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Fractal spaces arising from dynamical systems

Take a function f : C→ C of the form

f (z) =
anzn + · · ·+ a1z + a0

bmzm + · · ·+ b1z + b0

(ai , bi ∈ C). Every such function f has a Julia set J(f), which is the subset
of C on which ‘f is unstable under iteration’. This is usually a fractal.

Example: If f (z) = (2z/(1 + z2))2 then J(f ) looks like this:
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Spaces of functions

Consider, say, the set of continuous functions [0, 1]→ R.

We have an intuitive sense of what it means for one function to be similar to
another.

But there are several different ways of making this intuition precise.

Example: Consider these two functions:

Are f and g close together? The area between them is small, but the
maximum difference between them is large.
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Some discrete spaces

When a message is transmitted through a noisy channel, errors may occur:

When your dreams turn to dust, vacuum

may become

Wehnyour dremas tunr to dusst, vzcuum

When DNA is replicated, errors may occur:

ACAGTGACTGATTTCGATCTAACGTAGTCATAAGTGTCG

may become
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We can’t really move continuously within the space of all messages or DNA
sequences.

But there is still a sense of ‘closeness’ between messages or sequences.
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A number-theoretic space

Usually, we think of two integers m and n as being ‘close together’ or
‘similar’ if |m − n| is small.

Here’s an alternative meaning for ‘close together’.

Fix a positive integer b.

Then we could regard m and n as ‘close together’ if m − n is divisible by a
large power of b.

Example: Take b = 10. Then 19 658 is far from 19 659, but much closer to
5 489 658.
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Every commutative ring R gives rise to a topological space Spec(R), called
the spectrum of R.

Its points are the prime ideals of R. E.g. the points of Spec(Z) are the prime
numbers together with 0.

It’s hard to visualize! For instance, here’s an attempt to draw Spec(Z[x ]):
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Different types of space

There are many different types of space, belonging to different branches of
mathematics.

• Metric spaces are rigid: points are a prescribed distance apart.

• Measure spaces are crumbly: you can break them into lots of pieces
without it making any difference.

• Topological spaces are floppy and rubbery: you can stretch them, pull
them, and deform them without it making any difference.

But you’re not allowed to tear them.
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How do we make the ‘no tearing’ rule precise?

We have to think carefully about what tearing means:

For instance, we have to distinguish between these three spaces:

[−1, 1]

[−1, 1]

[−1, 1]

[−1, 0) ∪ (0, 1]

[−1, 1]

[−1,−.01) ∪ (.01, 1]

And that means thinking carefully about open and closed sets . . .

. . . which is exactly where we’ll begin.
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