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Introduction

Topology and groups are closely related via the fundamental
group construction

m1 : {spaces} — {groups} ; X — m1(X) .

The Seifert - van Kampen Theorem expresses the fundamental
group of a union X = Xj Uy Xy of path-connected spaces in
terms of the fundamental groups of X1, X3, Y.

The Theorem is used to compute the fundamental group of a
space built up using spaces whose fundamental groups are
known already.

The Theorem is used to prove that every group G is the
fundamental group G = m1(X) of a space X, and to compute
the fundamental groups of surfaces.

Treatment of Seifert-van Kampen will follow Section 1.1.2 of
Hatcher's Algebraic Topology, but not slavishly so.


http://www.math.cornell.edu/~hatcher/AT/ATpage.html

Three ways of computing the fundamental group

. By geometry

For an infinite space X there are far too many loops

w : St — X in order to compute 71(X) from the definition.
A space X is simply-connected if X is path connected and
the fundamental group is trivial

m(X) = {e}.
Sometimes it is possible to prove that X is simply-connected

by geometry.
Example: If X is contractible then X is simply-connected.

» Example: If X = 5" and n > 2 then X is simply-connected.

» Example: Suppose that (X, d) is a metric space such that for
any x, y € X there is unique geodesic (= shortest path)

Qy,y o I — X from oy, (0) = x to (1) = y. If oy, varies
continuously with x, y then X is contractible. Trees. Many
examples of such spaces in differentiable geometry.



Three ways of computing the fundamental group

Il. From above

X
P
X

is a covering projection and X is simply-connected then 1 (X)
is isomorphic to the group of covering translations

Homeop( ) = {homeomorphisms h : X — X such that ph = p}
Example If

p: X =R—oX =5 x—e™

then

I
N

m1(S') = Homeo,(R)



Three ways of computing the fundamental group

I1l. From below

» Seifert-van Kampen Theorem (preliminary version)

X1 Y X

If a path-connected space X is a union X = Xj Uy X5 with
X1, X5 and Y = X; N X5 path-connected then the fundamental
group of X is the free product with amalgamation

7T1(X) = 7T1(X1) *Tl'l(Y) 7'l'1(X2) .

> Gy xy Gy defined for group morphisms H — G1, H — Go.
» First proved by van Kampen (1933) in the special case when
Y is simply-connected, and then by Seifert (1934) in general.



Seifert and van Kampen

Herbert Seifert Egbert van Kampen
(1907-1996) (1908-1942)


http://www-history.mcs.st-andrews.ac.uk/Biographies/Seifert.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/Van_Kampen.html
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The free product of groups

Let G, Gy be groups with units e; € G1, e € Go.

A reduced word g1g» ... gm is a finite sequence of length
m > 1 with

» g€ G \{e}org € G\ {e}
> gi,8i+1 nhot in the same G;.

The free product of G; and Gy is the group
Gi1 % G = {e} U {reduced words}

with multiplication by concatenation and reduction.

The unit e = empty word of length 0.

See p.42 of Hatcher for detailed proof that G; * Gy is a group.
Exercise Prove that

{e}*G G G]_*G2 G2*G1, (G]_*GQ)*G3 Gl (G2*G3)



The free group F,
For a set S let

(S) = free group generated by S = *SZ .
se

Let g > 1. The free group on g generators is the free
product of g copies of Z

Fg = <al7327--'a3g> = Tk Dsk---%x1 .
Every element x € Fg has an expression as a word
m
X = (al)m11(32)m12 o (ag)mlgainﬂ ..ay Ng

with (mj) an N x g matrix (N large), mj; € Z.

» F1 =7.

For g > 2 F, is nonabelian.
Fg * Fh = Fg+h-



The subgroups generated by a subset

Needed for statement and proof the Seifert - van Kampen
Theorem.

Let G be a group. The subgroup generated by a subset
SCG

(S)c6
is the smallest subgroup of G containing S.

(G) consists of finite length words in elements of S and their
inverses.

Let SC be the subset of G consisting of the conjugates of S
S¢ = {gsg '[s€S g G}

The normal subgroup generated by a subset S C G
(§¢) C G is the smallest normal subgroup of G containing S.
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Group presentations

Given a set S and a subset R C G = (S) define the group
(SIR) = G/(R®)
= G /normal subgroup generated by R .
with generating set S and relations R.

Example Let m > 1. The function

2

(ala™ = {e,a,a%...,a" '} 5 Zp; a" —n

is an isomorphism of groups, with Z,, the finite cyclic group
of order m.
R can be empty, with

(S10) = (5) =

the free group generated by S.
The free product of G; = (51| R1) and G = (52| Rp) is

GI*G2:<51U52|R1UR2>.

