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Introduction

The derivative nonlinear Schrédinger equation (DNLS) was first given by Rogister [Rog71] as a model for
the propagation of Alfvén waves in magnetized plasma with constant magnetic field, but appeared in other
contexts as well and is now regarded as one of the canonical nonlinear equations in physics. It also plays
a special role since it is among a few equations that is also completely integrable. In this direction, Kaup
and Newell [KN78] applied the inverse scattering method to solve the equation with vanishing boundary
conditions and they also point out the existence of solitons for this equation.

The linear part of this evolution equation is a Schrédinger dispersion which is counteracted by the
steepening tendency of the cubic nonlinearity with one spatial derivative. It is therefore a semi-linear
evolution equation which shares features with an algebraic NLS (both having second order dispersion,
and through a nonlinear transformation, DNLS resembles a perturbed focusing quintic NLS), but is also
close to the KdV equation (which is also completely integrable and has derivative in the nonlinearity).

This equation was studied extensively in the last two decades both in the Euclidean setting (spatial
variable being allowed on the entire real line) and in the periodic setting (when the spatial variable is
constricted to a bounded interval). Understanding the behavior of solutions corresponding to these two
settings is of interest on its own; however, periodic solutions are of interest partly because numerical
simulations typically use periodic boundary conditions.

The scope of this report is to review and clarify the application of the I-method in the periodic setting
as was performed in [Winl0], where it is claimed that the equation is globally well-posed in H*(T) for
5> % Specifically, we would like to investigate here whether the frequency restriction on the derivative-
cubic nonlinearity estimate is essential or not and, if possible, to quantify the mass threshold that is
involved in the smallness condition required on the initial data.

The state-of-the-art approach to the well-posedness theory for this problem is considered to be the
work of the “I-team” in [CKST01, CKST02] obtaining global well-posedness first for % < s < 1and
then by using a refinement of the same method down to s > %, both under the same smallness of mass
condition (see assumption (A)). The end-point case s = % was settled in [MWX11] also under (A). The
I-method, or the almost conserved energy method is itself a refinement of Bourgain’s high-low method in
which instead of a smooth cutoff (as the I-operator does), the initial data is sharply truncated in the
frequency space. Bourgain’s method was applied for the DNLS on the real line by Takaoka [Tak01], and

it turned out to be less successful (the regularity managed was s > %) than the CKSTT’s method.

It is worth emphasizing that the application of the I-method in the non-periodic setting heavily relies
on the local smoothing and maximal function estimates, as well as a refined bi-linear estimate which are
not available in the periodic setting. Also, on the periodic box, Strichartz estimates for the free (linear)
evolution are not available (mainly due to the lack of dispersive properties when one restricts the spatial
variable to a bounded domain), the only exception being the L*-Strichartz estimate which was proved
in a purely Fourier analytic method by Bourgain (1993). Hence, at the technical level the two settings
need to be treated separately. The technical tool that is used in the periodic setting is a bi-linear L*-
Strichartz estimate (Lemma 2.3.6) which provides a constant that decays as the spatial domain inflates.
The result that establishes the global well-posedness in H*(T) for s > % (Theorem 2.12.2) also provides
a mass threshold which was previously not quantified. The report concludes with a remark on potential
improvements/continuations of the analysis of this equation.



Chapter 1

DNLS on R

1.1 Basic features of the equation

Consider the derivative nonlinear Schrodinger equation
(DNLS) i + 2u = ipdp(Jul*u)

where ¢t € R and either z € R or z € T (the periodic setting); the unknown (¢, z) — u(t, x) is C-valued.

Without loss of generality, we may assume that 4 = 1. Indeed, if ;1 < 0, we may use the time-reversal
transformation u(t, z) — u(—t, ) and for any u > 0 we can use the rescaling u(t, z) — pu~'2u(t, z).

The nonlinearity can be easily expanded: 0, (|u|?u) = 2|u|?0,u+u?0,u. The first term is considerably
worse than the second one since for the later there are no known estimates.

The associated Cauchy problem

(1.1)

i0u + 0%u = i(2|u|*0pu + u?0,)
Ujt=0 = U0

with initial data uy € H®, for some s € R, has been studied extensively by various authors in the past two

decades, both in the Euclidean and periodic settings.

Scaling. It is clear that the linear Schrodinger equation is invariant under the transformation u(¢, z) —

X u(A%t, \x), for any A > 0 and any c € R. The presence of the nonlinearity forces a concrete value of c,

namely the equation (DNLS) is invariant under the scaling transformation

(1.2) u(t, z) = AN2u(N2t,A\z) = uy (¢, z)

The homogeneous Sobolev norm that does not “see” this transformation is that of L%(R), i.e. |lux(t)|z2 =
|u(t)| 2 at any time t. Thus, the problem (1.1) is L?-critical.

Complete integrability. For this equation new conserved quantities may be written down by identi-
fying coefficients in the series expansion of Ina(\), where a()) is a scattering coefficient (see [KN78]).
Alternatively, by Noether’s theorem, if a quantity @ (u) Poisson bracket commutes with the Hamiltonian
H(u) of the equation, then @ is conserved by the H-flow (see [Tao07, Thm. 1.29]).

Conserved quantities. For the present study, the consequence of the complete integrability that we are
using is the presence of an infinite family of conservation laws for (DNLS) (cf. [KN78]). Among them we



have the three important functionals:
M(u) := J ul*da (Mass)
R
1

P(u) := f <2|u]4 + Im(u 6xu)> dz (Momentum)

R

2 L6 3 o -
E(u) := |Ozul” + §|u\ +3 |u|” Im(u 0zw) | dz (Energy)

R

Gauge transformations. The nonlinear map G, : L?(R) — L?(R)

(1.3) G f(x) :=e ™ 2o |f(y)\2dyf($)

(where v € R), is usually employed to transform the (DNLS) into other Schrédinger-type equations (and
was used in [0za96, CKST01, CKST02, MWX11]). It is immediate that |G, f(x)| = |f(z)| (consequently
|G, fllze = ||f|lze for any p) and we can invert the transformation via

G, g(w) = e o 9P dy g )

Moreover, G, maps H*(R) into itself continuously (and so does G, ') for any 0 < s < 1 (cf. [CKST01,
Lem. 3.2]).

First, by multiplying (DNLS) with —i @, and conjugating respectively, we get
(Gpu)a — i(O2u)a = O (Julw)a ,  (Sa)u + i(0%u)u = 0u(Jul*T)u .

It follows that 0,(ut) — i (05(0un) — 0x(Opuu)) = 30,(|ul?) or equivalently
2 .3 4
(1.4) or(|ul?) = 20, Im(uo,w) + 5633(]11\ ) -

Next, set w(t) := Gyu(t) and by straightforward computations (easily justified for u € S;,) we
successively obtain:

Ow = oW 52 [ul?dy [@u — fil/uf 8t\u|2dy]
—0a0
bt = wd,w — ivlw* ;  Im(udya) = Im(wd,w) — viwl|?

o = eV i’y [i&tw —v (2 — 1/) lw|tw — 21/Im(w6zw)}

Pu = e o Il dy [02w + ivd, (Jw*w) + iv|w[* 0w — v*|w|*w]

10, (Jul?u) = Vo P [0, (jw|?w) — v|w|*w]

Thus u solves (DNLS) if and only if w solves
1
(DNLS,) idw + 2w = i(1 —v) dp(|ww) — ivw?d,w + v (2 - 1/> lw|tw .

We will also find it useful to have how the conserved quantities translate under the gauge transform.

—~
—_
ot

~—

3
<

S~—

Il

(1 _ y) ]ty + f T (wé, ) da
2 R

1
(1.6) E(u) = |[0,w|3s: + (v — %1/ + 5)Hw||6L6 + (Z - 21/) f |w|*Im (wd, @) dz
R



We introduce the following notations:
Pypnrs, = PoG_, : Egypnis, = EoG_,

and if used Epnrs, Ppnis refer to the same functionals as E, P respectively.

Choices of v = &, v = % and respectively v = 1 have been used in the literature, and the corresponding

2
equations are:
DNLS: 0w + 02w =i |w|?d,w
X
2

(DNLS%) 0w + 02w = |w| Ozw — 5@025 w — i|w’4

(DNLS,) idw + 02w = —i w0, W — §|w|4w

Thus the well-posedness analysis of (1.1) is equivalent with that of the Cauchy problem formed with
any of (DNLS1), (DNLS3) or (DNLS;) and initial data wg := Gug; notice that (A) is equipvalent with
2 4

|wolz2 < v2mw. While (DNLS1) looks simpler than (DNLS;), the term |w|?d,w is nicer in the analysis
2

than |w|?0,w; the choice v = 3 (also used in [Wul3, Sect. 4] in the half-line setting), is particularly useful
to simplify the energy functional to Egpnis, (w) = [|0zw]?, — 15[ w[%s
1

Assumption. Many of the results in the literature work under the following smallness condition on the
initial data

(A) luolZe < 27
which has the following immediate consequence:

Lemma 1.1.1. Suppose ug € H*(R) satisfies (A). Then
luolZe + 10zu0l 72 Sjug|,20 Egpnrs, (uo)-
In particular, Epnrs(ug) > 0.
Proof. By taking wg = Q%_Vuo, we have |wo|r2 = |ugl/r2 and
Eypnis, (uo) = EgDNLS% (wo) = [ 0xwolF2 — %Hon%a

The sharp Gagliardo-Nirenberg inequality | £ < 2| f|1]0xf[22, allows us to further get

1 ug|r2 4
EypnLs, (ug) = |\axw0“%2 - meOH%Q ||9g;w0”2L2 = HaachH%z (1 — <|\/2|77Lr> ) )
> Juols L (e
T 0 m
Eypnrs, (uo) = — i; 16” wol7e = ||w0H6L6E () -1
L2

[uol >

and also that
3 2
[0zuollzz = (v = 7 )lwol"wo + dowollzz <v lwolFs + [Ozwollr2 < S fuol |%xwollzz-

Taking into account (A) and |ug| s = ||wo| s, the conclusion follows. O



1.2 Review of well-posedness results in the non-periodic setting

The local well-posedness theory in the energy space H'(R) is credited to Hayashi-Ozawa. In [Tak99],
Takaoka showed that (1.1) is locally well-posed in H?® for s > % Previously, there were the works of
Tsutsumi and Fukuda [TF80, TF81]. This result is sharp since for s < 3, in [Tak01] it is shown that the
solution map ug — u(t) fails to be C3, while [BLO1, Theorem 1.2] proves that the solution map is not
uniformly continuous. Consequently, one cannot construct solutions u(t) € H*(R) by the standard fixed
point argument below s = %

Theorem 1.2.1 (Takaoka, 1999). Let s > % The Cauchy problem associated to the gauged DNLS
equation (DNLSy) is (unconditionally) locally well-posed in H*(R). More precisely, for any R > 0, there
exists T = T(R™%) > 0 such that for all ug € H*(R) with |uoll sy < R there exists a unique solution
ue C([-T,T], H*(R)) of (DNLS;). Moreover the solution map ® : ug — w is Lipschitz continuous.

Global existence of solutions in the Schwartz class was obtained by Lee in [Lee89] and also in [HO92].
Global well-posedness in the energy space was obtained by Hayashi in [Hay93] under the assumption that
[upl|z2 is sufficiently small.

