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Abstract
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tained.
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0. Introduction

An m×n matrix M with entries from R is said to be totally nonnegative if each of its
minors is nonnegative. Further, such a matrix is totally positive if each of its minors is
strictly positive. (Warning: in some texts, the terms totally positive and strictly totally
positive are used for our terms totally nonnegative and totally positive, respectively.)

Totally nonnegative matrices arise in many areas of mathematics and there has been
considerable interest lately in the study of these matrices. For background information
and historical references, there is the newly published book by Pinkus, [17] and also two
good survey articles [2] and [7].

In this paper, we are interested in the LU decomposition theory of totally nonnega-
tive matrices. Cryer, [6, Theorem 1.1], has proved that any totally nonnegative matrix A
has a decomposition A = LU with L totally nonnegative lower triangular and U totally
nonnegative upper triangular. If, in addition, A is square and nonsingular then this de-
composition is essentially unique, see, for example, [17, pages 50-55], especially Theorem
2.10 and Proposition 2.11. However, in the singular case such decompositions need not
be unique, as is pointed out in [5, Page 91].

The aim in this paper is to refine the methods of Cryer, [5, 6], and Gasca and Peña,
[9], to produce an LU decomposition for which there is a uniqueness result.
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A short word concerning the genesis of this result may be interesting to readers. In
a series of recent papers, [10, 11, 13], a very close connection has emerged between the
theory of totally nonnegative matrices and the theory of the torus invariant prime ideals
of the algebra of quantum matrices. This opens up the possibility of using results and
methods from one of these areas to produce results in the other. The existence of the
results of this paper was suggested by the tensor product decomposition theorem for
torus invariant prime ideals in quantum matrices obtained in an earlier paper of the
present authors, [12, Theorem 3.5].

Conventions. If a matrix is denoted by a given capital Roman letter, its entries will
be denoted by the corresponding lower case letter, with subscripts. E.g., the entries of a
matrix named L will be denoted lij .

When writing sets of row or column indices, we assume that the indices have been
listed in strictly ascending order.

Recall the standard partial order on index sets of the same cardinality, say I :=
{i1, . . . , is} and I ′ := {i′1, . . . , i

′
s}, where i1 < i2 < · · · < is and i′1 < i′2 < · · · < i′s

according to our convention above. Then: I ≤ I ′ if and only if ik ≤ i′k for each k =
1, . . . , s.

If A is a matrix and I, J are subsets of row indices and column indices for A then
A(I, J) denotes the submatrix of A obtained by using the rows indexed by I and columns
indexed by J . If |I| = |J |, the minor determined by A(I, J), that is, Det(A(I, J)), is
denoted by [I|J ]A, or simply by [I|J ] if there is no danger of confusion. By convention,
[∅|∅]A := 1 for any matrix A.

1. LU decomposition with specified echelon forms

We begin by giving an LU decomposition for certain rectangular matrices, in which
the matrices L (respectively, U) have specified lower (respectively, upper) echelon forms.
The specification of the matrices for which this decomposition holds, and the decompo-
sition itself, hold over arbitrary fields, and we keep that generality for this section. In
Section 2, we shall prove that all totally nonnegative real matrices satisfy the required
hypotheses, and that for such matrices, the resulting factors L and U are also totally
nonnegative (see Theorem 2.10).

1.1. Echelon forms. We say that a matrix U = (uij) is in upper echelon form (or row

echelon form) if the following hold:

1. If the ith row of U is nonzero and uij is the leftmost nonzero entry in this row,
then ukl = 0 whenever both k > i and l ≤ j;

2. If the ith row of U is zero then all the rows below it are zero.

If, in addition to (1) and (2), there are no zero rows then we say that U is in strictly

upper echelon form.
Similar definitions are made for lower triangular matrices. Namely, a matrix L = (lij)

is in lower echelon form provided the transpose of L is in upper echelon form, that is:

1. If the jth column of L is nonzero and lij is the uppermost nonzero entry in this
column, then lkl = 0 whenever k ≤ i and l > j;

2. If the jth column of L is zero then all the columns to the right of it are zero.
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If, in addition to (1) and (2), there are no zero columns then we say that L is in strictly

lower echelon form.
In order to obtain the desired uniqueness results, we need to be more precise con-

cerning the echelon shapes of matrices as above. Let r := {r1, r2, . . . , rt} and c :=
{c1, c2, . . . , ct}, where 1 ≤ r1 < r2 < · · · < rt ≤ m and 1 ≤ c1 < · · · < ct ≤ n.