*x 7,
S
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Every group has a presentation

Every group G has a group presentation, i.e. is isomorphic to
(S|R) for some sets S, R.
Proof Let S = (G) = éZ and let R = ker(®) be the kernel of

the surjection of groups

®:S—G; (gt gr)—(g)™(@)™... .

Then

(SIR) — G ; [x] — @(x)
is an isomorphism of groups.
It is a nontrivial theorem that R is a free subgroup of the free
group S. But we are only interested in S and R as sets here.
This presentation is too large to be of use in practice! But the
principle has been established.
While presentations are good for specifying groups, it is not

always easy to work out what the group actually is. Word
problem: when is (S|R) = (§'|R’)? Undecidable in general.
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How to make a group abelian

The commutator of g, h € G is

[g.h] = ghg th™t€G.
Let F = {[g, h]} C G. G is abelian if and only if F = {e}.
The abelianization of a group G is the abelian group

G* = G/(FS),

with (F€) C G the normal subgroup generated by F.
» If G = (S|R) then G?* = (S|RUF).
» Universal property G2° is the largest abelian quotient group
of G, in the sense that for any group morphism f : G — A to

an abelian group A there is a unique group morphism

fab . Gab _s A such that
f.G—>Gb

71(X)? = H1(X) is the first homology group of a space X.
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Free abelian at last

Example Isomorphism of groups
(F2)®® = (a,blaba b7y - ZDZ;
ampmam™pn o (my+my+ ..o m+nm+.)

with Z @ Z the free abelian group on 2 generators.
More generally, the abelianization of the free group on g
generators is the free abelian group on g generators

(Fg)?* = @Z forany g >1.
g

It is clear from linear algebra (Gaussian elimination) that

@Z is isomorphic to EBZ if and only if g =h .
g h
It follows that

Fg is isomorphic to F, if and only if g = h .
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Amalgamated free products
The amalgamated free product of group morphisms
h: H=>G,h: H=>G

is the group
G1 *H G2 = (Gl * Gg)//V

with N C Gy * G, the normal subgroup generated by the
elements
i(h)i(h)~t (h e H) .
Forany he H
il(h) = iz(h) € G *xy Gy .
In general, the natural morphisms of groups
61— GixpGy, o G = GixpGay 1 = jai2 - H = Gixp Go

are not injective.
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Some examples of amalgamated free products
Example G x¢ G = G.
Example {e} xy {e} = {e}.

Example For H = {e} the amalgamated free product is just
the free product

Gl *{e} G2 == Gl *x G2 .
Example For any group morphism i : H — G
Gx*y{e} = G/N

with N = (i((H)®) C G the normal subgroup generated by the
subgroup i(H) C G.
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The Seifert - van Kampen Theorem

Let X = X; Uy X5 with X3, X5 and Y = X1 N X5 open in X
and path-connected. Let

inm(Y) = m(X), b:m(Y) — m(X2)
be the group morphisms induced by Y C X;, Y C X5, and let
1 m(X1) = m(X), o m(Xe) = m(X)
be the group morphisms induced by X; C X, Xo C X. Then
O o (Xy) xmi(X2) = (X)) 5 Xk = Jik(xk)
(xk € m1(Xk), k =1 or 2) is a surjective group morphism with
ker® = N = the normal subgroup of 71 (X1) * m1(X2)
generated by ir(y)i(y) 1 (v € m(Y)) .
Theorem ® induces an isomorphism of groups

$ 71'1(X1) *ﬂ'l(Y) 7T1(X2) = 7r1(X) .
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® is surjective .

> Will only prove the easy part, that ® is surjective.

» For the hard part, that ® is injective, see pp.45-46 of Hatcher.

» Choose the base point x € Y C X. Regard a loop
w: (S, 1) = (X, x) as a closed path

f: I:[O,l]—>X:X1UXX2
such that £(0) = f(1) = x € X, with w(e*™™) = f(s) € X.
By the compactness of [ there exist
O=sg<s1<m<---<sp=1

such that f[s;, si+1] € X1 or Xp, written f[s;, si+1] C Xi.
Then
f=fefhe --cof,:| =X

is the concatenation of paths f; : I — X; with

fi(1) = fi11(0) = f(s)eY (1<i<m).
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® is surjective Il.

Since Y is path-connected there exists paths g; : | — Y from
gi(0) = x to gi(1) = f(s;) € X. The loop

(freg1)e(g1ef20g5)e: - -0(gm_20fn_108_1)8(gm—10fn) : | = X
is homotopic to f rel {0,1}, with

[gi o fi 0 8j11] € im(m1(X))) € mi(X) ,

so that

[fl= [Aegillsier208)]. . [gm—29fm108, 1]lgm—1 @ fm]

€ im(P) C m1(X) .

Hatcher diagram: A, = X1, Ag = Xo
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The universal property |.

