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Abstract

The m � n quantum grassmannian, Gq(m;n), with m � n, is the subalgebra of

the algebra Oq(Mmn) of quantum m� n matrices that is generated by the maximal

m�m quantum minors. Several properties of Gq(m;n) are established. In particular,

a k-basis of Gq(m;n) is obtained, and it is shown that Gq(m;n) is a noetherian domain

of Gelfand-Kirillov dimensionm(n�m)+1. The algebra Gq(m;n) is identi�ed as the

subalgebra of coinvariants of a natural left coaction of Oq(SLm) on Oq(Mmn) and it

is shown that Gq(m;n) is a maximal order.

2000 Mathematics subject classi�cation: 16W35, 16P40,16P90, 16S38, 17B37, 20G42

Introduction

Fix a base �eld k, a nonzero scalar q 2 k and positive integers m;n with m � n. The
coordinate ring of quantum m � n matrices, Oq(Mmn), is the k-algebra generated by mn
indeterminates Xij, 1 � i � m and 1 � j � n, subject to the following relations:

XijXil = qXilXij;
XijXkj = qXkjXij;
XilXkj = XkjXil;

XijXkl �XklXij = (q � q�1)XilXkj;

(1)

for 1 � i < k � m and 1 � j < l � n. It is well-known that Oq(Mmn) can be presented
as an iterated skew polynomial algebra over k with the generators added in lexicographic
order. As a consequence of this presentation, it is easy to establish that Oq(Mmn) is a
noetherian domain of Gelfand-Kirillov dimension mn.

We will usually write Oq(Mn) for the algebra Oq(Mnn). In this algebra the quantum
determinant, Dq = detq is de�ned by

Dq :=
X
�2Sn

(�q)l(�)X1;�(1) : : :Xn;�(n);

�Some of the results in this paper appear in the �rst author's PhD thesis (Edinburgh, 2001). She thanks
EPSRC for �nancial support.

yPart of this work was done while the third author was visiting the University of Edinburgh. He thanks
the Edinburgh Mathematical Society for the �nancial support of this visit.
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from [13, Theorem 4.6.1], we know that Dq is in the centre of Oq(Mn).
Following [6], we use the notation [I j J ] to denote the quantum determinant of the

quantum matrix subalgebra Oq(MI;J) of Oq(Mmn) generated by the elementsXij with i 2 I
and j 2 J , where I and J are index sets with jIj = jJ j. The element [IjJ ] is the quantum
minor determined by the index sets I and J . If I = fi1; : : : ; isg and J = fj1; : : : ; jsg
where the indices are written in ascending order, then we will often denote [I j J ] by
[i1 : : : is j j1 : : : js].

In this paper we are interested in studying the ring theoretic properties of a certain
subalgebra of Oq(Mmn), the quantum deformation of the homogeneous coordinate ring
of the m� n grassmannian, Gq(m;n). This is a deformation of the classical homogeneous
coordinate ring of the grassmannian ofm-dimensional k-subspaces of n-dimensional k-space
and is generated by the maximal quantum minors ofOq(Mmn); to be more speci�c, Gq(m;n)
is the subalgebra of Oq(Mmn) generated by the m �m quantum minors of Oq(Mmn). In
the quantum grassmannian Gq(m;n), any m�m quantum minor will involve rows 1; : : : ; m
of the quantum matrix (Xij) associated to Oq(Mmn). Thus, to simplify notation, we may
denote a quantum minor by its columns only; that is, the quantum minor given by the row
set f1; : : : ; mg and column set J will be denoted by [J ].

Example Gq(2; 4) is the k-algebra generated by the 2 � 2 minors of the 2 � 4 quantum
matrix of Oq(M2;4): [12] ; [13] ; [14] ; [23] ; [24] and [34] :
Using the relations for Oq(Mmn) and [6, Lemma A.1] we can calculate the following com-
mutation relations:

[12] [13] = q [13] [12] ; [12] [14] = q [14] [12] ; [12] [23] = q [23] [12] ;

[12] [24] = q [24] [12] ; [12] [34] = q2 [34] [12] ; [13] [14] = q [14] [13] ;

[13] [23] = q [23] [13] ; [13] [24] = [24] [13] +
�
q � q�1

�
[14] [23] ;

[13] [34] = q [34] [13] ; [14] [23] = [23] [14] ; [14] [24] = q [24] [14] ;

[14] [34] = q [34] [14] ; [23] [24] = q [24] [23] ; [23] [34] = q [34] [23] ;

[24] [34] = q [34] [24] ;

and the Quantum Pl�ucker relation

[12] [34]� q [13] [24] + q2 [14] [23] = 0:

Remark Quantum matrices and quantum grassmannians can be de�ned in an exactly
similar manner over any commutative ring R with an invertible element q 2 R. In the
next section, we shall need to consider quantum grassmannians de�ned over a Laurent
polynomial extension either of a �eld or of the integers.
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1 Fioresi's commutation relations

In [3], Fioresi has developed useful commutation relations for the m�m quantum minors
which generate Gq(m;n). However, Fioresi works in the following setting. The �eld k that
she considers is required to be algebraically closed of characteristic zero, and the quantum
matrix algebra that she considers is generated as an algebra over the ring k[q; q�1], where
q is transcendental over k. The �rst thing that we need to do is to observe that these
commutation relations hold over any �eld k and for any 0 6= q 2 k. A couple of warnings
about notation for readers comparing [3] with this paper. First, because of the choice of
relations for Oq(Mmn), it is necessary to replace q by q�1 in any relation taken from [3].
Secondly, Fioresi works with the quantum grassmannian de�ned by the maximal m � m
minors of Oq(Mnm); thus, in any maximal minor, she uses all of the m columns, and a
generating quantum minor of the grassmannian is speci�ed by choosing m rows. To deal
with this second di�erence, we can think of both versions of the quantum grassmannian
as being subalgebras in the quantum matrix algebra Oq(Mn) and observe that the trans-
pose automorphism, � , see [13, 3.7.1], transforms Fioresi's quantum grassmannian to our
quantum grassmannian.

Recall the following total lexicographic ordering on quantum minors: [j1j2 : : : jm] <lex

[i1i2 : : : im] if and only if there exists an index � such that jl = il for l < �, but j� < i�.
Let [I] = [i1 : : : im] denote anm�m quantum minor. If [I] 6= [1 : : :m], consider the least

integer s such that is > s. Let �([I]) be the quantumminor obtained from [I] by replacing is
by is� 1 and leaving the other indices unchanged. Obviously, �([I]) <lex [I]. The standard
tower of [I] is the sequence of quantum minors [IN ] >lex [IN�1] >lex : : : >lex [I1] >lex [I0]
where [IN ] = [I], [Il�1] = �([Il]), and [I0] = [1; : : : ; r]. If [I] = [1 : : : r] then the standard
tower is de�ned to be the single quantum minor [I].

