LTCC Intensive Course:

From quantum algebras to total non-negativity

Stéphane Launois and Tom Lenagan

Kent, 28/29 May 2009

References

K R Goodearl and R B Warfield, Jr, An introduction to noncommutative noetherian rings, LMS student texts, Vol 61

K A Brown and K R Goodearl, Lectures on algebraic quantum groups, Advanced Courses in Mathematics, CRM Barcelona, Birkhäuser Verlag

The quantum world

Recall that a ring R is *right noetherian* if each of the following three equivalent conditions hold:

- Each right ideal is finitely generated
- There is no infinite ascending chain of right ideals
- Each nonempty set of right ideals has a maximal member

All the rings in this course will be (two-sided) noetherian.

An ideal P is a *prime ideal* of R if either $A \subseteq P$ or $B \subseteq P$ for ideals A, B with $AB \subseteq P$, and is *completely prime* if $ab \in P$ implies that $a \in P$ or $b \in P$ whenever $a, b \in R$.

Example The zero ideal of $M_2(\mathbb{Z})$ is prime but not completely prime.

All prime ideals in this course will be completely prime.

Recall the *Ore condition* for the existence of localisations in (noncommutative) rings.

Let S be a set of nonzerodivisors in R.

Then there is a ring of right quotients of the form

$$RS^{-1} := \{rs^{-1} \mid r \in R, s \in S\}$$

provided that the *right ore condition* holds for S; that is, for any $a \in R$ and $c \in S$, there exist $b \in R$ and $d \in S$ with ad = cb

Goldie's Theorem in the case of a noetherian domain says that the right Ore condition holds for the set of nonzero elements in the ring and that the resulting ring of fractions is a division ring.

Proof Assume that $a, c \neq 0$ and that the Ore condition fails; so that $aR \cap cR = 0$.

Exercise show that the sum

$$aR + caR + c^2aR + c^3aR + \dots$$

is a direct sum.

From this one easily constructs an infinite ascending chain of right ideals, contradicting the noetherian condition.

An element u of R is a *normal element* of R provided that uR = Ru.

When u is a normal nonzerodivisor, the Ore conditions holds for the set $S:=\{u^n\}$, and the resulting localisation is

$$R[u^{-1}] := \{ru^{-n} \mid r \in R, n \in \mathbb{N}\}.$$

If $I \triangleleft R[u^{-1}]$ then $I = (I \cap R)R[u^{-1}]$ and it follows that $R[u^{-1}]$ is noetherian whenever R is noetherian.

In forming polynomial rings over a noncommutative ring R, the requirement that the indeterminate x commutes with elements of R is too restrictive.

However, to have a notion of *degree*, if we agree to write polynomials with powers of x at the right side:

$$r_n x^n + r_{n-1} x^{n-1} + \dots + r_1 x + r_0$$

then, for each $r \in R$, we must have

$$xr = sx + t$$

for some $s, t \in R$.

Write $\sigma(r) := s$ and $\delta(r) := t$.

In order to get an associative ring, the following conditions must be satisfied:

The map σ should be an *automorphism* of R and δ should be a (left) σ -derivation; that is,

$$\delta(ab) = \sigma(a)\delta(b) + \delta(a)b$$

In this case, one can form the ring

$$R[x; \sigma, \delta] := \{ \sum_{i=0}^{n} r_i x^i \mid i \in \mathbb{N} \}$$

where

$$xr = \sigma(r)x + \delta(r).$$

The ring $R[x; \sigma, \delta]$ is a skew polynomial extension of R.

Hilbert's Basis Theorem If R is noetherian then so is $R[x; \sigma, \delta]$.

There are two special cases:

Case 1 The map $\delta = 0$. In this case, we write $R[x; \sigma]$.

Case 2 The map σ is the identity map. In this case, we write $R[x; \delta]$.

Example Let R = k[y] where k is a field.

Choose a nonzero element $q \in k$ and let $\sigma(y) := qy$.

Then $A_q := R[x; \sigma]$ is the quantum plane.

Then

$$A_q = \{ \sum_{i,j} c_{ij} y^i x^j \mid c_{ij} \in k, i, j \in \mathbb{N} \}$$

and

$$xy = qyx$$
.

Note that both x and y are normal elements in A_q so that one can form the algebra of skew Laurent polynomials

$$T_q := k[x^{\pm 1}, y^{\pm 1}] = \sum_{i,j} c_{ij} y^i x^j \mid c_{ij} \in k, i, j \in \mathbb{Z}$$

where

$$xy = qyx$$
.

The algebra T_q is a quantum torus.

Theorem Suppose that q is not a root of unity. Then the quantum torus $T_q := k[x^{\pm 1}, y^{\pm 1}]$ is a simple noetherian ring.

Sketch proof Let I be a nonzero ideal in T_q . Choose an element $0 \neq f \in I$ with

$$f = f_0 + f_1 x + \dots + f_n x^n$$

with $f_i \in k[y^{\pm 1}]$, $f_0 \neq 0$ and n minimal. Suppose n > 0. Then consider the element $a := q^n y f - f y \in I$. The x^n term in a is

$$q^n y f_n x^n - f_n x^n y = q^n y f_n x^n - q^n f_n y x^n = 0$$

while the constant term is

$$q^n y f_0 - f_0 y = (q^n - 1) y f_0 \neq 0.$$

this produces $0 \neq a \in I$ with a smaller n. Thus, n = 0 and $I \cap k[y^{\pm 1}] \neq 0$. Now play same trick with a and x to get $I \cap k \neq 0$, giving a unit in I so that $I = T_q$.

Quantum Plane k a field, $0 \neq q \in k$, not a root of unity.

$$A := k \langle x, y \mid xy = qyx \rangle$$

Problem Describe Spec(A), the set of prime ideals

Torus action:
$$\mathcal{H} := (k^*)^2$$

$$(\alpha,\beta)\circ x := \alpha x$$

$$(\alpha,\beta)\circ y := \beta y$$

Subproblem Find $\mathcal{H} - \operatorname{Spec}(A)$; that is, primes P with $P^{\mathcal{H}} = P$

Note that x and y are \mathcal{H} -eigenvectors.

There are four obvious \mathcal{H} -primes:

$$0, \quad \langle x \rangle, \quad \langle y \rangle, \quad \langle x, y \rangle$$

and we claim that these are the only \mathcal{H} -primes.

If $P \in \mathcal{H} - \operatorname{Spec}(A)$ and either $x \in P$ or $y \in P$ then it is easy to see that P is one of

$$\langle x \rangle$$
, $\langle y \rangle$, $\langle x, y \rangle$

Suppose that $P \in \mathcal{H} - \operatorname{Spec}(A)$ and $x, y \notin P$.

Recall that the quantum torus $T = k[x^{\pm 1}, y^{\pm 1}]$ is a simple ring.

Now, $PT \triangleleft T$; so either PT = T or PT = 0.

If PT = T then either $x \in P$ or $y \in P$, a contradiction.

