
MCMC Methods for Functions: Modifying Old

Algorithms to Make Them Faster

2nd May 2017

Abstract

Markov Chain Monte Carlo methods on function spaces are useful, for example
to solve inverse problems. Classical methods su�er from poor performance on
function space, which makes modi�cations of them necessary. This essay provides
an overview of certain dimension-independent methods. Discussed are applications,
examples, theoretical underpinnings, and the mathematical properties behind these
methods, furthermore the performance of them is analysed.

Contents

1 Introduction 1

2 Setting 1

2.1 Density estimation . 1
2.2 Inverse problems . 2

3 Probabilistic interlude 4

3.1 The Karhunen-Loève expansion . 4
3.2 The Feldman-Hajek theorem . 6

4 MCMC methods on function spaces 7

4.1 Random Walk Metropolis-Hastings 8
4.2 (Preconditioned) Crank-Nicolson 9

4.2.1 Derivation and properties 10
4.2.2 Possible modi�cations . 14

5 Computational experiments 15

6 Summary and outlook 18

Appendix - Code 19

References

1 Introduction

This essay aims to explore and assess Markov Chain Monte Carlo (MCMC) meth-
ods that work on function spaces (extending to other in�nite-dimensional, separ-
able Hilbert spaces). The necessesity of this arises as standard MCMC methods
su�er from poor performance under mesh-re�nement. New `robust' methods are
needed, which are stable under mesh-re�nement, and thus not require adjustment
with every dimension added. Amongst the settings in which these methods can
be applied are inverse problems. This is a very active �eld of research. One of
the Bayesian contributions to this �eld of research will be discussed in this es-
say, namely MCMC methods on function spaces. This work can then be used to
construct con�dence intervals for possible initial states of an inverse problem, by
sampling from the posterior distribution for these initial states given data.

This essay is structured as follows: settings in which these methods are useful
will be discussed in section 2, where a very basic but illustrative example will be
used to introduce the concept and utility of MCMC methods on function spaces,
before turning to more realistic applications, the aforementioned inverse problems.
Some probabilistic background will be provided in section 3, which will be neces-
sary to understand and assess these methods. Next, two MCMC methods wil be
described and analysed in section 4, where the title of this essay will be justi�ed,
the origin of these methods will be explained, and also a few remarks on possible
modi�cations will be given - and indeed the most recent developments concern-
ing them will be stated. The proofs of theorems 4, 5, and 6 in that section are
largely the authors own work. Computational experiments will be found in section
5. These experiments should be seen as explanatory rather than as an applicable
tool. To use the program in practice, adjustments to the respective setting need to
be made. We conclude with a summary and an outlook.

2 Setting

In this section we assess the usefulness of MCMC methods on function spaces. We
do this �rst by looking at a somewhat arti�cial example, in order to illustrate how
these methods work, and to o�er some insight into possible other applications. We
then turn to the more advanced application of solving inverse problems.

2.1 Density estimation

We elaborate the example mentioned in [6]. Let us assume that we have data
given by independent draws from a random variable that has a density function
proportional to N (−3, 1)1[−10,10] +N (3, 1)1[−10,10]. Given only the data, we may
be interested in �nding the density function of this random variable. Non-Bayesian
approaches for this task can be found in [4]. Instead of assuming a parametrical
model, a mixture of normals say, we assume no prior knowledge whatsoever about
the density. We may therefore try to infer the Fourier series1 of the density, which

1We could just as well take any other series representation of the function, as long as the series is
garantued to converge. Throughout this essay, the reader should think of the Fourier series as the most

1

is given by

f(x) =
a0
2

+
∞∑
n=1

an cos

(
2πn(x− 10)

20

)
+ bn sin

(
2πn(x− 10)

20

)
,

where we already adjusted the series to the given interval [−10, 10]. See [9] for a
detailed analysis of Fourier series. The truncated series sums only over the �rst N
terms which leads to 2N+1 coe�cients to be estimated in total. A MCMC method
may now be used to sample these coe�cients an and bn, which may be arbitrarily
many. The �rst questions arising are:

As a computer can't handle in�nitely many terms, how many terms shall we
use in practise? Shall we used a �xed N , or allow for di�ering N?

Shall all coe�cients be similarly important, or shall we put some kind of `im-
portance weight' on certain terms?

While both questions will be discussed and answered in the subsequent sections,
the reader should note that - generally speaking - the �rst coe�cients of a Fourier
series are more important than later ones, as the sequence of coe�cients converges
to 0. Therefore, it makes sense to see the �rst ones as `more important' and -
fortunately - truncating the series does not lead to an inferior method. Indeed,
when given n data points, it wouldn't make sense to use more than n coe�cients.

The example of density estimation is used for illustrative purposes, and the
reader may look at the computational experiments in section 5, where the above
mentioned density is estimated by the two methods introduced in section 4.

2.2 Inverse problems

Before delving into inverse problems, let us �rst recall what we did in the previous
subsection. We took the Fourier representation of a function, and used a MCMC
method to sample the coe�cients.
This idea can be applied to inverse problems as well: intuitively speaking, we posit
some function f0 as the initial condition for such a problem, a partial di�erential
equation (PDE) for example. We then use the PDE and the function f0 to solve
the forward problem, and can compare the solution of this forward problem to
the data observed. Changing some coe�cients in the Fourier series of f0 gives us
some proposal function f̃ , which will lead to another solution and, as in a classical
Metropolis-Hastings algorithm, we accept or reject this proposal with a certain ac-
ceptance probability, generally accepting the proposal f̃ if it is `more likely' than
f0, or otherwise rejecting it with a probability somewhat proportional to `how less
likely' f̃ is compared to f0, thus giving us a new iterate f1.
Doing this often enough will yield a posterior distribution in the function space,
where more mass is found on functions that are more likely to be the true initial
state, as the data are more likely to have been genereated by these functions.

obvious representation of a function, though others are possible. Also see the section dealing with the
Karhunen-Loève expansion.

2

Let us look at one example. This example is taken from [16], where a thorough
discussion can be found. We consider the inverse problem for a di�usion coe�cient.
We are given a two-point boundary value problem

− d

dx

(
k(x)

dp

dx

)
= 0, (1)

p(0) = p0, p(1) = p1,

and aim to recover the true di�usion coe�cient k(x). We assume p1 > p0 > 0.
Given some erroneous measurements yk at the points 0 < x1 < x2 < ... < xq < 1,
and we assume the errors to be normal. Thus, we can write yk = p(xk) + ηk, where
p(xk) is the `true' values, and the ηk are i.i.d. zero-mean Gaussians with variance
γ2.
Note the following: given some function k(x), we can solve the forward problem
(1), and �nd the p(xk) corresponding to that di�usion coe�cient. This is achieved
as follows: to ensure positivity of k(x) (a non-positive coe�cient function doesn't
make physical sense), �rstly de�ne u(x) = log(k(x)), a one-to-one correspondence
for positive k. Then the solution to the PDE given by (1) is

p(x) = (p1 − p0)
∫ x
0 exp(−u(z))dz∫ 1
0 exp(−u(z))dz

+ p0.

In order to compare this to our observations, we de�ne the observation operator
G(u(x)) = (p(x1), ..., p(xq))

∗. The star is used to distinguish between the true val-
ues and the ones obtained by solving the forward problem.

