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Introduction

An n-dimensional algebraic Poincaré complex over a ring
with involution A is an n-dimensional A-module chain complex C
together with a self-dual chain equivalence

C* = HomA(C,A) —~—-> C

n-% '
so that there are induced abstract Poincaré duality A-module
isomorphisms

H*(C) —~—> H <y .

n-«
A O-dimensional algebraic Poincaré complex over A is the same
as a non-singular quadratic form over A. If M is a compact
n-dimensional topological manifold and M is a covering of M
with group of covering translations n the Z([n]-module chain
complex C(M) has the structure of an n-dimensional algebraic
Poincaré complex over Z[n], on account of the classic Poincaré
duality H*(M) = Hn_'(ﬁ). The Poincaré-Lefschetz duvality
H* (M) = Hn_*(ﬁ,5ﬁ) of a compact n-dimensional manifold with
boundary (M,J3M) motivates the notion of an n-dimensional
algebraic Poincaré pair over A, as a pair of chain complexes
(C,3C) together with a self-dual chain equivalence
C* —43—+(C/3C)n_*. There is thus an abstract cobordism theory,
with n-dimensional algebraic Poincaré complexes C,C' cobordant
if C6-C' = ID is the boundary of an (n+l)-dimensional algebraic
Poincaré pair (b,3D),

In Parts I and II of a paper entitled “"The algebraic
theory of surgery" (Fanicki [9],[10], henceforth to be
denoted I.,II.) the cobordism of algebraic Poincaré complexes

symmetric

with a structure was used to define a sequence of
quadratic



v
covariant functors

L
n

n
L

{ : {rings with involution}———{abelian groups} (n€ 2z2)

and to study their applications to the geometric theory of

surgery on compact manifolds. In effect, this is Part III of

the sequence, in which there are established various exact

sequences in the algebraic L-groups, and some further application

to geometric surgery are developed.

symmetric LO(A)
The O-dimensional L-group is the Witt
quadratic LO(A)
symmetric
group of non-singular forms over A. The quadratic
quadratic

L-groups are 4-periodic

Ln(A) =Ln+4(A) (nez) ,
and are in fact the surgery obstruction groups of Wall [4].
The higher symmetric L-groups Ln(A) (ny 0) are the algebraic
Poincaré cobordism groups of Mishchenko {1}; they are not in
general 4-periodic, Ln(A) # Ln+4(A). The lower symmetric
L-groups L") (n & -1) are defined to be such that

LN = L (M) (ng-d)
with an ad hoc definition for L_l(A) and L_Z(A). The symmetric
L-groups are related to the quadratic L-groups by symmetrization
maps

147 ¢ L (A) L (A)  (n€z)

which are isomorphisms modulo 8-torsion for any A, and actually

isomorphisms if 2 is a unit in A.

s
"y
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The principal algebraic aim here is to establish exact

sequences in L-theory substantiating the assertion made in the

symmetric Ln(A)
introduction to I. that the L-groups (n€ 2)
quadratic Ln(A)
symmetric LO(A)
are to the Witt group what the algebraic
quadratic LO(A)

K-groups Kn(A) (n€ Z) are to the projective class group KO(A).

It will be recalled that algebraic K-theory has to determine

whether a finitely generated projective A-module is free,

and if so in how many ways; similarly, algebraic L-theory

symmetric

has to determine whether a form is hyperbolic
{quadratic

(= admits a maximally isotropic "lagrangian" direct summand),

and if so in how many ways. The actual L-theory exact sequences

obtained are listed further below, following a brief discussion

of their K-theory antecedents.

The principal geometric aim is to extend the applications
of algebraic surgery to topology made in II. beyond the general
surgery obstruction theory for manifolds of Part 1 of Wall [4]
to the theory of Part 2 arising in the classification of
topological (sub)manifold structures on geometric Poincare
(sub)complexes, that is codimension q surgery obstruction theor:
Exact sequences play an important role in this classification,
notably the fundamental "surgery exact sequence" of the
Browder-Novikov-Sullivan-wWall theory

Loy (Z 01y (X) 1) —— £TOF
STOP(

(X)-——9[X,G/TOP]'“~—>Ln(zlnl(x)ﬂ

for the set X) of topological manifold structures on an
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n-dimensional geometric Poincaré complex X (n25) with a
topological reduction GX:X——~9-BTOP of the Spivak normal fibration
vx:x-——A#BG. It will be recalled that an n-dimensional geometric
Poincaré complex X is a finite CW complex with the Poincaré

duality H*(X) = H (X) of a compact n-dimensional topological

n-*
manifold, but which is not required to be locally homeomorphic
to Euclidean n-space r". Surgery theory has to determine whether
a geometric Poincare complex is homotopy equivalent to a manifold,
and if so in how many ways. The theory was first developed for
smooth (= differentiable) manifolds, but it has since turned out
to work just as well for topological manifolds. Moreover, the
topological category has better algebraic properties, such as
the homotopy-theoretic 4-periodicity of the classifying space
% (G/ToP) = L, (Z) x G/TOP .

The total surgery obstruction theory of Ranicki [7] was a
tentative first step towards a purely algebraic account of the
homotopy theory of compact n-dimensional topological manifolds,
at least for n» 5, including an algebraic expression for the
surgery exact sequence.

In an effort at making this book self-contained §1

recapitulates the main definitions and results of I. and II.,

symmetric L*(A)
particularly the definition of the g L-groups
quadratic L, (A)
symmetric g*(X) € L"(z[nl(x)r
and of the signature of an
quadratic 0*(f’b)€Ln{z[”l(x”)

geometric Poincaré complex X
n~dimensional , along with the
normal map (f,b}):M ——>X
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identification of the quadratic signature with the Wall
surgery obstruction. The algebraic L~theory exact sequences
are developed in §§2-6, and the algebraic theory of codimension g
surgery is developed in §7. It should be noted that while the
material of §§2-6 is in its definitive form, §7 is only a
preliminary account of the applications to topology, on the
level of exposition of the total surgery obstruction theory
of Ranicki [7) which it extends. The full account will be spread
out over the next two instalments of the series, Ranicki [11l],[12}].

In dealing with the algebraic K-theory motivating the
algebraic L-theory it will be assumed that the reader is
familiar with the definitions and basic properties of the
classical algebraic K-groups KO(A) and Kl(A), and their
appearance in topology via the Wall finiteness obstruction and
the Whitehead torsion. The algebraic K-groups Kn(A) defined
for n<-1 by Bass, for n = 2 by Milnor, and for n»3 by Quillen
are invoked only for the way in which they extend (or fail to
extend) the exact sequences of classical algebraic K-theory.
In particular, the algebraic K-groups

KnlA) = Kn(exact category of f.g. projective A-modules) (n€ Z)
are such that for a ring morphism f:A ——>B there are defined
relative K-groups Kn(f) (n€ Z) with a change of rings exact
sequence
£
i Kn(A) -——————)Kn(B)-—*—éKn(f)—--—) Kn_l(A)-——>... (n€z) .

Given a multiplicative subset S<A of non-zero-divisors there
is defined a ring S'lA inverting S, and there are defined

algebraic K-groups
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K (A,S) = K _,(exact category of S-torsion A-modules
of homological dimension 1) (n€ 2)
such that the relative K-groups K, (f) of the localization map

f:A— 5L

A can be identified with K, (A,S)
K (F:A——>S71a) = kK (A,S) (nez) .

The conseqguent expression for the change of rings exact sequence

£
ey K (M) ——— R_(8TIA) —K_(A,$)—> K__ (A} —>... (i

is the "localization exact sequence of algebraic K—theory“.
For a Dedekind ring R with guotient field F = (R—(O})_lR
a devissage argument identifies
Ky (RoR-{0}) = BK _, (RF) (n€2Z)

with® ranging over all the maximal ideals of R, so that the
localization exact sequence for R—>F can be written as

...——»Kn(R)-—->Kn(F)—»ngn_l(a/gp)-——*xn_l(m—»... (r
An application of the localization exact sequence to the
multiplicative subset X = {xk|k> 0} cA[x] proves the
"fundamental theorem of algebraic K-theory", relating the
K~groups of the polynomial extension rings A[x], A[x,x_ll
in a central indeterminate x over A (ax = xa, a€ M) by naturally
split exact sequences

1

O-—~—>Kn(A)—~——>Kn(A[x])QKn(A(x—ll)———ﬂ-Kn(A[x,x— I}

—— K _,(B)—>0 (n€
This can be generalized to the algebraic K-groups of twisted
polynomial extensions Aa[x], Au(x,x—ll (ax = xa(a) for some
automorphism a:A ——>A), since the exact sequence for the

1

localization Aa[x]~w7v—)x— Aglx] = Aa[x,x_ll can be expressed as

,



€ z)

€z .

zZ) .

ix

-1 e
...————)Kn(Au[x])————)Kn(Au(x,x 1)y— Kn_l(A)@Nlln(A,a)
-—*—*Kn_l(Aa(x])-—?... (ne 2z)

[y
with the Nil-groups such that
Kn(Aa[x]) = Kn(exact category of f.g. projective A-modules
with an a~twisted nilpotent map v:P——>P)

o -1
Kn(A)QNlln(A,u ) (n€eZ) .

Given a cartesian square of rings

A ——————> B'

B ————>A'

such that B———> A' (or B' —>A') is onto there is defined
a Mayer-Vietoris exact sequence of the classical algebraic
K-groups

Kl(A)———* Kl(B)OKI(B’)————»Kl(A‘)~——+KO(A)-———>KO(B)0KO(B'

K (A') —K_ (A) —> ...

which extends on the right to the lower K-groups, but which
does not in general extend to the higher K-groups on the left.
However, if Sc A is a multiplicative subset of non-zero-diviso
and

A = Lim A/sA
sS€Ss

is the S~adic completion of A then there is defined a cartesia

square of rings
-1

S5

> ———



for which there is defined a Mayer-vietoris exact sequence in
all the K-groups
o K () —— K (Ao (sTIa) —> K (§71A) — Ko g () —>...
(ne Z) .
It is these exact sequences of algebraic K-theory which serve
as models for L-theory. The individual introductions to §§2-6
and §7.6 contain some further background material concerning
algebraic K-theory, such as references.
In summarizing below the algebraic L-theory exact sequences

obtained in §§2 -6 the terminology will be simplified by

L* (A) symmetric
writing for all the L-groups, even though

L, (A) {quadratic

the groups that actually occur are the "intermediate

e-symmetric L;(A,e) -
L-groups” X with X€<K _(A) (m = 0 or 1)
e-quadratic Ly (A, €) m

some subgroup which is invariant under the involution of Rm(A)

determined by the involution :A——>A;al——>a of the ring A,

and € €A a central unit such that € = € * € A.

symmetric
Following the discussion in §1 of the absolute
quadratic
L"(a)
L-groups (n€ Z) of a ring with involution A there will
L (A

symmetric Ln(f)

be defined in §2 the relative L-groups (n€ z)
quadratic Ln(f

of a morphism of rings with involution f:A—3B, with a

change of rings exact seguence



x1i

f
>L™(a) > LM (B) —— L (£) —> L" L a) ——> ...
f (n€ 22)
...-——)Ln(A)——-———* Ln(B)-—*—"Ln(f)———’Ln_l(A)—*—)...
symmetric L*(f)
In §3 the relative L~groups of the
quadratic L, (f)

1

localization map f:A——>S "A inverting a multiplicative

subset S< A of non-zero-divisors invariant under the involution

L*(A,S)
will be identified with the cobordism groups of
L, (A,S)

Poincaré complexes over A which become acyclic over

symmetric
% quadratic

the localization S !a

tNf:a—>s"1a) = L"(A,S)
(n€ 2)
Ln(A,S) ’

L, (£:A—> s™1a)

symmetric
thus obtaining the "localization exact sequence of
quadratic
L-theory”
v L) —— L (s IA) —— LA, 5) —> LM ha) — L
...————»Ln(A)—-»Ln(s‘lA)——+Ln(A,s;——+Ln_l(A)———>
(nez) .
L2(a,s)
In particular, is the Witt group of non-singular
L (A,S)
o}
-1 symmetric
S "A/A-valued linking forms on h.d. 1 S-torsion
quadratic
A-modules. (See Ranicki [6] for a preliminary account of
localization in quadratic L-theory). In §4 it is shown that

for a ring with involution A which is an algebra over a

Dedekind ring R (e.q. a group ring A = Z[n] with R = Z)



the relative terms in the localization exact sequence for

S = R-{0}C A have natural direct sum decompositions

(a5 = &R
¥ - (nez)
L (A/S) = G?DLn(A,? )
with 9 ranging over all the maximal ideals of R invariant
L*(A,7%)
under the involution, and defined in the same way
L, (A,P%)

