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Abstract

We prove a general theorem showing that iterated skew polynomial extensions of
the type which fit the conditions needed by Cauchon’s deleting derivations theory
and by the Goodearl-Letzter stratification theory are unique factorisation rings in
the sense of Chatters and Jordan. This general result applies to many quantum
algebras; in particular, generic quantum matrices and quantized enveloping algebras
of the nilpotent part of a semisimple Lie algebra are unique factorisation domains
in the sense of Chatters. The result also extends to generic quantum grassmannians
(by using noncommutative dehomogenisation) and to the quantum groups Oq(GLn)
and Oq(SLn).
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Introduction

In [4], Chatters introduced the notion of a noncommutative unique factorisation domain in

the following way. An element p of a noetherian domain R is said to be prime if (i) pR = Rp,

(ii) pR is a height one prime ideal of R, and (iii) R/pR is an integral domain. A noetherian

domain R is then said to be a unique factorisation domain, noetherian UFD for short, if

R has at least one height one prime ideal, and every height one prime ideal is generated

by a prime element. As well as the usual commutative noetherian UFDs, examples include

universal enveloping algebras of finite dimensional solvable Lie algebras over C. However,
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one of the deficiences of this definition is that the class of noetherian UFDs is not closed

under polynomial extensions, as [4, Example 2.11] shows. The problem is that the condition

of height one prime factors being domains does not pass up to polynomial extensions.

In order to remedy this deficiency, in a later paper, the notion of a noetherian unique

factorisation ring, noetherian UFR for short, was introduced by Chatters and Jordan, [5].

For a large class of rings (namely, the noetherian prime rings satisfying the descending chain

condition on prime ideals), being a noetherian unique factorisation ring amounts having

height one primes principal (that is generated by a normal element). This condition is

closed under polynomial extensions, and, indeed, they then are able to prove theorems

about skew polynomial extensions of the type R[x; σ] and R[x; δ]. However, they do not

prove any results about general skew polynomial extensions of type R[x; σ, δ].

In many quantum algebras, in the generic case where the deformation parameter q is

not a root of unity, it is known that all prime ideals are completely prime, and then the

distinction between a noetherian domain being a noetherian UFD and a noetherian UFR

disappears and so the results of [5] on noetherian UFRs also apply to noetherian UFDs in

this setting.

The purpose of this paper is to obtain a theorem on unique factorisation for certain

extensions of the type R[x; σ, δ] that arise naturally in the study of quantum algebras. Once

this theorem is proved, an iterated version is obtained which is sufficient to show that many

quantum algebras are noetherian UFDs. In particular, we show that the algebra of generic

quantum matrices, Oq(Mm,n) is a noetherian UFD, as is the quantized enveloping algebra

U+
q (g).

Roughly speaking, an iterated skew polynomial extension will be a noetherian UFD

provided that the Cauchon theory of deleting derivations can be applied, and that there is

a torus action for which the Goodearl-Letzer stratification theory applies. Exact require-

ments will be given as they become necessary.

In the case of quantum matrices, we can go further, since we can identify the height

one prime ideals that are H-primes for the natural torus that acts.

In the two final sections, we show that, in the generic case, quantum grassmannians

as well as the quantum groups Oq(GLn) and Oq(SLn) are noetherian UFDs. To deal

with the case of the generic quantum grassmannians, we use the idea of noncommutative

dehomogenisation, developed in [13].

For general results concerning noetherian rings and localisation, we refer the reader to

[12] or [18].

Throughout the paper, k denotes a field.
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1 Non commutative unique factorisation rings

This section investigates the behaviour of the notion of a noetherian unique factorisation

ring, as defined in [5] by Chatters and Jordan, under localisation by normal elements.

To start with, we recall the definition of noetherian unique factorisation ring; further

details concerning this notion can be found in [5].

An ideal I in a ring A is called principal if there exists a normal element x in A such

that I = 〈x〉 (= xA = Ax).

Definition 1.1 A ring A is called a noetherian unique factorisation ring (noetherian UFR

for short) if: (i) A is a prime noetherian ring, and

(ii) any nonzero prime ideal in A contains a nonzero principal prime ideal.

Definition 1.2 A noetherian UFR A is said to be a unique factorisation domain (noethe-

rian UFD for short) if A is a domain and each height one prime ideal P of A is completely

prime; that is, A/P is a domain for each height one prime ideal P of A.

Remark 1.3 If A is a prime noetherian ring that satisfies the descending chain condition

for prime ideals, then A is a noetherian UFR if and only if height one primes are principal

(see [5]). Hence, the notions of noetherian UFR and noetherian UFD are good generali-

sations of the usual notion of unique factorisation domain for commutative rings (see in

particular Corollaries 10.3 and 10.6 in [7]).

Note that the algebras we are dealing with are all noetherian and have finite Gelfand-

Kirillov dimension; so, they satisfy the descending chain condition for prime ideals, see for

example, [14, Corollary 3.16].

We start by proving a noncommutative analogue of Nagata’s Lemma (in the commu-

tative case, see [7] 19.20 p. 487). The following result is taken from [6], where it appears

without proof. We include a proof here, for the convenience of the reader, since it is crucial

to a part of our argument.

If A is a prime noetherian ring and x a nonzero normal element of A, we denote by Ax

the right localisation of A with respect to the powers of x.

Lemma 1.4 Let A be a prime noetherian ring and x a nonzero, nonunit, normal element

of A such that 〈x〉 is a completely prime ideal of A.

(i) If P is a prime ideal of A not containing x and such that the prime ideal PAx of Ax is
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principal, then P is principal.

(ii) If Ax is a noetherian unique factorisation ring, then so is A.

(iii) If Ax is a noetherian unique factorisation domain, then so is A.

Proof. (i) The result is trivial if P = 0, so we assume that P 6= 0. Since x is a nonzero

normal element of the prime ring A one may localise A with respect to the multiplicative

set of powers of x and there is canonical embedding A ↪→ Ax. Moreover, Q := PAx is a

prime ideal of Ax whose contraction to A is P , since P is a prime ideal of A not containing

x . Let us suppose that Q is a principal ideal. Then, clearly, there exists q ∈ A, normal

in Ax, such that Q = qAx. Moreover, one may assume the right ideal qA maximal for

this property, since A is right noetherian. Suppose that q ∈ Ax. Then there exists p in

A such that q = px (in particular qA ⊆ pA). But then, Q = pAx and p is normal in

Ax. The maximality of qA leads to qA = pA from which follows the existence of r ∈ A

such that p = qr and hence q = qrx. Since q is a non-zero normal element in the prime

ring Ax, the above equality gives 1 = rx (with r ∈ A), a contradiction, since x is not a

unit. Thus, q /∈ Ax. Now, let p ∈ P ⊆ Q; so that there exist r ∈ A and t ∈ N with

p = qrx−t, and we may choose t minimal for this property. If t > 0 then r /∈ Ax, by the

minimality of t. The above equation then leads to pxt = qr; and so either q or r must

be in Ax which is a contradiction. Thus, t = 0 and so p ∈ qA. Hence, P ⊆ qA. Also,

qA ⊆ qAx ∩ A = Q ∩ A = P ; so that P = qA. A similar argument gives P = Aq. Hence

P = Aq = qA which proves the first claim.