1. We say that an m × t matrix L = (lij) is in the class Lr provided that for all
j = 1, . . . , t, we have lrjj 6= 0 and lij = 0 for all i < rj . Further, L ∈ L∗

r
if also

lrjj = 1 for all j. Note that all the matrices in Lr are in strictly lower echelon
form.

2. Similarly, we say that a t× n matrix U = (uij) is in the class Uc provided that for
all i = 1, . . . , t, we have uici

6= 0 and uij = 0 for all j < ci. All such matrices are
in strictly upper echelon form.

1.2. Some classes of matrices

Let r := {r1, . . . , rt} and c := {c1, . . . , ct} be subsets of {1, . . . , m} and {1, . . . , n},
respectively. An m × n matrix A is said to be in the class Mr,c provided that

1. Rank(A) = t;

2. For each s with s ≤ t, the minor [r1, r2, . . . , rs|c1, c2, . . . , cs]A is nonzero;

3. [I|J ]A = 0 whenever |I| = |J | = s ≤ t and either I � {r1, . . . , rs} or J �
{c1, . . . , cs}.

Remark 1.3. It is easy to check that a matrix belongs to at most one class Mr,c.
However, in general, a matrix need not belong to any such class – consider, for example,

the matrix A :=

(
0 1
1 1

)
.

Suppose that L ∈ Lr where r := {r1, . . . , rt}. Note that

[r1, . . . , rs|1, . . . , s]L = lr11 · · · lrss 6= 0,

for each s ≤ t. In particular, [r1, . . . , rt|1, . . . , t]L 6= 0, so that Rank(L) = t.
Suppose that {i1, . . . , is} � {r1, . . . , rs}. Then ik < rk for some k. Thus, any

submatrix of the form L({i1, . . . , is}, J) is a lower triangular matrix with a zero in the
kth position on the diagonal; and so [i1, . . . , is|J ]L = 0. Since all s-element index sets
J ⊆ {1, . . . , t} satisfy J ≥ {1, . . . , s}, we thus see that L ∈ M

r,[1,t], where [1, t] :=
{1, . . . , t}.

Similarly, any U ∈ Uc belongs to M[1,t],c, where t = |c|.

Lemma 1.4. Suppose that L is an m × t matrix in the class Lr and that U is a t × n
matrix in the class Uc.

(i) Let s ≤ t and let I (respectively, J) be an s-element subset of {1, . . . , m} (respec-
tively, {1, . . . , t}). Then [r1, . . . , rs|J ]L 6= 0 if and only if J = {1, . . . , s}, and [I|J ]L = 0
if I � {r1, . . . , rs}.

(ii) Let s ≤ t and let I (respectively, J) be an s-element subset of {1, . . . , t} (respec-
tively, {1, . . . , n}). Then [I|c1, . . . , cs]U 6= 0 if and only if I = {1, . . . , s}, and [I|J ]U = 0
if J � {c1, . . . , cs}.

(iii) A := LU is an m × n matrix in the class Mr,c.
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Proof. (i) We already have [r1, . . . , rs|1, . . . , s]L 6= 0, and [I|J ]L = 0 for I � {r1, . . . , rs},
by Remark 1.3. If J = {j1, . . . , js} and J 6= {1, . . . , s}, then some jk > k, whence
rjk

> rk. In this case, L({r1, . . . , rs}, J) is a lower triangular matrix whose k, k entry is
zero, and so [r1, . . . , rs|J ]L = 0.

(ii) This is proved symmetrically.
(iii) First, Rank(A) ≤ t, as A is the product of an m × t matrix and a t × n matrix.

However, by the Cauchy-Binet identity (Lemma 4.3),

[r1, . . . , rt|c1, . . . , ct]A = [r1, . . . , rt|1, . . . , t]L[1, . . . , t|c1, . . . , ct]U 6= 0,

so Rank(A) = t.
For any s ≤ t, by the Cauchy-Binet identity together with (i),

[r1, . . . , rs|c1, . . . , cs]A =
∑

K

[r1, . . . , rs|K]L[K|c1, . . . , cs]U

= [r1, . . . , rs|1, . . . , s]L[1, . . . , s|c1, . . . , cs]U 6= 0.