L*(A,S)
as but using only A-module chain complexes with
L, (A,S)

?—primary S-torsion homology A-modules. Furthermore, in the

case A = R a symmetric L-theory devissage argument identifies

n _ n
Lt"(R,s) = ,;?L (R/F) (n30) .
In general, there is no devissage in quadratic L-theory, and
an example is constructed for which
L (R,s}) # DL _(RfP) .
n T n
In §5 the localization exact sequence of §3 is applied to
obtain splitting theorems for the L-groups of the a-twisted
polynomial extensions Ay [x], Aa[x,x—ll of a ring with
involution A, with a:A—-——->A a ring automorphism such that
afa) = a—l(E) € A (a€A) and x an indeterminate over A such thal
X = x , ax = xafa) .
symmetric
It will be shown that the L-theory exact sequence
quadratic
for the localization inverting X = {xklka 0} ca,lx]
s x7Ya_x) = Aagx,x7h)
A,lx]) olx) = BAalx,x

consists of naturally split short exact sequences of the type
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0——> L™ (A [x]) —> LA Ix,x 1)) —> LM (A [x] , X) ——>
{ O———> L (Aglx])—> L_(A,lx,x 1) —— L (A Ix],X) —>
(nez),
and hence that there are defined naturally split exact sequenc
of the type

0 — L™ (A)—> L™ (A [x1) 8L (A L[x 1) —> L7 (A  [x,x7 1)
— A% —> o0
-1 -1
O—>L {(A)—>L (A IX])®L (A [x 1) —>L (A lx,x "])
—L (A% —>o0

where A® is the ring A with involution ar——>a(a).
symmetric
This "fundamental theorem of L-theory" is surprisir
quadratic
in the twisted case a # id., since the corresponding
localization exact sequence in algebraic K-theory
-1
s TR (A [x])) K (A [x.x T])—2K (A, [x],X)

3
KA XD —— ..

need not break up into short exact sequences if a # id., that
is 9 #¥ O in general. (In §7.6 the fundamental theorem of quad
IL-theory for a group ring A = Z{n] will be given a geometric
interpretation in terms of the Browder-Livesay-Wall obstructic
theory for surgery on one-sided codimension 1 submanifolds.)
In §6 it will be shown that for a cartesian square of rings

with involution
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with B—> A' (or B' ——— A') onto there is defined a

Mayer-Vietoris exact sequence of quadratic L-groups
...—»———)Ln(A)———§Ln(B)$Ln(B')—-——>Ln(A')————>Ln_l(A)~——>

(n€zZ) .

In general, there is no such exact sequence in the symmetric

L-groups, and an example is constructed to illustrate this

failure of excision. For a localization-completion cartesian

square

A——>sip

l

P

A
there will be obtained a Mayer-vietoris exact sequence in
quadratic L-theory
- _1 A,—lA
e -——9Ln(A) ————#Ln(A)QLn(S A)——-)Ln(s A)————>Ln_1(A) —_> ...
(nez),

1

and if 2 is a unit in S 'A there will also be obtained such

a sequence in symmetric L-theory

oo L) — LAy oL (s a) — LN (ETA) — > 10 L a) —> ...
(n€ez) .
In particular, for any group m there is a Mayer-Vietoris
exact sequence in both the symmetric and the gquadratic
L-groups of the classical localization-completion "arithmetic

square" of group rings
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Z{n] —> Q[7]

Zr] ——> P[] .

the study of which plays such an important role in the
computation of the surgery obstruction groups L, (7) = L (Z[7])
of finite groups m and allied trades.

Codimension g surgery theory deals with the problem of
doing surgery on a codimension g submanifold N""9c ™" inside M,
that is "ambient surgery" as opposed to "abstract surgery"” on N
without regard to M. For g >3 the ambient and abstract surgery
obstructions coincide. Besides the abstract surgery obstruction
groups L, (n) Wall [4,§11] also introduced the codimension g
surgery obstruction groups LS,(¢) (q = 1 or 2), by formalizing
the idea due to Browder of first doing abstract surgery on the
submanifold N ard then fitting the result back into the
supermanifold M. Given an n-dimensional geometric Poincar#
complex X, a codimension g Poincaré subcomplex YC X with
normal fibration g = Vyeyx Y ——>BG(q) (g =1 or 2),
and a homotopy equivalence f:M—""—» X from an n-dimensional
manifold M there is defined an obstruction

TS (EN) —> (X = Y)

s(f,Y) € 1S, o ¢

ﬂl(Y)—————>ﬂl(X)

{
to deforming f by a homotopy to a map transverse at Y<X with

both the restrictions £l:N= £ 1(¥Y)——Y, fl:M-N=fL(x-Y)—>X-Y

homotopy equivalences, i.e. to "splitting f along YCX".
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The LS-groups are defined geometrically to fit into the
exact sequence
v L (1 (XS Y) > (X)) > LS (9)

g!
R Ln_q(ﬂl(Y)) > L (1 (X = Y) oy (X)) —>

the map LSn_q(¢)-~—»Ln_q(n1(Y)) sending the ambient surgery
obstruction s(f,Y) to the abstract surgery obstruction o, (f]:
The expression in I. of the surgery obstrqction groups
L,(1) in terms of quadratic Poincaré complexes and the choan
homotopy invariant expression in II. of the surgery obstructi
are extended in §7 to the LS-groups LS, (%) and the codimensio
splitting obstruction., Many authors have used geometric
techniques to prove splitting theorems for manifolds, which
are equivalent to vanishing theorems for the LS-groups and
hence to the existence of Mayer-Vietoris exact sequences in
the surgery obstruction groups. For example, the codimension
splitting theorem of Cappell implies that there exists such a

sequence for many free products with amalgamation "1.9"2

...A*A’Ln(p)~—~+[h(nl)®Ln(n2)~———»Ln(nl*pﬂ2)-—+ Ln_l(p)—-
and for many HNN extensions ntp(t}
coo > L_(p) ——> L _(1}—> Ln(ﬂ*p\‘t})——> L) —> ..

The next instalment of the series (Ranicki {11]) will be devo
to carrying out the programme put forward in §7.5 for an
algebraic derivation of codimension q splitting theorems,
using an algebraic theory of codimension q transversality.
This should alsoc apply to the symmetric L-groups IL*(m), even
the example of Proposition 7.6.8 shows that they are not in

general geometrically realizable.
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§1. Absolute L-theory

In §1 we reiterate all the concepts of I. and II. which
we shall be using here, particularly the definition of the
L"(a,¢)

L.-groups (nez) of a ring
Ln(A,E)

e~symmetric
n-dimensional

€-quadratic
with involution A as the cobordism groups of n-dimensional

Poincaré complexes over A. Also, the geometric
e-quadratic

%e—symmetric
background of the L-groups is recalled: this is important even
in a purely algebraic context, since algebraic Poincaré cobordism
has all the formal properties of the cobordism of manifolds
(as indeed does geometric Poincaré cobordism). For example,
there are cobordism exact sequences both in the geometry and
in the algebra, and the relative L-groups will be defined in
§2 as relative algebraic Poincaré cobordism groups.
§1 also contains some new material, specifically the triad

Q-groups of §1.3, the glueing of forms and formations of §1.7

and the L-categories of §1.8.



1.1 Q-groups

Let A be a ring with involution, that is an associative ring

with 1, together with a function

: A——>AhA ; ar—>a

such that

(a+tb) = a + b , (ab) = b.a , =a,1=1€A (a,bEA).

o

Given a left A-module M let M~ be the right A-module
defined by additive group of M with A acting by
MExa — Mt ; (x,a)——>ax .
Except where a right A-module structure is specified "A-module"
refers to a left A-module structure.
Given A-modules M,N let Hom, (M,N} be the abelian group of
A-module morphisms
f: M—>N .
The dual of an A-module M is the A-module
M* = HomA(M,A)
with A acting by
AxXM* — SM* ; (a,f)——(Xr——>f(x).a) (xEM).
The dual of an A-module morphism f €Hom, (M,N) is the A-module
morphism f*e‘HomA(N*,M*) defined by
f* ¢ N*—— HM* ; g— (x——>g(f(x))) .
If M is a f.g.(=finitely generated) projective A-module then
so is M*, and there is defined a natural A-module isomorphism
M—————3M** ; x5 (h—»h(x)) (h€M*)

|
which we shall use to identify M** = M,



An A-module chain complex C is a sequence of A-modules

and A-module morphisms

d a
C ....———+Cr+1~——~—+Cr~—~—~+cr_l-———i.. (r €2z)
such that
2 _
d® =0 € HomA(Cr,Cr_z) (rez)

homology
The A-modules of C are defined (as usual)} by

cohomology
H,(C) = ker(d:C,—>C__;/im(d:C_,,—>C,) em fcn
— ’ =
HY (C) = ker(d*:Cf——o c™* Yy sim(ar:ct"l— ) L

A chain map of A-module chain complexes
f : C—D

is a collection of A-module morphisms {f€ HomA(Ct,D[)h:GZ}
such that

de = fd.¢€ Hom, (C.,D__,) (r€z)
A chain_homotopy of chain maps

g : f~f' : C———>D
is a collection of A-module morphisms {g€ HOmA(Cr'Dr+1)l‘€z”
such that

' - £ =dyg + gd € Hom, (C_,D) (r€z) .

A chain equivalence is a chain map f:C—>D which admits a

chain homotopy inverse, i.e. a chain map f':D——C for which
there exist chain homotopies g:f'f=1:C—>C, g':ff'~1:D—>D.

A chain complex C is chain contractible if it is chain equivalent

to O0; a chain homotopy I:1=20:C——>C 1is a chain contraction of C

—



An A-module chain map f:C——D induces A-module morphisms

homology
in

cohomology
fo, : H {C)——H (D) ; Xx——— f(x) (Xx€C))
r r ' orem)
£* : BE (D) ——H"(C) ; y—— f*y (yeCh
which depend only on the chain homotopy class of f, and are

isomorphisms if f is a chain equivalence. The algebraic mapping

cone C(f)of f is the A-module chain complex defined by

ay (e}
de gy = :'C(f)_ = D_OC, _|—>C(f) _, =D _,8C

1 r-2
0 dc
homology
The relative A-modules of f are defined by
cohomology
H_(f) = H_(C(f))
{ r . (rez)
H™(f) = H (C(f))
and are such that there are defined exact segquences of A-module
fk *
""““’Hr(C)'—”—“’Hr(o)—__’ﬂr(f)‘__’Hr—l(c)““‘_*ﬂr~l(0)'_*"
*
o (D) —E T () — BT (£) —>u L (o) —E2 s w Y  (0)—> ..

In A-module chain complex is n-dimensional if it is a
finite complex of f.g. projective A-modules which is chain
equivalent to a f.g. projective complex of the type

c: om0 —dsc ... —dhc 0.,
For n<-1 n-dimensional = chain contractible, by convention.
A finite-dimensional chain complex C is n-dimensional if and
only if Hr(C) = 0 for r <0 and Hr(C) = 0 for r>n. A chain map
f:C—>D of finite-dimensional chain complexes is a chain
equivalence if and only if H, (f) = O, or equivalently if C(f)

is chain contractible.



Given A-module chain complexes C,D let Ct@%D, HomA(C,D)
be the Z-module chain complexes defined by

A = t .
It (c'®,0) | p+g=nc§gknq-————+(c ®,D) |

x®y > xedp (y) + ()T (x)®y |

dHomA(C,D) HomA(C,D)n = 5_ HomA(Cp,Dq)~——+HomA(C,D)n_l ;
q-p=n
9
fF——~———9de + (=) fdc

Let C* be the A-module chain complex defined by

-r+l1

"’——————~(c*)r_ =C ,

daw = (dQ)* : (CH) = C 1

and let c™* (n€Z) be the A-module chain complex defined by

d.n-* = (—)‘(dc)* (e =M™

t) n-r+l
r r-1 *

= C

The sign conventions are such that an element f eHn(HomA(C*,D))
is the same as a chain homotopy class of chain maps

£ C" ——yp .