Here, one can see the general technique when using the Bayesian framework to
solve an inverse problem: a forward operator is used to solve the forward problem,
given some proposal for the initial state. Depending on the problem and the data
observed, one chooses an appropriate observation operator G(u), which will be
used in MCMC algorithms, to compare the observations y to the solutions from
the forward problem. The observations might be erroneous, which is taken into
consideration in our observation model

y = G(u) + ε, (2)

where we normally assume Gaussian noise ε ∼ N (0, Qobs). Qobs denotes the co-
variance matrix of the noise. We will see in the next section how this algorithm
is de�ned, and how the observation operator is crucial to de�ning the acceptance
probabilities.

In our example, we assume that one has chosen coe�cients of the Fourier series
of k(x). We start our MCMC method from these coe�cients, i.e. from k0(x).
Depending on the MCMC method, we propose a new k̃(x), having coe�ecients
which are usually close to those from k0. We then use G(log(k0(x))), G(log(k̃(x)))
and the observations {yk}qk=1 to decide whether to accept or reject the proposal.
Repeating this step will then lead to a method whereby (if properly de�ned) we
should end up with a probability distribution for each coe�cient of the Fourier
series, and should thus be able to de�ne con�dence intervals, to obtain the most
likely coe�cients (and thereby the most likely k(x)), and to infer anything else

3

possible with standard MCMC methods.

Let us now turn to the more technical part of this essay. In order to understand
how these MCMC methods actually work, how they propose a new state, how the
acceptance probabilities are de�ned, and which advantages and/or disadvantages
they might have, some theoretical background is required. This background is
provided in the next subsection, where we try to make some sense of the rather
technical aspects needed.

3 Probabilistic interlude

In order to understand section 4, this section will provide the reader with some
theorems in probability theory that will be crucial for the understanding of the
MCMC methods on function spaces and their analysis in the subsequent section.
Firstly, it will be justi�ed to use a series representation for in�nite Gaussian meas-
ures by making use of the Karhunen-Loève expansion, and secondly, we will state
the ingenious Feldman-Hajek theorem, which states that two Gaussian measures
on in�nite Hilbert spaces are either mutually singular or equivalent, and further-
more it states three conditions that hold if, and only if, those two measures are
equivalent.

3.1 The Karhunen-Loève expansion

As shown in [1], the following theorem holds:

Proposition 1 (Karhunen-Loève expansion). Let X(t), t ∈ [a, b], a and b
�nite, be a continuous-parameter second-order random process with zero mean
and continuous covariance function R(t, s). Then we may write

X(t) =
∞∑
k=1

Zkek(t), a ≤ t ≤ b,

where ek are eigenfunctions of the integral operator A

A(x(·))(t) =

∫ b

a
R(t, s)x(s)ds, a ≤ t ≤ b,

i.e. A(ek(·))(t) = λkek(t). The eigenfunctions form an orthornormal basis for
the space spanned by the eigenfunctions corresponding to the non-zero eigen-
values. The Zk are given by∫ b

a
X(t)ek(t)dt,

and are independent, zero mean random variables with variance λk. The series∑∞
k=1 Zkek(t) converges in mean square to X(t) uniformly in t.

The result we will use in this essay is the following, also proved in [1]:

4

Proposition 2. If X(t) is a Gaussian process, then the Zk of the Karhunen-
Loève expansion of X(t) are independent Gaussian random variables.

As we know the variance of these Gaussian random variables by the �rst proposi-
tion, we �nd that we can write

X(t) =
∞∑
k=1

√
λkgkek(t),

where gk
iid∼ N (0, 1). Note that this is equivalent to

X(t) =
∞∑
k=1

λkgkek(t),

by choosing λ2k as the eigenvalues with an abuse of notation. From here on, one
should always see λ2k to be the eigenvalues, as is common in the literature (see e.g.
[6]). This is because we can also consider

X(t) =
∞∑
k=1

λkgkek(t) =
∞∑
k=1

ξkek(t), (3)

where the ξks are independent normals, ξk ∼ N (0, λ2k). We will from here on also
assume the covariance operator to be trace-class, i.e. the sum of the eigenvalues∑∞

k=1 λ
2
k (with the new notation) is �nite.

Both notations in (3) will be used for the MCMC methods.

So far the Karhunen-Loève expansion was quite theoretical and the reader might
not yet see how it is useful for the MCMC methods on function spaces. That should
become clearer in this paragraph. For any MCMC method we need to de�ne a prior
and on a function space the �rst thing that might come to one's mind is a (centered)
Gaussian process, de�ned by the covariance operator C, thus µ0 = N (0, C). If we
want to draw a sample u(t) from µ0, we can now use the Karhunen-Loève theorems
to realise that we might as well sample one-dimensional Gaussians, and then sum
them according to the Karhunen-Loève expansion. Unfortunately, the expansion
is an in�nite sum, but as it converges, we can truncate it after du terms and hope
that the remaining terms don't have a huge impact on u(t).

Some remarks on this are now made and the reader should reconsider them after
having read section 4. It is generally hard to decide, where to truncate the series
expansion. There are some more advanced techniques than simlpy truncating the
series after du terms, these techniques are found in [6] and we will only give an
overview here:
The �rst modi�cation from simply truncating the series expansion at a �xed du is,
that one allows du to be a random variable itself, e.g. a Poisson random variable.
Conditional on du, u(t) is still a Gaussian random variable in the function space.
We may also give every basis function an individual `on/o� switch', while still con-
trolling the number of active, i.e. non-zero, terms. In each MCMC step, we �rst

5

pick du (by using a constant number or by using some random variable) and then
pick du terms to be active, e.g. by using a Bernoulli random variable, and turning
the �rst term on or o� with probability a half (or something else), then the second
one, etc., until we have the du active terms, which we will then sample.

Summarising this subsection, the Karhunen-Loève expansion allows us to draw
samples from function space priors µ0, given some centered Gaussian process with
covariance operator C. We will throughout this paper assume that the eigenfunc-
tions and eigenvalues are known, though other possibilities for sampling from this
prior are possible, see [6]. We suggest that the reader may think of the eigenfunc-
tions to be the Fourier basis functions for illustrative purposes, even though the
(orthonormal) eigenfunctions are uniquely determined by the covariance operator
and will generally not coincide with the Fourier basis functions.

3.2 The Feldman-Hajek theorem

In this subsection, we will state the Feldman-Hajek theorem, which characterises
equivalence of Gaussian measures on Hilbert spaces; it is proved in [8], where one
also �nds a more detailed description and more properties of Gaussian measures
on both Banach and Hilbert spaces. First note that we call a measure µ on a
Hilbert space a Gaussian measure if, for arbitrary h ∈ H, there exists some m ∈ R
and q ≥ 0, such that µ({x ∈ H : 〈h, x〉 ∈ A}) = N (m, q)(A). As in the �nite-
dimensional case, we can uniquely characterise this measure by a mean m ∈ H and
a covariance operator Q : H → H. We may thus write N (m,Q) for this measure.