Now, suppose that we have a row index set I � {r1, . . . , rs}. For any s-element
subset K of {1, . . . , t}, we have [I|K]L = 0 by (i), and therefore, for any s-element subset
J of {1, . . . , n}, Lemma 4.3 implies that [I|J ]A =

∑
K [I|K]L[K|J ]U = 0. Similarly,

[I|J ]A = 0 for any I, J with |I| = |J | = s ≤ t and J � {c1, . . . , cs}. Therefore
A ∈ Mr,c.

The following theorem gives an explicit LU decomposition for matrices in the classes
Mr,c. Uniqueness of these decompositions will be proved once existence has been estab-
lished.

Theorem 1.5. Let A be an m × n matrix which belongs to the class Mr,c where r :=
{r1, . . . , rt} and c := {c1, . . . , ct}.

Set L := (lij) and U := (uij) to be the m × t and t × n matrices, respectively, with

entries as follows: lij := 0 for i < rj and

lij := [r1, r2, . . . , rj−1, i|c1, c2, . . . , cj]A[r1, r2, . . . , rj |c1, c2, . . . , cj ]
−1
A

for i ≥ rj , while uij := 0 for j < ci and

uij := [r1, r2, . . . , ri|c1, c2, . . . , ci−1, j]A[r1, r2, . . . , ri−1|c1, c2, . . . , ci−1]
−1
A

for j ≥ ci.

Then L belongs to the class L∗
r
, while U belongs to the class Uc, and A = LU .

Proof. It is obvious from the definitions that L ∈ L∗
r

and U ∈ Uc; so we need to prove
that A = LU . The proof is by induction on min{m, n} with the cases where m = 1 or
n = 1 being trivial. In this proof, any minor [I|J ] without a subscript is a minor of A;
that is, [I|J ] = [I|J ]A. Minors of other matrices are given subscripts.

Assume that m, n ≥ 2, and suppose first that a11 = 0. Then either r1 > 1 or c1 > 1.
It follows that either the first row or first column of A is zero, because A ∈ Mr,c. Suppose

that the first row of A is zero, in which case r1 > 1. Let Ã be the (m − 1) × n matrix

obtained from A by deleting the first row. Then Ã ∈ Mr
′,c where r

′ := {r1−1, . . . , rt−1}.
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By using the inductive hypothesis, there are matrices L̃, Ũ , with entries as specified
above, such that Ã = L̃Ũ . Note that Ũ = U .

Now,

A =




0 · · · 0

Ã


 =




0 · · · 0

L̃


 Ũ

and it is easy to check that




0 · · · 0

L̃


 = L.

The case where the first column of A is zero is dealt with in a similar way.
Next, assume that a11 6= 0 and note that r1 = c1 = 1 in this case. Then, by

elementary row operations using a11 as the pivot, we see that A = L̃Ã, where

L̃ =




1 0 · · · 0

a21a
−1
11

... I
am1a

−1
11


 , Ã =




a11 a12 · · · a1n

0
... D
0


 ,

and D = (dij) is the (m − 1) × (n − 1) matrix with entries

dij := ai+1,j+1 − ai+1,1a
−1
11 a1,j+1 = [1, i + 1|1, j + 1][1|1]−1 .

Also, set B :=
(
[1, i + 1|1, j + 1]

)
, so that D = [1|1]−1B.

Let {i1, . . . , is} and {j1, . . . , js} be subsets of {1, . . . , t − 1}. Then

[i1, . . . , is|j1, . . . , js]B = [1, i1 + 1, . . . , is + 1|1, j1 + 1, . . . , js + 1][1|1]s−1 ,

by Sylvester’s identity (Lemma 4.5). It follows that

[i1, . . . , is|j1, . . . , js]D = [i1, . . . , is|j1, . . . , js]B [1|1]−s

= [1, i1 + 1, . . . , is + 1|1, j1 + 1, . . . , js + 1][1|1]−1 .
(*)

From this, it follows that D belongs to the class Mr
′,c′ where r

′ := {r2 − 1, . . . , rt − 1}
and c

′ := {c2 − 1, . . . , ct − 1}.

