Codensity monads

Tom Leinster Edinburgh

These slides: available on my web page

Preview

This talk is about a canonical categorical construction: the codensity monad of a functor.

When applied to some familiar functors, it produces concepts including these:

- prime ideals and fields of fractions
- the radical of an integer
- ultrafilters and ultraproducts
- compact Hausdorff spaces and sheaves on them
- double dualization of vector spaces
- linearly compact vector spaces
- probability measures

• ...

The overall idea

Any functor with a left adjoint gives rise to a monad.

But even many functors *without* a left adjoint give rise to a monad. That's the 'codensity monad' of the functor.

If the functor (G) does have a left adjoint (F) then the codensity monad is the familiar thing $(G \circ F)$. But there are many other interesting and significant examples.

Plan

1. The definition, from many angles

2. Examples

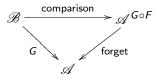
 The definition, from many angles
 (Isbell, Ulmer; Applegate & Tierney, A. Kock)

The shape of the definition

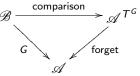
- Let $G: \mathscr{B} \longrightarrow \mathscr{A}$ be a functor.
- The codensity monad of G, if defined, is a monad T^{G} on \mathscr{A} .
- (I'll define it later.)
- It's not defined for *all* functors G, but it is defined for *many*, e.g. if \mathscr{B} is small and \mathscr{A} has small limits.

Motivation for the definition

Let $G: \mathscr{B} \longrightarrow \mathscr{A}$ be a functor that *does* have a left adjoint, F. We have categories and functors



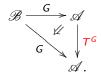
and this is initial among all maps in CAT/\mathscr{A} from G to a monadic functor. Theorem (Dubuc) Let $G: \mathscr{B} \longrightarrow \mathscr{A}$ be a functor whose codensity monad T^G is defined. Then



is initial among all maps in CAT/\mathscr{A} from G to a monadic functor. Corollary Let G be a functor with a left adjoint, F. Then $T^G = G \circ F$.

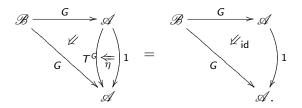
The definition, via Kan extensions

Definition The codensity monad T^G of a functor G is the right Kan extension of G along itself (if it exists).



The monad structure on T^G comes from the universal property of Kan extensions.

E.g. the unit map $\eta\colon 1_{\mathscr{A}}\longrightarrow \mathcal{T}^{\mathcal{G}}$ is unique such that



The definition, via ends

By the end formula for Kan extensions, the codensity monad T^G of $G: \mathscr{B} \longrightarrow \mathscr{A}$ is given by

$$T^{G}(A) = \int_{B} [\mathscr{A}(A, GB), GB] \in \mathscr{A}$$

 $(A \in \mathscr{A}).$

Here [-,-] denotes a power: if $S \in \mathbf{Set}$ and $X \in \mathscr{A}$ then $[S,X] := \prod_{s \in S} X$.

The definition, via limits

Recall: $G: \mathscr{B} \longrightarrow \mathscr{A}$ and T^G is a monad on \mathscr{A} , with

$$T^{G}(A) = \int_{B} [\mathscr{A}(A, GB), GB].$$

Equivalently,

$$T^{G}(A) = \lim ((A \downarrow G) \xrightarrow{\operatorname{proj}} \mathscr{B} \xrightarrow{G} \mathscr{A}) = \lim_{\substack{B \in \mathscr{B}, \\ f \colon A \longrightarrow GB}} GB.$$

The definition, for **Set**-valued functors

If $\mathscr{A} = \mathbf{Set}$ then $G \colon \mathscr{B} \longrightarrow \mathbf{Set}$ and \mathcal{T}^{G} is a monad on \mathbf{Set} , with

$$T^{G}(A) = \int_{B} [[A, GB], GB] = \lim_{\substack{B \in \mathscr{B}, \\ f: A \longrightarrow GB}} GB.$$

Equivalently,

$$T^{G}(A) = \{$$
natural transformations $G^{A} \longrightarrow G\}$

where

$$\begin{array}{cccc} G^{\mathcal{A}} \colon & \mathscr{B} & \longrightarrow & \mathbf{Set}, \\ & B & \mapsto & (GB)^{\mathcal{A}}. \end{array}$$

E.g. Let $G: \operatorname{\mathbf{Grp}} \longrightarrow \operatorname{\mathbf{Set}}$ be the forgetful functor and let A = n be a finite set. Then

 $T^{G}(n) = \{ \text{natural transformations } G^{n} \longrightarrow G \}$ = {maps $B^{n} \longrightarrow B$ defined for a generic group $B \}$ = {*n*-ary operations in the theory of groups} = free group on *n* generators.