Let €e€A be a central unit such that
€ = €_l€ A

(e.g. € = $1€ A). Given a finite-dimensional A-module chain
complex C let the generator 1“322 act on HomA(C*,C) by the
e-duality involution

. P q .
’[‘e : HomA(C ,Cq)——-~>HomA(C ,Cp) 7 fr—— ef*

(ef*(y) (x) = e.T(y)(x7 €A, x€cP , yecT) .
€-quadratic Q (C,e)
k3
Define the e-symmetric Q-groups { 0*(C,e) to be the

e-hyperquadratic 0*(C,€)




Zz-hypercohomology
Zz~hyperhomoloqy groups

Tate zz~hypercohomology
n = *
Q' (C,e) = Hn(Homz[Z2](W.H0mA(C /C1))

On(C,E) = Hn(w® HomA(C",C)) (nez)

Z{EZ]
~n _ A
Q (C,e) = Hn(HomE[zzl(W.HomA(C*,C))) '

with W the standard free z[zzzl—resolution of =z

Wo——ziz,) 221z, T z1z,)
1-T

———2[Z,]——>0

and % the standard complete free R(Ezl-resolution of Z

W ziz) 2 20z, 212,
1-T 1+T

s ZZ,) s Z(Z,] — ...
o €0"(C,e)

An element WE'Qn(C,e) is an equivalence class of collections of
o€ d"(c,e)

chains of HomA(C*,C)

n-r+s

{6 € Hom, (C 'C ) rez,s20)

r

{wse HomA(Cn_ ‘S,C[) r€Z,s2 0}

n-r+s

{8 € Hom, (C ,cr)lrez,sezz}

such that



r n+s-1 s _
dfbs + (=) ¢Sd* + (-} (¢S_1 + () Te¢s_1) =0
ehErstl e, (520, 0., =0
r n-s-1 s+l -
d‘bs + (=) ‘l’sd* + (=) Ws+l + (=) Ts¢s+1) =0
Cn—r—s—l__~_*Cr (s 0)
r _,yn+s-1 8 =
des + () esd* + (-) (05_1 + (-) Tees_l) =0
Cn—r+s—1______,cr (s€m)

A chain map of finite-dimensional A-module chain complexe
f: C——>D
induces a Z[Ezl-module chain map
Hom, (£*,f) : Hom, (C*,C) ~—— Hom, (D*,D) ; ¢ —> £¥¢f ,

and hence also morphisms in the Q-groups

£2 0 Q") ——— QM D,e) 5 6 = {8} ——stPe = (£ _f)
£y ¢ 0, (Cre) ————Q (D,€) 1 ¥ = {4 }—>E ¥ = (Ery E)
B 0N, o) ———0"b,e) ;8 = (6 h——i% = {£r0_f)

An A-module chain homotopy g:f= f':C———D does not in genera.
determine a Z[ZZ]—module chain homotopy

HomA(f',f)":HomA(f'*,f') : HomA(C*,C)——»HomA(D*,D)
Nevertheless the Q-group morphisms induced by an A-module chair
map f depend only on the chain homotopy class of f (cf. Propos:
1.1.1 below). In order to account for the chain homotopy invar:
of the Q-groups we define (as in §I.1) the "Zz ~isovariant

category" with objects Z[Zzl—module chain complexes, as follow
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iance

VS .

A gz—isovariant chain map of Elzzl—module chain compl

£ : C——D
is a collection of Z- module morphisms

f = {fSGHomz(C ,b__ Mrez,s z0}

r r+s
such that
s-1 s~1 s _
deS + () fsdc + (=) (fs—l + (=) TDfs_lTC) =0
Cp—Drsgy (520.f, =

Thus EO:C—~»D is a Z-module chain map, flzfo:TDfOTC:C—-—
is a Z-module chain homotopy, and fz,f3,... are higher

Z -module chain homotopies. A gz—isovariant chain _homotopy

of Zz-isovariant chain maps

g : fxf' : C~———D
is a collection of Z -module morphisms

g = {gsGHomz (Cr,Dr+s+1)|r€Z,s 2?0}
such that
s-1

v - = _S _S _
£ - f dp9g * ()79 4. + ()7 (g, + ()

s TDgs-lTC)

: Cr———~-»Dr+s (s 70,9_1 =

In particular, a zz—isovariant chain map f:C ——D with
fs = 0 (s%1) is the same as a Z[Zzl-module chain map
fO:C ———D, and a Ez-isovariant chain homotopy

g:f=2f':C——D of such chain maps with 9g = 0 (s»1) is

the same as a Z[Zzl-module chain homotopy go:fo::f('):c—-———»

The gz-isovariant category is the category with objects
Z[Zzl—module chain complexes and morphisms the Zz-isovaria

chain homotopy classes of zz-isovariant chain maps.



A morphism is thus an element f€ HO(Hom ](w,Homz(C,D))) R
2

z|Zz

with 'I‘€E2 acting on Homz(C,D) by the involution
T = Homz(C,D)—,Homz(C,D) H hv—»TDhTC

The composite of the Zz—isovariant morphisms f:C—D,

g:D~———>E is the Zz—isovariant morphism gf:C————>E defined by

s
_ _,E(s-r) r .
{af) = IZO( ) (T'g,_Vf, : C,—E__, (520, tez) ,

which is the image of f®g under the pairing

HO(HONZIZZ) (W,Homz(C,D) ) )®EHO(H°m 2] (w,Homz(D,E) })

Z(Zz

At

s HO(HomZ [22] (w,Homz (C,D)@zHomz (D,E)))
Ci

————— > H, (Hom,, (z,] (W,Hom,, (C,E)})

defined by the composite of the product induced by the diagonal

Z[Zzl—module chain map AW ——— WD W given by

r

s-r (820

s
wr®zws-r i 15 > Z lr®T
(o] r=0

ne-1m

Bt Mg M =

and the composition pairing induced by

c : Homz(C,D)®ZHomz(D,E)—-——-)Homz(C,E) i h®Kkv+———kh

A Zz—isovariant morphism f:C-———>D induces morphisms in the
Zz-hypercohomology
Ez—hyperhomoloqy groups

Tate Zz—hypercohomo logy
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s ,
£ Hn(Homz[ZZJ (w,C))———an(Hommzz] (W,D)) ;
% g r(s-r) .r

¢ = {¢S€Cn+s|s)0)r—-‘>f 6= r_I__o(-) (T fs_rmreDMsls;o)
£, ”n‘WQZIZZIC"—-*“n‘W®z[2221m ;

V=l ec  fspol—rf b= { rZO(—) £{s-r) (t¢,_ v €p _ |ss0}
Y 3 ~ A .
£° Hn(Homzlzzl(W,C))—HHn(HOmz[zzl(W,D)) ;

6=1{0ec, |ssoh—tto=t § ()70, e e Isezl,

r=-ao

which are the evaluations on feHO(Hom (w,Homz(C,D))) of

Z(72,)
the natural pairings

HO(Homz[zzl (W,HomZ(C,D) )) ®ZHn(Homz”ZZ] (W,C})
—-———)Hn(HomZ[zzl (W,D))

Ho(Homz[z2](w'H°"‘z(C'D” ®2Hn(w®EIZ2]C)
___.&____,Hn(wezmzln).

Ho(Hom

E[ZZ] (N,Homz(C,D)) ®2Hn(HomZ(22] W,C))

—_——> Hn(HomZ[EZI (W,D))
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Proposition 1.1.1 The Q-group morphisms induced by a chain map

f:C——>D of finite-dimensional A-module chain complexes

£4:0%(C,e) ———0* (D, €)

f%:Q*(C,e)—————ao*(D,E) depend onfy on the chain homotopy clas

Y.0%(Ce) —— 0% (D, ©)

>

of f. In particular, they are isomorphisms if f is a chain
equivalence.
Proof: An A-module chain homotopy
g: f=f' : C-——>D
determines the Z_-isovariant chain homotopy

2
. ~ LI 3 L}
HcmA(q*,g) : HomA(f*,f)—-HomA(f 1)

Hom,, (C*,C) ——— Hom, (D*, D)

defined by

. - p
Hom, (9*,g) . : Hom, (C*,C) Z_ Hom, (¥, )
p*ra=r

gotx + (-)IErpg* if s

‘)q+1

——— Hom, (D*,D) ¢ —— } { qég*

r+s+1 ¢
o]

N

if s
if s

t]
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The various Q-groups of a finite-dimensional A-module
chain complex C are related to each other by the abelian group
morphisms

n (1+T€)woif
14T, 1 Q (C,e) — Q" (Cre) i b LU{I4T ) o =
[e] if
. ¢. if s3»0
3 : QNc,e)——0"(C,e) 5 o (I0) = % s
0O if sg¢ -1

B QN(C,e)——0Q _;(Cie) 5 B {(uB) =6__ ,l|sy0!

Proposition 1.1.2 The Q-group sequence

An+l H 1+TC n
o —>Q (C'E)——~—*Qn(c.€)——————* Q (C,e)

7 oM, tag j(cie ...

is exact.
Proof: See Proposition I1.1.2.

{1

suspension SC )
The g of an A-module chain complex C 1is

desuspension QC

the A-module chain complex defined by

dge = do ¢ (SC) =€ _; ——>(SC) ;= C

sSC C r-1

dge = dg t (AC), =€, ————> () ;= C,
so that SC = QSC = C and

H_(SC) = H__(C) ' isc) = 1o

Hoo) =K, © | [#5@0 =

at’
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Given a finite-dimensional A-module chain complex C

e~symmetric
define the suspension maps in the Q-groups
e~quadratic

s : o™c,e) —— Q" (sc,e) ;6 58
(n€ Z)
5: 0. (Ce)—— 0,41(5C,€) i ¥ +——">5¢
by
(S = #g_q : (SO LTS g0y =
(SW)S = ¢s+1 (Sc)n-r—s+l - Cn—r—s_____*(sc)r - Cr-l

(t€z,s30, ¢_,=0) .
For each p% O define the Z[sz—module chain complex
W[O,pl to be the subcomplex of W with

WS (=E[?Zzl) if O0gsgp
W(O,P]s =

o] otherwise

Define the unstable e-quadratic Q-groups Qlo'p](c,e) of a

finite-dimensional A-module chain complex C by

er,o"’](c,e) = H_(W[0,p]8 Hom, (C*,C)) (n€z) .

Z[ZZ]

In particular, passing to the limit as p  we have
0o
wio,= = w, 0l%®c,e) = 0,1c,€)

In the applications of the Q-groups to the algebraic
theory of surgery it is useful to have available the following
unstable analogue of the exact sequence of Proposition 1.1.2.
For example, the unstable e-quadratic Q-groups
Qlo’o](c,e) = H, (Hom, (C*,C)) appear in the algebraic theory

of codimension 2 surgery outlined in §7.8 below.
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Proposition 1.1.3 Given a finite-dimensional A-module chain
complex C there is defined an exact sequence of Q-groups

(0,p-1]
n

n+p+l

(sPc,e)——0 (C,e)

ve o —>Q

P
— Q" (C,e) — 5 0" P(sPc,e) —— ... (nez)

for any p2>1. If C is n-dimensional and p »>n+l then

- L *4 ~
ol0P M c ey = 0% (c,e) = q,(c,e) , @**P(sPe,e) = Gric, o)
and the sequence coincides with the exact sequence of

Proposition 1.1.2

an+l H T g J . an
ce.—Q (C,c)————»Qn(C,e) ———> Q (C, e} —Q (C,e) —> ...

Proof: See Proposition I.1.3.

(]

(e-quadratic Q*(f,¢e)
Define the relative le-symmetric " Q-groups Q. (f,€)
e-hyperquadratic Q*(£,€)

of a chain map f:C——D of finite-dimensional A-module chain

complexes by

n+l
Q (f,e) = Hn+l(Hom

z[zzl(w,C(HomA(f*,f)))
Qn+1(f.€) = Hn+1(W®ZIZZ]C(H0mA(f*yf))) (n€Z)
n+l _ ol
"lie, e = Hn+1(Homz[E2](W,C(HomA(f*,f))) ,

where C(HomA(f‘,f)) is the algebraic mapping cone of the induced
z[zzl—module chain map

HomA(f*,‘f) : Hom, (C*,C) ———>Hom, (D*,D) ; &+ F*of
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“(se.0) € Q"M (r,

An element (S¥,¥4) € Qn+1(f,e) is an equivalence class of

Aan+l

(86,8)€ 0 (f,e)

collections of chains

{80.8) = (34_,0,) € Hom, (P*,D) ®Hom, (C*,C) , Is 20}

n+s-1 n+s

{84y = (éws,ws)e HomA(D*,D)n_s_lQHomA(C*,C)n_s|s;;0}

#

{(s6,0), = (86..8,) € Hom, (D*,D) étom, (C*,C] | |s€Z}

n+s~1
such that

d(s009) g

n+s

r s n
(A(8) + ()" (8o )dr+ ()80, + (15T 8o 1)+ (1) e £,

r n+s~1 s
d¢'s + (-} ¢’Sd* +(-) Ms~l+ (-} T€¢s,l))

n-r+s-1

n-r+s
,D[)QHomA(C ,C!)