The state-of-the-art approach to the well-posedness theory for this problem is considered to be the
work of the “I-team” in [CKST01, CKS™02] obtaining global well-posedness first for % < s < 1 and then
by using a refinement of the same method down to s > %, both under (A). The end-point case s = %
was settled in [MWX11] also under (A). The I-method, or the almost conserved energy method is itself
a refinement of Bourgain’s high-low method in which instead of smooth cutoff, the initial data is sharply
truncated in the frequency space. Bourgain’s method was applied for DNLS by Takaoka [TakO1], turning

out to be less successful since the regularity managed was s > %

Recently, Wu in [Wul3, Wul4] improves the mass threshold for the GWP in H'(R) for initial data
with mass up to 4w. He also remarks that the situation is different in the half-line setting where blow-up
solutions with negative energy (thus with [ug||7. > 27) do occur.



Chapter 2

DNLS on T

The local well-posedness in H*(T) for s > 3 was established by Herr in [Her06b, Her06a]. Global well-
posedness in H*(T) was proved/attempted by Win for s > 1 assuming smallness on the L?-norm of the
initial data (the threshold not being quantified); see [Winl0]. It seems that the expression of the almost
conserved energy that is used there is incomplete: a term coming from the particular modification of the
gauge transform is missing and this quantity is not conserved (see Remark 2.1.2 and Lemma 2.1.3 below).

We aim to establish when the local-in-time H?®-solutions exist globally in time. The necessary and
sufficient condition for v € C([-T,T]; H*(T)) as in [Her06a, Theorem 1.1] to be extended to a global
solution in C'(R; H*(T)) is

(2.1) sup |u(t)] . < oo, for all T' > 0.
—T<t<T @

Since DNLS enjoys the time-reversibility symmetry, we can concentrate on proving that the H;—norm of
the solution stays finite on any time interval [0, T7].

2.1 Gauge transformation

Because we need to make use of the natural scaling (1.2) of the equation, we work on T) = R/27\Z ~
[0,27)) (for simplicity we set T = Ty). Then, the Fourier modes belong to the lattice Zy := $Z. The
conventions for the Fourier transform, H* and X*? definitions are as in [CKS*03, Sect. 7]; see also section
2.2 below.

In order to deal with the derivative in the nonlinearity, we use the following gauge transformation for
the periodic problem, which was introduced in [Her(06a, Her06b] when proving local well-posedness for
DNLS in H*(T), 4 <s < 1:

(2.2) G, : LA(Ty) - L3(Ty) , Gu(f)(z) := e P TD@ f(z) |

where
1 2T

)@ = 505 |,

* 1
2 2
|| 1P @E = G511 a0
is the antiderivative of the mean-zero function |f|? — u(f), where
1 2
(23 pf) = oo U,

(notice that u(f) = u(G,(f)) so we might write in short p instead of u(f)). Indeed, since

T+27 ) 1 )
| 1P = 51 Baey Ay =0,

x

we get that Z(f) is 2w \-periodic, provided that f € L?(T)). Hence G, is well-defined. We notice that G,



is an isometry on L?(T)) and its inverse is G_,.

It can be shown that G, is bi-Lipschitz from H® into itself, for any s > 0 [HerO6b, Ch. 3], hence any
well-posedness result on a gauged DNLS can be stated for the original DNLS equation.

We recall the conserved quantities which are of interest in our analysis:

M(u) = L |u|2da (Mass)

=
£
i

j <1|u|4 + Im(u aru)) dx (Hamiltonian)
T, \2

E(u) := f <|6;5u|2 + %]u|6 + g u|? Tm (u @xu)> dz  (Energy)
Ta

We would like to see how the equation and these quantities transform under G,. So assume u has
enough regularity to justify all the calculus below and let w(t, z) := G, (u(t))(x). We use the shorthand
u, instead of d,u and the obvious analogues

uy = eI(w() (iv(Z(w))zw + wy)
T—EA O (iv(Z(w))w + wy)

Therefore, we have

1 2T 1
@ = (o [ 0lt ) = SO e,y @0) =

which leads to '
Uy = eTw®) [wa + iv(|w]?* - pw]

and
Im(utt,) = Im (v, — iv(|Jw* — p)|w]?) = Im(ww,) — vjw|* + vu|w]?
Using
Or|ul? = 2Re(u; @) = 2Re (iuge® + (uf*u),7)
= 2Re (i(ugl)y — duzlly + (Jul*utt)y — |ul*uiy)
_ 1
= 2(tm(utty))e + 2(Jul")e = 5 (Jul)a
=0, <2Im(uux) + 2]u|4>
we deduce
3 27T 3
(Z(w))¢ = 0¢(Z(u)) = 2Im (i) + ~|ul* — — 2Im(udi,) + = |ul* | (t,0) df
2 27A Jo 2
3
=9 (Im(w@x) — V|w|4 + 1/,u|w|2) + §]w|4 — o(w),
where

d(w) := ]{r 2 (Im(ww,) — vjw|* + vp|w|?) (¢, 0) + g|w|4(t,9)d0.

This gives the first term of the equation under the gauge transform

jup = e TW) <iwt —v <21m(wwm) + (g —2)|w|* + 2vp|w|? — qb(w)) w>



For the second term of the equation, we have

e = €70 (0T () (L ()0 + w,) + (L (w)0)s + )
— VT (= 2 (T(w),)?w + 2vT(w)pws + iVI(W) 40w + Wyy)

= Iw) (Waz — V2 (lw]'w — 2p|w]Pw + pPw) + v (3lww, + ww, — 2uwy))
The nonlinearity transforms into
i([ul*uw), = ™) (= vI(w)y|w[*w + i(jw[*w),)
= ei”I(w)( — vjw|*w + vpo|w|?w + 2i|w|*w, + inWm)
The equation satisfied by w is

2

3
W + Wey =V (i|w|2wz — W Wy + (5 —2v)|w|*w + 2vp|w|*w — gb(w)w)

+ V2 (Jw|*w — 2uw]Pw + pPw) — iv(3|w|*w, + W, — 2pwy)
+ (= vw|*w + vulwPw + 2i|w|Pw, + iw?,)
1
= 2i(1 — v)|w|Pwy + (1 — 20)w*W, + vu|w?w + 1/(5 —v)|w|w
+ 2ivpw, — v(p(w) — vp?)w

Denoting
vlw) = v(w) ~ v =

(21m(wwx) + (g - 2u)|w|4> (t,0)d0 + v*u*
Tx

we can write
Wy + Wy — 2ivpw, + Y(w)w = 2i(1 — v)|wPw, + i(1 — 20)w?T, + vp|w*w + 1/(% —v)|w|tw
We cancel the linear term 2ivuw, by using the transformation w(t, x) — v(t,z + 2vut), and so
(GDNLS,) 0y + Vg + V(0)v = 2i(1 — v)|v|?vs +i(1 — 20)0*T, + vpulvPo + I/(% — )|t
For the conserved quantities listed above, we obtain M (u) = M (w),
H(u) = fT %]w|4 + Im(w@,) — v|w|* + vp|w|?
A

1
= <2 — I/) Hw”%‘l('ﬂ') +J Im(w@x)dx + )\l/u2
Tx

and

: 1 3 _
E(u) = L e + il — phul + Shwl® + S fuf? (n(wi,) - viul* +vall?)

A
= ||lwg|? + (2 - §V + L w86y + 3 2v |w|*Im (w,)
— IEILA(TY) 92 9 L5(Ty) 2 T, r

3
+ pv (2 - 21/) |lw||7a + 2/WJ Im(ww, )dz + A\uv?
T

3 3 1 v

2 2 — 2 6 4

= lwalz2er, + <2 - 2’/) JTA |w|"Im(ww,) + <V —ov T 2> lwlzeer,) + §NHwHL4('H‘>\)
+ 2upH, (w) — AW

By changing the variable of integration, we note that all the conserved quantities are invariant under the

10



space translation transformation w(t,z) — v(t,z + 2vput).
We introduce the functionals

1
H,(v) :=Im (L vvwda:) + <2 — V) HvHiz;(T)
A

(2.4)
3 1 3 _ v
E,(v) =lvs)2a(q, + <u2 — vt 2) [0l 6z, + (2 - 21/) JT |v[’Im (vD,) + 5#“””%4(1&)
A

and we call them respectively the momentum and the energy of (GDNLS,). Since p(v(t)) and H,(v(t))
are conserved, the above two quantities are also conserved provided v is a smooth enough solution of
(2.8).

Lemma 2.1.1. Let f € HY(T) with HfH%Q(T) < ¢ for some § > 0 small enough. Then, we have
(2-5) Haﬂcf“%?(m) S Eu(f) :

Moreover, the implicit constant above is independent of A\ and we can take 6 = 2+/2.

Proof. Consider g := g%_yf. Then |g|z2(ry) = [ fllz2(r,) and

E,(f) = Eo(G-vf) = Eo(G-1G,_29) = Eo(9_29) = Es(g).

oY

By Cauchy-Schwartz and Gagliardo-Nirenberg inequalities (see Lemma 2.3.5), we have

3 2
26) 02 2y 5 (14 0= DA 1onolac,y
It remains to show that

(2.7) 102917 2r,) < E3(9).

3
1

Gagliardo-Nirenberg implies

1 2 1
6 2 2 2 4 2 4
lolls < (Ionalzololis + o laliololie) <2 (10solBalald + 52 Lol lal

and therefore

B3(9) 100l — 512salalalts — 1o lolBalole + o lol3alols
10l (1 ol ) + grzlofalols
> 1900 g2,
Hence, as long as [ g[2, < 2v/2, we can obtain (2.7). O

In what follows, we work with v = 1 so that the “bad term” |v|?v, doesn’t appear in the gauged
equation (GDNLS, ). We have

1
(2.8) v — ey = —02T, — ipv*v + §|v|4v + i (v)v

with the corresponding energy functional (i.e. for v = 1, as defined in (2.4))

(2.9) B(v) = L <|v§| _ %MQIm(vm) + ;,u(v)|v|4) da.

11



We can group the cubic and respectively quintic nonlinear terms in the right hand side of the equation
and write

(2.10) U — gy = —T (v) + %Q(v) :

where

T(v) = <vvm py 7{“ Im(vvx)d:v> v

Q(v) = (w‘—f |v|4dx>v—2f jo2de (m?— / |v\2dx) N
Tx Ty Ty

Remark 2.1.2. If v is a smooth solution of (2.8), |v|/z4 is not necessarily conserved. Indeed,

Otv)|1a = 4Rej |v|*Tow da = 4Ref

Ta Ty

0|20 (ivge — T (v) + %Q(v)) dx = 4Reif |0|*Tvs d + h.o.t.
Tx

and

Reif |0]*Tv3s dz = Re(—i) | 0p(v?)v, da = Imf @02 + 2o} ve]?) dz =Tm | %02 dx
T)\ T)\

Tx Tx

The higher order terms of d¢[v||7, cannot cancel the fourth order term 4Im STA 202 da.
However, by Sobolev embedding and interpolation of H® spaces, we have

3 1
lolps < ol 1 < [l f2lvl
H4
and therefore
1 5 L0 2 1. 10 2 2
(2.11) SAO)v]e T Jolzelolm = gIIUHLz +efvllg < gHvlle +elv]z2 + el dzv| e

We therefore consider the essential part of the energy functional (2.9), namely

1
(2.12) EW) = |0zv]32 — Imf |v|vT, dx
2 Ty,

which in conduction with a mass term will still be able to control the square of the H'norm of v. It is
worthwhile mentioning that this is the same expression as the energy corresponding to (DNLS;) on the
real line.

