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The quantum world
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Recall that a ring R is right noetherian if each of the following

three equivalent conditions hold:

• Each right ideal is finitely generated

• There is no infinite ascending chain of right ideals

• Each nonempty set of right ideals has a maximal member

All the rings in this course will be (two-sided) noetherian.

An ideal P is a prime ideal of R if either A ⊆ P or B ⊆ P for ideals

A, B with AB ⊆ P , and is completely prime if ab ∈ P implies that

a ∈ P or b ∈ P whenever a, b ∈ R.

Example The zero ideal of M2(Z) is prime but not completely

prime.

All prime ideals in this course will be completely prime.
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Recall the Ore condition for the existence of localisations in

(noncommutative) rings.

Let S be a set of nonzerodivisors in R.

Then there is a ring of right quotients of the form

RS−1 := {rs−1 | r ∈ R, s ∈ S}

provided that the right ore condition holds for S; that is, for any

a ∈ R and c ∈ S, there exist b ∈ R and d ∈ S with ad = cb
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Goldie’s Theorem in the case of a noetherian domain says that

the right Ore condition holds for the set of nonzero elements in

the ring and that the resulting ring of fractions is a division ring.

Proof Assume that a, c 6= 0 and that the Ore condition fails; so

that aR ∩ cR = 0.

Exercise show that the sum

aR + caR + c2aR + c3aR + . . .

is a direct sum.

From this one easily constructs an infinite ascending chain of

right ideals, contradicting the noetherian condition.
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An element u of R is a normal element of R provided that uR =

Ru.

When u is a normal nonzerodivisor, the Ore conditions holds for

the set S := {un}, and the resulting localisation is

R[u−1] := {ru−n | r ∈ R, n ∈ N}.

If I C R[u−1] then I = (I ∩ R)R[u−1] and it follows that R[u−1]

is noetherian whenever R is noetherian.
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In forming polynomial rings over a noncommutative ring R, the

requirement that the indeterminate x commutes with elements

of R is too restrictive.

However, to have a notion of degree, if we agree to write poly-

nomials with powers of x at the right side:

rnxn + rn−1xn−1 + · · ·+ r1x + r0

then, for each r ∈ R, we must have

xr = sx + t

for some s, t ∈ R.

Write σ(r) := s and δ(r) := t.
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In order to get an associative ring, the following conditions must

be satisfied:

The map σ should be an automorphism of R and δ should be a

(left) σ-derivation; that is,

δ(ab) = σ(a)δ(b) + δ(a)b

In this case, one can form the ring

R[x;σ, δ] := {
n∑

i=0

rix
i | i ∈ N}

where

xr = σ(r)x + δ(r).
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The ring R[x;σ, δ] is a skew polynomial extension of R.

Hilbert’s Basis Theorem If R is noetherian then so is R[x;σ, δ].

There are two special cases:

Case 1 The map δ = 0. In this case, we write R[x;σ].

Case 2 The map σ is the identity map. In this case, we write

R[x; δ].
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Example Let R = k[y] where k is a field.

Choose a nonzero element q ∈ k and let σ(y) := qy.

Then Aq := R[x;σ] is the quantum plane.

Then

Aq = {
∑
i,j

cijy
ixj | cij ∈ k, i, j ∈ N}

and

xy = qyx.
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Note that both x and y are normal elements in Aq so that one

can form the algebra of skew Laurent polynomials

Tq := k[x±1, y±1] =
∑
i,j

cijy
ixj | cij ∈ k, i, j ∈ Z}

where

xy = qyx.

The algebra Tq is a quantum torus.
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Theorem Suppose that q is not a root of unity. Then the

quantum torus Tq := k[x±1, y±1] is a simple noetherian ring.

Sketch proof Let I be a nonzero ideal in Tq. Choose an element
0 6= f ∈ I with

f = f0 + f1x + · · ·+ fnxn

with fi ∈ k[y±1], f0 6= 0 and n minimal. Suppose n > 0. Then
consider the element a := qnyf − fy ∈ I. The xn term in a is

qnyfnxn − fnxny = qnyfnxn − qnfnyxn = 0

while the constant term is

qnyf0 − f0y = (qn − 1)yf0 6= 0.

this produces 0 6= a ∈ I with a smaller n. Thus, n = 0 and
I∩k[y±1] 6= 0. Now play same trick with a and x to get I∩k 6= 0,
giving a unit in I so that I = Tq.
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Quantum Plane k a field, 0 6= q ∈ k, not a root of unity.

A := k 〈x, y | xy = qyx〉

Problem Describe Spec(A), the set of prime ideals

Torus action: H := (k∗)2

(α, β) ◦ x := αx

(α, β) ◦ y := βy

Subproblem Find H− Spec(A); that is, primes P with PH = P

14



Note that x and y are H-eigenvectors.

There are four obvious H-primes:

0, 〈x〉 , 〈y〉 , 〈x, y〉

and we claim that these are the only H-primes.

If P ∈ H − Spec(A) and either x ∈ P or y ∈ P then it is easy to

see that P is one of

〈x〉 , 〈y〉 , 〈x, y〉
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Suppose that P ∈ H− Spec(A) and x, y 6∈ P .

Recall that the quantum torus T = k[x±1, y±1] is a simple ring.

Now, PT C T ; so either PT = T or PT = 0.

If PT = T then either x ∈ P or y ∈ P , a contradiction.

Thus, PT = 0 and so P = 0.
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H− Spec = {0, 〈x〉 , 〈y〉 , 〈x, y〉}

〈x,y〉

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

〈x〉

PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP 〈y〉

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

〈0〉
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Example Let’s determine all prime ideals in the quantum plane

Aq at a nonroot of unity when k is algebraically closed.

H− Spec = {0, 〈x〉 , 〈y〉 , 〈x, y〉}

¿ Other primes? eg. x ∈ P, y 6∈ P

(
P

〈x〉

)
[y−1] ∈ Spec

(
k[x, y]

〈x〉
[y−1]

)
∼= k[y, y−1]

¿ This leaves x 6∈ P, y 6∈ P .