=0¢€ § Hom, (D
r=-«

(s 20, 6¢_l=0, s =0)

d(svay) g -1

s+l

(@80 g) + () Ta8y3ar+ ()" P isu )+ (P IT 8w ) ¢ () e

r n-s~1 s+l
de+ (-) ‘Usd' + (-) ("’s+1 + () TEWSH))

n-r-s n-r-s~1
’

o€ § Hom, (D

r=-

/D, )®Hom, (C C) (s30)

r

d(88.6)

n+s

r S n
(@(s0,) +(-) (60 )ar+ (1" (se 4 (-)5T 86 1) + (-)"Ee £

r n+s~1 S

e+ () T8 ar 4 () (0 _y+ ()3T 0, 1))
by -+ -r+s~

o€ § #om, (0" S, p yemom, (" e ) (sem).

r=-w
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Proposition 1.1.4 The relative Q-groups of a chain map f:C——
depend only on the chain homotopy class of f, and fit inta the
exact sequences

%
e " ey B, ot n+l
£

0y (€6 R0 L (D, €) 0, (£,6) ——3Q_(C,e) —

l(D,e)————+Q (€,e) —=0™(C,e)—

1]
cei— 3", ey ~?—~6"“(o,eh——’o”*l(f,e)——»a”(c,c)—

{1
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1.2 L-groups

Let A,c be as in §1.1 above.

e-symmetric (C,d)

An n-dimensional complex over A is an
e-quadratic (c,¥)

n-dimensional A-module chain complex C together with an element

¢€0"(c,e) .
Such a complex is Poincare if

vee (e

OOGH (HomA(C*,C))
n is a chain homotopy class of chain
(1+T€)W0€1ﬂJH0mA(C"C))

equivalences

g * ¢t
(I+T )4, - chnr— e

The e-symmetrization of an n-dimensional e-quadratic complex

over A (C,¥) is the n-dimensional e-symmetric complex over A
(L+T ) (Ch¥) = (C, (14T ) V)

A map (resp. homotopy equivalence) of n-dimensional

e-symmetric
complexes over A
e-quadratic
£ : (Cip) ————(C',d")
£ : (C,d) ———(C", V")

is an A-module chain map (resp. chain equivalence) f:C——>C'

such that

fl

£26) = o' €Q™(C',€)

£, (V)

1}

V' eo (€t )
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c-symmetric
An (n+l)-dimensional pair_over A
e-quadratic

is a chain map f:C——D from an n-dimensional

(f:C—>D, (§¢,9))
(£:C—>D, (8y,¥))

A-module chain complex C to an (n+l)-dimensional A-module
86,0y e " (£, e)

chain complex D together with an element .
(sv,¥) e Qn+1(f,€)

Such a pair is Poincare if the A-module chain map

pM 1 *___,c(f) defined (up to chain homotopy) by

8¢ -
(o] : Dn+l r_ C(f) = DIQC
bof* r

((1+Te)5wo

s 0™ Lc(p) =pec
(14T ) b, €% r ror

is a chain equivalence, in which case the boundary n-dimensional

(C,e€ Q"(C,e)) )
complex is Poincare.

ie—symmetric
(C,p€ 0 (C,e))

e-quadratic

e-symmetric .
A cobordism of n-dimensional Poincare
e~quadratic

(C,9),(C',0")
complexes over A is an (n+l)-dimensional
(C,¥), (C',0")

€-symmetric .
Poincare pair over A
e-quadratic
((f £') : COC'— D, (86,¢8-0") € Q" L(e £)),¢))
((£ £') : COC'——>D, (§y,vB-p') € Q ., ((F £')).€))
(CeC' ,$®-0¢")

with boundary .
(COC* , -y ')
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Proposition 1.2.1 Cobordism is an equivalence relation on the
e-symmetric .

set of n-dimensional Poincare complexes over A,
e-auadratic

such that homotopy eguivalent Poincaré complexes are cobordant.

The cobordism classes define an abelian group, the n-dimensiona

€e-symmetric L™ (A, ¢)
L-group of A (n»0), with addition and
e-quadratic Ln(A,c) ;

inverses by
(C,9) + (C',9")
(Co) + (C* ") = (CoC',yBY') , -(C,Y)

]
"

(COC',080') , -(C,8) = (C,-¢)e L (A, e)

it

(Ci-y) € L (A€}

Proof: See Proposition I.3.2.

For ¢ = 1 €A the terminology is abbreviated:

o™ (c) {L“(A,l) = 1L"(a)

]

{‘l-symmetric = symmetric, { Qn(C,l)

l-quadratic = quadratic 0,(C,1) = @ () L (A1) =L (A)

The g-symmetrization maps

4T ¢ Lo(a,e) ——> L (A,e) 5 (C,¥) ——>(C, (14T )§) (n30)
are isomorphisms modulo B~torsion for any ring with involution
(Proposition I.8.2), and are actually isomorphisms if 1/2€ A (1

Define the intersection pairing of an n-dimensional

€~symmetric complex over A (C,$€ Qn(C,e))
0o * HIC) x HPTH(C) —— A 5 (3, ¥) > 6400 (y)
satisfying

o lxey+y') = 05(x,y) + 6,5(x,y")

bglx,ay) = a.og(x,y) (xeu"(C), y,y'en""(0),

r{n-r)

bolyx) = (-) €. 4o (X, v7
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We shall now recall from II. some of the ways in which
algebraic Poincaré complexes arise in topology. (See II. for
further details).

Let n be a group.

A n-space X is apointed topological space with a
basepoint-preserving action 7 x X——>X. The reduced singular
chain complex é(x) = C(X,pt.) is then a Z([n]-module chain
complex. Let Tezzz act on é(x)azé(X) by the transposition
involution

T : é(x)pezé(x)q———»é(x)qozé(X)p; x8y > (-) Plyex
Acyclic model theory equips é(x) with a canonical chain
homotopy class of functorial Z({n]j-module chain maps

("diagonal approximations")

b 1 ClR ——sHomy 5 ) (H,CO,C (X))

with Z[n] acting on é(x)oﬂé()() by
g(x®y) = gx8gy (x,y€ é(x), g€ n)

We shall only be concerned with m-spaces X which are C
complexes with the basepoint a O-cell, such that » acts free
by permutation on the cells of X-{pt.} with the quotient
{l}-space X/n a finitely dominated CW complex - X is a
"finitely dominated CWn-complex" in the terminology of §II.:
For such X the chain complex é(X) can be replaced by a chair
equivalent finite-dimensional Z [w]-module chain complex, al:
to be denoted é(x). (If X/m is a finite CW complex é(x) can
be taken to be the reduced cellular chain complex of X,

which is a finite f.g. free Z|un]-module chain complex.)
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Given a map w:n—«»:zz= {#1} (i.e. a group morphism) let

%Z(n] have the w-twisted involution

Z(n)——sz (] i ] ngr—> ] wiging™ (n €2)
gew 9 e 9

Let =" denote the additive group Z with the right Z[y])-module
structure defined by
w w ~N
z"xzm)——2z" i (n, [ n_gl——n( | wiyne)
q ¥
gen gem

Given a m-space X define the reduced homology groups of X/m

with w-twisted coefficients

Hy(X/n,w) = H, (ZY® C(x)) .

Z[m)
We shall write these groups as é,(X/n), the contribution of

w being understood. (For w = 1 these are just the usual
reduced homology groups of X/w, anyway). As é(x) is a
finite~-dimensional Z[n)-module chain complex the slant product
chain map

" . . e .
Z"® (1] (CX)@ZC (X)) = C(X) 'Ry 11 C(X)

—_——-——)Homz”](é(x)*,é(x)) P X®Y > (E—>T(X)y)

is an isomorphism of E[Zzl-module chain complexes, with'TEZZ

acting on C(x)tQ%Z["]C(x) by the transposition involution

and on HomZ["](C(x)*,C(x)) by the duality involution (g = 1j.
Using this isomorphism as an identification and applying

Z%QEl"]' to the functorial Z[n]-module chain map A, there is

X
obtained a functorial Z-module chain map

< sy . . .
¢x = 1®Ax : Z ®Z("]C(X)—+Homz{22](W,HomZ["](C(X)*,C(X)))
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The induced morphisms in the homology groups

by H (x/m)——0"(C(X))  (n30)

are the symmetric construction on X of §II.1.

If X is a finitely dominated CW complex and X is a (regular)
covering of X with group of covering translations 7 then the
disjoint union §+ = XU{pt.} is a finitely dominated CWn-complex.
The symmetric construction on i+ is written as

og = by, + B0 = H ) —— "R = "(EE,D)
with C(X) = é(i+) the cellular chain complex of X (up to chain
equivalence), a finite-dimensional Z(n]-module chain complex.
The homology Z[7) -modules H*(C(i)) are the usual homology
groups H,(i) with the induced Z{n]-action; the cohomology
Z[n] ~modules H*(C(X)) will be written as H*(X), even though
for infinite n the underlying abelian groups need not be the
singular cohomology of X (e.g. for 51 = R). Again, we have
suppressed the choice of orientation map w:ﬂ———»Zz.

An n-dimensional geometric Poincaré complex X (in the

sense of Wall [3]) is a finitely dominated CW complex X with

an orientation map w(X) : nl(X)————»zz and a fundamental class

[x]etHn(X) (defined using w(X)-twisted coefficients) such that
the E[ﬂl(x)]-module chain map defined by the evaluation of the
cap product on any cycle representative of (X]

(%)

[X)n- : C(%)
is a chain equivalence, with X the universal cover of X.

The symmetric complex of X

0% (X) = (C(X),o5([X]) € Q" (C(X)))
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is an n-dimensional symmetric Poincaré complex over Z[nl(x)])

N=*_=~, ¢(X). More generally,

such that ¢x([X))O = [XIn- : C(X)
the construction applies to any oriented covering X of X,
that is one for which the group of covering translations 7 is

equipped with a map w:n-—*22 such that w(X) factors as

W

w(X) : nl(X)——‘fe n » 7Z

2 r

so that there is induced a morphism of rings with involution

Z[nl(x)l——4~>zln]. The corresponding n-dimensional symmetric
: - R . «

Poincaré complex over Z|[n] is given by Z[n]ﬂzlnl(x)]o (X),

and is also denoted by o*(X). The corresponding chain

equivalence [X]n -: C(X)""*——— C(¥) induces Poincaré

duality Z[n]-module isomorphisms
Xia~ : BV —=n, (%) .

An n-dimensional symmetric complex over A (C,¢) is
finite if C is a finite chain complex of f.g. free A-modules.
A symmetric complex (C,¢) is homotopy equivalent to a finite
one if and only if has vanishing reduced projective class,
that is

= r -
(€1 = § ('cd =0eR @A) .

[=-o
Similarly for guadratic complexes.

An n-dimensional symmetric Poincaré complex over A (C,¢)
is simple if C is a finite chain complex of based f.g. free
A-modules and

either T(oozc”'*—» C) =0€ RI(A)

or A = Z[7] and T(¢,) = O € wh(m)= K (Z[n])/{n} .
Similarly for quadratic Poincaré complexes. In dealing with the

algebraic Poincaré complexes arising in topology the Whitehead
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group variant is understood.

A geometric Poincaré complex X is finite if X is a finit
CW complex; X is simple if it is finite and

TIXIN =2 C0 " (X)) = 0 EWh(n (X)) .

A geometric Poincaré complex X is homotopy equivalent to a fir
one if and only if o*(X}) is homotopy equivalent to a finite
symmetric Poincaré complex (since IC(;)I e;o(”'"l(X)l) is the
Wall finiteness obstruction); a finite geometric Poincaré
complex X is simple if and only if o*(X) is a simple symmetric
Poincaré complex over Z([ny(X}1, by definition.

A compact n-dimensional topological manifold M has the
structure of a simple n-dimensional geometric Poincaré
complex. The intersection pairing of o* (M)

oM = BT () x Hx () —— 2 ()]

agrees via the Poincaré duality isomorphisms
Ml - : B % (M) —=> H, (M) with the pairing

Hy (M) x B _ (M) ——Z{n) (M)

defined by the geometric intersection numbers of homology clas
In dealing with the L-theoretic invariants of

finitely~-dominated (resp. finite, simple) geometric Poincaré
complexes it is natural to consider the version of L-theory
defined using f.g. projective (resp. finite, simple) algebraic
Poincare complexes. The projective theory is of greatest inter
in algebra, being the most general. On the other hand, the sim
L-theory is of dgreatest interest in topology, being the one

closest to the classification theory of compact manifolds.
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We continue working with the projective L-theory. We shall not
spell out the analoqous properties of the free and simple
L-theories, except that in §1.10 the three types of L-groups
are compared to each other.