Lemma 2.1.3. For every € > 0, there exists 6 = §(¢) > 0 such that if f € H(T)y) with Hf\\%z(%) <4, we
have

(213) 100 s(a,) < ECF) + 2n()?

with the implicit constant independent of \. Moreover 6 / 2+/2 as € \, 0.

Proof. 1t follows from the proof of Lemma 2.1.1 and Remark 2.1.2. O

12



2.2 Fourier transform and periodic function spaces

1

The convention * we are using for the (spatial) Fourier transform of a 27w A-periodic function is

- 27\ ) 1
fk) = f e~ R f(x)de , kelZy= 3 Z
0

which is inverted by
flx) = et f(k) . wel0,2mA].
271')\

kEZ)\

The convolution products on Ty and Z are computed by
27

fegx) = fle=y)g(y)dy , axbk KZZ

0

respectively. For clarity we should write %) for the convolution on Zjy to emphasize the factor in front of
the sum, but we ignore the subscript as we are using  instead of the regular * symbol. As such,

Folk) = f*g(k)

By endowing Z) with 5;d# (scaled counting measure), the L*(T,) and ¢2(Z,) inner products are

27T\
(f, g>L2(’]I‘A) = flx)g(x)dz , {a, b>e2 (Zx) = o1 )\ 2
0 keZy
Then, the Plancherel and Parseval identities are
N 2T 1
fi@rery) =, 0rg,) < . f(@)a(x) =9\ Z
keZy

271')\ 1
oy = fla@y = | 1f@kde = 5 3 10

k‘EZA

The Sobolev space H*(T)) is the completion of the 27 \-periodic C* functions with respect to the norm
given by

£ sy = 1B F )z = 5oy D3 RPIFEIP ~ 5 D ™| k)

kGZ)\ kEZ)\

We sometimes choose to ignore (powers of ) 27 from every factor appearing in front of sums over (subsets
of) Zy as they don’t play a significant role in the estimates. However, we need to keep track of powers of
A as we will perform a rescaling of the associated Cauchy problem.

With a slight abuse of notation, the space-time Fourier transform of v : R x T — C belonging to the
class of Schwartz functions in ¢ and 2w A-periodic C® functions in z (class denoted Sper) is

u(r, k) = fR . efi(THkx)u(t,a:) dtdv , TeR, ke,
xTy

! has the advantage of a clean differentiation rule on the Fourier side é\f(k) = zkf(k‘), but needs to deal with the factor
27\ at the inversion.
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Nonlinear interactions take on the Fourier side the form

wo(r, k) = U o(r, k) = 277)\ ZJ (11, k1)0(T — 71,k — k1) dmy
k1€Z)\

> U(r1, k1)0 (7o, k) dmy
2mA k1+ko=k LH—’Q T

Corresponding to the linear Schrodinger evolution id;u + 02u = 0, we define
[ull xe@ury) = KT+ E50(T, k)| 202
For I a time interval, the (time) restricted X**-nom is
|l xsb(rxmy) = E{ U | xs0@mxry) : Ur = u}

In general, |ulyss and |[U]xss = [(T)5(r — k2Ha(r, k)HL%Ki are not comparable. It is useful to

introduce the conjugate space corresponding to the second norm, denoted either X (as in [HerO6b]) or
X b 42 (as opposed to X* b XS b 42> see [Tao07, Sect. 2.6]).

As a matter of notation, a+ denotes a quantity a + ¢ with a € R and ¢ > 0 arbitrarily small and
independent of any other constants present in the relation in which it appears.

2.3 Linear and bi-linear estimates

Along with the straightforward embeddings X2:%2 «<» X101 for any s9 > s; and by > b; we also have:

Lemma 2.3.1 (Sobolev embeddings).
LIf2<p<oandb> 5 — 5, then X**(R x T) — LYH3(R x T) with
(2.14) lulr sy S lulxso@xr)

Also, X*2T(R x T) — LPH(R x T) and

(2.15) lull L g @ 5wy S Nl s b+ @xT)
2. If2<p,g<0,b> 35—+, 8>3 — 1, then X**(R x T) — LyLE(R x T) with
(2.16) lulrrs@xTy S lulxss@x)

Also, X232+ (R x T) — LPHS(R x T) and

(217) e ery S Pl gy g,
Lemma 2.3.2 (Strichartz estimates).

(2.18) el 3 amy S Bollgo g g
(2.19) HUHL4 ®xT) S HXO 2 (RxT)
(2.20) ez, ety S Pl o g g

For the proof of the above two lemmas, we refer to [Her06b, Prop. 2.2.3, Prop. 2.2.4].
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Lemma 2.3.3. Let 0 < 6 < 1 and suppose s = (1—0)so+0s1, b = (1—0)by+6by for some sg < s1,by < by.
Then, we have
X0t o X0 X0 e < Jul xsoo Ul o

For example, by interpolating the LS-Strichartz estimate with the Sobolev embedding (2.16) (for
p=q=20,bs>= )Wealsohave

(2.21) lull g, @xmy = Il gor 3 - g,y

Remark 2.3.4. If u is smooth and 2m-periodic, then u)‘(t, x) = )\_%u(%, %) is 2w A-periodic. We have
the following

HU HL‘IU (RXTy)
and for A > 1 and s,b > 0, we have (Ak) < A(k) and thus

HuHLW (RxT) = )\

fulfeenge ~ A | SOH G+ NHB (O 3T dr

geZ
~ AT 6)\3J DIONTTOPO (AT 4+ AT LeV2B A (N=27, A 5)\2
{eZ
e f SRR + K22 (7, k)2 dr
keZA

< )\_2)\25A4b“u>\HXS7b(RXT)\)

which gives

< /\71+s+2bHu

A
HUHXSJ’(RXT) N HXSJ’(RXTA)

Therefore, applying the Strichartz inequalities for u, we derive the scaled versions:

A A
(2.22) [w e sz @xmy) S A1 o
(2.23) Hu HL4 (RxTy) ~ Hu HXO 8 (RxT,)
A
(2.24) Ju? Izs ,®xTy) S S A u Hx‘”»%*(Rx’H‘)\).

and the interpolated LS-estimate:

A
(2.25) u? HLG (RxTy) S A u |‘X0+7%—(Rxm)'

All the Sobolev embeddings as they appear in Lemma 2.3.1 hold on any Ty without any powers of A on
the right hand sides. Also, all the estimates above hold with X -norms on the right hand sides.

Lemma 2.3.5 (Gagliardo-Nirenberg type inequalities in the periodic setting).
LS = w(D I z2eryy < 10 flreemy 172
2 112 eryy < U0 fllz2cry) + zax flrea) 112

Lemma 2.3.6 (bi-linear L?-Strichartz estimate). Let n € C°(R) a smooth time cut-off with compact
support and 0 < n(t) < 1. Suppose ui,us € Sper are supported in the Fourier space in {|ki| ~ N1} and
{|k2| ~ Na}, respectively at all times t. Then

(2.26) Jurua sz eny) S COCND futl oy 2l o

provided that either N1 » No or N1 ~ No and the two Fourier-space supports are on the same side of the
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real line, and where

1 L if Ny <1
(2.27) CAN) =4, .1 ?f '
(X‘Fm)? s Zle > 1

Proof. See [Winl0, Prop. 2.1]. O

Remark 2.3.7. By the L-Strichartz estimate (2.19) and Holder inequality, we have
(2.28) urtslzz_momyy < lurls @onyyluzlcaery <l o lul o

We will only use the bi-linear estimate above in the regime A < Nj , hence C(\, Np) ~ A7z Hence, by
interpolating (2.26) and (2.28), we have

_1
(2:29) lurvzlzz mxry) € A72 " lunll o1 luall o3

2.4 Multilinear forms

For n even integer, we define the n-multilinear form of f associated to the multiplier M,, : R® — C as

1 ~ fa ~ fa
i )= gt ;Z My (K, Kz, oo on) f (k1) f (k) -« f (k) f ()
k12..n=0

As in [CKS™T01], we use the short-hand notation k12 _, := ki + ko + ...k, and kj_o := k1 — ko, etc.
Also, denote I',,(Ty) := {(k1,...,kn) € (Z\)" : ki12.n, = 0}; we endow (Z))" with the Dirac measure
do(k1 + ko + ... + kn).

Hence, we can write

1
f |’l)32£‘d.1‘ e —Ag(klkg;v) , Im |v|2vﬁxda: = —ZA4(1€13_24;U)
Ta

Ta
and we also have

1 ) 1 1
Sal) JTA o] de = A2 (1;0)A4(150) = S A6(Lki,=0)5v)

(where 1x denotes the characteristic function of a set X). Therefore, (2.9) can be written using the
multilinear forms as

1 1
(2.30) E(U) = —AQ(kle;U) + §A4(k13_24; U) + ﬁ/\z(l; U)A4(1;1))
and also as
1 1
(2.31) E(U) = —Az(k‘lk’g;v) + §A4(/€13724; U) + §A6(]l{k12=0};’0)

since k12 = 0 implies k3q56 = 0 on T'g(T)).
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2.5 The I-operator and modified energy

We define the Fourier multiplication operator

~

I+ H(Ty) — H'(Ty) , If(k) = m(k)f(k)

where m : R — [0,1] is an even, monotone on semiaxes, smooth function

1 CAffEf S N

m(e) = <%)1_s , if [¢] » N

and <s<1.

We often use the following properties: 0 < m(£) < 1, (¢)m(€) = 1, the map & — m(€)?¢2 is increasing
on (0,00) and & — m(£)2¢ is increasing for € » N. Hence, for regularities % < s < 1, we have

(2.32) m(€)*(€) 2 1.

This indeed holds since for |£| < N we have m(§) ~ 1 and (£) > 1, while for |{| » N we have (§) ~ [¢|
1-2s

and m(€)2|¢] = N (%) > 1.

We note that I is continuous and has a smoothing property:

(2.33) lulms S [ Tulgr < N'2|ufms
(2.34) [ ull gn < NPl
Indeed,

2—2s
S RFARE £ X @rmkawP s 80 Y () @ mac?

k<N kSN k<N

and
2

< Y bt <y () aw

k>N k>N

2 <k> <k>2 25

k>N

Using the interaction representation of the X*’-norm, we can write (2.33) in the form
(2.33) [ul o0 < [Tulx10 < NP7 ul o

With F as in (2.9), we consider the modified energy for v € H*(T)):
(2.35) En(v) := E(Iv)

Heuristically, we know that ¢, E(v(t)) = 0 for v € H'(T)) and we expect the modified energy to be “almost
conserved” for v e H*(T)).

