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The method of algebraic topology

I Algebraic topology uses algebra to classify topological spaces.
I A functor on topological spaces is a function

π : {topological spaces} → {sets}
which sends a topological space X to a set π(X ), and a
continuous function f : X → Y to a function
f∗ : π(X )→ π(Y ), satisfying the relations

(1 : X → X )∗ = 1 : π(X )→ π(X ) ,

(gf )∗ = g∗f∗ : π(X )→ π(Z ) for f : X → Y , g : Y → Z .

I The functor is a bridge:

Topology Algebra
π

Firth of Forth bridge
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What is a functor on topological spaces good for?

I Consequence 1 If f : X → Y is a homeomorphism of spaces
then f∗ : π(X )→ π(Y ) is a bijection.

I Consequence 2 If X ,Y are such that there does not exist a
bijection π(X ) ∼= π(Y ) then X ,Y are not homeomorphic.

I There are also functors

π : {topological spaces} → {abelian groups} ,
π : {topological spaces} → {groups}

with similar properties, requiring f∗ to be group morphisms.
I A functor π is homotopy invariant if

(f0)∗ = (f1)∗ : π(X )→ π(Y )

for homotopic f0, f1 : X → Y . If f : X → Y is a homotopy
equivalence then f∗ : π(X )→ π(Y ) is a bijection or an
isomorphism.

I It is much easier to decide if f∗ is a bijection than to decide if
f is a homeomorphism or a homotopy equivalence.
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Our functors π0(X ), H∗(X ) and π1(X )

I The set of path components (Lecture 2) is a homotopy
invariant functor

π0 : {topological spaces} → {sets} ; X 7→ π0(X ) .

I The homology groups (Lectures 4/5/6) are homotopy
invariant functors

Hn : {topological spaces} → {abelian groups} ; X 7→ Hn(X )

for n = 0, 1, 2, . . .
I The fundamental group is a homotopy invariant functor

π1 : {topological spaces} → {groups} ; X 7→ π1(X ) .

Strictly speaking, π1(X ) is defined for a space X with a choice
of base point x ∈ X .

I Can also define higher homotopy groups πn(X ), with
morphisms πn(X )→ Hn(X ) for n > 0. Abelian for n > 2.

I We shall concentrate on π1(X ).
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Loops

I Let X be a topological space.

I Fix a point x ∈ X .

I A loop in X at x ∈ X is a continuous map ω : S1 → X such
that ω(1) = x ∈ X .

X

S¹

1 x
ω
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The unofficial definition of the fundamental group π1(X , x).
Part I.

I The fundamental group of a space X at a point x ∈ X is the
geometrically defined group of homotopy classes [ω] of loops
ω : S1 → X which are tethered at x , that is ω(1) = x ∈ X .

I The homotopies are also to be tethered at x ∈ X .

X
S¹ x I

{1} x I

ωt
ω0

ω1

ωt
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The unofficial definition of the fundamental group π1(X , x).
Part II.

I The identity element 1 = [ex ] ∈ π1(X , x) is the homotopy
class of the constant loop

ex : S1 → X ; s 7→ x .

I Group law

π1(X , x)× π1(X , x)→ π1(X , x) ; ([ω1], [ω2]) 7→ ω1 • ω2

defined by the ‘concatenation’ of loops.

X

S¹ 
ω1 ω2 ω1

ω2
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Some properties of the fundamental group π1(X , x)

I π1({x}, x) = {1}, i.e. the fundamental group of a one-point
space is the one-element group.

I A continuous map f : X → Y induces a morphism of groups

f∗ : π1(X , x)→ π1(Y , f (x)) ; [ω] 7→ [f ω] .

This is an isomorphism if f is a homotopy equivalence.
I Consequence π1(X ) = {1} for contractible X .
I Later in lecture will show that a path α : I → X induces an

isomorphism

α# : π1(X , α(0))→ π1(X , α(1)) .