An (n+l)-dimensional geometric Poincaré pair (Y,X) is

finitely dominated CW pair (Y,X) with an orientation map

w(Y):nl(Y)-»——vZ2 and a fundamental class [Y] € Hn+l(Y’x)

such that
i) the Z[nl(Y)]-module chain map

n+l-+

(Yin - : C(Y,X) oM

is a chain equivalence, inducing Poincaré-Lefschetz duality

isomorphisms [Y]Nn - : gt

(Y,X) —225H,(Y), with Y the
universal cover of Y and X the induced cover of X
ii) X is an n-dimensional geometric Poincaré complex

(the boundary of (Y,X)) with orientation map

W) oy () ) ()

and fundamental class

[X} = 3ly} GHn(X)

For example, a compact (n+l)-dimensional manifold with boundary
(M, 3M) has the structure of such a pair.

The symmetric pair of an (n+l)-dimensional geometric
Poincaré pair (Y,X) with respect to an oriented covering (Y,i),
with group of covering translations 7 and orientation map
w:n—«——.zz is the (n+l)-dimensional symmetric Poincaré pair
over Z[n) with the w-twisted involution

O (¥, X) = (1:C(X)—>C(F), 05 ¢(I¥D) €™ (cin))
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defined using the relative symmetric construction of §II.6,
with f:C(X)——>C(¥) the inclusion chain map. The boundary of
o*(Y,X) is the symmetric complex og*(X) of X.

The symmetric signature of an n-dimensional geometric

Poincaré complex X with respect to an oriented covering X
with group of covering translations m is the cobordism class
of the symmetric complex of X with respect to X
or(X) = (C(X), g (1x])) € LY (zZIn]) .
This invariant was introduced by Mishchenko [1]. If X is the
boundary of an (n+l)-dimensional geometric Poincaré pair (Y,X)
and X extends to an oriented covering ¥ of Y then
o*(x) = 0 € tN(zIa]) .
A degree 1 map of n-dimensional geometric Poincaré complexes
£ : M—X
is a continuous map such that

f w(X)

—> nl(X) _ Zz

*

i) w(M) nl(M)
ii) £,(IM]) = [X] € Hn(X) .

The symmetric kernel of a degree 1 map f:M——>X of

n-dimensional geometric Poincaré complexes with respect to an
oriented cover X of X with group of covering translations =

is the n-dimensional symmetric Poincaré complex over Z[n]
* - ! 3 n !
o*(f) = (C(f"),e ¢gg([M]) €QT(C(E)))
with C(fl) the algebraic mapping cone of the Z([n]-module

Umkehr chain map

-1 ~
((X] 6 -) - £* - (IMIn -) -
ynt n-* M,

£ C(X) —=——— C(X —— C (M) ——e 5 C

with M the induced oriented cover of M, f:N—>X a n-equivariant
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X . | ;
lift of f and e:C(M)—>C(f’) the inclusion. The chain equivalnc

e o~ —~
( . C(M) —=e—— o (£ BC (R)
£

defines a homotopy equivalence of symmetric Poincare complexes

over Z{n]

e
(N,): gk (M) ———<—30* (f)Bo* (X)

f
homology 1 homologz
The modules of C(f") are the kernels of
cohomology cohomology

1

K, (M) = H,(C(f')) = ker(F,:H, (M)—H (X))
K* (M) = HA(C(£')) = ker (£':H* ()—sH* (X)) ,
with

K* (M) ®H* {X)

H* (M)
{ - - . K*¥(M) = Kn_,(M)
H, (M) = K, (M)8H, (X)
(up to isomorphism). If M and X are finite (resp. simple)
geometric Poincaré complexes then o*(f) is a finite (resp.
simple) symmetric Poincaré complex. On the L-group level
o*(£) = o*(M) - o*(X) € Lz [n])
The suspension of a n-space X is the n-space
IX = X/\S1 '
with n acting by
1xIX — X ; (3,XAS)r—>9gXAS
A m-map of r-spaces X,Y
f: X—>Y
is a m-equivariant basepoint-preserving map. A m-homotopy of

n-maps f,f':X—Y
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is a T-equivariant map
H: XxI ——Y (I = {0,1])
such that

H(x,0) = f£(x} , H(x,1) = £'(x) , H(pt.x,t) = pt., €Y (x€)

Let [X,Y]" denote the set of n-homotopy classes of n-maps f::

and let {X,Y)" denote the abelian group of stable n-homotopy
classes of stable n-maps
. p p
X, Y = Lim X, LY
{X, }ﬂ kim {r I l"
For » = {1} the terminology is contracted in the usual manne
to (x,Y], {X,¥}.

The quadratic construction WF of §ITI.1 associates to a

stable ®-map F:pr———ﬁZpY (p > 0) natural maps
Vp @ Hy(X/1) ——> Q, (C(Y))
such that

(14T) g = gyfa = %9y ¢ Hy(X/T) ——> @+ (C(V)) ,

with £ : C(X) = aPc(zPx) —F, oPc(zPy) = C(Y) the Zin]-modi

chain map induced by F (up to chain homotopy). The homology
groups é,(x/n) are defined using w-twisted coefficients for
some map w:n———vzz, and Z[n] is given the w-twisted involuti
exactly as for the symmetric construction éx' There are two
(equivalent) ways of obtaining ip, as follows.

Firstly, note that the symmetric construction ézx on t
suspension IX of a m-space X is the algebraic suspension s&x

(in the sense of §1.1) of the symmetric construction ¢x on X
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. . . oy vl -
by ¢ He(ZX/m) = H ) (X/n) —— "7 (C (X))

5 Lo%(sC(x)) = Q*(C(IX))

identifying C(rX) = SC(X). In fact, acyclic model theory gives

a functorial Z-module chain homotopy

hy © 6y Sy : C(IX/n) = SC(X/n)

———»———»Homzlzzl (w,Homz(“(SC(x)*,SC(x) .
As f : é(x)—————#é(Y) is induced by a m-map F : pr————asz

$;Pyf - f%&sz =0 : c(zPx/m = sPC(x/m)

— PA Pe-
Homz[mzl(w,ﬂomzlﬂl(s C(X)*,S°C(x))) ,

by the naturality of the symmetric construction. The composite

functorial Z-module chain map
. Y
S (¢Yf f ox)

. .
¢Yf— £ ¢X

é(x/w) ———————)HomZIZZ](W.Hom ](é(Y)*,é(Y)))

Zn
p

-——§———ﬁ Hom

P o
z(2,) (sTC(Y)*,s7C(Y)} )

(W,Homz["]

is thus equipped with a functorial Z-module chain homotopy
Vg Sp(¢Y— f%QX)’x 0. The chain level argument underlying the
exact sequence of Proposition 1.1.3 interprets this as a

functorial Z-module chain map

Vp ¢ C{X/5)——>W[O0,p-11® HomZ[“](C(Y)’,C(Y))

E[Zzl

inducing the unstable guadratic construction in homology

Vp ¢ My (x/m) ——— [0 P cy))
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Composition with the natural maps Qio'p‘II(C(Y))**—*Q,(é(Y))

(which are isomorphisms for p > dimension of C(Y)) gives the

stable quadratic construction

bt H(X/1) 0, (C(¥))
(Incidentally, the definition of ¢F in Proposition II.,1.5
contains a technical error in that it made use of a mythical
functorial chain homotopy inverse E;l :é(ZY)—-——aSé(Y) of

the suspension chain map EY: Sé(Y)———aé(EY) in the reduced
singular chain complexes of a n-space Y and its suspension [Y.
We shall give now a new definition of @F which avoids this
embarrassment. The suspension Iy is defined to be the
composite Z[n])-module chain map

. . iel1 . 1 .
Iy ¢ SC(Y) = 5Z®,C(Y) ———>C(57)B®,C(Y)

E . - ., 1
——»C (S xY) /C{S xpt.upt. x Y} —>C (S x¥/S xpt.upt.xY}

= é(EY) '
with i : sz——»é(sl) any Z-module chain equivalence,
E a functorial Z[n}module chain equivalence given by the
relative Eilenberg-2ilber theorem, and j the Z[n]-module chain
map induced by the projection Sle<—'~*ZY. In general j is not
a Z[g)-module chain equivalence, and even if it were there
might not exist a functorial Z{[w]-module chain homotopy
inverse; a fortiori for Ly+ Let now é(X) be the algebraic

mapping cone of the Z{n]-module chain map

(rzl b aC (x) 8aC (Y) —»aP 1 (zPy)
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The base point of Y is non-degenerate (by hypothesis), so that
the p-fold suspension chain map Iyt SpC(Y)——+C(ZpY) induces
isomorphisms in homology, and hence so does
rPer? . sPc ()@ ,sPc () —>c2Py)®@,C(zPY) . It follows that
the projection C(X)——C({(X) is also a homology equivalence,
and that Zg: C(Y)———+QPC(ZPY) induces isomorphisms in the Q-grc
Using the terminology of p.204 of II. define a Z-mpodule chain n
L 5 Py . Pc Pyt £

: C(sS =W[O0,p~ L
wF /4 Qk["F(X)-———* (s™) {o,p 119%[22](0 C(LYY) QQ(N]Q
by

4 = (gP%, _p¥;P 2Py wPry) - A

Vplx,y,z) = (g 0y (y) = F Iy Ag(X),F Eg(x) = Ly (y) - appy(2))

€ c(sP)_=Hom ,0PC (Py) e ]npé(zpv))n

2[22] Z{n

cPyn

p i oPyy t
[::]9] Homzmzl(w,C(z Y) ®zz(n]

N ., . . -
((x,y,2)€Z"® , C(X) = Z"®y (C(X) 8C(¥),8C(aPY) o)

The chain map WF induces the quadratic construction
Vp ¢ H (/M) = H(Z2YR, L C0)——0, (e EPY)) = 0, (C(1)
on passing to the homology groups.)

Alternatively, for connected Y the quadratic construction
wF on a stable g-map F:57X —»1%Y (i.e. F:ZPX-——%EPY for some
may be obtained from the adjoint m-map adj(F) X —> "%y
by appealing to the approximation theorem underlying infinite

loop space theory

=LY = UEZk*E (Myy/~
kyl k k
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with Iy the permutation group on k letters, and setting

. . (adj(F)/n), . © ®
Vot By (X/M) ————————H, (R L ¥/n)

T Ay B2 (A /m
k=1 k k

projection .
¥ H, (EL X

n

(YA Y)}} =0Q,(C(Y)) (C(EE,) =

P
For disconnected n-spaces Y of type Y = Z, (for some space Z w
m-action, with the added point as base) 0”r™Y is approximated
the group completion of a topological monoid
e*r™y = ap(ll B2, > (M2)) ,
k>0 k k

and the quadratic construction WF is given by

. (adj(F)/m), .
H, (¥/7) ———————3H _(Q"I%Y/m)

.

Vp

= z(zl® E H. (ED bz
(2] Z[ln( 1 xl k™ L (k )
projection

T (B (2x,2)) = 0,(C(2)) =0,(C(Y))  (C(Y)

Similarly for the unstable quadratic construction, using the
unstable approximation theorems.

The stable (resp. unstable) quadratic construction iF
on a "-map F:1Px —— 1Py depends only on the stable (resp.
unstable} w-homotopy class of F, and &F = 0 if this class
contains XPFO for some Tw-map FO:X<———aY.

The quadratic construction on a stable 7n-map

F:me+—-——9EQY+ {(for some spaces with m-action X,Y) is writter

bp = bp t Hy(X/m) = Hy (X, /m) —— 0, (C(Y)) = Q,(C(¥,))
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Given a spherical fibration v:X —BG(k) over a space X

KLy S (E(W),S (V) ——— X

(0*,s
and a covering X of X with group of covering translations T

define the Thom n-space of v Tn(v) to be the Thom space of the

pullback vV:X —— X —>+BG(k) with the induced m-action
Tr(v) = T(V) (= E(V)/S(V)) .

The quotient {1l}-space Tn(v)/n = T(v) is just the usual Thom
space of v. If X is a finitely dominated (resp. finite)

CW complex then Trn(v) is a finitely dominated (resp. finite)
CWn-complex. A map of spherical fibrations b:v—-» v' induces
a n-map of Thom n-spaces

‘ Tu(b) : Tn{y) ——Tn(v') .
An n-dimensional geometric Poincaré complex X has a

Spivak normal structure

k

(v, :X — BG(K) ,px:s"+ — T(v,))

X
which is unique up te. stable equivalence, with Vx the Spivak

normal fibration, such that w(X) = wylvy) s ﬂl(x)————“?zz

and {X] = h(p,)n U"x € H_(X) with h:nnH((T(vx))—»l:ln”(('l‘(vx))

the Hurewicz map and Uv € ﬁk(T(vx)) the w(X)-twisted Thom
X

class of v For finite X a Spivak normal structure (vx,px)

X°

may be obtained from a closed reqular neighbourhood E(vx) of

an embedding x cs"** (k large), with S(v,) = 3E(v,) and
. Sn+k Efiiigff*sn+k/sn+k__E( ) = E(v.})/S ) = T(v,)
px : vx = vx (vx = vx .

