
Mathematics 4 Topology Semester 2, 2009/2010

Tutorial Sheet 4 (with solutions)

Problems 1,2,3 to be handed in at the lecture on Monday, 8 February, 2010

1. (Handin) Prove that a contractible space X is path-connected. [5 Marks]

Solution By definition, X is contractible if it is homotopy equivalent to a
space Y = {y0} with one point. Let f : X → Y , g : Y → X be inverse
homotopy equivalences, so that there exists a homotopy h : gf ≃ 1 : X → X.
Let g(y0) = x0 ∈ X. By definition, h : X × I → Y is a map such that

h(x, 0) = gf(x) = g(y0) = x0 , h(x, 1) = x ∈ X (x ∈ X) .

For any x ∈ X the map defined by

ωx : I → X ; t 7→ h(x, t)

is a path from ωx(0) = h(x, 0) = x0 to ωx(1) = h(x, 1) = x. So there is a
path between any two points of X, and X is path connected.

2. (Handin) (i) Prove that every map e : X → Rn is homotopic to a constant
map. [2 Marks]
(ii) If f : X → Sn is a map that is not onto, show that f is homotopic to a
constant map. [3 Marks]

Solution (i) Let e0 : X → Rn be the constant map defined by e0(x) = 0 ∈ Rn

for all x ∈ X. The map

d : X × I → Rn ; (x, t) 7→ (1− t)e(x)

defines a homotopy d : e ≃ e0.
(ii) Let y ∈ Sn be such that y /∈ f(X), and define the maps

g : X → Sn\{y} ; x 7→ f(x) ,

i = inclusion : Sn\{y} → Sn

such that f = ig. Stereographic projection defines a homeomorphism h :
Sn\{x} → Rn. By (i) the composite e = hg : X → Rn is homotopic to a
constant map e0 : X → Rn, with a homotopy d : e ≃ e0 : X → Rn. The
composite

ih−1d : X × I
d // Rn h−1

// Sn\{y} i // Sn
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is a homotopy from ih−1e = ig = f : X → Sn to a constant map ih−1e0 :
X → Sn.

3. (Handin) Define the mapping torus of a homeomorphism ϕ : X → X to
be the identification space

T (ϕ) = X × I/{(x, 0) ∼ (ϕ(x), 1) |x ∈ X} .

Identify T (ϕ) with a standard space and prove that it is homotopy equivalent
to S1 by constructing explicit maps f : S1 → T (ϕ), g : T (ϕ) → S1 and
explicit homotopies gf ≃ 1 : S1 → S1, fg ≃ 1 : T (ϕ) → T (ϕ), in the
following two cases:

(i) ϕ(x) = x for x ∈ X = I. [2 Marks]

(ii) ϕ(x) = 1− x for x ∈ X = I. [3 Marks]

Solution. (i) T (ϕ) = I × S1 is a cylinder. The maps

f : S1 → T (ϕ) ; [t] 7→ [1/2, t] ,

g : T (ϕ) → S1 ; [x, y] 7→ [y]

are such that gf = 1 : S1 → S1 (so gf ≃ 1 by the constant homotopy) with

fg : T (ϕ) → T (ϕ) ; [x, y] 7→ [1/2, y] .

The map

h : I × I × I → I × I ; (x, y, t) 7→ (tx+ (1− t)/2, y)

sends the relation (x, 0, t) ∼ (x, 1, t) on I×I×I to the relation (s, 0) ∼ (s, 1)
on I × I, with s = tx+ (1− t)/2. Passing to the identification spaces there
is defined a map

h : (I × I × I)/∼ = T (ϕ)× I → (I × I)/∼ = T (ϕ) ;

([x, y], t) 7→ [tx+ (1− t)/2, y]

which is a homotopy h : fg ≃ 1 : T (ϕ) → T (ϕ).
(ii) T (ϕ) is a Möbius band. The maps

f : S1 → T (ϕ) ; [t] 7→ [1/2, t] ,

g : T (ϕ) → S1 ; [x, y] 7→ [x]
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are such that gf = 1 : S1 → S1 (so gf ≃ 1 by the constant homotopy) with

fg : T (ϕ) → T (ϕ) ; [x, y] 7→ [1/2, y] .