By induction, there are (m− 1)× (t− 1) and (t− 1)× (n− 1) matrices
≈

L = (
≈

l ij) and
≈

U = (
≈
uij) such that D =

≈

L
≈

U , with
≈

l ij = 0 = li+1,j+1 for i < rj+1 − 1 and

≈

l ij = [r2−1, . . . , rj−1, i|c2−1, . . . , cj+1−1]D[r2−1, . . . , rj+1−1|c2−1, . . . , cj+1−1]−1
D

= [1, r2, . . . , rj , i+1|1, c2, . . . , cj+1][1|1]−1[1, r2, . . . , rj+1|1, c2, . . . , cj+1]
−1[1|1]

= li+1,j+1

for i ≥ rj+1 − 1; while
≈
uij = 0 = ui+1,j+1 for j < ci+1 − 1 and

≈
uij = [r2−1, . . . , ri+1−1|c2−1, . . . , ci−1, j]D[r2−1, . . . , ri−1|c2−1, . . . , ci−1]−1

D

= [1, r2, . . . , ri+1|1, c2, . . . , ci, j+1][1|1]−1[1, r2, . . . , ri|1, c2, . . . , ci]
−1[1|1]

= ui+1,j+1
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for j ≥ ci+1 − 1, by using (∗) above.
Now, observe that

A = L̃Ã =




1 0 · · · 0

a21a
−1
11

... I
am1a

−1
11







1 0 · · · 0
0
...

≈

L
0







a11 a12 · · · a1n

0
...

≈

U
0


 .

From our calculations of the entries of
≈

L and
≈

U above, we see that

L =




1 0 · · · 0

a21a
−1
11

...
≈

L
am1a

−1
11


 and U =




a11 a12 · · · a1n

0
...

≈

U
0


 ,

and therefore A = LU . This completes the inductive step.

Theorem 1.6. Suppose that A is in the class Mr,c where r := {r1, r2, . . . , rt} and

c := {c1, c2, . . . , ct}. There are unique matrices L ∈ L∗
r

and U ∈ Uc such that A = LU ,

namely those given in Theorem 1.5.

Proof. We show that if A = (aij) is in the class Mr,c and A = LU with L = (lij) ∈ L∗
r

and U = (uij) ∈ Uc, then the entries of L and U can be uniquely specified from this
information. The result then follows.

Note that the equations

ar1j = (LU)r1j =

t∑

k=1

lr1kukj = lr11u1j = u1j

specify the first row of U . Similarly,

aic1
= (LU)ic1

=
t∑

k=1

likukc1
= li1u1c1

for all i, which specifies the first column of L, as u1c1
6= 0.

Assume as an inductive hypothesis that the first s rows of U and the first s columns
of L have been specified. Then

ars+1j = (LU)rs+1j =

t∑

k=1

lrs+1kukj =

s∑

k=1

lrs+1kukj + lrs+1s+1us+1,j

=

s∑

k=1

lrs+1kukj + us+1,j

for all j, which specifies the (s + 1)-st row of U because the terms in the last summation
are already known by induction.
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Finally,

aics+1
= (LU)ics+1

=
t∑

k=1

likuk,cs+1
=

s∑

k=1

likuk,cs+1
+ li,s+1us+1,cs+1

for all i, which specifies the (s + 1)-st column of L because the terms in the summation
on the right are already known by induction and us+1,cs+1

6= 0.
This finishes the inductive step and so the result is proved.

2. Modified Neville elimination

We now restrict attention to real matrices and focus on total nonnegativity. Our
aim is to show that any m × n totally nonnegative matrix A lies in one of the classes
Mr,c, and that the matrices L and U in the decomposition A = LU of Theorem 1.5
are totally nonnegative. While it is possible to prove directly that these matrices are
totally nonnegative, it is technically much less complicated to obtain that result via a
modification of the Neville elimination process of Gasca and Peña, [9].

The following is an elementary, but crucial, fact about totally nonnegative matrices.

Lemma 2.1. Suppose that A = (aij) is a totally nonnegative m × n matrix, and that

i < k ≤ m and j < l ≤ n. If aij = 0 then either ail = 0 or akj = 0. As a consequence,

if some entry in the jth column, but below the ij entry, is nonzero then all elements in

the ith row, but to the right of the ij entry, are also zero.

Proof. Note that 0 ≤ [ik|jl] = aijakl −ailakj = −ailakj ; so that ailakj ≤ 0. As ail, akj ≥
0 this gives the desired conclusion.

