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Introduction

I Topology and groups are closely related via the fundamental
group construction

π1 : {spaces} → {groups} ; X 7→ π1(X ) .

I The Seifert - van Kampen Theorem expresses the fundamental
group of a union X = X1 ∪Y X2 of path-connected spaces in
terms of the fundamental groups of X1,X2,Y .

I The Theorem is used to compute the fundamental group of a
space built up using spaces whose fundamental groups are
known already.

I The Theorem is used to prove that every group G is the
fundamental group G = π1(X ) of a space X , and to compute
the fundamental groups of surfaces.

I Treatment of Seifert-van Kampen will follow Section I.1.2 of
Hatcher’s Algebraic Topology, but not slavishly so.

http://www.math.cornell.edu/~hatcher/AT/ATpage.html
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Three ways of computing the fundamental group

I. By geometry

I For an infinite space X there are far too many loops
ω : S1 → X in order to compute π1(X ) from the definition.

I A space X is simply-connected if X is path connected and
the fundamental group is trivial

π1(X ) = {e} .
I Sometimes it is possible to prove that X is simply-connected

by geometry.
I Example: If X is contractible then X is simply-connected.
I Example: If X = Sn and n > 2 then X is simply-connected.
I Example: Suppose that (X , d) is a metric space such that for

any x , y ∈ X there is unique geodesic (= shortest path)
αx ,y : I → X from αx ,y (0) = x to αx ,y (1) = y . If αx ,y varies
continuously with x , y then X is contractible. Trees. Many
examples of such spaces in differentiable geometry.
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Three ways of computing the fundamental group

II. From above

I If

X̃

p
��
X

is a covering projection and X̃ is simply-connected then π1(X )
is isomorphic to the group of covering translations

Homeop(X̃ ) = {homeomorphisms h : X̃ → X̃ such that ph = p}

I Example If

p : X̃ = R→ X = S1 ; x 7→ e2πix

then
π1(S1) = Homeop(R) = Z .



5

Three ways of computing the fundamental group

III. From below

I Seifert-van Kampen Theorem (preliminary version)

X2X1 Y

If a path-connected space X is a union X = X1 ∪Y X2 with
X1,X2 and Y = X1 ∩X2 path-connected then the fundamental
group of X is the free product with amalgamation

π1(X ) = π1(X1) ∗π1(Y ) π1(X2) .

I G1 ∗H G2 defined for group morphisms H → G1, H → G2.
I First proved by van Kampen (1933) in the special case when

Y is simply-connected, and then by Seifert (1934) in general.
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Seifert and van Kampen

Herbert Seifert Egbert van Kampen
(1907-1996) (1908-1942)

http://www-history.mcs.st-andrews.ac.uk/Biographies/Seifert.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/Van_Kampen.html
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The free product of groups

I Let G1,G2 be groups with units e1 ∈ G1, e2 ∈ G2.
I A reduced word g1g2 . . . gm is a finite sequence of length

m > 1 with
I gi ∈ G1 \ {e1} or gi ∈ G2 \ {e2},
I gi , gi+1 not in the same Gj .

I The free product of G1 and G2 is the group

G1 ∗ G2 = {e} ∪ {reduced words}

with multiplication by concatenation and reduction.

I The unit e = empty word of length 0.

I See p.42 of Hatcher for detailed proof that G1 ∗ G2 is a group.

I Exercise Prove that

{e}∗G ∼= G , G1∗G2
∼= G2∗G1 , (G1∗G2)∗G3

∼= G1∗(G2∗G3)
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The free group Fg

I For a set S let

〈S〉 = free group generated by S = ?
s∈S

Z .

I Let g > 1. The free group on g generators is the free
product of g copies of Z

Fg = 〈a1, a2, . . . , ag 〉 = Z ∗ Z ∗ · · · ∗ Z .

I Every element x ∈ Fg has an expression as a word

x = (a1)m11(a2)m12 . . . (ag )m1g am21
1 . . . a

mNg
g

with (mij) an N × g matrix (N large), mij ∈ Z.

I F1 = Z.

I For g > 2 Fg is nonabelian.

I Fg ∗ Fh = Fg+h.
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The subgroups generated by a subset

I Needed for statement and proof the Seifert - van Kampen
Theorem.

I Let G be a group. The subgroup generated by a subset
S ⊆ G

〈S〉 ⊆ G

is the smallest subgroup of G containing S .

I 〈G 〉 consists of finite length words in elements of S and their
inverses.

I Let SG be the subset of G consisting of the conjugates of S

SG = {gsg−1 | s ∈ S , g ∈ G}

I The normal subgroup generated by a subset S ⊆ G
〈SG 〉 ⊆ G is the smallest normal subgroup of G containing S .
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Group presentations

I Given a set S and a subset R ⊆ G = 〈S〉 define the group

〈S |R〉 = G/〈RG 〉
= G/normal subgroup generated by R .

with generating set S and relations R.
I Example Let m > 1. The function

〈a | am〉 = {e, a, a2, . . . , am−1} → Zm ; an 7→ n

is an isomorphism of groups, with Zm the finite cyclic group
of order m.

I R can be empty, with

〈S |∅〉 = 〈S〉 = ?
S
Z

the free group generated by S .
I The free product of G1 = 〈S1|R1〉 and G2 = 〈S2 |R2〉 is

G1 ∗ G2 = 〈S1 ∪ S2 |R1 ∪ R2〉 .



11

Every group has a presentation

I Every group G has a group presentation, i.e. is isomorphic to
〈S |R〉 for some sets S ,R.

I Proof Let S = 〈G 〉 = ?
G
Z and let R = ker(Φ) be the kernel of

the surjection of groups

Φ : S → G ; (gn1
1 , g

n2
2 , . . . ) 7→ (g1)n1(g2)n2 . . . .

Then
〈S |R〉 → G ; [x ] 7→ Φ(x)

is an isomorphism of groups.
I It is a nontrivial theorem that R is a free subgroup of the free

group S . But we are only interested in S and R as sets here.
This presentation is too large to be of use in practice! But the
principle has been established.