The map

h : I × I × I → I × I ; (x, y, t) 7→ (tx+ (1− t)/2, y)

sends the relation (x, 0, t) ∼ (1− x, 1, t) on I × I × I to the relation (s, 0) ∼
(1 − s, 1) on I × I, with s = tx + (1 − t)/2. Passing to the identification
spaces there is defined a map

h : (I × I × I)/∼ = T (ϕ)× I → (I × I)/∼ = T (ϕ) ;

([x, y], t) 7→ [tx+ (1− t)/2, y]

which is a homotopy h : fg ≃ 1 : T (ϕ) → T (ϕ).

4. Let ∆ be the triangle in R2 with vertices a = (0, 0), b = (1, 1), c = (2, 0),
and let f : ∆ → X a continuous map with f(a) = f(b) = f(c) ∈ X. The
closed paths defined by the restrictions of f to the line segments [a, b], [b, c],
[a, c] are respectively denoted α, β, γ : I → X . Construct a homotopy

h : γ ≃ α • β : I → X rel {0, 1} .

Solution From the description given

α(t) = f(t, t) , β(t) = f(t+ 1, 1− t) , γ(t) = f(2t, 0) ∈ X (t ∈ I) .

For each t ∈ I define a path in ∆ by joining (0, 0) to (1, t) and then (1, t) to
(2, 0) by straight lines

γt : I → ∆ ; s 7→

{
(2s, 2st) if 0 6 s 6 1/2

(2s, (2− 2s)t) if 1/2 6 s 6 1 .

The map

h : I × I → X ; (s, t) 7→ f(γt(s)) =

{
f(2s, 2st) if 0 6 s 6 1/2

f(2s, (2− 2s)t) if 1/2 6 s 6 1
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defines a homotopy from

h0 : I → X ; s 7→ h(s, 0) =

{
f(2s, 0) if 0 6 s 6 1/2

f(2s, 0) if 1/2 6 s 6 1

= γ(s)

to

h1 : I → X ; s 7→ h(s, 1) =

{
f(2s, 2s) = α(s) if 0 6 s 6 1/2

f(2s, 2− 2s) = β(2s− 1) if 1/2 6 s 6 1

= (α • β)(s) .

Note that

h(0, t) = f(0, 0) = f(a) , h(1, t) = f(2, 0) = f(c) ∈ X (t ∈ I)

so h is a homotopy rel {0, 1}.

5. (i) Prove that any two maps f, g : R → X are homotopic, for any path-
connected space X.
(ii) Prove that for a contractible space X any two maps f, g : W → X are
homotopic.
Solution (i) Given maps f, g : R → X let ω : I → X be a path from
ω(0) = f(0) to ω(1) = g(0), and define a homotopy h : f ≃ g : R → X by

h(s, t) =


f(s(1− 3t)) if 0 6 t 6 1/3

ω(3t− 1) if 1/3 6 t 6 2/3

g(s(3t− 2)) if 2/3 6 t 6 1.

(ii) Let i : {0} → X, j : X → {0} be inverse homotopy equivalences, so that
there exists a homotopy h : ij ≃ 1 : X → X. The maps

h(f × 1I) : W × I → X ; (w, t) 7→ h(f(w), t)

h(g × 1I) : W × I → X ; (w, t) 7→ h(g(w), t)

define homotopies

h(f × 1I) : ijf ≃ f : W → X , h(g × 1I) : ijg ≃ g : W → X
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with
ijf = ijg : W → X ; w 7→ i(0) .

The concatenation

H = − h(f × 1I) • h(g × 1I) : W × I → X

defines a homotopy H : f ≃ g : W → X.

6. Construct examples of homotopy equivalent path-connected spaces X, Y
such thatX\{x} is not homotopy equivalent to Y \{y} for some x ∈ X, y ∈ Y .

