
A convergence analysis

for preconditioned

gradient type eigensolvers

Bachelorarbeit

Mathematisch-Naturwissenschaftliche Fakultät

Institut für Mathematik

Name: Torben Sell
Matrikelnummer: 213206395
Betreuer und Gutachter: Prof. Dr. Klaus Neymeyr
Gutachter: Dr. Ming Zhou
Abgabedatum: 16.8.2016

Abstract

Symmetric eigenvalue problems can be found in a number of applications. The probably
most famous example is the discretization of the 2D Laplace-operator or other partial
differential operators. If a closed-meshed grid is used for the discretization, the resulting
discretization matrix could be very large - making it impossible to use traditional solving
algorithms. As these matrices are usually symmetric, positive definite and sparse, a
method using these properties is needed. The use of iterative eigensolvers is self-evident,
an implementation that considers the properties of the discretization matrix is presented
at the end of this thesis. The main part of this thesis is a convergence analysis for one
of the simplest iterative eigensolvers, the preconditioned inverse iteration. The concept
of the method is discussed, and so are its improvements.

Contents

1 On the calculation of eigenvalues for large and sparse matrices 1
1.1 Eigenvalue problems - basic ideas . 1
1.2 Origin of matrices - discretization of the two-dimensional Laplace-operator 4
1.3 Special features . 8

2 Preconditioned gradient methods for the Rayleigh quotient 9
2.1 The Rayleigh quotient . 9
2.2 Minimizing the Rayleigh quotient using gradient methods 11
2.3 Modification and acceleration of a gradient method 12

2.3.1 PINVIT2 and PINVIT3 . 12
2.3.2 Preconditioners . 14
2.3.3 The Rayleigh-Ritz method . 14

3 Convergence Analysis 15
3.1 Simplifying the problem . 15
3.2 Special case: γ = 0 and T = I . 17
3.3 The convergence analysis for the preconditioned gradient method: 0 <

γ < 1 . 21
3.4 Amendments to the Convergence Rate Bound 24

4 Computational experiments 33
4.1 Large, sparse matrices . 33
4.2 Preconditioning . 33
4.3 Calculating the bound γ . 33
4.4 Testing the theory . 34

5 The LOBPCG method 36

6 Conclusion and outlook 37

7 Matlab code 38
7.0.1 Implementations of different preconditoned iterative eigensolvers . 45
7.0.2 Implementations of the Rayleigh-Ritz method for different sub-

spaces . 48
7.0.3 LOBPCG implementations . 50

Bibliography 53

I

Contents

Declaration of Authorship 54

II

1 On the calculation of eigenvalues for
large and sparse matrices

1.1 Eigenvalue problems - basic ideas

To calculate eigenvalues and eigenvectors is of central importance in both theoretical
and applied mathematics. This section is intended to give an overview on important
definitions concerning eigenvalue problems and to introduce a few ideas on how to work
with eigenvalues.
We define:

Definition 1.1. Let A ∈ Cn×n be a matrix and λ ∈ C. λ is called eigenvalue if there
exists a x ∈ Cn \ {0} such that Ax = λx.
In this case we call x an eigenvector and (λ, x) an eigenpair.

We notice that an eigenpair represents a vector that is (apart from scaling) invariant
under a linear transformation. The eigenvalue is the constant scaling the corresponding
eigenvector. Eigenvectors are not unique: If we know an eigenvector x corresponding to
the eigenvalue λ, any vector αx with α 6= 0 is an eigenvector for the same eigenvalue:
A(αx) = α(Ax) = α(λx) = λ(αx). This allows us to normalize every eigenvector: We
speak of normalized eigenvectors when ‖x‖ = 1 with ‖.‖ being the euclidean distance,
as always in this thesis when not stated otherwise.

Definition 1.2. A matrix A ∈ Rn×n is called symmetric if A = AT . A Matrix
B ∈ Cn×n is called Hermitian if B = BT =: B∗.

The reader should note that every symmetric matrix is obviously Hermitian.

Definition 1.3.
A symmetric matrix A ∈ Rn×n is called positive definite if ∀x ∈ Rn\{0} : xTAx > 0.
More generally, a Matrix B ∈ Cn×n is called positive definite if ∀x ∈ Cn \ {0} :
xTAx > 0.

Theorem 1.4. Every Hermitian matrix B ∈ Cn×n has only real eigenvalues. We
can find a set of n orthogonal eigenvectors corresponding to the eigenvalues of B.

Proof. Consider the euclidean inner product (x, y) and its properties. If λ is an eigenvalue

1

1 On the calculation of eigenvalues for large and sparse matrices

of B and x a corresponding eigenvector, we can deduce

λ(x, x) = (λx, x)
= (Bx, x)
= (x,B∗x)
= (x,Bx)
= (x, λx)
= λ(x, x).

As (x, x) 6= 0, we can devide by (x, x) and obtain λ = λ. Thus, λ is real.
Let us now consider two eigenvectors x and y corresponding to distinct eigenvalues λ
and µ. Then

λ(x, y) = (λx, y)
= (Bx, y)
= (x,B∗y)
= (x,By)
= (x, µy)
= µ(x, y).

Therefore, (λ− µ)(x, y) = 0. The eigenvalues are distinct, so (x, y) = 0, which means x
and y are orthogonal. Each eigenvalue λ of geometric multiplicity kλ has an eigenspace
of dimension kλ. This eigenspace has an orthonormal basis Uλ, we can choose such bases
as sets of eigenvectors. The union of all these sets

U =
⋃
λ

Uλ

is the orthogonal set we were looking for.

The proof uses arguments and definitions not described in detail in this thesis, a complete
proof using the spectral theorem can be found in [4].
Corollary 1.5.

(a) Every symmetric matrix A ∈ Rn×n has only real eigenvalues. We can find a set of
n orthogonal eigenvectors corresponding to the eigenvalues of A.

(b) Every Hermitian matrix can be orthogonally diagonalized.
(c) Every symmetric matrix can be orthogonally diagonalized.

Proof. (a) is clear, for (b) and (c) consider V = (v1, v2, ..., vn), where vi are the orthogonal
eigenvectors.Then AV = V D with a certain diagonal matrixD so that V ∗AV and V TAV
are diagonal matrices.

2

1 On the calculation of eigenvalues for large and sparse matrices

Theorem 1.6. For a symmetric matrix A
(a) A is positive definite and
(b) ∀λ ∈ R : λ > 0 if λ is an eigenvalue of A

are equivalent.

Proof. We should first notice that according to theorem 1.4 all eigenvalues of A are real.
"(b) =⇒ (a)": Let A be symmetric and all eigenvalues λj > 0. Thus, we have n
orthogonal (and therefore linearly independent) eigenvectors, allowing us to write any
x ∈ Rn as

x =
n∑
k=1

αkxk.

If x 6= 0, at least one α 6= 0. Therefore

xTAx =
n∑
i=1

n∑
j=1

αiαjx
T
i Axj =

n∑
i=1

n∑
j=1

αiαjx
T
i λjxj =

n∑
i=1

n∑
j=1

αiαjλjx
T
i xj =

n∑
j=1

α2
jλjx

T
j xj,

the last equality is due to the orthogonality of the eigenvectors. Each term is non-
negative: α2

jλj‖xj‖2 ≥ 0. As at least one αj 6= 0, one term is greater than 0. Therefore
xTAx > 0.
"(a) =⇒ (b)": Let A be symmetric and positive definite. Assuming ∃k : λk ≤ 0. We
consider the corresponding eigenvector xk: xTkAxk = xTk λkxk = λk‖xk‖2 ≤ 0. Therfore,
A can’t be positive definite, a contradiction.

Example 1.7. The matrix A =
(

3 1
1 3

)
is symmetric and positive definite.

Proof. A is obviously symmetric and has the eigenvalues λ1 = 4 and λ2 = 2 with the
corresponding eigenvectors x1 = (1, 1)T and x2 = (−1, 1)T . By theorem 1.6 A is positive
definite.

The above mentioned eigenvalue problem can be generalized.

Definition 1.8. For matrices A,B ∈ Cn×n an eigenpair (λ, x) is defined as a scalar
λ ∈ C and a vector x ∈ Cn \ {0} obeying

Ax = λBx. (1.1)

The search for such an eigenpair is called the generalized eigenvalue problem. The
pair (A,B) is called a matrix pencil or just pencil.

It is obvious, that the generalized eigenvalue problem becomes a standard eigenvalue
problem when choosing B = I, where I ∈ Cn×n is the identity matrix.
We want to note some properties of the generalized eigenvalue problem: If B is invert-
ible with the inverse matrix B−1, we can multiply 1.1 by B−1 from the left and obtain

3

1 On the calculation of eigenvalues for large and sparse matrices

a standard eigenvalue problem B−1Ax = λx. When A and B are symmetric, B−1 is
symmetric, too, however, B−1A does not have to be symmetric. As it is often too com-
plicated to calculate the inverse matrix B−1, as one often wants to retain the symmetry,
there are algorithms designed to solve the generalized eigenvalue problem. These algo-
rithms are introduced in [11][Chapter 15] and we will discuss one of them later in this
thesis. When A and B are both symmetric and positive definite, there is an important
theorem concerning the eigenvalues and eigenvectors. A (more general) version can be
found in [11][Chapter 15].

Theorem 1.9. If A ∈ Rn×n and B ∈ Rn×n are symmetric and positive definite, there
are n eigenvalues λ1, ..., λn in the interval [−‖B−1A‖, ‖B−1A‖]. To match them,
there are n linearly independent eigenvectors v1, ..., vn. For different eigenvalues,
the corresponding eigenvectors are B-orthogonal, i.e., (vi, vj)B = 0 if λi 6= λj. If
λi = λj, then vi, vj may be chosen B-orthogonal.

It is sometimes useful to consider the inverted form µAx = Bx with µ = 1
λ
, where the

smallest eigenvalue λ in the original problem corresponds to the largest eigenvalue µ
of the inverted problem. We will use the inverted form to analyse the convergence in
section 3.
Even though we will later focus on symmetric and positive definite matrices A and B
only, there are very interesting things that can occur with the generalized eigenvalue
problem. With not symmetric and positive definite matrices, one might - for example
- have infinitely many eigenvalues, one may have less than n eigenvalues. All possible
cases and examples can be found at full length in [11].

1.2 Origin of matrices - discretization of the
two-dimensional Laplace-operator

We will now look at the origin of a large, sparse, symmetric and positive definite matrix.
As an example we present how to discretize the two-dimensional Laplace-operator on
Ω =]0, 1[2.

Definition 1.10. Let Ω ⊂ Rn be a domain. For u : Ω→ R we call

∆u(x) =
n∑
k=1

∂2u

∂x2
i

(1.2)

the Laplace operator.

In some applications it is interesting to find the eigenvalues and eigenfunctions of the
Laplace operator. 1

1When building a skyscraper, one wants to ensure that an earthquake is not able to make the skyscraper
uncontrollably oscillate. That can happen when the skyscraper has the same eigenfunctions as the

4

1 On the calculation of eigenvalues for large and sparse matrices

Example 1.11. We want to solve the PDE

−∆u = λu ∀(x, y) ∈]0, 1[2 (1.3)
u(x, 0) = u(x, 1) = u(0, y) = u(1, y) = 0 ∀x, y ∈ [0, 1], (1.4)

using numerical methods. The problem is known as the eigenvalue problem for the
Laplace operator.

We need discrete derivatives to solve the problem. For a function f : R→ R and a small
h > 0 we can discretize the first derivative f ′(xj) in one direction by one of the three
following approximations:

1.: f ′(xj) ≈ D+xj := f(xj+1)− f(xj)
h

2.: f ′(xj) ≈ D−xj := f(xj)− f(xj+1)
h

3.: f ′(xj) ≈ D0xj := f(xj+1)− f(xj−1)
2h .

We can then use the first two options to obtain an approximation for the second deriva-
tive:

f ′′(xj) ≈ D+D−xj := f(xj+1)− 2f(xj) + f(xj−1)
h2 .

Figure 1.1: A grid on [0, 1]2 with n = 19, thus n2 = 192 inner points

For a finite number of points (x, y) ∈]0, 1[2 we want to approximate the Laplace operator.
In order to do so, we firstly lay a grid over the square [0, 1]2. Let h := 1

n+1 , where n is
the wanted number of inner points per direction, gaining n2 inner points in total. Then

earthquake. Therefore, engineers will ensure that the building has no eigenfunction that is similar
to vibrations of an earthquake. Similarily, wind can stimulate the resonance frequency of bridges,
the most famous example is the Tacoma Narrows Bridge, which collapsed in 1940.

5

1 On the calculation of eigenvalues for large and sparse matrices

each gridpoint and its value can be described as

(i, j)=̂(xi, yj) := (hi, hj) with i, j ∈ {0, .., n+ 1}
ui,j := u(xi, yj).

