MCMC Methods for Functions: Modifying Old
Algorithms to Make Them Faster

2nd May 2017



Abstract

Markov Chain Monte Carlo methods on function spaces are useful, for example
to solve inverse problems. Classical methods suffer from poor performance on
function space, which makes modifications of them necessary. This essay provides
an overview of certain dimension-independent methods. Discussed are applications,
examples, theoretical underpinnings, and the mathematical properties behind these
methods, furthermore the performance of them is analysed.
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1 Introduction

This essay aims to explore and assess Markov Chain Monte Carlo (MCMC) meth-
ods that work on function spaces (extending to other infinite-dimensional, separ-
able Hilbert spaces). The necessesity of this arises as standard MCMC methods
suffer from poor performance under mesh-refinement. New ‘robust’ methods are
needed, which are stable under mesh-refinement, and thus not require adjustment
with every dimension added. Amongst the settings in which these methods can
be applied are inverse problems. This is a very active field of research. One of
the Bayesian contributions to this field of research will be discussed in this es-
say, namely MCMC methods on function spaces. This work can then be used to
construct confidence intervals for possible initial states of an inverse problem, by
sampling from the posterior distribution for these initial states given data.

This essay is structured as follows: settings in which these methods are useful
will be discussed in section [2] where a very basic but illustrative example will be
used to introduce the concept and utility of MCMC methods on function spaces,
before turning to more realistic applications, the aforementioned inverse problems.
Some probabilistic background will be provided in section [3] which will be neces-
sary to understand and assess these methods. Next, two MCMC methods wil be
described and analysed in section [} where the title of this essay will be justified,
the origin of these methods will be explained, and also a few remarks on possible
modifications will be given - and indeed the most recent developments concern-
ing them will be stated. The proofs of theorems [ b and [6] in that section are
largely the authors own work. Computational experiments will be found in section
Bl These experiments should be seen as explanatory rather than as an applicable
tool. To use the program in practice, adjustments to the respective setting need to
be made. We conclude with a summary and an outlook.

2 Setting

In this section we assess the usefulness of MCMC methods on function spaces. We
do this first by looking at a somewhat artificial example, in order to illustrate how
these methods work, and to offer some insight into possible other applications. We
then turn to the more advanced application of solving inverse problems.

2.1 Density estimation

We elaborate the example mentioned in [6]. Let us assume that we have data
given by independent draws from a random variable that has a density function
proportional to N'(—3,1)1_1919 + N (3,1)1[_10,10]. Given only the data, we may
be interested in finding the density function of this random variable. Non-Bayesian
approaches for this task can be found in [4]. Instead of assuming a parametrical
model, a mixture of normals say, we assume no prior knowledge whatsoever about
the density. We may therefore try to infer the Fourier seriesE] of the density, which

'We could just as well take any other series representation of the function, as long as the series is
garantued to converge. Throughout this essay, the reader should think of the Fourier series as the most



is given by

oo
flx) = % + Zancos (W) + by sin <27m(§010)> ,
n=1

where we already adjusted the series to the given interval [—10,10]. See [9] for a
detailed analysis of Fourier series. The truncated series sums only over the first N
terms which leads to 2IN +1 coefficients to be estimated in total. A MCMC method
may now be used to sample these coefficients a,, and b,, which may be arbitrarily
many. The first questions arising are:

As a computer can’t handle infinitely many terms, how many terms shall we
use in practise? Shall we used a fixed N, or allow for differing N7

Shall all coefficients be similarly important, or shall we put some kind of ‘im-
portance weight’ on certain terms?

While both questions will be discussed and answered in the subsequent sections,
the reader should note that - generally speaking - the first coefficients of a Fourier
series are more important than later ones, as the sequence of coefficients converges
to 0. Therefore, it makes sense to see the first ones as ‘more important’ and -
fortunately - truncating the series does not lead to an inferior method. Indeed,
when given n data points, it wouldn’t make sense to use more than n coefficients.

The example of density estimation is used for illustrative purposes, and the
reader may look at the computational experiments in section [5] where the above
mentioned density is estimated by the two methods introduced in section [

2.2 Inverse problems

Before delving into inverse problems, let us first recall what we did in the previous
subsection. We took the Fourier representation of a function, and used a MCMC
method to sample the coefficients.

This idea can be applied to inverse problems as well: intuitively speaking, we posit
some function fg as the initial condition for such a problem, a partial differential
equation (PDE) for example. We then use the PDE and the function fy to solve
the forward problem, and can compare the solution of this forward problem to
the data observed. Changing some coefficients in the Fourier series of fy gives us
some proposal function f , which will lead to another solution and, as in a classical
Metropolis-Hastings algorithm, we accept or reject this proposal with a certain ac-
ceptance probability, generally accepting the proposal f if it is ‘more likely’ than
fo, or otherwise rejecting it with a probability somewhat proportional to ‘how less
likely’ f is compared to fo, thus giving us a new iterate f.

Doing this often enough will yield a posterior distribution in the function space,
where more mass is found on functions that are more likely to be the true initial
state, as the data are more likely to have been genereated by these functions.

obvious representation of a function, though others are possible. Also see the section dealing with the
Karhunen-Loéve expansion.