An amalgamated free product Gy xy G, defines a
commutative square of groups and morphisms

H—" . g

I

G2£>Gl *H Go

with the universal property that for any commutative square

H-"1. G

there is a unique group morphism ® : G; x4 G — G such
that ki = ®j1 : Gt = G and kp = bjp : Gp — G.
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The universal property Il.

» By the Seifert - van Kampen Theorem for X = X; Uy X5 the
commutative square

m(v)’%lm(xl)

|

m1(Xe) 22> 1 (X)

has the universal property of an amalgamated free product,
with an isomorphism

d 71'1(X1) *ﬂ'l(Y) 7T1(X2) = 7['1(X) .



The one-point union

> Let X1, X be spaces with base points x; € X3, x2 € X5.
The one-point union is the quotient space of the disjoint
union X1 LU X>

X1V Xy, = (Xl |_|X2)/{X1 NXQ} .

» The Seifert - van Kampen Theorem for X; V X5
If X1, X> are path connected then so is X3 V X5, with
fundamental group the free product

7T1(X1\/X2) = 7T1(X1)>I<7T1(X2) .

21
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The fundamental group of the figure eight

» The figure eight is the one-point union of two circles

X = Stvst
Figure 8
¥ * \

» The fundamental group is the free nonabelian group on two
generators:

7('1(X) = 7T1(51)*7T1(51) = <a,b> = Zx7.
» An element
ampmampm ... e mwp(X)

can be regarded as the loop traced out by an iceskater who
traces out a figure 8, going round the first circle m; times,
then round the second circles ny times, then round the first
circle my times, then round the second circle ny times, ....
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The fundamental group of a graph

» Let X be the path-connected space defined by a connected
finite graph with V vertices and E edges, and let

g =1-V+E.

» Exercise Prove that X is homotopy equivalent to the
one-point union STV SV ...V St of g circles, and hence
that m1(X) = Fg, the free group on g generators. Prove that
X is a tree if and only if it is contractible, if and only if g = 0.

> Example 1.1.22 of Hatcher is a special case with V = 8§,
E=12 g=5.
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Cell attachment
Let n > 0. Given a space W and a map f : S"1 — W let
X = WurD"

be the space obtained from W by attaching an n-cell.
X is the quotient of the disjoint union W U D" by the
equivalence relation generated by

(xe S~ (f(x) e W) .

An n-dimensional cell complex is a space obtained from ()
by successively attaching k-cells, with k =0,1,2,....n

» Example A graph is a 1-dimensional cell complex.
» Example S" is the n-dimensional cell complex obtained from

() by attaching a O-cell and an n-cell
s"=p° Ur D"

with £ : $"~1 — DO the unique map.
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The Euler characteristic
Definition The Euler characteristic of a finite cell complex
x = |Jo°ulJo*ul Jo?u---ul D"
[« C1 C2 Cn

with ¢, k-cells is
X(X) = D (-DaezZ.

X(D") =1, x(5") =1+ (-1)"

If X is homotopy equivalent to Y then x(X) = x(Y)
(XU Y) = x(X) +x(¥) ~ (XN ¥) € Z.

If F — X — X is a regular cover with finite fibre F then
X(X) = x(F)x(X), with x(F) = [F|.
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The effect on 7 of a cell attachment |I.

Let n > 1. If W is path-connected then so is X = W U D".
What is m1(X)?
If n =1 then X is homotopy equivalent to W Vv S, so that

m(X) = m(WVS) = m(W)*Z.

For n > 2 apply the Seifert - van Kampen Theorem to the

decomposition
X = XiUy X

with
X, = WU {x e D"||lx]| > 1/2} |
Xe = {xeD"||x| <1/2}
Y = X1nXo = {xeD"||x||=1/2} = s
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The effect on 7; of a cell attachment I1.

The inclusion W C Xj is a homotopy equivalence, and
X> 22 D" is simply-connected, so that

m(X) = m(X1) #ry(v) T1(X2)
= (W) 55, 51y (D7) = m1(W) 5 (s5n-1y {€} -
If n> 3 then 71(S™1) = {e}, so that
m1(X) = m(W) *{e} {e} = m(W).
If n =2 then
m(X) = m(W)xz{e} = m(W)/N
the quotient of 71 (W) by the normal subgroup N C 71 (W)

generated by the homotopy class [f] € w1 (W) of f : ST — W.

See Hatcher's Proposition 1.1.26 for detailed exposition.
» If X = \/51 U U D?uU | UD" is a cell complex with a single
n>=3

O-cell, 5 1-cells and R 2-cells then m1(X) = (S|R).
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Every group is a fundamental group

» Let G = (S|R) be a group with a presentation.
> Realize the generators S by the 1-dimensional cell complex

w=\/s
S

with (W) = (S) the free group generated by S.

