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The method of algebraic topology

» Algebraic topology uses algebra to classify topological spaces.
» A functor on topological spaces is a function

7 . {topological spaces} — {sets}

which sends a topological space X to a set 7(X), and a
continuous function f : X — Y to a function
f : m(X) — 7(Y), satisfying the relations

1: X=X =1: 7X)—>n(X),
(gf)e = gufi (X)) = 7w(Z)forf: X =Y, g:Y—>Z.

» The functor is a bridge: ) )
Firth of Forth bridge

Algebra



What is a functor on topological spaces good for?

Consequence 1 If f : X — Y is a homeomorphism of spaces
then £, : 7(X) — (YY) is a bijection.

Consequence 2 If X, Y are such that there does not exist a
bijection m(X) = 7(Y) then X, Y are not homeomorphic.
There are also functors

7 . {topological spaces} — {abelian groups} ,

7 : {topological spaces} — {groups}
with similar properties, requiring f, to be group morphisms.
A functor 7 is homotopy invariant if

(o) = (A)« = m(X) = =(Y)

for homotopic fo, i : X = Y. If f : X = Y is a homotopy
equivalence then £, : 7(X) — 7(Y) is a bijection or an
isomorphism.

It is much easier to decide if £, is a bijection than to decide if
f is a homeomorphism or a homotopy equivalence.



Our functors mo(X), H«(X) and m1(X)

The set of path components (Lecture 2) is a homotopy
invariant functor
7o : {topological spaces} — {sets} ; X — mo(X) .

The homology groups (Lectures 4/5/6) are homotopy
invariant functors
H, : {topological spaces} — {abelian groups} ; X — H,(X)
forn=0,1,2,...
The fundamental group is a homotopy invariant functor

m : {topological spaces} — {groups} ; X — m1(X) .

Strictly speaking, 71(X) is defined for a space X with a choice
of base point x € X.

Can also define higher homotopy groups 7,(X), with
morphisms 7,(X) — Hu(X) for n > 0. Abelian for n > 2.

We shall concentrate on m1(X).



Loops

» Let X be a topological space.

» Fix a point x € X.

» A loop in X at x € X is a continuous map w : S* — X such
that w(1) = x € X.

X
s (TOF°
w
1 xd



The unofficial definition of the fundamental group 71(X, x).
Part 1.

» The fundamental group of a space X at a point x € X is the
geometrically defined group of homotopy classes [w] of loops
w : ST — X which are tethered at x, that is w(1) = x € X.

» The homotopies are also to be tethered at x € X.




The unofficial definition of the fundamental group 71(X, x).
Part II.

» The identity element 1 = [e,] € 7m1(X, x) is the homotopy
class of the constant loop

ex 1 ST X s x.
» Group law
m1(X, x) x m (X, x) = (X, x) ; ([wi], [w2]) — w1 ® w2

defined by the ‘concatenation’ of loops.

X

S1 Wie W2



Some properties of the fundamental group 71 (X, x)

m1({x},x) = {1}, i.e. the fundamental group of a one-point
space is the one-element group.
A continuous map f : X — Y induces a morphism of groups

fo @+ m(X,x) = m(Y,f(x)); [w] = [fw] .

This is an isomorphism if f is a homotopy equivalence.
» Consequence 71(X) = {1} for contractible X.

» Later in lecture will show that a path «: / — X induces an

isomorphism

ay © m(X,a(0) = m(X.a(1)) .
So for path-connected space X can write

m1(X) = m1(X, x) for any x € X .

Every group G is the fundamental group G = m1(X) of a
path-connected space X. (Hatcher, p.89)



The fundamental group of the circle, 71(S!) = Z

View S! as the unit circle in the complex plane
St = {zeC||z|=1}.

For any d € Z use complex multiplication to define the
standard loop of degree d

Wy - St st 72529
winding round the circle d times.
Main Theorem The function

7 — 7['1(51) d [wd]

is an isomorphism of groups.
Idea of proof: define an inverse 71(S') — Z by counting the
number of times a loop w : S' — S goes around S*.