The reader should recall that in the Karhunen-Loève expansion we wrote µ :=
µ0 = N (0, C) as an in�nite sum of orthogonal Gaussians, which de�nes a unique
Gaussian measure on the Hilbert space. If we are given another measure, ν =
N (mν , Qν), one might be interested in whether these two measures are equivalent,
whether one is singular with respect to the other, or whether they are mutually sin-
gular, as we know from standard MCMC theory that we need equivalent measures
in order to properly de�ne the acceptance probability. The surprising theorem in
Hilbert spaces is that µ and ν are either equivalent or mutually singular, and we
can furthermore �nd necessary and su�cient conditions for the equivalence:

Proposition 3 (Feldman-Hajek). The following statement holds.
(1) Gaussian measures µ = N (m1, Q1), ν = N (m2, Q2) are either mutually
singular or equivalent.
(2) They are equivalent if, and only if, the following conditions hold.

(i) Q
1/2
1 (H) = Q

1/2
2 (H) =: H0.

(ii) m1 −m2 ∈ H0.

(iii) The operator (Q
−1/2
1 Q

1/2
2)(Q

−1/2
1 Q

1/2
2)∗ − I is a Hilbert-Schmidt

operator on H0.

The reader is referred to [8] for the proof, but we will give an intuitive explanation
for the criteria. Recall that two measures are mutually singular if they have disjoint
supports.
Now, the condition (i) tells us that for two measures to be equivalent, the im-
ages of their covariance operators have to match. In particular, if one measure

6

does degenerate in one direction, i.e. if one eigenvalue, the k-th one say, in the
Karhunen-Loève expansion of µ is 0, then the other measure also has to degenerate
in the same direction, i.e. the variance into the direction of eµ,k has to equal 0.
eµ,k denotes the k-th eigenfunction of the expansion of µ.
Condition (ii) then says that if both µ and ν degenerate, in the k-th coordinate of
µ say, then in that direction their means have to match, which already implies that
we may choose eν,k = eµ,k. If their means in the k-th direction wouldn't match,
the sets {x ∈ H : 〈x, eµ,k〉 = m1,k} and {x ∈ H : 〈x, eν,k〉 = m2,k}, where mi,k is
the k-th coordinate of mi, are disjoint, thus µ and ν would be mutually singular,
as their supports are subsets of the respective sets.
The last condition is the most abstract one, telling us that, as k → ∞, the eigen-
functions of µ and ν have to match and the corresponding eigenvalues, i.e. the
variances in the directions of the eigenfunctions, also have to match. This becomes
clearer, when noting that condition (iii) is equivalent to

∞∑
i,j=1

(rij − δij)2 <∞,

where rij =
〈Q2eµ,i,eµ,j〉√

λµ,iλµ,j
and δij the Kronecker-delta. The equivalence is obtained

by looking at the spectral decomposition of the operator in condition (iii), which
is possible by the spectral theorem for compact operators (note that any Hilbert-
Schmidt operator is compact). For i = j, the sum can only be �nite if Q2 has
eigenvalue λν,i = λµ,i corresponding to the eigenfunction eν,i = eµ,i, or at least
doesn't di�er too much, more precisely, the sum

∑∞
i=1(rii− 1)2 must be �nite. For

i 6= j, the sum can only converge if eµ,i and eµ,j get uncorrelated under Q2, as
i, j →∞.

Summarising, this subsection told us that two Gaussian measures are either
mutually singular or equivalent, and that they are equivalent if, and only if, their
eigenvalues and eigenfunctions in the Karhunen-Loève expansion don't di�er too
much, as speci�ed in the Feldman-Hajek theorem.

4 MCMC methods on function spaces

This section, which discusses methods proposed in [6], starts with an intuitive intro-
duction, by generalising the standard Random Walk Metropolis-Hastings method
from �nite to in�nite dimensions. We realise that this method doesn't work in
in�nite dimensions (or at least not without major, computational expensive ad-
justments). The second subsection then introduces another MCMC method on
function space that is stable under mesh-re�nement, i.e. we can use an arbitrary
number of non-zero coe�cients in the series representation of the function we want
to sample, without having to adjust the method in any way. However, that method
has a few downsides as well and adjustments are also discussed.
The theorems 4, 5, and 6, which are stated in this section, are modi�ed versions
of theorems found in [6]. The proofs are the authors own work, unless stated
otherwise.

7

4.1 Random Walk Metropolis-Hastings

We assume that the reader is familiar with MCMC methods on �nite-dimensional
spaces, in particular with the Metropolis-Hastings algorithm. Otherwise [15] gives
a brief introduction and [10] o�ers an exhaustive discussion of the method with
many explanatory examples.
We take the standard random walk method in �nite dimensions and generalise it to
de�ne the standard random walk (SRW) method in in�nite dimensions as follows:

Algorithm 1: SRW

Set k = 0 and pick u(0);
while true do

Propose v(k) = u(k) + ξ(k), ξ(k) ∼ N (0, I).
Set u(k+1) = v(k) with probability a(u(k), v(k)).
Set u(k+1) = u(k) otherwise. Set k → k + 1.

end

We ignore the question how the acceptance probability is de�ned for the mo-
ment. One realises quickly that this method will lead to an ill-posed one, as the
proposal v will not have a well-de�ned norm, the sum of the i.i.d. N (0, 1) ran-
dom variables will almost surely not converge. This may be adjusted, however, by
adding a preconditioner that ensures convergence. Let C be the covariance oper-
ator of the prior, i.e. u(0) ∼ N (0, C), then in each step of the algorithm we propose
to add another N (0, C) random variable to our current position. This random
variable has �nite norm. We also introduce a tuning parameter β, such that the
(preconditioned) SRW method becomes

Algorithm 2: pSRW

Set k = 0 and pick u(0);
while true do

Propose v(k) = u(k) + βξ(k), ξ(k) ∼ N (0, C).
Set u(k+1) = v(k) with probability a(u(k), v(k)).
Set u(k+1) = u(k) otherwise. Set k → k + 1.

end

In this method, one may play around with β, but we will show that for �xed
β, this MCMC method is not de�ned on function space. The reason for this is, as
we let the dimension du → ∞, the acceptance probability is not de�ned and thus
the method is not independent of the dimension du, i.e. the active terms in the
Karhunen-Loève expansion. It would be possible to adjust β to the du used, but
especially when using a variable du this would considerably slow down the perfo-
mance.
It is shown in [5] that the acceptance probability is given by min{1, I(u) − I(v)},
where I(u) = Φ(u) + 1

2 |C
− 1

2u|2. Here, and anywhere else in this essay, Φ(u) is
some real-valued potential, which can be interpreted as a function, whose negative
exponential is proportional to the Radon-Nikodym derivative of the posterior with
respect to the prior whenever it exists: dµ

dµ0
(u) ∝ exp(−Φ(u)). Note that this is

just a reformulation of Bayes' formula dµ
dµ0

(u) ∝ L(u), for �xed data and where L
is the likelihood for the data given u.

8

We will now prove the following theorem, which shows that the (preconditioned)
SRW method is not independent of du, a property that is also known as `stable
under mesh-re�nement' or `robust'. Note that in this theorem, β =

√
2δ, which

is due to it being a special case of the stochastic di�erential equation (SDE) we
discuss in the subsequent subsection2.