As above, using the fact that the quantum torus is simple, P = 0.
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Here is the picture of the prime spectrum of the quantum plane

··· 〈x,y−β〉 ··· 〈x,y〉

mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ ··· 〈x−α,y〉 ···

〈x〉

QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ 〈y〉

mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

〈0〉

with α, β 6= 0.

19



Quantum affine n-space

A := k
〈
x1, . . . , xn | i < j, xixj = pijxjxi, pm

ij 6= 1
〉

H = (k∗)n acts: (α1, . . . , αn) ◦ xi := αixi

Set PI := 〈xi〉i∈I for each subset I ⊆ {1, . . . , n}

H − Spec(A) = {PI}

|H − Spec(A)| = 2n < ∞
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Exercise Calculate (x + y)n for the quantum plane

(x + y)2 =

(x + y)3 =

Define [m]q := 1 + q + q2 + · · ·+ qm−1

Note that [m]1 = m and that for q 6= 1,

[m]q := 1 + q + q2 + · · ·+ qm−1 = qm−1
q−1
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Define [m]q! := [m]q × [m− 1]q!, and

(m
r

)
q
:=

[m]q!

[m− r]q![r]q!
.

The quantum binomial theorem

(x + y)n =
n∑

r=0

(n
r

)
q
yrxn−r
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Exercise The construction of Pascal’s triangle is justified by the

identity

(n
r

)
=
(n− 1

r − 1

)
+
(n− 1

r

)

Find the corresponding identity for q-binomial coefficients (there

are two versions)

A good reference for such calculations is the book:

Victor Kac and Pokman Cheung, Quantum Calculus, Springer
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Exercise Quantum Weyl algebra

Let σ : k[y] −→ k[y] be given by σ(y) := qy

Is there a σ-derivation with δ(y) := 1?

δ(y2) = σ(y)δ(y) + δ(y)y =

δ(y3) =

δ(yn) =

The Quantum Weyl Algebra is k[x, y] with xy − qyx = 1.

Exercise The element z := xy−yx is normal; so the quantum Weyl

algebra is not simple.
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Quantum matrices

Oq(M2), the quantised coordinate ring of 2× 2 matrices

Oq(M2) := k

[
a b
c d

]
with relations

ab = qba ac = qca bc = cb

bd = qdb cd = qdc ad− da = (q − q−1)bc.

The quantum determinant is Dq := ad− qbc

Exercise Check that the quantum determinant is a central ele-

ment and that b and c are normal elements.
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Note that

Oq(M2) = k[a][b; τ2][c; τ3][d; τ4, δ4]

where

τ2(a) = q−1a

τ3(a) = q−1a τ3(b) = b

and

τ4(a) = a τ4(b) = q−1b τ4(c) = q−1c,

while δ4 is the k-linear τ4-derivation such that

δ4(b) = δ4(c) = 0 δ4(a) = (q−1 − q)bc.

So, Oq(M2) is a noetherian domain and has a vector space basis

consisting of monomials aibjcldm.
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Overall problem Describe Spec(Oq(M2)), q generic (qm 6= 1)

Set H := (k∗)4.

There is an action of H on Oq(M2) given by

(α, β; γ, δ) ◦
[

a b
c d

]
:=

[
αγa αδb
βγc βδd

]
;

that is, by row and column multiplications.

Subproblem Identify all of the prime ideals of Oq(M2) that are

H-invariant.
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• Overall problem: describe Spec(Oq(M2)), when q is not a

root of unity.

Theorem (Goodearl-Letzter) Let P ∈ Spec(Oq(M2)). Then

Oq(M2)/P is an integral domain; that is, all primes are completely

prime.

Theorem (Goodearl-Letzter)

|H − Spec(Oq(M2))| ≤ 24 = 16 < ∞

• Sub-problem: describe H− Spec(Oq(M2))
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For P ∈ Spec(Oq(M2)) set H(P ) := ∩h∈H Ph. Then H(P ) is an

H-invariant prime ideal.

For any H-prime Q set

SpecQ(Oq(M2)) := {P prime | H(P ) = Q}

The Goodearl-Letzter Stratification Theorem

For any Q ∈ H− Spec, SpecQ(Oq(M2)) is homeomorphic to

Spec(k[t±1
1 , . . . , t±1

d ])

for some d.

Further, the primitive ideals of Oq(M2) are precisely the maximal

elements of SpecQ for Q ∈ Spec(Oq(M2)).
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Claim The following 14 H-invariant ideals are all prime and these

are the only H-prime ideals in Oq(M2).

(
a b
c d

)
(

a b
0 d

)
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

(
a b
c 0

) sssssssssssss (
0 b
c d

)
KKKKKKKKKKKKK (

a 0
c d

)
UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU

(
a b
0 0

) ssssssssssss (
0 b
0 d

)
KKKKKKKKKKKK

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
(
0 b
c 0

)
KKKKKKKKKKKK

ssssssssssss (
a 0
c 0

)
UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU

ssssssssssss (
0 0
c d

)
KKKKKKKKKKKK

(
0 b
0 0

)
KKKKKKKKKKKK

ssssssssssss

(Dq)

UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU

KKKKKKKKKKKKKK

ssssssssssssss

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
(
0 0
c 0

)
KKKKKKKKKKKK

ssssssssssss

(
0 0
0 0

)
KKKKKKKKKKKK

ssssssssssss
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To justify the claim, we need to show that each of the 14 ideals
is a prime ideal and that there are no other H-prime ideals.

It is easy to check that 13 of the ideals are prime.

For example, let P be the ideal generated by b and d. Then

Oq(M2)

P
∼= k[a, c]

and k[a, c] is a quantum plane.

The only problem is to show that the determinant generates a
prime ideal.

This was originally proved by Jordan, and, independently, by
Levasseur and Stafford.

However, we will prove this in a different way and also show that
there are no other H-invariant prime ideals.
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1

b

{{
{{

{{
{{

{{
{{

{

CC
CC

CC
CC

CC
CC

C

a

CC
CC

CC
CC

CC
CC

C d

{{
{{

{{
{{

{{
{{

{

c

Dq

Consider the poset on the left.