(ii) Let us now assume that Ax is a noetherian UFR. If Q0 is a non-zero prime ideal of

A not containing x, then Q0Ax is a non-zero prime ideal of Ax. Since Ax is a noetherian

UFR, Q0Ax contains a nonzero principal prime ideal P which is the extension to Ax of its

contraction P0 in A. By part (i), the ideal P0 is principal, since P is principal. Thus, P0

is a nonzero principal prime ideal contained in Q0. Moreover, if Q0 is a prime ideal of A

containing x, then it contains the nonzero principal prime ideal 〈x〉. We have proved that

each nonzero prime ideal of A contains a nonzero principal prime ideal, which means that

A is a noetherian UFR.

(iii) Suppose that Ax is a noetherian UFD. Then part (ii) shows that A is a noetherian

UFR. Let P be a prime ideal of height one in A. If x ∈ P then P = 〈x〉 and so P

is completely prime, by assumption. Otherwise, standard localisation theory shows that

PAx is a prime ideal of height one in Ax and that P = PAx ∩ A. Thus, A/P embeds in

Ax/PAx, which is a domain; and so A/P is a domain, as required. �

Proposition 1.6 below will be of central use later. It gives a way to pull back the unique
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factorisation property from a certain type of localisation to the initial ring. The following

lemma is needed in the proof of the proposition.

Lemma 1.5 Let R be a prime noetherian ring and suppose that d, s are normal elements

of R such that dR is prime and s /∈ dR. Then, there exist units u, v ∈ R such that ds = sdu

and sd = vds.

Proof. If either d or s is zero, then the result is trivial; so we assume that d, s 6= 0. Since

s is normal in a prime ring, s is regular and we can associate to it an automorphism σ :

R −→ R such that xs = sσ(x), for all x ∈ R. Set P := dR = Rd. Then sσ(P ) = Ps ⊆ P ;

and so σ(P ) ⊆ P , since s is normal and not in P . Hence, P ⊆ σ−1(P ), and it follows that

there is an ascending chain P ⊆ σ−1(P ) ⊆ σ−2(P ) ⊆ . . . of ideals of R. The noetherian

hypothesis then ensures that there exists n ∈ N such that σ−n(P ) = σ−(n+1)(P ), and so

σ(P ) = P ; that is, σ(d)R = dR. From this it follows that dsR = sdR, which gives the

existence of u, u′ ∈ R such that ds = sdu and sd = dsu′. But then, ds = sdu = dsu′u;

and so u′u = 1 which shows u is a unit in R. We also have Rds = Rsd, since d and s

are normal, and it follows in a similar manner that there exists a unit v in R such that

sd = vds. �

Proposition 1.6 Let R be a prime noetherian ring and suppose that d1, . . . , dt are nonzero

normal elements of R such that the ideals d1R, . . . , dtR are completely prime and pairwise

distinct. Denote by T the right quotient ring of R with respect to the right denominator set

generated by d1, . . . , dt. If T is a noetherian UFR then so is R. Also, if T is a noetherian

UFD then so is R.

Proof. We proceed by induction on t, the result being true for t = 1 by Lemma 1.4 (ii).

Assume that the result is true up to order t ∈ N∗. We will work in the right quotient ring

of fractions of R in which all the localisations of R are naturally embedded. Denote by St+1

the multiplicative subset of R generated by d1, . . . , dt+1 and by St the multiplicative subset

of R generated by d1, . . . , dt. Hence T = RS−1
t+1. We first show, using the above lemma,

that dt+1 is a nonzero normal element of RS−1
t . Let (a, s) ∈ R × St; hence s is normal

in R and, due to the hypothesis that the ideals diR are completely prime and pairwise

distinct, s /∈ dt+1R (by the principal ideal theorem). So, by the lemma above, there exist

elements u, v ∈ R such that dt+1s = sdt+1u and sdt+1 = vdt+1s. In addition, since dt+1 is

normal in R, there exist b, c ∈ R such that adt+1 = dt+1b and dt+1a = cdt+1. Hence, we

have as−1dt+1 = adt+1us−1 = dt+1bus−1 and dt+1as−1 = cdt+1s
−1 = cs−1vdt+1. It follows

that dt+1 is indeed a nonzero normal element of RS−1
t .

5



Let S be the multiplicative subset of RS−1
t generated by dt+1. Notice that, RS−1

t+1 =

(RS−1
t )S−1, as is easily verified. Of course, RS−1

t is prime noetherian and the ideal

dt+1RS−1
t is completely prime since dt+1R is completely prime and does not intersect St.

Now assume that T = (RS−1
t )S−1 is a noetherian UFR. By the comments above,

Lemma 1.4 (ii) may be applied and we get that RS−1
t is a noetherian UFR. Now, the

induction hypothesis gives that R is a noetherian UFR, as required.

Finally, suppose that T is a noetherian UFD. Then T is certainly a noetherian UFR;

and so R is a noetherian UFR, by the first part of this result. That R is a noetherian UFD

then follows by standard localisation theory (cf. the proof of Lemma 1.4 (iii)). �

2 Height one H-primes in Cauchon extensions

Most of the algebras that we are considering in this paper have groups acting on them

in natural ways. The study of the prime spectra of such algebras is often facilitated by

first studying ideals invariant under the natural group action. We begin this section by

recalling some standard terminology concerning ideals invariant under group actions. A

convenient reference is [1, II.1.8, II.1.9]. Let H be a group acting by automorphisms on

a ring R. An ideal I of R is an H-ideal provided that h(I) = I for all h ∈ H. A proper

H-ideal is an H-prime ideal provided that whenever IJ ⊆ P for H-ideals I, J of R then

either I ⊆ P or J ⊆ P . The set of H-prime ideals of R is denoted by H−Spec(R). It is

obvious that a prime ideal P that is an H-ideal is an H-prime ideal. The converse is not

true in general; however, it will usually be true for the algebras that interest us in this

paper (see comments after Definition 3.1).

Hypothesis 2.1 Let A be a domain that is a noetherian k-algebra and suppose that σ

is a k-automorphism of A. Suppose that there is a group H acting as automorphisms on

the skew Laurent extension A[X±1; σ] in such a way that X is an H-eigenvector and A is

stable under H. Further, suppose that the action of σ on A coincides with the action of

an element h0 ∈ H. Finally, suppose that there is a non root of unity λ0 in k∗ such that

h0.X = λ0X.

Given the conditions of this hypothesis, we are going to show that there is a bijection

between the H-ideals of A and the H-ideals of A[X±1; σ], and, consequently, there is a

bijection between H−Spec(A) and those H-primes of A[X; σ] that do not contain X.
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Lemma 2.2 Assume Hypothesis 2.1 and let I be an H-ideal of A[X±1; σ]. Suppose that

x = a1X
k1 + · · · + anX

kn ∈ I, with ai ∈ A and ki all distinct. Then, each ai ∈ I ∩ A.

Consequently, I = ⊕i∈Z (I ∩ A)X i.

Proof. The proof is by induction on n. If n = 1 the result is trivial, since X is invertible.