Theorem 4. Consider the proposal v|u ∼ q(u, ·) de�ned by v = u+
√

2δKξ0,
where K ∈ {C, I} and ξ0 ∼ N (0, I), and the resulting measure η(du, dv) =
q(u, dv)µ(du) on X×X. For both choices of K the measure η⊥ = q(v, du)µ(dv)
is not absolutely continuous with respect to η. Thus, the MCMC method is not
de�ned on function space.

Proof. u = u0 is a draw from N (0, C). Here, and in the rest of this essay, we
will identify u with its Karhunen-Loève expansion

∑
ξiei, and refer to ui = ξi

as the i-th coordinate. For a truncated u, the acceptance probabilty is given by
min{1, I(u)− I(v)}, where I(u) = Φ(u) + 1

2 |C
− 1

2u|2.
The i-th coordinate of u is N (0, λ2i) distributed, such that the i-th coordinate of

C−
1
2u is N (0, 1) distributed, as the i-th eigenvalue of C−

1
2 is λ−1i and λ−1i ui ∼

N (0, λ−2i λ2i) = N (0, 1). Let these i.i.d. standard normal variables be gi. Let du
be the largest non-zero coe�cient of the truncated series. The expectation for
1
2 |C
− 1

2u|2 then becomes

E
1

2

∣∣∣C− 1
2u
∣∣∣2 =

1

2
E

du∑
i=1

(
1

λi
ui

)2

=
1

2
E

du∑
i=1

g2i

=
1

2

du∑
i=1

1.

For the not-truncated version, i.e. when letting du →∞, this expectation is in�nite,
such that the acceptance probability is not well-de�ned.

It is quite disappointing that the standard random walk method, which works
perfectly well in �nite dimensions, doesn't generalise to in�nite dimensions. For-
tunately, a rather small modi�cation leads to a well-de�ned method. This will be
discussed in the next subsection.

4.2 (Preconditioned) Crank-Nicolson

This subsection deals with the preconditioned Crank-Nicolson (pCN) method and
its modi�cations. It is a MCMC method that indeed works on function spaces.

2The interested reader may compare the SDE (4) todu
ds =

√
2K db

ds . The discretisation of this simpler

SDE yields the proposal v = u+
√

2δKξ0.

9

4.2.1 Derivation and properties

The method can be derived from discretising a stochastic di�erential equation
(SDE), which works as follows: Consider the SDE

du

ds
= −K(Lu+ γDΦ(u)) +

√
2Kdb

ds
, (4)

where K ∈ {C, I}, L = C−1 is the precision operator, and b is a standard Brownian
motion. This SDE has the nice property that for both γ = 0 and γ = 1 we
know that the invariant measures are µ0 and µ respectively, see [8]. For this essay
however, we will only consider the case where γ = 0, thus the SDE (4) becomes

du

ds
= −KLu+

√
2Kdb

ds
. (5)

As just stated, this SDE has invariant measure µ0, so discretising it should lead to
a discrete time chain, which also has invariant measure µ0, which we will then be
able to use for a MCMC method on function spaces.
The simplest method for discretising a di�erential equation are the forward Euler
and backward Euler method, see [17, Ch. 12], but an entire family of discretisations
is given by a combination of these two. For θ ∈ [0, 1] a discretisation of (5) is given
by

v − u = −δKL((1− θ)u+ θv) +
√

2Kδξ0, (6)

where u is the current position, v the next position, δ the time di�erence between
those two steps, and ξ0 is a standard Normal random variable. Note that θ = 0
is the forward Euler method, θ = 1 gives the backward Euler method, and θ = 1

2
is the Crank-Nicolson method. Rearranging (6) yields (under the assumption that
I + δθKL is invertible)

v = (I + δθKL)−1((I − δ(1− θ)KL)u+
√

2δKξ0). (7)

We now choose K = C, θ = 1
2 , and de�ne β =

√
2δ

1+δ/2 . The proposal in (7) becomes

v =
√

1− β2u+ βξ,

where ξ ∼ N (0, C). This now allows us to formulate the following MCMC method
on function space:

Algorithm 3: pCN

Set k = 0 and pick u(0);
while true do

Propose v(k) =
√

1− β2u(k) + βξ(k), ξ(k) ∼ N (0, C).
Set u(k+1) = v(k) with probability a(u(k), v(k)).
Set u(k+1) = u(k) otherwise. Set k → k + 1.

end

Here, the acceptance probability is given by a(u, v) = min{1, exp(Φ(u)−Φ(v))},
by standard MCMC theory and the next theorem. Also note that Φ is still a
real-valued potential, and note that Φ(u) ∝ − logL(u) if posterior and prior are

10

absolutely continuous with respect to each other, see [6].
It may be asked why we choose θ = 1

2 in the pseudo-code, but this choice is not
arbitrary. The following theorem explains this choice, stating that only θ = 1

2
leads to a well-de�ned MCMC method on function space. For other choices of θ
the acceptance probabilities aren't de�ned, as the measures η and η⊥ are mutually
singular by the Feldman-Hajek theorem from the preceeding section.

Theorem 5. Let µ0(X) = 1, let the real-valued potential Φ satisfy Assumption
6.1(2) in [6] and assume that µ and µ0 are equivalent as measures with the
Radon-Nikodym derivative dµ

dµ0
(u) ∝ exp(−Φ(u)). Consider the proposal v|u ∼

q(u, ·) defned by

v = (I + δθKL)−1((I − δ(1− θ)KL)u+
√

2δKξ0) (8)

and the resulting measure η(du, dv) = q(u, dv)µ(du) on X ×X.

For both K = I and K = C the measure η⊥ = q(v, du)µ(dv) is equivalent to
η if and only if θ = 1

2 .

Furthermore, if θ = 1
2 , then

dη⊥

dη
(u, v) = exp(Φ(u)− Φ(v)).

Proof. We use the fact that two centered product Gaussian laws Π∞i=1N (0, σi) and

Π∞i=1N (0, τi) are equivalent if and only if
∑∞

i=1

(
σi
τi
− 1
)2

< ∞, see [3, Lemma

A.1.].
We know that u ∼ N (0, C), thus the i-th coordinate is distributed ui ∼ N (0, λ2i) by
the Karhunen-Loéve Expansion. Every coordinate of the noise is a N (0, 1) random
variable. To determine the law of v, we look at each coordinate of v as proposed
by (8) by itself and obtain, for all i,

vi =
1− δ(1− θ)[λ2i]λ

−2
i

1 + δθ[λ2i]λ
−2
i

ui +

√
2δ[λ2i]

1 + δθ[λ2i]λ
−2
i

gi, (9)

where gi ∼ N (0, 1) and [λ2i] = 1 if K = I and [λ2i] = λ2i if K = C. Thus

vi ∼ N

0,

(
1− δ(1− θ)[λ2i]λ

−2
i

1 + δθ[λ2i]λ
−2
i

)2

λ2i +

√

2δ[λ2i]

1 + δθ[λ2i]λ
−2
i

2

= N

(
0,

(
1− δ(1− θ)[λ2i]λ

−2
i

1 + δθ[λ2i]λ
−2
i

)2

λ2i +
2δ[λ2i]

(1 + δθ[λ2i]λ
−2
i)2

)

= N

(
0,

[(
1− δ(1− θ)[λ2i]λ

−2
i

1 + δθ[λ2i]λ
−2
i

)2

+
2δ[λ2i]

(1 + δθ[λ2i]λ
−2
i)2λ2i

]
λ2i

)
.