Example ws @
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The fundamental group of the torus, m1(S! x S1) =Z @ Z

» The fundamental group of the torus is the free abelian group
on 2 generators asg, by

m(Stx S = ZzoZ = 72
with (¢, d) € Z & Z the homotopy class of the loop
wed @ St St xStz (29 29) .

» The generators (1,0),(0,1) € m1(S! x S!) are represented by
the meridian and longitude loops ay, b; : Sl stxst
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The fundamental group of the figure eight, m1(S! v St)

» The fundamental group of the figure 8 is the free nonabelian
group on 2 generators ai, a

7['1(51\/51) = F = {31782}

» The evident inclusions a;,a» : S' — S Vv St are loops
representing the two generators

» The homotopy class of the commutator
[a1,a0] = araz(ar) H(a2) ! € (St v S

is represented by the loop which goes round a;
counterclockwise, then round a» clockwise, then round a;
clockwise, and finally round a counterclockwise.
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The loop traced out by a figure eight skater
€ 7T1(51 V 51) =F

The Reverend Robert Walker Skating on Duddingston Loch (Raeburn)
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The knot group

If K:S! C S3is a knot the fundamental group of the
complement

Xk = S3\K(SY)c S®
is a topological invariant of the knot.

Definition Two knots K, K’ : S C S3 are equivalent if there
exists a homeomorphism h: §3 — S3 such that K/ = hK.

Equivalent knots have isomorphic groups, since
(h’)* : 7('1(XK) —>7T1(XKI)

is an isomorphism of groups.

So knots with non-isomorphic groups cannot be equivalent!



The unknot

» The unknot Ky : ST  S3 has complement XKy = Sl x R?,
with group

m(Xk,) = Z .

SAK,(S)

14



The trefoil knot
» The trefoil knot K; : S € S3 has group
m1(Xk,) = {a, b|aba = bab} .

K (S)

» Conclusion The groups of the knots Koy, K7 are not
isomorphic: m1(Xk,) is abelian while 71(Xk,) is not abelian.
It follows that the knots Kj, K1 are not equivalent: the
algebra shows that the trefoil knot cannot be unknotted.

» Hi(Xk,) = Hi(Xk,) = Z, so have to use 7 rather than H;.

15
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The Hurewicz map 71(X) — Hi(X)

The Hurewicz map is defined by
m1(X) = Hi(X) ; [w: St = X] = w.(1)

with w, : H1(S') — Hi(X) the morphism induced in Hj, and
1 € Hy(S') = 7Z the generator.

The Hurewicz theorem states that m1(X) — Hi(X) is
surjective with kernel the normal subgroup generated by the
commutators

[a,b] = aba ‘bt € 7w (X) (a,b € m1(X)) .

In general, w1(X) is not abelian. If 71(X) is abelian then it is
isomorphic to Hy(X).

Reference: Theorem 4.32 of Hatcher.



The fundamental group 71(X) and

the homology group H;(X) for some spaces X

X m1(X) Hy(X)
R" 0 0
D" 0 0
S" (n>2) 0 0
CP” (n > 1) 0 0
st {a} =7Z 7
Slyst {at, a2} =F 732
\/gS1 {a1,a2,..., 85} = F; 78
M(1) = St x St {a, b|[a, b]} = 72 7?
M(g) =%, {a1,b1,...,ag,bg |[a1, b1]...[ag, bg|} | Z°€
RP" (n > 2) {a]|a®} = 7 Zy
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Methods of computing 71 (X)

By ‘lassooing’: if every loop w : S' — X can be extended to a
continuous map dw : D? — X then 71 (X) = {1}.

By covering space theory: for a ‘universal covering projection’
p: X — X the fundamental group 71 (X) is isomorphic to the
group of homeomorphisms h : X — X such that ph=p.