I While presentations are good for specifying groups, it is not
always easy to work out what the group actually is. Word
problem: when is 〈S |R〉 ∼= 〈S ′|R ′〉? Undecidable in general.
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How to make a group abelian

I The commutator of g , h ∈ G is

[g , h] = ghg−1h−1 ∈ G .

Let F = {[g , h]} ⊆ G . G is abelian if and only if F = {e}.
I The abelianization of a group G is the abelian group

G ab = G/〈FG 〉 ,

with 〈FG 〉 ⊆ G the normal subgroup generated by F .
I If G = 〈S |R〉 then G ab = 〈S |R ∪ F 〉.
I Universal property G ab is the largest abelian quotient group

of G , in the sense that for any group morphism f : G → A to
an abelian group A there is a unique group morphism
f ab : G ab → A such that

f : G // G ab f ab // A .

I π1(X )ab = H1(X ) is the first homology group of a space X .
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Free abelian at last

I Example Isomorphism of groups

(F2)ab = 〈a, b | aba−1b−1〉 → Z⊕ Z ;

am1bn1am2bn2 . . . 7→ (m1 + m2 + . . . , n1 + n2 + . . . )

with Z⊕ Z the free abelian group on 2 generators.
I More generally, the abelianization of the free group on g

generators is the free abelian group on g generators

(Fg )ab =
⊕
g

Z for any g > 1 .

I It is clear from linear algebra (Gaussian elimination) that⊕
g

Z is isomorphic to
⊕
h

Z if and only if g = h .

I It follows that

Fg is isomorphic to Fh if and only if g = h .
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Amalgamated free products

I The amalgamated free product of group morphisms

i1 : H → G1 , i2 : H → G2

is the group
G1 ∗H G2 = (G1 ∗ G2)/N

with N ⊆ G1 ∗ G2 the normal subgroup generated by the
elements

i1(h)i2(h)−1 (h ∈ H) .

I For any h ∈ H

i1(h) = i2(h) ∈ G1 ∗H G2 .

I In general, the natural morphisms of groups

j1 : G1 → G1∗HG2 , j2 : G2 → G1∗HG2 , j1i1 = j2i2 : H → G1∗HG2

are not injective.
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Some examples of amalgamated free products

I Example G ∗G G = G .

I Example {e} ∗H {e} = {e}.
I Example For H = {e} the amalgamated free product is just

the free product

G1 ∗{e} G2 = G1 ∗ G2 .

I Example For any group morphism i : H → G

G ∗H {e} = G/N

with N = 〈i(H)G 〉 ⊆ G the normal subgroup generated by the
subgroup i(H) ⊆ G .
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The Seifert - van Kampen Theorem

I Let X = X1 ∪Y X2 with X1,X2 and Y = X1 ∩ X2 open in X
and path-connected. Let

i1 : π1(Y )→ π1(X1) , i2 : π1(Y )→ π1(X2)

be the group morphisms induced by Y ⊆ X1, Y ⊆ X2, and let

j1 : π1(X1)→ π1(X ) , j2 : π1(X2)→ π1(X )

be the group morphisms induced by X1 ⊆ X , X2 ⊆ X . Then

Φ : π1(X1) ∗ π1(X2)→ π1(X ) ; xk 7→ jk(xk)

(xk ∈ π1(Xk), k = 1 or 2) is a surjective group morphism with

ker Φ = N = the normal subgroup of π1(X1) ∗ π1(X2)

generated by i1(y)i2(y)−1 (y ∈ π1(Y )) .

I Theorem Φ induces an isomorphism of groups

Φ : π1(X1) ∗π1(Y ) π1(X2) ∼= π1(X ) .
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Φ is surjective I.

I Will only prove the easy part, that Φ is surjective.
I For the hard part, that Φ is injective, see pp.45-46 of Hatcher.
I Choose the base point x ∈ Y ⊆ X . Regard a loop
ω : (S1, 1)→ (X , x) as a closed path

f : I = [0, 1]→ X = X1 ∪X X2

such that f (0) = f (1) = x ∈ X , with ω(e2πis) = f (s) ∈ X .
I By the compactness of I there exist

0 = s0 < s1 < s2 < · · · < sm = 1

such that f [si , si+1] ⊆ X1 or X2, written f [si , si+1] ⊆ Xi .
I Then

f = f1 • f2 • · · · • fm : I → X

is the concatenation of paths fi : I → Xi with

fi (1) = fi+1(0) = f (si ) ∈ Y (1 6 i 6 m) .
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Φ is surjective II.

I Since Y is path-connected there exists paths gi : I → Y from
gi (0) = x to gi (1) = f (si ) ∈ X . The loop

(f1•g1)•(g1•f2•g2)•· · ·•(gm−2•fm−1•gm−1)•(gm−1•fm) : I → X

is homotopic to f rel {0, 1}, with

[gi • fi • g i+1] ∈ im(π1(Xi )) ⊆ π1(X ) ,

so that

[f ] = [f1 • g1][g1 • f2 • g2] . . . [gm−2 • fm−1 • gm−1][gm−1 • fm]

∈ im(Φ) ⊆ π1(X ) .

44 Chapter 1 The Fundamental Group

any two of them is simply-connected we obtain an isomorphism π1(X) ≈ ∗α π1(Aα) .
Each Aα deformation retracts onto a circle, so π1(X) is free on five generators, as

claimed. As explicit generators we can choose for each edge eα of X − T a loop fα
that starts at a basepoint in T , travels in T to one end of eα , then across eα , then

back to the basepoint along a path in T .

Van Kampen’s theorem is often applied when there are just two sets Aα and Aβ in

the cover of X , so the condition on triple intersections Aα∩Aβ∩Aγ is superfluous and

one obtains an isomorphism π1(X) ≈
(
π1(Aα) ∗ π1(Aβ)

)
/N , under the assumption

that Aα ∩ Aβ is path-connected. The proof in this special case is virtually identical

with the proof in the general case, however.

One can see that the intersections Aα ∩ Aβ need to be path-connected by con-

sidering the example of S1 decomposed as the union of two open arcs. In this caseΦ is not surjective. For an example showing that triple intersections Aα ∩ Aβ ∩ Aγ
need to be path-connected, let X be the suspension of three points a , b , c , and let

Aα,Aβ , and Aγ be the complements of these three points. The theo-

a b crem does apply to the covering {Aα,Aβ} , so there are isomorphisms

π1(X) ≈ π1(Aα) ∗ π1(Aβ) ≈ Z ∗ Z since Aα ∩ Aβ is contractible.