So for path-connected space X can write

π1(X ) ≡ π1(X , x) for any x ∈ X .

I Every group G is the fundamental group G = π1(X ) of a
path-connected space X . (Hatcher, p.89)
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The fundamental group of the circle, π1(S1) = Z

I View S1 as the unit circle in the complex plane

S1 = {z ∈ C | |z | = 1} .
I For any d ∈ Z use complex multiplication to define the

standard loop of degree d

ωd : S1 → S1 ; z 7→ zd

winding round the circle d times.
I Main Theorem The function

Z→ π1(S1) ; d 7→ [ωd ]

is an isomorphism of groups.
I Idea of proof: define an inverse π1(S1)→ Z by counting the

number of times a loop ω : S1 → S1 goes around S1.
I Example ω3
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The fundamental group of the torus, π1(S1 × S1) = Z⊕ Z

I The fundamental group of the torus is the free abelian group
on 2 generators a1, b1

π1(S1 × S1) = Z⊕ Z = Z2

with (c , d) ∈ Z⊕ Z the homotopy class of the loop

ωc,d : S1 → S1 × S1 ; z 7→ (zc , zd) .

I The generators (1, 0),(0, 1) ∈ π1(S1 × S1) are represented by
the meridian and longitude loops a1, b1 : S1 → S1 × S1

a₁

b₁
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The fundamental group of the figure eight, π1(S1 ∨ S1)

I The fundamental group of the figure 8 is the free nonabelian
group on 2 generators a1, a2

π1(S1 ∨ S1) = F2 = {a1, a2}
I The evident inclusions a1, a2 : S1 → S1 ∨ S1 are loops

representing the two generators

a1 a2

I The homotopy class of the commutator

[a1, a2] = a1a2(a1)−1(a2)−1 ∈ π1(S1 ∨ S1)

is represented by the loop which goes round a1
counterclockwise, then round a2 clockwise, then round a1
clockwise, and finally round a2 counterclockwise.
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The loop traced out by a figure eight skater
∈ π1(S1 ∨ S1) = F2

The Reverend Robert Walker Skating on Duddingston Loch (Raeburn)
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The knot group

I If K : S1 ⊂ S3 is a knot the fundamental group of the
complement

XK = S3\K (S1) ⊂ S3

is a topological invariant of the knot.

I Definition Two knots K ,K ′ : S1 ⊂ S3 are equivalent if there
exists a homeomorphism h : S3 → S3 such that K ′ = hK .

I Equivalent knots have isomorphic groups, since

(h|)∗ : π1(XK )→ π1(XK ′)

is an isomorphism of groups.

I So knots with non-isomorphic groups cannot be equivalent!
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The unknot

I The unknot K0 : S1 ⊂ S3 has complement XK0 = S1 × R2,
with group

π1(XK0) = Z .

S3\K
0
(S1)

K
0
(S1)

S3\K
1
(S1)

K
1
(S1)

a

b
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The trefoil knot

I The trefoil knot K1 : S1 ⊂ S3 has group

π1(XK1) = {a, b | aba = bab} .

S3\K
0
(S1)

K
0
(S1)

S3\K
1
(S1)

K
1
(S1)

a

b

I Conclusion The groups of the knots K0,K1 are not
isomorphic: π1(XK0) is abelian while π1(XK1) is not abelian.
It follows that the knots K0,K1 are not equivalent: the
algebra shows that the trefoil knot cannot be unknotted.

I H1(XK0) = H1(XK1) = Z, so have to use π1 rather than H1.
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The Hurewicz map π1(X )→ H1(X )

I The Hurewicz map is defined by

π1(X )→ H1(X ) ; [ω : S1 → X ] 7→ ω∗(1)

with ω∗ : H1(S1)→ H1(X ) the morphism induced in H1, and
1 ∈ H1(S1) = Z the generator.

I The Hurewicz theorem states that π1(X )→ H1(X ) is
surjective with kernel the normal subgroup generated by the
commutators

[a, b] = aba−1b−1 ∈ π1(X ) (a, b ∈ π1(X )) .