11

We devide the variance of vi by the variance of ui (i.e. λ
2
i) as suggested by condition

(iii) in theorem 3 and obtain

ai :=

(
1− δ(1− θ)[λ2i]λ

−2
i

1 + δθ[λ2i]λ
−2
i

)2

+
2δ[λ2i]

(1 + δθ[λ2i]λ
−2
i)2λ2i

,

this simpli�es to either(
1− δ(1− θ)

1 + δθ

)2

+
2δ

(1 + δθ)2
=

1 + 2δθ + δ2(1− θ)2

1 + 2δθ + δ2θ2
(10)

if K = C or to(
1− δ(1− θ)λ−2i

1 + δθλ−2i

)2

+
2δ

(1 + δθλ−2i)2λ2i
=

(
λ2i − δ(1− θ)
λ2i + δθ

)2

+
2δλ2

(λ2i + δθ)2

if K = I which converges to

δ2(1− θ)2

δ2θ2
=

(1− θ)2

θ2
(11)

as i → ∞, remembering that λi → 0, by the de�nition of C. Now to use the
proposition stated at the beginning of the proof, we need θ such that (10) and (11)
are 1 respectively, as then

∑
i(V ar(vi)/V ar(ui)− 1)2 is �nite. In both cases, it is

obvious that only θ = 1
2 satis�es this condition, showing that the product measures

are equivalent if and only if θ = 1
2 .

For the last claim, see [16]. One uses the assumptions on Φ to show that the
Radon-Nikodym derivative is well-de�ned.

In order for pCN to be a well-working method, we need to be able to choose δ in
a way that we can tune the method. A �rst step for this is to show that, as δ → 0,
the average acceptance probability (also known as the acceptance ratio) converges
to 1. This is shown by the next theorem:

Theorem 6. Let µ0 be a Gaussian measure on a Hilbert space (X, ‖·‖) with
µ0(X) = 1 and let µ be an equivalent measure on X given by the Radon-
Nikodym derivative dµ

dµ0
(u) ∝ exp(−Φ(u)), satisfying Assumptions 6.1(1) and

6.1(2) in [6]. Then both the pCN and CN algorithms (using the proposal (8)
with K = C and K = I, respectively) with �xed δ are de�ned on X and,
furthermore, the acceptance probability satis�es

lim
δ→0

Eηa(u, v) = 1.

Proof. For �xed δ one checks in the preceeding theorem that the measures η and
η⊥ are absolutely continuous with respect to each other, and using the acceptance
probability a(u, v) = min{1, exp(Φ(u)−Φ(v))} one checks in [16] that one obtains
a well-de�ned algorithm.

For the �nal claim, one looks at the change in each coordinate as in the proof
of theorem 5, see (9).

12

We �rst look at the slightly simpler case K = C, where equation (9) simpli�es
to

vi =
1− δ 12
1 + δ 12

ui +

√
2δλ2i

1 + δ 12
gi =

2− δ
2 + δ

ui +

√
8δλ2i

2 + δ
gi.

The second term is a noise with distribution N (0,
8δλ2i

(2+δ)2
) which converges to a

degenerated normal, i.e. the noise term converges to 0. For the other part we now
consider the sum of the proposals vi

v =
∞∑
i=1

vi =
∞∑
i=1

2− δ
2 + δ

ui =
2− δ
2 + δ

∞∑
i=1

ui =
2− δ
2 + δ

u,

which converges to u as δ → 0. Now using the Assumption 6.1(2), we notice that

|Φ(u)− Φ(v)| ≤ K(r)‖u− v‖ δ→0−→ 0,

and therefore Φ(u) − Φ(v) → 0, such that exp(Φ(u) − Φ(v)) → 1 by continuity
of the exponential function, which then implies a(u, v) → 1. Now looking at the
expectation one sees

lim
δ→0

Eηa(u, v) = lim
δ→0

∫
X×X

a(u, v)q(u, dv)µ(du) =

∫
X×X

q(u, dv)µ(du) = 1

by the dominated convergence theorem, as a(u, v) is bounded by the integrable
function f ≡ 1, and a(u, v)→ 1.

Now we look at the unconditioned case K = I. Here, the proposal (9) for the
i-th coordinate of v simpli�es to

vi =
1− δ 12λ

−2
i

1 + δ 12λ
−2
i

ui +

√
2δ

1 + δ 12λ
−2
i

gi =
2− δλ−2i
2 + δλ−2i

ui +

√
2δ

1 + δ 12λ
−2
i

gi,

where the second term is smaller than
√

2δ for i large enough, so smaller than
c
√

2δ for an appropriate constant c. Then, as δ → 0, this term also degenerates as
in the preconditioned case. For the other term, note that we're only interested in
showing that, for any ε > 0, there exists some δ̃ such that ‖u − v‖ < ε whenever
δ < δ̃. Since

∑∞
i=N ui → 0 as N → ∞, we choose N large enough, such that the

remaining series is smaller than ε/2. The �rst N terms however can be bounded
by ε/2 as well, simply be choosing δ small enough, which is possible, as for each
term individually, vi → ui as δ → 0. Thus we again obtain ‖u − v‖ → 0 and we
conclude as in the �rst case.

We have now established that the pCN method is well-de�ned on function
spaces. Now, before we discuss some downsides of the method and possible improve-
ments, let us take a step back and summarise in simple words, why the pCN method
works. Starting the method with u ∼ N (0, C) and picking ξ ∼ N (0, C) independent
from u, we have that v =

√
1− β2u + βξ is distributed N (0, (1 − β2)C + β2C) =

N (0, C). Thus, in every step the distribution of the prior does indeed not change.
What preceeded has shown that other choices of θ in the discretisation of the SDE
(5) do not de�ne a well-posed MCMC method on function space and the Feldman-
Hajek theorem was used to proof this.

13

4.2.2 Possible modi�cations

We now turn to answer the following questions:
- Are there any simple modi�cations to decorrelate the samples obtained faster, to
reduce the e�ective sample size3 needed?
- If information is given about which coe�cients in the Karhunen-Loève expansion
are more important, can we formulate a method that considers this to improve the
performance? How can we do this and where could we get this information from?

To answer these questions, we outline some of the ideas presented in [13] by
K. J. H. Law, in [7] by T. Cui et al., and in [2] by A. Beskos et al., of which
the last one has been published in 2017, and is (as for today and as far as the
author is informed) the most recent development for MCMC methods on function
spaces. The authors mentioned above propose a bunch of methods that modify the
pCN method by using additional information, using operator-weighted proposals
in the �rst, likelihood informed proposals in the second, and geometry information
in the third paper, which in a way is a generalisation of the �rst two. In order to
understand these ideas, it may be useful to be familiar with Hamiltonian Monte
Carlo methods on Riemann manifolds, see [11], as the underlying principles of those
methods are the same as the ones presented here.