(Similarly for finitely dominated X, using the fact that X x Sl

has the homotopy type of a finite complex). We shall consider
geometric Poincar? complexes X to be equipped with a particular

choice of Spivak normal structure (vx,px). Given a covering
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X of X {which need not be oriented) with group of covering
translations n use the diagonal {1l}-map
8+ T(og} = (E(V,)/8(Vy)) /7
——— X A TH(v) = ((E(Ty) x E(T)) /(R (V) xS(5))/m 5
[x]+——>[x,x] (x€ E(Gx))

to define the fundamental Smn-duality map of X

p A
n+k X 5 ~
Oy S 'T(“X) » x+r\"Tﬂ(vx) '

which determines an Sn-duality between the m-spaces §+,Tn(vx)

in the sense of the equivariant S-duality theory of S§II.3.
(For m = {1} this is the classical Spanier-Whitehead S-duality
theory for {l}-spaces). The Sn-duality is characterized by the
property that for any n-spectrum M = (Mj,EMj-——»Mj+1|j) 0} of
n-spaces and n-maps the slant products

a, + BI(Tn(v,) M) = Lim (ZPTn(v ) ,M_, ]

X X' —Bﬁ X' "Tptgq'm

n+k+p 5

T Mg Kil) < Lip IS

(F:Zan(\)x)—>M )

p+q

ntk+p tPoy b 1AF
s ————>X+/\"E 'I‘n(vx)-—~——)x+/\ M ) (g€ Z)

( np+q

are isomorphisms of abelian groups.
A normal map of n-dimensional geometric Poincaré complexes
(f,b) : M—>X
is a deqree 1 map f:M——X together with a map of the Spivak
normal fibrations b:vM———avx covering f such that

T(b) (o)) = € nn+k(T(vx))

Px
Given an oriented covering X of X with group of covering

translations n let M be the induced oriented covering of M
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and let f:M-——X be a n-equivariant lift of f. A geometric
Umkehr map F of (f,b) is a stable w-map F:Ew§+~——+ia§+ in
the stable n-homotopy class F€ {i+,ﬁ+)" such that

(Emf+)F =1e€ (?+,?+}“ to which the composite isomorphism
a—l

a
M n+k o~ X S w
,M+/\"Tv(vx))-—éx—-),{er,M”TI

{Tn (v, Tav) } — {s

sends Tn(b) € {Tn(vM),Tn(vx)}“. A geometric Umkehr map F induce

P ~ - * i~ - ~
the Umkehr chain map £':C(X) ~C(X)" « £, c) "2 o (H).

The quadratic kernel of (f,b) is the n-dimensional quadratic

Poincaré complex over Z|[m}
o, (£.b) = (C(£1) equp (1X]) €0 (C(£')))
defined using the quadratic construction wF:Hn(X)———’Qn(C(ﬁ))
with e = inclusion : C(ﬁ)————*C(fl). The symmetrization of the
quadratic kernel is the symmetric kernel
(14T) 0, (£,b) = o*(F) = (C(£'), 05D eQ™c(eh))) .

The quadratic signature of (f,b) is the cobordism class

o,(f,b) €L (Z]n])
with symmetrization
(1+T) o, (f,b) = O*(f) = o*(M) - o*(X) € L (z(n]) .

A topological normal structure on an n-dimensional

geometric Poincaré complex X is a pair

(GoiX- ——~>B§5§(k),px:s“*k

X — T(GX))

such that (JGX:X<——+ BG(k),px) is the prescribed Spivak normal
structure, i.e. it is a reduction of the Spivak normal

fibration v, to a topological block bundle GX‘ A compact

X

n-dimensional topological manifold M has a canonical

topological normal structure (vM } {unique up to stable

rQM
equivalence) with vM:M<4-»B§8ﬁ(k) the normal bundle of an

e

N
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k

embedding MCSn+ with

oy ¢ Sn+k Sn+k/Sn+k

the collapsing map.

- E(uy) = E()/S(vy) = Ty

An n-dimensional topological normal map

(£,b) : M ——>X
is a degree 1 map f:M —> X from a compact n-dimensional
topological manifold M to an n-dimensional geometric Poincat
complex X with a topological normal structure (Vx,px), toget

with a map of bundles b:vM-—~—»3x covering f such that

T(b),(py} = py € "n+k(T("x)) .

This is a normal map in the sense of Browder [6] and Wall {
In fact, (Gx,px) determines (f,b) up to normal bordism by

the Browder-Novikov construction: make px:Sn+k

—-—»T(\)x)
topologically transverse at the zero section X T(vX) with

respect to Gx and set

(F=o by 2 M= o) ——> x .

(See Ranicki [7) and §7.1 below for an algebraic treatment

topological normal maps). The surgery obstruction of a

topological normal map (f,b) is defined to be the quadratic
signature of the underlying normal map (f,Jb):M——X of
geometric Poincaré complexes

o,(f,b) = 0, (f,Ib) € Ln(Z[ﬂ]) .

Proposition 1.2.2 The quadratic L-groups L,(Z[n]) agree wit

the surgery obstruction groups L, (n) of Wall [4}, and the
surgery obstruction o, (f,b) € Ln(z[n]) of a topological norm
map (f,b) :M——>X agrees with the surgery obstruction 6 (f,b

Proof: See II. (Some of the details are recalled in §1.10 b
{

PO
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(For a topological normal map (f,b):M—— X with X
finite it is possible to obtain the geometric Umkehr map

F:£m§+~~—>imﬁ+ used to define the quadratic kernel
o, (£.,b) = g, (f,db) = (C(f!),e%wF([XH €Qn(C(f!)H

directly, without appealing to the equivariant S~duality
theory of §II.3, as follows. For p» O sufficiently large
there exists a ¢compact (n+p)-dimensional manifold with
boundary (W,JW) homotopy equivalent to (X XDP,X xSp_l)

such that (f,b) is approximated by a codimension O embedding

M" x DPesinterior of w“*p .
Pass to the covers and define F using the Pontrjagin-Thom

construction by

F: PR, = (XxDP)/(XxsP7h) = W/sw
collapse ——— _
/(- Fx D)) = (FxDP)/(MxsPTh) = 5PN, ).

e-symmetric
The skew-suspension of an n-dimensional
e-quadratic
) (c.oeq(c,e))
(Poincare) complex over A is the
(C.'JJGQn(C,E))
(-€)-symmetric .
(n+2)-dimensional (Poincaré) complex over A
(-€)~quadratic

f(cw) = (sc,5¢ € Q"2 (sc,-¢e))

5(C,¥) = (SC,5¥€Q ,,(5C,~¢))

defined using the Q-group isomorphism
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§ : Q"(c,e) —=—=0" 2 (sC,-¢)

wnit

Qn(C,€)~v4L—*Qn+2(SC.-€)
induced by the isomorphism of Z[:Zzl-module chain complexes
§ : Hom, (C*,C) >0 ’Hom, (sc*,5C) 5 £+—>(-)PE  (feHom, (cP.c))

with TE€ ZZ acting on HomA(C*,C) by the e-duality involution Te

and on HomA(SC',SC) by the (-e)-duality involution T_c

symmetric
For example, the kernel of an (i-1)-connected
quadratic
degree 1 f:M—>X
n-dimensional map (i.e. one such
normal {f,b) :M—>X

that Kr(M) = 0 for r¢ i-1, with 2i¢ n) is the i-fold skew-suspension
(—)l—symmetric R ol (£)
Poincare complex

(—)1°quadratic Oi(f)

of an (n-2i)-dimensional

o*(f) = 5lai(e)

o, (f) = §loi(f)
The ring A is m-dimensional if every f.g. A-module M has
a f.g. projective A-module resolution of length m
O-—P —> P 1 —> ... —>P 3P ——M-—>0

Equivalently, A is noetherian of global dimension m.

1f ﬁl(zz;A,e)s {a€A|a+ea = 0} /{b-eb|beAl =0

Proposition 1.2.3 i)
For all A,e

e~symmetric
the skew-suspension maps in the L-groups
e~-quadratic

§: ", e)——1"2(a,-€) ; (C,0)——>5(C,0)
_ (n» 0)
-€) ; (C,)—>S(C,¥)

7]

Ln(A'e)_'—““’Ln+2(A'

are isomorphisms.
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ii) If A is m-dimensional the skew-suspension map

§: (A, e)——L"?(a,-e)
is an isomorphism for nj max(2m-2,0}, and a monomorphism for
n = 2m~3 (if my» 2).
iii) If A is O-dimensional (i.e. if A is semisimple)

L2k+1(A,e)

o]
(k30
L2k+l‘A'e) =0 .

Proof: See Propositions 1.4.3,1.4.5. {The proofs uge the
algebraic surgery technigue summarized in §1.5 below).
[
In particular, Proposition 1.2.3 i) shows that there are
natural identifications
Ln(A,E) = Ln+2(A,—€) = Ln+4(A,£) (n>0) .

The periodicity of the e€-quadratic L-groups

L,(Ae) = L, ,(Ae)
is a generalization of the periodicity in the surgery obstructio
groups of Wall [4,§9]

Ly(m) = L, ,(m) .

The et-symmetric L-groups are not in general periodic,

a2 L a,e
and in §I.10 some non-periodic examples were constructed.
Carlsson [1]) has given an algebraic analysis of the failure
of periodicity in the e-symmetric L-groups in terms of
invariants generalizing the e-symmetric Wu classes of §I.1

(which are recalled in §1.4 below).
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1.3 Triad Q-groups

Triads are needed for the relative L-theory of §2.2.

A triad I of A-module chain complexes

C D
r : g! lh
C D

L]
consists of A-module chain maps

SN SN

k
) f ' »

f: C—>sD, £' : C'—»D' , g : C——>C' , h: D——oD'
and an A-module chain homotopy
k : hf=f'g : C—p" .

The homology A-modules H,(T) of T are defined by
H (T) = H (C(N)} (n€Zm)

where C(I'} is the A-module chain complex given by

ag, (9 (e
0 a o) -
der) 0o oD a I-:’f
cr 3
0 0 0 de

c(r)r = D;OD[_IQC;_IECI_Z

PC(M) g = Dy 18D, _,8C,_,8C, 5
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Propositicn 1.3.1 The triad homology modules H,(r) fit into a

commutative diagram with exact rows and columns

|0

e () H L (g) > H () s H L (D).
A L
- Ho oy (B) > H_(C) »H (D) H(f) >. ..
Tu l ht
i
.————»Hn+1(q') »H _(C') *H (D')———> H (f')—— ...

.—H l(I‘) —>H_(g) *H_(h)——>H (r)—> ...

n+

re— ——3 ——3
—— T T ——

n
n
Let T be a triad of finite-dimensional A-module chain

D
lh
D

complexes
f

C
r: gl
C

Theizz-isovariant chain map of z[zzl-module chain complexes

-]

(g,k:k) : C(HomA(f*,f):HomA(C*,C)————?HomA(D*,D))
————»C(HomA(f'*,f'):HomA(C‘*,C')————*HomA(D‘*,D'))

defined by
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(g,hik)s :

C(HomA(f*,f))r = HomA(D*,D)ra)HomA(C*,C)[_1
———-———-—-)C(HomA(f'*,f‘))r+s = HomA(D‘*'DI)r+S$H0mA(CI*’C|)r+s-l :
(h8h* +(—)rk¢fh*+ (-)p+lf'g¢k*,g¢g*) s=0
(8,8) —— < ((-)Pkok*,0) s=1
¢} s 2

P p
((6,¢) € Hom, (D" ,D ) ®Hom, (C*,C__.)})
p+g=r A q A q-1

gives rise to a Z-module chain map

(g,h:k) ¥ : Hom (W,C(Hom, (£*,£)))
21 A

Z[z

——— Hom (W,C(Hom, (f'*,f'))) :
2! A

zZiz
{856 ) > {(hsp h* + (‘)"-lktbsf*h* + (—)pfv%sk.

n+p-1

+ (=) KT ¢, _1k*:99,9%) |s 30}

(g,hik)y : W@ C(Hom, (f*,£)))

z{Z,)

—IWD C(Hom, (£'*,£'))

z12.,)
[0 k) b (hsu h* + ()" hky £xhe 4 (<) PE g ke

n+
+ ()P y Lk qu %) [530)

i e-symmetric
inducing morphisms in the relative Q-groups
e-quadratic

% (g.hsk)® 1 Q¥ (F,e) ——> O*(£',¢)