> Realize each relation r € R C 71(W) by a map r: St — W.
> Attach a 2-cell to W for each relation, to obtain a
2-dimensional cell complex X = W U J D? such that
R

m(X) = (SIR) = G.
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Realizing the cyclic groups topologically

» Example Let m > 1. The cyclic group Z,, = (a|a™) of order
m is the fundamental group

m1(Xm) = Zm
of the 2-dimensional cell complex
= Stu, D?,
with the 2-cell attached to S = {z € C||z| = 1} by
m: St St zs 2™

» X1 = D? is contractible, with 71(X1) = {e}
> X5 is homeomorphic to the real projective plane

RP? = S?2/{v~—v|veS?}
= D?/{w ~ —w|w € S'}
with 7T1(X2) = 7T1(RIED2) = 7Zo.
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Manifolds
An n-dimensional manifold M is a topological space such

that each x € M has an open neighbourhood U C M
homeomorphic to n-dimensional Euclidean space R"

U=mR".
Strictly speaking, need to include the condition that M be

Hausdorff and paracompact = every open cover has a locally
finite refinement.

» Called n-manifold for short.
» Manifolds are the topological spaces of greatest interest, e.g.

M = R". Appear in algebraic geometry, analysis as well as
topology.
» Study of manifolds initiated by Riemann (1854).

> A surface is a 2-dimensional manifold.
» Will be mainly concerned with manifolds which are compact

= every open cover has a finite refinement.



Why are manifolds interesting?

Topology.

Differential equations.

Differential geometry.

Hyperbolic geometry.

Algebraic geometry. Uniformization theorem.
Complex analysis. Riemann surfaces.
Dynamical systems,

Mathematical physics.
Combinatorics.

Topological quantum field theory.
Computational topology.

Pattern recognition: body and brain scans.

31
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Examples of n-manifolds

The n-dimensional Euclidean space R”

» The n-sphere S".
» The n-dimensional projective space

RP" = S§"/{z~ —2z}.

Rank theorem in linear algebra. If J: R"tk  R¥ is a
linear map of rank k (i.e. onto) then J=1(0) = ker(J) C Rk
is an n-dimensional vector subspace.

Implicit function theorem. The solutions of differential
equations are generically manifolds. If £ : R""k — Rk is a
differentiable function such that for every x € f~1(0) the
Jacobian k x (n+ k) matrix J = (0f;/0x;) has rank k, then

M = f—l(o) C Rn+k

is an n-manifold.
In fact, every n-manifold M admits an embedding M C Rt
for some large k.
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Manifolds with boundary

An n-dimensional manifold with boundary (M,0M C M)
is a pair of topological spaces such that

(1) M\OM is an n-manifold called the interior,

(2) OM is an (n — 1)-manifold called the boundary,

(3) Each x € @M has an open neighbourhood U C M such that

(U, oM N U) = R" x ([0,00),{0}) .
A manifold M is closed if OM = 0.

» The boundary OM of a manifold with boundary (M, OM) is

closed, 900M = ().
» Example (D", S""1) is an n-manifold with boundary.

» Example The product of an m-manifold with boundary

(M,0M) and an n-manifold with boundary (N,9N) is an
(m + n)-manifold with boundary

(M x N, M x ON Ugpscon OM x N) .
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The classification of n-manifolds I.

Will only consider compact manifolds from now on.

» A function

i : a class of manifolds — a set ; M+ i(M)

is a topological invariant if /(M) = i(M’) for homeomorphic
M, M’. Want the set to be finite, or at least countable.
Example 1 The dimension n > 0 of an n-manifold M is a
topological invariant (Brouwer, 1910).

Example 2 The number of components mo(M) of a manifold
M is a topological invariant.

Example 3 The orientability w(M) € {—1,+1} of a
connected manifold M is a topological invariant.

Example 4 The Euler characteristic x(M) € Z of a manifold
M is a topological invariant.

A classification of n-manifolds is a topological invariant /
such that /(M) = i(M’) if and only if M, M’ are
homeomorphic.
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The classification of n-manifolds Il. n=10,1,2,...

Classification of 0-manifolds A 0-manifold M is a finite set
of points. Classified by mo(M) = no. of points > 1.
Classification of 1-manifolds A 1-manifold M is a finite set
of circles S1. Classified by mo(M) = no. of circles > 1.
Classification of 2-manifolds Classified by mo(M), and for
connected M by the fundamental group 71(M). Details to
follow!

For n < 2 homeomorphism <= homotopy equivalence.

» n-dimensional Poincaré conjecture A connected n-manifold

M is homeomorphic to S” if and only if 71(M) = {1} and
H.(M) = H.(S"). Proved by Smale (1960) for n > 5,
Freedman (1982) for n = 4 and Perelman (2003) for n = 3.