In multilinear forms, we have

1
En(v) = —Aa(ki1kamima;v) + < As(k13—2amimamamay; v)
(2.36) 8

1
+ ﬁAQ(mlmQ, v)Ag(mimamama; v)

Remark 2.5.1. In view of Remark 2.1.2, in the second generation of the I-method we refine the functional
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En(v) := E(Iv), which can be written as
1
(2.37) S(U) = —Ag(k‘lk‘zmlmg;v) + §A4(k13,24m1m2m3m4;v)
In what follows we need to derive the time-differentiation rule for a multilinear form A,,(M,,;v) where
v is a smooth solution of (2.10). Hence, we compute:
— — 1 1
(k) = (vT,) sx D(K) =+ Y, wUa(k)i(ks) = 55 ), O(k)Ta(k2)D(ks)

ki+ks=k k1+ka+ks=k

— 5 D ikad()i(k)iks)

k1+ko+ks=k
Then, by integration by parts and periodicity of v, we can write
2iIm | vUdx = J VU dr — J T dr = J vigdx — |[v2(\) + |v]?(0) +f VUzdr
Tx Tx Tx Tx Tx
2

- 2f VBpdz = 2055(0) = 200, Tn(0) = = Y D(kn)ik20(ka)
Ty A k _
1+k2=0

and thus by symmetrization

<<2i1m JTA vvxd:ﬁ> U>A(k) ; SO a0k ) (k)0 (k)

k1+ko=0
ks=k
1 RPN
= D ik (k)0 (ka)B(ks) + )\2 D ik (ks )v(ka)B(k1).
k123=k/‘ k123 k
k:3=k; kl k

This allows us to write using the inclusion-exclusion principle

1 ~
T (v)(k) = )\2 D7 ikod(k)o(ka)(ks) + i D7 koD )0 (ka)B(ks)
k123 k k123:k
k1#k ki=ks=k
ks#k
1 SRS
= AQ D7 ikgB(k1)(ks)D 0(ks) + 15 i(=k) (k)0 (K)o (k)
ki23=k
k1#k
ks#k
For the cvintilinear term, write Q = Q1 (v) — 2Q2(v). We have
— 1 . ~ . 1 . ~ .
Q)(k) =37 Y, 0(R)O(k)D(ks)0(ka)B(ks) = 57 D, D(kn)0(ka)0(ks)D(ka)3(ks)
k12345=k k12345=k

ks=k

:% ST B0k )5 (k)0 k) (k) B (k)

k12345=k
ks#k
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and for Q9 we have

1~ 1 ~ 1 ~
v]2der = ~v5(0) = = 0%, 0(0) = — 0(k1)v(ka
TA| ‘ )\ ( ) )\ AQ kuZ;O < ) )
) 1 - 1 -
<<’U‘2 _ 7’[]1‘/\ v’de> U) (k) = ﬁ Z @(kg)ﬁ(/ﬁl)@(l%) — p Z @(kf3)ﬁ(l€4)i}\(k‘5)
k3as=Fk k3as=k
ks=k
abv D B(ks)v(ka)D(ks)
k3as=k
ks#k
We put these two together and obtain
1 N A ~
Q(v)(k) = 3 D 0k v(ke)D(ks)0(ka)(ks)
k12345=k
12=0
ks#k

We symmetrize:

20,0 = 35 3, PRk kaEs) + 15 D) (k) (k2)O ks B (ka)O(ks)

4
k12345:k k12345:k
12=0 k3a=
ks#k ks#k

Hence, by the inclusion-exclusion principle

OW)(K) = 35 20 BBk D (h)Ohs) + 5 D) (k) (k2)0(hs)T(ka)O(ks)

klgszﬁkzk ki12345=k

5 5
k12#0 k1a=ks4=0
k34#0

Notice that the range in the second summation above is over an empty set since k19345 = k and ki3 =
ks4 = 0 imply ks = k, so if we denote = := {kl, vos ks €72y : kiosas = k, ks # Kk, ki1s # 0, k3g # 0} we can
write

Q)(k) = w3 D, O(k1)u(k2)0(ks)0(ka)0(ks) = As(1z,;v)

k12345=Fk
ks#k
k12#0
k347#0

Then, for v a smooth solution of (2.10), we have

v = vy — T (V) + %Q(v)
vy = _i@xac - T(@) - %Q(@)
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(we used T (v) = T (v) and Q(v) = Q(v)), and we can now derive the differentiation rule

Auh (Myy: v) — X}_l k 2_0 [600(k)5(hs) -+ Bka) + (k)0 (k) - Bka) + .|
= Anl_l k Z_O [—m%a<k1)%(k2)-..%(kn) + 0(k1)ik30(kz) - - 0(ky) _]
g 2 [Tk - Blk) + 0T @) k) -+ k) + .|

k12..n=0
f S [k - Flh) — 200 Q) () T lh) + ]

k12..n=0

obtaining the following:

Lemma 2.5.2. If v is a (formal) solution of (2.10) and M, a multiplier of order n, then

OAn(Mys;v) = ( W (= 3k2>

7=1
n
(2.38) —iNp40 (Z X ki ( @Zz+ + ]lT;H);v)
Jj=1
’[: n
14 o
+ §An+4 (1211 1)/~ X} (My)1 EZL+4’U>
where Xé» is the elongation operator (at position j, of length 1),
(2.39) @zz-&-Q = {(kl, ...,kn+2) el kj + kj+1 #0, kj+1 + kij+2 #* 0}
(240) T‘771+2 = {(k‘l, ...,k?n+2) € Fn+2 : k?j = k‘j+2 = — j+1}
and

(2.41) 234 = {(k1, oo knga) € Dnga by + kjur # 0, kjyo + kjos # 0, kj + kjo1 + kjuo + kjiz # 0}
for1<j<n
We extend the sets appearing in the above differentiation rule for indices j > n with the understanding

that j + 1,7 + 2, etc. are running circularly over {1,2,...,n + 2}. It is important to notice that @i and
T are independent of j, so we denote them ©4 and Y4 respectively. Also,

Yo =33 =53 ={keTg: ko #0,ksg # 0, ks # 0}

(2.42) 9 4 6
Y =25 =2 ={k€F62/€23?&0,k45#0,k61 750}

Proposition 2.5.3 (modified energy increment).
T+6

(2.43) EN(’U(T + 5)) — EN(U(T)) = fT [A4(M4; U) + AG(MG;’U) + Ag(Mg;’U) + Alo(Ml();’U)] dt
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where the multipliers M; : I'; — C are given by
L 21.2 21.2 21.2 21.2
M4(k) = Clm1m2m3m4k‘12k‘13k‘14 + CQ (mlkl /{73 + m2k2k4 + m3k3k’1 + 7714]<34k‘2) 1194 (k)
My(K) = Cy ((mih? + m3k3 + m3k2) Loy (k) — (m3kd + m3kd + m2kd) Ly (K))
+ 04 <m123m4m5m6/€46k2(]1@é + ]lTé)(k) — m234m5m6m1/€15k3(]1@g + ]ng)(k)

+m345m6m1m2k26k4(]l@g + ﬂrg)(k) — m456m1m2m3k13k5(]l@é + ﬂTé)(k))
+ Csmimamzmamsmeksakas Lx,,—o0 (k)
Mg(k) := Cg(mizzasmemrmskizzast Ley — mimogasemymskiz sz
+ mamamaysermskizaser Lyg — mamamamaserskizlys)
+ C7(m%23m5m6m7mgk‘2]l{k1234=0}(]l@é + ]lTé) + m%m5m6m7m8k31{k1234:0}(1195 + ]ng)
+ m%m345m6m7mgk4]l{k12=0}(]l@g + ﬂTg) + m%m3m456m7m8k55]1{k,12:0}(]leg + 1Y§>
+ m%m3m4m567m8k6]l{k12:0}(]l@g + ﬂrg) + m%m3m4m5m678k71{k12:0}(]l@g + 1’1‘2))
Mo (k) := Cs(mi2sasmemamemomiol 54560} Ix1 — M1M23456M7M8M9MN10 L (k135456 =0} 152,
+ m1mam3ysermgmomiol g, ,—op Ixs  — mimamamasersmomiol g, —o} Isa,
+ m%m3m4m56789m101{k12:0}ILE?O — M1M2M3M4M5Me789[10] ]l{km:o}ﬂz?o)

with constants Ch1 = Cy = —%, C3 = —%, Cy = £705 =1, Cg = %,C’7 = —%, Cy = ﬁ'. Moreover, if
|kj| « N for all j, then the multipliers vanish.

Proof. Using (2.31), we have

Ex(v(t)) = —Ag(krky: To()) + ém(klg_% To(t)) + %Ae(l{kuzo}; To(t))
= —Ao(mimakika;v(t)) + %A4(m1m2m3m4k13_g4; v(t))
+ %Aﬁ(m1m2m3m4m5m6l{k12=0}5 v(t))
In what follows, we omit writing v(¢) in A expressions. For the first and last term, we know that ko = —k;
and thus my = m(ke) = m(k1) = mq, while for the second term koy = —ki3, and therefore the modified

energy expression simplifies to
1 1
(2.44) En(v(t)) = Ay(m2k?) + 1A4(m1m2m3m4k13) + §A6(m%m3m4m5m61{ku=0})

Then we compute the d-increment of the modified energy via

T+6

Ex(u(T + 8)) — Ex(u(T)) = L 0, En(v(t)) dt ,

for which we use the differentiation rule (2.38) to obtain

Oeha(mik?) = iha(miki(—hT + k3))
— iAa(misskisska (Lot + Lyy) + mikTks(lez + lyz))

i 2 2 272
+ §A6(m12345k1234512}5 - mlkllzg)

Since k1o = 0, the As’s multiplier above is 0.
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Also,

OeNg(mimamgmykys) = ihg(mimomgmakis(—k} + k3 — k3 + k3))
— iA6(ml23m4m5m6l€1235’€2(]l@}3 + ]lré)
+ mimazamsmekisks(Lez + Ly2)

+ mimamaysmekisaska(les + Lys)

+ mamamamasekisks(Lea + Lya)

i
+ §A8(m12345m6m7m8k123457]12é
— mamazasemrmgkyrlse
+ m1mam3ysermski34s67 s
— mamamamaserskizlys)
We take .
i
My = —i (mikiks + mikiks) Lo, + Zm1m2m3m4k13(—kf + k2 K2+ KD
We symmetrize the first term and it becomes —% (m3kiks + m3k3ks + m3k3ki + m3ikiks) lo,, while the
second term reduces to —fm1m2m3m4k12k13k14 (due to —k2 + k2 k:% + ki = —2k12k14).
Lastly, the third term of the modified energy gives
OeNe(mimamamsmeLk,,—0;) = iNe(mimamamsmelk,,—o(—k3 + ki — k3 + kg))
— iAg(m%23m5m6m7m8k2Il{k1234:0}(Ileé + ]]_Tglg)
+ mimsmemrmsksL g, -0y (Lo + Ly

+ mimsasmememskal g, o)

i 2
+ §A1o(m12345m7m8m9m10ﬂ{k123456=0}ﬂzio
2 1 1
- m1m7m8m9m10 {k123456:0} E%O
2
+ mimaasermgmomio L, ,—oy Lss,
2 1 1
= MIM3M4s678MMYM10 L {k15=0} 454
2
+ mymamamsersomiol (g, —oy Iss,

2
— MpMm3mamsmereg[10] 1{k12=0}12§0)

We take
% <m6k6]121 m%k%ﬂzg>
1
- (m123m4m5m6(—k46)k2(19é + Ly1) + masamsmemikisks(Llez + Lyz)

M6:

+m345m6m1m2(—k26)k4(192 + Ilfr:é) + m456m1m2m3k13k5(19461 + ILT%))
)
+ §m%m3m4m5m6(—k§ + ki - k;g + kfzi)]l{kmzo}
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Here, we just symmetrize the first term to

o .

6 , .
» i i
Z(—I)ngk?ﬂzéﬂ = —g(m%k‘% + m3k: + mgkzg)ﬂzé + é(m%kg +m2k3 + m%k%)]lzg
i=1

and since —k§ + k‘i — kg + k‘g = 2ks4k45 when k15 = 0 on I'g, the third term becomes
im1m2m3m4m5m6k‘34k45]l{k,lzzo}.

For the 8th and 10th order multipliers we just collect the terms from the above calculations.