We will denote the version of the m�n quantum grassmannian constructed by Fioresi
by Gh(m;n). Note also that the relations in [3] use h where we would use h�1; thus we
should interchange h and h�1.

Proposition 1.1 Let K be an algebraically closed �eld of characteristic zero, and let h
be an indeterminate over K. Set Gh(m;n) to be the quantum grassmannian subalgebra of
Oh(M(K[h; h�1])mn). Let I; J � f1; : : : ; ng with jIj = jJ j = m, and [I] <lex [J ]. Set
s = m� jI \ J j. Then in Gh(m;n),

[I] [J ] = hs [J ] [I] +
X

[L]<lex[I]

�[L]

�
h� h�1

�i[L] (�h)j[L] [L] [L0] ;

where i[L]; j[L] 2 N and �[L] is either 0 or 1, while L0 is the set (I \ J) [ ((I [ J) n L).

Proof In [3, Proposition 2.21 and Theorem 3.6], Fioresi obtains commutation relations
of the above form, but with the products [L] [L0] on the right hand side of the equation
above more carefully stated. In Proposition 2.21 she �rst obtains the result for the case
that I \J = ;. In this case, the quantum minors [L] involved are members of the standard
tower of [I], and so [L] <lex [I], as we require. The general case where I \ J 6= ; is dealt
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with in Theorem 3.6. Set [eI] to be the quantum minor obtained from columns In(I \ J),

and similarly, de�ne [ eJ ]. Proposition 2.21 provides a commutation rule for [eI][ eJ ] with
terms on the right hand side [eL][ eL0] where [eL] <lex [eI]. In Theorem 3.6, a commutation

rule with the same coeÆcients is then obtained for [I] [J ] by replacing each [eL][ eL0] by
[eL[ (I \ J)][ eL0 [ (I \ J)]. Thus, all that needs to be done is to make the easy observation

that if [eL] <lex [eI] then [eL [ (I \ J)] <lex [eI [ (I \ J)] = [I].

Corollary 1.2 Let k be any �eld and q any nonzero element of k. Set Gq(m;n) to be the
quantum grassmannian subalgebra of Oq(Mmn). Let I; J � f1; : : : ; ng with jIj = jJ j = m,
and [I] <lex [J ]. Set s = m� jI \ J j. Then in Gq(m;n),

[I] [J ] = qs [J ] [I] +
X

[L]<lex[I]

�[L]

�
q � q�1

�i[L] (�q)j[L] [L] [L0] ;

where �[L] 2 k, i[L]; j[L] 2 N and �[L] is either 0 or 1, while L0 is the set (I \ J) [
((I [ J) n L).

Proof Proposition 1.1 applies in the case that K = C . In this case, observe that
the coeÆcients of the monomials in the maximal minors are all in Z[h; h�1]; so that these
relations hold in the quantum grassmannian over Z[h; h�1]. There is then a natural homo-
morphism from this quantum grassmannian to Gq(m;n), such that z 7! z1k for z 2 Z and
h 7! q, which produces the required relations.

Recall that an element a of an algebra A is a normal element if aA = Aa. The next
result follows immediately from the previous Corollary.

Corollary 1.3 An m � m quantum minor [I] 2 Gq(m;n) is normal modulo the ideal
generated by the set f[J ] j [J ] <lex [I]g.

The algebra Oq(Mmn) is a connected N-graded algebra, graded by the total degree
in the canonical generators. Since Gq(m;n) is a subalgebra generated by homogeneous
elements of degree m with respect to this grading, Gq(m;n) inherits a connected N-graded
structure in which its canonical generators have degree one.

Theorem 1.4 The quantum grassmannian Gq(m;n) is a noetherian domain.

Proof The quantum grassmannian Gq(m;n) is generated by the
�
n

m

�
quantum minors

of size m in Oq(Mmn). Denote these quantum minors by u1 <lex u2 <lex : : : <lex u(nm)
.

Then by Corollary 1.3, fu1; : : : ; u(nm)
g is a normalising sequence of Gq(m;n); that is, u1

is normal and ul is normal modulo the ideal generated by fu1; : : : ; ul�1g, for l > 1. The
factor by the ideal generated by this normalising sequence is the base �eld; so the fact that
Gq(m;n) is noetherian follows by repeated use of [1, Lemma 8.2].

Finally, Gq(m;n) is a domain since it is a subalgebra of Oq(Mmn) which is a domain.
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Remark If A is a noetherian, connected N-graded k-algebra such that every non-
simple graded prime factor ring A=P contains a nonzero homogeneous normal element
in �i�1 (A=P )i then we say that A has enough normal elements ([14]). Thus, the two
previous results show that the quantum grassmannian has enough normal elements.

There is a useful isomorphism between Gq(m;n) and Gq�1(m;n) which we now describe.
Notice that, if 1 � i1 < � � � < im � n, Gq(m;n) is isomorphic to the subalgebra of Oq(Mn)
generated by the m � m minors that use rows i1; : : : ; im, that is, the minors [IjJ ] with
I = fi1; : : : ; img and J � f1; : : : ; ng, jJ j = m. Let A := Oq(Mn) with generators Xij and
A0 := Oq�1(Mn) with generators X 0

ij. Take a copy R of Gq(m;n) inside A generated by the
m�m quantum minors that use the �rstm rows of A, and take a copy R0 of Gq�1(m;n) that
uses the last m rows of A0. Following the proof of [7, Corollary 5.9], we see that there is an
isomorphism Æ : A �! A0 which takes [IjJ ] to [!0Ij!0J ]

0, where [�j�]0 denotes a quantum
minor in A0 := Oq�1(Mn) and !0 is the longest element of the symmetric group Sn; that is,
!0(i) = n� i + 1. Note that the isomorphism Æ restricted to R produces an isomorphism
from R to R0 that takes a generating minor [I] to the minor [!0I]

0. In particular, note that
under this isomorphism, [12 : : :m], the leftmost minor of R = Gq(m;n), is translated into
the rightmost minor [n�m + 1 : : : n]0 of the quantum grassmannian R0 = Gq�1(m;n). We
denote this induced isomorphism from Gq(m;n) to Gq�1(m;n) by Æ also.

As an example of the use of the isomorphism Æ, we record the following lemma which
we need later.

Lemma 1.5 Let I � f1; : : : ; ng with jIj = m. Then

[I] [n�m+ 1 : : : n] = qs[n�m+ 1 : : : n] [I]

where s = m� jI \ fn�m+ 1; : : : ; ngj, and thus [n�m + 1 : : : n] is normal in Gq(m;n).

Proof Note that !0fn�m+ 1; : : : ; ng = f1; : : : ; mg. Note also that
jI \ fn�m + 1; : : : ; ngj = j!0I \ !0fn�m + 1; : : : ; ngj = j!0I \ f1; : : : ; mgj.