The Laplace operator (for the inner points only!) can then be approximated by forming

Figure 1.2: 5 point star used for the discretization of the Laplace operator

an equation:

∆u = ∂2u

∂x2 + ∂2u

∂y2 (1.5)

≈ ui+1,j − 2ui,j + ui−1,j

h2 + ui,j+1 − 2ui,j + ui,j−1

h2 (1.6)

= −4ui,j + ui+1,j + ui−1,j + ui,j+1 + ui,j−1

h2 . (1.7)

We now define k := i+ n(j − 1) ∈ Rn2 and substitute ui,j by uk to get rid of the double
index. Remember that we have the negative Laplace operator in (1.3), thus we have to
multiply equation (1.7) by −1. By doing so, we obtain

−∆u ≈ Au = λu (1.8)

6

1 On the calculation of eigenvalues for large and sparse matrices

with

A = 1
h2



B −I 0 0 . . . 0
−I B −I . . . 0
0 −I
... −I 0
... . . . −I B −I
0 0 −I B


∈ Rn2×n2

, (1.9)

where

B =



4 −1 0 0 . . . 0
−1 4 −1 . . . 0
0 −1
... −1 0
... . . . −1 4 −1
0 0 −1 4


∈ Rn×n (1.10)

and the identity matrix I ∈ Rn×n.
If we have a solution for the eigenvalue problem (1.8), we can take u as the approxima-
tion of an eigenfunction on the (discrete) grid we laid over the square [0, 1]2. It is easy
to derive a function u : [0, 1]2 → R with u = u on the grid giving a good approximation
of the solution to (1.3) by simply defining u(x, y) as piecewise linear or bilinear interpo-
lating polynomials. We realize that we have just formulated an eigenvalue problem as in
Definition 1.1!
It should be noticed that we can write (1.8) in a nice way using the Kronecker product:

A = I ⊗ C + C ⊗ I, (1.11)

where C = 1
h2 tridiag(−1, 2,−1).

We also want to look at the properties of the matrix A, which we will later use to accel-
erate convergence by choosing an appropriate method.

• The matrix A is obviously symmetric.
• Theorem 1.4 shows that all eigenvalues must be real, furthermore it can be shown

that A is positive definite.
• For practical purposes, it is usually not enough to use only 192 inner points as

in figure 1.1, but rather 10002 or more. This causes A to be large - meaning
that we can not simply use standard methods, such as the QR method, since the
factorization and saving of the matrices would consume enormous space and time.
• Finally we can also assert A to be sparse - in most lines we will only find five

7

1 On the calculation of eigenvalues for large and sparse matrices

nonzero entries, for A ∈ Rn2×n2 , this are only roughly 500
n2 % of all matrix entries.

1.3 Special features

One problem occuring with large matrices is that it becomes difficult to save the matrices
efficiently. Luckily, we asserted that above mentioned A is sparse. This means we can
make use of the many zeros in the matrix and only store the nonzero entries. Algorithms
for sparse matrices can also be improved by parallel computing. However, this shall not
be the focus of this thesis, we ask the reader to read [13][73 ff.] for further information.

Another important fact to mention is that we can use a symmetric and positive definite
matrix A to define an inner product by (x, y)A := xTAy. This is used for modifications
of the later introduced methods, such as the conjugate gradient method.

8

2 Preconditioned gradient methods for
the Rayleigh quotient

In this section we will discuss properties of the Rayleigh quotient and how it can be used
to define iterative eigensolvers.

2.1 The Rayleigh quotient

Definition 2.1. Let A ∈ Rn×n and x ∈ Rn \ {0}.
The Rayleigh quotient is defined as µ(x) := µA(x) := xTAx

xT x
= (x,Ax)

(x,x) .
The generalized Rayleigh quotient is defined as µ(x) := µA,B(x) := xTAx

xTBx
= (x,Ax)

(x,Bx) .

In this section we will mainly use the first notation, however, the second notation con-
cerning matrix pencils will come in handy in section 3.

Theorem 2.2. The eigenvalues for a symmetric matrix A = AT ∈ Rn×n are
λmax := λ1 ≥ λ2 ≥ · · · ≥ λn =: λmin. Then

∀x ∈ Rn \ {0} : λmin ≤ µA(x) ≤ λmax. (2.1)

Furthermore, if vmin and vmax are corresponding eigenvectors to λmin and λmax,
respectively, then

λmin = µA(vmin) = min
x 6=0

µA(x) (2.2)

λmax = µA(vmax) = max
x 6=0

µA(x). (2.3)

Proof. For a proof see [12][Chapter 1].

A similar statement holds for the generalized Rayleigh quotient:

Theorem 2.3. For a symmetric positive definite matrix A ∈ Rn×n and a symmetric
positive definite matrix B ∈ Rn×n the generalized Rayleigh quotient µ(x) = µA,B(x)
enjoys the following properties:
(1) µ(αx) = µ(x), where α 6= 0,

9

2 Preconditioned gradient methods for the Rayleigh quotient

(2) ∀x ∈ Rn \ {0} : λmin ≤ µ(x) ≤ λmax,

(3) ∇µ(x) = 2(Ax−µ(x)Bx)
xTBx

,
(4) µ(x) is stationary, if, and only if, x is an eigenvector of the pencil (A,B).

Proof. (1) µ(αx) = (αx)TA(αx)
(αx)TB(αx) = α2xTAx

α2xTBx
= µ(x).

(2) Due to A and B being symmetric and positive definite, we have n B-orthogonal
eigenvectors v1, ..., vn by theorem 1.9. Thus we can write any x as x = ∑n

i=1 αivi.
We deduce

(x,Ax) =
(
x,A

n∑
i=1

αivi

)
=

n∑
i=1

(x, αiAvi) =
n∑
i=1

(x, αiλiBvi)

=
n∑
i=1

λi(x, αiBvi) =
n∑
i=1

λi

 n∑
j=1

αjvj, αiBvi


viB−orth.=

n∑
i=1

λi(αivi, αiBvi)

≥ λmin
n∑
i=1

(αivi, αiBvi)

viB−orth.=
n∑
i=1

λmin

 n∑
j=1

αjvj, αiBvi

 = λmin

(
x,B

n∑
i=1

αivi

)

= λmin(x,Bx).

Dividing by (x,Bx) > 0 yields the lower bound for the generalized Rayleigh quo-
tient, the upper bound is derived similarly.

(3) Keeping ∇xTAx = 2Ax in mind, we obtain

∇µ(x) = ∇
(
xTAx

xTBx

)

= xTAx
(
∇
(1
xTBx

))
+ 1
xTBx

(
∇(xTAx)

)
= xTAx

−2Bx
(xTBx)2 + 1

xTBx
2Ax

= µ(x)−2Bx
xTBx

+ 2Ax
xTBx

= −2µ(x)Bx+ 2Ax
xTBx

= 2(Ax− µ(x)Bx)
xTBx

.

(4) Let x be an eigenvector of (A,B). Then Ax = λBx, thus µ(x) = λxTBx
xTBx

= λ.
Substituting this in the property (3) conducts ∇µ(x) = 2(λBx−λBx)

xTBx
= 0. On the

10

2 Preconditioned gradient methods for the Rayleigh quotient

contrary, if ∇µ(x) = 0, then Ax = µ(x)Bx, and x is an eigenvector corresponding
to the eigenvalue µ(x).

2.2 Minimizing the Rayleigh quotient using gradient
methods

Theorem 2.3 tells us, that when looking for generalized eigenvectors, we can similarly
find stationary points of the generalized Rayleigh quotient. We will use this information
in this section to deduce a gradient type eigensolver.

We firstly consider the (preconditioned) Richardson-method to solve systems of linear
equations: If an iteration xn is known, we can obtain the next iteration by

xn+1 = xn − τnT (Axn − b),

where T is the preconditioner and τn a scalar. Good choices for T are obviously T = A−1,
since we will converge in one step with τ = 1, or T = A†, a pseudo-inverse, in the case
of a singular matrix A. However, iterative methods wouldn’t be needed if the inverse
is known, but one might guess a good approximation of the inverse, gaining better
performance.
We now consider an eigenvalue problem

Ax = λx⇔ (A− λI)x = 0.

If a sufficiently accurate approximation λ∗ of the eigenvalue λ is known, we can obtain
the eigenvector x by solving this system of linear equations (A − λ∗I)x = 01 or, if
preconditioned, T (A − λ∗I)x = 0. Using the above mentioned Richardson-method, the
next iteration is obtained by

xn+1 = xn − τnT (A− λ∗I)xn. (2.4)

One should keep in mind, that λ∗ needs to be suggested in each step. To implement
the method, we replace λ∗ by the Rayleigh quotient µA(x), hopefully getting better
approximations for the eigenvalue in every step. It may not yet be clear, why this
method is a gradient method. We will answer this question shortly.
For the generalized eigenvalue problem with symmetric, positive definite matrices A,B ∈
Rn×n we are now introducing a method to approach the smallest eigenvalue. Instead of
considering the eigenvalue problem Ax = λBx, we consider the inverted form µAx = Bx
with µ = 1

λ
, which has advantages when presenting the convergence analysis in section

3. Obviously, minimizing λ and maximizing µ are equivalent. Theorem 2.3 shows that
maximizing the Rayleigh quotient µB,A(x) brings the maximal eigenvalue µ. From here

1Since this system is singular, we can actually find a vector x 6= 0 that solves this equation.

11

Torben Sell
Hinweis
does this normally converge?

2 Preconditioned gradient methods for the Rayleigh quotient

on, we write µ(x) := µB,A(x), and λ(x) := µA,B(x), respectively. A manifest idea is to
improve the iterate x along the gradient of the Rayleigh quotient ∇λ(x) = 2(Ax−λ(x)Bx)

xTBx
=

2
µ(x)xTBx

(µ(x)Ax−Bx). As an increase of µ(x) is achieved when decreasing λ(x), we use
the negative gradient and generally modify this by adding a preconditioner T̃ :

xn+1 = xn + τn
1

µ(xn)
2

xTnBxn
T̃ (Bxn − µ(xn)Axn).

In order to simplify the representation we use the notation Tn := τn
2

xT
nBxn

T̃ :

xn+1 = xn + 1
µ(xn)Tn(Bxn − µ(xn)Axn). (2.5)

As we iterate along the preconditioned gradient of the Rayleigh quotient, it does make
sense to speak about gradient type eigensolvers. It now becomes clear, why method 2.4
can be seen as a gradient method as well: It is simply a special case of 2.5 with B = I,
λ∗ = 1

µ(x) = xTAx
xTBx

= λ(x), and τn = 1. It should also be noted, that we call method 2.5
PINVIT, standing for Preconditioned INVerse Iteration.

As it is very complicated and time consuming to calculate the best scalar τn explicitly,
simplest methods either contain a fixed step size, e.g. τn = 1, or use Armijo-Goldstein
conditions. Both possibilities are implemented in function 7.5.

2.3 Modification and acceleration of a gradient method

In this subsection we will discuss possibilities for modificating, accelerating, and gener-
ally improving method (2.5).

2.3.1 PINVIT2 and PINVIT3

A question arising is how to find the maximum of the Rayleigh quotient µ(x) along the
gradient, i.e. the maximum in the one-dimensional manifold U := x+ span{∇λ(x)}. In
other words, in each step we need to find T = T (τ) such that

x′ = x+ arg max
τ>0

(x+ 1
µ
T (Bx− µAx))TB(x+ 1

µ
T (Bx− µAx))

(x+ 1
µ
T (Bx− µAx))TA(x+ 1

µ
T (Bx− µAx))

 1
µ
T (Bx− µAx)).

(2.6)

12

2 Preconditioned gradient methods for the Rayleigh quotient

2

It is a promising idea to maximize the Rayleigh quotient in the two-dimensional sub-
space Ũ = span{xn,∇λ(xn)}, which can be easily done by the Rayleigh-Ritz method.
Let y := αxn +β∇λ(xn) denote a solution to this maximization task. Then, by theorem
2.3, ỹ = 1

α
y = xn + β

α
∇λ(xn) has the same Rayleigh quotient as y and therefore satisfies

the maximization task in (2.6), since U ⊂ Ũ . This method is known as PINVIT2, as
it contains a maximization in a two-dimensional subspace. Both an implementation for
the standard, and the generalized eigenvalue problem can be found at the end of this
thesis.
However, we may increase the dimension of the subspace: PINVIT3 maximizes the
Rayleigh quotient in the three-dimensional subspace U = span{xn,∇λ(xn), xn−1}. Un-
fortunately, the task of finding the maximum of (2.6) gets harder with every dimension,
outweighing the advantage of adding another dimension to U quickly. Here again, im-
plementations are provided at the end of this thesis. All the above mentioned methods
calculate only one eigenpair, while it may be interesting to calculate the k largest eigen-
values. This is achieved by the LOBPCG method that is discussed in section 5.