Let us look at one example. This example is taken from [16], where a thorough
discussion can be found. We consider the inverse problem for a diffusion coefficient.
We are given a two-point boundary value problem

-2 (k(x)ji) —0, (M
p(0) =po, p(1)=p1,

and aim to recover the true diffusion coefficient k(z). We assume p; > pg > 0.
Given some erroneous measurements y; at the points 0 < x1 < 22 < ... <y <1,
and we assume the errors to be normal. Thus, we can write y = p(xx) + 7x, where
p(zg) is the ‘true’ values, and the 7 are i.i.d. zero-mean Gaussians with variance
72,

Note the following: given some function k(z), we can solve the forward problem
(1), and find the p(zy) corresponding to that diffusion coefficient. This is achieved
as follows: to ensure positivity of k(z) (a non-positive coefficient function doesn’t
make physical sense), firstly define u(x) = log(k(x)), a one-to-one correspondence
for positive k. Then the solution to the PDE given by is

T

Jo exp(—u(z))dz
Jo exp(—u(=))dz
In order to compare this to our observations, we define the observation operator

G(u(z)) = (p(x1), ...,p(zq))*. The star is used to distinguish between the true val-
ues and the ones obtained by solving the forward problem.

p(z) = (p1 — po) + po-

Here, one can see the general technique when using the Bayesian framework to
solve an inverse problem: a forward operator is used to solve the forward problem,
given some proposal for the initial state. Depending on the problem and the data
observed, one chooses an appropriate observation operator G(u), which will be
used in MCMC algorithms, to compare the observations y to the solutions from
the forward problem. The observations might be erroneous, which is taken into
consideration in our observation model

y=9(u)+e, (2)

where we normally assume Gaussian noise € ~ N(0, Qops). Qops denotes the co-
variance matrix of the noise. We will see in the next section how this algorithm
is defined, and how the observation operator is crucial to defining the acceptance
probabilities.

In our example, we assume that one has chosen coefficients of the Fourier series
of k(x). We start our MCMC method from these coefficients, i.e. from ko(x).
Depending on the MCMC method, we propose a new l%(x), having coeffiecients
which are usually close to those from ko. We then use G(log(ko(z))), G(log(k(z)))
and the observations {yk}izl to decide whether to accept or reject the proposal.
Repeating this step will then lead to a method whereby (if properly defined) we
should end up with a probability distribution for each coefficient of the Fourier
series, and should thus be able to define confidence intervals, to obtain the most
likely coefficients (and thereby the most likely k(x)), and to infer anything else
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possible with standard MCMC methods.

Let us now turn to the more technical part of this essay. In order to understand
how these MCMC methods actually work, how they propose a new state, how the
acceptance probabilities are defined, and which advantages and/or disadvantages
they might have, some theoretical background is required. This background is
provided in the next subsection, where we try to make some sense of the rather
technical aspects needed.

3 Probabilistic interlude

In order to understand section [d] this section will provide the reader with some
theorems in probability theory that will be crucial for the understanding of the
MCMC methods on function spaces and their analysis in the subsequent section.
Firstly, it will be justified to use a series representation for infinite Gaussian meas-
ures by making use of the Karhunen-Loéve expansion, and secondly, we will state
the ingenious Feldman-Hajek theorem, which states that two Gaussian measures
on infinite Hilbert spaces are either mutually singular or equivalent, and further-
more it states three conditions that hold if, and only if, those two measures are
equivalent.

3.1 The Karhunen-Loéve expansion

As shown in [I], the following theorem holds:

Proposition 1 (Karhunen-Loéve expansion). Let X(t), t € [a,b], a and b
finite, be a continuous-parameter second-order random process with zero mean
and continuous covariance function R(t,s). Then we may write

oo
X(t) =Y Zpen(t), a<t<b,
k=1
where ey are eigenfunctions of the integral operator A

b
A(z()(t) = / R(t,s)z(s)ds, a<t<b,

i.e. Aler(+))(t) = Ager(t). The eigenfunctions form an orthornormal basis for
the space spanned by the eigenfunctions corresponding to the non-zero eigen-
values. The Zy are given by

/ " X(ext)dt,

and are independent, zero mean random vartables with variance A\,. The series
> orey Zreg(t) converges in mean square to X (t) uniformly in t.

The result we will use in this essay is the following, also proved in [1]:



Proposition 2. If X(t) is a Gaussian process, then the Zy of the Karhunen-
Lo¢ve expansion of X (t) are independent Gaussian random variables.

As we know the variance of these Gaussian random variables by the first proposi-
tion, we find that we can write

X(t) ="V grer(t),
k=1
where gj, 1S N(0,1). Note that this is equivalent to
X(t) = Mgre(t),
k=1

by choosing )\i as the eigenvalues with an abuse of notation. From here on, one
should always see )\i to be the eigenvalues, as is common in the literature (see e.g.
[6]). This is because we can also consider

X(8) = Mgrerlt) = > &en(t), (3)
k=1 k=1

where the s are independent normals, & ~ N(0, )\i) We will from here on also
assume the covariance operator to be trace-class, i.e. the sum of the eigenvalues
> peq A2 (with the new notation) is finite.

Both notations in (3) will be used for the MCMC methods.

So far the Karhunen-Loéve expansion was quite theoretical and the reader might
not yet see how it is useful for the MCMC methods on function spaces. That should
become clearer in this paragraph. For any MCMC method we need to define a prior
and on a function space the first thing that might come to one’s mind is a (centered)
Gaussian process, defined by the covariance operator C, thus pg = N(0,C). If we
want to draw a sample u(t) from pg, we can now use the Karhunen-Loéve theorems
to realise that we might as well sample one-dimensional Gaussians, and then sum
them according to the Karhunen-Loéve expansion. Unfortunately, the expansion
is an infinite sum, but as it converges, we can truncate it after d, terms and hope
that the remaining terms don’t have a huge impact on u(t).

Some remarks on this are now made and the reader should reconsider them after
having read section [4] It is generally hard to decide, where to truncate the series
expansion. There are some more advanced techniques than simlpy truncating the
series after d,, terms, these techniques are found in 6] and we will only give an
overview here:

The first modification from simply truncating the series expansion at a fixed d,, is,
that one allows d,, to be a random variable itself, e.g. a Poisson random variable.
Conditional on d,, u(t) is still a Gaussian random variable in the function space.
We may also give every basis function an individual ‘on/off switch’, while still con-
trolling the number of active, i.e. non-zero, terms. In each MCMC step, we first



pick d,, (by using a constant number or by using some random variable) and then
pick d, terms to be active, e.g. by using a Bernoulli random variable, and turning
the first term on or off with probability a half (or something else), then the second
one, etc., until we have the d, active terms, which we will then sample.