First, we give an informal description of the elimination process that we will use.
We start with a totally nonnegative matrix. The aim is to use a version of the Neville
elimination procedure to produce a final matrix in echelon form with no zero rows. If a
zero row appears at any stage in the process then we delete it (rather than moving it to
the bottom as in ordinary Neville elimination). Otherwise, we proceed as with Neville
elimination: if we are clearing the lower entries in a given column and want to perform a
row operation to replace the last nonzero entry in a column by zero, then we perform a
row operation by subtracting a suitable multiple of the row immediately above this last
position. Note that the entry immediately above this last position will be nonzero: this
is guaranteed by the above lemma. In the end we produce an upper triangular matrix U
in echelon form which contains no zero rows. Keeping track of the operations performed
produces a lower triangular matrix L such that A = LU . We also show that each of L
and U is totally nonnegative.

2.2. Invariants of the elimination algorithm

The modified Neville algorithm starts with L := I and U := A, a totally nonnegative
matrix, and uses two moves: (i) either delete a row of zeros of U and the corresponding
column in L, or (ii) perform a Neville elimination move.

The first aim is to show that at all times during the modified Neville algorithm we
retain the totally nonnegative condition for L and U and the fact that A = LU . There

7



are two moves to consider. The first deletes a row of U and the corresponding column
of L. Note that if we delete a row or column from a totally nonnegative matrix then the
new matrix is also totally nonnegative.

Lemma 2.3. Let B be an m × p matrix and let C be a p × n matrix. Suppose that row

i of C is zero. Set B′ to be the m × (p − 1) matrix obtained by deleting the ith column

of B and set C′ to be the (p− 1)× n matrix obtained by deleting the ith row of C. Then

B′C′ = BC.

Proof. Obvious.

Lemma 2.4. (i) Suppose that r := {r1, r2, . . . , rt} and that L ∈ Lr. Let L′ be the matrix

obtained by deleting column i from L. Then L′ ∈ Lr
′ where

r
′ := {r1, r2, . . . , ri−1, ri+1, . . . , rt}.

(ii) Suppose that c := {c1, c2, . . . , ct} and that U ∈ Uc. Let U ′ be the matrix obtained

by deleting row i from U . Then U ′ ∈ Uc
′ where c

′ := {c1, c2, . . . , ci−1, ci+1, . . . , ct}.

Proof. Obvious.

The next results consider the effect of performing a Neville elimination move; that
is, the row operation of subtracting a suitable multiple of row s from row s + 1 on the
minors of a matrix of the form




⋆ · · · ⋆ ⋆ · · · · · · ⋆
...

...
...

...
⋆ · · · ⋆ ⋆ · · · · · · ⋆
0 · · · 0 ast as,t+1 · · · asn

0 · · · 0 as+1,t as+1,t+1 · · · as+1,n

0 · · · 0 0 ⋆ · · · ⋆
...

...
...

...
0 · · · 0 0 ⋆ · · · ⋆




when ast and as+1,t are nonzero, in order to clear the entry in position (s + 1, t). Note
that the resulting matrix has the form




⋆ · · · ⋆ ⋆ · · · · · · ⋆
...

...
...

...
⋆ · · · ⋆ ⋆ · · · · · · ⋆
0 · · · 0 ast as,t+1 · · · asn

0 · · · 0 0 bs+1,t+1 · · · bs+1,n

0 · · · 0 0 ⋆ · · · ⋆
...

...
...

...
0 · · · 0 0 ⋆ · · · ⋆



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Lemma 2.5. Suppose that A = (aij) with ast 6= 0 and aij = 0 whenever i ≥ s and j < t.
Suppose that as+1,t 6= 0 while as+w,t = 0 for all w > 1. Set B = (bij) where bij = aij

for i 6= s + 1 while bs+1,j = as+1,j − as+1,ta
−1
st asj for all j. In particular, bs+1,j = 0 for

j ≤ t while bs+1,j = [s, s + 1|tj]Aa−1
st for j > t.

Then

[I|J ]B =

{
[I|J ]A when s ∈ I or s + 1 6∈ I

[I|J ]A − as+1,ta
−1
st [I\{s + 1} ⊔ {s}|J ]A when s 6∈ I and s + 1 ∈ I .

Proof. Obvious from the definition of B.

We refer to the change from A to B described in this lemma as a Neville elimination

move. The next result shows that the totally nonnegative condition is preserved under
a Neville elimination move. This result may be well-known, but we have been unable to
find a clear statement in the literature.

Proposition 2.6. In the above setting, if A is totally nonnegative then so is B.