Note that elements are in the poset are normal

modulo lower elements.

We can use the commutation rules to bring a

and d together in any monomial, and then use the

straightening law

ad qcb + Dq

to get a spanning set of the form

{Di
qc

jalbm, Di
qc

jdlbm}.

In fact, this is a basis of Oq(M2), the preferred

basis
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Cauchon’s theory of deleting derivations

Recall

Oq(M2) := k

[
a b
c d

]
with relations

ab = qba ac = qca bc = cb

bd = qdb cd = qdc ad− da = (q − q−1)bc.

Set a′ := a− bd−1c = (ad− qbc)d−1 = Dqd−1

Calculate

a′b = qba′ a′c = qca′ bc = cb

bd = qdb cd = qdc a′d = da′
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All calculations take place in the division ring of fractions of

Oq(M2).

Note that Â := k[a′, b, c] ∼= k[a, b, c] =: A and that

R̂ := k[a′, b, c, d] ∼= Â[d;σ]

whereas

R := Oq(M2)
∼= A[d;σ, δ]

There is an induced action of H on R̂ and, as R̂ is a quantum

affine 4-space, we know that R̂ has 16 H-primes, corresponding

to the subsets of {a′, b, c, d}.

We will relate the H-prime ideals of Oq(M2) with a subset of the

H-prime ideals of R̂.
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Exercise Show that the set S := {dn} is a right (and left) ore

set in Oq(M2); so that one can form the localisation R[d−1].

As d is a normal element of R̂, we can form R̂[d−1].

Check that R̂[d−1] = R[d−1].

R[d−1]=R̂[d−1]

��
��

��
��

��
��

��
��

��
��

��
�

22
22

22
22

22
22

22
22

22
22

22
2

R R̂

Note that
〈
a′
〉
is a prime ideal in R̂.

Claim:
〈
a′
〉
R̂[d−1]∩R = 〈Dq〉.

This will show that 〈Dq〉 is a prime ideal of Oq(M2).
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Claim:
〈
a′
〉
R̂[d−1] ∩R = 〈Dq〉

Sketch proof Note that〈
a′
〉

R̂[d−1] ∩R = a′R̂[d−1] ∩R = a′R[d−1] ∩R

Let r ∈
〈
a′
〉
R̂[d−1] ∩ R. Then, there exists s ∈ R such that

r = a′sd−n for some n.

Now, there exists t ∈ R with d−1s = td−m for some m; so

r = a′sd−n = a′dd−1sd−n = Dqtd
−(n+m)

and rd(n+m) = Dqt.

Writing r and t in terms of the preferred basis

{Di
qc

jalbm, Di
qc

jdlbm}

leads to r ∈ 〈Dq〉
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Given an H-prime P in Oq(M2), we associate an H-prime in R̂

in the following way.

Case 1 Suppose that d 6∈ P . Then

P 7→ PR[d−1] = PR̂[d−1] 7→ PR̂[d−1] ∩ R̂.

For example,

〈Dq〉 7→ 〈Dq〉[d−1] = 〈Dqd
−1〉[d−1] = 〈a′〉[d−1] 7→ 〈a′〉.
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Any H-prime in R̂ is specified by a subset of the four elements

a′ b
c d .

We will record a subset by putting taking a two-by-two array and

filling in a square with black if the corresponding element is in

the subset. For example, the H-prime generated by a′ and d is

denoted

There are 16 possible fillings, corresponding to the 16 H-prime

ideals in R̂
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Given an H-prime P in Oq(M2), we associate such a diagram to

it in the following way.

Case 1 Suppose that d 6∈ P . Then

P 7→ PR[d−1] = PR̂[d−1] 7→ PR̂[d−1] ∩ R̂.

Now, PR̂[d−1] ∩ R̂ is an H-prime in R̂ and so corresponds to a

diagram.

For example,

〈Dq〉 7→ 〈Dq〉[d−1] = 〈Dqd
−1〉[d−1] = 〈a′〉[d−1] 7→ 〈a′〉 7→
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We know 8 H-prime ideals in Oq(M2) that do not contain d, and

so make the following associations:

〈0〉 7→

〈Dq〉 7→

〈b〉 7→

〈c〉 7→

〈a, b〉 7→

〈a, c〉 7→

〈b, c〉 7→

〈a, b, c〉 7→
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Case 2 Suppose that d ∈ P .

We find an H-prime Q in R̂ such that R̂/Q ∼= R/P and then

associate to P the diagram of Q.

Consider the two maps

ρ : R̂ = k[a′, b, c][d;σ] � k[a′, b, c] ∼= k[a, b, c]

and

ηP : k[a, b, c] � k[a, b, c, d]/P = Oq(M2)/P

Then

P  ker(ηP ◦ ρ)
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Note that (q − q−1)bc = ad− da ∈ P so that either b ∈ P or c ∈ P

(or both).

So, it is impossible to associate the two diagrams

to any H-prime ideal of Oq(M2).
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We know 6 H-prime ideals in Oq(M2) that do contain d, and so
make the following associations:

〈b, d〉 7→

〈c, d〉 7→

〈a, b, c, d〉 7→

〈b, c, d〉 7→

〈a, b, d〉 7→

〈a, c, d〉 7→

The diagrams that can be associated to H-primes in Oq(M2) are
known as Cauchon Diagrams.

We’ve seen that 14 of the possible 16 black-white fillings of the
2×2 array are Cauchon diagrams; so there are 14 H-prime ideals
in Oq(M2).
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2× 2 Cauchon Diagrams
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All of this works for quantum m × p matrices where there is an

action of H = (k∗)m+p and Cauchon shows that the H-prime

ideals are in bijection with m× p Cauchon diagrams:

Cauchon Diagrams

The rule for a Cauchon diagram is that if a square is black then

either each square to the left of it is black, or each square above

it is black.
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The Poisson world
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Lie algebra: definition

A Lie algebra is a C-vector space V with a “Lie bracket” [−,−] :

V × V → V such that

1. skew-symmetry: [v, w] = −[w, v] for all v, w ∈ V ;

2. Jacobi identity:

[[u, v], w] + [[v, w], u] + [[w, u], v] = 0

for all u, v, w ∈ V .

