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The nonnegative world

• A matrix is totally positive if each of its minors is positive.

• A matrix is totally nonnegative if each of its minors is non-

negative.
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History

• Fekete (1910s)

• Gantmacher and Krein, Schoenberg (1930s): small oscillations,

eigenvalues

• Karlin and McGregor (1950s): statistics, birth and death pro-

cesses

• Lindström (1970s): planar networks

• Gessel and Viennot (1985): binomial determinants, Young

tableaux

• Gasca and Peña (1992): optimal checking

• Lusztig (1990s): reductive groups, canonical bases

• Fomin and Zelevinsky (1999/2000): survey articles (eg Math

Intelligencer)

• Postnikov (2007): the totally nonnegative grassmannian

• Oh (2008): Positroids and Schubert matroids
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Examples










1 1 1 1
1 2 4 8
1 3 9 27
1 4 16 64





















1 1 0 0
1 2 1 0
1 3 3 1
1 4 6 4





















5 6 3 0
4 7 4 0
1 4 4 2
0 1 2 3











¿ How much work is involved in checking if a matrix is totally

positive/totally nonnegative?

Eg. n = 4:

#minors =
n
∑

k=1

(n

k

)2
=

(2n

n

)

− 1 ≈ 4n

√
πn

by using Stirling’s approximation

n! ≈
√

2πn
nn

en
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Planar networks Consider an directed graph with no directed

cycles, n sources and n sinks.

•
ttttttttttt
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s1
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•
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jjjjjjjjjjjjjjjjjjjjjjj

•
ttttttttttt

•
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7
7

7
7

7
7

7
7

7
7

7
7

7
7

7
7

7
7

TTTTTTTTTTTTTTTTTTTTTTT

s2

JJJJJJJJJJJ
t2

ttttttttttt

•
ttttttttttt

JJJJJJJJJJJJ •

jjjjjjjjjjjjjjjjjjjjjjjj

JJJJJJJJJJJ

s3

JJJJJJJJJJJ
•

tttttttttttt
t3

ttttttttttt

•
ttttttttttt

JJJJJJJJJJJJ •
JJJJJJJJJJJ

s4 • t4

Edges directed left to right.

M =
(

mij

)

where mij

is the number of paths

from source si to sink tj.











5 6 3 0
4 7 4 0
1 4 4 2
0 1 2 3











(Skandera: Introductory notes on total positivity)
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Notation The minor formed by using rows from a set I and

columns from a set J is denoted by [I | J].

Theorem (Lindström)

The path matrix of any planar network is totally nonnegative.

In fact, the minor [I | J] is equal to the number of families of

non-intersecting paths from sources indexed by I and sinks indexed

by J.

If we allow weights on paths then even more is true.

Theorem

Every totally nonnegative matrix is the weighted path matrix of

some planar network.
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•
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t3
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•
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s4 • t4

Edges directed left to right.

M =
(

mij

)

where mij

is the number of paths

from source si to sink tj.











5 6 3 0
4 7 4 0
1 4 4 2
0 1 2 3










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Let Mtnn
m,p be the set of totally nonnegative m × p real matrices.

Let Z be a subset of minors. The cell So
Z is the set of matrices

in Mtnn
m,p for which the minors in Z are zero (and those not in Z

are nonzero).

Some cells may be empty. The space Mtnn
m,p is partitioned by the

nonempty cells.
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Example In Mtnn
2 the cell S◦

{[2,2]} is empty.

For, suppose that

(

a b
c d

)

is tnn and d = 0.

Then a, b, c ≥ 0 and also ad − bc ≥ 0.

Thus, −bc ≥ 0 and hence bc = 0 so that b = 0 or c = 0.

Exercise There are 14 nonempty cells in Mtnn
2 .
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Postnikov (arXiv:math/0609764) defines Le-diagrams: an m×p

array with entries either 0 or 1 is said to be a Le-diagram if it

satisfies the following rule: if there is a 0 in a given square then

either each square to the left is also filled with 0 or each square

above is also filled with 0.