I In general, π1(X ) is not abelian. If π1(X ) is abelian then it is
isomorphic to H1(X ).

I Reference: Theorem 4.32 of Hatcher.
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The fundamental group π1(X ) and
the homology group H1(X ) for some spaces X

X π1(X ) H1(X )

Rn 0 0

Dn 0 0

Sn (n > 2) 0 0

CPn (n > 1) 0 0

S1 {a} = Z Z
S1 ∨ S1 {a1, a2} = F2 Z2∨

g S
1 {a1, a2, . . . , ag} = Fg Zg

M(1) = S1 × S1 {a, b | [a, b]} = Z2 Z2

M(g) = Σg {a1, b1, . . . , ag , bg | [a1, b1] . . . [ag , bg ]} Z2g

RPn (n > 2) {a | a2} = Z2 Z2
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Methods of computing π1(X )

I By ‘lassooing’: if every loop ω : S1 → X can be extended to a
continuous map δω : D2 → X then π1(X ) = {1}.

I By covering space theory: for a ‘universal covering projection’
p : X̃ → X the fundamental group π1(X ) is isomorphic to the
group of homeomorphisms h : X̃ → X̃ such that ph = p.

I If X is a simplicial complex or a CW complex can compute
π1(X ) by an algorithm, keeping track of π1 as X is built up.
Need only go up to 2-dimensional simplices or cells. Adding
n-dimensional ones for n > 3 does not change π1.

I The inductive procedure requires the ‘Seifert-van Kampen
theorem’ for the fundamental group of a union

π1(X1 ∪Y X2) = π1(X1) ∗π1(Y ) π1(X2) .

This is the π1-analogue of the Mayer-Vietoris exact sequence
for H∗(X1 ∪Y X2) (Lecture 9).
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Review of homotopy

I Definition A homotopy of continuous maps f0 : X → Y ,
f1 : X → Y is a continuous map h : X × I → Y such that for
all x ∈ X

h(x , 0) = f0(x) , h(x , 1) = f1(x) ∈ Y .

Starts at f0 and ends at f1, like the first and last shot of a take
in a film, with h(x , t) = ft(x). The world’s most boring film:

f
0

f
1

f
t
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Joined up thinking I.

I Proposition The relation on X defined by x0 ∼ x1 if there
exists a path α : I → X with α(0) = x0, α(1) = x1 is an
equivalence relation.

I Proof (i) Every point x ∈ X is related to itself by the
constant path

ex : I → X ; t 7→ x

which always stays at x ∈ X .
I (ii) The reverse of a path α : I → X from α(0) = x0 to
α(1) = x1 is the path

−α : I → X ; t 7→ α(1− t)

going backwards, from −α(0) = x1 to −α(1) = x0 ∈ X .

-α

α
x₀ x₁
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Joined up thinking II.

I (iii) The concatenation of a path α : I → X from α(0) = x0
to α(1) = x1 and of a path β : I → X from β(0) = x1 to
β(1) = x2 is the path from x0 to x2 given by

α • β : I → X ; t 7→

{
α(2t) if 0 6 t 6 1/2

β(2t − 1) if 1/2 6 t 6 1 .

x
0

x
1 x

2

α βα(0) α(1) = β(0) β(1)

α • β

I Warning The triple concatenations of paths α, β, γ : I → X
with α(1) = β(0), β(1) = γ(0) are paths from α(0) to γ(1)

(α • β) • γ , α • (β • γ) : I → X .

Not the same, but homotopic, keeping end points fixed.
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Based spaces

I Definition A based space (X , x) is a space with a base point
x ∈ X .

I Example For S1 = {z ∈ C | |z | = 1} choose the base point
1 ∈ S1.

I Definition A based continuous map f : (X , x)→ (Y , y) is a
continuous map f : X → Y such that f (x) = y ∈ Y .

