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Preview

This talk is about a canonical categorical construction: the codensity monad
of a functor.

When applied to some familiar functors, it produces concepts including these:

• prime ideals and fields of fractions

• the radical of an integer

• ultrafilters and ultraproducts

• compact Hausdorff spaces and sheaves on them

• double dualization of vector spaces

• linearly compact vector spaces

• probability measures

• . . .



The overall idea

Any functor with a left adjoint gives rise to a monad.

But even many functors without a left adjoint give rise to a monad.
That’s the ‘codensity monad’ of the functor.

If the functor (G ) does have a left adjoint (F ) then the codensity monad is
the familiar thing (G ◦ F ). But there are many other interesting and
significant examples.
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1. The definition,
from many angles

(Isbell, Ulmer; Applegate & Tierney, A. Kock)



The shape of the definition

Let G : B −→ A be a functor.

The codensity monad of G , if defined, is a monad TG on A .

(I’ll define it later.)

It’s not defined for all functors G , but it is defined for many, e.g. if B is
small and A has small limits.



Motivation for the definition
Let G : B −→ A be a functor that does have a left adjoint, F . We have
categories and functors
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and this is initial among all maps in CAT/A from G to a monadic functor.

Theorem (Dubuc) Let G : B −→ A be a functor whose codensity monad
TG is defined. Then
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is initial among all maps in CAT/A from G to a monadic functor.

Corollary Let G be a functor with a left adjoint, F . Then TG = G ◦ F .



The definition, via Kan extensions
Definition The codensity monad TG of a functor G is the right Kan
extension of G along itself (if it exists).
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The monad structure on TG comes from the universal property of Kan
extensions.

E.g. the unit map η : 1A −→ TG is unique such that
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The definition, via ends

By the end formula for Kan extensions, the codensity monad TG of
G : B −→ A is given by

TG (A) =

∫
B

[A (A,GB),GB] ∈ A

(A ∈ A ).

Here [−,−] denotes a power: if S ∈ Set and X ∈ A then [S ,X ] :=
∏

s∈S X .



The definition, via limits

Recall: G : B −→ A and TG is a monad on A , with

TG (A) =

∫
B

[A (A,GB),GB].

Equivalently,

TG (A) = lim
(
(A ↓ G )

proj−→ B
G−→ A

)
= lim

B∈B,
f : A−→GB

GB.



The definition, for Set-valued functors
If A = Set then G : B −→ Set and TG is a monad on Set, with

TG (A) =

∫
B

[[A,GB],GB] = lim
B∈B,

f : A−→GB

GB.

Equivalently,

TG (A) = {natural transformations GA −→ G}
where

GA : B −→ Set,
B 7→ (GB)A.

E.g. Let G : Grp −→ Set be the forgetful functor and let A = n be a finite
set. Then

TG (n) = {natural transformations Gn −→ G}
= {maps Bn −→ B defined for a generic group B}
= {n-ary operations in the theory of groups}
= free group on n generators.



2. Examples



First examples of codensity monads

• If G has a left adjoint F then TG = G ◦ F .

• Let B = 1. A functor 1 −→ A is just an object X of A .
Its codensity monad TX on A is given by

TX (A) = [A (A,X ),X ].

This is the endomorphism monad End(X ) = TX of X .
It has the property that for any monad T on A ,

T -algebra structures on X ↔ monad maps T −→ End(X ).

(Compare group actions or representations.)



(Co)dense functors, 1

A functor G : B −→ A is codense if its codensity monad is the identity.

This means that

A ∼=
∫
B

[A (A,GB),GB] = lim
f : A−→GB

GB

naturally in A ∈ A . Loosely,

‘every object of A is a limit of objects in the image of G ’.

Often B is a subcategory of A and G is the inclusion. Then codensity
means:

‘every object of A is a limit of objects of B’.

Dually, B is dense in A if (loosely):

‘every object of A is a colimit of objects of B’.



(Co)dense functors, 2

E.g.

• Let Mfdn be the category of smooth n-manifolds and smooth maps.
Let Eucn be the subcategory of open subsets of Rn and smooth open
embeddings.
Then Eucn ↪→Mfdn is dense: ‘every manifold is a colimit of Euclidean
patches’.

• Similarly, CRingop ∼= (affine schemes) is dense in the category of all
schemes.