Example. Let A be a C-algebra. Set [a, b] := ab − ba. Then

(A, [−,−]) is a Lie algebra.
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Poisson algebra: definition

A Poisson algebra is a commutative finitely generated C-algebra

A with a “Poisson bracket” {−,−} : A×A → A such that

1. (A, {−,−}) is a Lie algebra;

2. for all a ∈ A, the linear map {a,−} : A → A is a derivation,

that is:

{a, bc} = b{a, c}+ {a, b}c ∀a, b, c ∈ A.

Example. C[X, Y ] is a Poisson algebra with Poisson bracket

given by:

{P, Q} :=
∂P

∂X
·
∂Q

∂Y
−

∂P

∂Y
·
∂Q

∂X
.
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Poisson algebra: brief history

1807: the classical Poisson bracket (Poisson).

1875: general Poisson brackets on the ring of smooth functions
on a manifold (Lie).

1960s: Poisson brackets on symmetric algebra of a Lie algebra
and its quotient field; informal use of the term “Poisson algebra
(Dixmier et al). First steps in quantization (Berezin).

1977: first (?) formal definition of Poisson algebra (Braconnier).

current: much used in quantum algebra and integrable systems.
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Poisson algebra: example

S = C[X1, X2, ..., Xn;Y1, Y2, ..., Yn], the symmetric algebra on 2n-

dimensional symplectic space, is a Poisson algebra with

{Xi, Xj} = 0 = {Yi, Yj} and {Xi, Yj} = δij.

Note that

{Xi,−} =
∂

∂Yi
and {−, Yi} =

∂

∂Xi

and

{P, Q} =
∑
i

(
∂P

∂Xi
·
∂Q

∂Yi
−

∂P

∂Yi
·

∂Q

∂Xi

)
.

Here {−,−} extends the antisymmetric bilinear form.

50



Poisson algebra: generators

Let A be a Poisson algebra. Assume that A is generated (as a

C-algebra) by g1, g2, ..., gn.

Then one can retrieve {−,−} from {gi, gj} by using the skew-

symmetry of {−,−} together with the Leibniz rule.

That is why we often define the Poisson bracket on a commu-

tative algebra A just by giving its values on the generators.

Exercise. Show that for all P ∈ C[X, Y ], the rule {X, Y } = P

defines a Poisson bracket on C[X, Y ].
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Poisson algebra: generators 2

Be careful however, defining all brackets {gi, gj} does not ensure

that you will get a Poisson bracket. For instance, one is able to

define a Poisson bracket on A = C[X, Y, Z] via

{X, Y } = R, {Y, Z} = P and {Z, X} = Q

if and only if

(P, Q, R) · curl(P, Q, R) = 0,

where

curl(P, Q, R) =
(

∂R

∂Y
−

∂Q

∂Z
,

∂P

∂Z
−

∂R

∂X
,

∂Q

∂X
−

∂P

∂Y

)
.
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Semiclassical limit

Let Aλ be a finitely generated C[λ]-algebra, and assume that
Aλ is a noetherian domain. Assume also that A := Aλ/λAλ is
commutative.

We define a Poisson bracket on A as follows. Let a, b ∈ A, and
choose u, v ∈ Aλ so that u + λAλ = a and v + λAλ = b. As A is
abelian, one has [u, v] ∈ λAλ.

Hence there exists a unique w ∈ Aλ such that [u, v] = λw. We
set

{a, b} := w + λAλ.

Informally, we write {a, b} =
[a, b]

λ

∣∣∣∣∣
λ=0

.

Exercise. Check that (A, {−,−}) is a Poisson algebra.
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Example 1: the first Weyl algebra

• Heisenberg algebra Aλ = C[λ, x, y] with xy − yx = λ, that is,
Aλ = C[λ][x][y; id, λ ∂

∂x].

• Weyl algebra A1(C) = C[x, y] with xy − yx = 1.

Aλ

λ=1

��		
		

		
		

		
		

		
		

		
		

	

λ=0

��8
88

88
88

88
88

88
88

88
88

88
8

A1(C) (A, {., .})//oo o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/

where A = C[X, Y ]

and {P, Q} = [P,Q]
λ

∣∣∣
λ=0

Exercise. Compute {X, Y } and {XY, X + Y }.

A1(C) is a (noncommutative) deformation of the

Poisson algebra (A, {., .}).
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Example 2: quantum plane

We need to adapt the construction and work over C[λ±1] rather

than over C[λ].

Recall that Cλ[x, y] := C[λ, x, y] with xy = λyx.

Let q ∈ C∗, not a root of unity.

Cλ[x, y]

λ=q

����
��

��
��

��
��

��
��

��
��

��
�

λ=1

""EEEEEEEEEEEEEEEEEEEEEEEEEEEE

Cq[x, y] (C[X, Y ], {., .})//oo o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/

Exercise. Show that {P, Q} := XY

(
∂P

∂X

∂Q

∂Y
−

∂P

∂Y

∂Q

∂X

)
.
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Semiclassical limit of Oq (M2(C))

Recall that Oq (M2(C)) := C
[

a b
c d

]
is generated by four inde-

terminates a, b, c, d subject to the following rules:

ab = qba, cd = qdc

ac = qca, bd = qdb

bc = cb, ad− da = (q − q−1)cb.

The quantum determinant ad− qbc is a central element.

Exercise. What is the semiclassical limit of Oq (M2(C))?
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Symplectic leaves

Let A be the algebra of complex-valued C∞ functions on a
smooth affine variety V .

• Hamiltonian derivations: Ha := {a,−} with a ∈ A.

• A Hamiltonian path in V is a smooth path c : [0,1] → V such
that there exists H ∈ C∞(V ) with

d

dt
(f ◦ c)(t) = {H, f} ◦ c(t)

for all 0 < t < 1.