If X is a simplicial complex or a CW complex can compute
71(X) by an algorithm, keeping track of 71 as X is built up.
Need only go up to 2-dimensional simplices or cells. Adding
n-dimensional ones for n > 3 does not change .

The inductive procedure requires the ‘Seifert-van Kampen
theorem’ for the fundamental group of a union

(X1 Uy X2) = m1(X1) *5,(v) m(X2) -

This is the m1-analogue of the Mayer-Vietoris exact sequence
for H.(X1 Uy X2) (Lecture 9).
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Review of homotopy
Definition A homotopy of continuous maps fp : X — Y,

f1 : X = Y is a continuous map h: X x | — Y such that for
all x e X

h(x,0) = fo(x), h(x,1) = A(x)e Y.

Starts at fy and ends at f1, like the first and last shot of a take
in a film, with h(x, t) = fy(x). The world's most boring film:
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Joined up thinking I.

» Proposition The relation on X defined by xg ~ x; if there
exists a path a : | — X with a(0) = xg, a(1) = xq is an
equivalence relation.

» Proof (i) Every point x € X is related to itself by the

constant path
e I — X t—x

which always stays at x € X.
» (ii) The reverse of a path a: | — X from a(0) = xp to
a(1) = xy is the path

—a =X, t—al-1t)

going backwards, from —a(0) = x; to —a(1) = xp € X.

a
Xo——<———g X4
-Q
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Joined up thinking II.
» (iii) The concatenation of a path av: | — X from a(0) = xo

to (1) = x; and of a path 5: 1 — X from 5(0) = x; to
B(1) = xz is the path from xp to x» given by

aef i l—X; t— a(2t) if0<t<1/2
| ' Bt —1) if1/2<t<1
(0) (16 o(l) = B(0) E B(})
XZ\:/;Z
oef

» Warning The triple concatenations of paths o, 8,7 : [ — X
with a(1) = 5(0), 8(1) = ~(0) are paths from «(0) to (1)

(vepB)ey, ae(fey) : | - X.

Not the same, but homotopic, keeping end points fixed.
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Based spaces

Definition A based space (X, x) is a space with a base point
x € X.

Example For S! = {z € C||z| = 1} choose the base point
1e St

Definition A based continuous map f : (X,x) — (Y,y) is a
continuous map f : X — Y such that f(x) =y € Y.
Definition A based homotopy h: f ~g: (X,x) — (Y,y)isa
homotopy h: f ~ g : X — Y such that

h(x,t)=yeY (tel).

For any based spaces (X, x), (Y, y) based homotopy is an
equivalence relation on the set of based continuous maps
f:(X,x)—=(Y,y).
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Loops = closed paths

» A path a: | — X is closed if a(0) = (1) € X.
» A based loop is a based continuous map w : (S,1) — (X, x).

> In view of the homeomorphism
1/{0 ~ 1} — St ; [t] — e®™ = cos 27t + isin 27t

there is essentially no difference between based loops
w: (S, 1) — (X, x) and closed paths o : | — X at x € X,
with

a(t) = we®™) e X (tel)

such that



24

Homotopy relative to a subspace

» Let X be a space, AC X asubspace. If fy,f1 : X — Y are
continuous maps such that fo(a) = fi(a) € Y forallac A
then a homotopy rel A (or relative to A) is a homotopy

Xx1—=Y; (xt)— fi(x)
which is fixed on A C X, that is
fo(a) = fi(a) = f(a)eY (acAtel).

» A picture of a homotopy «a; : | — X rel {0,1} of paths
ap, a1 : | — X with the same start point ap(0) = «1(0) € X
and end point ag(l) = a1(1) € X

Qo
et \\’/;‘ ool

(O8]




Homotopy of paths

» Exercise If a space X is path-connected prove that any two
paths o, 8 : | — X are homotopic.