Proof. It follows from the fact that A is totally nonnegative and the definition of B that
each bij ≥ 0. Also, for any size minor, [I|J ]B = [I|J ]A ≥ 0 whenever s ∈ I or s + 1 /∈ I.

Suppose that l ≥ 2 and that all minors of B of size less than l× l are ≥ 0. Let [I|J ]B
be an l × l minor. By the above remarks, we may assume that s 6∈ I and that s + 1 ∈ I.
Consider the following cases:

1. s + 1 is the least entry in I;

2. s + 1 ∈ I, and there exists i ∈ I with i < s.

In case (1), consider first the case where there is a j ∈ J with j ≤ t. Then the jth
column of B(I, J) is zero; so [I|J ]B = 0. Otherwise, note that

ast[I|J ]B = [I ⊔ {s}|J ⊔ {t}]B = [I ⊔ {s}|J ⊔ {t}]A ≥ 0.

As ast > 0 it follows that [I|J ]B ≥ 0.
Next, consider case (2). If [I\{s + 1} ⊔ {s}|J ]A = 0 then [I|J ]B = [I|J ]A ≥ 0, by the

previous lemma; so we may assume that

[I\{s + 1} ⊔ {s}|J ]B = [I\{s + 1} ⊔ {s}|J ]A 6= 0.

Suppose that [I\{i, s + 1} ⊔ {s}|Y ]B = 0 for all subsets Y of J with |Y | = l − 1. Then
[I\{s+1}⊔{s}|J ]B = 0, by Lemma 4.2. Thus, we may assume that there exists a subset
Y of J with |Y | = l − 1 and [I\{i, s + 1} ⊔ {s}|Y ]B > 0. Suppose that J = Y ⊔ {k}.
Choose j ∈ Y .

Apply the Laplace relation of Lemma 4.1(a) with J1 = {j} and J2 = {j, k} while
I = {i, s, s + 1} to obtain

[i|j]B[s, s + 1|jk]B − [s|j]B[i, s + 1|jk]B + [s + 1|j]B[is|jk]B = 0.

It follows that

[s|j]B[i, s + 1|jk]B = [i|j]B[s, s + 1|jk]B + [s + 1|j]B[is|jk]B .
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By using Muir’s law of extensible minors (Lemma 4.4), we may introduce the l − 2
row indices from I\{i, s + 1} and the l − 2 column indices from Y \{j} to obtain

[I\{i, s + 1} ⊔ {s}|Y ]B[I|J ]B =

[I\{s + 1}|Y ]B[I\{i} ⊔ {s}|J ]B + [I\{i}|Y ]B[I\{s + 1} ⊔ {s}|J ]B .

Now, [I\{i, s + 1} ⊔ {s}|Y ]B > 0, by assumption, and each of the four minors on the
right side of this equation is ≥ 0 (the two of size l − 1 by the inductive hypothesis and
the two of size l because s is in the row set of the minor). It follows that [I|J ]B ≥ 0, as
required

Remark 2.7. Let E(s + 1, s) be the matrix with 1 in the (s + 1, s) position and zero
elsewhere. Note that, with the above notation,

B = (I − as+1,ta
−1
st E(s + 1, s))A and A = (I + as+1,ta

−1
st E(s + 1, s))B.

Note also that I + as+1,ta
−1
st E(s + 1, s) is totally nonnegative.

2.8. The Modified Neville Algorithm

Let A be an m × n totally nonnegative matrix of rank t. The following algorithm
outputs an LU decomposition of A, which, as we shall see, coincides with the one given
in Theorem 1.5.

Input Set L := I, the identity m × m matrix, and U := A. Note that A = LU .

Algorithm

Step 1 If U is in strictly upper echelon form then stop and output L and U . Otherwise,
if there is a row of U consisting entirely of zeros, go to Step 2 and if not, then go to Step 3.

Step 2 Suppose that L is of size m× w and U of size w × n, and that some row of U is
zero. Choose i as large as possible so that the ith row of U is zero. Delete row i from
U and column i from L to obtain new matrices L of size m × (w − 1) and U of size
(w − 1)× n. Note that we still have A = LU , by Lemma 2.3, and that L and U are still
totally nonnegative. Go to Step 1.

Step 3 Suppose that all rows of U are nonzero, but U is not in upper echelon form. By
Lemma 2.1, the leftmost nonzero column of U must have a nonzero entry in its uppermost
position. Set U = (uij).