An example and a non-example of a Le-diagram on a 5×5 array

1 1 0 1 0
0 0 0 1 0
1 1 1 1 0
0 0 0 1 0
1 1 1 1 0

1 1 0 1 0
0 0 1 0 1
1 1 1 0 1
0 0 1 1 1
1 1 1 1 1

• Postnikov (arXiv:math/0609764) There is a bijection be-

tween Le-diagrams on an m × p array and nonempty cells S◦
Z in

Mtnn
m,p.
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2 × 2 Le-diagrams

1 1

1 1

0 1

1 1

1 0

1 1

1 1

0 1

1 1

1 0

0 0

1 1

0 1

0 1

0 1

1 0

1 0

0 1

1 0

1 0

1 1

0 0

0 0

0 1

0 0

1 0

0 1

0 0

1 0

0 0

0 0

0 0
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Postnikov’s Algorithm starts with a Le-Diagram and produces

a planar network from which one generates a totally nonnegative

matrix which defines a nonempty cell.

Example

0
0 0




























































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The quantum world
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Quantum matrices

Oq(M2), the quantised coordinate ring of 2 × 2 matrices

Oq(M2) := k

[

a b
c d

]

with relations

ab = qba ac = qca bc = cb

bd = qdb cd = qdc ad − da = (q − q−1)bc.

The quantum determinant is Dq := ad − qbc

Exercise Check that the quantum determinant is central.
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Overall problem Describe Spec(Oq(M2)), q generic (qm 6= 1)

Set H := (k∗)4.

There is an action of H on Oq(M2) given by

(α, β; γ, δ) ◦
[

a b
c d

]

:=

[

αγa αδb
βγc βδd

]

;

that is, by row and column multiplications.

Subproblem Identify all of the prime ideals of Oq(M2) that are

H-invariant.
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• Overall problem: describe Spec(Oq(M2)), when q is not a

root of unity.

Theorem (Goodearl-Letzter) Let P ∈ Spec(Oq(M2)). Then

Oq(M2)/P is an integral domain; that is, all primes are completely

prime.

Theorem (Goodearl-Letzter)

|H − Spec(Oq(M2))| ≤ 24 = 16 < ∞

• Sub-problem: describe H− Spec(Oq(M2))
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Example Let P be a prime ideal of Oq(M2) that contains d.

Then

(q − q−1)bc = ad − da ∈ P

As 0 6= (q − q−1) ∈ C and P is completely prime, we deduce that

either b ∈ P or c ∈ P .

Thus, there is no prime ideal in Oq(M2) such that d is the only

quantum minor that is in P .

You should notice the analogy with the corresponding result in

the space of 2 × 2 totally nonnegative matrices: the cell corre-

sponding to d being the only vanishing minor is empty.
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Claim The following 14 H-invariant ideals are all prime and these

are the only H-prime ideals in Oq(M2).

(

a b
c d

)

(

a 0
c d

)

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
(

0 b
c d

)

sssssssssssss
(

a b
c 0

)

KKKKKKKKKKKKK
(

a b
0 d

)

UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU

(

0 0
c d

)

ssssssssssss
(

a 0
c 0

)

KKKKKKKKKKKK

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
(

0 b
c 0

)

KKKKKKKKKKKK

ssssssssssss
(

0 b
0 d

)

UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU

ssssssssssss
(

a b
0 0

)

KKKKKKKKKKKK

(

0 0
c 0

)

KKKKKKKKKKKK

ssssssssssss

(Dq)

UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU

KKKKKKKKKKKKKK

ssssssssssssss

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
(

0 b
0 0

)

KKKKKKKKKKKK

ssssssssssss

(

0 0
0 0

)

KKKKKKKKKKKK

ssssssssssss

To interpret this picture, note that, for example,
(

a b
c 0

)

denotes

the ideal generated by a, b and c.
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In quantum m × p matrices there is an action of H = (k∗)m+p

and the problem is to describe the finitely many H-prime ideals.

Theorem (Cauchon) The H-prime ideals in quantum m× p ma-

trices are in bijection with Cauchon diagrams:

Cauchon Diagrams

The rule for a Cauchon diagram is that if a square is black then
either each square to the left of it is black, or each square above
it is black.
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The Poisson world
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Poisson algebra: definition

A Poisson algebra is a commutative finitely generated C-algebra

A with a “Poisson bracket” {−,−} : A × A → A such that

1. (A, {−,−}) is a Lie algebra;

2. for all a ∈ A, the linear map {a,−} : A → A is a derivation,

that is:

{a, bc} = b{a, c} + {a, b}c ∀a, b, c ∈ A.