By Corollary 1.2, [1 : : :m][!0I] = qs[!0I][1 : : :m]. Applying Æ to this equation gives
[n � m + 1 : : : n]0[I]0 = qs[I]0[n � m + 1 : : : n]0 in Gq�1(m;n). This can be rewritten as
[I]0[n �m + 1 : : : n]0 = q�s[n �m + 1 : : : n]0[I]0 in Gq�1(m;n). Finally, replacing q�1 by q,
we obtain

[I][n�m+ 1 : : : n] = qs[n�m+ 1 : : : n][I]

in Gq(m;n).

2 A basis for Gq(m;n)

In this section, we obtain a basis for Gq(m;n). This basis is a subset of the basis of
preferred products of Oq(Mmn) obtained in [6, Section 1]. First, we adapt the language
used in that paper to the grassmannian subalgebra Gq(m;n). Recall from Section 1 that if
J is an m-element subset of f1; : : : ; ng then [J ] denotes the quantum minor [1; : : : ; m j J ]
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of Oq(Mmn). Thus, let m;n 2 N� with n � m. We de�ne a partial ordering on m-element
subsets of f1; : : : ; ng.

De�nition 2.1 Let A;B � f1; : : : ; ng with jAj = m = jBj. We de�ne a partial ordering,
denoted by ��. Write A and B in ascending order:

A = fa1 < a2 < � � � < amg and B = fb1 < b2 < � � � < bmg:

De�ne A �� B to mean that ai � bi for i = 1; : : : ; m.

This naturally de�nes a partial ordering on the generators of Gq(m;n).

De�nition 2.2 Let [I] and [J ] belong to the generating set of Gq(m;n). Then we write
that [I] �c [J ] if and only if I �� J.

For example, Figure 1 shows the ordering on generators of Gq(3; 6).
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Figure 1: The partial ordering �c on Gq(3; 6)

Recall that a tableau is a Young diagram with entries in each box. If each row of a
tableau T has lengthm then we will say that T is an m-tableau. Here, we consider tableaux
with entries from f1; : : : ; ng and no repetitions in each row. An allowable m-tableau T is an
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m-tableau with strictly increasing rows. If an allowable m-tableau T has rows J1; : : : ; Js,
then T is preferred if and only if J1 �� J2 �� : : : �� Js.

Let I = fm;m � 1; : : : ; 1g and let S be an m-tableau which has the same number of
rows as T and such that each row of S is I. Then T is an allowable (preferred) m-tableau
if and only if the bitableau (S j T ) is allowable (preferred) in the sense of [6]. With this in
mind, we de�ne the following ordering on allowable m-tableau. Let

T =

0BBB@
J1
J2
...
Jt

1CCCA ; S =

0BBB@
L1

L2
...
Ls

1CCCA :

Then T � S if t > s, or if s = t and

fJ1; : : : ; Jtg <lex fL1; : : : ; Lsg;

that is, there exists an index i such that J� = L� for � < i, but Ji <� Li.
Any allowable m-tableau determines a product of quantum minors in the quantum

grassmannian as follows.

De�nition 2.3 For any (allowable) m-tableau

T =

0BBB@
J1
J2
...
Js

1CCCA ;

de�ne [T ] = [J1][J2] : : : [Js].

De�nition 2.4 The content of an m-tableau T is the multiset f1t1 ; 2t2 ; � � � ; ntng, where ti
is the number of times i appears in T .

We will use the content of a tableau to de�ne a natural Zn-grading on the m � n
quantum grassmannian. There is a Zn-grading on Oq(Mmn) de�ned by assigning degree "j
to Xij, where "j for j = 1; : : : ; n form the natural basis of Zn. Since the maximal minors
of Oq(Mmn) are homogeneous with respect to this basis, there is an induced Zn-grading
on Gq(m;n): consider a product of minors [T ] in Gq(m;n), if the tableau T has content
f1t1 ; 2t2 ; : : : ; ntng, then [T ] is homogeneous of degree (t1; t2; : : : ; tn). Thus, the degree of a
product is dependent on the number of times each column of the m � n quantum matrix
appears in it.

Theorem 2.5 (Generalised Quantum Pl�ucker Relations for Quantum grassmannians)
Let J1; J2; K � f1; 2; : : : ; ng be such that jJ1j; jJ2j � m and jKj = 2m � jJ1j � jJ2j > m.
Then X

K0tK00=K

(�q)`(J1;K
0)+`(K0;K00)+`(K00;J2) [J1 tK

0][K 00 t J2] = 0;

where ` (I; J) = jf(i; j) 2 I � J : i > jgj.
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Proof We work in the algebra Oq(Mn) and apply [6, Proposition B2(a)] with I1 =
I2 = f1; : : : ; mg =: I. Thus,X

K0tK00=K

(�q)`(J1;K
0)+`(K0;K00)+`(K00;J2) [IjJ1 tK

0][IjK 00 t J2] = 0;

since jKj > m = jI1 [ I2j, see [6, B3]. This is the desired relation.

Lemma 2.6 Let T be an m-tableau with content 
 and suppose that T is not preferred.
Then

(a) T is not minimal with respect to � among m-tableaux with content 
;
(b) [T ] can be expressed as a linear combination of products [S], where each S is an

m-tableau with content 
 such that S � T .

Proof Follow the proof of [6, Lemma 1.7]. Note that in the proof the only place where
the shape of a bitableau might change is near the end of the proof where the right-hand
side of the Exchange Formula is considered. In our situation, the right-hand side is zero,
as noted in Theorem 2.5.

Note that �xing the content of an m-tableau �xes its shape and thus �xes the number
of rows in the m-tableau.

Let @ = (c1; : : : ; cn) 2 Nn . Let V be the homogeneous component of degree @ in
Gq(m;n). Note that V might be zero, and that this is the case if and only if there is no
product [T ] where T is an m-tableau of content (1c1 : : : ncn). Also, an element of Gq(m;n)
belongs to V if and only if it is a linear combination of products [T ], where T runs over
all m-tableau with content (1c1 : : : ncn); that is, the products [T ], where T runs over all
m-tableau with content (1c1 : : : ncn) span V .

Theorem 2.7 Let @ = (c1; : : : ; cn) 2 Nn , let V be the homogeneous component of Gq(m;n)
with degree @, and set 
 = (1c12c2 � � �ncn). The products [T ], as T runs over all preferred
m-tableau with content 
, form a basis for V .

Proof It is enough to prove that for any m-tableau T with content 
 the product [T ] is
a linear combination of products [S] where S is a preferred m-tableau with content 
. Let
E be the set of m-tableau with content 
; clearly, E is a �nite set and we order it by �. We
use induction on � to show the result. Let U 2 E . If U is minimal, then it is preferred, by
part (a) of the previous result. Otherwise, by part (b) of the previous result, [U ] is a linear
combination of products [S], where S 2 E and S � U . Thus, by an induction argument
applied to S, we may conclude that [U ] is a linear combination of products [S] where S is
a preferred m-tableau with content 
.