If we tried to use the covering {Aα,Aβ,Aγ} , which has each of the

twofold intersections path-connected but not the triple intersection, then we would

get π1(X) ≈ Z ∗ Z ∗ Z , but this is not isomorphic to Z ∗ Z since it has a different

abelianization.

Proof of van Kampen’s theorem: First we consider surjectivity of Φ . Given a loop

f : I→X at the basepoint x0 , we claim there is a partition 0 = s0 < s1 < ··· < sm = 1

of I such that each subinterval [si−1, si] is mapped by f to a single Aα . Namely,

since f is continuous, each s ∈ I has an open neighborhood Vs in I mapped by f
to some Aα . We may in fact take Vs to be an interval whose closure is mapped to a

single Aα . Compactness of I implies that a finite number of these intervals cover I .
The endpoints of this finite set of intervals then define the desired partition of I .

Denote the Aα containing f([si−1, si]) by Ai , and let fi be the path obtained by

restricting f to [si−1, si] . Then f is the composition f1 ··· fm with fi a path in

Ai . Since we assume Ai ∩ Ai+1 is path-connected,

we may choose a path gi in Ai ∩ Ai+1 from x0 to

the point f(si) ∈ Ai ∩Ai+1 . Consider the loop g1

g2
2f

1f

3f

Aα Aβ

x0(f1 g1) (g1 f2 g2) (g2 f3 g3) ··· (gm−1 fm)

which is homotopic to f . This loop is a composition

of loops each lying in a single Ai , the loops indicated

by the parentheses. Hence [f ] is in the image of Φ , and Φ is surjective.

The harder part of the proof is to show that the kernel of Φ is N . It may clarify

Hatcher diagram: Aα = X1, Aβ = X2
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The universal property I.

I An amalgamated free product G1 ∗H G2 defines a
commutative square of groups and morphisms

H
i1 //

i2
��

G1

j1
��

G2
j2 // G1 ∗H G2

with the universal property that for any commutative square

H
i1 //

i2
��

G1

k1
��

G2
k2 // G

there is a unique group morphism Φ : G1 ∗H G2 → G such
that k1 = Φj1 : G1 → G and k2 = Φj2 : G2 → G .
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The universal property II.

I By the Seifert - van Kampen Theorem for X = X1 ∪Y X2 the
commutative square

π1(Y )
i1 //

i2
��

π1(X1)

j1
��

π1(X2)
j2 // π1(X )

has the universal property of an amalgamated free product,
with an isomorphism

Φ : π1(X1) ∗π1(Y ) π1(X2) ∼= π1(X ) .
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The one-point union

I Let X1,X2 be spaces with base points x1 ∈ X1, x2 ∈ X2.
The one-point union is the quotient space of the disjoint
union X1 t X2

X1 ∨ X2 = (X1 t X2)/{x1 ∼ x2} .

X1 X2

I The Seifert - van Kampen Theorem for X1 ∨ X2

If X1,X2 are path connected then so is X1 ∨ X2, with
fundamental group the free product

π1(X1 ∨ X2) = π1(X1) ∗ π1(X2) .
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The fundamental group of the figure eight

I The figure eight is the one-point union of two circles

X = S1 ∨ S1

I The fundamental group is the free nonabelian group on two
generators:

π1(X ) = π1(S1) ∗ π1(S1) = 〈a, b〉 = Z ∗ Z .

I An element
am1bn1am2bn2 · · · ∈ π1(X )

can be regarded as the loop traced out by an iceskater who
traces out a figure 8, going round the first circle m1 times,
then round the second circles n1 times, then round the first
circle m2 times, then round the second circle n2 times, . . . .
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The fundamental group of a graph

I Let X be the path-connected space defined by a connected
finite graph with V vertices and E edges, and let

g = 1− V + E .

I Exercise Prove that X is homotopy equivalent to the
one-point union S1 ∨ S1 ∨ · · · ∨ S1 of g circles, and hence
that π1(X ) = Fg , the free group on g generators. Prove that
X is a tree if and only if it is contractible, if and only if g = 0.

I Example I.1.22 of Hatcher is a special case with V = 8,
E = 12, g = 5.
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Cell attachment

I Let n > 0. Given a space W and a map f : Sn−1 →W let

X = W ∪f Dn

be the space obtained from W by attaching an n-cell.
I X is the quotient of the disjoint union W ∪ Dn by the

equivalence relation generated by

(x ∈ Sn−1) ∼ (f (x) ∈W ) .

I An n-dimensional cell complex is a space obtained from ∅
by successively attaching k-cells, with k = 0, 1, 2, . . . , n

I Example A graph is a 1-dimensional cell complex.
I Example Sn is the n-dimensional cell complex obtained from
∅ by attaching a 0-cell and an n-cell

Sn = D0 ∪f Dn

with f : Sn−1 → D0 the unique map.
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The Euler characteristic

I Definition The Euler characteristic of a finite cell complex

X =
⋃
c0

D0 ∪
⋃
c1

D1 ∪
⋃
c2

D2 ∪ · · · ∪
⋃
cn

Dn

with ck k-cells is

χ(X ) =
n∑

k=0

(−1)kck ∈ Z .

I χ(Dn) = 1, χ(Sn) = 1 + (−1)n

I If X is homotopy equivalent to Y then χ(X ) = χ(Y )

I χ(X ∪ Y ) = χ(X ) + χ(Y )− χ(X ∩ Y ) ∈ Z.

I If F → X̃ → X is a regular cover with finite fibre F then
χ(X̃ ) = χ(F )χ(X ), with χ(F ) = |F |.
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The effect on π1 of a cell attachment I.

I Let n > 1. If W is path-connected then so is X = W ∪f Dn.

I What is π1(X )?

I If n = 1 then X is homotopy equivalent to W ∨ S1, so that

π1(X ) = π1(W ∨ S1) = π1(W ) ∗ Z .