If the first column of U has two or more nonzero entries then set t = 1. Otherwise,
set t > 1 so that the submatrix of U consisting of the first t − 1 columns is in upper
echelon form, but that consisting of the first t columns is not. Then, in view of Lemma
2.1, there is a largest integer s such that ust, us+1,t 6= 0; moreover, uij = 0 for i ≥ s and
j < t. Perform a Neville elimination move on U as in Lemma 2.5; that is, replace U by
(I −us+1,tu

−1
st E(s+1, s))U ; so that in the new U we have us+1,t = 0. At the same time,

replace L by L(I + us+1,tu
−1
st E(s + 1, s)). Note that we still have A = LU , and that U is

totally nonnegative by Proposition 2.6, while L is the product of two totally nonnegative
matrices and so is still totally nonnegative.

Go to Step 1.
10



Theorem 2.9. The above algorithm outputs an m×t totally nonnegative matrix L ∈ L∗
r
,

for some r = {r1, r2, . . . , rt}, and a t × n totally nonnegative matrix U ∈ Uc , for some

c = {c1, c2, . . . , ct}, such that A = LU .

Proof. The algorithm outputs totally nonnegative matrices L and U , in strictly lower and
upper echelon forms, respectively, such that A = LU . Also, note that the leading entry
in each column of L is 1. Suppose that L ∈ L∗

r
and U ∈ Uc with r = {r1, r2, . . . , rw}

and c = {c1, c2, . . . , cw}, As L is an m × w matrix and U is a w × n matrix, we have
t = Rank(A) ≤ w. Moreover,

[r1, r2, . . . , rw|c1, c2, . . . , cw]A = [r1, r2, . . . , rw|1, . . . , w]L[1, . . . , w|c1, c2, . . . , cw]U 6= 0,

by using the Cauchy-Binet identity; so t ≥ w. Hence, w = t, as required.

The above theorem, combined with the results of Section 1, yields the main result of
the paper:

Theorem 2.10. Let A be an m × n totally nonnegative matrix. Then there is a unique

pair r, c such that A ∈ Mr,c. Further, there is then a unique pair L ∈ L∗
r
, U ∈ Uc such

that A = LU . The matrices L and U are totally nonnegative. They are given explicitly

in Theorem 1.5.

Proof. By Theorem 2.9, there exist r, c and totally nonnegative matrices L ∈ L∗
r
, U ∈ Uc

such that A = LU , and A ∈ Mr,c by Lemma 1.4. As noted in Remark 1.3, r and c

are uniquely determined by A. The uniqueness of L and U then follows from Theorem
1.6.

Theorem 1.5 and the total nonnegativity of the factors L and U are known for the
case where A is a totally nonnegative nonsingular square matrix; see, for example, [17,
Theorem 2.10 and Proposition 2.11]. However, we have not been able to locate a prior
source for the result just proved. LU decompositions of non-square totally nonnegative
matrices have also been obtained in [15, Theorem 3.1].

3. Examples

Example 3.1. We first illustrate the modified Neville algorithm at work on the example
considered by Cryer, [5, Page 91]. The matrix in question is

A :=




0 0 0
1 0 1
1 0 1




Cryer exhibits two distinct LU factorisations of A into totally nonnegative factors:

A =




0 0 0
1 0 1
1 0 1


 =




0 0 0
1 0 0
1 0 0







1 0 1
0 0 0
0 0 0


 =




0 0 0
1 1 0
1 1 0







1 0 0
0 0 1
0 0 1




It is easy to check that A is totally nonnegative of rank one, and that A belongs to
the class M{2},{1}. We start the algorithm with the pair {I, A}:
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A = IA =




1 0 0
0 1 0
0 0 1







0 0 0
1 0 1
1 0 1


 =




0 0
1 0
0 1




(
1 0 1
1 0 1

)

=




0 0
1 0
1 1




(

1 0 1
0 0 0

)
=




0
1
1



(
1 0 1

)

and one can easily check that

A =




0
1
1


 (

1 0 1
)

is (essentially) the unique decomposition of A as a product of a 3× 1 matrix and a 1× 3
matrix.

Example 3.2. A more complicated example. The algorithm reveals the class of A.