Thus, PT = 0 and so P = 0.

$$\mathcal{H} - \mathsf{Spec} = \{0, \langle x \rangle, \langle y \rangle, \langle x, y \rangle\}$$

Example Let's determine all prime ideals in the quantum plane A_q at a nonroot of unity when k is algebraically closed.

$$\mathcal{H} - \mathsf{Spec} = \{0, \langle x \rangle, \langle y \rangle, \langle x, y \rangle\}$$

¿ Other primes? eg. $x \in P, y \notin P$

$$\left(\frac{P}{\langle x \rangle}\right)[y^{-1}] \in \operatorname{Spec}\left(\frac{k[x,y]}{\langle x \rangle}[y^{-1}]\right) \cong k[y,y^{-1}]$$

¿ This leaves $x \notin P, y \notin P$.

As above, using the fact that the quantum torus is simple, P = 0.

Here is the picture of the prime spectrum of the quantum plane

Quantum affine *n*-space

$$A := k \langle x_1, \dots, x_n \mid i < j, \ x_i x_j = p_{ij} x_j x_i, \ p_{ij}^m \neq 1 \rangle$$

$$\mathcal{H} = (k^*)^n \text{ acts: } (\alpha_1, \dots, \alpha_n) \circ x_i := \alpha_i x_i$$

Set $P_I := \langle x_i \rangle_{i \in I}$ for each subset $I \subseteq \{1, \dots, n\}$

$$\mathcal{H} - \operatorname{Spec}(A) = \{P_I\}$$

$$|\mathcal{H} - \operatorname{Spec}(A)| = 2^n < \infty$$

Exercise Calculate $(x+y)^n$ for the quantum plane

$$(x+y)^2 =$$

$$(x+y)^3 =$$

Define
$$[m]_q := 1 + q + q^2 + \dots + q^{m-1}$$

Note that $[m]_1 = m$ and that for $q \neq 1$,

$$[m]_q := 1 + q + q^2 + \dots + q^{m-1} = \frac{q^m - 1}{q - 1}$$

Define $[m]_q! := [m]_q \times [m-1]_q!$, and

$$\binom{m}{r}_q := \frac{[m]_q!}{[m-r]_q![r]_q!}.$$

The quantum binomial theorem

$$(x+y)^n = \sum_{r=0}^n \binom{n}{r}_q y^r x^{n-r}$$

Exercise The construction of Pascal's triangle is justified by the identity

$$\binom{n}{r} = \binom{n-1}{r-1} + \binom{n-1}{r}$$

Find the corresponding identity for q-binomial coefficients (there are two versions)

A good reference for such calculations is the book:

Victor Kac and Pokman Cheung, Quantum Calculus, Springer

Exercise Quantum Weyl algebra

Let $\sigma: k[y] \longrightarrow k[y]$ be given by $\sigma(y) := qy$

Is there a σ -derivation with $\delta(y) := 1$?

$$\delta(y^2) = \sigma(y)\delta(y) + \delta(y)y =$$

$$\delta(y^3) =$$

$$\delta(y^n) =$$

The Quantum Weyl Algebra is k[x,y] with xy - qyx = 1.

Exercise The element z := xy - yx is normal; so the quantum Weyl algebra is not simple.

Quantum matrices

 $\mathcal{O}_q(\mathcal{M}_2)$, the quantised coordinate ring of 2×2 matrices

$$\mathcal{O}_q(\mathcal{M}_2) := k \left[\begin{array}{cc} a & b \\ c & d \end{array} \right]$$

with relations

$$ab = qba$$
 $ac = qca$ $bc = cb$
 $bd = qdb$ $cd = qdc$ $ad - da = (q - q^{-1})bc$.

The quantum determinant is $D_q := ad - qbc$

Exercise Check that the quantum determinant is a central element and that b and c are normal elements.

Note that

$$\mathcal{O}_q(\mathcal{M}_2) = k[a][b; \tau_2][c; \tau_3][d; \tau_4, \delta_4]$$

where

$$\tau_2(a) = q^{-1}a$$

$$\tau_3(a) = q^{-1}a \qquad \tau_3(b) = b$$

and

$$\tau_4(a) = a$$
 $\tau_4(b) = q^{-1}b$ $\tau_4(c) = q^{-1}c,$

while δ_4 is the k-linear au_4 -derivation such that

$$\delta_4(b) = \delta_4(c) = 0$$
 $\delta_4(a) = (q^{-1} - q)bc.$

So, $\mathcal{O}_q(\mathcal{M}_2)$ is a noetherian domain and has a vector space basis consisting of monomials $a^ib^jc^ld^m$.

Overall problem Describe Spec $(\mathcal{O}_q(\mathcal{M}_2))$, q generic $(q^m \neq 1)$

Set $\mathcal{H} := (k^*)^4$.

There is an action of \mathcal{H} on $\mathcal{O}_q(\mathcal{M}_2)$ given by

$$(\alpha, \beta; \gamma, \delta) \circ \begin{bmatrix} a & b \\ c & d \end{bmatrix} := \begin{bmatrix} \alpha \gamma a & \alpha \delta b \\ \beta \gamma c & \beta \delta d \end{bmatrix};$$

that is, by row and column multiplications.

Subproblem Identify all of the prime ideals of $\mathcal{O}_q(\mathcal{M}_2)$ that are \mathcal{H} -invariant.

• Overall problem: describe $Spec(\mathcal{O}_q(\mathcal{M}_2))$, when q is not a root of unity.

Theorem (Goodearl-Letzter) Let $P \in \text{Spec}(\mathcal{O}_q(\mathcal{M}_2))$. Then $\mathcal{O}_q(\mathcal{M}_2)/P$ is an integral domain; that is, all primes are completely prime.

Theorem (Goodearl-Letzter)

$$|\mathcal{H} - \operatorname{Spec}(\mathcal{O}_q(\mathcal{M}_2))| \le 2^4 = 16 < \infty$$

• **Sub-problem**: describe $\mathcal{H} - \operatorname{Spec}(\mathcal{O}_q(\mathcal{M}_2))$

For $P \in \operatorname{Spec}(\mathcal{O}_q(\mathcal{M}_2))$ set $\mathcal{H}(P) := \bigcap_{h \in \mathcal{H}} P^h$. Then $\mathcal{H}(P)$ is an \mathcal{H} -invariant prime ideal.

For any \mathcal{H} -prime Q set

$$\operatorname{Spec}_Q(\mathcal{O}_q(\mathcal{M}_2)) := \{ P \text{ prime } | \mathcal{H}(P) = Q \}$$

The Goodearl-Letzter Stratification Theorem

For any $Q \in \mathcal{H}$ – Spec, $\operatorname{Spec}_Q(\mathcal{O}_q(\mathcal{M}_2))$ is homeomorphic to $\operatorname{Spec}(k[t_1^{\pm 1},\ldots,t_d^{\pm 1}])$

for some d.

Further, the primitive ideals of $\mathcal{O}_q(\mathcal{M}_2)$ are precisely the maximal elements of Spec_Q for $Q \in \operatorname{Spec}(\mathcal{O}_q(\mathcal{M}_2))$.

Claim The following 14 \mathcal{H} -invariant ideals are all prime and these are the only \mathcal{H} -prime ideals in $\mathcal{O}_q(\mathcal{M}_2)$.

To justify the claim, we need to show that each of the 14 ideals is a prime ideal and that there are no other \mathcal{H} -prime ideals.

It is easy to check that 13 of the ideals are prime.