Suppose now that n > 1. Since I is an H-ideal, the element Xx− λ−kn
0 h0(x)X belongs to

I. However,

Xx− λ−kn
0 h0(x)X =

n∑
i=1

h0(ai)X
ki+1 −

n∑
i=1

λki−kn
0 h0(ai)X

ki+1

=
n−1∑
i=1

(1− λ
(ki−kn)
0 )h0(ai)X

ki+1;

so that
∑n−1

i=1 (1 − λ
(ki−kn)
0 )h0(ai)X

ki+1 ∈ I. By the induction hypothesis, we see that

(1−λ
(ki−kn)
0 )h0(ai) ∈ I for each 1 ≤ i ≤ n−1. The elements (1−λ

(ki−kn)
0 ) are nonzero, since

λ0 is not a root of unity and the ki are distinct. Thus, each h0(ai) is in the H-ideal I ∩A,

and so each ai ∈ I∩A for 1 ≤ i ≤ n−1. Finally, anX
kn = x−a1X

k1−· · ·−an−1X
kn−1 ∈ I;

and so an ∈ I ∩ A also. �

The next result follows easily from this lemma.

Theorem 2.3 Assume Hypothesis 2.1. Then there is an inclusion preserving bijection

from the set of H-ideals of A to the set of H-ideals of A[X±1; σ] given by I 7→ ⊕i∈Z IX i;

its inverse is defined by J 7→ J ∩A. Furthermore, these bijections induce order preserving

bijections between H−Spec(A) and H−SpecA[X±1; σ].

Let H be a group acting by automorphisms on a noetherian ring R and suppose that X

is a normal H-eigenvector. Then there is a bijective correspondence between the H-prime

ideals of R that do not contain X and the H-prime ideals of R[X−1], cf [1, Exercise II.1.J].

Using this fact, the next corollary follows easily.

Corollary 2.4 Assume Hypothesis 2.1. Then contraction P 7→ P ∩ A and extension

P 7→ ⊕i≥0 PX i provide inverse order preserving bijections between the H-prime ideals of

A[X; σ] that do not contain X and H−Spec(A).

Definition 2.5 Let A be a domain that is a noetherian k-algebra and let R = A[X; σ, δ]

be a skew polynomial extension of A. We say that R = A[X; σ, δ] is a Cauchon Extension

provided that
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• σ is a k-algebra automorphism of A and δ is a k-linear locally nilpotent σ-derivation

of A. Moreover we assume that there exists q ∈ k∗ which is not a root of unity such

that σ ◦ δ = qδ ◦ σ.

• There exists an abelian group H which acts on R by k-algebra automorphisms such

that X is an H-eigenvector and A is H-stable.

• σ coincides with the action on A of an element h0 ∈ H.

• Since X is an H-eigenvector and since h0 ∈ H, there exists λ0 ∈ k∗ such that

h0.X = λ0X. We assume that λ0 is not a root of unity.

• Every H-prime ideal of A is completely prime.

Note that the conditions of [1, II.5.3] are satisfied by any Cauchon extension; and so,

for example, every H-prime of R is also completely prime, by [1, Proposition II.5.11].

In a Cauchon extension R = A[X; σ, δ] the set S = {Xn | n ∈ N} is a right and left Ore

set in R, [2, Lemme 2.1]; and so we can form the Ore localization R̂ := RS−1 = S−1R.

For each a ∈ A, set

θ(a) =
+∞∑
n=0

(1− q)−n

[n]!q
δn ◦ σ−n(a)X−n ∈ R̂

Note that θ(a) is a well-defined element of R̂, since δ is locally nilpotent, q is not a root

of unity, and 0 6= 1− q ∈ k.

The following facts are established in [2, Section 2]. The map θ : A −→ R̂ is a k-

algebra monomorphism. Let A[Y ; σ] be a skew polynomial extension. Then θ extends to a

monomorphism θ : A[Y ; σ] −→ R̂ with θ(Y ) = X. Set B = θ(A) and T = θ(A[Y ; σ]) ⊆ R̂.

Then T = B[X; α], where α is the automorphism of B defined by α(θ(a)) = θ(σ(a)).

The element X is a normal element in T , and so the set S is an Ore set in T and

Cauchon shows that TS−1 = S−1T = R̂.

Since X is an H-eigenvector, it follows from [1, Exercise II.1.J] that H also acts by

automorphisms on R̂. Moreover, the following result shows that the group H also acts by

automorphisms on T and B by restriction.

Note, for later use, that, since each element of B = θ(A) is of the form θ(a) =∑n
i=0 aiX

−i for some ai ∈ A, and each element of R is of the form
∑n

i=0 ciX
i for some

ci ∈ A, it follows that B ∩R ⊆ A.

The next result shows that the action of H can be transferred to B via θ. This result

is essentially a generalisation of [2, Proposition 2.1].
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Lemma 2.6 Let R = A[X; σ, δ] be a Cauchon extension and let h ∈ H. Then h.θ(a) =

θ(h.a) for each a ∈ A.

Proof. We start by showing inductively that h.δn(a) = λn
hδ

n(h.a) for all n ∈ N, a ∈ A and

h ∈ H, where λh denotes the H-eigenvalue associated to the H-eigenvector X.

If n = 0, there is nothing to prove. Now we assume that n ≥ 1. Then, since δn(a) =

Xδn−1(a) − σ ◦ δn−1(a)X = Xδn−1(a) − qn−1δn−1(σ(a))X, we deduce from the induction

hypothesis that

h.δn(a) = λhXλn−1
h δn−1(h.a)− qn−1λn−1

h δn−1(h.σ(a))λhX.

Since h.σ(a) = hh0.a = h0h.a = σ(h.a), this leads to

h.δn(a) = λn
h

[
Xδn−1(h.a)− qn−1δn−1(σ(h.a))X

]
= λn

h

[
Xδn−1(h.a)− σ ◦ δn−1(h.a)X

]
= λn

hδ
n(h.a).

This achieves the induction.

Now, let a ∈ A. Then, using the notations of [2], we have

θ(a) =
+∞∑
n=0

(1− q)−n

[n]!q
δn ◦ σ−n(a)X−n.

Hence we get

h.θ(a) =
+∞∑
n=0

(1− q)−n

[n]!q
h.
[
δn ◦ σ−n(a)

]
h.X−n.

Then the previous study shows that

h.θ(a) =
+∞∑
n=0

λn
h

(1− q)−n

[n]!q
δn(h.σ−n(a))λ−n

h X−n.

Now, since σ coincide with the action of h0 ∈ H on A, we have h.σ−n(a) = hh−n
0 .a =

h−n
0 h.a = σ−n(h.a), so that

h.θ(a) =
+∞∑
n=0

(1− q)−n

[n]!q
δn ◦ σ−n(h.a)X−n,

that is, h.θ(a) = θ(h.a) as desired.

�
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Note that for b ∈ B with b = θ(a), we have α(b) = α(θ(a)) = θ(σ(a)) = θ(h0.a) =

h0.θ(a) = h0.b; so that the action of α on B coincides with the action of h0.