Recall that Gq(m;n) is a subalgebra of Oq(Mmn) and notice that the products [T ], as
T runs over all preferred m-tableaux of content 
, form a subset of the basis of Oq(Mmn)
constructed in [6]. Therefore, they are linearly independent and we have the result.
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Corollary 2.8 The products [T ], as T runs over all preferred m-tableaux, form a basis for
Gq(m;n).

This basis can be used to calculate the Gelfand-Kirillov dimension of them�n quantum
grassmannian.

Consider the partial ordering �c on the generating minors of Gq(m;n). A saturated
path between two minors a <c b will be an `upwards path' a = a1 <c a2 <c : : : <c al = b
of minors such that no additional terms can be added; that is, for any index i there is no
minor d such that ai <c d <c ai+1. The length of such a saturated path is de�ned to be l.
For example, a saturated path between the minors [134] and [256] in Gq(3; 6) is

[134] <c [234] <c [235] <c [236] <c [246] <c [256] :

The length of this saturated path is 6.
Amaximal path is a saturated path between the two minors [1 : : :m] and [n�m + 1 : : : n].

It is easy to check that any maximal path has length m(n�m) + 1.

Proposition 2.9 Let G = Gq(m;n) and let � be the length of a maximal path in G. Then

GKdim(Gq(m;n)) = � = m(n�m) + 1:

Proof Let V be the k-subspace of G spanned by the m � m minors which generate
G. Then GKdim(G) = lim logn dV (n) where dV (n) = dimk (

Pn

i=0 V
i). Let a1; a2; : : : ; a�

be a maximal path in G. Then as11 a
s2
2 : : : as�� 2 V n+1 whenever

P�

i=1 si = n + 1. The set
fas11 a

s2
2 : : : as�� j �si = n+ 1g is linearly independent. Therefore

dimk

�
V n+1

�
� jfas11 a

s2
2 : : : as�� j �si = n + 1gj =

�
n + �

�� 1

�
which is a polynomial in n of degree �� 1. It follows that GKdim(G) � �.

Let ai1 : : : ain 2 V
n. By Theorem 2.7, ai1 : : : ain may be rewritten as a linear combina-

tion of preferred products from V n.
There are �nitely many maximal paths in Gq(m;n). Suppose there are c such paths

and index them 1; : : : ; c. Let a1 <c a2 <c : : : <c a� be the ith maximal path and let W
(n)
i

denote the subspace generated by monomials as11 : : : as�� such that �sj = n. The above

observation shows that V n �
Pc

i=1W
(n)
i . Consider dim(W

(n)
i ). The products as11 : : : as��

such that �sj = n are linearly independent. Therefore

dim(W
(n)
i ) = jfas11 : : : as�� j

X
si = ngj = jf(s1; : : : ; s�) 2 N

� j
X

si = ngj:

Therefore dim(W
(n)
i ) = dim(W

(n)
j ) for all i; j 2 f1; : : : ; cg. Thus

dim (V n) � dim

 
cX

i=1

W
(n)
i

!
� c dim

�
W

(n)
1

�
= c

�
n + �� 1

�� 1

�
and dV (n) � c

Pn

i=0

�
i+��1
��1

�
, a polynomial of degree �. It follows that GKdim(G) � �.

Hence, GKdim(G) = � = m(n�m) + 1.

For example, GKdim(Gq(2; 4)) = 2(4� 2) + 1 = 5.
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3 Noncommutative Dehomogenisation

If R is a commutative N-graded algebra, and x is a homogeneous nonzerodivisor in degree
one, then the dehomogenisation of R at x is usually de�ned to be the factor algebra
R=(x�1)R, [2, Appendix 16.D]. This de�nition is unsuitable in a noncommutative algebra
if the element x is merely normal rather than central: in this case, the factor algebra is often
too small to be useful. For example, let R be the quantum plane kq[x; y] with xy = qyx
and q 6= 1. Setting x = 1 forces y = 0; so that the factor algebra R=hx� 1i is isomorphic
to k rather than being an algebra of Gelfand-Kirillov dimension 1, as one might hope.
However, in the commutative case, an alternative approach is to observe that the localised
algebra S := R[x�1] is Z-graded, S = �i2ZSi, and that S0

�= R=(x� 1)R. If x is a normal
nonzerodivisor of degree one in a noncommutative N-graded algebra R = �i2N Ri, then one
can form the Ore localisationR[x�1] =: S, and then this second approach does yield a useful
algebra in the noncommutative case. Indeed, for i; j 2 N denote by Rix

�j the k-subspace
of elements of S that can be written as rx�j with r 2 Ri; clearly, Rix

�j � Ri+1x
�(j+1).

For l 2 Z, set Sl =
P

t�0 Rl+tx
�t = [t�0Rl+tx

�t. Then S is a Z-graded algebra with
S = �l2ZSl.

De�nition 3.1 Let R = �Ri be an N-graded k-algebra and let x be a regular homoge-
neous normal element of R of degree one. Then the dehomogenisation of R at x, writ-
ten Dhom(R; x), is de�ned to be the zero degree subalgebra S0 of the Z-graded algebra
S := R[x�1].

It is easy to check that Dhom(R; x) =
P1

i=0 Rix
�i = [1i=0Rix

�i. In particular, if
R = k[R1] then Dhom(R; x) =

P1
i=0 (R1x

�1)i = [1i=0 (R1x
�1)i, and further, if R1 =

ka1 + � � �+ kas then Dhom(R; x) = k[a1x
�1; : : : ; asx

�1].
Denote by � the automorphism of S given by �(s) = xsx�1 for s 2 S. Note that �

induces an automorphism of S0, also denoted by �.

Lemma 3.2 Let R be an N-graded algebra and let x be a regular normal homogeneous
element of degree 1. Then there is an isomorphism

� : Dhom(R; x)[y; y�1; �] �! R[x�1]

which is the identity on Dhom(R; x) and sends y to x.

Proof The existence of � is clear from the universal property of skew-Laurent exten-
sions. It is easy to check that � is an isomorphism.

Some properties of dehomogenisation follow in an elementary way from this result.