It is not possible to classify n-manifolds for n > 4. Every
finitely presented group G = (S|R) is realized as the
fundamental group G = m1(M) for a 4-manifold M. The word
problem is undecidable, so cannot classify m1(M), let alone M.
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_ New 98 Modei, with More Recipes per Gallon

MANIFOLD DESTINY

The One! The Onby!
Guide to. Cooking on
Can £ngine! 3
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How does one classify surfaces?

(1) Every surface M can be triangulated, in the weak sense
of being homotopy equivalent to a finite 2-dimensional cell

complex
M= | Jp°ul JDtul JD?.
o)) c1 (o]
(2) Every connected M is homeomorphic to a normal form
M(g) orientable, genus g >0 ,
N(g) nonorientable, genus g > 1

(3) No two normal forms are homeomorphic.
Similarly for surfaces with boundary, with M(g, h), N(g, h) .

» History: (2)+(3) already in 1860-1920 (M&bius, Clifford, von

Dyck, Dehn and Heegaard, Brahana). (1) only in the 1920's
(Rado, Kerékjartd).

Today will only do (3), using m1(M(g)) of normal forms.
Could use genus g or Euler characteristic x(M(g)) instead!



A page from Dehn and Heegaard’s Analysis Situs (1907)

B. Nexus IL. 4. Anwendungen der Normalform. 197

Jede gescllossene Fliiche kann stets mit drei Elementarfliichen-
stiicken bedeckt worden. Jede nicht. geschlossone Fliiche und jede Kugel-
fliche kann mit ziwei Elementarflichen vedeckt werden ).

) Normalformen fiir geschlossene Fliichen®s).

Fig. 10. Fig. 11.

« Zuweiseitige Flichen. Eine Fliche, deren Restfliche p Doppel-
biinder hat, ist homomorph mit einer Kugel mit p , Henkeln® (Fig.9);

95) Mabius, Leipzig Ber. 15 (1863) — Werke 2, p. 450.

96) Diese Formen fiir geschlossene Fliichen sind, soweit 7weiseitige Flichen
in Betracht kommen, als betrachtet worden von Riemann (cf. Kiein, Uber Rie-
manns Theorie . . . (1882), p. IV), Mibius, a. 0. 0. § 16, Tonelli (Kom Line. Atti

(2) 2 (1876), p. 594, vgl. Rom Line. Rend. (5) 4! (1895), p 800; W.
London Proc. Math. Soc. 8 (187%), p.
sind von Dyek a. a. 0. sufgestellt.

Normalformen fiir

38


http://www.maths.ed.ac.uk/~aar/papers/dehnheegaard.pdf
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The connected sum |I.

Given an n-manifold with boundary (M,90M) with M
connected use any embedding D" C M\OM to define the
punctured n-manifold with boundary

(Mo, dMo) = (cl.(M\D™),0M U S"™ 1) .

The connected sum of connected n-manifolds with boundary
(M,0OM), (M’,0M’) is the connected n-manifold with
boundary

(M#AM',O(M#M')) = (Mo Ugn—1 My, M U OM') .

Independent of choices of D" ¢ M\OM, D" C M'\oM'.
If M and M’ are closed then so is M#M'.
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The connected sum IlI.

TR

» The connected sum # has a neutral element, is commutative
and associative:

(i) M#S" =2 M,
(i) M#M = M#M ,
(i) (MEM)EM" = MEMAEM") .
» A punctured n-manifold has x(My) = x(M) — (=1)"
» The connected sum of n-manifolds has Euler characteristic

X(M#M') = x(M) + x(M") = x(S") -
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The fundamental group of a connected sum

» If (M,0M) is an n-manifold with boundary and M is
connected then Mj is also connected. Can apply the
Seifert-van Kampen Theorem to

M = My Ugn-1 D"
to obtain
m1(Mo) forn>3
(M) = m1(Mo)*5,(sn-1) {1} =
m1(Mo)/(0) for n=2

with (9) <71 (Mo) the normal subgroup generated by the
boundary circle 9 : St ¢ M.
» Another application of the Seifert-van Kampen Theorem gives

T (M#M') = m1(Mo) *z,(sn-1) m1(Mp)
m1(M) x w1 (M) forn>3
- m1(Mo) *z m1(Mg) forn=2.
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Orientability for surfaces

Let M be a connected surface.

Definition An injective loop a : S' — M is orientable if
there exists an injective map @ : S x [~1,1] — M with
a(x,0) = a(x) € M for all x € St.

Definition M is orientable if every « is orientable.

Example The Euclidean 2-space R?, the 2-sphere S? and the
torus S x S! are orientable.

Definition M is nonorientable if there exists o : S — M
which is not orientable, or equivalently if Mobius band C M.
Example The Mobius band, the projective plane RP? and the
Klein bottle K are nonorientable.

Remark Can similarly define orientability for connected
n-manifolds M, using o : "t — M.
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The orientable closed surfaces M(g) I.

Definition Let g > 0. The orientable connected surface
with genus g is the connected sum of g copies of S x S!