The above lemma shows that the action of H on R̂ by automorphisms induces an

action of H on B by automorphisms. Further, since T = B[X; α] and since X is an

H-eigenvector, this observation also proves that the action of H on R̂ by automorphisms

induces an action of H on T by automorphisms. Moreover, since every H-prime ideal of A

is completely prime, we deduce that every H-prime ideal of B = θ(A) is completely prime.

Then, it follows from [1, Proposition II.5.11] that every H-prime ideal of T = B[X; α] is

also completely prime.

Let b ∈ B be an H-eigenvector, say h.b = λhb for λh ∈ k, and suppose that b = θ(a).

Then θ(h.a−λha) = h.θ(a)−λhθ(a) = h.b−λhb = 0; so h.a = λha and a is anH-eigenvector

with the same action of H on a as on b.

Definition 2.7 Suppose that A is a noetherian domain that is a k-algebra and suppose

that H is a group acting on A via k-automorphisms. Then A is an H-UFD if each nonzero

H-prime Q of A contains a nonzero normal H-eigenvector x such that the H-ideal xA = Ax

is completely prime.

Remark 2.8 In particular, in an H-UFD, all H-primes of height one as H-primes have

height one as ordinary prime ideals, by the principal ideal theorem. Thus, an ideal is an

H-prime of height one as an H-prime if and only if it is a prime H-ideal of height one as

an ordinary prime ideal. Also, in an H-UFD, the H-primes of height one are principal,

generated by a normal element, and completely prime.

Proposition 2.9 Let R = A[X; σ, δ] be a Cauchon extension. Suppose that A is an H-

UFD. Then R is an H-UFD.

Proof. Since B is isomorphic to A via θ and θ preserves the H-action, we know that every

non-zero H-prime of B contains a non-zero normal H-eigenvector b such that bB = Bb is a

completely prime ideal; that is, B is an H-UFD. We start by showing that such an element

b of B can be used to produce, in a natural way, an element of R with similar properties.

Note, that every H-prime ideal of A and B is completely prime, since this is one of the

properties of A being part of a Cauchon extension and B ∼= A via a map compatible with

the H-actions.

Let b ∈ B. Then b ∈ B ⊆ T ⊆ R̂ = RS−1; and so there exists n ≥ 0 with bXn ∈ R.

Now, suppose that 0 6= b ∈ B is a normal H-eigenvector such that bB = Bb is a

completely prime ideal. Choose s ≥ 0 minimal such that x := bXs ∈ R. We will show that

x is a normal H-eigenvector in R such that xR = Rx is a completely prime ideal.
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First, note that x is an H-eigenvector, since each of b and X is an H-eigenvector. Next,

Xb = α(b)X = h0(b)X = ηbX

for some 0 6= η ∈ k, since b is an H-eigenvector.

Hence, b is normal in T = B[X; α]. Also, bT = Tb is a completely prime H-ideal of T .

It follows that bR̂ = R̂b is a completely primeH-ideal of R̂. However, xR̂ = bXsR̂ = bR̂;

and so xR̂ is a completely prime H-ideal of R̂. Thus, I := xR̂∩R = bR̂∩R is a completely

prime H-ideal of R. We will show that I = Rx.

It is obvious that Rx ⊆ I. For the reverse inclusion, let y ∈ I. Then y ∈ bR̂ and so

there exists u ≥ 0 such that yXu ∈ bT = Tb. Thus, there exists c ∈ T such that yXu = cb.

Next, since c ∈ T ⊆ RS−1, there exists v ≥ 0 such that cXv ∈ R. Set r := η−vcXv ∈ R.

Then, by using the fact that Xb = ηbX, we get yXu+v+s = cbXv+s = η−vcXvbXs = rx;

and so there exists t ≥ 0 such that yX t = rx with r ∈ R. Choose such a t minimal.

Assume that t ≥ 1. Express r, y and x as elements in the Ore extension R = A[X; σ, δ],

say,

r =
d∑

i=0

riX
i, y =

d∑
i=0

yiX
i and x =

d∑
i=0

xiX
i,

where d ≥ 0 and ri, yi, xi ∈ A for all 0 ≤ i ≤ d. If s = 0, then x = b ∈ B ∩ R ⊆ A, and so

x0 = b 6= 0. If s ≥ 1 then x0 = 0 would give

bXs−1 = (bXs)X−1 = xX−1 =
d∑

i=1

xiX
i−1 ∈ R,

contradicting the minimality of s. Thus, x0 6= 0 whatever the value of s ≥ 0.

Recall that Xb = ηbX, so that

rx =
d∑

i=0

riX
ibXs =

d∑
i=0

ηiribX
i+s =

d∑
i=0

ηirixX i;

that is,

rx =
d∑

i,j=0

ηirixjX
i+j.

Also, rx = yX t =
d∑

i=0

yiX
i+t; and so we obtain the following equality

d∑
i,j=0

ηirixjX
i+j =

d∑
i=0

yiX
i+t (1)
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in R = A[X; σ, δ].

Since t ≥ 1, the term of degree 0 in the left hand side of (1) must be zero; that is, r0x0 =

0. Since x0 6= 0, this gives r0 = 0. Hence r =
∑d

i=1 riX
i = wX with w =

∑d
i=1 riX

i−1 ∈ R.

Consequently, the equality yX t = rx can be rewritten as

yX t = wXx = wXbXs = ηwbXs+1 = ηwxX.

It follows that yX t−1 = ηwx, with ηw ∈ R, contradicting the minimality of t.

Hence t = 0 and y = rx with r ∈ R; so that y ∈ Rx, as required.

To sum up, we have established that I = Rx.

It remains to show that xR = I. First, note that, since Xb = ηbX, we have x =

η−sXsb ∈ R and it is clear that min{i ∈ N | X ib ∈ R} = min{i ∈ N | bX i ∈ R} = s.

Now by writing elements of R as polynomials with coefficients on the right, a very similar

calculation (which we omit) to that done above shows that xR = I. Thus, x = bXs is

a nonzero H-eigenvector of R such that I = xR = Rx is a completely prime ideal. This

finishes the first part of the proof.

Now, let J be any nonzero H-prime ideal of R, and note that J is completely prime.

First, assume that X 6∈ J . Then JS−1 ∩ T is a nonzero H-ideal of T which is prime

and it follows that JS−1 ∩ B is a nonzero H-prime ideal of B, by Corollary 2.4. Thus,

there exists 0 6= b ∈ JS−1 ∩ B such that b is a normal H-eigenvector and bB = Bb is a

completely prime ideal of B. As in the earlier part of the proof, set x := bXs, where s is

minimal such that bXs ∈ R. Note that x ∈ JS−1 ∩R = J , and that x is a nonzero normal

H-eigenvector of R such that xR = Rx is a completely prime ideal of R.

Next, assume that X ∈ J . If δ = 0 then X is a nonzero normal H-eigenvector such

that XR = RX is completely prime (since A is a domain), as required. Thus, we may

assume that δ 6= 0.

Choose c ∈ A such that δ(c) 6= 0, and note that 0 6= δ(c) = Xc − σ(c)X ∈ J ; and

so J ∩ A 6= 0. It is clear that the map b 7→ θ−1(b) + J defines a homomorphism from B

to R/J , and this homomorphism extends to a homorphism g from T to R/J such that

g(X) = 0. This map, given by g(
∑

biX
i) = θ−1(b0) + J , commutes with the action of H.