2.6 Local well-posedness in H!(T,) of the I-system

If ve H*(T)) satisfies the (2.8) equation, then v satisfies
(2.45) (Iv)y — i(I0)gw = —IT(v) + %IQ(U)

with 7 and Q as in (2.10). Note that while I commutes with d;, 02, it does not commute with the

T
nonlinear operators 7 and Q. As such F([v), is not necessarily conserved.

Proposition 2.6.1. Let wg € HY(T)) and 6 > 0. There exist D1 ~ 6~ (for some a > 0) and Dy > 1
such that if |lwol g1 (p,) < D1, then

(2.46) ] < D,

X135 ([0,6]xTy)

Proof. Here we sketch the proof of Takaoka [Tak99]. We look at the gauged version (DNLS;) and adopt
a perturbative approach:

O = i0%v + N (v)
where NV(v) = T(v) + Q(v), T(v) := —iv?0,v, Q(v) = —&|v|*v. We set up a fixed point problem for the
associated Cauchy problem with initial condition u;_g = ug € H*(R):

n(t)o(t) = n(t)S(t)vo — in(t)fo S(t = )n(t'/T)N (v)(t)dt’

where 7 is a compactly supported, smooth cutoff in time, n(t) = 1 for t € [—1,1]. Note thaton —T <t < T,
the above is equivalent with the integral formulation of (DNLS;). The cutoff in front of the Duhamel
term is needed for the X*? estimate, while the one in the integrand is used to gain the smallness 70+
which will allow to close a contraction mapping argument.

We consider the map T': X*0 — X% (depending on T and vp) given by

['(v)(t) == n(t)S(t)vo — in(t)fo S(t =t /T)N (v)(t))dt’

Following the energy estimate [Tao07, Prop. 2.12, p. 103], we have

(2.47) IT ()| x50 b [uolxso + [N ()] xs0-1
(2.48) IT(v) = L)l xs0 < [N (v) = N(0)| xs01
Lemma 2.6.2.
|lurugdatig] xoo-1 < Jur]xsolluz|xss[us] s
5
luruguzugus| < H s
j=1
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The first estimate allows to conclude that I' is well-defined, while the second one is needed to prove
that T' is a contraction in a ball of X*?.

O]

2.7 Estimating the Aj-term of the modified energy increment

For k = (K1, ko, k3, ka) € I'4(T»), we denote N; = |k;|, Nij = |k + kj| and {N}} denotes the reordering
of {N;} so that Nj > Ny > N > Njf. However, from ki = —(k2 + k3 + k4) we deduce that we
cannot have Ny « N7, so Ny ~ Ni. Also, we denote m; = m(k;) = m(N;) for 1 < j < 4, and for
(11,72, 73,74) € ['4(R), we introduce the modulation notation:

(2.49) oji=Ti+k; . j=13
(2.50) oji=Ti—ki , j=2/4
Note that

o1+ 09+ 03404 =Tiozq + k3 — k5 + k3 — k3 = (k1 — ko)k1o + (k3 — ka)k3a
(2.51) = kio(k1 — k2 — k3 + ka) = k12(k1a — ko3)
= 2k12k14

Let {07} denote the reordering of {|o;|} so that of > 03 > o > o}. It follows that
(2.52) ‘k12k14| < Uik.

We recall that on ©4 we have kj2 # 0 and k14 # 0, while on T4 we have k; = k3 = —ko = —k4 (and
consequently both M and M} vanish). Thus

(2.53) My = Ci M, + CoM!le, ,  where Cy = Cy = _%
and
(2.54) M(k) = mimomamykiokizkis . M) (k) = m2kiks + makiky + m3k3k + mik3ks.

We want to establish the following estimate

T+6
J Ma(Mazo(t) di| s N2 |1l L vE Sy

2.
(2.55) - % ([T,T+6]xTy)

for some B > 0. Since My vanishes when N7* « N, by dyadic decomposition, it suffices to show that for
some € > 0,

T+6 4
1
. —B+ | | .
L A4(M4:H-N{k~2'f7U1<t)7v2(t)7v3(t)7U4(t))dt' < 2H€N it HIU]HXl’%([T,TJrzS]XT)\)

(2.56)

for all kK > m, where m € N is such that 2™ ~ N and v; € Sper.
We fix k, and noticing that

1 ~
[Tv1] g = KT + kD2m(k)Gi (11, k1) 2 62
T1 kl
1 = 1 ~
1752 g1,y = ICr2) ma + k) rm(ka) Ba(—72, —ko)ll 12 2 = [KraX (=72 + K52 mk2)Ba(7a, ko) [ 12,2
we introduce w;(t,z) (1 < j < 4) defined by

(2.57) G (15, kg) = (k>3 my 65(my, kj)
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Hence, (2.56) becomes

T+46 € 4
~ 1 _
(2.58) Aa(Mylys gnswi (), wa(t), ws(t), wa(t)) dt| < ( o= | N7V ] [lwilzz @ty
T 1 2 1 t,x
J:
where M
My = 2 = 1M, + C, M}

[Ty mych¥os)e

The X*® spaces don’t behave nicely with respect to sharp cut-offs in time, therefore we need to write
Lir74s) = a(t) + b(t) with one of them smooth and the other rough but with small support. Using the

shorthand notation Z\f4\47_,/.i instead of ]\A/[J4]1Nl>x<~2n (and My, instead of M4]1N;k~2~), we write

(2.59)
T+4 —
| AT w0, a0, ws(e) i)

- jR L1 () Aa (M w1 (), w3 (8), w (1), wa (1))

= fRA4(z\Z;;a(t)w1<t),w2(t),wg(t),w(t))dt + JRA4(J\E;b(t)w1<t),w2(t),wg(t),w(t))dt

where a(t) = L7, 4] * 7l2-100x () is the smoothed out version * of the indicator function of [T, T + §] and
b(t) is defined by

(2.60) Lz r46)(t) = a(t) + b(t).
We have that

(2.61) (i) |

a®)l 3+ <200 (@) b < 27

t

Indeed, let € > 0. Since a is supported on frequencies < 2!°°% by Plancherel we have

|||at’%+aa(t) ”L2 < 2(100&)(%-&-5)(2—1005)% ~ 2(1005)/@
t

9

and we easily have [a(t)[zz < (6 + 2-100k) < 2(100e)% provided & is large enough. Thus [a(t)]| 1+ S
Ht

2(1009)%  Note that the graph of |b(t)| consists of two “bumps” of height at most 1 centered at 17" and T + &
concentrated on intervals of length ~ 27190% " and therefore Hb(t)”%2 < 27100k,
t

Assumptions and shorthand notation. Due to the multi-linearity of expressions of the form

fRA4(M,wl(t),wg(t),wg(t),w4(t))dt: f 5D MOQTi(rs, k) Ta(rs, k)3 (rs, bs) T3, k)

T1234=0 k1234=0

we can assume without loss of generality that the time-space Fourier transforms w; (and equivalently 0;
and ﬁ provided (2.57) is in place) are real and nonnegative. Also, we'll use the shorthand notation §,
instead of {_ o dridredrs > . o

The b(t)-term of (2.59) has fast decay in N as quantified by the following lemma.

Lemma 2.7.1. We have |My | < 23 and therefore

4
(2.62) fR Ag(My; b(t)or (2), T3(1), v3(t), m(t))dt‘ SN Tl g

Jj=1

2ne(t) = e 'n(t/e) is the L'-invariant e-scaling of 7 € S(R)
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Proof. We have | M} (k)| < |k12| |k13| [k14] S (N7)3 and since |m?k?ks| < N2N3 < (N7)3 (and its symmet-
ric analogues), we get | My (k)| < 23F for all k € T4(T)). Here, we assume without loss of generality that

bvy,v5 are real and nonnegative.

1
LHS(3.60) = U]RA?’ Z My . (k)b(t)01(t, k1 U (t, ko) T3 (t, ks )Us(t, ky) dt

k1234=0

f Mo (K)01 (71, i )55 (72 )83 (73, k)i (7, )
E3

N

235 - N N

— J bui (71, k1)U2(T2, k2)03(73, k3)va(Ta, ka)
*

)\3
<2 || ot o)l foalt ) ot ) o, )] dade
R JT,

By applying the L2 L6 L6 L6 -Holder inequality, then the Strichartz inequalities (Lemma 2.3.2(1) and
(2.21)), and finally the smoothmg property (2.33) of I in the form |v;| xos < [Ivj] x1-s, we further get

LHS(2.62) < 2% |bvy HL%x HU2HLgx ”USHLgx HU4HLgx
< 2%%b()] gz o1l rz vzl Nlvslzs sl

< 2_47”HU1HX0’%+ HUQHX(H,% HU3HXO+,% HU4HX0+,%
1 1
~ NA4T— 947—(k—m) “UIHXO'%+(

4
1
—47+ '
SN e [ ] 17050 13+

j=1

0
N7 o] oy sl oy ol o,

Summing over k 2 m, yields (2.62). O

The analysis of the a(t)-term of (2.59) is more involved and requires better point-wise estimates on
the multiplier My ,. We now recall the estimates that work in the non-periodic setting.

Lemma 2.7.2 ([CKS*01, Lemma 6.1]). We have

1
N\ 10
1. If Nf ~ N}, then |[My (k)| < N7! (%) (kiok1a)2 H<k: ym;

* % b N % *
2 If Nj « Ny, then [Ma (k)| < N7' (5 ) NV [ [<kiom;.

The first item above can be used in the periodic setting, however the second estimate is too loose and
since in the periodic case the bilinear improvement to Strichartz’s estimate (see [CKST01, Lemma 7.1])
doesn’t hold, we cannot write the estimate on the A4 term by a simple parallel to the non-periodic case.

Remark 2.7.3. If N ~ Ny, by using the pointwise estimate of Lemma 2.7.2 and (ki2k14) < {(o}), we
have

f A4(m;w1(t>,w2(t),wg(t),m(t))dt‘
R
1 14
10 <1€12]€14>2 _
(2.63) <N~ < > L1234 5 — 2 7 wj (75, kj) dridredrs

k:1234 OHJ 1<U*> 7j=1
N & i ks
< N! <*> jwl(ﬂ,kn)nwj(%lj)
Ny *

j=2 (o})2

=

26



w](TJ7 )

Then, taking u; so that u;(7;,k;) = , we further have

(o *>
4 w; (14, k;j
(2.64) J w1 (71, k1) H i f f wiususus dr dt
* j=2 <U*>2 T

It turns out that the decay obtained in the periodic case for the A4 term of the increment of E(Iv)
is not as fast as in the real-line case: we get N~/2% rate of decay, as compared to N~'* (see [CKS*01,
Lemma 6.1]). We also show that this rate of decay of the A4-term of (2.83) is sharp, see Remark 2.7.7
and Remark 2.7.8 below.

Lemma 2.7.4 (refined pointwise estimate in the periodic setting).
For any 0 <e < 1 and k € Ty(T)), we have

— 1 1 1
| Myw(k)| SN2 ——
2 [T;_o(07)2

This result is the prerequ181te of Lemma 2.7.5 below. We point out the conceptual strategy in this
proof: namely, we use <01>2 to cancel derivatives from the numerator of My. Also, we point out that we
use the crude lower bounds (N3) > 1,(NNJ) > 1 which renders an estimate that is non-optimal in A as
compared to what we obtain in Lemma ?7.

Proof. Case 1: Nj ~ Nf. We have [Mj | < (o} )N{mimamzmy and so

0¥ N 1 N2 1 1 1
1 < 1 <
N *N3/ N #\3 14 1~ Nl-eN#€ 14 3
NN [Tjolopys — NDP T _ylopye ~ NTENET [T _y(o)a

‘M4 H’

To estimate M}, we need to separate the analysis between the cases when all modes have comparable
sizes or not.