M(g) = #(S' xS
g
Example M(0) = S2, the 2-sphere.
Example M(1) = St x S, the torus.
Example M(2) = the 2-holed torus, by Henry Moore.

43



M(0)

The orientable closed surfaces M(g) Il.

44



The nonorientable surfaces N(g) I.

» Let g > 1. The nonorientable connected surface with
genus g is the connected sum of g copies of RP?

N(g) = #RP?
g

» Example N(1) = RP?, the projective plane.
» Boy's immersion of RP? in R (in Oberwolfach)
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http://www.maths.ed.ac.uk/~aar/surgery/notes.htm

The nonorientable closed surfaces N(g) Il.

Projective plane = N(1) Klein bottle = N(2)

N(g)

46



The Klein bottle

» Example N(2) = K is the Klein bottle.
» The Klein bottle company

47


http://www.kleinbottle.com
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The classification theorem for closed surfaces

» Theorem Every connected closed surface M is homeomorphic
to exactly one of

M), M(1), ..., M(g)=#S'xS', ... (orientable)
g

N(1), N(2), ..., N(g) =#RP? | ... (nonorientable)
g

» Connected surfaces are classified by the genus g and
orientability.
» Connected surfaces are classified by the fundamental group :

771(I\/I(g)) = <al,b1,az,b2,...,ag,bg|[al,bl]...[ag,bg]>
m(N(g)) = (e gl (c)?(@2)? - (c)?)

» Connected surfaces are classified by the Euler characteristic
and orientability

x(M(g)) = 2—-2g, x(N(g)) = 2—¢.
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The punctured torus .

The computation of m1(M(g)) for g > 0 will be by induction,
using the connected sum

M(g +1) = M(g)#M(1)

So need to understand the fundamental group of the torus
M(1) = T = S* x S and the punctured torus (Tg, St).
Clear from T = S x St that m(T) =Z & Z.

Can also get this by applying the Seifert-van Kampen theorem
to M(1) = M(1)#M(0), i.e. T = ToUg1 D2
The punctured torus

(To,0To) = (cl.(S! x S1\D?), Sh)

is such that S' v S! C Tq is a homotopy equivalence.
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The punctured torus II.

» The inclusion 9Ty = S C Ty induces

m1(SY) = Z— m(To) = m(StVvSY) = ZxZ = (ab);
1+ [a,b] = abalb71.

<y
>

5
==
a

» The Seifert-van Kampen Theorem gives

m1(T) = m(To) *z {1} = (a,b|[a,b]) = ZDZ .



The calculation of m1(M(g)) |

» The initial case g = 2, using M(2) =

b:

b2

‘i ad

b

b:

b2

a

M(1)#M(1)
M(1) M(1)
M(1,1) M(1,1)

a b: ba
b a

M(1) # M(1)
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The calculation of 71(M(g)) Il. General case

» Assume inductively that

> m(M(g)) = (a1, by,
» the punctured surface

(M(g)o, OM(g)o) = (cl.(M(g)\D?),S")
is such that \/ S* C M(g)o is a homotopy equivalence,
2g

yag, bg | [a1, ba] . . . [ag, bg]),

> the inclusion IM(g)o = S* C M(g)o induces
’/Tl(sl) = Z*)WI(M(g)O) = ;igZ = <alvb17"'7ag7bg> '

1— [81, bl][ag7 b2] A [ag, bg] .

> Apply the Seifert-van Kampen Theorem to
M(g +1)

to obtain
m1(M(g + 1))

= M(g)#M(1)

m1(M(g)o) *z m1(M(1)o)

<31, bl, ..

-y dg+1, bg+1 ‘ [ala bl] ce [angla bg+1]>
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The genus measures connectivity.
The orientable case

» The genus g of an orientable surface M is the maximum
number of disjoint loops a1, o, ..., a4 : S — M such that
g
the complement M\ |J a;(S') is connected. The complement

i=1
is homeomorphic to M(0,2g)\0M(0, 2g).

» Example For M = M(2) let oy, ap : ST — M be disjoint
loops which go round as in the diagram.
The complement
M\(a1(ST) Uaz(Sh)) = M(0,4)\0M(0,4)

is the sphere M(0) = S? with 4 holes punched out.
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Morse theory

» For an orientable surface M C R3 in general position the
height function

f: M=>R; (x,y,z)—z

has the property that the inverse image f~1(c) C M is a
1-dimensional submanifold for all except a finite number
¢ € R called the critical values of f.

» Can recover the genus g of M by looking at the jumps in the
number of circles in f~1(a) and f~1(b) for a < b < c.