Summarising this subsection, the Karhunen-Loéve expansion allows us to draw
samples from function space priors ug, given some centered Gaussian process with
covariance operator C. We will throughout this paper assume that the eigenfunc-
tions and eigenvalues are known, though other possibilities for sampling from this
prior are possible, see [6]. We suggest that the reader may think of the eigenfunc-
tions to be the Fourier basis functions for illustrative purposes, even though the
(orthonormal) eigenfunctions are uniquely determined by the covariance operator
and will generally not coincide with the Fourier basis functions.

3.2 The Feldman-Hajek theorem

In this subsection, we will state the Feldman-Hajek theorem, which characterises
equivalence of Gaussian measures on Hilbert spaces; it is proved in [§], where one
also finds a more detailed description and more properties of Gaussian measures
on both Banach and Hilbert spaces. First note that we call a measure p on a
Hilbert space a Gaussian measure if, for arbitrary A € H, there exists some m € R
and ¢ > 0, such that u({x € H : (h,z) € A}) = N(m,q)(A). As in the finite-
dimensional case, we can uniquely characterise this measure by a mean m € H and
a covariance operator @ : H — H. We may thus write A'(m, Q) for this measure.

The reader should recall that in the Karhunen-Loéve expansion we wrote y :=
wo = N(0,C) as an infinite sum of orthogonal Gaussians, which defines a unique
Gaussian measure on the Hilbert space. If we are given another measure, v =
N(my,Q,), one might be interested in whether these two measures are equivalent,
whether one is singular with respect to the other, or whether they are mutually sin-
gular, as we know from standard MCMC theory that we need equivalent measures
in order to properly define the acceptance probability. The surprising theorem in
Hilbert spaces is that p and v are either equivalent or mutually singular, and we
can furthermore find necessary and sufficient conditions for the equivalence:

Proposition 3 (Feldman-Hajek). The following statement holds.
(1) Gaussian measures . = N(m1,Q1), v = N(ma,Q2) are either mutually
singular or equivalent.
(2) They are equivalent if, and only if, the following conditions hold.
(i) Qi (H) = Q,/*(H) =: Hy.
(Z’L) mi1 — mo € Hy.
(1i) The operator (Q;1/2Q§/2)(Q;1/2Q;/2)* — I is a Hilbert-Schmidt

operator on Hy.

The reader is referred to [§] for the proof, but we will give an intuitive explanation
for the criteria. Recall that two measures are mutually singular if they have disjoint
supports.

Now, the condition (i) tells us that for two measures to be equivalent, the im-
ages of their covariance operators have to match. In particular, if one measure



does degenerate in one direction, i.e. if one eigenvalue, the k-th one say, in the
Karhunen-Loéve expansion of u is 0, then the other measure also has to degenerate
in the same direction, i.e. the variance into the direction of e, has to equal 0.
euk denotes the k-th eigenfunction of the expansion of p.

Condition (ii) then says that if both p and v degenerate, in the k-th coordinate of
1 say, then in that direction their means have to match, which already implies that
we may choose e, = e, . If their means in the k-th direction wouldn’t match,
the sets {v € H : (z,e,1) = miy} and {x € H : (x,e,1) = may}, where m;, is
the k-th coordinate of m;, are disjoint, thus p and v would be mutually singular,
as their supports are subsets of the respective sets.

The last condition is the most abstract one, telling us that, as £ — oo, the eigen-
functions of g and v have to match and the corresponding eigenvalues, i.e. the
variances in the directions of the eigenfunctions, also have to match. This becomes
clearer, when noting that condition (iii) is equivalent to

oo
Z (rij — 0i5)° < 00,
ij=1
where r;; = (Qoeuieui) and 0;; the Kronecker-delta. The equivalence is obtained

vV AuyiAu,j

by looking at the spectral decomposition of the operator in condition (iii), which
is possible by the spectral theorem for compact operators (note that any Hilbert-
Schmidt operator is compact). For ¢ = j, the sum can only be finite if Q2 has
eigenvalue \,; = A, ; corresponding to the eigenfunction e,; = e, ;, or at least
doesn’t differ too much, more precisely, the sum > 2 (r;; — 1) must be finite. For
i # j, the sum can only converge if e,; and e, ; get uncorrelated under @)z, as
i, — 0.

Summarising, this subsection told us that two Gaussian measures are either
mutually singular or equivalent, and that they are equivalent if, and only if, their
eigenvalues and eigenfunctions in the Karhunen-Loéve expansion don’t differ too
much, as specified in the Feldman-Hajek theorem.

4 MCMC methods on function spaces

This section, which discusses methods proposed in [6], starts with an intuitive intro-
duction, by generalising the standard Random Walk Metropolis-Hastings method
from finite to infinite dimensions. We realise that this method doesn’t work in
infinite dimensions (or at least not without major, computational expensive ad-
justments). The second subsection then introduces another MCMC method on
function space that is stable under mesh-refinement, i.e. we can use an arbitrary
number of non-zero coefficients in the series representation of the function we want
to sample, without having to adjust the method in any way. However, that method
has a few downsides as well and adjustments are also discussed.

The theorems [ 5] and [6] which are stated in this section, are modified versions
of theorems found in [6]. The proofs are the authors own work, unless stated
otherwise.



4.1 Random Walk Metropolis-Hastings

We assume that the reader is familiar with MCMC methods on finite-dimensional
spaces, in particular with the Metropolis-Hastings algorithm. Otherwise [15] gives
a brief introduction and [10] offers an exhaustive discussion of the method with
many explanatory examples.