I For n > 2 apply the Seifert - van Kampen Theorem to the
decomposition

X = X1 ∪Y X2

with

X1 = W ∪f {x ∈ Dn | ‖x‖ > 1/2} ,
X2 = {x ∈ Dn | ‖x‖ 6 1/2} ,
Y = X1 ∩ X2 = {x ∈ Dn | ‖x‖ = 1/2} = Sn−1
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The effect on π1 of a cell attachment II.

I The inclusion W ⊂ X1 is a homotopy equivalence, and
X2
∼= Dn is simply-connected, so that

π1(X ) = π1(X1) ∗π1(Y ) π1(X2)

= π1(W ) ∗π1(Sn−1) π1(Dn) = π1(W ) ∗π1(Sn−1) {e} .
I If n > 3 then π1(Sn−1) = {e}, so that

π1(X ) = π1(W ) ∗{e} {e} = π1(W ) .

I If n = 2 then

π1(X ) = π1(W ) ∗Z {e} = π1(W )/N

the quotient of π1(W ) by the normal subgroup N ⊆ π1(W )
generated by the homotopy class [f ] ∈ π1(W ) of f : S1 →W .

I See Hatcher’s Proposition I.1.26 for detailed exposition.
I If X =

∨
S

S1 ∪
⋃
R

D2 ∪
⋃
n>3

⋃
Dn is a cell complex with a single

0-cell, S 1-cells and R 2-cells then π1(X ) = 〈S |R〉.
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Every group is a fundamental group

I Let G = 〈S |R〉 be a group with a presentation.
I Realize the generators S by the 1-dimensional cell complex

W =
∨
S

S1

with π1(W ) = 〈S〉 the free group generated by S .

Van Kampen’s Theorem Section 1.2 49

by this element lies in the center. In particular, C is a normal subgroup, so we can

pass to the quotient group Gm,n/C , which is the free product Zm ∗ Zn . According

to Exercise 1 at the end of this section, a free product of nontrivial groups has trivial

center. From this it follows that C is exactly the center of Gm,n . As we will see in

Example 1.44, the elements a and b have infinite order in Gm,n , so C is infinite cyclic,

but we will not need this fact here.

We will show now that the integers m and n are uniquely determined by the

group Zm ∗ Zn , hence also by Gm,n . The abelianization of Zm ∗ Zn is Zm×Zn , of

order mn , so the product mn is uniquely determined by Zm ∗ Zn . To determine m
and n individually, we use another assertion from Exercise 1 at the end of the section,

that all torsion elements of Zm ∗ Zn are conjugate to elements of the subgroups Zm
and Zn , hence have order dividing m or n . Thus the maximum order of torsion

elements of Zm ∗ Zn is the larger of m and n . The larger of these two numbers is

therefore uniquely determined by the group Zm∗Zn , hence also the smaller since the

product is uniquely determined.

The preceding analysis of π1(Xm,n) did not need the assumption that m and n
are relatively prime, which was used only to relate Xm,n to torus knots. An interesting

fact is that Xm,n can be embedded in R3 only when m and n are relatively prime.

This is shown in the remarks following Corollary 3.45. For example, X2,2 is the Klein

bottle since it is the union of two copies of the Möbius band X2 with their boundary

circles identified, so this nonembeddability statement generalizes the fact that the

Klein bottle cannot be embedded in R3 .

An algorithm for computing a presentation for π1(R
3−K) for an arbitrary smooth

or piecewise linear knot K is described in the exercises, but the problem of determin-

ing when two of these fundamental groups are isomorphic is generally much more

difficult than in the special case of torus knots.

Example 1.25: The Shrinking Wedge of Circles. Consider the sub-

space X ⊂ R2 that is the union of the circles Cn of radius 1/n and

center (1/n,0) for n = 1,2, ··· . At first glance one might confuse

X with the wedge sum of an infinite sequence of circles, but we will

show that X has a much larger fundamental group than the wedge

sum. Consider the retractions rn :X→Cn collapsing all Ci ’s except Cn to the origin.

Each rn induces a surjection ρn :π1(X)→π1(Cn) ≈ Z , where we take the origin as

the basepoint. The product of the ρn ’s is a homomorphism ρ :π1(X)→∏
∞Z to the

direct product (not the direct sum) of infinitely many copies of Z , and ρ is surjective

since for every sequence of integers kn we can construct a loop f : I→X that wraps

kn times around Cn in the time interval [1− 1/n,1− 1/n+1]. This infinite composition

of loops is certainly continuous at each time less than 1, and it is continuous at time

1 since every neighborhood of the basepoint in X contains all but finitely many of the

circles Cn . Since π1(X) maps onto the uncountable group
∏
∞Z , it is uncountable.

I Realize each relation r ∈ R ⊆ π1(W ) by a map r : S1 →W .
I Attach a 2-cell to W for each relation, to obtain a

2-dimensional cell complex X = W ∪
⋃
R

D2 such that

π1(X ) = 〈S |R〉 = G .
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Realizing the cyclic groups topologically

I Example Let m > 1. The cyclic group Zm = 〈a | am〉 of order
m is the fundamental group

π1(Xm) = Zm

of the 2-dimensional cell complex

Xm = S1 ∪m D2 ,

with the 2-cell attached to S1 = {z ∈ C | |z | = 1} by

m : S1 → S1 ; z 7→ zm .

I X1 = D2 is contractible, with π1(X1) = {e}
I X2 is homeomorphic to the real projective plane

RP2 = S2/{v ∼ −v | v ∈ S2}
= D2/{w ∼ −w |w ∈ S1}

with π1(X2) = π1(RP2) = Z2.
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Manifolds

I An n-dimensional manifold M is a topological space such
that each x ∈ M has an open neighbourhood U ⊂ M
homeomorphic to n-dimensional Euclidean space Rn

U ∼= Rn .

I Strictly speaking, need to include the condition that M be
Hausdorff and paracompact = every open cover has a locally
finite refinement.

I Called n-manifold for short.
I Manifolds are the topological spaces of greatest interest, e.g.

M = Rn. Appear in algebraic geometry, analysis as well as
topology.

I Study of manifolds initiated by Riemann (1854).
I A surface is a 2-dimensional manifold.
I Will be mainly concerned with manifolds which are compact

= every open cover has a finite refinement.