» Morse theory developed (since 1926) is the key tool for
studying n-manifolds for all n > 0.
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An early exponent of Morse theory on a surface

» August Ferdinand Mobius
Theorie der elementaren Verwandschaften (1863)

» Fill a surface shaped bathtub with water, and recover the
genus of the surface from a film of the cross-sections.



http://www.maths.ed.ac.uk/~aar/papers/mobiussurf.pdf
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Another early exponent of Morse theory on a surface

» James Clerk Maxwell (1870) On hills and dales
» Reconstruct surface of the earth (= S2) from contour lines.

» Mountaineer’'s equation for surface of Earth
no. of peaks — no. of pits + no. of passes = x(S%) = 2.

Modern account in Chapter 8 of Surfaces (CUP, 1976) by
H.B.Griffiths


http://www.maths.ed.ac.uk/~aar/papers/hilldale.pdf
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Cross-cap

If M is a surface the connected sum
M = M#RP?

is the surface obtained from M by forming a crosscap
(Kreuzhaube in German).

M’ is homeomorphic to the identification space obtained from
the punctured surface (M, S*) by identifying z ~ —z for
ze St

M = My/{z~ -2z} .

Equivalently, M’ is obtained from M by punching out D> C¢ M
and replacing it by a Mobius band.

M’ is nonorientable.
Example If M = S? then M’ = RP?.
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The punctured projective plane I.

The computation of m1(N(g)) for g > 1 will be by induction,
using the connected sum

N(g +1) = N(g)#N(1)

with N(1) = RP2. Abbreviate RP? = P.

Need to understand the fundamental group of P and the
punctured projective plane (Po, S1), i.e. the Mdbius band.

Clear from the universal double cover p : $> — P that
m1(P) = Homeo,(P) = Z5 .

Can also get this by applying the Seifert-van Kampen
Theorem to N(1) = N(1)#M(0), i.e. P = PyUg1 D2



The punctured projective plane II.

» The punctured projective plane
(Po,dPy) = (cl.(P\D?),S")

is a Mdbius band, such that ST C Py\OP, is a homotopy
equivalence.

» The inclusion 9Py = S C Py induces

7T1(51) = Z—>7T1(P0) = 7T1(51) =7Z;1—=2.
» The Seifert-van Kampen Theorem gives

m(P) = m(Po)*z {1} = (c|c?®) = Zy.
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The calculation of m1(N(g)) I.

» The initial case g = 2, using N(2) = N(1)#N(1) and
(N(1)o, S*) = (M&bius band,boundary circle).

N(1) # N(1) k’ N(1) # N(1) = N(2)
Klein Bottle = N(2) «—/

» By the Seifert-van Kampen Theorem, with ¢, = (c{)*l,
m(N(2)) = m(N(1)#N(1))

= (a, i [(a)? =(q)?) = (a,al(a)*(=)?) .




The calculation of 71(N(g)) Il.

> Assume inductively that

» m(N(g)) = (e g l(a) (@)’ .. (¢)?),
» the punctured surface

(N(g)o, ON(g)o) = (cl.(N(g)\D?),S")
is such that \/ S* C N(g)o is a homotopy equivalence,
g

» the inclusion ON(g)o = S* C N(g)o induces

m1(SY) = Z — m(N(g)o) = Z:Z = (c1,¢,...,Cq) ;

1— (C1)2 A (Cg)2 .
» Apply the Seifert-van Kampen Theorem to
N(g+1) = N(g)#N(1)
to obtain
m1(N(g +1)) = m(N(g)o) *z m1(N(1)o)

= {cts s ggrrl(cr)?. . (cg+1)?) -
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The calculation of 71 (N(g)) Ill.

N(1)

' ‘A@

NE@)

i
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The Euler characteristic of M(g)

» The fundamental group of M(g) determines the genus g.

» The first homology group of M(g) is the free abelian group of

rank 2g
Hi(M(g)) = m(M(g))* = Pz
2g

M(g) is homotopy equivalent to the 2-dimensional cell
complex

(\/ ") Utar ]l O = DU D' Upay ] a5 D -
2g 2g

The Euler characteristic of M(g) is
x(M(g)) = 2-2g .

A closed surface M is homeomorphic to S? if and only if
xX(M) =2.
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The Euler characteristic of N(g)

The fundamental group determines the genus g.