For example, let P be the ideal generated by b and d. Then

$$\frac{\mathcal{O}_q(\mathcal{M}_2)}{P} \cong k[a, c]$$

and k[a,c] is a quantum plane.

The only problem is to show that the determinant generates a prime ideal.

This was originally proved by Jordan, and, independently, by Levasseur and Stafford.

However, we will prove this in a different way and also show that there are no other \mathcal{H} -invariant prime ideals.

Consider the poset on the left.

Note that elements are in the poset are normal modulo lower elements.

We can use the **commutation rules** to bring a and d together in any monomial, and then use the **straightening law**

$$ad \rightsquigarrow qcb + D_q$$

to get a spanning set of the form

$$\{D_q^i c^j a^l b^m, D_q^i c^j d^l b^m\}.$$

In fact, this is a basis of $\mathcal{O}_q(\mathcal{M}_2)$, the **preferred** basis

Cauchon's theory of deleting derivations

Recall

$$\mathcal{O}_q(\mathcal{M}_2) := k \left[\begin{array}{cc} a & b \\ c & d \end{array} \right]$$

with relations

$$ab = qba$$
 $ac = qca$ $bc = cb$
 $bd = qdb$ $cd = qdc$ $ad - da = (q - q^{-1})bc$.

Set
$$a' := a - bd^{-1}c = (ad - qbc)d^{-1} = D_qd^{-1}$$

Calculate

$$a'b = qba'$$
 $a'c = qca'$ $bc = cb$
 $bd = qdb$ $cd = qdc$ $a'd = da'$

All calculations take place in the division ring of fractions of $\mathcal{O}_q(\mathcal{M}_2)$.

Note that $\widehat{A}:=k[a',b,c]\cong k[a,b,c]=:A$ and that

$$\widehat{R} := k[a', b, c, d] \cong \widehat{A}[d; \sigma]$$

whereas

$$R := \mathcal{O}_q(\mathcal{M}_2) \cong A[d; \sigma, \delta]$$

There is an induced action of \mathcal{H} on \widehat{R} and, as \widehat{R} is a quantum affine 4-space, we know that \widehat{R} has 16 \mathcal{H} -primes, corresponding to the subsets of $\{a',b,c,d\}$.

We will relate the \mathcal{H} -prime ideals of $\mathcal{O}_q(\mathcal{M}_2)$ with a subset of the \mathcal{H} -prime ideals of \widehat{R} .

Exercise Show that the set $S := \{d^n\}$ is a right (and left) ore set in $\mathcal{O}_q(\mathcal{M}_2)$; so that one can form the localisation $R[d^{-1}]$.

As d is a normal element of \widehat{R} , we can form $\widehat{R}[d^{-1}]$.

Check that $\hat{R}[d^{-1}] = R[d^{-1}].$

Note that $\langle a' \rangle$ is a prime ideal in \widehat{R} .

Claim:
$$\langle a' \rangle \, \widehat{R}[d^{-1}] \cap R = \langle D_q \rangle.$$

This will show that $\langle D_q \rangle$ is a prime ideal of $\mathcal{O}_q(\mathcal{M}_2)$.

Claim: $\langle a' \rangle \, \widehat{R}[d^{-1}] \cap R = \langle D_q \rangle$

Sketch proof Note that

$$\left\langle a'\right\rangle \widehat{R}[d^{-1}] \cap R = a'\widehat{R}[d^{-1}] \cap R = a'R[d^{-1}] \cap R$$

Let $r \in \langle a' \rangle \widehat{R}[d^{-1}] \cap R$. Then, there exists $s \in R$ such that $r = a'sd^{-n}$ for some n.

Now, there exists $t \in R$ with $d^{-1}s = td^{-m}$ for some m; so

$$r = a'sd^{-n} = a'dd^{-1}sd^{-n} = D_qtd^{-(n+m)}$$

and $rd^{(n+m)} = D_q t$.

Writing r and t in terms of the preferred basis

$$\{D_q^i c^j a^l b^m, D_q^i c^j d^l b^m\}$$

leads to $r \in \langle D_q \rangle$

Given an \mathcal{H} -prime P in $\mathcal{O}_q(\mathcal{M}_2)$, we associate an \mathcal{H} -prime in \widehat{R} in the following way.

Case 1 Suppose that $d \notin P$. Then

$$P \mapsto PR[d^{-1}] = P\widehat{R}[d^{-1}] \mapsto P\widehat{R}[d^{-1}] \cap \widehat{R}.$$

For example,

$$\langle D_q \rangle \quad \mapsto \quad \langle D_q \rangle [d^{-1}] = \langle D_q d^{-1} \rangle [d^{-1}] = \langle a' \rangle [d^{-1}] \quad \mapsto \quad \langle a' \rangle.$$

Any \mathcal{H} -prime in \widehat{R} is specified by a subset of the four elements

$$egin{array}{c|c} a' & b \\ \hline c & d \\ \hline \end{array}$$

We will record a subset by putting taking a two-by-two array and filling in a square with black if the corresponding element is in the subset. For example, the \mathcal{H} -prime generated by a' and d is denoted

There are 16 possible fillings, corresponding to the 16 ${\cal H}$ -prime ideals in \widehat{R}

Given an \mathcal{H} -prime P in $\mathcal{O}_q(\mathcal{M}_2)$, we associate such a diagram to it in the following way.

Case 1 Suppose that $d \notin P$. Then

$$P \mapsto PR[d^{-1}] = P\widehat{R}[d^{-1}] \mapsto P\widehat{R}[d^{-1}] \cap \widehat{R}.$$

Now, $P\widehat{R}[d^{-1}]\cap\widehat{R}$ is an \mathcal{H} -prime in \widehat{R} and so corresponds to a diagram.

For example,

$$\langle D_q \rangle \mapsto \langle D_q \rangle [d^{-1}] = \langle D_q d^{-1} \rangle [d^{-1}] = \langle a' \rangle [d^{-1}] \mapsto \langle a' \rangle \mapsto \Box$$

We know 8 \mathcal{H} -prime ideals in $\mathcal{O}_q(\mathcal{M}_2)$ that do not contain d, and so make the following associations:

Case 2 Suppose that $d \in P$.

We find an \mathcal{H} -prime Q in \widehat{R} such that $\widehat{R}/Q \cong R/P$ and then associate to P the diagram of Q.

Consider the two maps

$$\rho: \widehat{R} = k[a', b, c][d; \sigma] \longrightarrow k[a', b, c] \cong k[a, b, c]$$

and

$$\eta_P: k[a,b,c] \longrightarrow k[a,b,c,d]/P = \mathcal{O}_q(\mathcal{M}_2)/P$$

Then

$$P \longrightarrow \ker(\eta_P \circ \rho)$$

Note that $(q-q^{-1})bc = ad - da \in P$ so that either $b \in P$ or $c \in P$ (or both).

So, it is impossible to associate the two diagrams

to any \mathcal{H} -prime ideal of $\mathcal{O}_q(\mathcal{M}_2)$.

We know 6 \mathcal{H} -prime ideals in $\mathcal{O}_q(\mathcal{M}_2)$ that do contain d, and so make the following associations:

The diagrams that can be associated to \mathcal{H} -primes in $\mathcal{O}_q(\mathcal{M}_2)$ are known as **Cauchon Diagrams**.