We take the standard random walk method in finite dimensions and generalise it to
define the standard random walk (SRW) method in infinite dimensions as follows:

Algorithm 1: SRW

Set k = 0 and pick u(®);
while {rue do
Propose v®) = u®) 4 ¢®) e®)  AF(0, T).
Set, w1 = (%) with probability a(u®),v*)).
Set ub D = 4 otherwise. Set k — k + 1.
end

We ignore the question how the acceptance probability is defined for the mo-
ment. One realises quickly that this method will lead to an ill-posed one, as the
proposal v will not have a well-defined norm, the sum of the i.i.d. N(0,1) ran-
dom variables will almost surely not converge. This may be adjusted, however, by
adding a preconditioner that ensures convergence. Let C be the covariance oper-
ator of the prior, i.e. u(® ~ N(0,C), then in each step of the algorithm we propose
to add another A/(0,C) random variable to our current position. This random
variable has finite norm. We also introduce a tuning parameter (3, such that the
(preconditioned) SRW method becomes

Algorithm 2: pSRW

Set k = 0 and pick u(?);

while {rue do
Propose v®) = u®) 4 ge®) ¢ ~ N(0,0).
Set w1 = (%) with probability a(u®),v(*)).
Set uk T = y(*) otherwise. Set k — k + 1.

end

In this method, one may play around with [, but we will show that for fixed
B, this MCMC method is not defined on function space. The reason for this is, as
we let the dimension d, — oo, the acceptance probability is not defined and thus
the method is not independent of the dimension d,,, i.e. the active terms in the
Karhunen-Loéve expansion. It would be possible to adjust 5 to the d, used, but
especially when using a variable d,, this would considerably slow down the perfo-
mance.
It is shown in [5] that the acceptance probability is given by min{1, I(u) — I(v)},
where I(u) = ®(u) + %|C_%u|2. Here, and anywhere else in this essay, ®(u) is
some real-valued potential, which can be interpreted as a function, whose negative
exponential is proportional to the Radon-Nikodym derivative of the posterior with

respect to the prior whenever it exists: (f—/j‘o(u) x exp(—®(u)). Note that this is

just a reformulation of Bayes’ formula f—lﬁ)(u) x L(u), for fixed data and where L
is the likelihood for the data given wu.



We will now prove the following theorem, which shows that the (preconditioned)
SRW method is not independent of d,, a property that is also known as ‘stable
under mesh-refinement’ or ‘robust’. Note that in this theorem, 8 = v/28, which
is due to it being a special case of the stochastic differential equation (SDE) we
discuss in the subsequent subsectionf]

Theorem 4. Consider the proposal v|u ~ q(u,-) defined by v = u + V25K&p,
where IC € {C,I} and & ~ N(0,I), and the resulting measure n(du,dv) =
q(u, dv)p(du) on X x X. For both choices of K the measure n't = q(v, du)u(dv)
s not absolutely continuous with respect to . Thus, the MCMC method is not
defined on function space.

Proof. w = wyg is a draw from N(0,C). Here, and in the rest of this essay, we
will identify w with its Karhunen-Loéve expansion ) ¢e;, and refer to u; = &;
as the i-th coordinate. For a truncated wu, the acceptance probabilty is given by
min{1, I(u) — I(v)}, where I(u) = ®(u) + %‘C_%U‘Q.
The i-th coordinate of u is N'(0,A?) distributed, such that the i-th coordinate of
C 2u is N(0,1) distributed, as the i-th eigenvalue of C™3 is A b and Aty ~
N(0,A2)?) = N(0,1). Let these i.i.d. standard normal variables be g;. Let d,,
be the largest non-zero coefficient of the truncated series. The expectation for
%’C_%UP then becomes

shfe-hf

du 2
1 1
2 4 <)"u>

1 G
_ 2
= QEE%
1=

For the not-truncated version, i.e. when letting d,, — oo, this expectation is infinite,
such that the acceptance probability is not well-defined. ]

It is quite disappointing that the standard random walk method, which works
perfectly well in finite dimensions, doesn’t generalise to infinite dimensions. For-
tunately, a rather small modification leads to a well-defined method. This will be
discussed in the next subsection.

4.2 (Preconditioned) Crank-Nicolson

This subsection deals with the preconditioned Crank-Nicolson (pCN) method and
its modifications. It is a MCMC method that indeed works on function spaces.

2The interested reader may compare the SDE to((ii—f: = QIC%. The discretisation of this simpler
SDE yields the proposal v = u + v/26K&.



4.2.1 Derivation and properties

The method can be derived from discretising a stochastic differential equation
(SDE), which works as follows: Consider the SDE

du _ —K(Lu+ yDd(u)) + \/%@, (4)
ds ds

where K € {C,I}, £L = C~! is the precision operator, and b is a standard Brownian
motion. This SDE has the nice property that for both v = 0 and v = 1 we
know that the invariant measures are po and p respectively, see [8]. For this essay
however, we will only consider the case where v = 0, thus the SDE becomes

% = —KLu+ \/%% (5)
As just stated, this SDE has invariant measure pg, so discretising it should lead to
a discrete time chain, which also has invariant measure pg, which we will then be
able to use for a MCMC method on function spaces.

The simplest method for discretising a differential equation are the forward Euler
and backward Euler method, see [I7, Ch. 12], but an entire family of discretisations
is given by a combination of these two. For 6 € [0, 1] a discretisation of (5] is given
by

v—u=—0KL(1—8)u+ bv)+ V2K, (6)

where u is the current position, v the next position, § the time difference between
those two steps, and & is a standard Normal random variable. Note that 8 = 0
is the forward Euler method, 8 = 1 gives the backward Euler method, and 6 = %
is the Crank-Nicolson method. Rearranging @ yields (under the assumption that
I + 60K L is invertible)

v=(I4+60KL) (I —6(1—0)KL)u+V20KE). (7)
We now choose L =C, 0 = %, and define 5 = V2 The proposal in becomes

/2"
V= 1_B2u+ﬂ§7

where & ~ N(0,C). This now allows us to formulate the following MCMC method
on function space:

Algorithm 3: pCN

Set k = 0 and pick u(;

while true do
Propose v®) = /1 — 2u®) 4 e ¢®) ~ N(0,0).
Set w1 = (%) with probability a(u®),v*)).
Set k1) = ) otherwise. Set k — k + 1.

end

Here, the acceptance probability is given by a(u,v) = min{1, exp(®(u)—®(v))},
by standard MCMC theory and the next theorem. Also note that & is still a
real-valued potential, and note that ®(u) o —log L(u) if posterior and prior are

10



absolutely continuous with respect to each other, see [6].