Set J ′ = ker(g); so that J ′ is a completely prime H-ideal of T . With c ∈ A as above, note

that g(θ(δ(c))) = δ(c) + J = 0R/J . Thus, J ′ ∩ B is a nonzero H-prime ideal of B. Thus,

there is a nonzero normal H-eigenvector b ∈ J ′ ∩ B such that bB = Bb is a completely

prime H-ideal of B. Set x := bXs, where s is minimal such that bXs ∈ R. Then, as in the

earlier part of the proof, we know that x is a nonzero normal H-eigenvector of R such that

xR = Rx is a completely prime ideal of R. In order to finish this case, we will show that
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x ∈ J . Now, b = θ(a) for some 0 6= a ∈ A. We use the explicit formula for θ(a) to finish

the calculation:

b = θ(a) =
+∞∑
n=0

(1− q)−n

[n]!q
δn ◦ σ−n(a)X−n.

(The sum on the right hand side exists since δ is locally nilpotent). Since δ is locally

nilpotent, there exists d ∈ N such that δd(a) 6= 0 and δd+1(a) = 0. Then, since qδ◦σ = σ◦δ,
we have

b = θ(a) =
d∑

n=0

(1− q)−n

[n]!q
qn2

σ−n ◦ δn(a)X−n,

and so the smallest integer i such that bX i ∈ R is equal to d. In other words, s = d and

x = bXd =
∑d

n=0
(1−q)−n

[n]!q
δn ◦ σ−n(a)Xd−n, that is:

x =
(1− q)−d

[d]!q
δd ◦ σ−d(a) +

(
d−1∑
n=0

(1− q)−n

[n]!q
δn ◦ σ−n(a)Xd−1−n

)
X.

Since X ∈ J , in order to prove that x ∈ J , it is so sufficient to prove that δd ◦ σ−d(a)

belongs to J .

Observe that, since b ∈ J ′, we have 0 = g(b) = a + J and thus a ∈ J . Hence, if d = 0,

then x = b = a, and so x ∈ J as desired. Assume now that d ≥ 1. Then δd ◦ σ−d(a) =

δ
(
δd−1 ◦ σ−d(a)

)
. Set e := δd−1 ◦ σ−d(a) ∈ A. Then δd ◦ σ−d(a) = δ(e) = Xe− σ(e)X ∈ J ,

since X ∈ J . This was what we needed to conclude that x ∈ J , as required.

�

3 CGL extensions

In this section, we develop a suitable context in which to apply the results of the previous

section to establish that certain iterated skew polynomial extensions are H-UFDs. The

next problem is to use this information, the Goodearl-Letzter stratification theory and the

noncommutative version of Nagata’s lemma that we have established, Proposition 1.6, to

deduce that these extensions are, in fact, noetherian UFDs

The next definition contains all of the conditions that are necessary for this programme

to succeed. The definition is unwieldy, but is justified by the fact that many of the quantum

algebras that we wish to study satisfy all of these conditions.

Definition 3.1 An iterated skew polynomial extension

A = k[x1][x2; σ2, δ2] . . . [xn; σn, δn]
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is said to be a CGL extension (after Cauchon, Goodearl and Letzter) provided that the

following list of conditions is satisfied:

• With Aj := k[x1][x2; σ2, δ2] . . . [xj; σj, δj] for each 1 ≤ j ≤ n, each σj is a k-automorphism

of Aj−1, each δj is a locally nilpotent k-linear σj-derivation of Aj−1, and there exist

nonroots of unity qj ∈ k∗ with σjδj = qjδjσj;

• For each i < j there exists a λji such that σj(xi) = λjixi;

• There is a torus H = (k∗)r acting rationally on A by k-algebra automorphisms;

• The xi for 1 ≤ i ≤ n are H-eigenvectors;

• There exist elements h1, . . . , hn ∈ H such that hj(xi) = σj(xi) for j > i and such

that the hj-eigenvalue of xj is not a root of unity.

If, in addition, the subgroup of k∗ generated by the λji is torsionfree then we will say

that A is a torsionfree CGL extension.

For a discussion of rational actions of tori, see [1, Chapter II.2].

Note that any CGL extension will be a noetherian domain with finite GK dimension,

cf. [1, Lemma II.9.7]; and so will satisfy the descending chain condition on prime ideals,

as mentioned earlier.

Notice that, if A is a CGL extension, then the action of H on k[x1] is such that

h1.x1 = λx1, where λ ∈ k∗ is not a root of unity. From this, it follows easily that the only

nonzero H-prime of k[x1] is 〈x1〉, which is (completely) prime. Using [1, II.5.11], we deduce

that, if A is a CGL extension then each of the extensions Aj = Aj−1[xj; σj, δj] is a Cauchon

extension; so the results of the previous section are available. Also, any CGL extension

satisfies the conditions of [1, II.5.1] and so there are only finitely many H-primes in A

and they are all completely prime, by [1, Theorem II.5.12]. Further, if A is a torsionfree

CGL extension, then all prime ideals of A are completely prime, by [1, Theorem II.6.9]. In

particular, if such an A is a noetherian UFR then it is a noetherian UFD.

Proposition 3.2 Let A be a CGL extension. Then A is an H-UFD; that is, each nonzero

H-prime Q of A contains a nonzero normal H-eigenvector a such that the H-ideal P :=

aA = Aa is completely prime.
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Proof. As already mentioned, the only nonzero H-prime of k[x1] is 〈x1〉 and it follows

immediately that k[x1] is an H-UFD. Now, each of the extensions Aj = Aj−1[xj; σj, δj] is

a Cauchon extension; so apply Proposition 2.9 repeatedly. �

The main aim in this section is to show that any CGL extension is in fact a noetherian

UFR. It then follows that any torsionfree CGL extension is a noetherian UFD. Since a CGL

extension A is an H-UFD, the prime ideals of height one that are H-ideals are principal,

generated by elements that are normal and H-eigenvectors. Also, as noted above, there are

only finitely many H-primes, by [1, Theorem II.5.12], and they are all completely prime.

Thus, in order to show that such an extension is a noetherian UFD, we have to deal with

the primes of height one that are not H-primes. In the language of Goodearl and Lezter,

these primes are in the stratum of the zero ideal; that is, if P is a prime ideal of height

one that is not an H-prime, then the largest H-ideal contained in P is the zero ideal. The

Goodearl-Letzter stratification theory enables us to deal with these primes. The idea is

simple. The stratification theory shows that, once we invert all the regular H-eigenvectors,

the prime ideals in the stratum of the zero ideal become centrally generated. In fact, the

height one primes in the zero stratum become principal, generated by a central element in

this localisation; this shows this localisation is a noetherian UFR. However, Proposition 1.6

is valid only when we are inverting a multiplicative set generated by finitely many normal

elements. To deal with this point, it turns out, and this is what we show first, that it is

enough to invert the multiplicative set generated by the finitely many generators of the

H-primes of height one in order to get a picture similar to that of the stratification theory.

Lemma 3.3 Let I be an H-ideal in a CGL extension A. Then the prime ideals minimal

over I are all H-prime ideals.