• It is easy to check that the relation ”connected by a piecewise
Hamiltonian path” is an equivalence relation.

• The equivalence classes of this relation are called the symplectic
leaves of V ; they form a partition of V .
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Symplectic leaves in C2

We consider C[X, Y ] with the Poisson bracket defined by {X, Y } =

XY ; this Poisson bracket on C[X, Y ] = O(C2) extends uniquely

to a Poisson bracket on C∞(C2), so that C2 can be viewed as a

Poisson manifold. Hence C2 can be decomposed as the disjoint

union of its symplectic leaves.

Let a, b ∈ C. Then

• c(t) = (a, beat) is a flow of HX.

• c(t) = (beat, a) is a flow of H−Y .
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Symplectic leaves in C2
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H-orbits of symplectic leaves in C2

At the geometric level, the action of H = (C∗)2 on C2 (by Poisson
automorphisms) is given by:

(α, β).

(
x
y

)
=

(
αx
βy

)
.

This action of H on C2 induces an action of H on the set
Sympl(C2) of symplectic leaves in C2.

We view the H-orbit of a symplectic leaf L as the set-theoretic
union ⋃

h∈H
h.L ⊆ C2,

rather than as the family {h.L | h ∈ H}.
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H-orbits of symplectic leaves in C2
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Poisson prime ideals

A Poisson ideal of a Poisson algebra A is an ideal of A both in

the associative and in the Lie sense. That is, I is an additive

subgroup of A such that:

a.x ∈ I ∀ a ∈ A, x ∈ I

and

{a, x} ∈ I ∀ a ∈ A, x ∈ I.

An ideal I which is both Poisson and prime is called a Poisson

prime ideal.

Exercise. Compute the Poisson prime ideals of C[X, Y ] with

Poisson bracket defined by {X, Y } = XY .
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Poisson H-primes in A = C[X, Y ]

The torus H = (C∗)2 acts by Poisson automorphisms on A via:

(α, β).

(
X
Y

)
=

(
αX
βY

)
.

Exercise. Describe the Poisson H-primes.
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Poisson H-primes in A

Let A be a Poisson algebra, and assume that the torus H := (C∗)l

acts rationally by Poisson automorphisms on A.

Theorem: (Goodearl)

Assume there are only finitely many H-orbits of symplectic leaves

in V , and that these are locally closed subvarieties of V . Then

there is a 1 : 1 correspondence between the set of H-orbits of

symplectic leaves in V and the set of prime Poisson H-ideals in

O(V ).

64



Matrix Poisson varieties: 2× 2

The coordinate ring of 2× 2 matrices

O (M2(C)) := C
[

a b
c d

]
= C

[
Y11 Y12
Y21 Y22

]
is a Poisson algebra:

{a, b} = ab, {c, d} = cd

{a, c} = ac, {b, d} = bd

{b, c} = 0, {a, d} = 2bc.

Exercise. Show that the Poisson algebra O (M2(C)) is the semi-

classical limit of the algebra of 2× 2 quantum matrices.
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Torus action

H := (C∗)4 acts on O (M2(C)) by Poisson automorphisms via:

(a1, a2, b1, b2).Yi,α = aibαYi,α.

At the geometric level, this action of the algebraic torus H comes

from the left action of H on M2(C) by Poisson isomorphisms via:

(a1, a2, b1, b2).M := diag(a1, a2) ·M · diag(b1, b2).

We denote the set of H-orbits by H-Sympl(M2(C)).

Exercise (hard). Describe H-Sympl(M2(C)).
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Torus orbits

Proposition.

1. There is a 1 : 1 correspondence between

S = {w ∈ S4 | − 2 ≤ w(i)− i ≤ 2 for all i = 1,2,3,4}.

and H-Sympl(M2(C)).

2. Each H-orbit is defined by some rank conditions.

Exercise. Compute |S|.
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Matrix Poisson varieties: general case

O (Mm,p(C)) = C

 Y1,1 . . . Y1,p
... · · · ...
Ym,1 . . . Ym,p

 is a Poisson algebra via

{Yi,α, Yi,β} = Yi,αYi,β α < β

{Yi,α, Yj,α} = Yi,αYj,α i < j

{Yi,α, Yj,β} = 0 i < j and α > β

{Yi,α, Yj,β} = 2Yi,βYj,α i < j and α < β

Exercise. Show that the Poisson algebra O (Mm,p(C)) is the

semiclassical limit of the algebra of m× p quantum matrices.
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Torus action

H := (C∗)m+p acts on O (Mm,p(C)) by Poisson automorphisms

via:

(a1, . . . , am, b1, . . . , bp).Yi,α = aibαYi,α

At the geometric level, this action of the algebraic torus H comes

from the left action of H on Mm,p(C) by Poisson isomorphisms

via:

(a1, . . . , am, b1, . . . , bp).M := diag(a1, . . . , am) ·M · diag(b1, . . . , bp).

We denote the set of H-orbits by H-Sympl(Mm,p(C)).

Exercise (very hard). Describe H-Sympl(Mm,p(C)).
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Torus orbits

The orbits H-Sympl(Mm,p(C)) have been described by Brown,

Goodearl and Yakimov.

We set

S = {w ∈ Sm+p | − p ≤ w(i)− i ≤ m for all i = 1,2, . . . , m + p}.

Theorem.

1. There is an explicit 1 : 1 correspondence between S and

H-Sympl(Mm,p(C)).

2. Each H-orbit is defined by some rank conditions.
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Restricted permutations versus Cauchon diagrams

Replace � by and � by ��.

C =

5 6 7 8

4 �� �� 8

3 �� �� �� 7

2 �� �� 6

1 �� �� �� �� 5

1 2 3 4
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Exercise

What are the restricted permutations associated to the 2 × 2
Cauchon diagrams?

What is the restricted permutation associated to
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Additional exercises

1. Let A = C∞(V ) be a Poisson algebra and z be a Casimir
element of A, that is, {z, f} = 0 for all f ∈ A. Show that z is
constant on a symplectic leaf.