» Exercise (Hard) Let
a,p :1—-X = C-{0}
be the paths defined by
a(t) = €™, B(t) = e ™",

such that a(0) = 5(0) =1, (1) = (1) = —1. Prove that
a, 3 are homotopic, but are not homotopic rel {0,1}.
Although hard to prove, it is easy to see why this is true!

25
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The official definition of the fundamental group m1(X, x)

>

The fundamental group m1(X, x) is the set of based homotopy
classes of loops w : (S,1) — (X, x), or equivalently the rel
{0,1} homotopy classes [a] of closed paths o : | — X such
that a(0) = a(1) = x € X.

The group law is by the concatenation of closed paths

m1(X, x) x m (X, x) = (X, x) ; ([a], [5]) = [ e F]
Inverses are by the reversal of paths
m1(X,x) = 7(X,x) ; [a] = [a]F = [-a] .

The constant closed path e, is the identity element, such that
for any [a] € m1(X, x)

[asex] = [ecsa] = [a], [as—a] = [~asa] = [e] € Ta(X,x).

See Theorem 4.2.15 of the notes for a detailed proof that
m1(X, x) is a group.
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Homotopy equivalence

Definition Two spaces X, Y are homotopy equivalent if there
exist continuous maps f : X = Y, g: Y — X and
homotopies

h:gf~lxy : X=X,k : fg~xly : Y=Y

A continuous map f : X — Y is a homotopy equivalence if
there exist such g, h, k. The continuous maps f, g are inverse
homotopy equivalences.

Example The inclusion f : S” — R™1\ {0} is a homotopy
equivalence, with homotopy inverse

g : R™H{0} - S"; Xb—>HX—H .
X

Exercise Prove that a homotopy equivalence f : X — Y

induces a bijection f, : mo(X) — mo(Y). Thus X is

path-connected if and only if Y is path-connected.



v
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Contractible spaces

A space X is contractible if it is homotopy equivalent to the
space {pt.} consisting of a single point.

Exercise A subset X C R" is star-shaped at x € X if for every
y € X the line segment joining x to y

x,y] = {1—-t)x+ty|0<t <1}

is contained in X. Prove that X is contractible.

Example The n-dimensional Euclidean space R” is
contractible.

Example The unit n-ball D" = {x € R"|||x]| < 1} is
contractible.

For any n > 1 the n-dimensional sphere S" is not contractible:
this follows from H,(S") = Z # 0.
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Every starfish is contractible

" Asteroidea” from Ernst Haeckel's Kunstformen der Natur (1904)
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Fundamental group morphisms

» Proposition A continuous map f : X — Y induces a group
morphism

fo + m(X,x) = m(Y,f(x)); [w] = [fw] .
with the following properties:
(i) The identity 1: X — X induces the identity,
1, =1:m(X,x) = m (X, x).
(i) The composite of f : X — Y and g : Y — Z induces the
composite, (gf). = gufi : m1(X, x) = m1(Z, gf (x)).
(i) If f,g: X — Y are homotopic rel {x} then
fo = g« (X, x) = m(Y, f(x)).
(iv) If f: X — Y is a homotopy equivalence then
fo : (X, x) = w1 (Y, f(x)) is an isomorphism.
(v) A path a: 1 — X induces an isomorphism

ag (X, a(0)) 5> m(X, (1)) ; w— (—a)ewea.
» Proofs in the notes, and also in Hatcher.
> (v) justifies m1(X) = m1(X, x) for path-connected X.
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Simply-connected spaces .

» Definition A space X is simply-connected if it is
path-connected and 71(X) = {1}. In words: every loop in X
can be lassooed down to a point!
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Simply-connected spaces Il.

Example A contractible space is simply-connected.

Exercise A space X is simply-connected if and only if for any
points xp, x; € X there is a unique rel {0,1} homotopy class
of paths a: I — X from a(0) = xp to (1) = xy.

Exercise If n > 2 then the n-sphere S” is simply-connected:
easy to prove if it can be assumed that every loop

w : ST — S is homotopic to one which is not onto! (This is
true, but hard to prove).