2. Examples

First examples of codensity monads

- If G has a left adjoint F then $T^G = G \circ F$.
- Let $\mathscr{B} = \mathbf{1}$. A functor $\mathbf{1} \longrightarrow \mathscr{A}$ is just an object X of \mathscr{A} . Its codensity monad T^X on \mathscr{A} is given by

$$T^X(A) = [\mathscr{A}(A,X),X].$$

This is the endomorphism monad $End(X) = T^X$ of X. It has the property that for *any* monad T on \mathscr{A} ,

T-algebra structures on $X \leftrightarrow \text{monad maps } T \longrightarrow \text{End}(X)$.

(Compare group actions or representations.)

(Co)dense functors, 1

A functor $G: \mathscr{B} \longrightarrow \mathscr{A}$ is codense if its codensity monad is the identity. This means that

$$A \cong \int_{B} [\mathscr{A}(A, GB), GB] = \lim_{f \colon A \longrightarrow GB} GB$$

naturally in $A \in \mathscr{A}$. Loosely,

'every object of \mathscr{A} is a limit of objects in the image of G'.

Often \mathscr{B} is a subcategory of \mathscr{A} and G is the inclusion. Then codensity means:

'every object of \mathscr{A} is a limit of objects of \mathscr{B} '.

Dually, \mathscr{B} is dense in \mathscr{A} if (loosely):

'every object of \mathscr{A} is a colimit of objects of \mathscr{B} '.

(Co)dense functors, 2

E.g.

Let Mfd_n be the category of smooth *n*-manifolds and smooth maps.
 Let Euc_n be the subcategory of open subsets of ℝⁿ and smooth open embeddings.

Then $\mathbf{Euc}_n \hookrightarrow \mathbf{Mfd}_n$ is dense: 'every manifold is a colimit of Euclidean patches'.

• Similarly, $\textbf{CRing}^{\text{op}}\cong(\text{affine schemes})$ is dense in the category of all schemes.

Warning: (Co)dense functors can behave counterintuitively! E.g. (Isbell):

- A composite of dense functors needn't be dense.
- There's an example of a full subcategory B → A such that
 B is finite and A is large (and not equivalent to any small category), but the inclusion is both dense and codense.

Rings and fields, 1

The inclusion G: **Field** \hookrightarrow **CRing** has no left adjoint.

But it has a codensity monad! It's given by

$$T^{G}(A) = \prod_{\mathfrak{p}\in \operatorname{Spec}(A)} \operatorname{Frac}(A/\mathfrak{p})$$

 $(A \in \mathbf{CRing})$. Key ingredients of proof:

- For a homomorphism $\phi: A \longrightarrow k$ into a field k, ker ϕ is a prime ideal.
- Among all such homomorphisms with kernel \mathfrak{p} , the initial one is $A \longrightarrow A/\mathfrak{p} \hookrightarrow \operatorname{Frac}(A/\mathfrak{p}).$

E.g.

$$T^{G}(\mathbb{Z}) = \mathbb{Q} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z} \times \cdots$$
$$T^{G}(\mathbb{Z}/n\mathbb{Z}) = \mathbb{Z}/\mathrm{rad}(n)\mathbb{Z},$$

where rad(n) is the product of the distinct prime factors of n.

Rings and fields, 2

Some puzzles:

- 1. What are the algebras for T^{G} , the codensity monad of **Field** \hookrightarrow **CRing**?
- 2. What is $T^{G}(k[x])$, for a field k?
- 3. What is the codensity monad of the forgetful functor **Field** \longrightarrow **Set** (if it has one)?
- 4. What are *its* algebras?