Solution For any x ∈ X = R, y ∈ Y = Rn (n > 2) the complement X\{x} is
disconnected and the complement Y \{y} is connected, so that X\{x} is not
homotopy equivalent to Y \{y}.
7. Consider the letters of the alphabet

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

as topological spaces by regarding them as subspaces of R2.
(i) Classify the alphabet up to homeomorphism, i.e. group together the
letters which are homeomorphism.
(ii) Classify the alphabet up to homotopy equivalence, i.e. group together
the letters which are homotopy equivalent. (You may use the result that S1

is neither homotopy equivalent to a point nor to the figure eight).
Detailed proofs are not expected!

Solution (i) The letter groups{
A,R

}
,
{
B
}
,
{
C,G,I,J,L,M,N,S,U,V,W,Z

}
,{

D,O
}
,
{
E,F,T,Y

}
,
{
H,K

}
,
{
P
}
,
{
Q
}
,
{
X
}
.

are grouped according to homeomorphism class.
(ii) The letters

A D O P Q R

are homotopy equivalent to S1. The letters

C E F G H I J K L M N S T U V W X Y Z

are contractible. The letter B is neither contractible, nor homotopy equiva-
lent to S1.
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8. Show that the torus with a point removed is homotopy equivalent to a
figure eight. (Hint: regard the torus T 2 = S1×S1 as the identification space
T 2 = A/∼ of the square A = [−1, 1] × [−1, 1] with (x,−1) ∼ (x, 1) and
(−1, y) ∼ (1, y), and remove (0, 0) ∈ A.)

Solution The boundary of the square

B = ∂A = {−1, 1} × [−1, 1] ∪ {−1, 1} × [−1, 1]

is such that B/∼ is a figure eight. Let

g : T 2\{(0, 0)} = C/∼ → B/∼

be the map which sends (x, y) ∈ C to the unique point g(x, y) ∈ B where the
half-line {(λx, λy) |λ > 0} meets B. (Draw a picture!). Let C = A\{(0, 0)},
and let

g : B/∼ → T 2\{(0, 0)} = C/∼

be the inclusion. Then fg = 1 and the map

h : C/∼ ×I → C/∼ ; (x, y, t) 7→ t(x, y) + (1− t)g(x, y)

defines a homotopy h : gf ≃ 1.

9. Show that the group G+ of upper triangular, non-singular, real n×n ma-
trices (with positive entries on the diagonal) is homeomorphic to a Euclidean
space and so is contractible. Let G be the (larger) group of all non-singular
upper triangular matrices; determine the number of path components of G
and hence describe a more familiar space to which it is homeomorphic.
(In the first instance, you may consider the special case n = 2.)

Solution We use the fact that (0,∞) is homeomorphic to R. By counting the
entries in a matrix, G+

∼= RN×(0,∞)n where N = 1+2+....+(n−1) =
(
n
2

)
is

the total number of entries above the diagonal. So G+ is homeomorphic to

R(
n
2) × Rn ∼= R(

n+1
2 ). Any space homomorphic to a Euclidean space is con-

tractible.
Each diagonal entry of an element of G is either positive or negative and

we cannot change this sign in a path within G because the path would have
to pass through an upper triangular matrix with 0 on the diagonal (which is
a singular matrix). So the number of path components is 2n (there are two
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independent possibilities for each diagonal entry of the matrix). Hence G is

homeomorphic to X2n ×R(
n+1
2 ) where X2n is a discrete space with 2n points.

10. The mapping cylinder Mf of a map f : X → Y is the identification space

Mf = X × [0, 1] ∪ Y/{(x, 1) ∼ f(x) | x ∈ X} .

Prove the inclusion i : Y → Mf is a homotopy equivalence. On the next
page is an illustration of the mapping cylinder with a geometric solution of
the problem, a parody of The persistence of memory by Salvador Dali, from
the original Russian edition of ‘Homotopic Topology’ by Fomenko et. al.,
JCMB Library 51.55 FOM.
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Solution The map defined by

j : Mf → Y ;

{
(x, t) 7→ f(x)

y 7→ y

is such that ji = identity : Y → Y . Define a homotopy

h : ij ≃ identity : Mf → Mf

by

h : Mf × [0, 1] → Mf ;

{
((x, s), t) 7→ (x, st+ 1− t)

(y, t) 7→ y .
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