Remark The circle St is path-connected, but not
simply-connected.
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The fundamental group of the circle, 71(S!) = Z

Theorem Every loop w : S* — S is homotopic to exactly
one of the standard loops

wg : S'=St 2z 29 (dez).

d is the degree of w.
This is the key step in the proof that the function

7 — 7T1(51) cd [wd]

is an isomorphism of groups.

Proved in lecture using covering R — S!. Details on page 29
of Hatcher.

How does one compute degree(w) € Z for an arbitrary
w:St— St?
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The fundamental group of punctured plane, 71(C — {0}) = Z

» The winding number of a loop o : St — C — {0} is
W(o) = degree(w) € Z with w(z) = o(z)/|o(z)|

S

» The inclusion S — C — {0} is a homotopy equivalence, so
isomorphism 71(S1) = m1(C — {0}); W defines isomorphism

W m(C—-{0}) = Z; [o] —» W(o) .
» The winding number of an analytic loop o : St — C — {0}
can be computed by Cauchy's theorem
1
W) = — dz ez

2ri J, z
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The motivation for covering spaces

» Roughly speaking, a ‘covering’ of a space X is a surjective
map p : X — X such that the inverse images p~1(x) C X are
discrete and homeomorphic to each other, for all x € X.

» A ‘universal cover’ with X path-connected and X
simply-connected gives a geometric method for computing the
fundamental group : m1(X) is isomorphic to the group of
covering translations

Homeop( ) = {h: X = X homeomorphism | ph = p: X — X}
with group law by composition
Homeop()N() X Homeop(;() — Homeop()~<) i (h1, h2) — hyohy

and inverses by inverses.
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The official definition of a covering space

» Definition A covering space of a space X with fibre the
discrete space F is a space X with a covering projection
continuous map p : X — X such that for each x € X there
exists an open subset U C X with x € U, and with a
homeomorphism ¢ : F x U — p~1(U) such that

pp(a,u) = ue UCX (ac F,uel).

» For each x € X p~1(x) is homeomorphic to F.

» The covering projection p : X — X'is a 'local
homeomorphism’: for each x € X there exists an open subset
U C X such that x € U and U — p(U); u— p(u) is a
homeomorphism, with p(U) C X an open subset.
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The group of covering translations

» For any space X let Homeo(X) be the group of all
homeomorphisms h: X — X, with composition as group law.

» Definition Given a covering projection p : X — X let
Homeop(X) be the subgroup of Homeo(X) consisting of the

homeomorphisms h : X — X such that ph=p: X = X,

called covering translations.
O '
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The trivial covering

» Definition A covering projection p : X — X with fibre F is
trivial if there exists a homeomorphism ¢ : F x X — X such
that

pp(a,x) = xe X (aeF, xe X).

A particular choice of ¢ is a trivialisation of p.

» Example For any space X and discrete space F the covering
projection

p: X = FxX—=X; (a,x)—x

is trivial, with the identity trivialization ¢ = 1: F x X — X.
For path-connected X Homeo,(X) is isomorphic to the group
of permutations of F, i.e. all the bijections F — F.



The non-trivial covering R — S?!

» The projection
2mix

p RSl x—e

is a covering.

S1

» The fibre is p~1(1) = Z C R, and the group of covering
translations is

Homeop(R) = {h"|neZ}

39

the infinite cyclic group generated by h: R — R; x — x + 1.
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The non-trivial covering S” — RP"

» Let n > 1. Recall that the n-dimensional real projective space
is the quotient space of S” by the antipodal map

T :8" 55" x— —x
that is RP" = S"/{x ~ —x}.

X

Tx =-x

» The projection p : S” — RP" is a non-trivial covering with
fibre F = {1,2}. The group of covering translations is

Homeo,(S") = {1, T} = Z, = the cyclic group of two elements .
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Lifts

» Definition Let p: X — X be a covering projection. A lift of a
continuous map f : Y — X is a continuous map f : Y — X

with p(f(y)) = f(y) € X (y € Y).