31

Why are manifolds interesting?

I Topology.

I Differential equations.

I Differential geometry.

I Hyperbolic geometry.

I Algebraic geometry. Uniformization theorem.

I Complex analysis. Riemann surfaces.

I Dynamical systems,

I Mathematical physics.

I Combinatorics.

I Topological quantum field theory.

I Computational topology.

I Pattern recognition: body and brain scans.

I . . .
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Examples of n-manifolds

I The n-dimensional Euclidean space Rn

I The n-sphere Sn.
I The n-dimensional projective space

RPn = Sn/{z ∼ −z} .
I Rank theorem in linear algebra. If J : Rn+k → Rk is a

linear map of rank k (i.e. onto) then J−1(0) = ker(J) ⊆ Rn+k

is an n-dimensional vector subspace.
I Implicit function theorem. The solutions of differential

equations are generically manifolds. If f : Rn+k → Rk is a
differentiable function such that for every x ∈ f −1(0) the
Jacobian k × (n + k) matrix J = (∂fi/∂xj) has rank k , then

M = f −1(0) ⊆ Rn+k

is an n-manifold.
I In fact, every n-manifold M admits an embedding M ⊆ Rn+k

for some large k .
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Manifolds with boundary

I An n-dimensional manifold with boundary (M, ∂M ⊂ M)
is a pair of topological spaces such that
(1) M\∂M is an n-manifold called the interior,
(2) ∂M is an (n − 1)-manifold called the boundary,
(3) Each x ∈ ∂M has an open neighbourhood U ⊂ M such that

(U, ∂M ∩ U) ∼= Rn−1 × ([0,∞), {0}) .

I A manifold M is closed if ∂M = ∅.
I The boundary ∂M of a manifold with boundary (M, ∂M) is

closed, ∂∂M = ∅.
I Example (Dn, Sn−1) is an n-manifold with boundary.
I Example The product of an m-manifold with boundary

(M, ∂M) and an n-manifold with boundary (N, ∂N) is an
(m + n)-manifold with boundary

(M × N,M × ∂N ∪∂M×∂N ∂M × N) .
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The classification of n-manifolds I.

I Will only consider compact manifolds from now on.
I A function

i : a class of manifolds→ a set ; M 7→ i(M)

is a topological invariant if i(M) = i(M ′) for homeomorphic
M,M ′. Want the set to be finite, or at least countable.

I Example 1 The dimension n > 0 of an n-manifold M is a
topological invariant (Brouwer, 1910).

I Example 2 The number of components π0(M) of a manifold
M is a topological invariant.

I Example 3 The orientability w(M) ∈ {−1,+1} of a
connected manifold M is a topological invariant.

I Example 4 The Euler characteristic χ(M) ∈ Z of a manifold
M is a topological invariant.

I A classification of n-manifolds is a topological invariant i
such that i(M) = i(M ′) if and only if M,M ′ are
homeomorphic.
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The classification of n-manifolds II. n = 0, 1, 2, . . .

I Classification of 0-manifolds A 0-manifold M is a finite set
of points. Classified by π0(M) = no. of points > 1.

I Classification of 1-manifolds A 1-manifold M is a finite set
of circles S1. Classified by π0(M) = no. of circles > 1.

I Classification of 2-manifolds Classified by π0(M), and for
connected M by the fundamental group π1(M). Details to
follow!

I For n 6 2 homeomorphism ⇐⇒ homotopy equivalence.
I n-dimensional Poincaré conjecture A connected n-manifold

M is homeomorphic to Sn if and only if π1(M) = {1} and
H∗(M) = H∗(S

n). Proved by Smale (1960) for n > 5,
Freedman (1982) for n = 4 and Perelman (2003) for n = 3.

I It is not possible to classify n-manifolds for n > 4. Every
finitely presented group G = 〈S |R〉 is realized as the
fundamental group G = π1(M) for a 4-manifold M. The word
problem is undecidable, so cannot classify π1(M), let alone M.
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How does one classify surfaces?

I (1) Every surface M can be triangulated, in the weak sense
of being homotopy equivalent to a finite 2-dimensional cell
complex

M ∼=
⋃
c0

D0 ∪
⋃
c1

D1 ∪
⋃
c2

D2 .

I (2) Every connected M is homeomorphic to a normal form

M(g) orientable, genus g > 0 ,

N(g) nonorientable, genus g > 1

I (3) No two normal forms are homeomorphic.
I Similarly for surfaces with boundary, with M(g , h), N(g , h) .
I History: (2)+(3) already in 1860-1920 (Möbius, Clifford, von

Dyck, Dehn and Heegaard, Brahana). (1) only in the 1920’s
(Rado, Kerékjártó).

I Today will only do (3), using π1(M(g)) of normal forms.
Could use genus g or Euler characteristic χ(M(g)) instead!



38

A page from Dehn and Heegaard’s Analysis Situs (1907)

http://www.maths.ed.ac.uk/~aar/papers/dehnheegaard.pdf
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The connected sum I.

I Given an n-manifold with boundary (M, ∂M) with M
connected use any embedding Dn ⊂ M\∂M to define the
punctured n-manifold with boundary

(M0, ∂M0) = (cl.(M\Dn), ∂M ∪ Sn−1) .

I The connected sum of connected n-manifolds with boundary
(M, ∂M), (M ′, ∂M ′) is the connected n-manifold with
boundary

(M#M ′, ∂(M#M ′)) = (M0 ∪Sn−1 M ′0, ∂M ∪ ∂M ′) .

Independent of choices of Dn ⊂ M\∂M, Dn ⊂ M ′\∂M ′.
I If M and M ′ are closed then so is M#M ′.
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The connected sum II.

I

M M’ M # M’

I The connected sum # has a neutral element, is commutative
and associative:

(i) M#Sn ∼= M ,

(ii) M#M ′ ∼= M ′#M ,

(iii) (M#M ′)#M ′′ ∼= M#(M ′#M ′′) .