Proof. Since A is noetherian, there are finitely many primes minimal over I. Let Q be a

prime minimal over I. The H-orbit of Q consists of primes minimal over I and hence is

finite. Now, [1, II.2.9] shows that Q is an H-ideal. �

Corollary 3.4 Suppose that A is a CGL extension and that Pi = aiA for 1 ≤ i ≤ m are

the prime ideals of height one that are H-primes, where the ai are normal H-eigenvectors.

Then, each nonzero H-ideal of A contains a product of the ai (repetitions allowed).

Proof. Let I be a nonzero H-ideal of A. Since A is noetherian, there are only a finite

number of prime ideals that are minimal over I; denote these primes by Q1, . . . , Qs. By
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the previous lemma, these are all H-primes. Since A is noetherian, the ideal I contains

a product of the Qi. However, each Qi contains some Pj, by Proposition 3.2; and so I

contains a product of the Pi, hence a product of the ai. �

Set T to be the localisation of A with respect to the multiplicatively closed set generated

by the normal H-eigenvectors ai. Then the rational action of H on A extends to an action

of H on the localisation T by k-algebra automorphisms, since we are localising with respect

to H-eigenvectors, and this action of H on T is also rational, by using [1, II.2.7]. We have

the following proposition.

Proposition 3.5 The ring T is H-simple; that is, the only H-ideals of T are 0 and T .

Proof. Let J be an H-ideal of T and let I = J ∩ A. Clearly, I is an H-ideal of A. In

addition, J = IT , by [18, 2.1.16]. If I = 0, then J = 0. Otherwise, J = T , by the previous

corollary. �

We are now in position to show that the CGL extension A is a noetherian UFR.

Theorem 3.6 Let A = k[x1][x2; σ2, δ2] . . . [xn; σn, δn] be a CGL extension. Then A is a

noetherian UFR.

Proof. By Proposition 1.6, it is enough to prove that the localisation T is a noetherian

UFR. Now, as proved in Proposition 3.5, T is an H-simple ring. Thus, using [1, II.3.9], it

is a noetherian UFR, as required. �

Theorem 3.7 Let A be a torsionfree CGL-extension. Then A is a noetherian UFD.

Proof. Use Theorem 3.6 and the fact that all prime ideals are completely prime in a

torsionfree CGL-extension. �

This theorem applies to many quantum algebras. A selection of such algebras of current

interest is given in the following corollary. For exact definitions of those of the algebras

that are not explicitly defined in this paper, consult [8] or [2, Section 6.2]

Corollary 3.8 The following algebras are noetherian UFDs:

• The algebra of quantum matrices Oq(Mm,n), with q not a root of unity, (see also

the next section for more information about Oq(Mm,n)), and, more generally, the

multiparameter version Oλ,p(Mm,n(k)), with λ not a root of unity and the group

〈λ, pij〉 torsionfree.
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• The quantized enveloping algebra Uq(n
+), with q not a root of unity, of the nilpotent

subalgebra n+ of a complex semisimple Lie algebra g.

• The quantized enveloping algebra Uq(b
+), with q not a root of unity, of the Borel

subalgebra b+ of a complex semisimple Lie algebra g.

• The quantum affine space Oq(k
n), with 〈qij〉 torsionfree.

• The quantized Weyl algebra AQ,Γ
n (k) with each qi not a root of unity and 〈qi, γij〉

torsionfree.

• The quantum grassmannian Gq(m, n), with q not a root of unity.

• The quantum groups Oq(GLn) and Oq(SLn), with q not a root of unity.

Proof. The algebras Oq(Mm,n),Oλ,p(Mm,n(k)),Oq(k
n), AQ,Γ

n (k) are described in [8] as iter-

ated skew polynomial extensions with appropriate torus actions, and can easily be checked

to be torsionfree CGL-extensions. (The only awkward point is to check that the first con-

dition holds, and, in particular, to check that the δi involved all act locally nilpotently.

The lemma below, which is easy to prove, helps deal with this point.)

The algebra Uq(n
+) is described in [2, Section 6.2] and is easily seen to be a CGL-

extension.

The algebra Uq(b
+) is described in [8] as a localisation of an algebra that is an iterated

skew polynomial extension with a torus action. This algebra is easily checked to be a

CGL-extension.

The algebra Gq(m,n) is shown to be a noetherian UFD in section 5 of this paper. The

quantum groups Oq(GLn) and Oq(SLn) are shown to be noetherian UFDs in section 6 of

this paper.

�

Lemma 3.9 Let R be a k-algebra, τ a k-algebra automorphism, δ a left τ -derivation, which

we assume to be k-linear and set S = R[x; τ, δ]. In addition, let X ⊆ R be a generating set

of the k-algebra R. Then, the following holds.

(i) Assume that there exists q ∈ k such that, for all x ∈ X, δτ(x) = qτδ(x), then δτ = qτδ.

(ii) Assume that there exists q ∈ k such that δτ = qτδ. If, for all x ∈ X, there exists

d ∈ N∗ such that δd(x) = 0, then δ is locally nilpotent.
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4 Height one H-primes in Oq(Mm,n)

In this section, we identify generators for each of the height one primes which are H-ideals

of the algebra of quantum matrices, in the generic case.

Throughout, k is a field and q is a nonzero element of k that is not a root of unity. Let

m, n be positive integers. Recall that the algebra of m×n quantum matrices, Oq(Mm,n), is

the k-algebra generated by mn indeterminates xij, with 1 ≤ i ≤ m and 1 ≤ j ≤ n, subject

to the relations
xijxil = qxilxij, (j < l);

xijxkj = qxkjxij, (i < k);

xijxkl = xklxij, (i < k, j > l);

xijxkl − xklxij = (q − q−1)xilxkj, (i < k, j < l).

In the case that m = n, we write Oq(Mn) for Oq(Mm,n).

In view of the restriction that q is not a root of unity, we refer to Oq(Mm,n) as the

algebra of generic quantum matrices.

Let H be the (m+n)-torus (k∗)m× (k∗)n. The torus H acts on Oq(Mm,n) by k-algebra

automorphisms in the following way:

(α1, . . . , αm, β1, . . . , βn) · xij := αiβjxij.

The algebra Oq(Mm,n) can be presented as an iterated skew polynomial extension with

the variables added in lexicographical order. With this presentation, and with the group

H above acting, Oq(Mm,n) is a torsionfree CGL extension; and so is a noetherian UFD by

the results of the previous section. There are only finitely many height one prime ideals

which are H-primes, and the purpose of this section is to identify these H-primes.

In the literature, many results are only stated for Oq(Mn) but are easily translated

to Oq(Mm,n), by using arguments based on the following easy observations. First, if I is

a set of row indices and J is a set of column indices then the subalgebra of Oq(Mn) or

Oq(Mm,n) generated by the xij with i ∈ I and j ∈ J is isomorphic to another quantum

matrix algebra in a natural way. Secondly, let A = Oq(Mn), and let B = Oq(Mm,n), with

m ≤ n, be the quantum matrix algebra generated by generators in the first m rows of A,

then there is an algebra epimorphism π : A −→ B defined by the projection given by

xij 7→ xij if i ≤ m and xij 7→ 0 otherwise. By using the first observation, we may think

of Oq(Mm,n) and Oq(Mn,m) being embedded in a common Oq(Mn). Then, there is an

isomorphism between Oq(Mm,n) and Oq(Mn,m) given by transposition of the generators in

Oq(Mn); that is, xij 7→ xji, see [19, Proposition 3.7.1]. For this reason, we will assume that
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m ≤ n. In view of the restriction that q is not a root of unity, we will refer to Oq(Mm,n)

as a generic quantum matrix algebra.