» Example For the trivial covering projection
p: X =F x X — X define a lift of any continuous map
f:Y — X by choosing a point a € F and setting

f, Y 5 X = FxX; yw—(af(y)).
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The path lifting property

> Let p: X — X be a covering projection. Every path
6 | — X lifts to a path o : I — X. If 8 is closed,
B(0) = B(1) € X, there is a unique covering translation
h: X — X such that h(a(0)) = (1 )EX

X
«
E.

» Will need the path lifting property to relate a Ipop w:St = X
to a path a : | — X such that pa(t) = w(e?™) € X.
| —2 > X
v \p

st Y. x

For ‘universal’ p: X = X get isomorphism
m1(X) — Homeop(X) ; [w] +— h.
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Regular covers

Recall: a subgroup H C G is normal if gH = Hg for all

g € G, in which case the quotient group G/H is defined.

A covering projection p : Y — X of path-connected spaces
induces an injective group morphism p, : m1(Y) — m1(X): if
w:S! = Yisaloop at y € Y such that there exists a
homotopy h : pw =~ e,y : ST — X rel 1, then h can be lifted
to a homotopy h:we~ e, : ST — Yrel L.

Definition A covering p is regular if p.(m1(Y)) C m1(X) is a
normal subgroup.

Example A covering p: Y — X with X path-connected and
Y simply-connected is regular, since m1(Y) = {1} C m1(X) is
a normal subgroup.

Example p : R — S! is regular.
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A general construction of regular coverings

Given a space Y and a subgroup G C Homeo(Y') define an
equivalence relation ~ on Y by

y1 ~ yo if there exists g € G such that y» = g(y1) -

Write
p:Y—=X=Y/~=Y/G,;
y — p(y) = equivalence class of y .

Suppose that for each y € Y there exists an open subset
U C Y such that y € U and

glUynU=0forg#1€eG.

(Such an action of a group G on a space Y is called free and
properly discontinuous).

Theorem p: Y — X is a regular covering projection with
fibre G. If Y is path-connected then so is X, and the group of
covering translations of p is Homeo,(Y) = G C Homeo(Y).
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Regular covers and normal subgroups
» Theorem For a regular covering projection p: Y — X the

induced morphism p, : m1(Y) — m1(X) is the inclusion of a
normal subgroup, and there is defined a group isomorphism

m1(X)/p«(m1(Y)) = Homeop,(Y) .

» Sketch proof Let xp € X, yo € Y be such that p(yy) = xo.
Every closed path o : | — X with a(0) = a(1) = xp has a
unique lift to a path @ : /| — Y such that a(0) = yp. Then

m1(X,%0)/pemi(Y,¥0) = P (x0) 5 @ = a(l)

is a bijection. For each y € p~!(xp) there is a unique covering
translation h, € Homeo,(Y) such that h,(yg) =y € Y.

» The function p~1(xg) — Homeop(Y);y ~ h, is a bijection,
with inverse h — h(Xp). The composite bijection

7T1(X,X0)/p*(7T1(Y)) — p_l(Xo) — Homeop(Y)

is an isomorphism of groups.
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Universal covers

Definition A regular cover p: Y = X — X of path-connected
space X is universal if Y is simply-connected.

Theorem (i) For a universal cover
m(X) = p~1(x) = Homeop(Y)

for any x € X.
(ii) Any two universal covers are isomorphic.

(iii) The regular covers q:Y — X of a path-connected space
X with regular cover p : X — X are quotients Y = X /G for
normal subgroups G < 71 (X).

(iv) A reasonable path-connected space X, e.g. a simplicial
complex or a CW complex, has a universal covering projection
p: Y — X. The path-connected covers of X are the
quotients Y /G by the subgroups G C 71 (X)
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Examples of universal covers

» Example p : S” — RP" is universal for n > 2, so
m1(RP") = Homeo,(S") = Z, .
» Example p: R — S is universal, so
m1(S') = Homeop(R) = Z .