2To find the maximum, we define y := 1
µT (Bx− µAx) and use

d

dτ

(
(x+ τy)TB(x+ τy)

) B=BT

= d

dτ

(
τ2yTBy + 2τxTBy + xTBx

)
= 2τyTBy + 2xTBy

(2.7)

to derive

f ′(τ) = d

dτ

(
(x+ τ

µT (Bx− µAx))TB(x+ τ
µT (Bx− µAx))

(x+ τ
µT (Bx− µAx))TA(x+ τ

µT (Bx− µAx))

)

= d

dτ

(
(x+ τy)TB(x+ τy)
(x+ τy)TA(x+ τy)

)
(2.7)=

(
(2τyTBy + 2xTBy)[(x+ τy)TA(x+ τy)]− [(x+ τy)TB(x+ τy)](2τyTAy + 2xTAy)

[(x+ τy)TA(x+ τy)]2

)
.

Thus, we have a stationary point of f(τ), when the numerator of its derivative equals 0.

0 = f ′(τ)
=
(
2τyTBy + 2xTBy

) [
(x+ τy)TA(x+ τy)

]
−
[
(x+ τy)TB(x+ τy)

] (
2τyTAy + 2xTAy

)
= 2τ2 ((yTBy)(xTAy)− (xTBx)(xTBy)

)
+ 2τ

(
(yTBy)(xTAx)− (xTBx)(yTAy)

)
+ 2

(
(xTBy)(xTAx)− (xTBx)(xTAy)

)
,

which is true for

τ = (xTBx)(yTAy)− (yTBy)(xTAx)
2

±

[(
(xTBx)(yTAy)− (yTBy)(xTAx)

2

)2

+ (xTBx)(xTAy)− (xTBy)(xTAx)
] 1

2

by the quadratic formula.

13

2 Preconditioned gradient methods for the Rayleigh quotient

2.3.2 Preconditioners

When speaking of modificating a gradient method one should certainly look at the pre-
conditioner T . T does not necessarily have to be symmetric and positive definite as one
would assume in the first place. As shown in [5], it is enough for T to fulfill

smax
(
I − A1/2TA1/2

)
≤ γ < 1 (2.8)

for a given γ ∈ [0, 1[and smax the largest singular value of I − A1/2TA1/2. For sparse
matrices A, preconditioners are often calculated by performing an incomplete Cholesky
factorization or an incomplete LU factorization of A, see [2] or [6] for a good overview
over different preconditioners. [3] considers sparse inverse preconditioners only, however
these preconditioners are very useful when tackling large problems, all implementations
presented at the end of this thesis use a sparse preconditioner T .

2.3.3 The Rayleigh-Ritz method

We now look at how to find the maximum in each step for the PINVIT2 method. We
notice that - according to theorem 2.3 - the Rayleigh quotient is maximized at an eigen-
vector corresponding to the largest eigenvalue in the subspace. This eigenvalue can be
found using the Rayleigh-Ritz method, which is explained in [11][Chapter 11], and we
waive a description and explanation in this thesis, however implementations for different
subspaces can be found at the end of this thesis, see 7.0.2.

14

3 Convergence Analysis

This is the main part of this thesis, where we discuss the convergence of the above
mentioned method (2.5). The argumentation follows that in [1]. From here on we’re
dropping the indices in (2.5) and will consider one step of the method:

x′ = x+ 1
µ(x)T (Bx− µ(x)Ax). (3.1)

Our aim is to prove the following theorem:

Theorem 3.1 (Convergence Rate Bound). If µi+1 < µ(x) < µi and T satisfies
smax

(
I − A1/2TA1/2

)
≤ γ < 1 (see 2.8) for a given γ ∈ [0, 1[, then for x′ in (3.1)

one of the following statements is true:

µ(x′) ≥ µi, (3.2)

0 < µi − µ(x′)
µ(x′)− µi+1

≤ σ2 µi − µ(x)
µ(x)− µi+1

, σ := γ + (1− γ)µi+1

µi
. (3.3)

The remaining part of this section is split as follows:
Firstly, we will show that we can reduce the inverted general eigenvalue problem µAx =
Bx to the standard eigenvalue problem µx = Bx by choosing A = I without loss of
generality.
Secondly, we will only consider the case γ = 0, before approaching the general case
0 < γ < 1 thereafter.

3.1 Simplifying the problem

As promised, we will show that we can choose A = I without loss of generality. While
doing this, we will use an inner product (x, y)A defined by (x, y)A := xTAy for different
matrices, according to the index used. The reader should note, that this is actually
an inner product if A is symmetric and positive definite. The corresponding norm is
||x||A := (x, x)1/2 = (xTAx)1/2.
For a symmetric and positive definite matrix A the root A1/2 (and its inverse A−1/2) is
well defined, so that we can transform our problem as follows:
x′A := A1/2x′, xA := A1/2x, BA := A−1/2BA−1/2, TA := A1/2TA1/2, and rA := BAxA −
κxA, where κ := µ(x).
Furthermore, we define a closed ball BA := {y ∈ Rn : ||BAxA − y||2 ≤ γ2||rA||2}.

15

3 Convergence Analysis

Theorem 3.2. If T satisfies (2.8), than for x′ in (3.1) it holds that

κx′A = BAxA − (I − TA)(BAxA − κxA) ∈ BA. (3.4)

Proof. We multiply (3.1), x′ = x + 1
µ(x)T (Bx − µ(x)Ax) by µ(x)A1/2 from the left and

obtain

µ(x)A1/2x′ = µ(x)A1/2x+ µ(x)A1/2

µ(x) T (Bx− µ(x)Ax)

= µ(x)A1/2x+ A1/2T (Bx− µ(x)Ax)
= κ(A1/2x) + A1/2TBx− κA1/2TAx

= κxA + A1/2TA1/2A−1/2BA−1/2A1/2x− κA1/2TA1/2A1/2x

= κxA + (A1/2TA1/2)(A−1/2BA−1/2)(A1/2x)− κ(A1/2TA1/2)(A1/2x)
= κxA + TABAxA − κTAxA
= κxA + TABAxA − κTAxA −BAxA +BAxA

= −(I − TA)(BAxA − κxA) +BAxA

= −(I − TA)rA +BAxA (the equation postulated!)

µ(x)A1/2x′=κx′A⇐⇒ BAxA − κx′A = (I − TA)rA.

We now have to show that κx′A ∈ BA. Applying the norm to the last equation and
rewriting (2.8) to smax (I − TA) ≤ γ < 1, we conclude

||BAxA − κx′A||2 = ||(I − TA)rA||2

≤ ||I − TA||2||rA||2
2.8
≤ γ2||rA||2.

Thus, κx′A ∈ BA.

As promised, we will now transform the problem, using the transformations used in
theorem 3.2. From now on we will use the following notations:

T = TA

B = BA

x = xA

x′ = x′A
r = rA

µ(x) = xTBx

xTx
.

16

3 Convergence Analysis

Method (3.1) now becomes

µ(x)x′ = Bx− (I − T)(Bx− µ(x)x), (3.5)

and the preconditioner T has to satisfy the condition

||I − T || ≤ γ, (3.6)

which is the transformed version of condition (2.8).
Lastly, we look at the closed ball B = BA, which now became

B = {y : ||Bx− y|| ≤ γ||r||}.

Theorem 3.2 showed that µ(x)x′ ∈ B, theorem 2.3[(1)] showed that µ(µ(x)x′) = µ(x′)
(choose α = µ(x)). Therefore, µ(x′) ∈ {µ(y) : y ∈ B}!
Our main goal is still to find a bound for µ(x′). If we minimize µ(.) in B, we have found
a lower estimate for µ(x′), as this would be the worst case: min

x∈B
µ(x) ≤ µ(x′). The

transformation lead to A = I and hasn’t changed anything regarding the convergence
bound. Without any loss of generality, we can set A = I.
From here on we can focus on the problem of finding the largest eigenvalue of the
eigenvalue problem Bx = µx. We can visualize our gradient method as follows. From a
starting point x0 we will use the Rayleigh quotient to approximate the largest eigenvalue.
We will find the next iterate x1 by increasing the Rayleigh quotient along the gradient
of the Rayleigh quotient in x0. In x1 we will once again use the Rayleigh quotient to
approximate the largest eigenvalue and repeat the process as often as needed.

3.2 Special case: γ = 0 and T = I

If we choose γ = 0, we realize that condition (3.6) requires T = I, simplifying method
(3.5) to µ(x)x′ = Bx. We reformulate theorem 3.1 for this special case:

Theorem 3.3 (Convergence Rate Bound - γ = 0). If µi+1 < µ(x) < µi, then for x′
in µ(x)x′ = Bx one of the following statements is true:

µ(x′) ≥ µi, (3.7)

0 < µi − µ(x′)
µ(x′)− µi+1

≤ σ2 µi − µ(x)
µ(x)− µi+1

, σ := µi+1

µi
. (3.8)

Before coming to the actual proof, we want to give an outline on how to proof this
theorem. If we think of the gradient method, we will have to ask what the worst possible
case concerning the improvement of the Rayleigh quotient of the iterations could be.
The proof therefore tries to find a minimum for µ(x′) when µ(x) is given. We will find
that for an extremal µ(x′), x is a linear combination of two eigenvectors, which allows
us to derive that inequality (3.8) indeed holds.

17

3 Convergence Analysis

Proof of theorem 3.3. If µ(x) ∈]µi+1, µi[is given, we can define κ := µ(x) ∈]µi+1, µi[and
minimize f(y) := µ(By) only for those y satisfying µ(y) = κ. Since κ = µ(y) = yTBy

yT y
⇔

κyTy− yTBy = 0, we can consider h(y) := κyTy− yTBy = 0 as a constraint to the task
of minimizing f(y) = µ(By). This extremal problem can be solved using the method of
Lagrange multipliers:
We introduce an auxiliary function L(y, a) := f(y) + ah(y) with a constant a, the
Lagrange multiplier. At a stationary point of L, we have

∇yL = ∇yf(y) + a∇yh(y) = 0, (3.9)
∇aL = h(y) = 0. (3.10)

We rewrite equation (3.9):

∇yL = ∇yf(y) + a∇yh(y)
= ∇y (µ(By)) + a∇y

(
κyTy − yTBy

)
2.3, chain rule= B

2(B2y − µ(By)By)
yTBBy

+ a(2κy − 2By)

= 2B3y − 2µ(By)B2y

||By||2
− 2aBy + 2aκy

= 0.

We multiply with ||By||
2

2 and obtain

0 = B3y − µ(By)B2y − a||By||2By + a||By||2κy.

The substitution c := a||By||2 yields

0 = B3y − µ(By)B2y − cBy + cκy. (3.11)

We will now show that any y solving equation (3.11) is a linear combination of at most
two eigenvectors.
To obtain this result, we firstly note that cκ is positive: κ > 0 is due to it being larger
than an eigenvalue of B and B being symmetric and positive definite, see theorem 1.6.
To show that c > 0, we consider

µ(By) = (By,B(By))
(By,By) (3.12)

⇔ 0 = (By,B(By))− µ(By)(By,By)
= yTB3y − µ(By)yTB2y

= yT (B3y − µ(By)B2y)
= (y,B3y − µ(By)B2y)
= (B3y − µ(By)B2y, y)

(3.13)

18

3 Convergence Analysis

and further

c||By − κy||2 = c(By − κy,By − κy)
= (cBy − cκy,By − κy)
(3.11)= (B3y − µ(By)B2y,By − κy)
= (B3y − µ(By)B2y,By)− κ(B3y − µ(By)B2y, y)
(3.13)= (B3y − µ(By)B2y,By)− 0
(3.13)= (B3y − µ(By)B2y,By)− µ(By)(B3y − µ(By)B2y, y)
= (B3y − µ(By)B2y,By − µ(By)y)
= yTB4y − 2µ(By)yTB3y + µ(By)2yTB2y

= (B2y − µ(By)By,B2y − µ(By)By)
= ||B2y − µ(By)By||2,

stating c = ||B2y−µ(By)By||2
||By−κy||2 > 0 as promised.

The right-hand side of equation (3.11) is therefore a polynomial with both leading and
last coefficient being positive. We write

p(B)y = B3y − µ(By)B2y − cBy + cκy. (3.14)

The linear independence of the eigenvectors yields that y can be rewritten as y =
m∑
i=1

wi,
where wi is the projection of y on every eigenspace. As the eigenspaces are orthogonal,
and either wi is an eigenvector or wi = 0, inserting y =

m∑
i=1

wi in 3.14 yields

p(B)y = p(B)
m∑
i=1

wi

= B3
m∑
i=1

wi − µ(B
m∑
i=1

wi)B2
m∑
i=1

wi − cB
m∑
i=1

wi + cκ
m∑
i=1

wi

=
m∑
i=1

(B3 − µ(
m∑
i=1

Bwi)B2 − cB + cκ)wi

=
m∑
i=1

(µ3
i − µ(

m∑
i=1

µiwi)µ2
i − cµi + cκ)wi

wiorth=
m∑
i=1

(µ3
i − µ(By)µ2

i − cµi + cκ)wi

=
m∑
i=1

p(µi)wi.