I A punctured n-manifold has χ(M0) = χ(M)− (−1)n

I The connected sum of n-manifolds has Euler characteristic

χ(M#M ′) = χ(M) + χ(M ′)− χ(Sn) .
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The fundamental group of a connected sum

I If (M, ∂M) is an n-manifold with boundary and M is
connected then M0 is also connected. Can apply the
Seifert-van Kampen Theorem to

M = M0 ∪Sn−1 Dn

to obtain

π1(M) = π1(M0) ∗π1(Sn−1) {1} =

π1(M0) for n > 3

π1(M0)/〈∂〉 for n = 2

with 〈∂〉 / π1(M0) the normal subgroup generated by the
boundary circle ∂ : S1 ⊂ M0.

I Another application of the Seifert-van Kampen Theorem gives

π1(M#M ′) = π1(M0) ∗π1(Sn−1) π1(M ′0)

=

π1(M) ∗ π1(M ′) for n > 3

π1(M0) ∗Z π1(M ′0) for n = 2 .
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Orientability for surfaces

I Let M be a connected surface.

I Definition An injective loop α : S1 → M is orientable if
there exists an injective map α : S1 × [−1, 1]→ M with
α(x , 0) = α(x) ∈ M for all x ∈ S1.

I Definition M is orientable if every α is orientable.

I Example The Euclidean 2-space R2, the 2-sphere S2 and the
torus S1 × S1 are orientable.

I Definition M is nonorientable if there exists α : S1 → M
which is not orientable, or equivalently if Möbius band ⊂ M.

I Example The Möbius band, the projective plane RP2 and the
Klein bottle K are nonorientable.

I Remark Can similarly define orientability for connected
n-manifolds M, using α : Sn−1 → M.
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The orientable closed surfaces M(g) I.

I Definition Let g > 0. The orientable connected surface
with genus g is the connected sum of g copies of S1 × S1

M(g) = #
g

(S1 × S1)

I Example M(0) = S2, the 2-sphere.
I Example M(1) = S1 × S1, the torus.
I Example M(2) = the 2-holed torus, by Henry Moore.
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The orientable closed surfaces M(g) II.

M(1)M(0) M(2)

M(g)
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The nonorientable surfaces N(g) I.

I Let g > 1. The nonorientable connected surface with
genus g is the connected sum of g copies of RP2

N(g) = #
g
RP2

I Example N(1) = RP2, the projective plane.
I Boy’s immersion of RP2 in R3 (in Oberwolfach)

http://www.maths.ed.ac.uk/~aar/surgery/notes.htm
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The nonorientable closed surfaces N(g) II.

N(g)

Projective plane = N(1) Klein bottle = N(2)
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The Klein bottle

I Example N(2) = K is the Klein bottle.
I The Klein bottle company

http://www.kleinbottle.com
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The classification theorem for closed surfaces

I Theorem Every connected closed surface M is homeomorphic
to exactly one of

M(0) , M(1) , . . . , M(g) = #
g
S1 × S1 , . . . (orientable)

N(1) , N(2) , . . . , N(g) = #
g
RP2 , . . . (nonorientable)

I Connected surfaces are classified by the genus g and
orientability.

I Connected surfaces are classified by the fundamental group :

π1(M(g)) = 〈a1, b1, a2, b2, . . . , ag , bg | [a1, b1] . . . [ag , bg ]〉
π1(N(g)) = 〈c1, c2, . . . , cg | (c1)2(c2)2 . . . (cg )2〉

I Connected surfaces are classified by the Euler characteristic
and orientability

χ(M(g)) = 2− 2g , χ(N(g)) = 2− g .
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The punctured torus I.

I The computation of π1(M(g)) for g > 0 will be by induction,
using the connected sum

M(g + 1) = M(g)#M(1)

I So need to understand the fundamental group of the torus
M(1) = T = S1 × S1 and the punctured torus (T0,S

1).

I Clear from T = S1 × S1 that π1(T ) = Z⊕ Z.

I Can also get this by applying the Seifert-van Kampen theorem
to M(1) = M(1)#M(0), i.e. T = T0 ∪S1 D2.

I The punctured torus

(T0, ∂T0) = (cl.(S1 × S1\D2), S1)

is such that S1 ∨ S1 ⊂ T0 is a homotopy equivalence.
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The punctured torus II.

I The inclusion ∂T0 = S1 ⊂ T0 induces

π1(S1) = Z→ π1(T0) = π1(S1 ∨ S1) = Z ∗ Z = 〈a, b〉 ;

1 7→ [a, b] = aba−1b−1 .

a

a

a

a

b
bb b

I The Seifert-van Kampen Theorem gives

π1(T ) = π1(T0) ∗Z {1} = 〈a, b | [a, b]〉 = Z⊕ Z .
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The calculation of π1(M(g)) I.

I The initial case g = 2, using M(2) = M(1)#M(1)

M(1)

a1

b1

b1 b2

b2

a1 a2 a2

M(1)

M(2)

a1

a1

a1

a1

a1

b1

b1

b1

b1

b1

b1

b2

b2

b2

b2

b2

b2

a1 a2

a2

a2

a2

a2

a2

M(1) # M(1)

M(1,1) M(1,1)
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The calculation of π1(M(g)) II. General case

I Assume inductively that
I π1(M(g)) = 〈a1, b1, . . . , ag , bg | [a1, b1] . . . [ag , bg ]〉,
I the punctured surface

(M(g)0, ∂M(g)0) = (cl.(M(g)\D2),S1)

is such that
∨
2g
S1 ⊂ M(g)0 is a homotopy equivalence,

I the inclusion ∂M(g)0 = S1 ⊂ M(g)0 induces

π1(S1) = Z→ π1(M(g)0) = ∗
2g
Z = 〈a1, b1, . . . , ag , bg 〉 ;

1 7→ [a1, b1][a2, b2] . . . [ag , bg ] .

I Apply the Seifert-van Kampen Theorem to

M(g + 1) = M(g)#M(1)

to obtain

π1(M(g + 1)) = π1(M(g)0) ∗Z π1(M(1)0)

= 〈a1, b1, . . . , ag+1, bg+1 | [a1, b1] . . . [ag+1, bg+1]〉
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The genus measures connectivity.
The orientable case

I The genus g of an orientable surface M is the maximum
number of disjoint loops α1, α2, . . . , αg : S1 → M such that

the complement M\
g⋃

i=1
αi (S

1) is connected. The complement

is homeomorphic to M(0, 2g)\∂M(0, 2g).
I Example For M = M(2) let α1, α2 : S1 → M be disjoint

loops which go round as in the diagram.
The complement

M\(α1(S1) ∪ α2(S1)) = M(0, 4)\∂M(0, 4)

is the sphere M(0) = S2 with 4 holes punched out.