I Definition A based homotopy h : f ' g : (X , x)→ (Y , y) is a
homotopy h : f ' g : X → Y such that

h(x , t) = y ∈ Y (t ∈ I ) .

I For any based spaces (X , x), (Y , y) based homotopy is an
equivalence relation on the set of based continuous maps
f : (X , x)→ (Y , y).
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Loops = closed paths

I A path α : I → X is closed if α(0) = α(1) ∈ X .

I A based loop is a based continuous map ω : (S1, 1)→ (X , x).

I In view of the homeomorphism

I/{0 ∼ 1} → S1 ; [t] 7→ e2πit = cos 2πt + i sin 2πt

there is essentially no difference between based loops
ω : (S1, 1)→ (X , x) and closed paths α : I → X at x ∈ X ,
with

α(t) = ω(e2πit) ∈ X (t ∈ I )

such that
α(0) = ω(1) = α(1) ∈ X .
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Homotopy relative to a subspace

I Let X be a space, A ⊆ X a subspace. If f0, f1 : X → Y are
continuous maps such that f0(a) = f1(a) ∈ Y for all a ∈ A
then a homotopy rel A (or relative to A) is a homotopy

X × I → Y ; (x , t) 7→ ft(x)

which is fixed on A ⊆ X , that is

f0(a) = ft(a) = f1(a) ∈ Y (a ∈ A, t ∈ I ) .

I A picture of a homotopy αt : I → X rel {0, 1} of paths
α0, α1 : I → X with the same start point α0(0) = α1(0) ∈ X
and end point α0(1) = α1(1) ∈ X

α₁(0)

α₁

αα₀(0)

α₀

= α₁(1)
α₀(1)=t
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Homotopy of paths

I Exercise If a space X is path-connected prove that any two
paths α, β : I → X are homotopic.

I Exercise (Hard) Let

α , β : I → X = C− {0}

be the paths defined by

α(t) = eπit , β(t) = e−πit ,

such that α(0) = β(0) = 1, α(1) = β(1) = −1. Prove that
α, β are homotopic, but are not homotopic rel {0, 1}.
Although hard to prove, it is easy to see why this is true!



26

The official definition of the fundamental group π1(X , x)

I The fundamental group π1(X , x) is the set of based homotopy
classes of loops ω : (S1, 1)→ (X , x), or equivalently the rel
{0, 1} homotopy classes [α] of closed paths α : I → X such
that α(0) = α(1) = x ∈ X .

I The group law is by the concatenation of closed paths

π1(X , x)× π1(X , x)→ π1(X , x) ; ([α], [β]) 7→ [α • β]

I Inverses are by the reversal of paths

π1(X , x)→ π1(X , x) ; [α] 7→ [α]−1 = [−α] .

I The constant closed path ex is the identity element, such that
for any [α] ∈ π1(X , x)

[α•ex ] = [ex•α] = [α] , [α•−α] = [−α•α] = [ex ] ∈ π1(X , x) .

I See Theorem 4.2.15 of the notes for a detailed proof that
π1(X , x) is a group.
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Homotopy equivalence

I Definition Two spaces X ,Y are homotopy equivalent if there
exist continuous maps f : X → Y , g : Y → X and
homotopies

h : gf ' 1X : X → X , k : fg ' 1Y : Y → Y .

I A continuous map f : X → Y is a homotopy equivalence if
there exist such g , h, k. The continuous maps f , g are inverse
homotopy equivalences.

I Example The inclusion f : Sn → Rn+1\{0} is a homotopy
equivalence, with homotopy inverse

g : Rn+1\{0} → Sn ; x 7→ x

‖x‖
.

I Exercise Prove that a homotopy equivalence f : X → Y
induces a bijection f∗ : π0(X )→ π0(Y ). Thus X is
path-connected if and only if Y is path-connected.
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Contractible spaces

I A space X is contractible if it is homotopy equivalent to the
space {pt.} consisting of a single point.