Corollary 3.3 Let R = �i�0Ri be an N-graded algebra and let x be a regular homogeneous
normal element of degree one.
(i) R is a domain if and only if Dhom(R; x) is a domain.
(ii) If R is noetherian then Dhom(R; x) is noetherian.
(iii) If R is locally �nite (that is, dim(Ri) < 1 for all i 2 N) then GKdim(R) =
GKdim(Dhom(R; x)) + 1.
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Proof Point (i) follows at once from the isomorphism in Lemma 3.2.
(ii) If R is noetherian then so is R[x�1] and thus Dhom(R; x)[y; y�1; �] is noetherian, by
Lemma 3.2. As is well-known, since � is an automorphism of Dhom(R; x), this implies
that Dhom(R; x) is noetherian.
(iii) Let � be the automorphism of R induced by conjugation by x. It is clear that � is a
graded automorphism; and so from the local �niteness of R, we see that the elements xi, for
i � 1, are local normal elements in the sense of [9, p168]. By using [9, 12.4.4], it follows that
GKdim(R[x�1]) = GKdim(R). On the other hand, the automorphism � induced on S0 by
conjugation by x in S is locally algebraic in the sense of [9, p164]. Indeed, S0 = [t�0Rtx

�t

and for all t 2 N the k-subspace Rtx
�t is a �nite dimensional �-stable subspace of S0. It

follows from [9, p164] that GKdim(S0[y; y
�1; �]) = GKdim(S0)+1. The conclusion follows

from Lemma 3.2.

4 Dehomogenisation of Gq(m;n)

In the classical commutative theory it is a well-known and basic result that the deho-
mogenisation of the homogeneous coordinate ring of the m�n grassmannian at the minor
[n�m + 1; : : : ; n] is isomorphic to the coordinate ring of m� (n�m) matrices; that is,

O(G(m;n))

h[n�m + 1; : : : ; n]� 1i
�= O(Mm;n�m(k)):

In this section, we show that the corresponding result holds for Gq(m;n) when we
use the noncommutative dehomogenisation de�ned in the previous section. Recall from
Lemma 1.5 that [n�m+ 1; : : : ; n] is a normal element of Gq(m;n): in fact, it q-commutes
with the other maximal minors, and this will be important in calculations.

Recall that we may consider Gq(m;n) to be a N-graded algebra with each m � m
quantum minor given degree 1. Set x = [n � m + 1; : : : ; n] and S := Gq(m;n)[x�1], and
note that Dhom(Gq(m;n); [n � m + 1; : : : ; n]) = S0 is generated by elements of the form
fIg := [I] [n�m+ 1; : : : ; n]�1 with I � f1; : : : ; ng and jIj = m, see Section 3.

Now let u be a positive integer and consider Oq(Mu). If I � f1; : : : ; ug then eI :=
f1; : : : ; ugnI. In an exponent I denotes the sum of the indices occuring in the index set I.

Let Dq be the quantum determinant of Oq(Mu). Since Dq is a central element, we can
invert it to form the u� u quantum general linear group Oq(GLu) := Oq(Mu)[D

�1
q ]. The

algebra Oq(GLu) is a Hopf algebra, with antipode S, and counit ".
There is a useful antiendomorphism � : Oq(Mu) �! Oq(Mu) de�ned on generators by

�(Xij) = (�q)i�j[gfjgjffig], see [13, Corollary 5.2.2]. We need to know the e�ect of � on
quantum minors. This is given in the following lemma, which is presumably well-known
but we give a proof since we have been unable to �nd a clear exposition. Recall that
�([IjJ ]) =

P
jKj=jIj [IjK]
 [KjJ ], where � is the comultiplication map on Oq(Mu), by [12,

(1.9)]. Recall also that "([IjJ ]) equals 1 if I = J and 0 otherwise.
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Lemma 4.1 Let [IjJ ] be an r � r quantum minor in Oq(Mu). Then,

(i) S([IjJ ]) = (�q)I�J [ eJ jeI]D�1
q

(ii) �([IjJ ]) = (�q)I�J [ eJ jeI]Dr�1
q

Proof We establish the �rst claim by calculating the expressionX
K;L

(�q)L�JS([IjK])[KjL][ eJ jeL]D�1
q

in two di�erent ways.
First,

X
K;L

(�q)L�JS([IjK])[KjL][ eJ jeL]D�1
q =

X
K

S([IjK])

(X
L

(�q)L�J [KjL][ eJ jeL]D�1
q

)
=

X
K

S([IjK])"([KjJ ])1 = S([IjJ ]);

by using the �rst equality of [13, 4.4.3].
Secondly,

X
K;L

(�q)L�JS([IjK])[KjL][ eJ jeL]D�1
q =

X
L

(X
K

S([IjK])[KjL]

)
(�q)L�J [ eJ jeL]D�1

q

=
X
L

"([IjL])(�q)L�J [ eJ jeL]D�1
q

= (�q)I�J [ eJ jeI]D�1
q ;

by using the de�ning property of the antipode.
The second claim follows easily from the �rst, since S([IjJ ]) = �([IjJ ])D�r

q for r � r
quantum minors [IjJ ]. This is easily established from the fact that it holds on the gener-
ators Xij and that S and � are anti-endomorphisms.

We will need the anti-endomorphism �Æ� : Oq(Mu) �! Oq(Mu) de�ned by �Æ�(Xij) =

(�q)j�i[ffigjgfjg] for 1 � i; j � u. Here, � is the transposition automorphism given in [13,
Proposition 3.7.1(1)]. Note that, by Lemma 4.1, the e�ect of � Æ � on the r � r quantum

minor [I j J ] is given by � Æ �([I j J ]) = (�q)J�I[eI j eJ ]Dr�1
q .

Given I = fi1; : : : ; img � f1; : : : ; ng the set Infikg is denoted by fi1; : : : ; bik; : : : ; img.
Given two sets I; J � f1; : : : ; ng recall that

` (I; J) := jf(i; j) 2 I � J : i > jgj:

In the next proof, and throughout the paper, (�q)� denotes a power of �q that is not
necessary to keep track of explicitly.
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Lemma 4.2 The k-algebra Dhom(Gq(m;n); [n � m + 1; : : : ; n]) = S0 is generated as an

algebra by the elements fj n�m + 1 : : :bi : : : ng for 1 � j � n�m < i � n.

Proof We know that S0 is generated by the elements fIg := [I] [n �m + 1; : : : ; n]�1,
where I � f1; : : : ; ng and jIj = m. We show that each such element can be expressed as a
k-linear combination of products of elements of the form fj n�m + 1 : : :bi : : : ng, where
1 � j � n � m < i � n. Denote by A the subalgebra of S0 generated by the elements
fj n�m + 1 : : :bi : : : ng.

Let I = fi1 � : : : � img 6= fn � m + 1; : : : ; ng be an ordered subset of f1; : : : ; ng
and let 2 � t � m + 1 be such that it � n � m + 1 but it�1 < n � m + 1; that is,
I \ f1; : : : ; n�mg = fi1; : : : it�1g. We will use induction on t to show that fIg 2 A.