Since the wi are orthogonal, p(µi)wi = 0 ∀i, showing either p(µi) = 0 or wi = 0. As
p(.) is a polynomial of third degree, it has maximally three positive roots. However,
maximally two changes of signs in the coefficients occur, thus only two roots can be

19

3 Convergence Analysis

positive according to Descartes’ rule of signs ([7]). Therefore, only for two indices k
and l we have p(µk) = p(µl) = 0, allowing wk, wl 6= 0. This means, that y is a linear
combination of at most two eigenvectors vk and vl!
We will use this result to finally prove theorem 3.3.
As the behaviour of x is invariant under scaling, we can assume x = vk + αvl with
two normalized eigenvectors vk, vl without loss of generality. This x minimizes f(y) =
µ(By). Remember that µ(x′) = µ(Bx). We have a look at the Rayleigh quotients
µ(x) = µ(vk + αvl), and µ(x′) = µ(Bx) = µ(B(vk + αvl)).

µ(x) = µ(vk + αvl)

= (vk + αvl)TB(vk + αvl)
(vk + αvl)T (vk + αvl)

= vTkBvk + αvTl Bvk + α2vTl Bvl + αvTkBvl
vTk vk + αvTl vk + α2vTl vl + αvTk vl

= µkv
T
k vk + αµkv

T
l vk + α2µlv

T
l vl + αµlv

T
k vl

‖vk‖2 + αvTl vk + α2‖vl‖2 + αvTk vl

= µk‖vk‖2 + αµkv
T
l vk + α2µl‖vl‖2 + αµlv

T
k vl

‖vk‖2 + αvTl vk + α2‖vl‖2 + αvTk vl

= µk + α2µl
1 + α2

(3.15)

⇔ α2 = µk − µ(x)
µ(x)− µl

(3.16)

µ(x′) = µ(B(vk + αvl))
= µ(Bvk + αBvl)
= µ(µkvk + αµlvl)
= ... as above

=
µk + µ2

l

µ2
k
α2µl

1 + µ2
l

µ2
k
α2

(3.17)

⇔ µ2
l

µ2
k

α2 = µk − µ(Bx)
µ(Bx)− µl

= µk − µ(x′)
µ(x′)− µl

. (3.18)

We put equations (3.16) and (3.18) together and obtain

µk − µ(x′)
µ(x′)− µl

3.18= µ2
l

µ2
k

α2 3.16= µ2
l

µ2
k

µk − µ(x)
µ(x)− µl

= σ2µk − µ(x)
µ(x)− µl

, (3.19)

where σ = µl

µk
. This is almost the equality we were looking for. If µl < µk, κ can be

chosen in]µl, µk[, which implies that there exists an i such that

µl ≤ µi+1 < µ(x) = κ < µi ≤ µk. (3.20)

20

3 Convergence Analysis

Note that µk < µl doesn’t bring anything new, simply consider x = vl + βvk, leading to
the same results.
With µl < µk, it follows from 3.19 that µ(x′) > µ(x). Therefore, either µ(x′) ≥ µi or
µ(x) < µ(x′) < µi is true. Now we have a look at a few fractions. Generally, it holds for
0 < p ≤ q and any δ ≥ 0 that

pδ ≤ qδ

⇔ pq + pδ ≤ pq + qδ

⇔ p(q + δ) ≤ q(p+ δ)

⇔ p

q
≤ p+ δ

q + δ
.

(3.21)

Without any constraint, we can consider µk = µi + δ1 and µi+1 = µl + δ2, bringing us
the inequalities1

µi − µ(x′)
µi − µ(x) ≤

µi + δ1 − µ(x′)
µi + δ1 − µ(x) = µk − µ(x′)

µk − µ(x) , (3.22)

µ(x)− µi+1

µ(x′)− µi+1
≤ µ(x)− µi+1 + δ2

µ(x′)− µi+1 + δ2
= µ(x)− µl
µ(x′)− µl

. (3.23)

Finally, we obtain

µi − µ(x′)
µ(x′)− µi+1

µ(x)− µi+1

µi − µ(x) = µi − µ(x′)
µi − µ(x)

µ(x)− µi+1

µ(x′)− µi+1
(3.22),(3.23)
≤ µk − µ(x′)

µk − µ(x)
µ(x)− µl
µ(x′)− µl

= µk − µ(x′)
µ(x′)− µl

µ(x)− µl
µk − µ(x)

(3.19)= σ2 =
(
µl
µk

)2

≤
(
µi+1

µi

)2

.

Bringing µ(x)−µi+1
µi−µ(x) on the right-hand side of the equation results in inequality (3.8).

3.3 The convergence analysis for the preconditioned
gradient method: 0 < γ < 1

We will now generalize the ideas used in the last section to proof the general theorem
3.1. We will find that when using a preconditioner, the method of Lagrange multipliers
cannot be directly used, since we have inequalities as a restriction instead of an equality
as above, hence we will use the Karush-Kuhn-Tucker theory to find a minimum. The rest

1Note that in both cases, the numerator is greater than the denominator due to µi+1 < µ(x) < µ(x′) <
µi.

21

3 Convergence Analysis

is similar: We will show that in an extremal point, x is again a linear combination of at
most two eigenvectors. This will once more allow us to derive the inequality postulated
in the theorem. The reader will realize that this proof is quite long and uses two lemmas
that we will prove only afterwards to hopefully make the proof easier to overview and
understand.

Proof of theorem 3.1. We define the residual vector as r := Bx−µ(x)x, which is non-zero
if x is not an eigenvector. Note that we will consider preconditioned gradient method
given by

µ(x)x′ = Bx− (I − T)r. (3.24)

Depending on the preconditioner T , we have different solutions for the next iterate x′.
Generally, any vector in the closed ball B = {y : ||Bx − y|| ≤ γ‖r‖} is possible: The
new iterate is somewhere near Bx, the center of the ball, and due to ‖I − T‖ ≤ γ, we
can’t go further away from the center as γ‖r‖, the radius of the ball B. We will now
show µ(x′) > µ(x), which (with an additional argument) proves the left-hand side of the
inequality (3.3), before tackling the more complicated right-hand side.
We have

‖Bx− y‖2 ≤ γ2‖r‖2 γ<1
< ‖r‖2 = ‖Bx− µ(x)x‖2

⇔ xTB2x+ yTy − 2xTBy < xTB2x+ µ(x)2xTx− 2µ(x)xTBx
⇔ yTy < 2xTBy + µ(x)2xTx− 2µ(x)xTBx

⇔ ‖y‖2 < 2(x, y)B + µ(x)x
TBx

xTx
xTx− 2µ(x)xTBx

= 2(x, y)B − µ(x)xTBx

= yTBy − yTBy + 2µ(x)xTBy − µ(x)2xTBx

µ(x)

= ‖y‖
2
B − ‖y − µ(x)x‖2

B

µ(x)

≤ ‖y‖
2
B

µ(x)

⇔ µ(x) < ‖y‖
2
B

‖y‖2 = yTBy

yTy
= µ(y).

As in the last section, we have µ(x′) = µ(µ(x)x′) and µ(x)x′ ∈ B by definition of B.
Thus, we obtain µ(x′) > µ(x) > µi+1. The left-hand side of (3.3) holds when µ(x′) < µi,
otherwise inequality (3.2) holds. The harder part to prove is the right-hand side of the
equation. We will therefore minimize the Rayleigh quotient in the ball B, in order to
find the worst-case scenario for the behaviour of µ(x′). We do this by using the Karush-
Kuhn-Tucker-Theory, which is similar to the method of Lagrange multipliers, but allows
inequalities in the constraints. We will use the following lemma, the proof is postponed
and can be found in the next subsection.

22

3 Convergence Analysis

Lemma 3.4. For γ ∈]0, 1[and κ not an eigenvalue of B, may {x∗, y∗} be a solution
to the constrained minimization problem

minimize f(x, y) = µ(y), x 6= 0
with constraints g(x, y) = ||Bx− y||2 − γ2||Bx− κx||2 ≤ 0, and

h(x, y) = κ(x, x)− (x,Bx) = 0.

If x∗ is not an eigenvector of B, then it holds that both x∗ and y∗ belong to a two-
dimensional invariant subspace of B corresponding to two distinct eigenvalues, and
sin∠(Bx∗, y∗) = γ sin∠(Bx∗, x∗), where ∠(u, v) = arccos

(
(u,v)
‖u‖‖v‖

)
.

As in the exactly preconditioned case, we now derive a convergence rate bound for a
two-dimensional B-invariant subspace before tackling the general case. We will again
formulate a lemma and give a proof later to retain the overview.

Lemma 3.5. Let x and y belong to a two-dimensional invariant subspace of B
corresponding to the eigenvalues µk > µl and satisfy

sin
(

arccos
(

(Bx, y)
‖Bx‖‖y‖

))
= γ sin

(
arccos

(
(Bx, x)
‖Bx‖‖x‖

))

(see lemma 3.4), where x is not an eigenvector.
Then it holds that

µk − µ(y)
µ(y)− µl

µ(x)− µl
µk − µ(x) ≤

(
γ + (1− γ) µl

µk

)2

. (3.25)

We now have the framework to nifty finish the proof of the convergence rate bound
theorem. We have

µi+1 < µ(x) < µ(x′) < µi (3.26)

by the first steps of the proof. Since ‖Bx − y‖ ≤ γ‖Bx − κx‖ ⇔ g(x) ≤ 0 in Lemma
3.4, this lemma showed that there exists a y satisfying

µ(y) ≤ µ(x′), (3.27)

and bound (3.25) holds with

µl < µ(x) < µ(y) < µk. Further we have (3.28)
µl ≤ µi+1 < µi ≤ µk. (3.29)

Since we assumed µi+1 < µ(x) < µ(x′) < µi, we can put this and inequalities (3.28),

23

3 Convergence Analysis

(3.29) together and gain

µl ≤ µi+1 < µ(x) < µ(y) ≤ µ(x′) < µi ≤ µk. (3.30)

We use the argumentation of (3.21), and µi = µi+1 + δ to show

µi+1 − µ(y)
µ(x′)− µi+1

≤ µi+1 + δ − µ(y)
µ(x′)− µi+1 − δ

= µi − µ(y)
µ(x′)− µi

⇔ µ(x′)− µi
µ(x′)− µi+1

≥ µi − µ(y)
µi+1 − µ(y)

multiply by −1⇔ µi − µ(x′)
µ(x′)− µi+1

≤ µi − µ(y)
µ(y)− µi+1

,

(3.31)

where we have to note µ(x′)− µi < 0 according to (3.30), which changes the relation in
the first step. Putting everything together we obtain

µi − µ(x′)
µ(x′)− µi+1

µ(x)− µi+1

µi − µ(x)
(3.31)
≤ µi − µ(y)

µ(y)− µi+1

µ(x)− µi+1

µi − µ(x)

= µi − µ(y)
µi − µ(x)

µ(x)− µi+1

µ(y)− µi+1
cf.(3.21)
≤ µk − µ(y)

µk − µ(x)
µ(x)− µl
µ(y)− µl

= µk − µ(y)
µ(y)− µl

µ(x)− µl
µk − µ(x)

(3.25)
≤

(
γ + (1− γ) µl

µk

)2

≤
(
γ + (1− γ)µi+1

µi

)2

,

the last inequality is due to µl

µk
< µi+1

µi
, which follows from (3.29).

3.4 Amendments to the Convergence Rate Bound

We will now provide the proofs for lemma 3.4 and 3.5.

Lemma 3.4, proof. We firstly assume y = 0. As we know that the residual Bx − κx =
Bx−µ(x)x is orthogonal to x, we obtain ‖Bx−κx‖ ≤ ‖Bx‖, and thus ‖Bx‖2−γ2‖Bx−
κx‖2 γ<1

> ‖Bx‖2 − ‖Bx − κx‖2 ≥ 0. This is a contradiction to the first constraint
g(x, y) ≤ 0, it follows that y 6= 0.
The existence of a minimum follows, when we consider that the smooth function f(x, y)
certainly has a minimum on the compact set M , where ‖x‖ = 1, and that any (nonzero)
multiple of this minimum on the compact set is also a minimum on Rn \ {0}: Let

24

3 Convergence Analysis

{x∗, y∗} be a solution with ‖x∗‖ = 1, then {αx∗, αy∗} fulfills g(αx∗, αy∗) = α2(‖Bx∗ −
y∗‖2−γ2‖Bx∗−κx∗‖2) = α2g(x∗, y∗) ≤ 0 and h(αx∗, αy∗) = α2(κ(x∗, x∗)− (x∗, Bx∗)) =
α2h(x∗, y∗) = 0. Furthermore, µ(αy∗) = µ(y∗) by theorem 2.3.
We now aim to prove the regularity in any stationary point {x∗, y∗}. We have to prove
linear independency of the gradients of g(x, y) and h(x, y). As

∇g(x, y) =
(

2(B2x−By − γ2(B − κI)(Bx− κx))
2(y −Bx)

)
,

and

∇h(x, y) =
(

2(κx−Bx)
0

)
.