Warning: (Co)dense functors can behave counterintuitively! E.g. (Isbell):

• A composite of dense functors needn’t be dense.

• There’s an example of a full subcategory B ↪→ A such that
B is finite and A is large (and not equivalent to any small category),
but the inclusion is both dense and codense.



Rings and fields, 1

The inclusion G : Field ↪→ CRing has no left adjoint.

But it has a codensity monad! It’s given by

TG (A) =
∏

p∈Spec(A)

Frac(A/p)

(A ∈ CRing). Key ingredients of proof:

• For a homomorphism φ : A −→ k into a field k , ker φ is a prime ideal.

• Among all such homomorphisms with kernel p, the initial one is
A −→ A/p ↪→ Frac(A/p).

E.g.

TG (Z) = Q× Z/2Z× Z/3Z× Z/5Z× · · ·
TG (Z/nZ) = Z/rad(n)Z,

where rad(n) is the product of the distinct prime factors of n.



Rings and fields, 2

Some puzzles:

1. What are the algebras for TG , the codensity monad of Field ↪→ CRing?

2. What is TG (k[x ]), for a field k?

3. What is the codensity monad of the forgetful functor Field −→ Set
(if it has one)?

4. What are its algebras?



Ultrafilters
Definition Let A be a set. An ultrafilter on A is a set U of subsets of A
such that whenever

A = A1 q · · · q An

(n ≥ 0), there is a unique i such that Ai ∈ U .

Think of the elements of U as the ‘large’ sets.

E.g.

• Given a ∈ A, get ultrafilter Ua = {B ⊆ A : a ∈ B}.
• On a finite set A, every ultrafilter is of the form Ua.

On an infinite set A, there are other ultrafilters—but proving this makes
essential use of the axiom of choice.

Key properties of ultrafilters:

• they are upwards closed (C ⊇ B ∈ U ⇒ C ∈ U )

• they are closed under finite intersections

• if B,B ′ ∈ U then B ∩ B ′ 6= ∅.



Ultrafilters from codensity monads

Theorem (Kennison and Gildenhuys) The codensity monad of the inclusion
G : FinSet ↪→ Set is given by

TG (A) = {ultrafilters on A}.

Sketch proof Recall that for A ∈ Set,

TG (A) = {natural transformations GA −→ G}
= {natural families (BA −→ B)B∈FinSet}.

So an element of TG (A) is a machine that takes as input a finite set B and
a function A −→ B, and produces as output an element of B.

Equivalently, it’s a way of selecting, for each partition of A into finitely many
pieces, one of those pieces.

Equivalently, it’s an ultrafilter on A.



Compact Hausdorff spaces from codensity monads
We just saw that A 7→ {ultrafilters on A} is a monad on Set.

Theorem (Manes) The algebras for the ultrafilter monad are the compact
Hausdorff spaces.

Background Let X be a topological space. Ultrafilters on X can be viewed as
‘generalized sequences’.

An ultrafilter U on X converges to x ∈ X if every neighbourhood of x
belongs to U .

Facts:

• X is compact ⇐⇒ every ultrafilter on X converges to at least one
point.

• X is Hausdorff ⇐⇒ every ultrafilter on X converges to at most one
point.

• X is compact Hausdorff ⇐⇒ every ultrafilter on X converges to
exactly one point.

So if X is compact Hausdorff, get function lim: TG (X ) −→ X .



Double duals

We saw that the codensity monad of FinSet ↪→ Set was something
interesting.

What about FDVect ↪→ Vect?

Theorem

• The codensity monad of FDVect ↪→ Vect is double dualization ( )∗∗.

• The algebras of ( )∗∗ are the linearly compact vector spaces (certain
topological vector spaces).

Details omitted! This is the linear analogue of the story of ultrafilters and
compact Hausdorff spaces.



Probability measures

Let Msbl be the category of measurable spaces (sets equipped with a
σ-algebra).

Let B be the subcategory consisting of the single object

B = {sequences in [0, 1] converging to 0}

and the affine maps B −→ B (those preserving convex combinations).

Theorem (Avery) The codensity monad of B ↪→Msbl is the Giry monad,

TG (A) = {probability measures on A}.



Moral

Whenever you meet a functor,
ask

“What is its codensity monad?”
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