It may be asked why we choose 6 = % in the pseudo-code, but this choice is not
arbitrary. The following theorem explains this choice, stating that only 6 = %
leads to a well-defined MCMC method on function space. For other choices of 8
the acceptance probabilities aren’t defined, as the measures n and 7 are mutually

singular by the Feldman-Hajek theorem from the preceeding section.

Theorem 5. Let 11o(X) = 1, let the real-valued potential ® satisfy Assumption
6.1(2) in [6] and assume that p and po are equivalent as measures with the
Radon-Nikodym derivative ddﬁ(u) x exp(—®(u)). Consider the proposal v|u ~
q(u,-) defned by

v=I+00KL) (I -1 —0)KL)u+ V20KE) (8)
and the resulting measure n(du, dv) = q(u, dv)p(du) on X x X.

For both K = I and KK = C the measure n*- = q(v, du)p(dv) is equivalent to
n if and only if 0 = %

Furthermore, if 0 = %, then

dn* _
%(u, v) = exp(®(u) — (v)).

Proof. We use the fact that two centered product Gaussian laws II32, N(0, 0;) and
2

192, N (0, 7;) are equivalent if and only if >">7, (% — ) < o0, see [3, Lemma

A1l

We know that u ~ N(0,C), thus the i-th coordinate is distributed u; ~ N (0, A?) by

the Karhunen-Loéve Expansion. Every coordinate of the noise is a N'(0, 1) random

variable. To determine the law of v, we look at each coordinate of v as proposed
by by itself and obtain, for all ¢,

1510 20[A7]

1 2 9
1+ 00[A2]A 2 1+ 002)A 27 ©)

i

where g; ~ N(0,1) and [\?2] = 1if £ = I and [\?] = \? if K = C. Thus

_ _ 2112\ 2 25[)\?]
1+ 00\, 1+ 00\,

_ 1-6(1- )N 2 26[A\2]
- (0, (SO 2 )

]
_ 1- 50— )N 201X2]
_N<O’[( 1+ 60[A2]A; 2 ) +(1+69[)\§]>\;2)2)\§])\’2>'
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We devide the variance of v; by the variance of u; (i.e. A\?) as suggested by condition
(iii) in theorem [3| and obtain

. (1 —0(1 - 9)[>\?]A22>
T TR

? 26\7]

(14 30[A7IA )2

this simplifies to either

1—0(1—0) 2+ 26 1+200+6%(1 - 0)? (10)
1+ 4660 (1+60)2 1+ 260+ 6262
if X =C orto

(1—5(1—9)A;2>2+ 26 B <A3—5(1—9))2+ 2672
14 356); 2 (1+60)2)202 A2+ 00 (A2 +60)2

if I = I which converges to

Z(1-0)  (1-10)>

107 _ (-0 "
as i — 0o, remembering that A; — 0, by the definition of C. Now to use the
proposition stated at the beginning of the proof, we need 8 such that and
are 1 respectively, as then Y_,(Var(v;)/Var(u;) — 1)? is finite. In both cases, it is
obvious that only 6 = % satisfies this condition, showing that the product measures
are equivalent if and only if § = %
For the last claim, see [16]. One uses the assumptions on ® to show that the

Radon-Nikodym derivative is well-defined. O

In order for pCN to be a well-working method, we need to be able to choose § in
a way that we can tune the method. A first step for this is to show that, as § — 0,
the average acceptance probability (also known as the acceptance ratio) converges
to 1. This is shown by the next theorem:

Theorem 6. Let ug be a Gaussian measure on a Hilbert space (X, ||-||) with
wo(X) = 1 and let p be an equivalent measure on X given by the Radon-
Nikodym derivative j—ﬁ‘o(u) x exp(—P(u)), satisfying Assumptions 6.1(1) and
6.1(2) in [6]. Then both the pCN and CN algorithms (using the proposal (§)
with K = C and K = I, respectively) with fized 0 are defined on X and,

furthermore, the acceptance probability satisfies

lim E"a(u,v) = 1.
0—0

Proof. For fixed d one checks in the preceeding theorem that the measures n and
nt are absolutely continuous with respect to each other, and using the acceptance
probability a(u,v) = min{1, exp(®(u) — ®(v))} one checks in [16] that one obtains
a well-defined algorithm.

For the final claim, one looks at the change in each coordinate as in the proof
of theorem , see @

12



We first look at the slightly simpler case K = C, where equation (J)) simplifies

to
R I EY L0

1+5%UZJr 1+5%gz—2+5u2—|— 2+ 0 I

vV =

The second term is a noise with distribution A(0, 28%) ) which converges to a

degenerated normal, i.e. the noise term converges to 0. For the other part we now
consider the sum of the proposals v;

5 2§ & 2—5
U_ZUZ_ZH& 2+5i:1ui 2445

which converges to u as § — 0. Now using the Assumption 6.1(2), we notice that

|B(u) — ®(v)] < K(r)u -] 20,

and therefore ®(u) — ®(v) — 0, such that exp(®(u) — ®(v)) — 1 by continuity
of the exponential function, which then implies a(u,v) — 1. Now looking at the
expectation one sees

lim E"a(u,v) = lim a(u,v)q(u, dv)p(du) = / q(u, dv)u(du) =
6—0 =0 Jxxx XxX

by the dominated convergence theorem, as a(u,v) is bounded by the integrable
function f =1, and a(u,v) — 1.