2. Let α ∈ C \Q. Check that one defines a Poisson structure on
O(C3) = C[X, Y, Z] via

{X, Y } = 0, {X, Z} = αX and {Y, Z} = −Y.

Prove that {(a, b, c) ∈ C3 | abα = 1} is a symplectic leaf of C3.

3. One defines a Poisson bracket on O(R3) = R[X, Y, Z] via

{X, Y } = Z, {X, Z} = −Z and {Y, Z} = X.

Compute the symplectic leaves.

4. Describe the semiclassical limit of the quantum special lin-
ear group Oq(SL2(C)) := Oq(M2(C))/〈detq−1〉. Compute the
symplectic leaves of SL2(C).
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The non-negative world
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• A matrix is totally positive if each of its minors is positive.

• A matrix is totally non-negative if each of its minors is non-

negative.
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History

• Fekete (1910s)

• Gantmacher and Krein, Schoenberg (1930s): small oscillations,

eigenvalues

• Karlin and McGregor (1950s): statistics, birth and death pro-

cesses

• Lindström (1970s): planar networks

• Gessel and Viennot (1985): binomial determinants, Young

tableaux

• Gasca and Peña (1992): optimal checking

• Lusztig (1990s): reductive groups, canonical bases

• Fomin and Zelevinsky (1999/2000): survey articles (eg Math

Intelligencer)

• Postnikov (2007): the totally non-negative grassmannian
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Examples
1 1 1 1
1 2 4 8
1 3 9 27
1 4 16 64




1 1 0 0
1 2 1 0
1 3 3 1
1 4 6 4




5 6 3 0
4 7 4 0
1 4 4 2
0 1 2 3


¿ How much work is involved in checking if a matrix is totally
positive?

Eg. n = 4:

#minors =
n∑

k=1

(n
k

)2
= ≈

by using Stirling’s approximation

n! ≈
√

2πn
nn

en
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2× 2 case

The matrix (
a b
c d

)

has five minors: a, b, c, d,∆ = ad− bc.

If b, c, d,∆ = ad− bc > 0 then

a =
∆ + bc

d
> 0

so it is sufficient to check four minors.
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Theorem (Fekete, 1913)

A matrix is totally positive if each of its

solid minors is positive.





Theorem (Gasca and Peña, 1992)

A matrix is totally positive if each of its

initial minors is positive.




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Theorem (Gasca and Peña, 1992)

A totally nonnegative matrix is totally positive if each of its cor-

ner minors is positive.




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Planar networks Consider an directed graph with no directed

cycles, n sources and n sinks.

•

ttttttttttt

JJJJJJJJJJJJ •

tttttttttttt

TTTTTTTTTTTTTTTTTTTTTTT

s1

JJJJJJJJJJJ •

tttttttttttt

JJJJJJJJJJJJ t1

jjjjjjjjjjjjjjjjjjjjjjj

•

ttttttttttt •

ttttttttttttttttttttttttttt

77
77

77
77

77
77

77
77

77

TTTTTTTTTTTTTTTTTTTTTTT

s2

JJJJJJJJJJJ t2

ttttttttttt

•

ttttttttttt

JJJJJJJJJJJJ •

jjjjjjjjjjjjjjjjjjjjjjjj

JJJJJJJJJJJ

s3

JJJJJJJJJJJ •

tttttttttttt t3

ttttttttttt

•

ttttttttttt

JJJJJJJJJJJJ •
JJJJJJJJJJJ

s4 • t4

Edges directed left to right.

M =
(
mij

)
where mij

is the number of paths

from source si to sink tj.


5 6 3 0
4 7 4 0
1 4 4 2
0 1 2 3



(Skandera: Introductory notes on total positivity)
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Notation The minor formed by using rows from a set I and
columns from a set J is denoted by [I | J].

Theorem (Lindström)

The path matrix of any planar network is totally non-negative.

In fact, the minor [I | J] is equal to the number of families of

non-intersecting paths from sources indexed by I and sinks indexed

by J.

If we allow weights on paths then even more is true.

Theorem

Every totally non-negative matrix is the weighted path matrix of

some planar network.
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•

ttttttttttt

JJJJJJJJJJJJ •

tttttttttttt

TTTTTTTTTTTTTTTTTTTTTTT

s1

JJJJJJJJJJJ •

tttttttttttt

JJJJJJJJJJJJ t1

jjjjjjjjjjjjjjjjjjjjjjj

•

ttttttttttt •

ttttttttttttttttttttttttttt

77
77

77
77

77
77

77
77

77

TTTTTTTTTTTTTTTTTTTTTTT

s2

JJJJJJJJJJJ t2

ttttttttttt

•

ttttttttttt

JJJJJJJJJJJJ •

jjjjjjjjjjjjjjjjjjjjjjjj

JJJJJJJJJJJ

s3

JJJJJJJJJJJ •

tttttttttttt t3

ttttttttttt

•

ttttttttttt

JJJJJJJJJJJJ •
JJJJJJJJJJJ

s4 • t4

Edges directed left to right.

M =
(
mij

)
where mij

is the number of paths

from source si to sink tj.


5 6 3 0
4 7 4 0
1 4 4 2
0 1 2 3


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Let Mtnn
m,p be the set of totally non-negative m× p real matrices.

Let Z be a subset of minors. The cell So
Z is the set of matrices

in Mtnn
m,p for which the minors in Z are zero (and those not in Z

are nonzero).

Some cells may be empty. The space Mtnn
m,p is partitioned by the

non-empty cells.

A trivial example In Mtnn
2,1 every cell is non-empty. There are 4

cells:

S◦{∅} = {
(

x
y

)
| x, y > 0} S◦{[1,1]} = {

(
0
y

)
| y > 0}

S◦{[2,1]} = {
(

x
0

)
| x > 0} S◦{[1,1],[2,1]} = {

(
0
0

)
}
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Example In Mtnn
2 the cell S◦{[2,2]} is empty.

For, suppose that

(
a b
c d

)
is tnn and d = 0.

Then a, b, c ≥ 0 and also ad− bc ≥ 0.