I Exercise A subset X ⊆ Rn is star-shaped at x ∈ X if for every
y ∈ X the line segment joining x to y

[x , y ] = {(1− t)x + ty | 0 6 t 6 1}

is contained in X . Prove that X is contractible.

I Example The n-dimensional Euclidean space Rn is
contractible.

I Example The unit n-ball Dn = {x ∈ Rn | ‖x‖ 6 1} is
contractible.

I For any n > 1 the n-dimensional sphere Sn is not contractible:
this follows from Hn(Sn) = Z 6= 0.
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Every starfish is contractible

”Asteroidea” from Ernst Haeckel’s Kunstformen der Natur (1904)
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Fundamental group morphisms

I Proposition A continuous map f : X → Y induces a group
morphism

f∗ : π1(X , x)→ π1(Y , f (x)) ; [ω] 7→ [f ω] .

with the following properties:
(i) The identity 1 : X → X induces the identity,

1∗ = 1 : π1(X , x)→ π1(X , x).
(ii) The composite of f : X → Y and g : Y → Z induces the

composite, (gf )∗ = g∗f∗ : π1(X , x)→ π1(Z , gf (x)).
(iii) If f , g : X → Y are homotopic rel {x} then

f∗ = g∗ : π1(X , x)→ π1(Y , f (x)).
(iv) If f : X → Y is a homotopy equivalence then

f∗ : π1(X , x)→ π1(Y , f (x)) is an isomorphism.
(v) A path α : I → X induces an isomorphism

α# : π1(X , α(0))→ π1(X , α(1)) ; ω 7→ (−α) • ω • α .

I Proofs in the notes, and also in Hatcher.
I (v) justifies π1(X ) ≡ π1(X , x) for path-connected X .
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Simply-connected spaces I.

I Definition A space X is simply-connected if it is
path-connected and π1(X ) = {1}. In words: every loop in X
can be lassooed down to a point!

I
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Simply-connected spaces II.

I Example A contractible space is simply-connected.

I Exercise A space X is simply-connected if and only if for any
points x0, x1 ∈ X there is a unique rel {0, 1} homotopy class
of paths α : I → X from α(0) = x0 to α(1) = x1.

I Exercise If n > 2 then the n-sphere Sn is simply-connected:
easy to prove if it can be assumed that every loop
ω : S1 → Sn is homotopic to one which is not onto! (This is
true, but hard to prove).

I Remark The circle S1 is path-connected, but not
simply-connected.
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The fundamental group of the circle, π1(S1) = Z

I Theorem Every loop ω : S1 → S1 is homotopic to exactly
one of the standard loops

ωd : S1 → S1 ; z 7→ zd (d ∈ Z) .

d is the degree of ω.

I This is the key step in the proof that the function

Z→ π1(S1) ; d 7→ [ωd ]

is an isomorphism of groups.

I Proved in lecture using covering R→ S1. Details on page 29
of Hatcher.

I How does one compute degree(ω) ∈ Z for an arbitrary
ω : S1 → S1?
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The fundamental group of punctured plane, π1(C− {0}) = Z

I The winding number of a loop σ : S1 → C− {0} is

W (σ) = degree(ω) ∈ Z with ω(z) = σ(z)/|σ(z)|

0

I The inclusion S1 → C− {0} is a homotopy equivalence, so
isomorphism π1(S1) ∼= π1(C− {0}); W defines isomorphism

W : π1(C− {0})→ Z ; [σ] 7→W (σ) .

I The winding number of an analytic loop σ : S1 → C− {0}
can be computed by Cauchy’s theorem

W (σ) =
1

2πi

∮
σ

dz

z
∈ Z
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The motivation for covering spaces

I Roughly speaking, a ‘covering’ of a space X is a surjective
map p : X̃ → X such that the inverse images p−1(x) ⊆ X̃ are
discrete and homeomorphic to each other, for all x ∈ X .