To understand what is going on in these papers, we �rst observe that the stand-
ard pCN method introduced earlier in this essay is prior-biased: Only the prior
determines, which parameters (i.e. coe�cients in the Karhunen-Loève expansion)
are `more important' than others, larger steps will be made in directions where
the eigenvalues of the covariance matrix are large. However, it might be that the
likelihood suggests to put more importance on other parameters. This would ask
for a method that then takes larger steps in those parameters to allow for a faster
exploration of the parameter space and thus better mixing times.
The reasoning behind this is straight-forward: By Bayes rule, the posterior is pro-
portional to the likelihood times the prior, and therefore both should be considered
when proposing good MCMC methods. In [13], operator-weighted proposals are
introduced. Instead of having a �xed β in the pCN proposal4 v =

√
1− β2un+βξ,

it is shown that one may instead use an operator5:

v = Bnun +
√
I −B2

nξ.

This operator may change with every time step, if Bn = B is independent of n
we call B a preconditioner. Bn allows us to put di�erent weights on di�erent dir-
ections, which is certainly a nice thing for itself, but only the next developments
made this idea incredibly useful.

In [7], the authors propose following idea: One divides the space X into two
subspaces, the �nite-dimensional likelihood-informed subspace (LIS) and its com-
plementing space (CS), which exists by basic Hilbert space theory. On the CS, one

3It is assumed that the reader is familiar with the notion of the e�ective sample size, a problem
common to all MCMC methods. A �rst introduction can be found in [15].

4Note that this proposal is equivalent to v = βun +
√

1− β2.
5Law actually uses B2

n instead of our Bn.

14

will still use the pCN method introduced above, on the LIS better methods exist.
The name comes from the fact that one can identify certain parameters, in which
the likelihood dominates the prior and the posterior is strongly determined by the
likelihood, thus the name LIS. As stated earlier, the log-likelihood is proportional
to the potential Φ if posterior and prior are absolutely continuous with respect to
each other: − log(L(u)) ∝ Φ(u). Thus, the Hessian of Φ(u) contains information
about the likelihood and indeed Cui et al. show that the LIS can be derived from
the dominant eigenvectors of the Hessian of a �nite-dimensional approximation of
Φ. Note that the LIS is a local space, as it normally depends on u (as the Hessian
of Φ does). However, one can globalise the local LIS by combining information
from many points in the posterior. If n is the total number of observations, the
global LIS is shown to be not more than n-dimensional, and often is even lower
dimensional. [7] then proposes methods that are equivalent to the pCN on the CS
and are operator-weighted on the LIS, using gradient information of Φ and weight-
ing parameters according to their importance given by the likelihood.

The authors of [11] improve and generalise this idea even further. They also take
the standard pCN method and modify it by taking advantage of gradient informa-
tion of the potential Φ, which is called ∞-MALA (in�nite-dimensional Metropolis-
adjusted Langevin algorithm, by the underlying Langevin SDE). Similar to �nite-
dimensional Hamiltonian Monte Carlo, they then take both the pCN and∞-MALA
methods, but modify it as follows using Hamiltonian dynamics:
Firstly, a single `leapfrog step' is a single step by a forward Euler scheme, used to
solve the Hamiltonian di�erential equation with mass matrix equal to the inverse
of the preconditioner K in the pCN method,

d2u

dt2
+K(C−1u+DΦ(u)) = 0.

These dynamics preserve the posterior µ for any integration time. As in the �nite-
dimensional case, it allows to propose quite large steps by executing a �xed number
of leapfrog steps. The combination of using gradient information depending on the
current position, and performing numerous leapfrog steps to obtain one step in the
Metropolis-Hastings chain leads to the most advanced MCMC method discussed
in this essay. Girolami et al. test this method and show that it outperforms any
other method, and is especially good for target distributions with complex and
non-Gaussian structures.

5 Computational experiments

The computational experiments conducted are solely to understand how both the
pCN and SRW methods work and perform on (in�nite) dimensional spaces, and
why the pCN is robust under mesh-re�nement while the SRW method isn't. We
will discuss the experiments in detail and compare the �ndings to the theoretical
performance discussed above.

The general setting for the experiments was the same as in section 2.1. We
aim to retrieve the `true' distribution which is proportional to N (−3, 1)1[−10,10] +
N (3, 1)1[−10,10]. We are given dimy samples, in our program we usually chose

15

dimy = 30 unless stated otherwise.

The reader should note that we picked the Fourier basis functions instead of the
Karhunen-Loève expansion, however it is shown in [14] that a Karhunen-Loève ex-

pansion for standard Brownian motion is given by g0t+
∑∞

k=1

√
2

πk sin(πkt)gk, where

gk are i.i.d. standard Gaussians. This can be rewritten as g0t+
∑∞

k=1

√
2
π sin(πkt)ξk,

where ξk is a N (0, 1/k2) Gaussian random variable. Thus, the Karhunen-Loève ex-
pansion coincides with the sin-terms in the Fourier series. The author decided to
also include the cos-terms of the Fourier expansion, hoping that the corresponding
coe�cients would turn out to be close to 0. This conjecture indeed holds, all the
experiments have returned the parameters corresponding to the cos-terms found
to be relatively close to 0, while the parameters corresponding to the sin-terms
dominated the series.

The �rst experiment showed how the acceptance ratio changed when re�ning
the mesh. As the theory suggests, for �xed β the acceptance ratio for the SRW
method tends towards 0, while the acceptance ratio for the pCN method stays
more or less constant. Both methods have �rst been tuned to have acceptance
ratios of approximately 0.5 with 11 active terms in the series expansion. For the
SRW method, β was chosen to be 0.25, and for the pCN method β = 0.2 proved
to give the desired acceptance ratio. Note that the acceptance ratio for our ex-
periments is de�ned as the number of accepted steps divided by the total number
of steps, where we only considered the last N/2 steps, ignoring the burn-in phase.
N is the total number of steps executed, and N = 200 was chosen for this ex-
periment. To get better results, the experiments can be re-run with more steps,
but 200 turned out to be su�cient for these illustrative purposes. For the SRW
method, the acceptance ratios were 0.48, 0.33, 0.18, and 0.08 for 11, 31, 51, and 71
active terms respectively. This clearly shows that, under mesh-re�nement and for
�xed β, the acceptance ratio decreases. Also, it happened that an error occured
when the number of active terms was chosen to be too large: when calculating
the acceptance probabilties, the function exp(I(u)− I(v)) returned in�nity, as the
computer couldn't handle the exponent. As proposed in theorem 4, I(u)−I(v) gets
larger with increasing dimension dimu, and eventually the computer is no longer
able to calculate the exponential. This happened when I(u)− I(v) was around 300
or greater. For the pCN method, the respective acceptance probabilities were 0.52,
0.35, 0.44, and 0.38. While this is certainly not constant, neither does it exhibit
exhibits the decreasing tendency that the SRW method shows.

Another e�ect mentioned earlier was shown as well: it doesn't make sense to
pick dimu > dimy. This will only lead to over�tting and - as mentioned in section
2.1 - one doesn't gain any information.

Lastly, some nice pictures:
For the pCN estimate in �gure (1), we used dimu = 11, dimy = 30, N = 200,

and then took the average over all samples calculated by the pCN method. For the
pCN estimate in �gure (2), we used dimu = 21, dimy = 100, and N = 400.