We've seen that 14 of the possible 16 black-white fillings of the 2×2 array are Cauchon diagrams; so there are 14 \mathcal{H} -prime ideals in $\mathcal{O}_q(\mathcal{M}_2)$.

2×2 Cauchon Diagrams

All of this works for quantum $m \times p$ matrices where there is an action of $\mathcal{H} = (k^*)^{m+p}$ and Cauchon shows that the \mathcal{H} -prime ideals are in bijection with $m \times p$ Cauchon diagrams:

Cauchon Diagrams

The rule for a Cauchon diagram is that if a square is black then either each square to the left of it is black, or each square above it is black.

The Poisson world

Lie algebra: definition

A Lie algebra is a \mathbb{C} -vector space V with a "Lie bracket" [-,-]: $V\times V\to V$ such that

- 1. skew-symmetry: [v, w] = -[w, v] for all $v, w \in V$;
- 2. Jacobi identity:

$$[[u,v],w] + [[v,w],u] + [[w,u],v] = 0$$

for all $u, v, w \in V$.

Example. Let A be a \mathbb{C} -algebra. Set [a,b]:=ab-ba. Then (A,[-,-]) is a Lie algebra.

Poisson algebra: definition

A Poisson algebra is a commutative finitely generated \mathbb{C} -algebra A with a "Poisson bracket" $\{-,-\}: A\times A\to A$ such that

- 1. $(A, \{-, -\})$ is a Lie algebra;
- 2. for all $a \in A$, the linear map $\{a, -\} : A \to A$ is a derivation, that is:

$${a, bc} = b{a, c} + {a, b}c \quad \forall a, b, c \in A.$$

Example. $\mathbb{C}[X,Y]$ is a Poisson algebra with Poisson bracket given by:

$$\{P,Q\} := \frac{\partial P}{\partial X} \cdot \frac{\partial Q}{\partial Y} - \frac{\partial P}{\partial Y} \cdot \frac{\partial Q}{\partial X}.$$

Poisson algebra: brief history

1807: the classical Poisson bracket (Poisson).

1875: general Poisson brackets on the ring of smooth functions on a manifold (Lie).

1960s: Poisson brackets on symmetric algebra of a Lie algebra and its quotient field; informal use of the term "Poisson algebra (Dixmier et al). First steps in quantization (Berezin).

1977: first (?) formal definition of Poisson algebra (Braconnier).

current: much used in quantum algebra and integrable systems.

Poisson algebra: example

 $S = \mathbb{C}[X_1, X_2, ..., X_n; Y_1, Y_2, ..., Y_n]$, the symmetric algebra on 2n-dimensional symplectic space, is a Poisson algebra with

$$\{X_i, X_j\} = 0 = \{Y_i, Y_j\}$$
 and $\{X_i, Y_j\} = \delta_{ij}$.

Note that

$$\{X_i, -\} = \frac{\partial}{\partial Y_i} \text{ and } \{-, Y_i\} = \frac{\partial}{\partial X_i}$$

and

$$\{P,Q\} = \sum_{i} \left(\frac{\partial P}{\partial X_i} \cdot \frac{\partial Q}{\partial Y_i} - \frac{\partial P}{\partial Y_i} \cdot \frac{\partial Q}{\partial X_i} \right).$$

Here $\{-,-\}$ extends the antisymmetric bilinear form.

Poisson algebra: generators

Let A be a Poisson algebra. Assume that A is generated (as a \mathbb{C} -algebra) by $g_1, g_2, ..., g_n$.

Then one can retrieve $\{-,-\}$ from $\{g_i,g_j\}$ by using the skew-symmetry of $\{-,-\}$ together with the Leibniz rule.

That is why we often define the Poisson bracket on a commutative algebra A just by giving its values on the generators.

Exercise. Show that for all $P \in \mathbb{C}[X,Y]$, the rule $\{X,Y\} = P$ defines a Poisson bracket on $\mathbb{C}[X,Y]$.

Poisson algebra: generators 2

Be careful however, defining all brackets $\{g_i, g_j\}$ does not ensure that you will get a Poisson bracket. For instance, one is able to define a Poisson bracket on $A = \mathbb{C}[X, Y, Z]$ via

$$\{X,Y\} = R, \ \{Y,Z\} = P \ \text{and} \ \{Z,X\} = Q$$

if and only if

$$(P,Q,R) \cdot \operatorname{curl}(P,Q,R) = 0,$$

where

$$\operatorname{curl}(P,Q,R) = \left(\frac{\partial R}{\partial Y} - \frac{\partial Q}{\partial Z} , \frac{\partial P}{\partial Z} - \frac{\partial R}{\partial X} , \frac{\partial Q}{\partial X} - \frac{\partial P}{\partial Y}\right).$$

Semiclassical limit

Let A_{λ} be a finitely generated $\mathbb{C}[\lambda]$ -algebra, and assume that A_{λ} is a noetherian domain. Assume also that $A:=A_{\lambda}/\lambda A_{\lambda}$ is commutative.

We define a Poisson bracket on A as follows. Let $a,b\in A$, and choose $u,v\in A_\lambda$ so that $u+\lambda A_\lambda=a$ and $v+\lambda A_\lambda=b$. As A is abelian, one has $[u,v]\in \lambda A_\lambda$.

Hence there exists a unique $w \in A_{\lambda}$ such that $[u,v] = \lambda w$. We set

$${a,b} := w + \lambda A_{\lambda}.$$

Informally, we write
$$\{a,b\} = \frac{[a,b]}{\lambda} \Big|_{\lambda=0}$$
.

Exercise. Check that $(A, \{-, -\})$ is a Poisson algebra.

Example 1: the first Weyl algebra

- Heisenberg algebra $A_{\lambda}=\mathbb{C}[\lambda,x,y]$ with $xy-yx=\lambda$, that is, $A_{\lambda}=\mathbb{C}[\lambda][x][y;id,\lambda\frac{\partial}{\partial x}].$
- Weyl algebra $A_1(\mathbb{C}) = \mathbb{C}[x,y]$ with xy yx = 1.

where $A = \mathbb{C}[X, Y]$

and $\{P,Q\} = \frac{[P,Q]}{\lambda}\Big|_{\lambda=0}$

Exercise. Compute $\{X,Y\}$ and $\{XY,X+Y\}$.

 $A_1(\mathbb{C})$ is a (noncommutative) deformation of the Poisson algebra $(A, \{.,.\})$.

Example 2: quantum plane

We need to adapt the construction and work over $\mathbb{C}[\lambda^{\pm 1}]$ rather than over $\mathbb{C}[\lambda]$.

Recall that $\mathbb{C}_{\lambda}[x,y] := \mathbb{C}[\lambda,x,y]$ with $xy = \lambda yx$.

Let $q \in \mathbb{C}^*$, not a root of unity.

Exercise. Show that
$$\{P,Q\} := XY \left(\frac{\partial P}{\partial X} \frac{\partial Q}{\partial Y} - \frac{\partial P}{\partial Y} \frac{\partial Q}{\partial X} \right)$$
.

Semiclassical limit of $\mathcal{O}_q\left(\mathcal{M}_2(\mathbb{C})\right)$

Recall that $\mathcal{O}_q(\mathcal{M}_2(\mathbb{C})) := \mathbb{C} \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is generated by four indeterminates a,b,c,d subject to the following rules:

$$ab = qba,$$
 $cd = qdc$ $ac = qca,$ $bd = qdb$ $bc = cb,$ $ad - da = (q - q^{-1})cb.$

The quantum determinant ad - qbc is a central element.

