuc) Let G : B −→ A be a functor whose codensity monad
TG is defined. Then
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is initial among all maps in CAT/A from G to a monadic functor.

Corollary Let G be a functor with a left adjoint, F . Then TG = G ◦ F .



Three definitions of the codensity monad

Let G : B −→ A be a functor. Three equivalent definitions:

• The codensity monad of G is the right Kan extension of G along itself:

B
G //

G !!D
DD

DD
DD

D A

TG
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⇐

A

(and is defined iff the Kan extension exists).

• TG (A) =

∫
B

[
A (A,G (B)),G (B)

]
= lim←−

B∈B, f : A−→G(B)

G (B).

• Recall: if F : A −→ B with A small and B cocomplete, get adjunction

B
Hom(F ,−) //
> [A op,Set]
−⊗F

oo , e.g. Top
singular //
> [∆op,Set]
|−|

oo .
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(and is defined iff the Kan extension exists).

• TG (A) =

∫
B

[
A (A,G (B)),G (B)

]
= lim←−

B∈B, f : A−→G(B)

G (B).

• If B is small and A is complete, get adjunction

A
Hom(−,G) //
⊥ [B,Set]op,

Hom(−,G)
oo

and TG is the induced monad on A .



Two short but nontrivial examples
1. Let A be a category and X ∈ A . The codensity monad of 1

X−→ A is
the endomorphism monad End(X ) of X , given by(

End(X )
)
(A) =

[
A (A,X ),X

]
.

By Dubuc, for any monad S on A , an S-algebra structure on X amounts to
a map of monads S −→ End(X ).

2. The codensity monad of G : Field ↪→ CRing is given by

TG (A) =
∏

p∈Spec(A)

Frac(A/p)

(A ∈ CRing). For example,

TG (Z) = Q× (Z/2Z)× (Z/3Z)× (Z/5Z)× · · · ,
TG (Z/nZ) = Z/rad(n)Z

where rad(n) is the product of the distinct prime factors of n.



2. Ultrafilters



What ultrafilters are

Lemma (Galvin and Horn) Let X be a set and U ⊆P(X ).
The following are equivalent:

• U is an ultrafilter

• whenever X = X1 q · · · q Xn, there is a unique i such that Xi ∈ U .

There is a monad U on Set, the ultrafilter monad, with

U(X ) = {ultrafilters on X}

(X ∈ Set).



Ultrafilters as measures
Let X ∈ Set and U ∈ U(X ). Think of elements of U as ‘sets of measure 1’.

Lemma (everyone) An ultrafilter on a set X is essentially the same thing as
a finitely additive probability measure on X taking values in {0, 1}.
If an ultrafilter is a kind of measure, what is integration?

Given a finite set B, define∫
X
− dU : Set(X ,B) −→ B

as follows:

for f ∈ Set(X ,B), let
∫
X f dU be the unique element of B

whose fibre under f belongs to U .

Justification of terminology: This ‘integration’ is uniquely characterized by:

• the integral of a constant function is that constant; and

• changing a function on a set of measure 0 doesn’t change its integral.



Measures correspond to integration operators
Let X be a set. Given U ∈ U(X ), we obtain a family of maps(

Set(X ,B)

∫
X − dU

//B

)
B∈FinSet

natural in B. That is: given U ∈ U(X ), we obtain an element∫
X
− dU ∈ TG (X )

where TG is the codensity monad of G : FinSet ↪→ Set. So, we have

U(X ) −→ TG (X )
U 7−→

∫
X − dU .

In fact, this defines an isomorphism of monads U −→ TG . Hence:

Theorem (i) (Kennison and Gildenhuys) The codensity monad of
FinSet ↪→ Set is the ultrafilter monad.
(ii) (Manes) The algebras for this monad are the compact Hausdorff spaces.



Moral of this section

The notion of finiteness of a set
automatically gives rise to the notions of

ultrafilter
and

compact Hausdorff space



3. Double dualization



The linear analogue of the ultrafilter theorem

Theorem (i) The codensity monad of FDVect ↪→ Vect is double dualization.
(ii) The algebras for this monad are the linearly compact vector spaces
(certain topological vector spaces).

Table of analogues:

sets vector spaces
finite sets finite-dimensional vector spaces
ultrafilters elements of the double dual
compact Hausdorff spaces linearly compact vector spaces.



Moral of this section

The notion of finite-dimensionality of a vector space
automatically gives rise to the notions of

double dualization
and

linearly compact vector space



4. Ultraproducts



What ultraproducts are
Let S = (Sx)x∈X be a family of sets.

An element of the product
∏

S =
∏

x∈X Sx is a family of elements (sx)x∈X .

Now let U be an ultrafilter on X . We’ll define the ultraproduct
∏

U S .

Informally: An element of
∏

U S is a family of elements (sx) defined almost
everywhere and taken up to almost everywhere equality.

Formally: An element of
∏

U S is an equivalence class of families (sx)x∈Y
with Y ∈ U , where

(sx)x∈Y ∼ (tx)x∈Z ⇐⇒ {x ∈ Y ∩ Z : sx = tx} ∈ U .

Alternatively:
∏

U S is the colimit of

(U ,⊆)op −→ Set
Y 7−→

∏
x∈Y

Sx .

Can define ultraproducts similarly in any category with enough (co)limits.



The ultraproduct monad

Let E be a category with small products and filtered colimits.

Define a category Fam(E ) as follows:

• an object is a family (Sx)x∈X of objects of E , indexed over some set X

• a map (Sx)x∈X −→ (Ry )y∈Y is a map of sets f : X −→ Y together with
a map Rf (x) −→ Sx for each x ∈ X .

Given a family S = (Sx)x∈X of objects of E , we get a new family(∏
U
S
)

U ∈U(X )

of objects of E .

Fact (Ellerman; Kennison) This assignation is part of a monad on Fam(E ),
the ultraproduct monad for E .



Ultraproducts are inevitable

Let FinFam(E ) be the full subcategory of Fam(E ) consisting of the families
(Sx)x∈X in which X is finite.

Theorem (i) (with Anon.) The codensity monad of FinFam(E ) ↪→ Fam(E )
is the ultraproduct monad.
(ii) (Kennison) When E = Set, the algebras for this monad are the sheaves
on compact Hausdorff spaces.



Moral of this section

The notion of finiteness of a family
automatically gives rise to the notions of

ultraproduct
and

sheaf on a compact Hausdorff space.



Summary



Summary

• The codensity monad of a functor G is a substitute for G ◦ F
(where F a G ) that makes sense even when G has no left adjoint.

• Routinely asking ‘what is the codensity monad?’ is worthwhile.

• For example, it establishes that the following concepts are
categorically inevitable:

ultrafilter compact Hausdorff space
double dual vector space linearly compact vector space
ultraproduct sheaf on a compact Hausdorff space.

Thanks