Example. C[X, Y ] is a Poisson algebra with Poisson bracket

given by:

{P, Q} :=
∂P

∂X
· ∂Q

∂Y
− ∂P

∂Y
· ∂Q

∂X
.
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The semiclassical limit of Oq(M2) is the commutative algebra of

polynomials C[a, b, c, d] with

{a, b} = ab, {c, d} = cd

{a, c} = ac, {b, d} = bd

{b, c} = 0, {a, d} = 2bc.
,
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Symplectic leaves

Let A be the algebra of complex-valued C∞ functions on a

smooth affine variety V .

• Hamiltonian derivations: Ha := {a,−} with a ∈ A.

• A Hamiltonian path in V is a smooth path c : [0,1] → V such

that there exists H ∈ C∞(V ) with

d

dt
(f ◦ c)(t) = {H, f} ◦ c(t)

for all 0 < t < 1.

• It is easy to check that the relation “connected by a piecewise

Hamiltonian path” is an equivalence relation.

• The equivalence classes of this relation are called the symplectic

leaves of V ; they form a partition of V .
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Again, there is an action of a torus H on the space of matrices

as Poisson automorphisms and one can look at torus orbits of

symplectic leaves.

Exercise There are 14 torus orbits of symplectic leaves in the

space of 2×2 matrices over C equipped with the Poisson bracket

coming from the semiclassical limit of Oq(M2).
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The torus orbits of symplectic leaves have been described by

Brown, Goodearl and Yakimov.

Set

S = {w ∈ Sm+p | − p ≤ w(i) − i ≤ m for all i = 1,2, . . . , m + p}.

Theorem (Brown, Goodearl and Yakimov)

• There is an explicit 1 : 1 correspondence between S and the

torus orbits of symplectic leaves in Mm,p(C).

• Each H-orbit of symplectic leaves is defined by some rank

conditions; that is, by the vanishing and nonvanishing of certain

minors.
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In the 2 × 2 case, this subposet of the Bruhat poset of S4 is

S = {w ∈ S4 | − 2 ≤ w(i) − i ≤ 2 for all i = 1,2,3,4}.
and is shown below.

(13)(24)

(13)

ggggggggggggggggggggggggggggggggggggg

(1243)

nnnnnnnnnnnnnnnnnn

(1342)

PPPPPPPPPPPPPPPPPP

(24)

WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW

(123)

pppppppppppppppp

(132)

NNNNNNNNNNNNNNNN

fffffffffffffffffffffffffffffffffffffffff

(12)(34)

PPPPPPPPPPPPPPPPPP

nnnnnnnnnnnnnnnnnn

(243)

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

pppppppppppppppp

(234)

NNNNNNNNNNNNNNNN

(12)

NNNNNNNNNNNNNNNN

nnnnnnnnnnnnnnnnnn

(23)

WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW

PPPPPPPPPPPPPPPPPP

nnnnnnnnnnnnnnnnnn

gggggggggggggggggggggggggggggggggggggggg

(34)

PPPPPPPPPPPPPPPPPP

pppppppppppppppp

(1)

PPPPPPPPPPPPPPPPPPPP

nnnnnnnnnnnnnnnnnnnn

Inspection of this poset reveals that it is isomorphic to the poset
of the H-prime ideals of Oq(M2) displayed earlier; and so to
a similar poset of the Cauchon diagrams corresponding to the
H-prime ideals.
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The Grand Unifying Theory
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Totally nonnegative cells

Totally nonnegative cells are defined by the vanishing of families

of minors. Some of the TNN cells are empty.

We denote by S0
Z the TNN cell associated to the family of minors

Z.

A family of minors is admissible if the corresponding TNN cell is

nonempty.

Question: what are the admissible families of minors?

28



Matrix Poisson varieties

H-orbits of symplectic leaves are algebraic, and are defined by

rank conditions. In other words, they are defined by the vanishing

and non-vanishing of some families of minors.

Question: which families of minors?
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Generators of H-primes in quantum matrices.