(9/h3k) g & Qu(f,€) ———s O, (£,€)
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“e-symmetric Q*(T,¢)
Define the triad Q-groups of a
€-quadratic Q,(T,e)

triad T of finite-dimensional A-module chain complexes to
be the relative homology groups
Q*(T,e) = H,((g,h:k) )
%jQ*(F:E) = H, ({g,/hik)y)
(g.hik)®

of the Z-module chain map defined above. An element
(g,h;k)%

(80" ,0" 60.0) € Q"2 (T, c)
is an equivalence class of collection
(8¢', ', 60,¥) € Qn+2(F,€)
of chains
((6®é,®é'5¢sl¢s)€ HomA(D'*,D’)n+s+2®HOmA(C'*,C')n+s+l

®Hom, (D*,D) OHomA(C*,C)n+S|s;;O

n+s+l
{8y bg v ib ) € Hom, (D'*,D') __ -@Hom, (C'*,C') .4y

@Hom, (D*,D) ®Hom, (C*,C)  __|s3>0

n-s+l
such that

d(6o" /0" 86s0)

n+s+1

= (Aol + (-)"soldr + (-) (665, + ()T S0l )

+ H"”(f'%f'*— hsg h*) + (—)sk¢sf*h* + (-)S‘If-g¢sk*

+ ()5 gk, el () Telar e ()M e+ (5T el

+ (-)"g0 g%, dse, + () Tse ar + ()8 )+ () 5T S0, )

+ ()"0 f*, Ao+ (-) e v+ (S The e ()BT e, 1)

= [ el * *
o€ HomA(D'*,D')n+S+l$HomA(C ,C )n+s$HomA(D ,D)n+SOHomA(C
- pg n-r+s+l _, ,n-r+s ., n-r+s
rj Hom, (D /D) @Hom, (C /C}) @Hom, (D D)
-
n-r+s-1
(5% 0, (56" 16.66,6)_; =0 BHom, (€ €

[
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n+s-1
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A(60 ", 80, 0)

- , ey n-s+l ' s+l N
= (d5¢5'*(‘) Gwsd. + (=) (6Ws+1+ (-) Te5¢s+1)

# )™ E e e ny_ b+ (4) Sk Erne + ()7 T Ergu K

# ()5 ky_ ke, avp e () Ty gar

n-s, , s+l ' _\n
+(-) (hgyp * (5)7 T g ) + (2) Tab g%,

asy_+ (T80 ar+ (1M S(su, v (5T su )

R I L R S L 2 LR o Rt PP G s N

= [R'3 ' (3 1 *
o GHomA(D /D )n—s+1$H°mA(C ,C )n_SQHomA(D ,D)n_s

eHom, (C*,C) ___ |

©
- ,n-r-s+1 MN-r-s _,
g;wHomA(D ,D;)OHomA(C 'Cr)

n-r-s n-r-s-1
QHomA(D ,Dr)sHomA(C C ) !

r

Proposition 1.3.2 The triad e-symmetric Q-groups Q*(l',e) fit

into a commutative diagram with exact rows and columns

| b |

e ™2, e~ 0" (g, e) ————— " (h, o) — 0" (r, o) —

N

e ™ e, e)—— Q" (CL o) > " (D, e) —> Q" (£,€) —>
(g.,hik) 1 q* . lh* l(g.h;k)%
fl
o™ e, ey 5 o™ct ) —— s QM (D', e) —— Q" (£ &) —
l TR i l
e 0™h(r,e)— Q" (g, e) ———> 0" (h, e)—> Q" (T, ) —.
l v \L
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similarly for the e-quadratic groups Q,(T,¢).

Proof: This is a special case of Proposition 1.3.1.
[

e-symmetric

A homotopy equivalence of (n+l)-dimensional
e-quadratic
pairs over A

(g,hik) : (£:C—D, (86,¢) € " 1(f,€))
s (£r:Ct ——D', (89,0 e Q" (e, )
(g,hik) = (£:C——D, (8y,¥) €0, (£,€))
._—.;(f':C‘——rD',(cSw',‘y')GQn+l(f',€))

is a chain complex triad of the type

such that the chain maps g:C——>C' and h:D——D' are chain

equivalences and

(a.h:k) ¥ (56,9

(66", €™, ¢6)

(q,h:k)%(dwlv) = (8§¢',¥") € Qn+1(f':e)
e-symmetric (C,¢eQn(C.e))

An n-dimensional complex over A
e~quadratic (C.¥eQ (Cie))

is connected (resp. contractible) if

Howo:cn’*—m) =0
N (resp. H,(C) = 0)
. — =
HO((1+TE)¢O.C C) 0
A complex is contractikble if and only if it is homotopy egquivalent

to O.
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The algebraic Thom complex of an n-dimensional

. {(£:0—D, (60,0) € 0" (£,€))
Poincare pair over A

e~symmetric
e~quadratic

(f:C—»D, (8¢,¥) € Qn(f,s))
e-symmetric

is the connected n-dimensional gr complex over A
e-quadratic

gtcm L88/0€ Q7 (C(E),€)))
(CUE),8b/VEQ (C(£),e)))

defined by
YR o
(8¢/9)_ =
s n-r-1 n-r+s
(-) ¢Sf* (-) Te¢s—l
C(f)n—r+s = Dn—r+secn—r+s—l
_— C(f}r = DrOCr—l (S;O,@_l =0)
dvg o
(Sv/y) . = —r- r-s-
s (-)n°r lwsf, (-)nr-s 1T5W5+1

C(f)n-r—s - Dn—r-smcn-r—s—l

—————C(f), = D 8C, _, (s> 0)

For example, if v:X——BG(k) is a (k-1)-spherical fibration
over an (n-k)-dimensional geometric Poincare complex X, and
X is a covering of X with group of covering translations w,
the algebraic Thom complex of the n-dimensional symmetric
Poincaré pair over Z[n] associated to (E(v),S{(v})

O*(E(v),S(v)) = (i:C(S{v))—>C(E(V)), (86,0) € Q" (i)

(i = inclusion)

is the connected n-dimensional symmetric complex over Z|[n]

associated to the Thom n-svace Tr{y) = R(T)/S(V)
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(TR (V) b (4, (U ATKT) € QM (C(Tn (v ))
up to homotopy equivalernce.

The algebraic Poincare thickening of a connected

(c,eeQ(C,en

(C,¥eQ (C,e))

e-symmetric
n-dimensional complex over A

e-quadratic

e-symmetric .
is the n-dimensional Poincare pair over A

e-quadratic

(ig:Ic —— "%, (0,3¢) € Q"(in,€))

. n-+« .
(ig:3C——¢C ,(o,aw)eon(xc,e))

r
-) ¢O>
(=) a*

defined by

d =
ac r
(d -) (1+T€)\vo>
0 (-)Fa*
. _ n-r - n-r+l
3¢, = € 8" "————3C _, = CaC
L - n-r n-r
ic= 10 1) :c =c 8¢’ ———cC
(_)n—r—lTE¢l (_)r(n—r-l)e
"0 ~ 1 0
0 0
Wo T\,
..n-r-1 _ .n-r _ n-r+l
1C = c"Tec  ,——C =, 6C
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("l 0
805 =

0 o}
soh-rHs-l Cn_ﬁsocz—sﬂ_“_' ac, = c ,0c""
) (_)n—lr—s,rews_l o (
g = ( o o)
aCn..r-s-l - Cn-r-smcr+s+l______,acr = Cr+]0c"-r

e~symmetric .
The (n-1l)-dimensional quadratic Poincare complex
€-quadratic

over A
3(C, ) = (3¢,2¢e0" T (aC, e
I(C,y) = (DC,BWGQn_l(SC,e))
(C,¢)
is the boundary of (C,W). For example, if (X,3X) is an

n-dimensional geometric Poincaré pair, and (X,3X) is a coveri

of (X,3X) with group of covering translations m, the n-dimens

symmetric Poincaré pair over Z|[m) associated to (X,3X)
o*{X,3X) = {i = inclusion : C(3X)——C(X), ($,3¢) € 0" (1))

is the algebraic Poincars thickening of the connected

n-dimensional symmetric complex over Z{[m]} associated to X/3X

(C(X/3X) 103 55 (34 1XD) € Q" (CR/3K0 1)
up to homotopy equivalence, with

j, = projection,: Hn(x,3x)~———+Hn(x/3x)

-~
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Proposition 1.3.3 i) The algebraic Thom complex and algebraic

Poincare thickening operations are inverse to each other

up to homotopy equivalence, defining a natural one-one

correspondence between the homotopy equivalence classes of
{C-symmetric .

n-dimensional Poincare pairs over A and the

e-quadratic

homotopy equivalence classes of connected n-dimensional

e-symmetric
complexes over A. The correspondence preserves

e-quadratic
boundaries; algebraic Poincaré pairs with contractible
boundary correspond to algebraic Poincare complexes.
t-symmetric
ii) A connected n-dimensional complex is Poincaré
e-quadratic
if and only if its boundary is a contractible (n-1)-dimensional
e-symmetric .
Poincare complex.
€-quadratic
e-symmetric .
iii) An n-dimensional Poincare complex is
e-quadratic
null-cobordant if and only if it is homotopy equivalent to the
g~symmetric
boundary of a connected (n+l)-dimensional complex.

e~quadratic

Proof: See Proposition I.3.4.
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1.4 Algebraic Wu classes

The Wu classes of an algebraic Poincaré complex over A
(C,$) are functions
v($) : H*(C)——(subquotient groups of A)
which are homotopy invariants of (C,4¢), whose definition we
shall now recall. We refer to §§11.1,5,9 for the relations
between the algebraic Wu classes and the Wu classes arising
in topology.

Given A,e as in §1.1 let T6222 act on A by the involution

TE : A ——A ar———ca ’
Z,-cohomology H¥Y(Z iR, €)
and define the _Z_z-homologx groups of (A, ¢} H‘(ZZ;A,E)
Tate Zz—cohomologx ﬁ*(ZZ;A,e)
by
ker (1-Tg:A —— A) r=0
r hr
H (Z,:A,¢) = H™ (Z,:h,€) rzl
¢} rg-1
coker(l—Te:A—-———vA) r=0
H (Z,i8,6) = { A7z, 5, c) €1
o] r< -1

"

A" (Z,18,€) = ker (1- (-) T :A —— A) /im(1+ (<) T :A ——A) rez

For m€Z let S"A be the A-module chain complex defined by

Aifr=m
s™), =
Oifr #m .
i

The cohomology classes f€ Hm(C) = HO(HomA(C,SmA)) of an A-module
chain complex C are the chain homotopy classes of chain maps

f:c——as™a.
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Let C be a finite-dimensional A-module chain complex.

€-symmetric -¢€Qn(C,s

The rth /e-quadratic Wu class of an element VveQ_(C,e
n

e-hyperquadratic - eeé”(c,e

is the function

v (8) : BTE ) 0 (8" A 0) = TPz, (1) Ty s Bty f

r . pn-r n-r _ . -
VP s RTE ) —— 0 (s"TTAe) =, (2,5, (1) ey B £V, £

n- r

(0]

i€) ﬁ‘(z2;A,e) i fr—fo _, f*

0 (8) BT Fie)——§"(s

. n-r -
(£:C_ ~—A, & 5 by .0 5 €Hom, (C"F,C _ ), Hom, (A*,A) = A

The Wu classes v are quadratic functions, in the sense that

v(af) = a.v(f).a (a€eA,feH*(C))

Proposition 1.4.1 i) The various Wu classes are related to each

other by
v_(¢)
$,030) + 1T (C) B2z, (1) o) T (Z:8,€)
n-r vt () n
v[((l+T€)w)= H (C)———H,  (Z,:A, (-}
1+Te - 2r
———3H (Z A, (-7 )
r+l(e)
r n-r- .
v (H8) : H (C) — " (ZQ,A,E)
H
. n-r+l
Ty 41 (BpiAl o) €)

(6€Q™(C, ), 4eQ, (C,€) 060" (C,e) , 340 (Coe) L (14T g™ (Coe)
HOEQ | (C,€))

oy ( Al
)
¥
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ii) The Wu classes satisfy the sum formulae

v (9) (£+g) - v ($) (£) - v _(¢) (9)

e] r
. (1+T(_)re)(9¢of")€H (Zy:A, (=) e) f n=2r
n# 2r

oe ﬁo(zz;A. -)%)
vE () (£+g) - vT (D) - vT(¥) (9)

r -
g((l+Ts)\p0)f*€H0(zz;A,(-) €) (e n=2r
r+1€)

-ioeﬁo(zz;A,(—) n# 2r

G,00) (£+a) - §_ () () - ,(8) (9) = 0€A%(Z,:n, (-) c)

(F.gen" " (0)).