Now we look at the unconditioned case K = I. Here, the proposal @ for the
i-th coordinate of v simplifies to

1—65)7° V25 267 L V2
1ol 2" 1+6%/\;2gl_2+5/\—2 TR

Vi = 595

where the second term is smaller than v/20 for i large enough, so smaller than
¢V/26 for an appropriate constant ¢. Then, as § — 0, this term also degenerates as
in the preconditioned case. For the other term, note that we’re only interested in
showing that, for any e > 0, there exists some & such that ||u — v|| < ¢ whenever
§ < 4. Since Y2 yui — 0as N — oo, we choose N large enough, such that the
remaining series is smaller than £/2. The first N terms however can be bounded
by /2 as well, simply be choosing ¢ small enough, which is possible, as for each
term individually, v; — u; as 6 — 0. Thus we again obtain ||u — v| — 0 and we
conclude as in the first case. O

We have now established that the pCN method is well-defined on function
spaces. Now, before we discuss some downsides of the method and possible improve-
ments, let us take a step back and summarise in simple words, why the pCN method
works. Starting the method with u ~ N(0,C) and picking & ~ N (0,C) independent
from u, we have that v = /1 — B2u + B¢ is distributed N(0, (1 — 8?)C + 5%C) =
N(0,C). Thus, in every step the distribution of the prior does indeed not change.
What preceeded has shown that other choices of 6 in the discretisation of the SDE
do not define a well-posed MCMC method on function space and the Feldman-
Hajek theorem was used to proof this.

13



4.2.2 Possible modifications

We now turn to answer the following questions:

- Are there any simple modifications to decorrelate the samples obtained faster, to
reduce the effective sample size’| needed?

- If information is given about which coefficients in the Karhunen-Loéve expansion
are more important, can we formulate a method that considers this to improve the
performance? How can we do this and where could we get this information from?

To answer these questions, we outline some of the ideas presented in [I3] by
K. J. H. Law, in [7] by T. Cui et al., and in |2] by A. Beskos et al., of which
the last one has been published in 2017, and is (as for today and as far as the
author is informed) the most recent development for MCMC methods on function
spaces. The authors mentioned above propose a bunch of methods that modify the
pCN method by using additional information, using operator-weighted proposals
in the first, likelihood informed proposals in the second, and geometry information
in the third paper, which in a way is a generalisation of the first two. In order to
understand these ideas, it may be useful to be familiar with Hamiltonian Monte
Carlo methods on Riemann manifolds, see [11], as the underlying principles of those
methods are the same as the ones presented here.

To understand what is going on in these papers, we first observe that the stand-

ard pCN method introduced earlier in this essay is prior-biased: Only the prior
determines, which parameters (i.e. coefficients in the Karhunen-Loéve expansion)
are ‘more important’ than others, larger steps will be made in directions where
the eigenvalues of the covariance matrix are large. However, it might be that the
likelihood suggests to put more importance on other parameters. This would ask
for a method that then takes larger steps in those parameters to allow for a faster
exploration of the parameter space and thus better mixing times.
The reasoning behind this is straight-forward: By Bayes rule, the posterior is pro-
portional to the likelihood times the prior, and therefore both should be considered
when proposing good MCMC methods. In [13], operator-weighted proposals are
introduced. Instead of having a fixed S in the pCN proposa v=1/1—B2u,+ 3¢,
it is shown that one may instead use an operato

v = Bpu, + /I — B2¢.

This operator may change with every time step, if B,, = B is independent of n
we call B a preconditioner. B, allows us to put different weights on different dir-
ections, which is certainly a nice thing for itself, but only the next developments
made this idea incredibly useful.

In [7], the authors propose following idea: One divides the space X into two
subspaces, the finite-dimensional likelihood-informed subspace (LIS) and its com-
plementing space (CS), which exists by basic Hilbert space theory. On the CS, one

3Tt is assumed that the reader is familiar with the notion of the effective sample size, a problem
common to all MCMC methods. A first introduction can be found in [I5].

4Note that this proposal is equivalent to v = Bu,, + /1 — /32.
®Law actually uses B2 instead of our B,,.
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will still use the pCN method introduced above, on the LIS better methods exist.
The name comes from the fact that one can identify certain parameters, in which
the likelihood dominates the prior and the posterior is strongly determined by the
likelihood, thus the name LIS. As stated earlier, the log-likelihood is proportional
to the potential ® if posterior and prior are absolutely continuous with respect to
each other: —log(L(u)) o< ®(u). Thus, the Hessian of ®(u) contains information
about the likelihood and indeed Cui et al. show that the LIS can be derived from
the dominant eigenvectors of the Hessian of a finite-dimensional approximation of
®. Note that the LIS is a local space, as it normally depends on u (as the Hessian
of ® does). However, one can globalise the local LIS by combining information
from many points in the posterior. If n is the total number of observations, the
global LIS is shown to be not more than n-dimensional, and often is even lower
dimensional. [7] then proposes methods that are equivalent to the pCN on the CS
and are operator-weighted on the LIS, using gradient information of ® and weight-
ing parameters according to their importance given by the likelihood.

The authors of [11] improve and generalise this idea even further. They also take
the standard pCN method and modify it by taking advantage of gradient informa-
tion of the potential ®, which is called co-MALA (infinite-dimensional Metropolis-
adjusted Langevin algorithm, by the underlying Langevin SDE). Similar to finite-
dimensional Hamiltonian Monte Carlo, they then take both the pCN and co-MALA
methods, but modify it as follows using Hamiltonian dynamics:

Firstly, a single ‘leapfrog step’ is a single step by a forward Fuler scheme, used to
solve the Hamiltonian differential equation with mass matrix equal to the inverse
of the preconditioner K in the pCN method,

2
(3171; +K(C 'u+ D®(u)) = 0.

These dynamics preserve the posterior u for any integration time. As in the finite-
dimensional case, it allows to propose quite large steps by executing a fixed number
of leapfrog steps. The combination of using gradient information depending on the
current position, and performing numerous leapfrog steps to obtain one step in the
Metropolis-Hastings chain leads to the most advanced MCMC method discussed
in this essay. Girolami et al. test this method and show that it outperforms any
other method, and is especially good for target distributions with complex and
non-Gaussian structures.

5 Computational experiments

The computational experiments conducted are solely to understand how both the
pCN and SRW methods work and perform on (infinite) dimensional spaces, and
why the pCN is robust under mesh-refinement while the SRW method isn’t. We
will discuss the experiments in detail and compare the findings to the theoretical
performance discussed above.