I A ‘universal cover’ with X path-connected and X̃
simply-connected gives a geometric method for computing the
fundamental group : π1(X ) is isomorphic to the group of
covering translations

Homeop(X̃ ) = {h : X̃ → X̃ homeomorphism | ph = p : X̃ → X̃}

with group law by composition

Homeop(X̃ )× Homeop(X̃ )→ Homeop(X̃ ) ; (h1, h2) 7→ h1 ◦ h2

and inverses by inverses.
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The official definition of a covering space

I Definition A covering space of a space X with fibre the
discrete space F is a space X̃ with a covering projection
continuous map p : X̃ → X such that for each x ∈ X there
exists an open subset U ⊆ X with x ∈ U, and with a
homeomorphism φ : F × U → p−1(U) such that

pφ(a, u) = u ∈ U ⊆ X (a ∈ F , u ∈ U) .

I For each x ∈ X p−1(x) is homeomorphic to F .

I The covering projection p : X̃ → X is a ‘local
homeomorphism’: for each x̃ ∈ X̃ there exists an open subset
U ⊆ X̃ such that x̃ ∈ U and U → p(U); u 7→ p(u) is a
homeomorphism, with p(U) ⊆ X an open subset.
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The group of covering translations

I For any space X let Homeo(X ) be the group of all
homeomorphisms h : X → X , with composition as group law.

I Definition Given a covering projection p : X̃ → X let
Homeop(X̃ ) be the subgroup of Homeo(X̃ ) consisting of the

homeomorphisms h : X̃ → X̃ such that ph = p : X̃ → X ,
called covering translations.

X

X~

h

p
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The trivial covering

I Definition A covering projection p : X̃ → X with fibre F is
trivial if there exists a homeomorphism φ : F × X → X̃ such
that

pφ(a, x) = x ∈ X (a ∈ F , x ∈ X ) .

A particular choice of φ is a trivialisation of p.

I Example For any space X and discrete space F the covering
projection

p : X̃ = F × X → X ; (a, x) 7→ x

is trivial, with the identity trivialization φ = 1 : F × X → X̃ .
For path-connected X Homeop(X̃ ) is isomorphic to the group
of permutations of F , i.e. all the bijections F → F .
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The non-trivial covering R→ S1

I The projection

p : R→ S1 ; x 7→ e2πix

is a covering.

R

S¹

I The fibre is p−1(1) = Z ⊂ R, and the group of covering
translations is

Homeop(R) = {hn | n ∈ Z}

the infinite cyclic group generated by h : R→ R; x 7→ x + 1.
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The non-trivial covering Sn → RPn

I Let n > 1. Recall that the n-dimensional real projective space
is the quotient space of Sn by the antipodal map

T : Sn → Sn ; x 7→ −x
that is RPn = Sn/{x ∼ −x}.

x

Tx    -x=

Sn

I The projection p : Sn → RPn is a non-trivial covering with
fibre F = {1, 2}. The group of covering translations is

Homeop(Sn) = {1,T} = Z2 = the cyclic group of two elements .
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Lifts

I Definition Let p : X̃ → X be a covering projection. A lift of a
continuous map f : Y → X is a continuous map f̃ : Y → X̃
with p(f̃ (y)) = f (y) ∈ X (y ∈ Y ).

X

X~

~
p

Y

f

f

I Example For the trivial covering projection
p : X̃ = F × X → X define a lift of any continuous map
f : Y → X by choosing a point a ∈ F and setting

f̃a : Y → X̃ = F × X ; y 7→ (a, f (y)) .
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The path lifting property

I Let p : X̃ → X be a covering projection. Every path
β : I → X lifts to a path α : I → X̃ . If β is closed,
β(0) = β(1) ∈ X , there is a unique covering translation
h : X̃ → X̃ such that h(α(0)) = α(1) ∈ X̃ .

X̃
p��

I

α 88

β
// X

I Will need the path lifting property to relate a loop ω : S1 → X
to a path α : I → X̃ such that pα(t) = ω(e2πit) ∈ X .