M(2) 

α1 α2

M(2)  \ α1(S  )  U α2 (S  )1 1
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Morse theory

I For an orientable surface M ⊂ R3 in general position the
height function

f : M → R ; (x , y , z) 7→ z

has the property that the inverse image f −1(c) ⊂ M is a
1-dimensional submanifold for all except a finite number
c ∈ R called the critical values of f .

I Can recover the genus g of M by looking at the jumps in the
number of circles in f −1(a) and f −1(b) for a < b < c.

I Morse theory developed (since 1926) is the key tool for
studying n-manifolds for all n > 0.
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An early exponent of Morse theory on a surface

I August Ferdinand Möbius
Theorie der elementaren Verwandschaften (1863)

I Fill a surface shaped bathtub with water, and recover the
genus of the surface from a film of the cross-sections.
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56

Another early exponent of Morse theory on a surface

I James Clerk Maxwell (1870) On hills and dales
I Reconstruct surface of the earth (= S2) from contour lines.

I Mountaineer’s equation for surface of Earth

no. of peaks− no. of pits + no. of passes = χ(S2) = 2 .

Modern account in Chapter 8 of Surfaces (CUP, 1976) by
H.B.Griffiths

http://www.maths.ed.ac.uk/~aar/papers/hilldale.pdf
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Cross-cap

I If M is a surface the connected sum

M ′ = M#RP2

is the surface obtained from M by forming a crosscap
(Kreuzhaube in German).

I M ′ is homeomorphic to the identification space obtained from
the punctured surface (M0, S

1) by identifying z ∼ −z for
z ∈ S1

M ′ = M0/{z ∼ −z} .

I Equivalently, M ′ is obtained from M by punching out D2 ⊂ M
and replacing it by a Möbius band.

I M ′ is nonorientable.

I Example If M = S2 then M ′ = RP2.
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The punctured projective plane I.

I The computation of π1(N(g)) for g > 1 will be by induction,
using the connected sum

N(g + 1) = N(g)#N(1)

with N(1) = RP2. Abbreviate RP2 = P.

I Need to understand the fundamental group of P and the
punctured projective plane (P0, S

1), i.e. the Möbius band.

I Clear from the universal double cover p : S2 → P that

π1(P) = Homeop(P) = Z2 .

I Can also get this by applying the Seifert-van Kampen
Theorem to N(1) = N(1)#M(0), i.e. P = P0 ∪S1 D2.
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The punctured projective plane II.

I The punctured projective plane

(P0, ∂P0) = (cl.(P\D2), S1)

is a Möbius band, such that S1 ⊂ P0\∂P0 is a homotopy
equivalence.

I The inclusion ∂P0 = S1 ⊂ P0 induces

π1(S1) = Z→ π1(P0) = π1(S1) = Z ; 1 7→ 2 .

I The Seifert-van Kampen Theorem gives

π1(P) = π1(P0) ∗Z {1} = 〈c | c2〉 = Z2 .
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The calculation of π1(N(g)) I.

I The initial case g = 2, using N(2) = N(1)#N(1) and
(N(1)0, S

1) = (Möbius band,boundary circle).

c1

N(1) # N(1)

N(1,1)
c1

c1

c1

a

a

c1c1c1

c1

c1

c2

c2

c2

c2c2

c1

N(1,1)

Klein Bottle = N(2)

Projective plane = N(1)

N(1) # N(1) = N(2)

c1

I By the Seifert-van Kampen Theorem, with c2 = (c ′1)−1,

π1(N(2)) = π1(N(1)#N(1))

= 〈c1, c ′1 | (c1)2 = (c ′1)2〉 = 〈c1, c2 | (c1)2(c2)2〉 .
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The calculation of π1(N(g)) II.

I Assume inductively that
I π1(N(g)) = 〈c1, c2, . . . , cg | (c1)2(c2)2 . . . (cg )2〉,
I the punctured surface

(N(g)0, ∂N(g)0) = (cl.(N(g)\D2),S1)

is such that
∨
g
S1 ⊂ N(g)0 is a homotopy equivalence,

I the inclusion ∂N(g)0 = S1 ⊂ N(g)0 induces

π1(S1) = Z→ π1(N(g)0) = ∗
g
Z = 〈c1, c2, . . . , cg 〉 ;

1 7→ (c1)2 . . . (cg )2 .

I Apply the Seifert-van Kampen Theorem to

N(g + 1) = N(g)#N(1)

to obtain

π1(N(g + 1)) = π1(N(g)0) ∗Z π1(N(1)0)

= 〈c1, . . . , cg+1 | (c1)2 . . . (cg+1)2〉 .
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The calculation of π1(N(g)) III.

N(2)

N(g)

 N(1)

a

b

a a

b

c1

c1

c2

c2

c3

a
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The Euler characteristic of M(g)

I The fundamental group of M(g) determines the genus g .
I The first homology group of M(g) is the free abelian group of

rank 2g

H1(M(g)) = π1(M(g))ab =
⊕
2g

Z

I M(g) is homotopy equivalent to the 2-dimensional cell
complex

(
∨
2g

S1) ∪[a1,b1]...[ag ,bg ] D
2 = D0 ∪

⋃
2g

D1 ∪[a1,b1]...[ag ,bg ] D
2 .

I The Euler characteristic of M(g) is

χ(M(g)) = 2− 2g .

I A closed surface M is homeomorphic to S2 if and only if
χ(M) = 2.



64

The Euler characteristic of N(g)

I The fundamental group determines the genus g .

I The first homology group of N(g) is direct sum of the free
abelian group of rank g − 1 and the cyclic group of order 2

H1(N(g)) = π1(N(g))ab = (
⊕
g

Z)/(2, 2, . . . , 2) = (
⊕
g−1

Z)⊕Z2

I N(g) is homotopy equivalent to the 2-dimensional cell
complex

(
∨
g

S1) ∪(c1)2(c2)2...(cg )2 D
2 = D0 ∪

⋃
g

D1 ∪(c1)2...(cg )2 D
2 .