If t = 2, then I is of the form fj n � m + 1 : : :bi : : : ng and so fIg 2 A. Consider
a �xed t 2 f3; : : : ; m + 1g and suppose that the result is true for t � 1. Now consider
[I] = [i1 : : : im] with I \ f1; : : : ; n �mg = fi1; : : : it�1g. We use the generalised Quantum
Pl�ucker relations (Theorem 2.5) to rewrite the product [n�m+ 1; : : : ; n] [i1 : : : im].

Let K = fi1; n�m+ 1; : : : ; ng, J1 = ; and J2 = fi2; : : : ; img. ThenX
K0tK00=K

(�q)`(K
0;K00)+`(K00;J2) [K 0] [K 00 t J2] = 0

where either
K 0 = fn�m+ 1; : : : ; ng and K 00 = fi1g;

or
K 0 = fi1g [ fn�m+ 1; : : : ;bl; : : : ; ng and K 00 = flg

where n�m + 1 � l � n and l =2 fi2; : : : ; img. Let S = fn�m + 1; : : : ; ng n fi2; : : : ; img.
By re-arranging the above equation, we obtain

[n�m+ 1; : : : ; n] [i1 : : : im] = �
X
l2S

(�q)�
h
i1 n�m + 1 : : :bl : : : ni [l i2 : : : im] :

Multiplying through by [n�m + 1; : : : ; n]�2 from the right, and using Lemma 1.5 gives

fi1 : : : img =
X
l2S

� (�q)� fi1 n�m + 1 : : :bl : : : ngfl i2 : : : img:
Now fl; i2; : : : ; img \ f1; : : : ; n �mg = fi2; : : : ; it�1g and so, by the inductive hypothesis,

fl i2 : : : img 2 A. Clearly fi1 n � m + 1 : : :bl : : : ng 2 A, therefore fi1 : : : img 2 A. This
completes the inductive step and the result follows.

Theorem 4.3 There is an isomorphism

� : Oq(Mm;n�m) �! Dhom(Gq(m;n); [n�m+ 1; : : : ; n])

which is de�ned on generators by �(Xij) = fj n�m+ 1 : : : \n� i + 1 : : : ng, for 1 � i � m
and 1 � j � n�m.
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Proof In order to show that � is a homomorphism we have to show that the images
of the Xij under � still obey the relevant commutation relations. We will make repeated
use of the anti-endomorphism � Æ � de�ned before Lemma 4.2. There are four types of
products to consider.

(1) Let 1 � i < l � m and 1 � j � n �m. Then XijXlj = qXljXij; and so we must
show that � (Xij) � (Xlj) = q� (Xlj) � (Xij). Let t = n+ 1� i and s = n+ 1� l. Note that
s < t, and consider the product�

j n�m+ 1 : : :bt : : : n� [j n�m + 1 : : :bs : : : n]
in Gq(m;n). We can think of this as a product in Oq(Mm+1) where the rows are indexed
by 1; : : : ; m+1 and the columns by j; n�m+1; : : : ; n. Apply the anti-endomorphism �Æ�
to the commutation relation Xm+1;sXm+1;t = qXm+1;tXm+1;s we obtain:�

j n�m + 1 : : :bt : : : n� [j n�m + 1 : : :bs : : : n]
= q [j n�m+ 1 : : :bs : : : n] �j n�m + 1 : : :bt : : : n� :

Multiplying through this equation on the right by [n�m+1; : : : ; n]�2 on each side and
using Lemma 1.5 gives

fj n�m+ 1 : : :bt : : : ngfj n�m + 1 : : :bs : : : ng
= qfj n�m+ 1 : : :bs : : : ngfj n�m+ 1 : : :bt : : : ng;

that is, � (Xij) � (Xlj) = q� (Xlj) � (Xij).
(2) Let 1 � j < r � n�m and 1 � i � m. Then XijXir = qXirXij: Let t = n + 1� i

and, as in (1), think of the product�
j n�m + 1 : : :bt : : : n� �r n�m + 1 : : :bt : : : n�

as sitting inside Oq(Mm+1) where the rows are indexed by 1; : : : ; m+1 and the columns by
j; r; n�m+1; : : :bt; : : : ; n. Then �Æ� applied to the relationXm+1;jXm+1;r = qXm+1;rXm+1;j

in Oq(Mm+1) gives us�
j n�m+ 1 : : :bt : : : n� �r n�m+ 1 : : :bt : : : n�

= q
�
r n�m + 1 : : :bt : : : n� �j n�m+ 1 : : :bt : : : n� :

Therefore, multiplying through this equation on the right by [n�m+1; : : : ; n]�2 and using
Lemma 1.5, we get

fj n�m+ 1 : : :bt : : : ngfr n�m+ 1 : : :bt : : : ng
= qfr n�m + 1 : : :bt : : : ngfj n�m+ 1 : : :bt : : : ng;
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that is, �(Xij)�(Xir) = q�(Xir)�(Xij)
(3) Let 1 � i < l � m, and 1 � j < r � n�m. Then

XijXlr = XlrXij +
�
q � q�1

�
XljXir:

Let t = n+1�i and s = n+1�l. Note that n�m+1 � s < t � n, and that j < r < s < t.
Consider the product �

j n�m + 1 : : :bt : : : n� [r n�m+ 1 : : : bs : : : n]
as a product in Oq(Mm+2), where the m + 2 rows are indexed by 1; : : : ; m + 2 and the
columns by j; r; n�m+ 1; : : : ; n.

The relation
[13] [24] = [24] [13] +

�
q � q�1

�
[14] [23]

that we calculated earlier for Gq(2; 4) shows that, in Oq(Mm+2),

[I j js][I j rt] = [I j rt][I j js] + (q � q�1)[I j jt][I j rs]

where I = fm+ 1; m+ 2g, since j < r < s < t. By applying the anti-endomorphism � Æ �
to this relation, we obtain

�
j n�m+ 1 : : :bt : : : n� [r n�m+ 1 : : :bs : : : n]

= [r n�m + 1 : : :bs : : : n] �j n�m+ 1 : : :bt : : : n�
+
�
q � q�1

�
[j n�m+ 1 : : :bs : : : n] �r n�m + 1 : : :bt : : : n�

in Gq(m;n). Multiplying through by [n�m+ 1; : : : ; n]�2 and using Lemma 1.5 we get

fj n�m + 1 : : :bt : : : ngfr n�m+ 1 : : :bs : : : ng
= fr n�m+ 1 : : :bs : : : ngfj n�m+ 1 : : :bt : : : ng

+
�
q � q�1

�
fj n�m + 1 : : :bs : : : ngfr n�m+ 1 : : :bt : : : ng;

that is, �(Xij)�(Xlr) = �(Xlr)�(Xij) + (q � q�1)�(Xlj)�(Xir), as required.
(4) Let 1 � i < l � m and 1 � j < r � n�m. Then

XirXlj = XljXir:

Let t = n + 1 � i and s = n + 1 � l so that n �m + 1 � s < t � n and j < r < s < t.
Arguing as in (3), the relation [23][14] = [14][23] in Gq(2; 4) produces, in Oq(Mm+2), the
relation

[I j rs][I j jt] = [I j jt][I j rs]:
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Applying � Æ � to this relation gives�
r n�m + 1 : : :bt : : : n� [j n�m + 1 : : :bs : : : n]

= [j n�m + 1 : : :bs : : : n] �r n�m+ 1 : : :bt : : : n� :
Multiplying through by [n�m + 1; : : : ; n]�2 we get

fr n�m+ 1 : : :bt : : : ngfj n�m+ 1 : : : bs : : : ng
= fj n�m+ 1 : : :bs : : : ngfr n�m+ 1 : : :bt : : : ng;

that is, �(Xir)�(Xlj) = �(Xlj)�(Xir), as required.
Thus, � extends to a homomorphism. The images of the generators under � gen-

erate Dhom(Gq(m;n); [n � m + 1; : : : ; n]), by Lemma 4.2; so � is surjective. We show
that � is injective by comparing Gelfand-Kirillov dimensions. If � was not injective, then
GKdim(Dhom(Gq(m;n); [n � m + 1; : : : ; n]) < GKdim(Oq(Mm;n�m)) = m(n � m), since
Oq(Mm;n�m) is a domain. However, by Corollary 3.3 and Proposition 2.9, we know that
GKdim(Dhom(Gq(m;n); [n�m+1; : : : ; n]) = GKdim(Gq(m;n))� 1 = m(n�m)+1� 1 =
m(n�m). Thus, � is injective and hence � is an isomorphism.

Corollary 4.4 Let � be the automorphism of Oq(Mm;n�m) de�ned by �(Xij) = q�1Xij,
for 1 � i � m and 1 � j � n�m. Then

Oq(Mm;n�m)[y; y
�1;�] �! Gq(m;n)

�
[n�m + 1; : : : ; n]�1

�
de�ned by Xij 7! fj n�m+1 : : : \n+ 1� i : : : ng and y 7! [n�m+1; : : : ; n] is an isomor-
phism of algebras.

Proof Recall from Lemma 3.2 that there is an isomorphism

� : Dhom(Gq(m;n); [n�m + 1; : : : ; n])[y; y�1; �] �! Gq(m;n)
�
[n�m + 1; : : : ; n]�1

�
given by y 7! [n � m + 1; : : : ; n] and fj n � m + 1 : : :bt : : : ng 7! fj n � m + 1 : : :bt : : : ng,
where � is the automorphism of Dhom(Gq(m;n); [n�m + 1; : : : ; n]) given by conjugation
by the quantum minor [n � m + 1; : : : ; n]. On the other hand, by Theorem 4.3, there is
an isomorphism � : Oq(Mm;n�m) �! Dhom(Gq(m;n); [n�m+ 1; : : : ; n]), and it is easy to
see, by using Lemma 1.5, that the automorphism induced in Oq(Mm;n�m) by � via � is �.
Thus, � extends to an isomorphism

� : Oq(Mm;n�m)[y; y
�1;�] �! Dhom(Gq(m;n); [n�m + 1; : : : ; n])[y; y�1; �]

such that �(y) = y. Clearly, � Æ � is the desired isomorphism.
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Note that in [4] Fioresi proves a restricted version of Theorem 4.3. More speci�cally,
operating over the ring K[q; q�1], where K is algebraically closed of characteristic zero
and q is transcendental over K, she shows that Oq(Mn) is isomorphic to the subalgebra

of Gq(n; 2n)[[n+ 1 : : : 2n]�1] generated by the elements fj n+1 : : :bi : : : 2ng, but does not
show that this subalgebra is the dehomogenisation of Gq(n; 2n) at [n+ 1 : : : 2n].

Example Let S = Gq(2; 4)[[34]
�1]. Then Dhom(Gq(2; 4); [34]) = S0 and S0 is generated

by the elements

[12] [34]�1 ; [13] [34]�1 ; [14] [34]�1 ; [23] [34]�1 ; [24] [34]�1 :

Recall that fijg = [ij] [34]�1. From the commutation relations for Gq(2; 4) given in the
introduction, we can calculate the following commutation relations:

f13gf23g = qf23gf13g; f13gf14g = qf14gf13g;

f13gf24g = f24gf13g+
�
q � q�1

�
f23gf14g;

f14gf23g = f23gf14g; f14gf24g = qf24gf14g; f23gf24g = qf24gf23g

and from the Quantum Pl�ucker relation;

f12g = f13gf24g � qf23gf14g:

We can immediately see the correspondence (or we can use � to �nd the correspondence):

Oq(M(2))  ! S0

X11  ! f13g
X12  ! f23g
X21  ! f14g
X22  ! f24g
Dq  ! f12g;

and from Theorem 4.3
Dhom(Gq(2; 4); [34]) �= Oq(M(2)):

5 Gq(m;n) as coinvariants of Oq(SLm)

Recall that the m�m quantum special linear group, Oq(SLm), is de�ned by Oq(SLm) :=
Oq(Mm)=hDq � 1i.

In this section we show that Gq(m;n) is the algebra of coinvariants of a natural left
coaction of Oq(SLm) on Oq(Mmn). There is a natural epimorphism � : Oq(GLm) �!
Oq(SLm) which sends Dq to 1. In order to distinguish generators in the various algebras,
we will often denote the canonical generators in Oq(Mn) by Xij, in Oq(Mnm) by Yij, in
Oq(Mmn) by Zij and in Oq(GLm) by Tij. Further, set Uij := �(Tij) 2 Oq(SLm). Note that
both Oq(GLm) and Oq(SLm) are Hopf algebras.
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It is easy to check that one can de�ne a morphism of algebras satisfying the following
rule:

� : Oq(Mmn) �! Oq(GLm)
Oq(Mmn); Zij 7!
mX
k=1

Tik 
 Zkj

and that this induces a morphism of algebras

� : Oq(Mmn) �! Oq(SLm)
Oq(Mmn); Zij 7!
mX
k=1

Uik 
 Zkj

where � := (� 
 id) Æ �.
The morphisms � and � endow Oq(Mmn) with left comodule algebra structures over

Oq(GLm) and Oq(SLm), respectively. Recall that if H is a Hopf algebra andM is a left H-
comodule via the coaction 
 : M �! H
M then m 2M is a coinvariant if 
(m) = 1
m.
In this section we show that Gq(m;n) is the set of coinvariants of the Oq(SLm)-comodule
Oq(Mmn) under the comodule map �. In fact, this result is an easy consequence of [8,
Theorem 6.6], once we have described the set-up of that paper.