Thus, −bc ≥ 0 and hence bc = 0 so that b = 0 or c = 0.

Note This is meant to jog your memory. Recall the proof that

a prime in Oq(M2) that contains d must contain either b or c!

Exercise There are 14 non-empty cells in Mtnn
2 .
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Postnikov (arXiv:math/0609764) defines Le-diagrams: an m×p

array with entries either 0 or 1 is said to be a Le-diagram if it

satisfies the following rule: if there is a 0 in a given square then

either each square to the left is also filled with 0 or each square

above is also filled with 0.

An example and a non-example of a Le-diagram on a 5×5 array

1 1 0 1 0
0 0 0 1 0
1 1 1 1 0
0 0 0 1 0
1 1 1 1 0

1 1 0 1 0
0 0 1 0 1
1 1 1 0 1
0 0 1 1 1
1 1 1 1 1

Note Le-diagrams are Cauchon diagrams with 0 = black and 1

= white!
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• Postnikov (arXiv:math/0609764) There is a bijection be-

tween Le-diagrams on an m× p array and non-empty cells S◦Z in

Mtnn
m,p.

For 2 × 2 matrices, this says that there is a bijection between

Cauchon/Le-diagrams on 2 × 2 arrays and non-empty cells in

Mtnn
2 .
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2× 2 Le-diagrams

1 1
1 1

0 1
1 1

1 0
1 1

1 1
0 1

1 1
1 0

0 0
1 1

0 1
0 1

0 1
1 0

1 0
0 1

1 0
1 0

1 1
0 0

0 0
0 1

0 0
1 0

0 1
0 0

1 0
0 0

0 0
0 0
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Postnikov’s Algorithm starts with a Cauchon/Le-Diagram and

produces a planar network from which one generates a totally

non-negative matrix which defines a non-empty cell.

Example




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Perform Postnikov’s algorithm on the following examples:
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The Grand Unifying Theory
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Reminder

• Cauchon diagrams.

• Restricted permutations.

• H-primes: generated by families of q-minors.

• (Closure of) H-orbits of leaves: defined by the vanishing of
families of minors.

• TNN cells: defined by vanishing of families of minors.

• A family of minors is admissible if the associated TNN cell is
non-empty.

• In the 2x2 case, we get the same families of (quantum) minors.
What about the general case?
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Cauchon Diagrams

A Cauchon Diagram on an m×p array is an m×p array of squares

filled either black or white such that if a square is coloured black

then either each square to the left is coloured black, or each

square above is coloured black. Here are an example and a non-

example
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2× 2 Cauchon Diagrams
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Restricted permutations

w ∈ Sm+p with

−p ≤ w(i)− i ≤ m for all i = 1,2, . . . , m + p.

When m = p = 2, there are 14 of them.

(1)

lllllllllllllllllllllll

RRRRRRRRRRRRRRRRRRRRRRR

(12)

qqqqqqqqqqqqqqqq

RRRRRRRRRRRRRRRRRRRR (23)

ggggggggggggggggggggggggggggggggggggggggg

llllllllllllllllllll

RRRRRRRRRRRRRRRRRRRR

WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW (34)

llllllllllllllllllll

MMMMMMMMMMMMMMMM

(123)

<<
<<

<<
<<

<<

TTTTTTTTTTTTTTTTTTTTTTTT (132)

��
��

��
��

��

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV (12)(34)

wwwwwwwwwwww

GGGGGGGGGGGG
(243)

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

<<
<<

<<
<<

<<
(234)

jjjjjjjjjjjjjjjjjjjjjjjj

��
��

��
��

��

(13) (1243) (1342) (24)

(13)(24)

UUUUUUUUUUUUUUUUUUUUUUUUUUUUU

GGGGGGGGGGGG

wwwwwwwwwwww

iiiiiiiiiiiiiiiiiiiiiiiiiiiii
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Restricted permutations versus Cauchon diagrams

Replace � by and � by ��.

C =

5 6 7 8

4 �� �� 8

3 �� �� �� 7

2 �� �� 6

1 �� �� �� �� 5

1 2 3 4
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Generators of H-primes in quantum matrices.

Theorem (Launois): Assume that q is transcendental.

Then H-primes of Oq(M(m, p)) are generated by quantum mi-

nors.

Question: which families of quantum minors?
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The following 14 H-invariant ideals are all prime and these are

the only H-prime ideals in Oq(M2).

(
a b
c d

)
(

a b
0 d

)
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

(
a b
c 0

) sssssssssssss (
0 b
c d

)
KKKKKKKKKKKKK (

a 0
c d

)
UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU

(
a b
0 0

) ssssssssssss (
0 b
0 d

)
KKKKKKKKKKKK

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
(
0 b
c 0

)
KKKKKKKKKKKK

ssssssssssss (
a 0
c 0

)
UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU

ssssssssssss (
0 0
c d

)
KKKKKKKKKKKK

(
0 b
0 0

)
KKKKKKKKKKKK

ssssssssssss

(Dq)

UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU

KKKKKKKKKKKKKK

ssssssssssssss

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
(
0 0
c 0

)
KKKKKKKKKKKK

ssssssssssss

(
0 0
0 0

)
KKKKKKKKKKKK

ssssssssssss
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Matrix Poisson varities

H-orbits of symplectic leaves are algebraic, and are defined by

rank conditions. In other words, they are defined by the vanishing

and non-vanishing of some families of minors.

Question: which families of minors?
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Totally nonnegative cells

Totally nonnegative cells are defined by the vanishing of families

of minors. Some of the TNN cells are empty.

We denote by S0
Z the TNN cell associated to the family of minors

Z.

A family of minors is admissible if the corresponding TNN cell is

non-empty.

Question: what are the admissible families of minors?
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Conjecture

Let Zq be a family of quantum minors, and Z be the correspond-

ing family of minors.