Ultrafilters

Definition Let A be a set. An ultrafilter on A is a set \mathscr{U} of subsets of A such that whenever

$$A = A_1 \amalg \cdots \amalg A_n$$

 $(n \ge 0)$, there is a unique *i* such that $A_i \in \mathscr{U}$.

Think of the elements of ${\mathscr U}$ as the 'large' sets.

E.g.

- Given $a \in A$, get ultrafilter $\mathscr{U}_a = \{B \subseteq A : a \in B\}$.
- On a finite set A, every ultrafilter is of the form U_a.
 On an infinite set A, there are other ultrafilters—but proving this makes essential use of the axiom of choice.

Key properties of ultrafilters:

- they are upwards closed ($C \supseteq B \in \mathscr{U} \Rightarrow C \in \mathscr{U}$)
- they are closed under finite intersections
- if $B, B' \in \mathscr{U}$ then $B \cap B' \neq \emptyset$.

Ultrafilters from codensity monads

Theorem (Kennison and Gildenhuys) The codensity monad of the inclusion G: FinSet \hookrightarrow Set is given by

 $T^{G}(A) = \{$ ultrafilters on $A\}.$

Sketch proof Recall that for $A \in$ **Set**,

$$T^{G}(A) = \{$$
natural transformations $G^{A} \longrightarrow G \}$
= $\{$ natural families $(B^{A} \longrightarrow B)_{B \in FinSet} \}.$

So an element of $T^G(A)$ is a machine that takes as input a finite set B and a function $A \longrightarrow B$, and produces as output an element of B.

Equivalently, it's a way of selecting, for each partition of A into finitely many pieces, one of those pieces.

Equivalently, it's an ultrafilter on A.

Compact Hausdorff spaces from codensity monads

- We just saw that $A \mapsto \{$ ultrafilters on $A\}$ is a monad on **Set**.
- Theorem (Manes) The algebras for the ultrafilter monad are the compact Hausdorff spaces.
- Background Let X be a topological space. Ultrafilters on X can be viewed as 'generalized sequences'.
- An ultrafilter \mathscr{U} on X converges to $x \in X$ if every neighbourhood of x belongs to \mathscr{U} .

Facts:

- X is compact \iff every ultrafilter on X converges to *at least* one point.
- X is Hausdorff \iff every ultrafilter on X converges to *at most* one point.
- X is compact Hausdorff \iff every ultrafilter on X converges to *exactly* one point.
- So if X is compact Hausdorff, get function lim: $T^{G}(X) \longrightarrow X$.

Double duals

We saw that the codensity monad of $\textbf{FinSet} \hookrightarrow \textbf{Set}$ was something interesting.

```
What about FDVect \hookrightarrow Vect?
```

Theorem

- The codensity monad of **FDVect** \hookrightarrow **Vect** is double dualization ()**.
- The algebras of ()** are the linearly compact vector spaces (certain topological vector spaces).

Details omitted! This is the linear analogue of the story of ultrafilters and compact Hausdorff spaces.

Probability measures

Let Msbl be the category of measurable spaces (sets equipped with a σ -algebra).

Let ${\mathscr B}$ be the subcategory consisting of the single object

 $B = \{$ sequences in [0, 1] converging to $0\}$

and the affine maps $B \longrightarrow B$ (those preserving convex combinations). Theorem (Avery) The codensity monad of $\mathscr{B} \hookrightarrow Msbl$ is the Giry monad,

 $T^{G}(A) = \{ \text{probability measures on } A \}.$

Moral

Whenever you meet a functor, ask "What is its codensity monad?"

References

The paper titles below are clickable links.

- Tom Leinster, Codensity and the ultrafilter monad, *Theory and Applications of Categories* 28 (2013), 332–370.
- Tom Avery, Codensity and the Giry monad, *Journal of Pure and Applied Algebra* 220 (2016), 1229–1251.

Other references, including references to work attributed to other authors in these slides, can be found in 'Codensity and the ultrafilter monad'.