The map Yij 7!
Pm

k=1 Yik 
 Tkj induces a morphism of algebras � : Oq(Mnm) �!
Oq(Mnm)
Oq(GLm) which endows Oq(Mnm) with a right comodule algebra stucture over
Oq(GLm). Let Oq(V ) denote the algebra Oq(Mnm) 
 Oq(Mmn). The coactions � and �
de�ned above can be combined to give a left comodule structure on Oq(V ) which we denote
by 
. To be precise,


 : Oq(V ) �! Oq(GLm)
Oq(V )

is given by the rule


(a
 b) :=
X
(a);(b)

S(a1)b�1 
 a0 
 b0

for a 2 Oq(Mnm) and b 2 Oq(Mmn), where �(b) =
P

(b) b�1 
 b0 and �(a) =
P

(a) a0 
 a1.

Here, we are using the Sweedler notation and S is the antipode of Oq(GLm). In turn, this
coaction induces a coaction � : Oq(V ) �! Oq(SLm) 
 Oq(V ) given by � := (� 
 id) Æ 
;
so that

�(a
 b) :=
X
(a);(b)

�(S(a1)b�1)
 a0 
 b0:

The main results of [8] identify the coinvariants of the coactions 
 and �. In particular,
Theorem 6.6 of [8] identi�es the coinvariants of the coaction � in the following way. There
is a morphism of algebras � : Oq(Mn) �! Oq(V ) = Oq(Mnm) 
 Oq(Mmn) given by
Xij 7!

Pm

k=1 Yik 
 Zkj. Let R denote �(Oq(Mn)). It is proved in [6] that R �= Oq(Mn)=I,
where I is the ideal generated by the (m + 1)� (m + 1) quantum minors of Oq(Mn). We
have the following theorem.

Theorem 5.1 [8, Theorem 6.6] Let G1 and G2 denote the respective grassmannian subal-
gebras of Oq(Mnm) and Oq(Mmn) generated by all the m�m quantum minors. The set of
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�-coinvariants in Oq(V ) = Oq(Mnm) 
 Oq(Mmn) is the subalgebra generated by G1 
 G2

and R. More precisely,

(Oq(Mnm)
Oq(Mmn))
coOq(SLm) = (G1 
G2) �R:

The result we are aiming for follows easily from this.

Theorem 5.2

(Oq(Mmn))
coOq(SLm) = Gq(m;n):

Proof It is easily seen that there is a commutative diagram

Oq(Mmn)
i
�! Oq(Mnm)
Oq(Mmn)

� # � #

Oq(SLm)
Oq(Mmn)
id
i
�! Oq(SLm)
Oq(Mnm)
Oq(Mmn)

where i is the canonical injection. Moreover, let j : Oq(Mnm)
Oq(Mmn) �! Oq(Mmn) be
the canonical projection; that is,

j : Oq(Mnm)
Oq(Mmn)
p
id
�! k 
Oq(Mmn) �= Oq(Mmn)

where p is the projection modulo the irrelevant ideal of Oq(Mnm). Clearly, we have that
j Æ i = id. We see from the above commutative diagram that, if b 2 Oq(Mmn) is a �-
coinvariant, then i(b) = 1 
 b is a �-coinvariant. Thus, it follows from Theorem 5.1 that
1 
 b 2 (G1 
 G2):R. Hence, b = j(1 
 b) 2 j(G1 
 G2)j(R). Clearly, j(R) � k and
j((G1 
 G2)) � G2; and so b 2 G2 = Gq(m;n). This shows that Oq(Mmn)

coOq(SLm) �
Gq(m;n). Since it is clear that an m �m quantum minor of Oq(Mmn) is a �-coinvariant,
the converse inclusion follows from the fact that � is a morphism of algebras.

Note that Fioresi and Hacon, [5], have a version of this result, with the usual restrictions
as described earlier in this paper.

6 Gq(m;n) is a maximal order

Let R be a noetherian domain with division ring of fractions Q. Then R is said to be
a maximal order in Q if the following condition is satis�ed: if T is a ring such that
R � T � Q and such that there exist nonzero elements a; b 2 R with aTb � R, then T =
R. This condition is the natural noncommutative analogue of normality for commutative
domains, see, for example, [11, Section 5.1].

Recall that an element d in a ring R is said to be left regular if rd = 0 implies that
r = 0 for r 2 R. The following is a general result that we will be able to apply to show
that the quantum grassmannian Gq(m;n) is a maximal order.
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Proposition 6.1 Suppose that R is a noetherian domain with division ring of fractions
Q. Suppose that a; b 2 R are nonzero normal elements such that R[a�1] and R[b�1] are
both maximal orders, that b is left regular modulo aR and that ab = �ba for some central
unit � 2 R. Then R is a maximal order.

Proof First, we show that R[a�1] \ R[b�1] = R. Suppose that this is not the case,
and choose q 2 R[a�1] \ R[b�1] nR. Write q = ra�d = sb�e with d; e � 1 and r 2 RnRa,
s 2 RnRb. Cross multiply to get rbe = ��sad (remember that ab = �ba). Since b is left
regular modulo aR, this gives r 2 Ra, a contradiction. Thus, R[a�1] \ R[b�1] = R.

Now, to show that R is a maximal order, it is enough to show that if J is a nonzero ideal
of R and q 2 Q with either qJ � J or Jq � J then q 2 R, [11, Proposition 5.1.4]. Suppose,
without loss of generality, that qJ � J . By assumption, S := R[a�1] and T := R[b�1] are
maximal orders. Also, SJ = JS is an ideal of S and TJ = JT is an ideal of T . We have
qJS � JS and so q 2 S. Similarly, q 2 T . Thus, q 2 S \ T = R; and so R is a maximal
order.

Theorem 6.2 Gq(m;n) is a maximal order.

Proof We will apply the previous result to R := Gq(m;n) with a := [1; : : : ; m] and
b := [n � m + 1; : : : ; n]. Observe that b is normal by Lemma 1.5 and that a is normal
by Corollary 1.2. Note that ab = (�q)�ba, by Lemma 1.5. First we observe that b is
left regular modulo aR. The reason is that since a is the minimal minor in the preferred
ordering, a basis for aR is given by preferred products that start with a. If r 2 R is such
that rb 2 aR, then when we write r as a linear combination of preferred products then
multiplying each preferred product that occurs by b on the right still gives a preferred
product, since b is the maximal element with respect to the preferred order. Thus, since
rb 2 aR each of these preferred products must begin with a, and so the original ones also
begin with a, hence r 2 aR.

In Corollary 4.4, we have shown that R[b�1] �= Oq(Mm;n�m)[y; y
�1;�] and so R[b�1] is

a maximal order ([10, V. Proposition 2.5, IV. Proposition 2.1]). Also R[a�1] is a maximal
order by using the isomorphism Æ introduced in Section 1 and the fact that R[b�1] is a
maximal order.

Thus, the hypotheses of Proposition 6.1 are satis�ed, and we deduce that Gq(m;n) is a
maximal order.
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