We may assume linear dependency, which lets us deduce that y−Bx = 0, ergo y = Bx.
Inserting this in the x-derivatives produces the equation

−2γ2(B − κI)(Bx− κx) y=Bx= 2(B2x−By − γ2(B − κI)(Bx− κx))

= ∂g

∂x
∇g=β∇h= β

∂h

∂x
= 2β(κx−Bx)
= −2β(Bx− κx).

Thus, Bx−κx is an eigenvector corresponding to the eigenvalue β
γ2 of the matrix B−κI.

But this means, that x is an eigenvalue of B, in contradiction to the assumption made
in the lemma:

(B − κI)(Bx− κx) = β

γ2 (Bx− κx)

⇔ (B − κI)2x = β

γ2 (B − κI)x

⇔ (B − κI)x = β

γ2x

⇔ Bx =
(
β

γ2 + κ

)
x.

We note that ∇g and ∇h are linearly independent. Furthermore, f , g, and h are smooth,
hence the Karush-Kuhn-Tucker conditions are valid, therefore for each stationary point
{x∗, y∗} there exist constants a and b (similar to the Lagrange multipliers in the case
where γ = 0) that fulfill

∇f(x∗, y∗) + a∇g(x∗, y∗) + b∇h(x∗, y∗) = 0.

Our aim is now to use this equation to obtain a third degree polynomial as we did in

25

3 Convergence Analysis

the "‘γ = 0"’-case. We drop the subscript * from now on, thus x refers to x∗, and y to
y∗, respectively.
The x-derivatives bring the equation

2a(B2x−By − γ2(B − κI)(Bx− κx))− 2b(Bx− κx) = 0, (3.32)

and the y-derivatives bring

2(By − µ(y)y)
(y, y) + 2a(y −Bx) = 0, (3.33)

respectively, where we used theorem 2.3 and the derivatives calculated before.
The Karush-Kuhn-Tucker theory implies that ag(x, y) = 0, so either a = 0, or g(x, y) = 0
must hold. If y was an eigenvector, we have three cases to consider:
• a 6= 0, then y = Bx by equation (3.33), thus x would be an eigenvector as shown

above, opposing the lemma assumption.
• a = 0 and b 6= 0, hence by equation (3.32) ||Bx−κx|| = 0, and x would once again

be an eigenvector.
• a = 0 and b = 0. In this case, f(x, y) = µ(y) would be a global minimum, with y

corresponding to the smallest eigenvalue by theorem 2.3.
We assume the more interesting case, in which y is not an eigenvector. Equation (3.33)
then yields a 6= 0, so g(x, y) = 0, which we write as

||Bx− y|| = γ||Bx− κx||. (3.34)

We rewrite equation (3.32)

2a(B2x−By − γ2(B − κI)(Bx− κx))− 2b(Bx− κx) = 0

⇔ B2x−By − γ2(B − κI)(Bx− κx)− b

a
(Bx− κx) = 0

⇔ B2x−By − γ2B(Bx− κx)− (b
a
− γ2κ)(Bx− κx) = 0

⇔ B(Bx− y − γ2(Bx− κx)) = (b
a
− γ2κ)(Bx− κx),

which (after substituting c := b
a
− γ2κ) yields

B(Bx− y − γ2(Bx− κx)) = c(Bx− κx). (3.35)

Let’s have a look at equation (3.33). We divide by 2 and apply the inner product with

26

3 Convergence Analysis

y, gaining (
By

‖y‖2 , y

)
−
(
µ(y)y
‖y‖2 , y

)
+ a(y −Bx, y) = 0

⇔ 1
‖y‖2 (y,By)− 1

‖y‖2µ(y)(y, y) + a(y −Bx, y) = 0

⇔ 1
‖y‖2 (y,By)− 1

‖y‖2
(y,By)
(y, y) (y, y) + a(y −Bx, y) = 0

⇔ a(y −Bx, y) = 0,

which is equivalent to

(Bx− y, y) = 0, (3.36)

since a 6= 0. Applying the inner product with B−1(Bx− κx) to equation (3.35) gives

c‖Bx− κx‖2
B−1 = (c(Bx− κx), B−1(Bx− κx))

(3.35)= (B(Bx− y − γ2(Bx− κx)), B−1(Bx− κx))
= (Bx− y − γ2(Bx− κx), Bx− κx)
= (Bx− y,Bx− κx)− γ2‖Bx− κx‖2

(3.34)= (Bx− y,Bx− κx)− ‖Bx− y‖2

= (Bx− y,Bx− κx)− (Bx− y,Bx− y)
(3.36)= (Bx− y,−κx)
= −κ(Bx− y, x),

(3.37)

using the linearity of the inner product especially in the second last step. We do also
rewrite equation (3.33) using d := a‖y‖2 − µ(y):

2(By − µ(y)y)
(y, y) + 2a(y −Bx) = 0

⇔ By − µ(y)y + a‖y‖2(y −Bx) = 0
⇔ By − µ(y)Bx = µ(y)y − µ(y)Bx+ a‖y‖2(Bx− y)
⇔ By − µ(y)Bx = (a‖y‖2 − µ(y))(Bx− y)
⇔ By − µ(y)Bx = d(Bx− y)
⇔ B(y − µ(y)x) = d(Bx− y).

27

3 Convergence Analysis

Taking the inner product of the last equation2 with y − µ(y)x results in

‖y − µ(y)x‖2
B = d(Bx− y, y − µ(y)x)

(3.36)= −dµ(y)(Bx− y, x),

showing −dµ(y)(Bx− y, x) ≥ 0 due to the norm on the left-hand side. This yields

0 ≤ −dµ(y)(Bx− y, x) 3.37= dµ(y)c
κ
‖Bx− κx‖2

B−1

µ(y),κ≥0⇔ 0 ≤ −dκ(Bx− y, x) = dc‖Bx− κx‖2
B−1 .

Thus, cd ≥ 0.
We multilpy (3.35) by B and obtain

B2(Bx− y − γ2(Bx− κx)) = cB(Bx− κx)
⇔ B3x−B2y − γ2B3x+ γ2κB2x− cB2x+ cκBx = 0
⇔ (1− γ2)B3x−B2y + (γ2κ− c)B2x+ cκBx = 0.

We multiply this polynomial by d + µ(y) and substitute according to equation (3.38),
obtaining

(1− γ2)B2(B + dI)y −B2y + (γ2κ− c)B(B + dI)y + cκ(B + dI)y = 0
⇔ (1− γ2)B3y + (d(1− γ2)− 1 + γ2κ− c)B2y + (dγ2κ+ cκ− cd)By + dcκy = 0.

We notice that dcκ ≥ 0, since κ > 0 and dc ≥ 0, and 1 − γ2 > 0, since γ < 1. As in
the "γ = 0"-case, this polynomial has maximally two positive roots by Descartes’ rule
of signs ([7]). The argument is the same as before and we obtain that y is a linear
combination of at most two (normalized) eigenvectors vk, vl. The same must hold for x,
since d+ µ(y) = a‖y‖2 6= 0. Otherwise, equation (3.38) would yield

a‖y‖2Bx = (B + dI)y
⇔ Bx = ckvk + clvl

⇔ αkµkvk + αlµlvl + αmµmvm = ckvk + clvl,

with constants ck, cl, αk, αl and αm. The linear independency of the eigenvectors yields
µm = 0, a contradiction. Therefore, x, y ∈ span{vk, vl}.

2Note that this equation is equivalent to another equation, that we’ll use later:

(d+ µ(y))Bx = (B + dI)y (3.38)

28

3 Convergence Analysis

What is left, is to show the equation with the angles. We have

cos2 ∠(Bx, y) =
(

(Bx, y)
‖Bx‖‖y‖

)2

(3.36)=
(

(y, y)
‖Bx‖‖y‖

)2

=
(
‖y‖2

‖Bx‖‖y‖

)2

= ‖y‖2

‖Bx‖2 ,

which brings us3

sin2 ∠(Bx, y) = 1− cos2 ∠(Bx, y)

= 1− ‖y‖2

‖Bx‖2

= ‖Bx
2‖ − ‖y‖2

‖Bx‖2

(3.36)= ‖Bx− y‖2

‖Bx‖2 .

As the angle-range is [0, π], we obtain sin∠(Bx, y) = ‖Bx−y‖
‖Bx‖ . Similarly,4

cos2 ∠(Bx, x) κ>0= cos2 ∠(Bx, κx)

=
(

(Bx, κx)
‖Bx‖‖κx‖

)2

=
(
κ(Bx, x)
‖Bx‖‖κx‖

)2

=
(

κ(κx, x)
‖Bx‖‖κx‖

)2

=
(

(κx, κx)
‖Bx‖‖κx‖

)2

=
(
‖κx‖2

‖Bx‖‖κx‖

)2

= ‖κx‖
2

‖Bx‖2 ,

3The equation (3.36) states that y and Bx−y are orthogonal, thus we can apply Pythagoras’ theorem,
‖y‖2 + ‖Bx− y‖2 = ‖Bx− y + y‖2(= ‖Bx‖2), what we use here.

4We use h(x, y) = 0, which is equivalent to (κx, x) = (Bx, x) by properties of the inner product,
and B. Furthermore, (κx, κx) = (Bx, κx), thus (Bx − κx, κx) = 0, allowing us once more to apply
Pythagoras’ theorem on Bx− κx, and κx.

29

3 Convergence Analysis

and further

sin2 ∠(Bx, κx) = 1− cos2 ∠(Bx, κx)

= ‖Bx‖
2 − ‖κx‖2

‖Bx‖2

= ‖Bx− κx‖
2

‖Bx‖2 .

This yields

sin∠(Bx, x) = ‖Bx− κx‖
‖Bx‖

(3.34)= ‖Bx− y‖
γ‖Bx‖

= 1
γ

sin∠(Bx, y).

The last piece of the proof for theorem 3.1 missing is the proof for lemma 3.5, which we
will now present.

Lemma 3.5, proof. Without any constraint we can represent x, y, and Bx by u :=
c(1, α)T , v := d(1, β)T , and w := c(µk, αµl)T , when x = cvk + cαvl, et cetera, where
{vk, vl} are the orthonormal eigenvectors corresponding to µk and µl.
The orthonormality yields

‖x‖2 = c2‖vk‖2 + c2α‖vl‖2 = c2 + c2α2 = ‖u‖2,

and similarly ‖y‖ = ‖v‖, and ‖Bx‖ = ‖w‖. Furthermore,

(Bx, y) = (µkcvk + µlcαvl, dvk + dβvl) = µkcd(vk, vk) + µlcαdβ(vl, vl)
= µkcd+ µlcαdβ = (w, v).

By the definition of arccos, the angles between the vectors are pairwise equal and we
obtain

sin∠(w, v) = sin∠(Bx, y) Lemma3.4= γ sin∠(Bx, x) = γ sin∠(w, u).

In a three-dimensional space, it holds that sin∠(a, b) = ‖a×b‖
‖a‖‖b‖ , we use this to rewrite the

last equation by adding an artificial dimension:∥∥∥∥∥
[
w
0

]
×
[
v
0

]∥∥∥∥∥
‖w‖‖v‖

= sin∠(w, v) Lemma3.4= γ sin∠(w, u) = γ

∥∥∥∥∥
[
w
0

]
×
[
u
0

]∥∥∥∥∥
‖w‖‖u‖

. (3.39)

30

3 Convergence Analysis

We consider the norms of the cross products

∥∥∥∥∥
[
w
0

]
×
[
v
0

]∥∥∥∥∥ =

∥∥∥∥∥∥∥
 0

0
cdµkβ − cdαµl


∥∥∥∥∥∥∥ = |cd||µkβ − αµl| and

∥∥∥∥∥
[
w
0

]
×
[
u
0

]∥∥∥∥∥ =

∥∥∥∥∥∥∥
 0

0
c2µkα− c2αµl


∥∥∥∥∥∥∥ = c2|µkα− αµl|,

which we substitute in equation (3.39). Solving for γ2 yields

γ2 =


∥∥∥∥∥
(
w
0

)
×
(
v
0

)∥∥∥∥∥ ‖w‖‖u‖∥∥∥∥∥
(
w
0

)
×
(
u
0

)∥∥∥∥∥ ‖w‖‖v‖


2

= c2d2(µkβ − αµl)2‖u‖2

c4(µkα− αµl)2‖v‖2

= d2(µkβ − αµl)2c2(1 + α2)
c2(µkα− αµl)2d2(1 + β2)

= (µkβ − αµl)2(1 + α2)
(µkα− αµl)2(1 + β2) .

Since c and d are arbitrary real numbers, we can set c = d = 1 without loss of generality.
As we derived equation (3.16), we can now derive a similar equation for x and y.