The first homology group of N(g) is direct sum of the free
abelian group of rank g — 1 and the cyclic group of order 2

Hi(N(g)) = m(N(g)* = (P 2)/(2.2,...,2) = ((D2)sZs
g g—1

N(g) is homotopy equivalent to the 2-dimensional cell
complex

(\/ 51) U(cl)Q(cQ)2...(cg)2 D? = D° U U Dt U(c1)2...(cg)2 D? .
g g

N(g) has Euler characteristic

x(N(g)) = 2—g.
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The orientable surfaces with boundary M(g, h)

Let g >0, h>1.
Definition The orientable surface of genus g and h
boundary components is

(M(g. h),0) = (c.(M(g)\|JD?).[JS) -
h h

Cell structure M(g,h) ~ \/ S'=D°u |y D!
2g+h—1 2g+h-1

Fundamental group m1(M(g, h)) = el 1Z
oth—

Euler characteristic x(M(g,h)) =2—-2g—h

Classification Theorem Every connected orientable surface
with non-empty boundary is homeomorphic to exactly one of

(M(g, h),OM(g; h)).
Set M(g,0) = M(g).



vV vV vV Vv Y
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Examples of orientable surfaces with boundary

(M(0,1),0) = (D?,SY), 2-disk

(M(0,2),0) = (S x [0,1], S x {0,1}), cylinder
(M(1,1),0) = ((S* x S%)o, S?), punctured torus.
(M(0,3),0) = (pair of pants, St U St U St).

The pair of pants is an essential feature of topological

quantum field theory, and so appeared in Ida's birthday cake
for the 80th birthday of Michael Atiyah (29 April, 2009)



http://www.maths.ed.ac.uk/~aar/atiyah80
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The nonorientable surfaces with boundary N(g, h) I.

Letg>1 h>1.
Definition The nonorientable surface with boundary with
genus g with h boundary components is

(N(g. h),0N(g,h)) = (cl.(N(e)\|JD?).[JS) -
h h

Cell structure N(g,h) ~ \/ S*=D°u | D
g+h-1 g+h—1

Fundamental group m1(N(g,h)) = =« Z
g+h—-1

Euler characteristic x(N(g,h)) =2—g—nh

Classification Theorem Every connected nonorientable
surface with non-empty boundary is homeomorphic to exactly
one of (N(g, h),0ON(g, h)).

Set N(g,0) = N(g).



The nonorientable surfaces with boundary N(g, h) Il.
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The Mobius band
» The Mobius band (N(1,1),0N(1,1)) = ((RP?)e, S1).

» The first drawing of a Mobius band, from Listing’ s 1862
Census der Raumlichen Complexe

7 \
==


http://www.maths.ed.ac.uk/~aar/papers/listing2.pdf

v
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The orientation double cover

A double cover of a space N is a regular cover N — N with
fibre F = {0,1}. Connected double covers of connected N are
classified by index 2 subgroups 71 (N) <71 (N).

A surface N has an orientation double cover p: N — N,
with N an orientable surface. For connected N classified by

the kernel of the orientation character group morphism
w : m(N) = Zp = {+1,-1}

sending orientable (resp. nonorientable) o to +1 (resp. —1).
If N is orientable N = N U N is the Erivial double cover of N.

If N is nonorientable w is onto, m1(N) = ker w. Pullback
along nonorientable o : S' — N is the nontrivial double cover

g=ap:St—=S;z7°
ST
a, e
st N



The orientation double cover
of a Mdobius band is a cylinder

M = N(1,1)

71



72
M(g — 1,2h) is the orientation double cover of N(g, h)

» Proposition The orientation double cover of N(g, h) is

» Proof Let N be a connected nonorientable surface with
orientation double cover N. The boundary circle of
No = cl.(N\D?) is orientable. The orientation double cover of
No is the twice-punctured N, Nog = cl.(N\D2 U D?). The
orientation double cover of N = N#RP? is

Nl = NOO U51U51 51 x| .

with X(N') = x(Noo) = x(N) — 2. This gives the inductive
step in checking that N(g, h) = M( —1,2h).

» Example For h =0, g > 1 have N( )= M(g —1).
Simply-connected for g = 1. For g > 2 universal cover R?.
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The genus measures connectivity.
The nonorientable case

The genus g of a nonorientable surface N is the maximum
number of disjoint injective Ioops B1,B2,...,8g : St N

such that the complement N\ U Bi(S?) is connected.

The complement is homeomorphlc to M(0, g)\oM(0, g).
Example Let N = RP? = D?/{z ~ —z|z € S'} and

B :S' = RP! = RP?; z [VzZ] .
The complement is

RP?\B(S') = M(0,1)\oM(0,1) = D?\S' = R?.

z
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Further reading

Google for " Classification of Surfaces” (147,000 hits)

An Introduction to Topology. The classification theorem for
surfaces by E.C. Zeeman (1966)

A Guide to the Classification Theorem for Compact Surfaces
by Jean Gallier and Dianna Xu (2011)

Home Page for the Classification of Surfaces and the Jordan
Curve Theorem Online resources, including many of the
original papers.


http://www.google.co.uk/search?q="Classification+of+surfaces"
http://www.maths.ed.ac.uk/~aar/surgery/zeeman.pdf
http://www.maths.ed.ac.uk/~aar/surgery/zeeman.pdf
http://www.cis.upenn.edu/~jean/surfclass-n.pdf
http://www.maths.ed.ac.uk/~aar/jordan/
http://www.maths.ed.ac.uk/~aar/jordan/