Subcase 17.1: NF ~ Ni. We write M} _ = f(0) — f(ki2) + ¢g(0) — g(k12), where
4 1 4.k
f(h) = m(ks = h)* (ki = B)* (ks + 1), g(h) = m(ks + h)*(ks + h)* (k1 — h).
By the mean-value theorem, we get
mikiks+makika| = |f(0)—f(ki2)| < [kaol [f'(hyp)l ,  [m3kSki+mikiks| = |9(0)—g(k12)| < |ki2| g (hg)|
for some hy, hy between 0 and k12. We have
|/ (hg)l < [ (ke —Rg) mky =R ) [ka = b [P |ks + gl +m(ka —hg)? |k =Rl ks + gl +m(ky =Ry )? [k —hg|?

and since |m/(h)| < —‘ m(h) for any h and m(h)?|h| < m(Ny)?N; for h = O(Ny), we deduce

[f'(hp)| < m(ky — hy)? |k — hyllks + byl +m(ky — hy)?|ky — hy* S m(N1)?N?

Similarly, |g'(hy)| < m(N1)?Nf and therefore |M} .| < m(N1)?N{|ki2|. Without loss of generality we can
assume |k12| > |k14| (otherwise we work with f(0) — f(ki4 = m2k?ks + m2k3ks and the analogue for the
g-terms, so that the argument is identical). We thus estimate o} 2 |ki2| and since m(N;)N; 2 1

k1| 1 _ 1 1 o1 1
m(ND2NE T4 (opz ~ mIND)PNE T oy ~ mNON TS (o%)s

|MY,| =

Subcase 17.2: N} « Nj. Using the fact that & — m(£)?¢? is increasing, we easily estimate My .| <
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m(N1)2N3 and of = |kia| |k1a| ~ N2. Therefore

AT m(N PN L !
4kl = 3N3 3 3
m(NENPm(NONONL T8y (o2~ mINDN[TI_ (o)

Common to the two subcases, due to Ny =2 N we have m(N1)Ny ~ Nl_st”_ENiE > NI==Nje.

Therefore, we get
1 1

*E 4 1
N oo

Case 2: N3 « Ni'. Asin Case 1, we estimate separately the contributions of ]T/[Z; and ]T/[Z;, for each
distinguishing between the situations of the largest two frequencies having the same or different parity.

Subcase 2°.1: N1 ~ N3 > NQ,N4. Then ’klg‘ ~ Nl, |]€14| ~ N1 and |]€13’ = |k24‘ < N2 + N4 < Ng,
and therefore (o}) = |kiok14| ~ N?. Consequently,

M| < N7\

(2.65)
2| = |kiokiski|  _ N[kl 1 o ko] 1 1 - L 1
4kl = TN TR TR I
[TmaCkiXoypz — MONDNSNO T (ojpr — NN T olomyz — Mol
1 1 1

<
~ 1— %€ 14 1
NTE N Hj=2<0;<>2

Subcase 2°.2: Ny ~ Ny » Ni, N3. It is analogous to the subcase 2°.1.
Subcase 2°.3: Nw ~ No » N3, Ny. Then ‘k12| = |k34’ < N3+ N4y « Ny, ‘k'14| ~ Ny, |k13’ ~ Ni, and
therefore (o) = Ni|ksa|. It follows that

1
’M/ ‘ N12‘k'34| 1 1 < |k34’§ i 1
(2.66) B NiNo(N3)(Ni) N1%|k34!% H§=2<‘7}k>% = (N3)(Na) Nlé H?=2<CT;<>%
' 11 1

<
~ 1_ *E 4 1
Nz Ny Hj:2<‘7;>2

Subcase 2°.4: N1 ~ Ny » No, N3. It is analogous to the subcase 2°.3.

Subcase 27.1: Ny ~ N3 » Ny, Ny. We can write MJ'® := m(k1)2k2ks + m(ks)2k3ky = f(0) — f(kaa),
where f(h) = m(k1 + h)?(k1 + h)?(ks + h). By the Mean-Value Theorem, we have |f(0) — f(kos)| <
|kaal | f/(h)| for some h between 0 and koyq (hence |h| < |kos| « Ni). Then |m/(k1+h)| < mm(lﬁ +h) ~

N%m(Nl), , and thus

1
|f(h)] < Fm(Nl)szNg +m(N1)2N1 N3 + m(N1)>Ni < m(Ny)2Ni
1
For MZ24 = m(k2)2k§k4+m(k4)2k2k‘2 = g(O)—g(k24), we take g(h) = m(kz—h)Q(kQ—h)Q(k4—h). We
have |g(0)—g(ka4)| < |kaal|g'(h)| < for some h between 0 and ko4, and since |m/(ka—h)| < ‘le_mm(kg—h),
|ko — h| ~ N1, ky — h| € Ny, we also have

lg' ()] S |m/ (ko — h)|m(ky — h)|ka — h|*|ks — h| + m(N1)2Ny|ky — B| + m(N1)2N? < m(Ny)2NE.

Therefore |M} .| < [f(0) — f(kaa)| + 19(0) — g(k2a)| < |koa|m(N1)2 N} and using of 2 [k1okia| ~ NP
we get

"
4,k

o |H§=1 m(ki Yo

—_—~

|Mi |k24‘m%N12 1 < ‘k24| 1

= mimamaNF(N2 XN T4 oty ~ mamalNo)X(NDNLTTE (o%)2
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1—
If Ny 2 N and Ny <« N, then |k:24| ~ No, mg ~ <ﬁ) S, my = 1 and so

No
|]€24’ - NQl_S _ Nll—s 1 N Nla—s 1 _ Ne—s 1 R N—1+E 1
momy(No)(Ny)N1 = N1=s(NyHN{ N ~ N1-sN;/=¢ N}¢ = Nl=s Nj¢ ~ Nl=s N#¢ Ni€

The case Ny =2 N and No « N is analogous due to the symmetry in ks, k4 of the left hand side above.
If No 2 N and N4 = N, without loss of generality we may assume No > Ny and therefore we have

N 1-s N 1-s
|k2a| < Noy ma ~ <E> , My~ <M> and so

| ko NoN, 5N~ 1 Ny N5 1 NN~ 1
< — < <
moma(No)(Na)N1 =~ N2-25sNy Ny N{ ¢ Nf ~ N2-2sN| ¢ Nf¢ © N2-2s N=¢ N}©
NPT _NTE L e
N2-s N#¢ ~ N2-s Nj€ NiE

Subcase 27.2: Ni ~ Ny » N3, Ny. We can write MJ"? := m(k1)2k?ks + m(ko)2k3ky = f(0) —
f(k3q), where f(h) = m(ky + h)?(k1 + h)?(k3s — h). By the Mean-Value Theorem, we have |f(0) —
f(ksa)| < |ksa| |f/(h)] for some h between 0 and ks34 (hence |h| < |ksa| < Ni). We estimate |m/(k; + h)| <
mm(kl +h) ~ N%m(Nl) and thus

If'(h)| < |m/(ky + h)|m(Ny)NZN3 + m(Ny)2N? < m(N1)>NiN3 + m(N1)?’NE < m(Ny)2N?.

Using of 2 |k3a| Ny, it follows that

//12

‘ m%N12|k734\ 1 < ’k34‘% 1
1—[ =1 m]<k: ><J]>2

~ o2 2 1~ 1 1
m1m3m4N1 <N3><N4> H?=1<Uj>2 m3m4<N3><N4>N12 H?=2<U;>2

12
’MZ,H ’ -

1-s
If N3 2 N and Ny < N, then |k34| ~ N3, mg ~ <£> , my = 1 and so

N3
1
s < _Ns i 1 1 _ Nz~ 1 N-lte
mama(NoyYNNE NN N3 NS Nisnd e N NiE

The case Ny =2 N and N3 « N is analogous due to the symmetry in ks, k4 of the left hand side above.
If N3 2 N and Ny = N, without loss of generality we may assume N3 > Ny and therefore we have

N 1-s N 1-s
|k34| < N3, m3 ~ (m) y Ty ~ (m) and so

1 _ 1_
e NN NGNS NETNTT 1
1~ 1 ~ 1~ 1_ *E *E
m3m4<N3><N4>N2 N2- 25<N3><N4>N2 N2—25N12 N2-2s N2—¢ Ny Ny
Therefore
— 1 1

My, 2 < N

9erk 714, sk
2" [Tjalo})

For My ,* = m(ks)?k3k1 + m(ks)?k3ks = g(0) — g(ksa), where g(h) = m(ks — h)?(ks — h)?(ky + h),
we have

lg'(h)| < |m/ (ks — h)|m(ks — h)|ks — h|2Ny +m(ks — h)?|ks — h|N1 + m(ks — h)?|ks — h|? < m(N})2NZN;

and thus

1
M < [kaallg' (W) _ |34 2m(N5) !
K == 1~ 1 1°
[1_1 mickiX}oyz — m(NF)m(Ng)m(N;)NF(NFHN;2 [[j_olot)2
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We further estimate

btV Npba _NpbNgde vl
m(Nf)m(Nz”‘)m(N;)N;NIN{ké ( )2725 (l) I—s Nl*% N3—3s Nl*g_s N1-=N7®

which gives
MY s N L
K ~

K 4 1 -
2 Hj:2<‘7;>2

O

The contribution of the a(t)-term will follow from the following lemma, the algebra property of the
H%(’JI‘A) space and the estimate on [a(¢)] 1. .
Ht

Lemma 2.7.5.

(2.67)

4
_ _ 1 1
jR A4(M4,I€;,U1(t)7v2(t)’U3(t)?v4(t))dt’ S AN 2+2§ 1_[1 (RET) [N
J:
Proof. With the functions defined by (2.57), the above (2.67) is equivalent with

(2.68)

4
— 1, 1
| A4<M4,n;w1<t>,w2<t>,w3<t>,w4<t>>dt\ <N L T uyls
R j=1 ’

Without loss of generality we assume that w; are real and nonnegative, and also that J;‘ =0j,1<j<4.

Then, using Lemma 2.7.4 and considering u; defined by u; = <w;1 (j =2,3,4), we have
oj)2

1 —_— Py _ g
LHS(568) < )\;),J | My | W1 (1, k1) w2 (T2, k2) w3 (73, k3)wa(7a, ka)
*

(2.69) < N”“ﬁﬁ w1 (71, k1)uz(m2, k2)us(7s, ks)ua(ra, ka)
*

f f wi (t, x)ua(t, z)us(t, x)ug(t, ) do dt
R JT,

1

~ N*EJFEL
2Ii€

Applying the Lg,tLgtL%tLg’fHélder inequality and then three times the L5-Strichartz inequality (2.21),
we obtain

f j w1<t,x>uz<t,x>u3<t,x>u4<t,m>dxdt\ < lwilge Juzlze luslzs Jualze
R JT) ’ ’ ’ ’

SN O w2 Nzl o g Jus) s

1 1
X0+,2 X(H—,j ‘ X0+a§

(2.70)
30
< XN g uall g sl g ua]

X03
0
< N9 1 ol gz sl gz sl
Choosing ¢ = 49 and some 0 < 6 « 1, (2.69) and (2.69) imply

4
1y 1
LHS(565) < AT N 2+ﬁ | | ijHLi’t'
j=1
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Proposition 2.7.6 (multilinear estimate for Ay).