α2 = µk − µ(x)
µ(x)− µl

and (3.40)

β2 = µk − µ(y)
µ(y)− µl

. (3.41)

We know µ(y) ≥ µ(x) > µl, and therefore µ(y)−µl

µ(x)−µl
≥ 1. This helps us to simplify

1 + α2

1 + β2 =
1 + µk−µ(x)

µ(x)−µl

1 + µk−µ(y)
µ(y)−µl

= (µ(x)− µl + µk − µ(x))(µ(y)− µl)
(µ(y)− µl + µk − µ(y))(µ(x)− µl)

≥ 1,

bringing a lower bound for γ2:

γ2 ≥ (µkβ − αµl)2

(µkα− αµl)2 .

31

3 Convergence Analysis

This can be used to state

(µkα− αµl)2γ2 ≥ (µkβ − αµl)2

⇔ |µkα− αµl|γ ≥ |µkβ − αµl|

⇔ |µkα|
∣∣∣∣∣1− µl

µk

∣∣∣∣∣ γ ≥ |µkα|
∣∣∣∣∣βα − µl

µk

∣∣∣∣∣ ,
to obtain

⇔
∣∣∣∣∣1− µl

µk

∣∣∣∣∣ γ ≥
∣∣∣∣∣βα − µl

µk

∣∣∣∣∣ . (3.42)

We now have everything we need, we only have to put all the pieces together!

µ(x)− µl
µk − µ(x)

µk − µ(y)
µ(y)− µl

(3.41),(3.40)= β2

α2

=
∣∣∣∣∣βα
∣∣∣∣∣
2

≤
(∣∣∣∣∣βα − µl

µk

∣∣∣∣∣+
∣∣∣∣∣ µlµk

∣∣∣∣∣
)2

(3.42)
≤

(
γ

(
1− µl

µk

)
+ µl
µk

)2

=
(
γ + (1− γ) µl

µk

)2

,

where we used 0 < µl

µk
< 1 in the second last inequality, allowing us to drop the |.|.

32

4 Computational experiments

After all that theory, it’s time to look at some practical stuff. This section analyses the
MATLAB-code written by the author. It can be found at the end of this thesis in section
7.

4.1 Large, sparse matrices

One of the problems, which turned out to be among the most difficult, was to construct
large and sparse matrices A and B. One option used is to firstly define a random vector,
which contains n values, that will later become the eigenvalues for a matrix. This vector
was then used to define a sparse matrix by the command sprandsym. Unfortunately, this
command is very time consuming for large n. An alternative used was to simply define
a sparse tridiagonal matrix, however the results are very specific and doubtedly can be
generalized.

4.2 Preconditioning

The preconditioner that appeared to be most promising from the literature was an in-
verse approximation by an incomplete cholesky factorization. The calculation of this
preconditioner was achieved by the MATLAB command ichol. It consumed more time
than all other problems combined. For small problems, i.e. n < 10000, T was chosen
as a perturbation of the inverse, i.e. T = (1 + ε)A−1, since it allowed to experiment
with different values for γ. This choice of T was only used in function 7.4 to test the
convergence in dependence on γ.

4.3 Calculating the bound γ

The bound γ was calculated in function 7.4. It was achieved by transforming the gen-
eralized EVP according to section 3.1, before calculating γ = ||I − TA||. An alternative
approach would obviously be to calculate the largest singular values of I − TA by vector
iterations, but the author found his way more elegant.

33

4 Computational experiments

4.4 Testing the theory

As the bound γ was calculated in 7.4, it could be seen that using ichol leads to a very
good approximate, i.e. T ≈ A−1, which lead to fast convergence of the PINVIT-methods.
The choice of T as a perturbation to A−1 resulted in γ being proportional to the param-
eter ε, precisely γ = ε. To test the theory, the largest eigenvalue µ was calculated by
the MATLAB command eigs. Different test-setups have been considered:

(1) For fixed matrices A and B, and different values of gamma, the steps, until the
PINVIT method 7.8 converged (with an error to µ of less than 10−8), were counted.
Thus, T was chosen as a perturbation to A−1.

(2) The same has been done for all the methods to see which method converges fastest,
where random matrices were calculated and T was calculated by an incomplete
cholesky factorization.

(3) For a fixed step size, the relative error between the largest eigenvalues calculated
by the MATLAB-command and the different methods has been analyzed.

The first test-setup was executed 100 times. Every time random matrices A and B were
calculated, before the eigenvalue problem was solved using five different preconditioners.
The medians of the needed number of steps have been calculated for each preconditioner.
The results are presented in the following table.

Problem size n γ Average number of steps needed until convergence
100 0.1 50.5

0.5 41.7
0.9 91.7
0.99 684.7
0.999 4751.8

1000 0.1 43.9
0.5 37.6
0.9 101.4
0.99 801.2
0.999 6800.8

For γ ≥ 1, the method didn’t converge once when tested. For γ close to 1, the number
of steps until convergence needed, grows rapidly. However, for smaller values of γ, the
number of steps needed were firstly small and secondly not corresponding to γ, consider
that for γ = 0.1 and γ = 0.5 roughly the same number of steps were needed. In fact,
γ = 0.5 yielded the fewest steps needed for the γ tested.
The second test-setup was also executed 100 times. Random matrices have been cal-
culated, T was chosen as an incomplete cholesky factorization. The standard PINVIT
method, and both PINVIT2 and PINVIT3 were used to calculate the eigenvalues, all
using the same preconditioner. The average number of steps needed can be found in the

34

4 Computational experiments

following chart.

n Steps Time Steps Time Steps Time
PINVIT PINVIT PINVIT2 PINVIT2 PINVIT3 PINVIT3

1000 63.23 0.1993 s 18.32 0.0969 s 9.68 0.0548 s
3000 53.97 1.3013 s 35.69 0.9506 s 10.51 0.3085 s

One thing, that has to be mentioned and explained is, that PINVIT2 didn’t converge at
times. This is due to it "being stuck" at another eigenvector. If at some point, the current
iterate x is an eigenvector, µ is the corresponding eigenvalue and thus gradmu = 0 in
method 7.9. For the chart, only those examples were used where PINVIT2 did converge.
As the others, the third test-setup was executed 100 times for different step sizes, but for
the same matrices. The preconditioner was again calculated by an incomplete cholesky
factorization. The problem size was chosen as n = 3000, the largest eigenvalue was in
average 3428. The relative error was calculated, the results are presented in the following
chart.

Number of Relative error Relative error Relative error
steps PINVIT PINVIT2 PINVIT3
10 62.55 % 1.89 % 1.66 %
20 62.64 % 1.75 % 1.63 %
30 62.64 % 1.67 % 1.62 %

It is interesting that the error of PINVIT becomes larger between 10 and 20 steps. This
is explainable since we choose a fixed step size, allowing the Rayleigh quotient to become
larger in some iterations. However, as shown before, the method still converges, as could
be seen before. It is still advisable to use PINVIT2 or PINVIT3 as these methods use
an optimal step size.

35

5 The LOBPCG method

It is often not enough to calculate the largest or smallest eigenvalue only, but one would
rather be interested in the k largest eigenvalues. This is achieved by the LOBPCG
method. Both an implementation and a test-setup are provided at the end of this thesis,
see 7.18 and 7.3, respectively. The method is similar to PINVIT3, but calculates and
stores more eigenvector and eigenvalue iterates at the same time. They are all thrown
into a Rayleigh-Ritz step, where the largest k Ritz-values are approximates for the largest
k eigenvalues. For each vector, the Rayleigh quotient and gradients of it are calculated,
before using the old iterates xj,n−1, the current iterate xj,n and the gradient ∇λ(xj,n) to
get a new iterate x̃j,n+1 by the Rayleigh-Ritz method. Another step of the Rayleigh-Ritz
method is performed on all the new iterates x̃1,n+1, ..., x̃k,n+1. The resulting vectors are
the new iterates xj,n+1.
It is obvious, that theorem 3.1 holds for the iterate corresponding to the largest Rayleigh
quotient calculated in each step. A convergence analysis for the other iterates, which
correspond to the second, third, ..., k-th largest eigenvalues is presented in [10].

36

6 Conclusion and outlook

A convergence analysis for the preconditioned iterative eigensolver PINVIT has been
made. Furthermore, the theory was tested and different iterative eigensolvers were com-
pared. It could be seen that iterative eigensolvers implemented using saving techniques
for sparse matrices were indeed a lot faster than methods that didn’t use those tech-
niques. The comparison of PINVIT, PINVIT2, and PINVIT3 yielded - as expected -
that PINVIT needs more steps than PINVIT2 which again needed more steps than PIN-
VIT3. The same result holds for the time needed until convergence in the last section.
It has become clear that the preconditioner has a huge impact on both the total time
needed to solve a given eigenvalue problem and the steps needed by the iterative eigen-
solver. Finding the best preconditioner is therefore a key part when working with pre-
conditioned eigensolvers and can be elaborated more than done in this thesis.
A long term aim is to obtain a sharp convergence bound for the LOBPCG method, first
steps to this bound were made by the authors of [10]. At the moment, a convergence
analysis for PINVIT3 is neither known. However, the convergence analysis for PINVIT2
is structurally similar to that from PINVIT, as shown in this thesis. For more compli-
cated methods, such as the Jacobi-Davidson method ([14]), a convergence analysis is yet
to be found.

37

7 Matlab code

The author of this thesis has implemented different codes for comparing different eigen-
solvers, and for testing the convergence analysis made in section 3.

Listing 7.1: Main programm to compare different eigensolvers for the standard EVP
1 function comparing_iterative_eigensolvers
2 clc
3 tic
4 %n as a square number (usually the case for grid on squares)
5 n =1000;
6

7 %% Initialization for standard EVP , with a sparse matrix B (as above),
8 %% for very large n
9

10 % Needed : Starting vector x, matrix B, preconditioner T
11 x=ones(n ,1);
12 for k=1:n/2
13 x(2*k)=0;
14 end
15 x=x/norm(x);
16 t1=toc
17 tic
18 rc =100* rand(n ,1);
19 B= sprandsym (n,log(n)/n,rc);
20 t2=toc
21 tic
22 I=speye(n);
23 T=1/2*I;
24

25 %% calling different iterative eigensolvers , note that A=eye(n)
26

27 % number of steps
28 s =1000;
29 t5=toc
30 tic
31 mumax=eigs(B ,1)
32 t6=toc
33 tic
34 [mu1 ,x1]= PINVIT (x,B,T,s,n,mumax);
35 t7=toc
36 tic
37 [mu2 ,x2]= PINVIT2 (x,B,T,s,n,mumax);
38 t8=toc
39 tic

38

7 Matlab code

40 [mu3 ,x3]= PINVIT3 (x,B,T,s,n,mumax);
41 t9=toc
42

43 mumax -mu1
44 mumax -mu2
45 mumax -mu3
46

47 end

Listing 7.2: Main programm to compare different eigensolvers for the generalized EVP
1 function comparing_gen_iterative_eigensolvers
2 clc
3 tic
4 %% Initialisation for the second test -setup
5 % tgenPINVIT =0;
6 % tgenPINVIT2 =0;
7 % tgenPINVIT3 =0;
8 % step=zeros (3 ,1);
9

10 %% Initialisation for the third test -setup
11 relerror10PINVIT =0;
12 relerror10PINVIT2 =0;
13 relerror10PINVIT3 =0;
14 relerror20PINVIT =0;
15 relerror20PINVIT2 =0;
16 relerror20PINVIT3 =0;
17 relerror30PINVIT =0;
18 relerror30PINVIT2 =0;
19 relerror30PINVIT3 =0;
20 avgmumax =0;
21

22 % problem size n
23 n =3000;
24

25 % Needed : Starting vector x, matrices A and B, preconditioner T
26 x=ones(n ,1);
27 for k=1:n/2
28 x(2*k)=0;
29 end
30 x=x/norm(x);
31

32 for t=1:25
33 %% Initialization for generalized EVP , with sparse matrices A and B,
34 %% for very large n - first possibility
35 t1=toc
36 tic
37 rc =100* rand(n ,1);
38 B= sprandsym (n,log(n)/n,rc);
39 t2=toc
40 tic
41 rc =100* rand(n ,1);
42 A= sprandsym (n,log(n)/n,rc);
43 t3=toc

39

7 Matlab code

44 tic
45 opts.type = ’ict ’;
46 L1=ichol(A,opts);
47 L2=inv(L1);
48 T=L2 ’*L2;
49 t4=toc
50

51 %% Initialization for generalized EVP , with sparse matrices A and B,
52 %% for very large n - second possibility
53 % tic
54 % D = sparse (1:n ,1:n ,2* ones (1,n),n,n);
55 % E = sparse (2:n ,1:n-1,-1* ones (1,n -1) ,n,n);
56 % A = E+D+E’;
57 % B = sparse (1:n ,1:n ,2* ones (1,n),n,n);
58 % t3=toc
59 % tic
60 % opts.type = ’ict ’;
61 % L1=ichol(A,opts);
62 % L2=inv(L1);
63 % T=L2 ’*L2;
64 % t4=toc
65