Exercise. What is the semiclassical limit of $\mathcal{O}_q(\mathcal{M}_2(\mathbb{C}))$?

Symplectic leaves

Let A be the algebra of complex-valued C^{∞} functions on a smooth affine variety V.

- Hamiltonian derivations: $H_a := \{a, -\}$ with $a \in A$.
- ullet A Hamiltonian path in V is a smooth path $c:[0,1] \to V$ such that there exists $H \in C^\infty(V)$ with

$$\frac{d}{dt}(f \circ c)(t) = \{H, f\} \circ c(t)$$

for all 0 < t < 1.

- It is easy to check that the relation "connected by a piecewise Hamiltonian path" is an equivalence relation.
- The equivalence classes of this relation are called the *symplectic* leaves of V; they form a partition of V.

Symplectic leaves in \mathbb{C}^2

We consider $\mathbb{C}[X,Y]$ with the Poisson bracket defined by $\{X,Y\}=XY$; this Poisson bracket on $\mathbb{C}[X,Y]=\mathcal{O}(\mathbb{C}^2)$ extends uniquely to a Poisson bracket on $\mathcal{C}^{\infty}(\mathbb{C}^2)$, so that \mathbb{C}^2 can be viewed as a Poisson manifold. Hence \mathbb{C}^2 can be decomposed as the disjoint union of its symplectic leaves.

Let $a, b \in \mathbb{C}$. Then

- $c(t) = (a, be^{at})$ is a flow of H_X .
- $c(t) = (be^{at}, a)$ is a flow of H_{-Y} .

Symplectic leaves in $\ensuremath{\mathbb{C}}^2$

\mathcal{H} -orbits of symplectic leaves in \mathbb{C}^2

At the geometric level, the action of $\mathcal{H}=(\mathbb{C}^*)^2$ on \mathbb{C}^2 (by Poisson automorphisms) is given by:

$$(\alpha,\beta). \left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} \alpha x \\ \beta y \end{array}\right).$$

This action of \mathcal{H} on \mathbb{C}^2 induces an action of \mathcal{H} on the set $\mathrm{Sympl}(\mathbb{C}^2)$ of symplectic leaves in \mathbb{C}^2 .

We view the ${\mathcal H}$ -orbit of a symplectic leaf ${\mathcal L}$ as the set-theoretic union

$$\bigcup_{h\in\mathcal{H}} h.\mathcal{L}\subseteq\mathbb{C}^2,$$

rather than as the family $\{h.\mathcal{L} \mid h \in \mathcal{H}\}.$

 $\mathcal{H}\text{-}\text{orbits}$ of symplectic leaves in \mathbb{C}^2

Poisson prime ideals

A *Poisson ideal* of a Poisson algebra A is an ideal of A both in the associative and in the Lie sense. That is, I is an additive subgroup of A such that:

$$a.x \in I \quad \forall \ a \in A, \ x \in I$$

and

$$\{a, x\} \in I \quad \forall \ a \in A, \ x \in I.$$

An ideal I which is both Poisson and prime is called a *Poisson* prime ideal.

Exercise. Compute the Poisson prime ideals of $\mathbb{C}[X,Y]$ with Poisson bracket defined by $\{X,Y\}=XY$.

Poisson \mathcal{H} -primes in $A = \mathbb{C}[X,Y]$

The torus $\mathcal{H} = (\mathbb{C}^*)^2$ acts by Poisson automorphisms on A via:

$$(\alpha, \beta). \begin{pmatrix} X \\ Y \end{pmatrix} = \begin{pmatrix} \alpha X \\ \beta Y \end{pmatrix}.$$

Exercise. Describe the Poisson \mathcal{H} -primes.

Poisson \mathcal{H} -primes in A

Let A be a Poisson algebra, and assume that the torus $\mathcal{H} := (\mathbb{C}^*)^l$ acts rationally by Poisson automorphisms on A.

Theorem: (Goodearl)

Assume there are only finitely many \mathcal{H} -orbits of symplectic leaves in V, and that these are locally closed subvarieties of V. Then there is a 1:1 correspondence between the set of \mathcal{H} -orbits of symplectic leaves in V and the set of prime Poisson \mathcal{H} -ideals in $\mathcal{O}(V)$.

Matrix Poisson varieties: 2×2

The coordinate ring of 2×2 matrices

$$\mathcal{O}\left(\mathcal{M}_2(\mathbb{C})\right) := \mathbb{C}\left[\begin{array}{cc} a & b \\ c & d \end{array} \right] = \mathbb{C}\left[\begin{array}{cc} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{array} \right] \text{ is a Poisson algebra:}$$

$$\{a, b\} = ab,$$
 $\{c, d\} = cd$
 $\{a, c\} = ac,$ $\{b, d\} = bd$
 $\{b, c\} = 0,$ $\{a, d\} = 2bc.$

Exercise. Show that the Poisson algebra $\mathcal{O}(\mathcal{M}_2(\mathbb{C}))$ is the semiclassical limit of the algebra of 2×2 quantum matrices.

Torus action

 $\mathcal{H}:=(\mathbb{C}^*)^4$ acts on $\mathcal{O}(\mathcal{M}_2(\mathbb{C}))$ by Poisson automorphisms via:

$$(a_1, a_2, b_1, b_2).Y_{i,\alpha} = a_i b_{\alpha} Y_{i,\alpha}.$$

At the geometric level, this action of the algebraic torus \mathcal{H} comes from the left action of \mathcal{H} on $\mathcal{M}_2(\mathbb{C})$ by Poisson isomorphisms via:

$$(a_1, a_2, b_1, b_2).M := diag(a_1, a_2) \cdot M \cdot diag(b_1, b_2).$$

We denote the set of \mathcal{H} -orbits by \mathcal{H} -Sympl $(\mathcal{M}_2(\mathbb{C}))$.

Exercise (hard). Describe \mathcal{H} -Sympl $(\mathcal{M}_2(\mathbb{C}))$.

Torus orbits

Proposition.

1. There is a 1:1 correspondence between

$$\mathcal{S}=\{w\in S_4\mid -2\leq w(i)-i\leq 2 \text{ for all } i=1,2,3,4\}.$$
 and $\mathcal{H} ext{-Sympl}(\mathcal{M}_2(\mathbb{C})).$

2. Each $\mathcal{H}\text{-}\text{orbit}$ is defined by some rank conditions.

Exercise. Compute |S|.

Matrix Poisson varieties: general case

$$\mathcal{O}\left(\mathcal{M}_{m,p}(\mathbb{C})\right) = \mathbb{C}\left[egin{array}{ll} Y_{1,1} & \ldots & Y_{1,p} \\ dots & \cdots & dots \\ Y_{m,1} & \ldots & Y_{m,p} \end{array}
ight]$$
 is a Poisson algebra via

$$\{Y_{i,\alpha},Y_{i,\beta}\} = Y_{i,\alpha}Y_{i,\beta} \qquad \alpha < \beta$$

$$\{Y_{i,\alpha},Y_{j,\alpha}\} = Y_{i,\alpha}Y_{j,\alpha} \qquad i < j$$

$$\{Y_{i,\alpha},Y_{j,\beta}\} = 0 \qquad \qquad i < j \text{ and } \alpha > \beta$$

$$\{Y_{i,\alpha},Y_{j,\beta}\} = 2Y_{i,\beta}Y_{j,\alpha} \qquad i < j \text{ and } \alpha < \beta$$

Exercise. Show that the Poisson algebra $\mathcal{O}(\mathcal{M}_{m,p}(\mathbb{C}))$ is the semiclassical limit of the algebra of $m \times p$ quantum matrices.