T+
(2.71) J Ag(Ma;v() dt| < TN Tot

T

3 ([T,T+8]xT»)

Proof. Since 2% = Ni* > N7, by summing over all dyadics Ni > NJ > Nj > Ny, it follows from
Proposition 7?7, that

O]

Remark 2.7.7. The decay N73 is optimal for the Ay-term in the periodic setting, as compared to the
analogous result on R where we can get § = 1.

Indeed, let the dyadic numbers N; = |k;|, 1 < j <4 in the following relation:
N1~N22N>>N3>>N4

and consider the functions f; defined by

~

filks 7)) = L _piin, (k) Loy <a () 5 5 =2,3,4

and taking into account that ki34 = 0 which forces k1 and ko to have opposite signs and by (2.51),
|o1 — 2k12k14| = |02 + 03 + 04], we define f; as

~

fi(kr,m1) = LIny (k1) 116y —2no N <1 (T1)-

Remark 2.7.8. We cannot expect cancelation in the M, multiplier due to the constants C; = 4¢ and
Cy = —%z‘. Indeed, consider the case when

N1~N2>>N, N12=N34~1andN3§N
Then ms = my = 1 and
1
4Mj ~ 4m3NiN3 5M” =miN{N; + N1 N3 .

Since m%Nng ~ N2’23N125N3 and 2s > 1, it is clear that m%Nng > NlNg.

2.8 Global well-posedness using the first generation almost conserved
energy

Here we present a generic/prototype argument for obtaining the GWP of (DNLS). We assume that N —5+
is the fastest decay of the increment of En(v), i.e. the remaining terms involving Ag, Ag, A1p in (2.83)
have estimates with the same rates of decay in IV as the A4 term:

T+6
(2.72) J Ap(Mp;o(t)) dt] < N7%+HI’UH§(1 for n = 4,6, 8, 10.

T 3 ([T, T+5]xTy)

Here we proceed with the proof of the global well-posedness of the gauged DNLS (2.8) corresponding to
this decay rate.

Theorem 2.8.1. Let s > 2 and let wy € H*(T) with lwo| 2 Ty small enough. If T'> 0 and w is a solution
of (2.10) on [0,T1], then there exists C' = C(|wo gs(), T) > 0 such that

sup |lw ()|l s (py < C.
te[0,T]
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1
Proof. By (2.34), we have H&IIwS‘HLQ(TA) = leé\HHl(T/\) < NI_SHUJS”HS(TA% where w)(z) = A" 2wo(A"'x).

We have w) (k) = A2wp(Mk) and

l S 1 S —S S —S
[l sy = A R w0 () = 115€P ()l = X e (@l = Aol o

Thus
N les
(27) JoeTdlizry < ool ey
(while ‘|Iw(>]\HL2(T>\) < Hw(/)\HLQ(TU = |lwo| z2(T)). By choosing A > 0 so that % ~ 1, or equivalently

1—s

(2.74) A~ N5

we have 1 <A < N (provided § < s < 1) and HIMSHHI(T)\) <L

With C; > 0 to be chosen later, suppose that E(Iw?(tg)) < 2C;. Then, by Gagliardo-Nirenberg
inequality, we have HIw)‘(to)Hﬂl(TA) < E(Iw(to)). By Proposition 2.6.1, for § = 1 there exists D1 > 0
and Dy > 1 such that

| Tw(to)|| i (ryy < D1 = wa’\Hxl <D, .

2 ([to,to+1]xT))
With these preparations, we can begin arguing by induction. Fix 7' > 0 and take j, = [T'A\?]. Hence
(2.75) G ~ TAZ

If Cy is chosen so that E(Iw}(0)) < Cy < 2C4, by the observation above we get HIw)‘HXI

D,. Then, by Proposition ?? and Lemma 7?7 we have

1 <
"2 ([0,6]xTy)

E(Iw(8)) < E(Iw*(0)) + eA®* N2 D10 .

We impose that c/\0+N_%+D%O < Ch.
For the next step, note that we have E(Iw?*(§)) < 2C; and by the above argument HIw)‘HXL% ([6.26]xT>) <
’ A
D5. The modified energy increment is estimated by

E(Iw*(20)) < E(Iuw™(8)) + A’ N=2+ D0 < E(Tw(0)) + 2eA°T N~z + D10,

We impose that 2(:)\0+N—%+D%0 < C.
Inductively, we get
1
E(Iw*(j«0)) < E(Iw*(0)) + jxcA’T N727 D10,

We impose that j*c)\()*N*%*D%O < Cy. In particular, since j,0 > TA? we get E(Iw(T)A?)) < 2C and
by Gagliardo-Nirenberg inequality, we thus have |[Tw?| HI(Ty) < Cq

Now note that the choice of C; asks for jx\oT N —3F ~ 1, or equivalently
(2.76) e ~ A" Nz
s—1

From (2.74), (2.75) and (2.76), we get T ~ NC+)5 N2~ which can be taken arbitrarily large if and
only if % — % > (), or equivalently s > %.

O

Remark 2.8.2. By using the bi-linear estimate (2.29) in the proof of Lemma 2.7.5 we can get ATItNT T
decay on the increments of the almost conserved energy, hence obtaining global well-posedness in H it (T).
We go here only through the numerology involved. Essentially we want to cover the interval [0, A7
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with j intervals of length &, hence j6 ~ A\2T where 6 is given by the local well-posedness theory for the
I-system.
From the inductive step, we require that j)\_%+N_%+ ~ (', hence j ~ A3TN3.

So M2T ~ j ~ A2~ Nz~ and thus T ~ NG5 N3~ which goes to infinity if and only if 2 — % >0
3
Z.

Notice that even this regularity threshold is not as good as the threshold obtained with the first
generation of the I-method (see [CKST01]) in the non-periodic setting where was obtained s > .

or equivalently s >

Theorem 2.8.3. The gauged DNLS (2.10) is globally well-posed in H*(T) for s > %, provided that the
initial data has mass smaller than 2+/2.

2.9 The I-method in a nutshell

1. Prescribe T' > 0 (arbitrary time of existence to be reached by the solutions of DNLS, or equivalently
of a gauged DNLS) and let ug € H*(T) be an initial datum with M (ug) < 4.

Note that we need to apply the gauge, i.e. v(t) := G1(u(t)) in order to deal with the cubic derivative-
nonlinearity. The goal is to establish (2.1), i.e. to show that sup,c[o 7] [v(t)] s (T) is finite.

2. Apply the smoothing operator I (with parameter V) to obtain the I-system. Even though vy ¢ H!,
the smoother object Tvy belongs to H'.

3. Use the natural scaling of the equation, namely v*(t,z) = )\_1/20(%, $) to ensure that | Iv|;; < D,
where D is a fixed threshold that ensures the same time of existence (i.e. ~ 1) for the solution /v
of the I-system.

4. At each iteration, invoke the local well-posedness of the /-system and note that the modified energy
Ex does not increase much and, in fact, in collaboration with its control of the H'-norm of Iv,
maintains |[Iv|;: < D at all times.

5. Impose a doubling condition on the growth of Ex on [0,7] and determine the condition on the
choice of N that allows T to be as large as prescribed. For such a choice of N, the I-operator acts
as an identity on [0,77], and thus Enx(v(t)) = E(v(t)) for t € [0,T]. Since |v||;; is controlled by
E(v) and E(v) stays finite, we certainly have (2.1).

6. Finally, use the bi-continuity of the gauge transform G; to migrate the result to the original (DNLS).
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2.10 Refinement of the /-method

We modify further the expression of the (almost conserved) energy by taking
(2.77) E%(v) := E(Tv) + Ay(o4;v)

where the “correction” multiplier o4 is taken so that when we compute d;£%(v), the lowest order term
is Ag(Mg;v) (i.e. a 6th order as opposed to a 4th order multilinear form that appeared in the first
generation). We recall that

GEIv(t) = DT Aj(Mju(t)

j={4,6,8}
with M;’s given by Proposition 2.5.3. By (2.38), we have

4
JkQ — iAg( Z Vkj1( @j + ﬂfré)(k);v(t))

ONa(og;v(t)) = iA4(o

HM.:;

Set ay(k) 1= k? — k2 + k:% — k2 and define 04(k) so that My — ioyay = 0 or equivalently

M.
(2.78) o4 = —i—r

Qg

Notice that for k € I'y we have ay(k) = 2k12k14 and therefore

1
oa(k) = = (0 + o)

where
(2.79) Ué(k) = mimamamyk3
21.2 21.2 27.9 279
(2.80) ol(k) := mikiks + m2k2k;1 —|;€m3k:3k1 + mikiky To,
12K14

Therefore, by (2.77) and (2.44), our second generation modified energy is
1
£4(0) = Aa(m?k?) — {Aa(o)

From this construction, we have that

AEN((t) = > Ay ()

Jj={6,8}

where we can easily track down the multipliers

4
(2.81) M(? = Mg —1 2 X?(O—4)kj+1(]leé + HTé)
j=1
i - .
(2.82) M2 = Mg + 3 D=1 X (04) Ly
i=1 ’

and so we obtain the analogue of Proposition 2.5.3 as follows.

Proposition 2.10.1. Suppose v(t) € H*(T)) for allt and let § > 0. Then:
T+6

(2.83) T+ )~ D) = | [e(MEsv) + As(MEi0)]
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where the multipliers .MJ2 :I'; — C are given by (2.81) and (2.82).

2.11 Estimating increments of the second generation almost conserved
energy

Lemma 2.11.1. For every k = (ky1,...,k,) € Ty (Ty), we have
1. |MZ| < (m(N1)N1)2, and if in addition N3 « N, then |MZ| < N1Ns;
2. [M§| < m(Ny)®Ny,

where Ni,...,Nj denote a decreasing rearrangement (i.e. N1 = No > ...) of ni = |k1|,...,n; = |kj|. If
Ny « N, then both multipliers MZ and M2 vanish.

Proof. See Lemma 6.4 and Lemma 6.6 in [CKS*02]. O

Proposition 2.11.2.

6
SATENTH [ T
j=1

(2.84) A gt

J A6 (Me; v1,72, v3,01, Vs, Tg)
R

Proof. We introduce the functions w; defined by

@5 (15, k;) = mk;)kj )Xo 365y, k), with o := 75 + k7, if j is odd

W (15, kj) = m(k;){ky o205 (1, k), with o := 75 — k2, if j is even

It follows that | Iv; HXl’% = |wj 2 for all j. Also, it is useful to have
~ w; ~ wj
- J , 9gj - J

= = 1
(0j)2 GCECHE
so that [ fjll o3 = lwjlrz and fg;l 11 = lwilzz, forall j.

We use Littlewood-Paley decomposition:
wy; = Z Pnj w;
n;

and in the sequel we assume w; = P,;w;. Without loss of generality, we can assume that for all j’s, w;
is real-valued and non-negative. To assume summability over all dyadics N1 = Ny > ... > Ng we usually

ensure a factor of
1 61
NYF <g H N](.”)

Jj=1

on the right hand side of the estimates. However, in one of the sub-cases that we discuss below, we need
to make use of a trick similar to one used by Bourgain (see sub-case (a.2) below).

As in the Euclidean setting, we distinguish three cases:
(a) N4 Z N
(b) N3 =z N> Ny

(C) N2 ZN» N3
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This is a partition over of the entire frequency space taking into account that we must have Ny ~ No =2 N
(while in the case N1 « N, we have no contribution since Mg vanishes). We denote

Mg S W 1
Is(wy, ..., we) :zj | | J ,  where J :zf
* H?:l m(nj><nj> j=1 <0'j>% * T123456 =0 (QW)‘)S Z

k123456=0
6 —~
M@ ILN4>N ’U)J

Iéa)(wl,..., J ,
H] 1 m(n; <”J>] 1<UJ>2

etc.