66 %% calling different iterative eigensolvers for the generalized EVP
67

68 % number of steps , needed for third test -setup
69 s=10;
70

71 t5=toc
72 tic
73 mumax=eigs(B,A ,1);
74 t6=toc
75 tic
76 [mu1 ,x1 ,k]= genPINVIT (x,A,B,T,s,n,mumax);
77 t7=toc
78 tic
79 [mu2 ,x2 ,l]= genPINVIT2 (x,A,B,T,s,n,mumax);
80 t8=toc
81 tic
82 [mu3 ,x3 ,m]= genPINVIT3 (x,A,B,T,s,n,mumax);
83 t9=toc
84

85 %% Values calculated for the second test -setup
86 % tgenPINVIT = tgenPINVIT +t7;
87 % tgenPINVIT2 = tgenPINVIT2 +t8;
88 % tgenPINVIT3 = tgenPINVIT3 +t9;
89 % step (1)=step (1)+k;
90 % step (2)=step (2)+l;
91 % step (3)=step (3)+m;
92

93 %% first couple of values calculated for the third test -setup
94 relerror10PINVIT = relerror10PINVIT +(mumax -mu1)/mumax;
95 relerror10PINVIT2 = relerror10PINVIT2 +(mumax -mu2)/mumax;
96 relerror10PINVIT3 = relerror10PINVIT3 +(mumax -mu3)/mumax;
97 avgmumax = avgmumax +mumax;

40

7 Matlab code

98

99

100 %% 20 steps , needed for third test -setup
101 s=20;
102 tic
103 mumax=eigs(B,A ,1);
104 t6=toc
105 tic
106 [mu1 ,x1 ,k]= genPINVIT (x,A,B,T,s,n,mumax);
107 t7=toc
108 tic
109 [mu2 ,x2 ,l]= genPINVIT2 (x,A,B,T,s,n,mumax);
110 t8=toc
111 tic
112 [mu3 ,x3 ,m]= genPINVIT3 (x,A,B,T,s,n,mumax);
113 t9=toc
114

115 % second couple of values calculated for the third test -setup
116 relerror20PINVIT = relerror20PINVIT +(mumax -mu1)/mumax;
117 relerror20PINVIT2 = relerror20PINVIT2 +(mumax -mu2)/mumax;
118 relerror20PINVIT3 = relerror20PINVIT3 +(mumax -mu3)/mumax;
119

120 %% 30 steps , needed for third test -setup
121 s=30;
122 tic
123 [mu1 ,x1 ,k]= genPINVIT (x,A,B,T,s,n,mumax);
124 t7=toc
125 tic
126 [mu2 ,x2 ,l]= genPINVIT2 (x,A,B,T,s,n,mumax);
127 t8=toc
128 tic
129 [mu3 ,x3 ,m]= genPINVIT3 (x,A,B,T,s,n,mumax);
130 t9=toc
131

132 % third couple of values calculated for the third test -setup
133 relerror30PINVIT = relerror30PINVIT +(mumax -mu1)/mumax;
134 relerror30PINVIT2 = relerror30PINVIT2 +(mumax -mu2)/mumax;
135 relerror30PINVIT3 = relerror30PINVIT3 +(mumax -mu3)/mumax;
136

137

138

139 end
140 %% Values calculated for the second test -setup
141 % tgenPINVIT
142 % tgenPINVIT2
143 % tgenPINVIT3
144 % step=step *1/10
145

146 %% Values calculated for the third test -setup
147 relerror10PINVIT = relerror10PINVIT /25
148 relerror10PINVIT2 = relerror10PINVIT2 /25
149 relerror10PINVIT3 = relerror10PINVIT3 /25
150 relerror20PINVIT = relerror20PINVIT /25
151 relerror20PINVIT2 = relerror20PINVIT2 /25

41

7 Matlab code

152 relerror20PINVIT3 = relerror20PINVIT3 /25
153 relerror30PINVIT = relerror30PINVIT /25
154 relerror30PINVIT2 = relerror30PINVIT2 /25
155 relerror30PINVIT3 = relerror30PINVIT3 /25
156 avgmumax = avgmumax /25
157

158

159 end

Listing 7.3: Main programm to test the LOBPCG method for the generalized EVP
1 function testing_LOBPCG
2 clc
3 tic
4

5 % Choose size n and number of eigenvalues to be computed k
6 n =8000;
7 k=5;
8

9

10 %% Initialization for generalized EVP , with sparse matrices A and B,
11 %% for very large n
12

13 % Needed : Starting vector x_1 , ..., x_k (stored in X),
14 % matrices A and B, preconditioner T
15

16 % S
17 X=zeros(n,k);
18 for i=1:k
19 j=i;
20 while j<=n
21 X(j,i)=1;
22 j=j+k;
23 end
24 X(1:n,i)=X(1:n,i)/norm(X(1:n,i));
25 end
26 t1=toc
27

28 % B
29 tic
30 rc =100* rand(n ,1);
31 B= sprandsym (n,log(n)/n,rc);
32 t2=toc
33

34 % A
35 tic
36 rc =100* rand(n ,1);
37 A= sprandsym (n,log(n)/n,rc);
38 t3=toc
39

40 % T using incomplete Cholesky factorization
41 tic
42 opts.type = ’ict ’;
43 L1=ichol(A,opts);

42

7 Matlab code

44 L2=inv(L1);
45 T=L2 ’*L2;
46 t4=toc
47

48 % calculating eigenvalues by MATLAB routine
49 tic
50 eigen=eigs(B,A,k);
51 evmax=max(eigen)
52 t5=toc
53

54 %% Calculating the k largest eigenvalues using the LOBPCG method
55 s=3; % Step size
56 tic
57 [eigenvalues , eigenvectors]= LOBPCG (X,k,A,B,T,s,n,evmax);
58 t6=toc
59

60 tic
61

62 for i=1:k
63 [a,ai]= max(eigen);
64 [b,bi]= max(eigenvalues);
65 norm(a-b)
66 eigen(ai)=0;
67 eigenvalues (bi)=0;
68 end
69 t7=toc
70

71 end

Listing 7.4: Main programm for testing the convergence analysis
1 function convergence_analysis_PINVIT
2 clc
3 epsilon (1) =1;
4 epsilon (2) =5;
5 epsilon (3) =9;
6 epsilon (4) =9.9;
7 epsilon (5) =9.99;
8 step=zeros (5 ,1);
9 % Problem size n

10 n =5000;
11

12 for t =1:100
13 %% Initialization for generalized EVP
14 % Needed : Starting vector x, matrices A and B, preconditioner T
15

16 x=ones(n ,1);
17 for k=1:n/2
18 x(2*k)=0;
19 end
20 x=x/norm(x);
21

22

23 %% A and B calculated as random matrices

43

7 Matlab code

24 tic
25 rc1 =100* rand(n ,1);
26 A= sprandsym (n ,100/n,rc1);
27 rc2 =100* rand(n ,1);
28 B= sprandsym (n ,100/n,rc2);
29 t1=toc;
30

31 %% Preconditioner calculated using inverse of incomplete cholesky
32 %% factorization of A
33 % tic
34 % opts.type = ’ict ’;
35 % L1=ichol(A,opts);
36 % L2=inv(L1);
37 % T=L2 ’*L2;
38 % t2=toc
39 %% Preconditioner calculated as perturbation of inv(A)
40 tic
41 for m=1:5
42 epsilon1 = epsilon (m)*1e -1;
43 T=(1+ epsilon1)*inv(A);
44 t2=toc;
45

46

47

48 %% transformation the problem according to thesis , section 3, to
calculate

49 %% gamma
50 % tic
51 % Af=sqrtm(full(A));
52 % T1=Af*T*Af;
53 % gamma(t)=norm(eye(n)-T1);
54 % t3=toc;
55

56 %% calling iterative eigensolver
57

58 % number of steps
59 s =1000;
60 tic
61 mumax=eigs(B,A ,1);
62 t4=toc;
63 tic
64 [mu1 ,x1 ,k]= genPINVIT (x,A,B,T,s,n,mumax);
65 t5=toc;
66 step(m)=step(m)+k;
67 mumax -mu1;
68 end
69 end
70 step=step *1/100
71 end

44

7 Matlab code

7.0.1 Implementations of different preconditoned iterative
eigensolvers

Listing 7.5: Simplest iterative method
1 function [mu ,x]= PINVIT (x,B,T,s,n,ev)
2 t=0;
3 mu =0;
4 k=1;
5 %% Iteration (choose one of the loops)
6 % for k=1:s
7 while ev -mu >10e-8
8 b=B*x;
9 mu=(x’*b)/(x’*x);

10 gradmu =1/ mu*T*(b-mu*x);
11

12 x2=x+ gradmu ;
13 %% Using Armijo - Goldstein conditions
14 % mu_new =x2 ’*(B*x2)/(x2 ’*x2);
15 % alpha =1;
16 % while (mu >= mu_new)
17 % alpha=alpha /2;
18 % x2=x+alpha* gradmu ;
19 % mu_new =(x2 ’*(B*x2))/(x2 ’*x2);
20 % if (alpha <10e -20)
21 % t=1;
22 % break
23 % end
24 % end
25 % if(t==1)
26 % break
27 % end
28 x=x2;
29 k=k+1;
30 end
31 k
32 end

Listing 7.6: PINVIT2, each step using an optimization in a two-dimensional subspace
1 function [mu ,x]= PINVIT2 (x,B,T,s,n,ev)
2 I=speye(n);
3 mu =0;
4

5 %% Iteration (choose one of the loops)
6 % for k=1:s
7 while ev -mu >10e-4
8

9 b=B*x;
10 mu=x’*b/(x’*x);
11 gradmu =T*(b-mu*x);
12 gradmu = gradmu /norm(gradmu);
13

14 tau= rayleighritz2 (n,B,x, gradmu);

45

7 Matlab code

15

16

17 x=x+tau* gradmu ;
18 x=x/norm(x);
19 end
20

21 end

Listing 7.7: PINVIT3, each step using an optimization in a three-dimensional subspace
1 function [mu ,x]= PINVIT3 (x,B,T,s,n,ev)
2 I=speye(n);
3 mu =0;
4

5 %% first step
6 b=B*x;
7 mu=x’*b/(x’*x);
8 gradmu =T*(b-mu*x);
9 gradmu = gradmu /norm(gradmu);

10 tau= rayleighritz2 (n,B,x, gradmu);
11 p=x;
12 x=x+tau* gradmu ;
13 x=x/norm(x);
14

15 %% Iteration (choose one of the loops)
16 % for k=1:s
17 while ev -mu >10e-4
18

19 b=B*x;
20 mu=x’*b/(x’*x);
21 gradmu =T*(b-mu*x);
22 gradmu = gradmu /norm(gradmu);
23

24 [tau ,gamma]= rayleighritz3 (n,B,x,gradmu ,p);
25

26 x_old=x;
27 x=x+tau* gradmu +gamma*p;
28 x=x/norm(x);
29 p=T*(b-mu*x_old);
30 end
31

32 end

Listing 7.8: Simplest iterative method for the generalized EVP, for which a convergence
analysis has been made in this thesis

1 function [mu ,x,k]= genPINVIT (x,A,B,T,s,n,ev)
2 mu =0;
3 k=0;
4 %% Iteration (choose one of the loops)
5 for k=1:s % for third test -setup
6 % while ev -mu >1e-8
7 a=A*x;
8 b=B*x;

46

7 Matlab code

9 mu=(x’*b)/(x’*a);
10 gradmu =1/ mu*T*(b-mu*a);
11

12 x=x+ gradmu ;
13 k=k+1;
14 end
15 k;
16 end

Listing 7.9: PINVIT2 for the generalized EVP, each step using an optimization in a
two-dimensional subspace

1 function [mu ,x,k]= genPINVIT2 (x,A,B,T,s,n,ev)
2 mu =0;
3 k=0;
4 %% Iteration (choose one of the loops)
5 for k=1:s %for the third test -setup
6 % while ev -mu >1e-8
7 a=A*x;
8 b=B*x;
9 mu=x’*b/(x’*a);

10 gradmu =T*(b-mu*a);
11

12 % Orthonormalize gradmu and x
13 gradmu =gradmu -(gradmu ’*x)*x;
14 gradmu = gradmu /norm(gradmu);
15

16 x= genrayleighritz2 (n,A,B,x, gradmu);
17 % x=x/norm(x);
18 k=k+1;
19 end
20 k;
21 end

Listing 7.10: PINVIT3 for the generalized EVP, each step using an optimization in a
three-dimensional subspace

1 function [mu ,x,k]= genPINVIT3 (x,A,B,T,s,n,ev)
2 k=1;
3 %% first step
4 a=A*x;
5 b=B*x;
6 mu=x’*b/(x’*a);
7 gradmu =T*(b-mu*a);
8 gradmu = gradmu /norm(gradmu);
9 p=x;