Torus action

 $\mathcal{H}:=(\mathbb{C}^*)^{m+p}$ acts on $\mathcal{O}(\mathcal{M}_{m,p}(\mathbb{C}))$ by Poisson automorphisms via:

$$(a_1,\ldots,a_m,b_1,\ldots,b_p).Y_{i,\alpha}=a_ib_\alpha Y_{i,\alpha}$$

At the geometric level, this action of the algebraic torus \mathcal{H} comes from the left action of \mathcal{H} on $\mathcal{M}_{m,p}(\mathbb{C})$ by Poisson isomorphisms via:

$$(a_1, \ldots, a_m, b_1, \ldots, b_p).M := diag(a_1, \ldots, a_m) \cdot M \cdot diag(b_1, \ldots, b_p).$$

We denote the set of \mathcal{H} -orbits by \mathcal{H} -Sympl $(\mathcal{M}_{m,p}(\mathbb{C}))$.

Exercise (very hard). Describe \mathcal{H} -Sympl $(\mathcal{M}_{m,p}(\mathbb{C}))$.

Torus orbits

The orbits \mathcal{H} -Sympl $(\mathcal{M}_{m,p}(\mathbb{C}))$ have been described by Brown, Goodearl and Yakimov.

We set

$$S = \{ w \in S_{m+p} \mid -p \le w(i) - i \le m \text{ for all } i = 1, 2, ..., m+p \}.$$

Theorem.

- 1. There is an explicit 1:1 correspondence between S and \mathcal{H} -Sympl $(\mathcal{M}_{m,p}(\mathbb{C}))$.
- 2. Each \mathcal{H} -orbit is defined by some rank conditions.

Restricted permutations versus Cauchon diagrams

Replace \blacksquare by + and \square by \checkmark .

Exercise

What are the restricted permutations associated to the 2×2 Cauchon diagrams?

What is the restricted permutation associated to

Additional exercises

- 1. Let $A = C^{\infty}(V)$ be a Poisson algebra and z be a Casimir element of A, that is, $\{z, f\} = 0$ for all $f \in A$. Show that z is constant on a symplectic leaf.
- 2. Let $\alpha \in \mathbb{C} \setminus \mathbb{Q}$. Check that one defines a Poisson structure on $\mathcal{O}(\mathbb{C}^3) = \mathbb{C}[X,Y,Z]$ via

$$\{X,Y\} = 0, \quad \{X,Z\} = \alpha X \text{ and } \{Y,Z\} = -Y.$$

Prove that $\{(a,b,c)\in\mathbb{C}^3\mid ab^\alpha=1\}$ is a symplectic leaf of \mathbb{C}^3 .

3. One defines a Poisson bracket on $\mathcal{O}(\mathbb{R}^3)=\mathbb{R}[X,Y,Z]$ via

$$\{X,Y\} = Z, \quad \{X,Z\} = -Z \text{ and } \{Y,Z\} = X.$$

Compute the symplectic leaves.

4. Describe the semiclassical limit of the quantum special linear group $\mathcal{O}_q(SL_2(\mathbb{C})) := \mathcal{O}_q(M_2(\mathbb{C}))/\langle \det_q -1 \rangle$. Compute the symplectic leaves of $SL_2(\mathbb{C})$.

The non-negative world

- A matrix is **totally positive** if each of its minors is positive.
- A matrix is **totally non-negative** if each of its minors is non-negative.

History

- Fekete (1910s)
- Gantmacher and Krein, Schoenberg (1930s): small oscillations, eigenvalues
- Karlin and McGregor (1950s): statistics, birth and death processes
- Lindström (1970s): planar networks
- Gessel and Viennot (1985): binomial determinants, Young tableaux
- Gasca and Peña (1992): optimal checking
- Lusztig (1990s): reductive groups, canonical bases
- Fomin and Zelevinsky (1999/2000): survey articles (eg Math Intelligencer)
- Postnikov (2007): the totally non-negative grassmannian

Examples

$$\begin{pmatrix}
1 & 1 & 1 & 1 \\
1 & 2 & 4 & 8 \\
1 & 3 & 9 & 27 \\
1 & 4 & 16 & 64
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 0 & 0 \\
1 & 2 & 1 & 0 \\
1 & 3 & 3 & 1 \\
1 & 4 & 6 & 4
\end{pmatrix}$$

$$\begin{pmatrix}
5 & 6 & 3 & 0 \\
4 & 7 & 4 & 0 \\
1 & 4 & 4 & 2 \\
0 & 1 & 2 & 3
\end{pmatrix}$$

¿ How much work is involved in checking if a matrix is totally positive?

Eg. n = 4:

$$\# \text{minors} = \sum_{k=1}^{n} {n \choose k}^2 = \approx$$

by using Stirling's approximation

$$n! \approx \sqrt{2\pi n} \frac{n^n}{e^n}$$

 2×2 case

The matrix

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

has **five** minors: $a, b, c, d, \Delta = ad - bc$.

If $b, c, d, \Delta = ad - bc > 0$ then

$$a = \frac{\Delta + bc}{d} > 0$$

so it is sufficient to check four minors.

Theorem (Fekete, 1913)

A matrix is totally positive if each of its **solid minors** is positive.

Theorem (Gasca and Peña, 1992)

A matrix is totally positive if each of its **initial minors** is positive.

Theorem (Gasca and Peña, 1992)

A totally nonnegative matrix is totally positive if each of its **corner minors** is positive.

Planar networks Consider an directed graph with no directed cycles, n sources and n sinks.

 $M = \begin{pmatrix} m_{ij} \end{pmatrix}$ where m_{ij} is the number of paths from source s_i to sink t_j .

$$\begin{pmatrix}
5 & 6 & 3 & 0 \\
4 & 7 & 4 & 0 \\
1 & 4 & 4 & 2 \\
0 & 1 & 2 & 3
\end{pmatrix}$$

Edges directed left to right.

(Skandera: Introductory notes on total positivity)

Notation The minor formed by using rows from a set I and columns from a set J is denoted by $[I \mid J]$.

Theorem (Lindström)

The path matrix of any planar network is totally non-negative. In fact, the minor $[I \mid J]$ is equal to the number of families of non-intersecting paths from sources indexed by I and sinks indexed by J.

If we allow weights on paths then even more is true.

Theorem

Every totally non-negative matrix is the weighted path matrix of some planar network.

Edges directed left to right.

 $M = \begin{pmatrix} m_{ij} \end{pmatrix}$ where m_{ij} is the number of paths from source s_i to sink t_j .

$$\left(\begin{array}{ccccc}
5 & 6 & 3 & 0 \\
4 & 7 & 4 & 0 \\
1 & 4 & 4 & 2 \\
0 & 1 & 2 & 3
\end{array}\right)$$

Let $\mathcal{M}_{m,p}^{\mathsf{tnn}}$ be the set of totally non-negative $m \times p$ real matrices.