The general setting for the experiments was the same as in section We

aim to retrieve the ‘true’ distribution which is proportional to N (—3, 110,10 +
N (3, 1)]1[_10710]. We are given dimy samples, in our program we usually chose

15



dimy = 30 unless stated otherwise.

The reader should note that we picked the Fourier basis functions instead of the
Karhunen-Loéve expansion, however it is shown in [I4] that a Karhunen-Loéve ex-

e

pansion for standard Brownian motion is given by got+ >, ?13 sin(mkt)gx, where

gr are i.i.d. standard Gaussians. This can be rewritten as got+>_po 4 ‘7/? sin(mwkt)k,
where & is a N(0, 1/k?) Gaussian random variable. Thus, the Karhunen-Loéve ex-
pansion coincides with the sin-terms in the Fourier series. The author decided to
also include the cos-terms of the Fourier expansion, hoping that the corresponding
coeflicients would turn out to be close to 0. This conjecture indeed holds, all the
experiments have returned the parameters corresponding to the cos-terms found
to be relatively close to 0, while the parameters corresponding to the sin-terms
dominated the series.

The first experiment showed how the acceptance ratio changed when refining
the mesh. As the theory suggests, for fixed 8 the acceptance ratio for the SRW
method tends towards 0, while the acceptance ratio for the pCN method stays
more or less constant. Both methods have first been tuned to have acceptance
ratios of approximately 0.5 with 11 active terms in the series expansion. For the
SRW method, 8 was chosen to be 0.25, and for the pCN method g8 = 0.2 proved
to give the desired acceptance ratio. Note that the acceptance ratio for our ex-
periments is defined as the number of accepted steps divided by the total number
of steps, where we only considered the last N/2 steps, ignoring the burn-in phase.
N is the total number of steps executed, and N = 200 was chosen for this ex-
periment. To get better results, the experiments can be re-run with more steps,
but 200 turned out to be sufficient for these illustrative purposes. For the SRW
method, the acceptance ratios were 0.48, 0.33, 0.18, and 0.08 for 11, 31, 51, and 71
active terms respectively. This clearly shows that, under mesh-refinement and for
fixed 3, the acceptance ratio decreases. Also, it happened that an error occured
when the number of active terms was chosen to be too large: when calculating
the acceptance probabilties, the function exp(I(u) — I(v)) returned infinity, as the
computer couldn’t handle the exponent. As proposed in theorem , I(u)—1I(v) gets
larger with increasing dimension dimu, and eventually the computer is no longer
able to calculate the exponential. This happened when I(u)— I(v) was around 300
or greater. For the pCN method, the respective acceptance probabilities were 0.52,
0.35, 0.44, and 0.38. While this is certainly not constant, neither does it exhibit
exhibits the decreasing tendency that the SRW method shows.

Another effect mentioned earlier was shown as well: it doesn’t make sense to
pick dimu > dimy. This will only lead to overfitting and - as mentioned in section
[2.1]- one doesn’t gain any information.

Lastly, some nice pictures:
For the pCN estimate in figure , we used dimu = 11, dimy = 30, N = 200,
and then took the average over all samples calculated by the pCN method. For the
pCN estimate in figure , we used dimu = 21, dimy = 100, and N = 400.
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Figure 2: Density estimation by pCN with more non-zero terms
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6 Summary and outlook

Summarising, this essay has discussed MCMC methods that work on function
spaces, mainly elaborating on the pCN method. It has been shown that the SRW
method isn’t robust under mesh-refinement. A few applications of MCMC meth-
ods on functions spaces have been mentioned, and those methods are considered
especially useful for inverse problems. Modifications of the pCN method have been
discussed. In the future, the author expects something like an infinite-dimensional
version of the No-U-Turn-Sampler proposed in [I2]. This suggests a method (in
finite dimensions) that automatically adjusts the tuning parameter, § in our al-
gorithm, and at the same time overcomes the problem of the Hamiltonian Monte
Carlo method of deciding how many leapfrog steps should be executed.
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Appendix - Code

This is the code used for the pCN experiments above:

import matplotlib.pyplot as plt

import numpy as np

import math

import scipy.integrate as integrate

import seaborn as sns

772 Sample draws '’

def draw_sample():
global dimy

sample — |[]
while len (sample)<dimy:
p = np.random.uniform ()
if p<0.5:
new sample = np.random.normal(—3,1)
else:
new sample = np.random.normal(3,1)

if new sample>—10 and new_ sample<10:
sample . append (new_sample)
return sample
"7’ Define function for integration ’’’
def f(x,xi):
f = u(xi,x)
return np.exp(f)

222

"7’ Define true density function for integration
def f true(x):
yl=x-3
y2=x+3
f = np.exp(—((ylxyl)/2))+np.exp(—((y2xy2)/2))
return f

"7’ Define function Phi’’’
def Phi(xi):
global y
global dimy
phiu = 0
for j in range(dimy):
tho — np.exp (u(xi,y[j]))
integral u = integrate.quad(lambda x: f(x,xi), —10,1
rho = rho/integral u|[0]
phiu = phiu+tnp.log(rho)
return —phiu

"7’ Define acceptance probability >’
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def acceptance prop(xi_u, xi_v):
accept prop = math.exp(Phi(xi_u)—Phi(xi_v))
return min(1, accept prop)

"’ Define u(zi,x)’’’
def u(xi,x):
global dimu
u=20
for i in range(dimu):
if i%2 — 0:
u = utxi[i]*np.cos(2*«np.pix(i/2)*x(x—10)/(10%2))
else:
u = utxi[i]*np.sin(2«np.pix((i+1)/2)x(x—10)/(10x%
return u

P 7MCYWC7 Y
N = 200
dimu

11 #accuracy of u

dimy 30  #number of samples given
xi = np.zeros (dimu)
xi[0] =1

y = draw_sample ()

beta = 1/5

—

mu. append (1)

for i in range(int ((len(xi)—1)/2)):
t = 1/(i+1)
mu. append (t)
mu. append (t)