10 x= genrayleighritz2 (n,A,B,x, gradmu);
11 x=x/norm(x);
12

13 %% Iteration (choose one of the loops)
14 for k=1:s %for third test -setup
15 % while ev -mu >1e-8
16 a=A*x;
17 b=B*x;

47

7 Matlab code

18 mu=x’*b/(x’*a);
19 gradmu =T*(b-mu*a);
20 gradmu = gradmu /norm(gradmu);
21

22 x_old=x;
23 x= genrayleighritz3 (n,A,B,gradmu ,x,p);
24

25 x=x/norm(x);
26 p=x_old -(x’* x_old)*x;
27 p=p/norm(p);
28 k=k+1;
29 end
30 k;
31 end

7.0.2 Implementations of the Rayleigh-Ritz method for different
subspaces

Listing 7.11: Rayleigh-Ritz-method for two-dimensional subspaces
1 function [tau] = rayleighritz2 (n,B,v1 ,v2)
2 S(1:n ,1)=v1;
3 S(1:n ,2)=v2;
4

5 % calculate Ritz values
6 [U,D]= eig(S’*B*S);
7

8 % calculate corresponding vector
9 [x,i]= max(diag(D));

10

11 u=U(1:2 ,i);
12 u=u/u(1);
13 tau=u(2);
14 end

Listing 7.12: Rayleigh-Ritz-method for three-dimensional subspaces
1 function [tau ,gamma] = rayleighritz3 (n,B,v1 ,v2 ,v3)
2 S(1:n ,1)=v1;
3 S(1:n ,2)=v2;
4 S(1:n ,3)=v3;
5

6 % calculate Ritz values
7 [U,D]= eig(S’*B*S);
8

9 % calculate corresponding vector
10 [x,i]= max(diag(D));
11

12 u=U(1:3 ,i);
13 u=u/u(1);
14 tau=u(2);
15 gamma=u(3);

48

7 Matlab code

16 end

Listing 7.13: generalized Rayleigh-Ritz-method for 2-dimensional subspaces
1 function [x] = genrayleighritz2 (n,A,B,v1 ,v2)
2 S(1:n ,1)=v1;
3 S(1:n ,2)=v2;
4

5 % calculate Ritz values
6 [U,D]= eig(S’*B*S,S’*A*S);
7

8 % calculate corresponding vector
9 [x,i]= max(diag(D));

10

11 x=S*U(1:2 ,i);
12

13 end

Listing 7.14: generalized Rayleigh-Ritz-method for 3-dimensional subspaces
1 function [x] = genrayleighritz3 (n,A,B,v1 ,v2 ,v3)
2 S(1:n ,1)=v1;
3 S(1:n ,2)=v2;
4 S(1:n ,3)=v3;
5

6 % calculate Ritz values
7 [U,D]= eig(S’*B*S,S’*A*S);
8

9 % calculate corresponding vector
10 [x,i]= max(diag(D));
11

12 x=S*U(1:3 ,i);
13 end

Listing 7.15: generalized Rayleigh-Ritz-method for 2k-dimensional subspaces
1 function [X,P] = genrayleighritz2k (n,A,B,S1 ,S2 ,k)
2 S(1:n ,1:k)=S1;
3 S(1:n,(k+1) :(2*k))=S2;
4

5 % calculate Ritz values
6 [U,D]= eig(S’*B*S,S’*A*S);
7

8

9 % calculate corresponding vector
10 for j=1:k
11 [x,i]= max(diag(D));
12

13 D(j,j)=0;
14 P(1:n,j)=S1 (1:n,i);
15 X(1:n,j)=S*U(1:2*k,i);
16 X(1:n,j)=X(1:n,j)/norm(X(1:n,j));
17 end
18

19 end

49

7 Matlab code

Listing 7.16: generalized Rayleigh-Ritz-method for 3k-dimensional subspaces
1 function [X,P] = genrayleighritz3k (n,A,B,S1 ,S2 ,S3 ,k)
2 S(1:n ,1:k)=S1;
3 S(1:n,(k+1) :(2*k))=S2;
4 S(1:n ,(2*k+1) :(3*k))=S3;
5

6 % calculate Ritz values
7 [U,D]= eig(S’*B*S,S’*A*S);
8

9 % calculate corresponding vector
10 for j=1:k
11 [x,i]= max(diag(D));
12

13 D(i,i)=0;
14

15 X(1:n,j)=S*U(1:3*k,i);
16 X(1:n,j)=X(1:n,j)/norm(X(1:n,j));
17 P(1:n,j)=S1*U(1:k,i)+S3*U(2*k+1:3*k,i);
18 P(1:n,j)=P(1:n,j)/norm(P(1:n,j));
19 end
20

21 end

Listing 7.17: generalized Rayleigh-Ritz-method for k-dimensional subspaces
1 function X = genrayleighritzX (n,A,B,X,k)
2 S=X;
3 % calculate Ritz values
4 [U,D]= eig(S’*B*S,S’*A*S);
5

6 % sort vectors
7 for i=1:k
8 [x,j]= max(diag(D));
9 X(1:n,i)=S*U(1:k,j);

10 D(j,j)=0;
11 end
12

13 end

7.0.3 LOBPCG implementations

The implementation of the LOBPCG methods is according to the pseudo code offered
in [10].

Listing 7.18: Locally Optimal Block Preconditioned Conjugate Gradient
1 function [mu ,X]= LOBPCG (X,k,A,B,T,s,n,ev)
2 count =1;
3 %% first step
4 a=A*X;
5 b=B*X;

50

7 Matlab code

6 for j=1:k
7 mu(j)=X(1:n,j) ’*b(1:n,j)/(X(1:n,j) ’*a(1:n,j));
8 gradmu (1:n,j)=T*(b(1:n,j)-mu(j)*a(1:n,j));
9 gradmu (1:n,j)= gradmu (1:n,j)/norm(gradmu (1:n,j));

10 end
11 [X,P] = genrayleighritz2k (n,A,B,gradmu ,X,k);
12

13 %% Iteration (choose one of the loops)
14 for t=1:s
15 % while ev -mu (1) >10e-4
16 a=A*X;
17 b=B*X;
18 for j=1:k
19 mu(j)=X(1:n,j) ’*b(1:n,j)/(X(1:n,j) ’*a(1:n,j));
20 gradmu (1:n,j)=T*(b(1:n,j)-mu(j)*a(1:n,j));
21 gradmu (1:n,j)= gradmu (1:n,j)/norm(gradmu (1:n,j));
22 end
23 [X,P]= genrayleighritz3k (n,A,B,gradmu ,X,P,k);
24 count=count +1;
25 end
26 count
27

28

29 end

Listing 7.19: Locally Optimal Block Preconditioned Conjugate Gradient, alternative ver-
sion

1 function [mu ,X]= LOBPCG2 (X,k,A,B,T,s,n,ev)
2 count =1;
3 %% first step
4 a=A*X;
5 b=B*X;
6 for j=1:k
7 mu(j)=X(1:n,j) ’*b(1:n,j)/(X(1:n,j) ’*a(1:n,j));
8 gradmu (1:n,j)=T*(b(1:n,j)-mu(j)*a(1:n,j));
9 gradmu (1:n,j)= gradmu (1:n,j)/norm(gradmu (1:n,j));

10 tau= genrayleighritz2 (n,A,B,X(1:n,j),gradmu (1:n,j));
11 P(1:n,j)=X(1:n,j);
12 X(1:n,j)=X(1:n,j)+tau* gradmu (1:n,j);
13 X(1:n,j)=X(1:n,j)/norm(X(1:n,j));
14 end
15

16 %% Iteration (choose one of the loops)
17 for t=1:s
18 % while ev -mu (1) >10e-4
19 a=A*X;
20 b=B*X;
21 for j=1:k
22 mu(j)=X(1:n,j) ’*b(1:n,j)/(X(1:n,j) ’*a(1:n,j));
23 gradmu (1:n,j)=T*(b(1:n,j)-mu(j)*a(1:n,j));
24 gradmu (1:n,j)= gradmu (1:n,j)/norm(gradmu (1:n,j));
25

51

7 Matlab code

26 [tau ,gamma]= genrayleighritz3 (n,A,B, gradmu (1:n,j),X(1:n,j),P(1:n
,j));

27

28 X(1:n,j)= gradmu (1:n,j)+tau*X(1:n,j)+gamma*P(1:n,j);
29 norm(X(1:n,j))
30 X(1:n,j)=X(1:n,j)/norm(X(1:n,j));
31 P(1:n,j)= gradmu (1:n,j)+gamma*P(1:n,j);
32 P(1:n,j)=P(1:n,j)/norm(P(1:n,j));
33 end
34 X= genrayleighritzX (n,A,B,X,k);
35 for j=1:k
36 X(1:n,j)=X(1:n,j)/norm(X(1:n,j));
37 end
38

39 count=count +1;
40 end
41 count
42

43

44 end

52

Bibliography

[1] Merico E Argentati, Andrew V Knyazev, Klaus Neymeyr, Evgueni E Ovtchinnikov,
and Ming Zhou. Convergence theory for preconditioned eigenvalue solvers in a
nutshell. Foundations of Computational Mathematics, pages 1–15, 2014.

[2] Michele Benzi. Preconditioning techniques for large linear systems: a survey. Jour-
nal of computational Physics, 182(2):418–477, 2002.

[3] Michele Benzi, Carl D Meyer, and Miroslav Tuma. A sparse approximate inverse
preconditioner for the conjugate gradient method. SIAM Journal on Scientific Com-
puting, 17(5):1135–1149, 1996.

[4] Albrecht Beutelspacher. Lineare algebra. Vieweg, Braunschweig, 2003.
[5] Henricus Bouwmeester, Andrew Dougherty, and Andrew V Knyazev. Nonsymmet-

ric preconditioning for conjugate gradient and steepest descent methods. Procedia
Computer Science, 51:276–285, 2015.

[6] Are Magnus Bruaset. A survey of preconditioned iterative methods, volume 328.
CRC Press, 1995.

[7] DR Curtiss. Recent extentions of descartes’ rule of signs. Annals of Mathematics,
pages 251–278, 1918.

[8] Roger Fletcher. Practical methods of optimization. John Wiley & Sons, 2013.
[9] Carl Geiger and Christian Kanzow. Theorie und Numerik restringierter Opti-

mierungsaufgaben. Springer-Verlag, 2013.
[10] Andrew V Knyazev. Toward the optimal preconditioned eigensolver: Locally opti-

mal block preconditioned conjugate gradient method. SIAM journal on scientific
computing, 23(2):517–541, 2001.

[11] Beresford N Parlett. The symmetric eigenvalue problem, volume 7. SIAM, 1980.
[12] Youcef Saad. Numerical methods for large eigenvalue problems, volume 158. SIAM,

1992.
[13] Yousef Saad. Iterative methods for sparse linear systems. Siam, 2003.
[14] Gerard LG Sleijpen and Henk A Van der Vorst. A jacobi–davidson iteration method

for linear eigenvalue problems. Siam Review, 42(2):267–293, 2000.
[15] Ming Zhou. Über Gradientenverfahren zur Lösung von Eigenwertproblemen elliptis-

cher Differentialoperatoren. PhD thesis, 2012.

53

Declaration of Authorship

Ich versichere hiermit, dass ich die vorliegende Arbeit selbstständig angefertigt und ohne
fremde Hilfe verfasst habe. Dazu habe ich keine außer den von mir angegebenen Hilf-
smitteln und Quellen verwendet und die den benutzten Werken inhaltlich und wörtlich
entnommenen Stellen habe ich als solche kenntlich gemacht.

I hereby certify that this thesis has been composed by me and is based on my own
work, unless stated otherwise. No other person’s work has been used without due ac-
knowledgement in this thesis. All references and verbatim extracts have been quoted,
and all sources of information, including graphs and data sets, have been specifically
acknowledged.

Rostock, on the 16th August 2016

Torben Sell

54

	On the calculation of eigenvalues for large and sparse matrices
	Eigenvalue problems - basic ideas
	Origin of matrices - discretization of the two-dimensional Laplace-operator
	Special features

	Preconditioned gradient methods for the Rayleigh quotient
	The Rayleigh quotient
	Minimizing the Rayleigh quotient using gradient methods
	Modification and acceleration of a gradient method
	PINVIT2 and PINVIT3
	Preconditioners
	The Rayleigh-Ritz method

	Convergence Analysis
	Simplifying the problem
	Special case: =0 and T=I
	The convergence analysis for the preconditioned gradient method: 0<<1
	Amendments to the Convergence Rate Bound

	Computational experiments
	Large, sparse matrices
	Preconditioning
	Calculating the bound
	Testing the theory

	The LOBPCG method
	Conclusion and outlook
	Matlab code
	Implementations of different preconditoned iterative eigensolvers
	Implementations of the Rayleigh-Ritz method for different subspaces
	LOBPCG implementations

	Bibliography
	Declaration of Authorship