» Example p x p: R x R — S* x St is universal, so the
fundamental group of the torus is the free abelian group on
two generators

m1(S* x SY) = Homeopy,(RXR) = ZHZ .



48

The fundamental group of the circle

» Homeo,(R) is the group of the homeomorphisms h: R — R
such that ph = p: R — S'. The group is infinite cyclic, with
an isomorphism of groups

Z — Homeop(R) ; n+— (hy i x = x+n) .
» Every loop w: ST — S1 lifts to a path o : | — R with
w(e27rit) _ e27ria(t) e 51 (t e /) )

There is a unique h € Homeo,(R) with h((0)) = (1) € R.
» The functions
degree : m1(S') — Homeo,(R) =Z ; w+ a(l) — a(0)

7 — m(SY) ; d+ (wg: St — Stz 29)

are inverse isomorphisms of groups.
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The classification of regular covers

An isomorphism of coverings p : X=X, p:X = Xisa
homeomorphism f : X — X’ such that p’ o f = p.

"n»
O

Example A covering translation h : X — X is an isomorphism
from a covering p : X — X to itself.

Theorem Let X be a path-connected space with a universal
cover p : X — X. The isomorphism classes of regular covers
q: Y — X are in one-one correspondence with the normal
subgroups G < m1(X), with Y = X/G and

Homeoy(Y) = mi(X)/G .



v

v
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The regular covers of S?

Example The isomorphism classes of regular covers of St are
in one-one correspondence with the subgroups

GCm(S) = 7.
(i) G = {0} C Z corresponds to the universal cover
Poo - SR 5 St x iy 2mix |
(i) G = nZ C Z corresponds to
Pn - Sl—gl s 6l 7y,
(iii) G = Z corresponds to

pp = 1 : St=5" st



The classification of surfaces I.

» Surface = 2-dimensional manifold.

» For g > 0 the closed orientable surface M(g) is the surface
obtained from S? by attaching g handles.

» Example M(0) = S? is the sphere, with w1(M(0)) = {1}.
» Example M(1) = S* x S, with 7 (M(1)) =Z @ Z.
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The classification of surfaces Il.

Theorem The fundamental group of the orientable genus g
surface M(g) has 2g generators and 1 relation

m1(M(g)) = {a1,b1,...,aq, bg|[a1, b1]...[ag, bg|}

with [a, b] = a~1b~1ab the commutator of a, b.

m1(M(g)) can be computed by the Seifert-van Kampen
theorem for the fundamental group of unions, or by the
universal cover H — M(g) with H the hyperbolic plane.
Classification theorem Every closed orientable surface M is
diffeomorphic to M(g) for a unique g.

Proof A combination of algebra and topology is required to
prove that M is diffeomorphic to some M(g). Since the
groups m1(M(g)) (g = 0) are all non-isomorphic, M is
diffeomorphic to a unique M(g). This can also be seen using
Hi(M(g)) = Z%%.
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What next?

> Lecture 8, 29 November. The Edinburgh algebraic geometer
Vanya Cheltsov will describe some of the many ways in which
the topology of surfaces features in algebraic geometry.

> Lecture 9, 6 December. | shall describe the Seifert-van
Kampen theorem for the fundamental group of a union, and
its application to the classification of surfaces. (Could also use
Hy).

» Lecture 10, 13 December. John O'Connor and Edmund
Robertson of the St. Andrews MacTutor History of
Mathematics website

http://www-history.mcs.st-and.ac.uk

will talk on some of the rich history of geometry and topology.


http://www-history.mcs.st-and.ac.uk

A train delivering SMSTC Geometry and Topology
around Scotland

THE FORTH BRIDGE

LONDON AND NORTH EﬁSTEﬂ'H PI.II.‘I'.&.T OF ENGLAND AND SCOTLAND
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