C = np.diag (mu)

samples = |[]
average = np.zeros (dimu)
acc_ratio =0

x =[]

for i in range(N):

xi_proposal = np.sqrt(l—betaxbeta)xxit+beta*np.random.mul
a = acceptance prop(xi,xi_ proposal)
if a < 1:
uni = np.random.uniform ()
if uni < a:
xi = xi_proposal
if i > N/2:

samples.append (xi)

tivariate normal (nj

x.append (len (samples))
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average = average + Xxi
acc_ratio = acc_ratio + 1
else:
xi = xi_proposal
if i > N/2:
samples.append ( xi)
x.append (len (samples))
average = average + XxlI
acc_ratio = acc_ ratio+l

samples = np.array (samples)
average = average/len(x)
acc_ratio = acc_ratio/(N/2)

figl = plt.figure()
axl = figl.add subplot(111)
axl.scatter (x, samples|[:, 0], alpha=0.5, s=1)

fig2 = plt.figure()
axl = fig2.add_ subplot(111)
sns . distplot (samples[:, 0])

fig3 = plt.figure ()
axl = fig3.add subplot(111)
axl.scatter (x, samples|[:, 1], alpha=0.5, s=1)

figd = plt.figure()
axl = fig4.add subplot(111)
sns.distplot (samples|[:, 1])

figh = plt.figure ()
axl = figh.add subplot(111)
axl.scatter (x, samples|[:, 8], alpha=0.5, s=1)

fig6 = plt.figure()
axl = fig6.add_ subplot(111)
sns.distplot (samples[:, 8])

t2 = np.arange(—10,10, 0.02)

figl0 = plt.figure ()

axl = figl0.add subplot(111)

integral avg = integrate.quad(lambda x: f(x,average), —10,10
plt.plot(t2, f(t2,average)/integral avg|0], ‘g—)

figll = plt.figure ()

axl = figll.add subplot(111)

integral true = integrate.quad(lambda x: f true(x), —10,10)
plt.plot(t2, f true(t2)/integral true[0]—f(t2,average)/integy
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plt .show

print (acc_ratio)
print (’'Worked. ")

This is the code used for the SRW experiments:

import matplotlib.pyplot as plt
import numpy as np
import math
import scipy.integrate as integrate
import seaborn as sns
772 Sample draws '’
def draw_sample():

global dimy

sample = |[]

while len (sample)<dimy:

p = np.random.uniform ()

if p<0.5:

new sample = np.random.normal(—3,1)
else:

new sample = np.random.normal (3,1)

if new sample>—10 and new sample<10:
sample . append (new sample)
return sample
"7’ Define function for integration '’
def f(x,xi):
f = u(xi,x)
return np.exp(f)

"7’ Define function Phi’’’
def Phi(xi):
global y
global dimy
phiu = 0
for j in range(dimy):
tho = np.exp (u(xi,y[j]))
integral u = integrate.quad(lambda x: f(x,xi), —10,1
rho = rho/integral u|[0]
phiu = phiu+tnp.log(rho)
return —phiu

"7’ Define function C(u)’’’
def Cop(xi):

C=0

for i in range(dimu):

C=C+(i+1)xxi[i]*xi[i]
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return C

"7’ Define function [’
def T(xi):
return Phi(xi)+1/2+xCop(xi)

"7’ Define acceptance probability 7’

def acceptance prop(xi_u, xi_v):
accept prop = math.exp(I(xi u)—I(xi_v))
return min(1, accept prop)

"?’Define u(zi,x)’’’
def u(xi,x):
global dimu
u=20
for i in range(dimu):
if i%2 = 0:
u = utxi[i]*np.cos(2xnp.pix(i/2)*x(x—10)/(10%2))
else:

return u

TIMCMC

N = 200

dimu = 11  #accuracy of u

dimy 30 #number of samples given
xi = np.zeros (dimu)

xi[0] =1

y = draw_sample ()

beta = 1/4

——

for i in range(len(xi)):
t = 1/(i+1)
mu. append (t)

C = np.diag (mu)

samples = []
average = np.zeros(dimu)
acc_ratio = 0
—
for i in range(N):
xi_proposal = xitbetaxnp.random.multivariate normal(np. z
a = acceptance prop(xi,xi_ proposal)
it a < 1:
uni = np.random.uniform ()
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u = utxi|[i]*np.sin(2xnp.pix((i+1)/2)%(x—10)/(10%2))
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if uni < a:
xi = xi_proposal
if i >N/2:
samples.append ( xi)
x.append (len (samples))
average = average + xli
acc _ratio = acc_ ratio+l1
else:
xi = xi_ proposal
if 1 > N/2:
samples.append ( xi)
x.append (len (samples))
average = average + xI
acc_ratio = acc_ ratio+l1

samples = np.array (samples)
average = average/len(x)
acc_ratio = acc_ratio/(N/2)

figl = plt.figure()
axl = figl.add subplot(111)
axl.scatter (x, samples|[:, 0], alpha=0.5,

fig2 = plt.figure()
axl = fig2.add_ subplot(111)
sns.distplot (samples|[:, 0])

figd = plt.figure()
axl = fig3.add_subplot(111)
axl.scatter (x, samples|[:, 1], alpha=0.5,

figd = plt.figure()
axl = fig4 .add subplot(111)
sns.distplot (samples|[:, 1])

figh = plt.figure ()
axl = figh.add subplot(111)
axl.scatter (x, samples|[:, 8], alpha=0.5,

fig6 = plt.figure ()

axl = fig6.add subplot(111)

sus . distplot (samples|:, 8])

fig7 = plt.figure ()

axl = fig7.add_subplot(111)
axl.scatter (x, samples|[:, 9], alpha=0.5,

fig8 = plt.figure()
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axl = fig8.add_subplot(111)
sns.distplot (samples[:, 9])

t2 = np.arange(—10,10, 0.02)

figl0 = plt.figure ()

axl = figl0.add subplot(111)

integral avg = integrate.quad(lambda x: f(x,average), —10,10
plt.plot(t2, f(t2,average)/integral avg|[0], 'r—")

plt .show

print (acc_ratio)
print (’'Worked. ")
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