〈Zq〉 is a H-prime ideal iff the cell S0
Z is non-empty.
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An algorithm to rule them all

Deleting derivations algorithm:

(
a b
c d

)
−→

(
a− bd−1c b

c d

)

Restoration algorithm:

(
a b
c d

)
−→

(
a + bd−1c b

c d

)
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An algorithm to rule them all

If M = (xi,α) ∈Mm,p(K), then we set

fj,β(M) = (x′i,α) ∈Mm,p(K),

where

x′i,α :=

{
xi,α + xi,βx−1

j,βxj,α if xj,β 6= 0, i < j and α < β

xi,α otherwise.

We set M(j,β) := fj,β ◦ · · · ◦ f1,2 ◦ f1,1(M).
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An example

Set M =

 1 −1 1
0 2 1
1 1 1

. Then

M(2,2) = M(2,1) = M(1,3) = M(1,2) = M(1,1) = M,

M(3,1) = M(2,3) =

 1 1 1
0 2 1
1 1 1

 , M(3,2) =

 2 1 1
2 2 1
1 1 1


and

M(3,3) =

 3 2 1
3 3 1
1 1 1

 .

Exercise. Is this matrix TNN?
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Exercises

Perform the restoration algorithm for each of the following ma-

trices and compute the minors of the resulting matrices. Are the

resulting matrices TNN?

1. M =

 1 1 1
1 0 1
1 1 1

 .

2. M =

 −1 1 0
0 1 1
1 1 1

 .

3. M =

 1 1 0
0 1 1
1 1 1

 .
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TNN Matrices and restoration algorithm

Theorem (Goodearl-Launois-Lenagan 2009).

• If the entries of M are nonnegative and its zeros form a Cau-
chon diagram, then M(m,p) is TNN.

• Let M be a matrix with real entries. We can apply the deleting
derivation algorithm to M . Let N denote the resulting matrix.

Then M is TNN iff the matrix N is nonnegative and its zeros
form a Cauchon diagram.

Exercise. Use the deleting derivation algorithm to test whether
the following matrices are TNN:

M1 =


11 7 4 1
7 5 3 1
4 3 2 1
1 1 1 1

 and M2 =


7 5 4 1
6 5 3 1
4 3 2 1
1 1 1 1

 .
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Another example

Let C be a Cauchon diagram and T = (ti,α) with ti,α = 0 iff (i, α)

is a black box of C.

We set TC := fm,p ◦ · · · ◦ f1,2 ◦ f1,1(T ).

Here m = p = 3 and

C =

We set T =

 0 t1,2 0
0 0 t2,3

t3,1 t3,2 t3,3

 and T (j,β) := fj,β ◦ · · · ◦ f1,1(T ).
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Recall that fj,β(xi,α) = (x′i,α) ∈Mm,p(K), where

x′i,α :=

{
xi,α + xi,βx−1

j,βxj,α if xj,β 6= 0, i < j and α < β

xi,α otherwise.

• T (3,1) = T (2,3) = T (2,2) = T (2,1) = T (1,3) = T (1,2) = T .

• T (3,2) =

 t1,2t−1
3,2t3,1 t1,2 0

0 0 t2,3
t3,1 t3,2 t3,3

.

• TC = T (3,3) =


t1,2t−1

3,2t3,1 t1,2 0

t2,3t−1
3,3t3,1 t2,3t−1

3,3t3,2 t2,3

t3,1 t3,2 t3,3

.
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Results

• If K = R and T is nonnegative, then TC is TNN.

• If K = C and the nonzero entries of T are algebraically inde-

pendent, then the minors of TC that are equal to zero are exactly

those that vanish on the closure of a given H-orbit of symplectic

leaves.

• If K = C and the nonzero entries of T are the generators of

a certain quantum affine space, then the quantum minors of TC

that are equal to zero are exactly those belonging to a given

H-prime in Oq(Mm,p(C)).

• The families of (quantum) minors we get depend only on C

in these three cases. And if we start from the same Cauchon

diagram in these three cases, then we get exactly the same fam-

ilies.
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Main Result

Theorem. (GLL) Let F be a family of minors in the coordinate

ring of Mm,p(C), and let Fq be the corresponding family of quan-

tum minors in Oq(Mm,p(C)). Then the following are equivalent:

1. The totally nonnegative cell associated to F is non-empty.

2. F is the set of minors that vanish on the closure of a torus-

orbit of symplectic leaves in Mm,p(C).

3. Fq is the set of quantum minors that belong to torus-invariant

prime in Oq(Mm,p(C)).
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Consequences of the Main Result

The TNN cells are the traces of the H-orbits of symplectic leaves

on Mtnn
m,p.

The sets of minors that vanish on the closure of a torus-orbit of

symplectic leaves in Mm,p(C) can be explicitely described thanks

to results of Fulton and Brown-Goodearl-Yakimov. So, as a

consequence of the previous result, the sets of minors that

define non-empty totally nonnegative cells are explicitely

described.

On the other hand, when the deformation parameter q is tran-

scendental over the rationals, then the torus-invariant primes

in Oq(Mm,p(C)) are generated by quantum minors, and so we

deduce from the above result explicit generating sets of quan-

tum minors for the torus-invariant prime ideals of Oq(Mm,p(C)).
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Explicit descriptions of the families of minors

For w ∈ S, define M(w) to be the set of minors [I|Λ], with
I ⊆ [[1, m]] and Λ ⊆ [[1, p]], that satisfy at least one of the following
conditions.

1. I 6≤ wm
◦ w(L) for all L ⊆ [[1, p]] ∩ w−1[[1, m]] such that |L| = |I|

and L ≤ Λ.

2. m + Λ 6≤ wwN
◦ (L) for all L ⊆ [[1, m]] ∩ wN

◦ w−1[[m + 1, N ]] such
that |L| = |Λ| and L ≤ I.

3. There exist 1 ≤ r ≤ s ≤ p and Λ′ ⊆ Λ ∩ [[r, s]] such that
|Λ′| > |[[r, s]] \ w−1[[m + r, m + s]]|.

4. There exist 1 ≤ r ≤ s ≤ m and I ′ ⊆ I ∩ [[r, s]] such that
|I ′| > |wN

◦ [[r, s]] \ w−1wm
◦ [[r, s]]|.

112