A = IA =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







0 1 2 1
0 2 4 2
0 1 2 3
0 3 6 11


 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 3 1







0 1 2 1
0 2 4 2
0 1 2 3
0 0 0 2




=




1 0 0 0
0 1 0 0
0 1/2 1 0
0 3/2 3 1







0 1 2 1
0 2 4 2
0 0 0 2
0 0 0 2


 =




1 0 0 0
2 1 0 0
1 1/2 1 0
3 3/2 3 1







0 1 2 1
0 0 0 0
0 0 0 2
0 0 0 2




=




1 0 0
2 0 0
1 1 0
3 3 1







0 1 2 1
0 0 0 2
0 0 0 2



 =




1 0 0
2 0 0
1 1 0
3 4 1







0 1 2 1
0 0 0 2
0 0 0 0





=




1 0
2 0
1 1
3 4




(
0 1 2 1
0 0 0 2

)
.

It follows that A is in M{1,3},{2,4}.

4. Appendix: Matrix identities, etc.

For any index sets I and J , set ℓ(I, J) := |{(i, j) ∈ I × J | i > j}|.

Lemma 4.1. (Laplace relations; see, for example, [14, p14], [18, eqn. (3.3.4), p26]) Let

A be an m × n matrix, I ⊆ {1, . . . , m}, and J ⊆ {1, . . . , n}.
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(a) If J1, J2 ⊆ {1, . . . , n} with |J1| + |J2| = |I|, then

∑

I1⊔I2=I
|Iν |=|Jν |

(−1)ℓ(I1;I2)[I1|J1]A[I2|J2]A =

{
(−1)ℓ(J1;J2)[I|J1 ⊔ J2]A (J1 ∩ J2 = ∅)

0 (J1 ∩ J2 6= ∅).

(b) If I1, I2 ⊆ {1, . . . , n} with |I1| + |I2| = |J |, then

∑

J1⊔J2=J
|Jν |=|Iν |

(−1)ℓ(J1;J2)[I1|J1]A[I2|J2]A =

{
(−1)ℓ(I1;I2)[I1 ⊔ I2|J ]A (I1 ∩ I2 = ∅)

0 (I1 ∩ I2 6= ∅).

Lemma 4.2. Let A be an m × n matrix, I ⊆ {1, . . . , m}, and J ⊆ {1, . . . , n}, with

|I| = |J |.

(a) Fix J1 ⊆ J . If [I1|J1]A = 0 for all I1 ⊆ I with |I1| = |J1|, then [I|J ]A = 0.
(b) Fix I1 ⊆ I. If [I1|J1]A = 0 for all J1 ⊆ J with |J1| = |I1|, then [I|J ]A = 0.

Proof. By symmetry, we need only prove (a). Set J2 = J\J1. There is a Laplace relation
of the form

[I|J ]A =
∑

I1⊔I2=I

±[I1|J1]A[I2|J2]A .

As all [I1|J1]A = 0, by assumption, it follows that [I|J ]A = 0.

Lemma 4.3. (Cauchy-Binet Identity; see, for example, [1, eqn. (6), p86], [14, p14]) Let

A be an m × t matrix and B a t × n matrix, and let I ⊆ {1, . . . , m} and J ⊆ {1, . . . , n}
be k-element sets with k ≤ t. Then

[I|J ]AB =
∑

K

[I|K]A[K|J ]B

where K ranges over all k-element subsets of {1, . . . , t}.

Lemma 4.4. (Muir’s Law of Extensible Minors; see, for example, [16, p179, §187], [4,
p205]) Let F be a field and suppose that

d∑

s=1

cs[Is|Js][Ks|Ls] = 0

is a homogeneous determinantal identity for matrices over F . Suppose that P is a set

of row indices disjoint from each of the sets Is and Q is a set of column indices disjoint

from each of the sets Js, with |P | = |Q|. Then

d∑

s=1

cs[Is ⊔ P |Js ⊔ Q][Ks ⊔ P |Ls ⊔ Q] = 0

is also a determinantal identity for matrices over F .

Lemma 4.5. (Sylvester’s Identity; see, for example, [8, p32], [3, eqn. (8), p772]) Let

A = (aij) be an n × n matrix and let m < n. Set B = (bij) to be the (n − m) × (n − m)
matrix where bij := [1, . . . , m, m + i|1, . . . , m, m + j]. Then,

det(B) = [1, . . . , n|1, . . . , n]A[1, . . . , m|1, . . . , m]n−m−1
A .
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