The algebra Oq(Mn) has a special element, detq, the quantum determinant, defined by

detq :=
∑

σ

(−q)l(σ)x1σ(1) · · ·xnσ(n),

where the sum is taken over the permutations of {1, . . . , n} and l(σ) is the usual length

function on such permutations. The quantum determinant is a central element of Oq(Mn),

see, for example, [19, Theorem 4.6.1]. If I is a t-element subset of {1, . . . ,m} and J is a t-

element subset of {1, . . . , n} then the quantum determinant of the subalgebra of Oq(Mm,n)

generated by {xij}, with i ∈ I and j ∈ J , is denoted by [I | J ]. The elements [I | J ]

are the quantum minors of Oq(Mm,n). They are not in general central; however, they do

possess good commutation properties: in particular, in what follows, we will identify several

quantum minors that are normal elements. Two elements a, b are said to q-commute if there

is an integer s such that ab = qsba. An element that q-commutes with each of the generators

of a quantum matrix algebra is easily seen to be normal, and this is a standard way to

demonstrate normality. In many sources, such commutation relations are established for

Oq(Mn). Usually, it is easy to transfer such results to Oq(Mm,n), by including this quantum

matrix algebra as a subalgebra of a suitable Oq(Mn) by including extra rows or columns of

generators: obviously, if an element q-commutes with each of the generators in this larger

algebra then it q-commutes with the generators of the original algebra. In addition, we

will use the transposition isomorphism to derive further q-commutation results, with little

comment.

Cauchon’s theory of deleting derivations,[2, 3], has been applied to quantum matrices

with great success. In fact, in [3], Cauchon works with Oq(Mn); however, the methods

extend to Oq(Mm,n) and the details are worked out in [15]. Let w denote an m× n array

of square boxes in which each box is coloured either black or white. A Cauchon diagram

is such an array with the following property: if a square is coloured black then either

every square to the left of this square is also coloured black, or every square above this

square is also coloured black. Cauchon [3] and Launois [15] prove that the H-prime ideals

of Oq(Mm,n) are in bijection with the m × n Cauchon diagrams. In addition, if P is an

H-prime, then the height of P (as a prime ideal) is equal to the number of black boxes in

the corresponding diagram, by [3], Théorème 6.3.3 (which is easily adapted to the rectan-

gular case), and [15], Proposition 1.3.2.2. (Recall that, by [1, II.2.9], any H-prime is prime.)

For 1 ≤ i ≤ m, let ci denote the i × i quantum minor [m − i + 1, . . . ,m | 1, . . . , i] of
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Oq(Mm,n) and let bi denote the i× i quantum minor [1, . . . , i | n− i+1, . . . , n] of Oq(Mm,n),

while for m < i ≤ n, let bi denote the quantum minor [1, . . . ,m | n− i + 1, . . . , n + m− i].

Note that cm = bn; in particular, note that in Oq(Mn) we have bn = cn = detq. For

orientation, note that the bi are the minors coming from the top right of the matrix of

generators of Oq(Mm,n), while the ci come from the bottom left.

The quantum minors are H-eigenvectors; and so, for example, the ideals generated by

each of the elements bi and ci, defined above, are H-ideals. We will show below that they

are H-prime ideals.

Lemma 4.1 The elements bi, with 1 ≤ i ≤ n, and ci, with 1 ≤ i ≤ m, are normal elements

of Oq(Mm,n).

Proof. Let 1 ≤ i ≤ m; it follows easily from [9, Corollary A.2] that ci q-commute with

each generator of Oq(Mm,n) and, using the transpose automorphism, that the same is true

for bi. For bi, with m < i ≤ n, a slightly more complicated argument is required. Fix an i

with m < i ≤ n. Consider a generator xkl. If l ≤ n + m− i then xkl and bi belong to the

quantum matrix algebra Oq(Mm,n+m−i) obtained from the generators in the first n+m− i

columns of Oq(Mm,n). In fact, bi is bm in this subalgebra, and so xkl and bi q-commute. If

l > n+m−i then xkl and bi belong to the quantum matrix algebra Oq(Mm,i) obtained from

the generators in the last i columns of Oq(Mm,n). In this case, bi is cm in this subalgebra

and so again we see that xkl and bi q-commute. Thus bi q-commutes with each of the

generators of Oq(Mm,n) and so is a normal element in this algebra. �

Proposition 4.2 There are precisely m + n− 1 height one primes that are H-primes in

the generic quantum matrix algebra Oq(Mm,n). They are the ideals generated by b1, . . . , bn

and c1, . . . , cm−1 (recall that cm = bn).

Proof. It is easily seen that the elements b1, . . . , bn, c1, . . . , cm−1 generate pairwise distinct

ideals.

The height one primes that are H-primes are in bijection with the Cauchon diagrams

with precisely one black box. Such Cauchon diagrams arise by filling in one box either in

the first row of the array, or the first column. There are m + n− 1 ways of doing this; and

so there are m + n− 1 height one primes that are H-primes.

That the ideals specified are H-ideals is due to the fact that the bi and ci are H-

eigenvectors. That the ideals are prime comes about in the following way. If we restrict

to the quantum submatrix algebra A, say, specified by the rows and columns of a bi or ci,
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then when we factor out bi or ci from A we are factoring out the quantum determinant

of A, and so the factor A/biA or A/ciA is a domain, see, for example, [9, Theorem 2.5].

Since the bi or ci q-commute with the remaining xij we can add the remaining xij in such

a way that at any stage if we have reached a subalgebra B then B/biB, say, is an iterated

skew polynomial algebra over A/biA and so is a domain. For example, if we are in the

case that m < i ≤ n, then we can add the xij to the left of the rows and columns used by

bi by moving from right to left along each row, starting with the bottom row and moving

upwards row by row. We then can add the xij to the right of the rows and columns used by

bi in lexicographic order. Thus each Oq(Mm,n)/biOq(Mm,n) and Oq(Mm,n)/ciOq(Mm,n) is a

domain and so each ideal of Oq(Mm,n) generated by a bi or ci is a completely prime ideal.

Since these ideals are H-ideals, they are also H-primes. Since we have precisely m + n− 1

elements bi or ci this gives all of the height one primes that are H-primes. �

5 Generic quantum grassmannians are UFD

Recall that the quantum grassmannian subalgebra, Gq(m, n), of Oq(Mm,n) is the subalgebra

generated by the m×m maximal quantum minors of Oq(Mm,n) (recall that we are assuming

that m ≤ n). The algebra Gq(m, n) is a noetherian domain, see, for example, [13, Theorem

1.1]. Our usual restriction that q is not a root of unity applies in this section; so we refer

to Gq(m,n) at the generic quantum grassmannian.