16

(a) Mean density calculated using pCN (b) Mean density minus the true denisty

(c) True denisty

Figure 1: Density estimation by pCN

(a) Mean density calculated using pCN (b) Mean density minus the true denisty

Figure 2: Density estimation by pCN with more non-zero terms

17

6 Summary and outlook

Summarising, this essay has discussed MCMC methods that work on function
spaces, mainly elaborating on the pCN method. It has been shown that the SRW
method isn't robust under mesh-re�nement. A few applications of MCMC meth-
ods on functions spaces have been mentioned, and those methods are considered
especially useful for inverse problems. Modi�cations of the pCN method have been
discussed. In the future, the author expects something like an in�nite-dimensional
version of the No-U-Turn-Sampler proposed in [12]. This suggests a method (in
�nite dimensions) that automatically adjusts the tuning parameter, β in our al-
gorithm, and at the same time overcomes the problem of the Hamiltonian Monte
Carlo method of deciding how many leapfrog steps should be executed.

Acknowledgements

I would like to thank Dr Sumeetpal Singh for supervising this essay, and my parents,
my sister, and my brother for constant support. Furthermore, thanks to Chris, Miri,
Oli, Rylan, Shaun, and Tine for many fruitful discussions.

18

Appendix - Code

This is the code used for the pCN experiments above:

import matp lo t l i b . pyplot as p l t
import numpy as np
import math
import s c ipy . i n t e g r a t e as i n t e g r a t e
import seaborn as sns

' ' ' Sample draws ' ' '
def draw_sample () :

global dimy
sample = []
while len (sample)<dimy :

p = np . random . uniform ()
i f p<0.5 :

new_sample = np . random . normal (−3 ,1)
else :

new_sample = np . random . normal (3 , 1)
i f new_sample>−10 and new_sample<10:

sample . append (new_sample)
return sample

' ' ' Def ine func t i on f o r i n t e g r a t i o n ' ' '
def f (x , x i) :

f = u(xi , x)
return np . exp (f)

' ' ' Def ine t rue d en s i t y f unc t i on f o r i n t e g r a t i o n ' ' '
def f_true (x) :

y1=x−3
y2=x+3
f = np . exp (−((y1∗y1)/2))+np . exp (−((y2∗y2)/2))
return f

' ' ' Def ine func t i on Phi ' ' '
def Phi (x i) :

global y
global dimy
phiu = 0
for j in range (dimy) :

rho = np . exp (u(xi , y [j]))
integra l_u = in t e g r a t e . quad (lambda x : f (x , x i) , −10 ,10)
rho = rho/ integra l_u [0]
phiu = phiu+np . l og (rho)

return −phiu

' ' ' Def ine acceptance p r o b a b i l i t y ' ' '

19

def acceptance_prop (xi_u , xi_v) :
accept_prop = math . exp (Phi (xi_u)−Phi (xi_v))
return min(1 , accept_prop)

' ' ' Def ine u(xi , x) ' ' '
def u(xi , x) :

global dimu
u = 0
for i in range (dimu) :

i f i%2 == 0 :
u = u+xi [i]∗ np . cos (2∗np . p i ∗(i /2)∗ (x−10)/(10∗2))

else :
u = u+xi [i]∗ np . s i n (2∗np . p i ∗ ((i +1)/2)∗(x−10)/(10∗2))

return u

' ' 'MCMC' ' '
N = 200
dimu = 11 #accuracy o f u
dimy = 30 #number o f samples g i ven
x i = np . z e r o s (dimu)
x i [0] = 1

y = draw_sample ()

beta = 1/5
mu = []
mu. append (1)
for i in range (int ((len (x i)−1)/2)) :

t = 1/(i +1)
mu. append (t)
mu. append (t)

C = np . diag (mu)

samples = []
average = np . z e r o s (dimu)
acc_rat io = 0
x = []
for i in range (N) :

x i_proposal = np . sq r t (1−beta∗beta)∗ x i+beta ∗np . random . mult ivar iate_normal (np . z e r o s (dimu) ,C)
a = acceptance_prop (xi , x i_proposal)
i f a < 1 :

uni = np . random . uniform ()
i f uni < a :

x i = xi_proposal
i f i > N/2 :

samples . append (x i)
x . append (len (samples))

20

average = average + x i
acc_rat io = acc_rat io + 1

else :
x i = xi_proposal
i f i > N/2 :

samples . append (x i)
x . append (len (samples))
average = average + x i
acc_rat io = acc_rat io+1

samples = np . array (samples)
average = average / len (x)
acc_rat io = acc_rat io /(N/2)

f i g 1 = p l t . f i g u r e ()
ax1 = f i g 1 . add_subplot (111)
ax1 . s c a t t e r (x , samples [: , 0] , alpha =0.5 , s=1)

f i g 2 = p l t . f i g u r e ()
ax1 = f i g 2 . add_subplot (111)
sns . d i s t p l o t (samples [: , 0])

f i g 3 = p l t . f i g u r e ()
ax1 = f i g 3 . add_subplot (111)
ax1 . s c a t t e r (x , samples [: , 1] , alpha =0.5 , s=1)

f i g 4 = p l t . f i g u r e ()
ax1 = f i g 4 . add_subplot (111)
sns . d i s t p l o t (samples [: , 1])

f i g 5 = p l t . f i g u r e ()
ax1 = f i g 5 . add_subplot (111)
ax1 . s c a t t e r (x , samples [: , 8] , alpha =0.5 , s=1)

f i g 6 = p l t . f i g u r e ()
ax1 = f i g 6 . add_subplot (111)
sns . d i s t p l o t (samples [: , 8])

t2 = np . arange (−10 ,10 , 0 . 02)
f i g 1 0 = p l t . f i g u r e ()
ax1 = f i g 1 0 . add_subplot (111)
integra l_avg = in t e g r a t e . quad (lambda x : f (x , average) , −10 ,10)
p l t . p l o t (t2 , f (t2 , average)/ integra l_avg [0] , ' g−− ')

f i g 1 1 = p l t . f i g u r e ()
ax1 = f i g 1 1 . add_subplot (111)
in t eg ra l_t rue = in t e g r a t e . quad (lambda x : f_true (x) , −10 ,10)
p l t . p l o t (t2 , f_true (t2)/ in t eg ra l_t rue [0]− f (t2 , average)/ integra l_avg [0] , ' r−− ')

21

p l t . show

print (acc_rat io)
print ('Worked . ')

This is the code used for the SRW experiments:

import matp lo t l i b . pyplot as p l t
import numpy as np
import math
import s c ipy . i n t e g r a t e as i n t e g r a t e
import seaborn as sns

' ' ' Sample draws ' ' '
def draw_sample () :

global dimy
sample = []
while len (sample)<dimy :

p = np . random . uniform ()
i f p<0.5 :

new_sample = np . random . normal (−3 ,1)
else :

new_sample = np . random . normal (3 , 1)
i f new_sample>−10 and new_sample<10:

sample . append (new_sample)
return sample

' ' ' Def ine func t i on f o r i n t e g r a t i o n ' ' '
def f (x , x i) :

f = u(xi , x)
return np . exp (f)