I
α //

��
X̃
p��

S1 ω // X

For ‘universal’ p : X̃ → X get isomorphism

π1(X )→ Homeop(X̃ ) ; [ω] 7→ h .
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Regular covers

I Recall: a subgroup H ⊆ G is normal if gH = Hg for all
g ∈ G , in which case the quotient group G/H is defined.

I A covering projection p : Y → X of path-connected spaces
induces an injective group morphism p∗ : π1(Y )→ π1(X ): if
ω : S1 → Y is a loop at y ∈ Y such that there exists a
homotopy h : pω ' ep(y) : S1 → X rel 1, then h can be lifted

to a homotopy h̃ : ω ' ey : S1 → Y rel 1.

I Definition A covering p is regular if p∗(π1(Y )) ⊆ π1(X ) is a
normal subgroup.

I Example A covering p : Y → X with X path-connected and
Y simply-connected is regular, since π1(Y ) = {1} ⊆ π1(X ) is
a normal subgroup.

I Example p : R→ S1 is regular.
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A general construction of regular coverings

I Given a space Y and a subgroup G ⊆ Homeo(Y ) define an
equivalence relation ∼ on Y by

y1 ∼ y2 if there exists g ∈ G such that y2 = g(y1) .

Write
p : Y → X = Y /∼ = Y /G ;

y 7→ p(y) = equivalence class of y .
I Suppose that for each y ∈ Y there exists an open subset

U ⊆ Y such that y ∈ U and

g(U) ∩ U = ∅ for g 6= 1 ∈ G .

(Such an action of a group G on a space Y is called free and
properly discontinuous).

I Theorem p : Y → X is a regular covering projection with
fibre G . If Y is path-connected then so is X , and the group of
covering translations of p is Homeop(Y ) = G ⊂ Homeo(Y ).
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Regular covers and normal subgroups

I Theorem For a regular covering projection p : Y → X the
induced morphism p∗ : π1(Y )→ π1(X ) is the inclusion of a
normal subgroup, and there is defined a group isomorphism

π1(X )/p∗(π1(Y )) ∼= Homeop(Y ) .

I Sketch proof Let x0 ∈ X , y0 ∈ Y be such that p(y0) = x0.
Every closed path α : I → X with α(0) = α(1) = x0 has a
unique lift to a path α̃ : I → Y such that α̃(0) = y0. Then

π1(X , x0)/p∗π1(Y , y0)→ p−1(x0) ; α 7→ α̃(1)

is a bijection. For each y ∈ p−1(x0) there is a unique covering
translation hy ∈ Homeop(Y ) such that hy (y0) = y ∈ Y .

I The function p−1(x0)→ Homeop(Y ); y 7→ hy is a bijection,
with inverse h 7→ h(x̃0). The composite bijection

π1(X , x0)/p∗(π1(Y ))→ p−1(x0)→ Homeop(Y )

is an isomorphism of groups.
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Universal covers

I Definition A regular cover p : Y = X̃ → X of path-connected
space X is universal if Y is simply-connected.

I Theorem (i) For a universal cover

π1(X ) = p−1(x) = Homeop(Y )

for any x ∈ X .

I (ii) Any two universal covers are isomorphic.

I (iii) The regular covers q : Y → X of a path-connected space
X with regular cover p : X̃ → X are quotients Y = X̃/G for
normal subgroups G / π1(X ).

I (iv) A reasonable path-connected space X , e.g. a simplicial
complex or a CW complex, has a universal covering projection
p : Y → X . The path-connected covers of X are the
quotients Y /G by the subgroups G ⊆ π1(X )
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Examples of universal covers

I Example p : Sn → RPn is universal for n > 2, so

π1(RPn) = Homeop(Sn) = Z2 .

I Example p : R→ S1 is universal, so

π1(S1) = Homeop(R) = Z .