Theorem (Launois): Assume that q is transcendental.

Then H-primes of Oq(M(m, p)) are generated by quantum mi-

nors.

Question: which families of quantum minors?
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An algorithm to rule them all

Deleting derivations algorithm:

(

a b
c d

)

−→
(

a − bd−1c b
c d

)

Restoration algorithm:

(

a b
c d

)

−→
(

a + bd−1c b
c d

)
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An example

Set M =







1 −1 1
0 2 1
1 1 1





. Apply the restoration algorithm:

M(2,2) = M(2,1) = M(1,3) = M(1,2) = M(1,1) = M,

M(3,1) = M(2,3) =







1 1 1
0 2 1
1 1 1





 , M(3,2) =







2 1 1
2 2 1
1 1 1







and

M(3,3) =







3 2 1
3 3 1
1 1 1






.

Exercise. Is this matrix TNN?
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TNN Matrices and restoration algorithm

Theorem (Goodearl-Launois-Lenagan 2009).

• If the entries of M are nonnegative and its zeros form a Cau-
chon diagram, then M(m,p) is TNN.

• Let M be a matrix with real entries. We can apply the deleting
derivation algorithm to M . Let N denote the resulting matrix.

Then M is TNN iff the matrix N is nonnegative and its zeros
form a Cauchon diagram.

Exercise. Use the deleting derivation algorithm to test whether
the following matrices are TNN:

M1 =











11 7 4 1
7 5 3 1
4 3 2 1
1 1 1 1











and M2 =











7 5 4 1
6 5 3 1
4 3 2 1
1 1 1 1











.
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Main Result

Theorem. (GLL) Let F be a family of minors in the coordinate

ring of Mm,p(C), and let Fq be the corresponding family of quan-

tum minors in Oq(Mm,p(C)). Then the following are equivalent:

1. The totally nonnegative cell associated to F is nonempty.

2. F is the set of minors that vanish on the closure of a torus-

orbit of symplectic leaves in Mm,p(C).

3. Fq is the set of quantum minors that belong to torus-invariant

prime in Oq(Mm,p(C)).
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Consequences of the Main Result

The TNN cells are the traces of the H-orbits of symplectic leaves

on Mtnn
m,p.

The sets of minors that vanish on the closure of a torus-orbit of

symplectic leaves in Mm,p(C) can be explicitely described thanks

to results of Fulton and Brown-Goodearl-Yakimov. So, as a

consequence of the previous result, the sets of minors that

define nonempty totally nonnegative cells are explicitely

described.

On the other hand, when the deformation parameter q is tran-

scendental over the rationals, then the torus-invariant primes

in Oq(Mm,p(C)) are generated by quantum minors, and so we

deduce from the above result explicit generating sets of quan-

tum minors for the torus-invariant prime ideals of Oq(Mm,p(C)).
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Restricted permutations

w ∈ Sm+p with

−p ≤ w(i) − i ≤ m for all i = 1,2, . . . , m + p.

When m = p = 2, there are 14 of them.

(13)(24)

(13)

ggggggggggggggggggggggggggggggggggggg

(1243)

nnnnnnnnnnnnnnnnnn

(1342)

PPPPPPPPPPPPPPPPPP
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WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW

(123)

pppppppppppppppp

(132)

NNNNNNNNNNNNNNNN
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(12)(34)

PPPPPPPPPPPPPPPPPP

nnnnnnnnnnnnnnnnnn

(243)

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

pppppppppppppppp

(234)

NNNNNNNNNNNNNNNN

(12)

NNNNNNNNNNNNNNNN

nnnnnnnnnnnnnnnnnn

(23)

WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW

PPPPPPPPPPPPPPPPPP

nnnnnnnnnnnnnnnnnn

gggggggggggggggggggggggggggggggggggggggg

(34)

PPPPPPPPPPPPPPPPPP

pppppppppppppppp

(1)

PPPPPPPPPPPPPPPPPPPP

nnnnnnnnnnnnnnnnnnnn

36



Restricted permutations versus Cauchon diagrams

Replace � by and � by ��

C =

5 6 7 8

4 �� �� 8

3 �� �� �� 7

2 �� �� 6

1 �� �� �� �� 5

1 2 3 4
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