Case (a): It is enough to estimate

1 6
L [ 15— m(N; )Ny ]Hl €

We have m(Ny) = m(N3), Ny 2 N and

—~
Wi

(2.85) L
i)’

N3

2s—1—¢
1— 1— a70
N) N'=¢ » NI-NO¥,

m(N3)> N3 = N§N? 25 NZs~17¢ = N§ (
as well as m(Nj)<Nj>% 2 1 for j = 5,6. Therefore

I < N_2+N0+ J Fifafsfagsgo < N~ 2+N0+ J J Hfg (t.x) [ 95(t,2) du dt.
3 3

Tx j=1 j=5,6

By Holder, we get

" sN*“NM R R e A P v P

where p » 1 is such that + + 2 — 1. Using the interpolated L*-Strichartz estimate, we have
0 0 0 0 0 0 0
slzpe < A% 15l gongs ~ X NE NSl oz < APFNS sl oy = AT NG fussl
and using the interpolated L{%-Sobolev inequality, we have

lailur, < lgil 3p < lwsliz, . 3 =5.6.

11
X2'2

Therefore
(a) L7
a —
(2.86) I S AN 2+W H lwillzz -
Sub-case (a.1) N3 ~ Np: In this case we can directly sum over all N;’s and we get

6
1 _
1Y (Py,wn, Prywa, ... Prgwg) < MY N2 T w2
N1=N>>..>2Ng j=1 ’

Sub-case (a.2) N3 « Np: In this case, ki, ko € Iy with |I;| ~ N;. We fix N3 and we split I; into dyadic
subintervals of size ~ N3. So

Li=| |1, |I|~Ns
¢
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Hence, we sum over N; ~ N5y and obtain

Z Iﬁ(a'Q)(Plel, PNQ’wQ, ... ,PNGU)G) < Z Iéa'l)(P]ewl, P]ewg, PNswg, .. ,PNGU)6)
N1~N3>»Ng =1

6
< AN N0+ (Z HPIeleLQ ||P1ew2|Lf’m> H HPNjijLf’x'

We apply Cauchy-Schwartz and we get

[NIE
N

D 1Pyl e | Prawse | < (; PIMlI%g@)

L

(2 |Pz£w213z> = [T 1Pvwiliz, < [T lewjlez.

¢ j=1,2 §=1,2
We can now sum over the remaining dyadics N3 > ... > Ng to obtain

6
2 _
I (Py,wn, Prywa, ... Prgwg) < AP N2 ] Jwilzz -
Ni1=N2z..=2Ng j=1 '

Case (b): As in the previous case, it is enough to estimate (2.85). Here, we have

N3

m(N3)N3 = NSN'SN5~¢ = N§ <N

) Nl—a > Nl—Ng-‘r

and m(Nj)<Nj>% 2 1 for j = 4,5,6. Therefore

Y < N NOT J Fifafsfagsds

Notice that among the largest three frequencies, namely k1, ko and ks, precisely two have the same sign,
say k1 and ky. We apply Holder’s inequality and get

b
1) < N “anng Ifsfal 2 loslor, ool oz

where % + % + % = 1. Note that by interpolation, then Holder’s inequality and the interpolated L°-
Strichartz estimate, we have

[ Fsfalze <V fafal 2 1 s fals, < Hfsf4H1§9Hf3H9ng||f4||igm < s fal 73?1551
0 —0 0 0
SN NI s fall iz 1 sl 3 161

1 fall

X0+ ? X0+ 7

(2.87)

where 0 < 6 « 1 is defined by % = % + g. Then, using the bi-linear Strichartz estimate (2.29) and the
L} ,-Sobolev embedding, we obtain

b _ 1 1 _1 ) -0 0 0
V<N “@A A1l o 12l oy A2 sy a1l oy 131y s 3 3 el 1
4 6
_ _ 1 _ _ 1
SN Hwnﬂfﬂ\xo,% H lgill y1.0 =N A Hwnﬂwa‘Hng
3 j=1 j=5,6 3 =1

We can now proceed as in the sub-cases (a.1) and (a.2) to perform the summation over all dyadic frequency
sizes and obtain

6
b _ _
S 1P(Pywn, Prywa, . Pygws) < AN wgl e
N1=N2>...>Ng j=1 7
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Case (c¢): Here we can use the refined estimate given by Lemma 2.11.1. Hence it is enough to estimate

1 S wi(ry, kj)
« m(N1)m(Na) Nom(N3) TT_y m(N;)(Np) 15 (o)

We have m(N3) ~ 1, No ~ Nj and therefore

Ny

m(Ny)m(Na) Ny ~ Nf N2 25 NZs—1¢ = N¥ (N

2s—1—¢
) Nl—e > NI—N{H-
and m(Ny){(Nay 2 1, m(Nj)<Nj>% 2 1 for j = 5,6. Therefore,
LY < N N0+ J?1f2f3f49596 N~ HWHﬁf:&HL% | f2fallrz lgslzr Ngslre,

where p » 1 is defined by ﬁ +i+ % = 1. Proceeding as in (2.87) and then using the bi-linear Strichartz
estimate (2.29) and the L} ,-Sobolev embedding, we obtain

6
olge 1
1§ (Py,wy, Pryws, ..., Pygwe) € AN HWH lwillzz,

In this case, the factor ﬁ is enough to ensure the summability over all dyadic sizes, hence
1

6
Z IéC)(PN1w1>PN2w2> -, Prgwg) S ATUENTH H lwillze
N1=N2>...Ng 7j=1 ’
Combining the three cases, we obtain (2.84). O

Proposition 2.11.3.

6
AN ] T
j=1

(2.88)

T+5
f Ag(Me; v1, 72, 3,74, V5, Ug) X1} ®xTy)

T

Proof. Follows from the Proposition 2.11.2 after we decompose the sharp time cut-off 1775 as in
Section 2.7, via (2.60). O

Proposition 2.11.4.

(2.89) AN ”HHI%H

T+6
f Ag(Mg;v1,v2,v3, 01, Us, Vg, U7, V8)| <
7j=1

T

2(RxTy)

Proof. As for Proposition 2.11.3, it is enough to carry the estimate ignoring the time cut-off 1j7.74).
We keep the same notation as in the proof of Theorem 2.11.2 for wj, f; and g;. Taking into account the
point-wise estimate |Mg| < m(IN1)?Ny, it is enough to estimate

1 S W

L N1 TT5 o5 m(N; NG JUl (o;)2

We distinguish two cases: (a) N3 = N and (b) N3 « N. In both, we will use ]\1, <N- ”N &+ to sum over

all dyadic pieces.

38



Case (a): We have (N3) ~ N3, m(N3) ~ N (NW) 2 N and m(N. j)<Nj>% 2 1. Therefore
8 8

() -2+ 1 1 2
Ig7 <N +N{”L1‘[ H =N~ +N°+fj Hfjt:z: H i(t, ) d dt

_ 4N >2 j= 1<UJ>2 Tx j=1 j=4

3
. 1
<N 2+N0+ [ [15ilzs, | [ 91z,
1 j5=1 j=4

where p is given by 2 + 3 = 1. By the L*-Strichartz estimate and the Sobolev embedding X** < L2 for
4 p t.x

any s,b > 3 we have

— 1
2 200

(@) —24+ 3 8 N_2+ 3 8 o 1 8
Is7 s—ov I1 [£ill o2 I1 lgill 2.8 < N 1 1£ill 0.3 1 lgill y1.0 =N NOF 11 lwjllzz -
1 j=1 j=4 1 j=1 Jj=4 1 j=1

Case (b): We have m(N;) ~ 1 for all j > 3 and

8 8
Iéb) §N*1+N0+ f Hf] (75, k H (15,k;) = N~ 1+NO+J J Hfj t,x) H (t,z)dz dt
J=5 >\j 1 j=5
<N NO+ Hf1f3HL2+Hf2f4HL2 H ngHLﬁz
j=5

where p » 1 is defined by % + % + % = 1. By interpolation, Holder’s inequality and the interpolated
L5-Strichartz estimate, we have

_ L
If1fall 2+ suflfguzﬁuflfguig SATEIEO A £ 1T 18l

]
A 11 1Hf1|\X0+2Hf3HX0+2 < A AT T
Also,
_1 1
Ifofillzz, <A 2+Hf2HXo+ il oy S NFNPLfl g Il oy
lgillze, slgill 13- <lgil 1.1
Hence

4 8 8
b 1y —14+ L Ciaaoe 1
IV <N HW Hl 175l o3 n’HQJ'HX%,% = N7 +7Nlo+ Hl lwjllrs,
Jj= Jj= J=
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2.12 Global well-posedness using the second generation almost con-
served energy

The scheme of the I-method from Section 2.9 (implemented in the proof of Theorem 2.8.1) still carries on,
provided that the new almost conserved quantity controls the H'-norm of Iv. Hence, in order to obtain
our main result, we are left to establish

Proposition 2.12.1. For everye > 0, there exists § = §(g) > 0 such that ifv e H'(T)) with HUH%Q(%) <4,
we have

1
(2.90) 170 r,y S EN (V) + Zp(v)®

with the implicit constant independent of . Moreover § / 2v/2 as e \, 0.

Proof. Taking into account Proposition 2.1.3 (applied to Iv), it suffices to show that £%(v) is a pertur-
bation of £X (v) = £(Iv). More precisely, we show that

EX(v) = Ex(v)] < ON™) [ T0] 1 g,

for some a > 0. By (2.77), we need to estimate A4(o4;v), hence (2.90) will follow once we prove
4
|A4(U4; U1, V2, 1)3,1)74)| < O(N_a) 1_[ HI'UjHHl(TA)'
j=1

We can treat the multipliers o’y and o/ separately. See [CKS'02, Lemma 3.8].
O

Theorem 2.12.2. The gauged DNLS (2.10) is globally well-posed in H*(T) for s > %, provided that the
mass of the initial data is smaller than 2+/2.

Proof. We can adapt the proof of Theorem 2.8.1 (see also Remark 2.8.2) to establish the global existence
criterion (2.1), but now with the better decay estimates on the increments of £%,. What differs is the
numerology involved when choosing the parameter N. Here, we obtain A>T ~ A~ N!~ with the same
choice of A ~ N'5°. Hence, T' can be chosen arbitrarily large if and only if 2 — % > 0. O

Remark 2.12.3. Future possible continuations of this project are in the following directions.

(1) In the non-periodic setting, the endpoint regularity was obtained recently in [MWX11]. It is of
interest to study whether the analogue of this result holds in the periodic setting.

(2) The mass threshold 2v/2 (to be compared with 27 in the Euclidean setting) is not sharp due to the
unoptimal constant in the Gagliardo-Nirenberg inequality (see Lemma 2.3.5). A second goal would
be to research the literature and check if optimal constants for Gagliardo-Nirenberg inequality on
compact domains have been found.

(3) Recently, the global well-posedness in H!(R) result was improved [Wul3, Wul4] in the sense of
relaxing Assumption (A). In [MO15], we show that this improvement also carries in the periodic
setting for H'(T)-solutions. In both the periodic and non-periodic settings, it is believed that the
smallness of mass condition (A) (upon which global well-posedness is proved) can also be relaxed
for H® regularities, where % <s<l1.
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