I Example p × p : R× R→ S1 × S1 is universal, so the
fundamental group of the torus is the free abelian group on
two generators

π1(S1 × S1) = Homeop×p(R× R) = Z⊕ Z .
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The fundamental group of the circle

I Homeop(R) is the group of the homeomorphisms h : R→ R
such that ph = p : R→ S1. The group is infinite cyclic, with
an isomorphism of groups

Z→ Homeop(R) ; n 7→ (hn : x 7→ x + n) .

I Every loop ω : S1 → S1 lifts to a path α : I → R with

ω(e2πit) = e2πiα(t) ∈ S1 (t ∈ I ) .

There is a unique h ∈ Homeop(R) with h(α(0)) = α(1) ∈ R.

I The functions

degree : π1(S1)→ Homeop(R) = Z ; ω 7→ α(1)− α(0) ,

Z→ π1(S1) ; d 7→ (ωd : S1 → S1; z 7→ zd)

are inverse isomorphisms of groups.
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The classification of regular covers

I An isomorphism of coverings p : X̃ → X , p′ : X̃ ′ → X is a
homeomorphism f : X̃ → X̃ ′ such that p′ ◦ f = p.

~ X’X ~

X

p’p

f

I Example A covering translation h : X̃ → X̃ is an isomorphism
from a covering p : X̃ → X to itself.

I Theorem Let X be a path-connected space with a universal
cover p : X̃ → X . The isomorphism classes of regular covers
q : Y → X are in one-one correspondence with the normal
subgroups G / π1(X ), with Y = X̃/G and

Homeoq(Y ) = π1(X )/G .



50

The regular covers of S1

I Example The isomorphism classes of regular covers of S1 are
in one-one correspondence with the subgroups

G ⊆ π1(S1) = Z .

I (i) G = {0} ⊂ Z corresponds to the universal cover

p∞ : S̃1 = R→ S1 ; x 7→ e2πix .

I (ii) G = nZ ⊂ Z corresponds to

pn : S̃1 = S1 → S1 ; z 7→ zn .

I (iii) G = Z corresponds to

p0 = 1 : S̃1 = S1 → S1 .
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The classification of surfaces I.

I Surface = 2-dimensional manifold.

I For g > 0 the closed orientable surface M(g) is the surface
obtained from S2 by attaching g handles.

a₁

b₁

a₂

b₂

a₃

b₃

I Example M(0) = S2 is the sphere, with π1(M(0)) = {1}.
I Example M(1) = S1 × S1, with π1(M(1)) = Z⊕ Z.
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The classification of surfaces II.

I Theorem The fundamental group of the orientable genus g
surface M(g) has 2g generators and 1 relation

π1(M(g)) = {a1, b1, . . . , ag , bg | [a1, b1] . . . [ag , bg ]}

with [a, b] = a−1b−1ab the commutator of a, b.

I π1(M(g)) can be computed by the Seifert-van Kampen
theorem for the fundamental group of unions, or by the
universal cover H→ M(g) with H the hyperbolic plane.

I Classification theorem Every closed orientable surface M is
diffeomorphic to M(g) for a unique g .

I Proof A combination of algebra and topology is required to
prove that M is diffeomorphic to some M(g). Since the
groups π1(M(g)) (g > 0) are all non-isomorphic, M is
diffeomorphic to a unique M(g). This can also be seen using
H1(M(g)) = Z2g .
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What next?

I Lecture 8, 29 November. The Edinburgh algebraic geometer
Vanya Cheltsov will describe some of the many ways in which
the topology of surfaces features in algebraic geometry.

I Lecture 9, 6 December. I shall describe the Seifert-van
Kampen theorem for the fundamental group of a union, and
its application to the classification of surfaces. (Could also use
H1).

I Lecture 10, 13 December. John O’Connor and Edmund
Robertson of the St. Andrews MacTutor History of
Mathematics website

http://www-history.mcs.st-and.ac.uk

will talk on some of the rich history of geometry and topology.

http://www-history.mcs.st-and.ac.uk
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A train delivering SMSTC Geometry and Topology
around Scotland