Let Z be a subset of minors. The **cell** S_Z^o is the set of matrices in $\mathcal{M}_{m,p}^{\mathsf{tnn}}$ for which the minors in Z are zero (and those not in Z are nonzero).

Some cells may be empty. The space $\mathcal{M}_{m,p}^{\mathsf{tnn}}$ is partitioned by the non-empty cells.

A trivial example In $\mathcal{M}_{2,1}^{\text{tnn}}$ every cell is non-empty. There are 4 cells:

$$S_{\{\emptyset\}}^{\circ} = \{ \begin{pmatrix} x \\ y \end{pmatrix} \mid x, y > 0 \} \quad S_{\{[1,1]\}}^{\circ} = \{ \begin{pmatrix} 0 \\ y \end{pmatrix} \mid y > 0 \}$$

$$S_{\{[2,1]\}}^{\circ} = \{ \begin{pmatrix} x \\ 0 \end{pmatrix} \mid x > 0 \} \quad S_{\{[1,1],[2,1]\}}^{\circ} = \{ \begin{pmatrix} 0 \\ 0 \end{pmatrix} \}$$

Example In $\mathcal{M}_2^{\mathsf{tnn}}$ the cell $S_{\{[2,2]\}}^{\circ}$ is empty.

For, suppose that $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is tnn and d = 0.

Then $a, b, c \ge 0$ and also $ad - bc \ge 0$.

Thus, $-bc \ge 0$ and hence bc = 0 so that b = 0 or c = 0.

Note This is meant to jog your memory. Recall the proof that a prime in $\mathcal{O}_q(\mathcal{M}_2)$ that contains d must contain either b or c!

Exercise There are 14 non-empty cells in \mathcal{M}_2^{tnn} .

Postnikov (arXiv:math/0609764) defines **Le-diagrams**: an $m \times p$ array with entries either 0 or 1 is said to be a **Le-diagram** if it satisfies the following rule: if there is a 0 in a given square then either each square to the left is also filled with 0 or each square above is also filled with 0.

An example and a non-example of a Le-diagram on a 5×5 array

1	1	0	1	0
0	0	0	1	0
1	1	1	1	0
0	0	O	1	0
1	1	1	1	0

1	1	0	1	0
0	0	1	0	1
1	1	1	0	1
0	0	1	1	1
1	1	1	1	1

Note Le-diagrams are Cauchon diagrams with 0 = black and 1 = white!

• Postnikov (arXiv:math/0609764) There is a bijection between Le-diagrams on an $m \times p$ array and non-empty cells S_Z° in $\mathcal{M}_{m,p}^{\mathsf{tnn}}$.

For 2×2 matrices, this says that there is a bijection between Cauchon/Le-diagrams on 2×2 arrays and non-empty cells in \mathcal{M}_2^{tnn} .

2×2 Le-diagrams

1 1	0 1	1 0	1 1
1 1	1 1	1 1	0 1
1 1	0 0	0 1	0 1 1 0
1 0	1 1	0 1	
1 0	1 0	1 1	0 0
0 1	1 0	0 0	0 1
0 0	0 1	1 0	0 0

Postnikov's Algorithm starts with a Cauchon/Le-Diagram and produces a planar network from which one generates a totally non-negative matrix which defines a non-empty cell.

Example

Perform Postnikov's algorithm on the following examples:

The Grand Unifying Theory

Reminder

- Cauchon diagrams.
- Restricted permutations.
- \bullet \mathcal{H} -primes: generated by families of q-minors.
- ullet (Closure of) ${\cal H}$ -orbits of leaves: defined by the vanishing of families of minors.
- TNN cells: defined by vanishing of families of minors.
- A family of minors is *admissible* if the associated TNN cell is non-empty.
- In the 2x2 case, we get the same families of (quantum) minors. What about the general case?

Cauchon Diagrams

A **Cauchon Diagram** on an $m \times p$ array is an $m \times p$ array of squares filled either black or white such that if a square is coloured black then either each square to the left is coloured black, or each square above is coloured black. Here are an example and a non-example

2×2 Cauchon Diagrams

Restricted permutations

 $w \in S_{m+p}$ with

$$-p \le w(i) - i \le m$$
 for all $i = 1, 2, ..., m + p$.

When m = p = 2, there are 14 of them.

Restricted permutations versus Cauchon diagrams

Replace \blacksquare by + and \square by \checkmark .

Generators of \mathcal{H} -primes in quantum matrices.

Theorem (Launois): Assume that q is transcendental. Then \mathcal{H} -primes of $\mathcal{O}_q(\mathcal{M}(m,p))$ are generated by quantum minors.

Question: which families of quantum minors?

The following 14 \mathcal{H} -invariant ideals are all prime and these are the only \mathcal{H} -prime ideals in $\mathcal{O}_q(\mathcal{M}_2)$.

Matrix Poisson varities

 ${\cal H} ext{-}orbits$ of symplectic leaves are algebraic, and are defined by rank conditions. In other words, they are defined by the vanishing and non-vanishing of some families of minors.

Question: which families of minors?

Totally nonnegative cells

Totally nonnegative cells are defined by the vanishing of families of minors. Some of the TNN cells are empty.

We denote by S_Z^0 the TNN cell associated to the family of minors Z.

A family of minors is *admissible* if the corresponding TNN cell is non-empty.

Question: what are the admissible families of minors?

Conjecture

Let Z_q be a family of quantum minors, and Z be the corresponding family of minors.

 $\langle Z_q \rangle$ is a ${\mathcal H}$ -prime ideal iff the cell S_Z^0 is non-empty.

An algorithm to rule them all

Deleting derivations algorithm:

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \longrightarrow \left(\begin{array}{cc} a - bd^{-1}c & b \\ c & d \end{array}\right)$$

Restoration algorithm:

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \longrightarrow \left(\begin{array}{cc} a + bd^{-1}c & b \\ c & d \end{array}\right)$$

An algorithm to rule them all

If $M = (x_{i,\alpha}) \in \mathcal{M}_{m,p}(K)$, then we set

$$f_{j,\beta}(M) = (x'_{i,\alpha}) \in \mathcal{M}_{m,p}(K),$$

where

$$x'_{i,\alpha} := \left\{ \begin{array}{ll} x_{i,\alpha} + x_{i,\beta} x_{j,\beta}^{-1} x_{j,\alpha} & \text{if } x_{j,\beta} \neq 0, \ i < j \ \text{and} \ \alpha < \beta \\ x_{i,\alpha} & \text{otherwise.} \end{array} \right.$$

We set $M^{(j,\beta)} := f_{j,\beta} \circ \cdots \circ f_{1,2} \circ f_{1,1}(M)$.

An example

Set
$$M = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
. Then

$$M^{(2,2)} = M^{(2,1)} = M^{(1,3)} = M^{(1,2)} = M^{(1,1)} = M,$$

$$M^{(3,1)} = M^{(2,3)} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix}, \quad M^{(3,2)} = \begin{pmatrix} 2 & 1 & 1 \\ 2 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

and

$$M^{(3,3)} = \begin{pmatrix} 3 & 2 & 1 \\ 3 & 3 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$$

Exercise. Is this matrix TNN?