I N(g) has Euler characteristic

χ(N(g)) = 2− g .
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The orientable surfaces with boundary M(g , h)

I Let g > 0, h > 1.

I Definition The orientable surface of genus g and h
boundary components is

(M(g , h), ∂) = (cl.(M(g)\
⋃
h

D2),
⋃
h

S1) .

I Cell structure M(g , h) '
∨

2g+h−1
S1 = D0 ∪

⋃
2g+h−1

D1

I Fundamental group π1(M(g , h)) = ∗
2g+h−1

Z

I Euler characteristic χ(M(g , h)) = 2− 2g − h

I Classification Theorem Every connected orientable surface
with non-empty boundary is homeomorphic to exactly one of
(M(g , h), ∂M(g , h)).

I Set M(g , 0) = M(g).
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Examples of orientable surfaces with boundary

I (M(0, 1), ∂) = (D2,S1), 2-disk
I (M(0, 2), ∂) = (S1 × [0, 1], S1 × {0, 1}), cylinder
I (M(1, 1), ∂) = ((S1 × S1)0, S

1), punctured torus.
I (M(0, 3), ∂) = (pair of pants,S1 ∪ S1 ∪ S1).
I The pair of pants is an essential feature of topological

quantum field theory, and so appeared in Ida’s birthday cake
for the 80th birthday of Michael Atiyah (29 April, 2009)

http://www.maths.ed.ac.uk/~aar/atiyah80
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The nonorientable surfaces with boundary N(g , h) I.

I Let g > 1, h > 1.

I Definition The nonorientable surface with boundary with
genus g with h boundary components is

(N(g , h), ∂N(g , h)) = (cl.(N(g)\
⋃
h

D2),
⋃
h

S1) .

I Cell structure N(g , h) '
∨

g+h−1
S1 = D0 ∪

⋃
g+h−1

D1.

I Fundamental group π1(N(g , h)) = ∗
g+h−1

Z

I Euler characteristic χ(N(g , h)) = 2− g − h

I Classification Theorem Every connected nonorientable
surface with non-empty boundary is homeomorphic to exactly
one of (N(g , h), ∂N(g , h)).

I Set N(g , 0) = N(g).
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The nonorientable surfaces with boundary N(g , h) II.

N(2,1)

=

N(g, h)

N(1,1) N(1, h)N(1,2)

N(2, h)N(2,1)

=
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The Möbius band

I The Möbius band (N(1, 1), ∂N(1, 1)) = ((RP2)0, S
1).

I The first drawing of a Möbius band, from Listing’ s 1862
Census der Räumlichen Complexe

http://www.maths.ed.ac.uk/~aar/papers/listing2.pdf
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The orientation double cover

I A double cover of a space N is a regular cover Ñ → N with
fibre F = {0, 1}. Connected double covers of connected N are
classified by index 2 subgroups π1(Ñ) / π1(N).

I A surface N has an orientation double cover p : Ñ → N,
with Ñ an orientable surface. For connected N classified by
the kernel of the orientation character group morphism

w : π1(N)→ Z2 = {+1,−1}
sending orientable (resp. nonorientable) α to +1 (resp. −1).

I If N is orientable Ñ = N ∪ N is the trivial double cover of N.
I If N is nonorientable w is onto, π1(Ñ) = kerw . Pullback

along nonorientable α : S1 → N is the nontrivial double cover

q = α∗p : S1 → S1 ; z 7→ z2

S1

q
��

α̃ // Ñ
p
��

S1 α // N
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The orientation double cover

of a Möbius band is a cylinder

1S  x  I = M(0,2)

M = N(1,1)
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M(g − 1, 2h) is the orientation double cover of N(g , h)

I Proposition The orientation double cover of N(g , h) is

Ñ(g , h) = M(g − 1, 2h) (g > 1, h > 0)

I Proof Let N be a connected nonorientable surface with
orientation double cover Ñ. The boundary circle of
N0 = cl.(N\D2) is orientable. The orientation double cover of
N0 is the twice-punctured Ñ, Ñ00 = cl.(Ñ\D2 ∪ D2). The
orientation double cover of N ′ = N#RP2 is

Ñ ′ = Ñ00 ∪S1∪S1 S1 × I .

with χ(Ñ ′) = χ(Ñ00) = χ(Ñ)− 2. This gives the inductive

step in checking that Ñ(g , h) = M(g − 1, 2h).

I Example For h = 0, g > 1 have Ñ(g) = M(g − 1).
Simply-connected for g = 1. For g > 2 universal cover R2.
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The genus measures connectivity.
The nonorientable case

I The genus g of a nonorientable surface N is the maximum
number of disjoint injective loops β1, β2, . . . , βg : S1 → N

such that the complement N\
g⋃

i=1
βi (S

1) is connected.

The complement is homeomorphic to M(0, g)\∂M(0, g).
I Example Let N = RP2 = D2/{z ∼ −z | z ∈ S1} and

β : S1 = RP1 → RP2 ; z 7→ [
√
z ] .

The complement is

RP2\β(S1) = M(0, 1)\∂M(0, 1) = D2\S1 = R2 .

D 2

-z

z
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Further reading

I Google for ”Classification of Surfaces” (147,000 hits)

I An Introduction to Topology. The classification theorem for
surfaces by E.C. Zeeman (1966)

I A Guide to the Classification Theorem for Compact Surfaces
by Jean Gallier and Dianna Xu (2011)

I Home Page for the Classification of Surfaces and the Jordan
Curve Theorem Online resources, including many of the
original papers.

http://www.google.co.uk/search?q="Classification+of+surfaces"
http://www.maths.ed.ac.uk/~aar/surgery/zeeman.pdf
http://www.maths.ed.ac.uk/~aar/surgery/zeeman.pdf
http://www.cis.upenn.edu/~jean/surfclass-n.pdf
http://www.maths.ed.ac.uk/~aar/jordan/
http://www.maths.ed.ac.uk/~aar/jordan/