In view of the fact that each of the quantum minors that generates Gq(m, n) is of the

form [1, . . . ,m | J ] we will denote such a minor by [J ]. The two extreme quantum minors,

[1, . . . ,m] and [n − m + 1, . . . , n] are normal in Gq(m, n), see, for example, [13, Corollary

1.1, Lemma 1.1].

We will use the fact that generic quantum matrices are noetherian UFD, and the

dehomogenisation isomorphism

Oq(Mm,n−m)[y, y−1; φ] −→ Gq(m, n)[[n−m + 1, . . . , n]−1]

of [13, Corollary 4.1] to show that Gq(m, n) is a noetherian UFD. Note that the automor-

phism φ used in the dehomogenisation isomorphism acts on generators via φ(xij) = q−1xij,

see [13, Corollary 4.1].

To show that Gq(m,n) is a noetherian UFD, we proceed as follows. First, we show that

the problem reduces to proving that the localisation Gq(m, n)[[n − m + 1, . . . , n]−1] is a

noetherian UFD. Once this is done, by the dehomogenisation theorem, the problem trans-

fers to showing that Oq(Mm,n−m)[y, y−1; φ] is a noetherian UFD, and this is the second step.
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The first step is easy and essentially amounts to proving Lemma 5.1 below.

Lemma 5.1 The ideal of Gq(m, n) generated by [n − m + 1, . . . , n] is a completely prime

ideal.

Proof. Let R = Gq(m,n). The isomorphism discussed immediately before [13, Lemma

1.1] shows that the result follows provided that we show that a := [1, . . . ,m] generates a

completely prime ideal in Gq(m,n).

Note that u := [n−m + 1, . . . , n] is left regular modulo aR, see the proof of Theorem

6.1 of [13]. Hence, it is enough to prove that a generates a completely prime ideal in

the localisation R[u−1]. We use the dehomogenisation isomorphism introduced above.

Set v := [1, . . . , t|1, . . . , t] with t = m if m ≤ n − m and t = n − m otherwise. By

[16, Lemma 3.5.1], it is enough to show that v generates a completely prime ideal of

Oq(Mm,n−m)[y, y−1; φ]. However, v generates a completely prime ideal of Oq(Mm,n−m) that

is left invariant by φ, since φ(v) is a scalar multiple of v. Thus v generates a completely

prime ideal of Oq(Mm,n−m)[y, y−1; φ], as required. �

To achieve the second step, we observe first that Oq(Mm,n−m)[y; φ] is a torsionfree CGL-

extension (in s := m(n−m)+1 steps) as follows. The torus H = (k∗)n = (k∗)m × (k∗)n−m

acts on Oq(Mm,n−m) as defined at the beginning of the previous section, and we have

already observed that this makes Oq(Mm,n−m) a CGL-extension (in s − 1 = m(n − m)

steps). In order to deal with the last step (extension by y) we proceed as follows. We extend

this action of H to Oq(Mm,n−m)[y; φ] by setting (a1, . . . , an).y = a1 . . . any. The element

hs needed for the final extension is given by hs := (q−1, . . . , q−1, 1, . . . , 1) ∈ H (with m

occurences of q−1), since we require that hs(xij) = φ(xij) = q−1xij. Moreover hs.y = q−my,

and q−m is not a root of unity, since q is not. With this information provided, it is easy

to check the remaining conditions and conclude that Oq(Mm,n−m)[y; φ] is a torsionfree

CGL-extension.

Theorem 5.2 Suppose that q ∈ k∗ is not a root of unity. Then Oq(Mm,n−m)[y, y−1; φ] is

a noetherian UFD.

Proof. That Oq(Mm,n−m)[y; φ] is a noetherian UFD follows from Theorem 3.7, since

Oq(Mm,n−m)[y; φ] is a torsionfree CGL-extension. It follows that Oq(Mm,n−m)[y, y−1; φ]

is a noetherian UFD. �

Theorem 5.3 The generic quantum grassmannian, Gq(m, n), is a noetherian UFD.
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Proof. The previous result shows that Gq(m, n)[[n−m+1, . . . , n]−1] is a noetherian UFD, by

using the dehomogenisation isomorphism. By Lemma 5.1, we know that [n−m+1, . . . , n]

generates a completely prime ideal. Thus the result follows from Lemma 1.4. �

6 Generic Oq(SLn) is a UFD.

In this section we prove that, in the generic case, Oq(GLn) and Oq(SLn) are noetherian

UFDs.

For this purpose, we will use the fact that there exists a k-algebra isomorphism between

the Laurent extension Oq(SLn)[z±1] of Oq(SLn) and Oq(GLn). This isomorphism appears

in [17] (see also [1, I.2.9]).

Proposition 6.1 If q ∈ k∗ is not a root of unity, Oq(SLn) is a noetherian UFD.

Proof. Recall that, since q is not a root of unity, every prime ideal of Oq(SLn) is completely

prime ([1, II.6.10]. Hence it remains to prove that all the height one primes of Oq(SLn)

are principal.

By Corollary 3.8, Oq(Mn) is a noetherian UFD, and it follows easily that the same

holds for Oq(GLn). Hence, by the isomorphism above, Oq(SLn)[z±1] is a noetherian UFD.

It remains to use Lemma 1.4 to conclude that Oq(SLn)[z] is a noetherian UFD. Hence, in

Oq(SLn)[z], height one primes are principal.

Let P be a height one prime of Oq(SLn) and put P [z] := ⊕i∈NPzi. Clearly, we have

an isomorphism of k-algebras Oq(SLn)[z]/P [z] ∼= (Oq(SLn)/P )[z]. Hence, P [z] is a (com-

pletely) prime ideal of Oq(SLn)[z]. In addition, recall from [1, II.9.18] that Oq(SLn) satis-

fies Tauvel’s height formula, so that GKdim((Oq(SLn)/P )) = n2 − 2. Now, by using [14,

Corollary 3.16], we get that the height of P [z] is bounded above by GKdim(Oq(SLn)[z])−
GKdim(Oq(SLn)[z]/P [z]) = n2 − (n2 − 2 + 1) = 1. Thus, P [z] is a height one prime ideal

of Oq(SLn)[z]. Hence there exists a normal element x in Oq(SLn)[z] such that P [z] = 〈x〉.
We now show that x is in fact a normal element of Oq(SLn) that generates P . Indeed,

let p ∈ P \ {0}. There exists a ∈ Oq(SLn)[z] such that p = ax. But Oq(SLn) being a

domain, by degree considerations, it follows that a, x ∈ Oq(SLn). So, we have proved that

x ∈ Oq(SLn) and p ∈ Oq(SLn)x. That is, P = Oq(SLn)x. A similar argument yields

P = xOq(SLn). This finishes the proof. �

Remark 6.2 Let G be a connected, complex, semisimple algebraic group. We denote by

Oq(G) the quantized coordinate ring of G (as defined in [1, I.7.5]). It is shown in [20]
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that, if G is simply connected, the ring of regular functions on G is a unique factorisation

domain. The result above then leads to ask whether the same holds for Oq(G) for q not a

root of unity.
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Faculté des Sciences et Techniques,
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France

E-mail: Laurent.Rigal@univ-st-etienne.fr

26