Exercises

Perform the restoration algorithm for each of the following matrices and compute the minors of the resulting matrices. Are the resulting matrices TNN?

1.
$$M = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
.

$$2. \ M = \left(\begin{array}{rrr} -1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right).$$

3.
$$M = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
.

TNN Matrices and restoration algorithm

Theorem (Goodearl-Launois-Lenagan 2009).

- If the entries of M are nonnegative and its zeros form a Cauchon diagram, then $M^{(m,p)}$ is TNN.
- ullet Let M be a matrix with real entries. We can apply the deleting derivation algorithm to M. Let N denote the resulting matrix.

Then M is TNN iff the matrix N is nonnegative and its zeros form a Cauchon diagram.

Exercise. Use the deleting derivation algorithm to test whether the following matrices are TNN:

$$M_1 = \begin{pmatrix} 11 & 7 & 4 & 1 \\ 7 & 5 & 3 & 1 \\ 4 & 3 & 2 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix} \text{ and } M_2 = \begin{pmatrix} 7 & 5 & 4 & 1 \\ 6 & 5 & 3 & 1 \\ 4 & 3 & 2 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}.$$

Another example

Let C be a Cauchon diagram and $T = (t_{i,\alpha})$ with $t_{i,\alpha} = 0$ iff (i,α) is a black box of C.

We set
$$T_C := f_{m,p} \circ \cdots \circ f_{1,2} \circ f_{1,1}(T)$$
.

Here m = p = 3 and

$$C = \begin{bmatrix} & & & & \\ & & & & \\ & & & & \end{bmatrix}$$

We set
$$T = \begin{pmatrix} 0 & t_{1,2} & 0 \\ 0 & 0 & t_{2,3} \\ t_{3,1} & t_{3,2} & t_{3,3} \end{pmatrix}$$
 and $T^{(j,\beta)} := f_{j,\beta} \circ \cdots \circ f_{1,1}(T)$.

Recall that
$$f_{j,\beta}(x_{i,\alpha}) = (x'_{i,\alpha}) \in \mathcal{M}_{m,p}(K)$$
, where
$$x'_{i,\alpha} := \begin{cases} x_{i,\alpha} + x_{i,\beta} x_{j,\beta}^{-1} x_{j,\alpha} & \text{if } x_{j,\beta} \neq 0, \ i < j \text{ and } \alpha < \beta \\ x_{i,\alpha} & \text{otherwise.} \end{cases}$$

•
$$T^{(3,1)} = T^{(2,3)} = T^{(2,2)} = T^{(2,1)} = T^{(1,3)} = T^{(1,2)} = T$$
.

$$T^{(3,2)} = \begin{pmatrix} t_{1,2}t_{3,2}^{-1}t_{3,1} & t_{1,2} & 0\\ 0 & 0 & t_{2,3}\\ t_{3,1} & t_{3,2} & t_{3,3} \end{pmatrix}.$$

$$\bullet \ T_C = T^{(3,3)} = \begin{pmatrix} t_{1,2}t_{3,2}^{-1}t_{3,1} & t_{1,2} & 0 \\ t_{2,3}t_{3,3}^{-1}t_{3,1} & t_{2,3}t_{3,3}^{-1}t_{3,2} & t_{2,3} \\ t_{3,1} & t_{3,2} & t_{3,3} \end{pmatrix}.$$

Results

- If $K = \mathbb{R}$ and T is nonnegative, then T_C is TNN.
- If $K=\mathbb{C}$ and the nonzero entries of T are algebraically independent, then the minors of T_C that are equal to zero are exactly those that vanish on the closure of a given \mathcal{H} -orbit of symplectic leaves.
- If $K = \mathbb{C}$ and the nonzero entries of T are the generators of a certain quantum affine space, then the quantum minors of T_C that are equal to zero are exactly those belonging to a given \mathcal{H} -prime in $\mathcal{O}_q(\mathcal{M}_{m,p}(\mathbb{C}))$.
- ullet The families of (quantum) minors we get depend only on C in these three cases. And if we start from the same Cauchon diagram in these three cases, then we get exactly the same families.

Main Result

Theorem. (GLL) Let \mathcal{F} be a family of minors in the coordinate ring of $\mathcal{M}_{m,p}(\mathbb{C})$, and let \mathcal{F}_q be the corresponding family of quantum minors in $\mathcal{O}_q(\mathcal{M}_{m,p}(\mathbb{C}))$. Then the following are equivalent:

- 1. The totally nonnegative cell associated to \mathcal{F} is non-empty.
- 2. \mathcal{F} is the set of minors that vanish on the closure of a torusorbit of symplectic leaves in $\mathcal{M}_{m,p}(\mathbb{C})$.
- 3. \mathcal{F}_q is the set of quantum minors that belong to torus-invariant prime in $\mathcal{O}_q(\mathcal{M}_{m,p}(\mathbb{C}))$.

Consequences of the Main Result

The TNN cells are the traces of the \mathcal{H} -orbits of symplectic leaves on $\mathcal{M}_{m,p}^{\mathsf{tnn}}$.

The sets of minors that vanish on the closure of a torus-orbit of symplectic leaves in $\mathcal{M}_{m,p}(\mathbb{C})$ can be explicitly described thanks to results of Fulton and Brown-Goodearl-Yakimov. So, as a consequence of the previous result, the sets of minors that define non-empty totally nonnegative cells are explicitly described.

On the other hand, when the deformation parameter q is transcendental over the rationals, then the torus-invariant primes in $\mathcal{O}_q(\mathcal{M}_{m,p}(\mathbb{C}))$ are generated by quantum minors, and so we deduce from the above result **explicit generating sets of quantum minors for the torus-invariant prime ideals of** $\mathcal{O}_q(\mathcal{M}_{m,p}(\mathbb{C}))$.

Explicit descriptions of the families of minors

For $w \in \mathcal{S}$, define $\mathcal{M}(w)$ to be the set of minors $[I|\Lambda]$, with $I \subseteq \llbracket 1, m \rrbracket$ and $\Lambda \subseteq \llbracket 1, p \rrbracket$, that satisfy at least one of the following conditions.

- 1. $I \not\leq w_0^m w(L)$ for all $L \subseteq \llbracket 1, p \rrbracket \cap w^{-1} \llbracket 1, m \rrbracket$ such that |L| = |I| and $L \leq \Lambda$.
- 2. $m + \Lambda \not\leq ww_o^N(L)$ for all $L \subseteq \llbracket 1, m \rrbracket \cap w_o^N w^{-1} \llbracket m + 1, N \rrbracket$ such that $|L| = |\Lambda|$ and $L \leq I$.
- 3. There exist $1 \le r \le s \le p$ and $\Lambda' \subseteq \Lambda \cap \llbracket r, s \rrbracket$ such that $|\Lambda'| > |\llbracket r, s \rrbracket \setminus w^{-1} \llbracket m + r, m + s \rrbracket|$.
- 4. There exist $1 \le r \le s \le m$ and $I' \subseteq I \cap [\![r,s]\!]$ such that $|I'| > |w_{\circ}^N[\![r,s]\!] \setminus w^{-1}w_{\circ}^m[\![r,s]\!]|$.