' ' ' Def ine func t i on Phi ' ' '
def Phi (x i) :

global y
global dimy
phiu = 0
for j in range (dimy) :

rho = np . exp (u(xi , y [j]))
integra l_u = in t e g r a t e . quad (lambda x : f (x , x i) , −10 ,10)
rho = rho/ integra l_u [0]
phiu = phiu+np . l og (rho)

return −phiu

' ' ' Def ine func t i on C(u) ' ' '
def Cop(x i) :

C=0
for i in range (dimu) :

C=C+(i +1)∗ x i [i]∗ x i [i]

22

return C

' ' ' Def ine func t i on I ' ' '
def I (x i) :

return Phi (x i)+1/2∗Cop(x i)

' ' ' Def ine acceptance p r o b a b i l i t y ' ' '
def acceptance_prop (xi_u , xi_v) :

accept_prop = math . exp (I (xi_u)− I (xi_v))
return min(1 , accept_prop)

' ' ' Def ine u(xi , x) ' ' '
def u(xi , x) :

global dimu
u = 0
for i in range (dimu) :

i f i%2 == 0 :
u = u+xi [i]∗ np . cos (2∗np . p i ∗(i /2)∗ (x−10)/(10∗2))

else :
u = u+xi [i]∗ np . s i n (2∗np . p i ∗ ((i +1)/2)∗(x−10)/(10∗2))

return u

' ' 'MCMC' ' '
N = 200
dimu = 11 #accuracy o f u
dimy = 30 #number o f samples g i ven
x i = np . z e r o s (dimu)
x i [0] = 1
y = draw_sample ()

beta = 1/4
mu = []
for i in range (len (x i)) :

t = 1/(i +1)
mu. append (t)

C = np . diag (mu)

samples = []
average = np . z e r o s (dimu)
acc_rat io = 0
x = []
for i in range (N) :

x i_proposal = x i+beta∗np . random . mult ivar iate_normal (np . z e r o s (dimu) ,C)
a = acceptance_prop (xi , x i_proposal)
i f a < 1 :

uni = np . random . uniform ()

23

i f uni < a :
x i = xi_proposal
i f i > N/2 :

samples . append (x i)
x . append (len (samples))
average = average + x i
acc_rat io = acc_rat io+1

else :
x i = xi_proposal
i f i > N/2 :

samples . append (x i)
x . append (len (samples))
average = average + x i
acc_rat io = acc_rat io+1

samples = np . array (samples)
average = average / len (x)
acc_rat io = acc_rat io /(N/2)

f i g 1 = p l t . f i g u r e ()
ax1 = f i g 1 . add_subplot (111)
ax1 . s c a t t e r (x , samples [: , 0] , alpha =0.5 , s=1)

f i g 2 = p l t . f i g u r e ()
ax1 = f i g 2 . add_subplot (111)
sns . d i s t p l o t (samples [: , 0])

f i g 3 = p l t . f i g u r e ()
ax1 = f i g 3 . add_subplot (111)
ax1 . s c a t t e r (x , samples [: , 1] , alpha =0.5 , s=1)

f i g 4 = p l t . f i g u r e ()
ax1 = f i g 4 . add_subplot (111)
sns . d i s t p l o t (samples [: , 1])

f i g 5 = p l t . f i g u r e ()
ax1 = f i g 5 . add_subplot (111)
ax1 . s c a t t e r (x , samples [: , 8] , alpha =0.5 , s=1)

f i g 6 = p l t . f i g u r e ()
ax1 = f i g 6 . add_subplot (111)
sns . d i s t p l o t (samples [: , 8])

f i g 7 = p l t . f i g u r e ()
ax1 = f i g 7 . add_subplot (111)
ax1 . s c a t t e r (x , samples [: , 9] , alpha =0.5 , s=1)

f i g 8 = p l t . f i g u r e ()

24

ax1 = f i g 8 . add_subplot (111)
sns . d i s t p l o t (samples [: , 9])

t2 = np . arange (−10 ,10 , 0 . 02)
f i g 1 0 = p l t . f i g u r e ()
ax1 = f i g 1 0 . add_subplot (111)
integra l_avg = in t e g r a t e . quad (lambda x : f (x , average) , −10 ,10)
p l t . p l o t (t2 , f (t2 , average)/ integra l_avg [0] , ' r−− ')
p l t . show

print (acc_rat io)
print ('Worked . ')

25

References

[1] RB Ash. Information theory. 1965. Interscience, New York.

[2] Alexandros Beskos, Mark Girolami, Shiwei Lan, Patrick E Farrell, and An-
drew M Stuart. Geometric mcmc for in�nite-dimensional inverse problems.
Journal of Computational Physics, 335:327�351, 2017.

[3] Alexandros Beskos, Gareth Roberts, Andrew Stuart, and Jochen Voss. Mcmc
methods for di�usion bridges. Stochastics and Dynamics, 8(03):319�350, 2008.

[4] Timothy Cannings. Topics in statistical theory (lecture notes), Part III lecture,
University of Cambridge, 2016.

[5] Simon L Cotter. Applications of MCMC methods on function spaces. PhD
thesis, University of Warwick, 2010.

[6] Simon L Cotter, Gareth O Roberts, Andrew M Stuart, David White, et al.
Mcmc methods for functions: modifying old algorithms to make them faster.
Statistical Science, 28(3):424�446, 2013.

[7] Tiangang Cui, Kody JH Law, and Youssef M Marzouk. Dimension-
independent likelihood-informed mcmc. Journal of Computational Physics,
304:109�137, 2016.

[8] Giuseppe Da Prato and Jerzy Zabczyk. Stochastic equations in in�nite dimen-
sions. Cambridge university press, 2014.

[9] Phil PG Dyke and PP Dyke. An introduction to Laplace transforms and Four-
ier series. Springer, 2001.

[10] Walter R Gilks, Sylvia Richardson, and David Spiegelhalter. Markov chain
Monte Carlo in practice. CRC press, 1995.

[11] Mark Girolami and Ben Calderhead. Riemann manifold langevin and hamilto-
nian monte carlo methods. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 73(2):123�214, 2011.

[12] Matthew D Ho�man and Andrew Gelman. The no-u-turn sampler: adaptively
setting path lengths in hamiltonian monte carlo. Journal of Machine Learning
Research, 15(1):1593�1623, 2014.

[13] Kody JH Law. Proposals which speed up function-space mcmc. Journal of
Computational and Applied Mathematics, 262:127�138, 2014.

[14] Richard Nickl. Gaussian processes (lecture notes), Part III lecture, University
of Cambridge, 2016.

[15] Christian P Robert and George Casella. The metropolis�hastings algorithm.
In Monte Carlo Statistical Methods, pages 231�283. Springer New York, 1999.

[16] Andrew M Stuart. Inverse problems: a bayesian perspective. Acta Numerica,
19:451�559, 2010.

[17] Endre Süli and David F Mayers. An introduction to numerical analysis. Cam-
bridge university press, 2003.

	Introduction
	Setting
	Density estimation
	Inverse problems

	Probabilistic interlude
	The Karhunen-Loève expansion
	The Feldman-Hajek theorem

	MCMC methods on function spaces
	Random Walk Metropolis-Hastings
	(Preconditioned) Crank-Nicolson
	Derivation and properties
	Possible modifications

	Computational experiments
	Summary and outlook
	Appendix - Code
	References