The middle-dimensional intersection pairing of a
2r-dimensional e¢-symmetric complex over A (C,¢602t(C,c))
A= 0ot H(C) x HT(C) —~——A ; (£,q)r——gdyf*
is such that
A(f,gl+92) = A(f,gl) + x(f.9,)
X(f,ag) = ax(f,q)

A9 £) = (1) Fe X{F,q9) € A
(£,9,9,,9,€R" (C) ,acA) ,

with the rth €~symmetric Wu class given by
v (0 s BC) —— (2,18, (1)) 5 £ A (£, )
The rth Wu class of a 2r-dimensional e-quadratic complex
over A (C'wGQZr(C’E)) is a function
W= Vi) s T () ——— Hy (2,1, (-) )
such that
utaf) = au(f)a
u{E+g) =~ u(f) - u(9) = A(£,9) €H(Z,:A, (=) ")
MEE) = u(f) +en(E) € HO (2,1, () %)

(f.9e " (C),aen)
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where X = (14T )y, : H' (C) x H' (C)—— A is the intersection
pairing of the e-symmetrization (C, (1+T V€ QZI(C'E))-

In particular, if (f,b):M——X is an (r-1)-connected
2r-dimensional normal map the gquadratic kernel

o, (£,b) = (c(£h),veq, (c(£)))
is a 2r-dimensional quadratic Poincare complex over Z[nl(X)]
with
HOc(eh) = m_(ceehy) = k M) = ker(E*:Hr(;)————vﬂr(;))
(up to isomorphism), and in this case the triple

(K (M), 2= (1+T) gy : K (M) x K (M) — Z[m (X} ],

= r . . - r
=i ) K (M) ——— H (Z5 21 (K], () T))

is the (—)r-quadratic form (Kr(M),X,u) used by wWall [4,§5]

to define the surgery obstruction o,(f,b) €L2r(z[ﬂ1(x)]),

with X (resp. M) the geometrically defined intersection

(resp. self-intersection) form, cf. Proposition II.5.4.

We shall recall the precise relationship between
e-symmetric e-symmetric

complexes and forms in §1.6 below.
e-quadratic e-quadratic

Define the even e-symmetric QO-groups Q(vo)*(c,c) of a
finite-dimensional A-module chain complex C by
Q(vo)n(C,e) = ker(GO:Qn(C,e)————aHomA(Hn(C),ﬁo(zz;A,e))) (n? 0)
An n-dimensional e-symmetric complex over A (C,VE€ Qn(C,e)) is
even if
veolvyyic.e) o (c, e
For example, the e-symmetrization (C, (1+T_ V€ Qn(C,e)) of an

e-quadratic complex (C,V€ Qn(C,E)) is even. The relative even
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e-symmetric QO-groups Q<v0>*(f,e) of a chain map f:C —>D of

finite-dimensional A-module chain complexes

>n+l n+l n+l

/Q<vo (f,€) = ker(v,:0

~

where the relative Wu class Vg of (6¢,0) € Qn+1(f,€) is given by

o (80,0) : vV —— B0(zyin0)

(9,h)——— g (86 ,1)9% + (-)"h(s )h*

1,.n

n+l n n+
((86, ,),6,)€ Hom, (D", D ,)@Hom, (C7,C ), (g,h) € D ""8CT)

An (n+l)-dimensional e-symmetric pair (f:C——> D, (8¢,¢)) is even
if
(50,0) € Qv ™ £, e) <™ (£,

The n-dimensional even e-symmetric L-qroup of A L(V0>n(A,c)

(n 20) is the cobordism group of n-dimensional even e-~symmetric
Poincare complexes over A, where the cobordism are the
(n+l)-dimensional even e-symmetric Poincaré pairs over A.

By analogy with Proposition 1.2.2 i),ii) we have:

Proposition 1.4.2 The skew-suspension maps

§ ¢ LA e) LT (A, -g) i (Cro)——(5C,5¢) (n>0)

are isomorphisms.
Proof: See Proposition I1.4.4.
{
The e-symmetrization map in the L-groups factors through
the even e-symmetric L-groups

LT, Ly (Are) —— Lo Ae) ——— LT (R,e)  (n30)

(£, ) — Hom, (B"*1(£) 8% (2,5, €))) (n2 0}
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In §1.8 below we shall recall from §I.6 the way in which the
even e-symmetric L-~groups L(vo)n(A,e) for n = 0,1 bridge the
gap between the €-quadratic and the e-symmetric L-groups,
defining a unified L-theory containing all three types of L-gr«
Proposition 1.2.2 iii) also extends to the even e~symmet
L-groups, with L(vo)l(A,e) = O for a O-dimensional ring with
involution A (cf. the proof of Proposition I.4.5}).
Proposition 1.4.3 If A,c are such that ﬁ*{zz;A,e) = O the
natural maps
T L (A ) —— Ly Y (Ae) , B4v XA, e)— L (A, 6)
are isomorphisms. In particular, this is the case if there
exists a central element a€A such that a+a=1€A (e.qg. a=% ¢
Proof: See Proposition I.3.3.
{!
Indeed, if ﬁ*(zz;A,e) = O there are natural identificat
of categories
{e-quadratic complexes over A}
= {even e-symmetric complexes over A}

(e—symmetric complexes over A}

with
0, (Cre) = QLvg*(C,e) = O*(C,¢)

for any finite-dimensional A-module chain complex C.

N
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1.5 Algebraic surgery

e-symmetric
An (n+l)-dimensional pair over A
e~quadratic
{(f=C~———>D, 56,4y €™ (5, en)
is connected if
(£:C—D, (8¥,¥) € Qn+l(f.€))

8¢
ot O J: o™t =0
bof*
(1+T ) 8¢
Ho(( €770 ) pMlr__ ey =0 .
(1+Te)wof*

€-symme

Define as follows the connected n-dimensional
€-quadr
(c',¢' €Q™(C’,€))
complex over A obtained from a connected
(C',¥'e€ Qn(C‘.E)I
e-symmetric (c.oeQ™(c,e)
n-dimensional i complex over A
e-quadratic (C,Vve Qn(C,E))
e-symmetric
surgery on a connected {n+l)-dimensional pair
€-quadratic

(£:c——D, (56,9) € 0™ (£, e))
(This is an algebraic surge

(£:C——D, (8%,4) €Q_,  (£,€))

"killing im(f*:H*(D})——H*(C))1").
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In the e-symmetric case let
n+l

- *
de O ()"t
_ T I
dC' = (=) f dD (-} ¢O
r
0 [¢] (-) ds
- n-r+l . _ n-r+2
C; = Cr00r+leD ——~—-—+C[_l = Cr-lODrQD
% o) o
_ n-r n-r
¢6 = (-) fT€¢1 (=) Ted4, 0
(o] 1 o
fN-C _ NI, n-r+l - n-~r+l
C =C oD 0Dr+1——————*C; = CIODr+lQD
b o] o]
[ _yh-r _yn-r+s
¢s = =) fTeds () Tedbgyy O
(o] (o] e}
n-r+s _ n-r+s, n-r+s+l
(o =C @D e, _ .y
———c! = ep_,,eD" T*]
r ror+l
In the eg-quadratic case let
- n+l *
dC o] (-) (1+T€)w0f
. I L\
dev = | (5)TE Ay ()T (LT ) 84
yEgx
¢} ¢} (-) dD
. n-r+l f - n-r+2
C! = Cr90r+1$0 —~———~>Cr_l = C[_lﬁDer
bg O o
W6 = e} (¢} [¢)
[o] 1 [¢]
n-r n-r, n-r+l _ n-r+l
c' C D 00r+1—————‘$C£ = C[QDI+10D
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() STov__ fx 0

s
. _yn-r-s+l
welo o Tbvgy O
(o] o o
yN=r-5 _ ~n-r-sg n-r-s+l
C C &D QDr+s+1
_ n-r+l
———c! = C,éD_, @& (sz1)
degree 1
In §II.7 it was shown that for a map
normal

f:M—X
from an n-dimensional manifold M to an

(f,b):M ———> X

n-dimensional geometric Poincaré complex X the effect on the

surgery on

{ symmetric
framed

o*(f) = (C,¢) oriented
kernel of an
g, (£,b) = (C, V)

quadratic

a framed embedding sT< M" with a null-homotopy of sfey M~—£a X

f:M— X f':M'—— X
b with

(replacing {

(f,b) :M—X (f',b'):M'— X

meo= My st x D" T uD tasP L) s that of algebraic surgery

symmetric {(g=C-——*S“"ZIn1(x)1, (66,6) € " (q))
pair

on the g n-r
(g:C—S Zlﬁl(x)], (5¢,¢')€Qn+1(9))

quadratic
determined by the commutative diagram of maps
[ —— Y
Ll
Dr+1_’x
with g*(1) € " T (C) =H_(C) =K (M) = HHl(E) the Hurewicz image

of F€ nr+l(f)F ﬂr+l(f)-



59

Proposition 1.5.1 i) Algebraic surgery preserves the homotopy

type of the boundary. In particular, surgery on an algebraic
Poincaré complex results in an algebraic Poincaré complex.

ii}) Algebraic Poincaré complexes x,y are cobordant if and only
if x is homotopy equivalent to a complex obtained from y by
surgery.

Proof: See Proposition I.4.1.

Proposition 1.5.2 The skew-suspension map
n+2

(A,-¢c)

S: 1", e) ——L
(for some n »0) is onto (resp.

§ : L (A, e)———L (A, -€)

one-one) if for every connected (n+2)- (resp. (n+3)-) dimensio
(-e)-symmetric
complex over A x with a boundary 3x which is

(-€)~quadratic

contractible (resp. a skew-suspension) it is possible to do
(-€)~symmetric
surgery on x to obtain a skew-suspension.

(-€)-~quadratic

Proof: See Proposition I.4.2.

{1

The criterion of Proposition 1.5.2 for the skew-suspension map
to be an isomorphism is always satisfied in the e¢-quadratic ca
cf. Proposition 1.2.2 i). It is not in general satisfied in th
e-symmetric case, cf. Proposition 1.2.2 ii) and the examples o

non-periodic e-symmetric L-groups of §I.10.
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1.6 Forms and formations

Next, we recall the correspondence between n-dimensior
algebraic Poincard complexes for n = O (resp. 1) and quadrat
forms (resp. formations), and the correspondence between the
L-groups and the Witt groups.

Given a f.g. projective A-module M define the e-dualit
involution

'I'C : HomA(M,M*)——~——~HomA(M,M*) ;

(e¢*:% —— (yr—— e (¥) (x)))
This is just the e-duality involution TE on HomA(C*,C) with

the O-dimensional A-module chain complex defined by

M* if r = O
Cr =

0O ifr #0
g-symmetric Q% (M)
even g-symmetric Q(vo)e(M)
Define the Q-group of M by
e-quadratic QC(M)
split e¢-quadratic 5€(M)

o) = %(C,€) = ker (1-T:Hom, (M, M¥) ——Hom, (M,M*) )

Q(vO)E(M) = Q(vo)(c,e) = im(l+T€:HomA(M,M*)-—a—-»HomA(MJ

QE(M) QO(C,e) = coker(l-Te:HomA(M,M*)—-———aHomA(M,M*))

T M) = Hg(Hom, (C*,C)) = Hom, (M,M*)
The various Q-groups are related by a sequence of forgetful

B 14T
O (M) — 0 (M) ——F 0 (v )€ (M) —— 0% (M)

with GE(M)——roc(M) and 14T_:Q_(M)— QF (M) onto, and

Q(v0>€(M)—~——vQ€(M) one-one.
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e~symmetric (M, ¢)
An form over A is a f.g. projective
e-guadratic M, V)
{q,eoﬂm
A-module M together with an element . Such a form is
be Qe(M)

®€HomA(M,M*)
non-singular if is an isomorphism. A morphism
(b+ed*) € Hom, (M, M*)
E-gymmetric

(resp. isomorphism) of forms over A
e-quadratic

£ (M d)—— (M, ")
£ 1 (MY)——— (M*,y")
is an A-module morphism (resp. isomorphism) f€ HomA(M,M') such
that
<
r*@'f = $€0Q (M)
X f = $EQ (M)

An even e-symmetric form over A (M,¢) is an g¢-symmetric form

such that

6 € Qe (M) S (M)

A split e-quadratic _form over A (M,y) is a f.g. projective

A-module M together with an element Y€ 65‘”" A morphism

(resp. isomorphism) of split e-quadratic forms over A
(£,x) @ (M, ) —(M',¢")

is an A-module morphism {resp. isomorphism) f€ HomA(M,M')

together with a (-c)-quadratic form over A (M,y € QvE(M)),

the hessian of (f,x), such that

fAY'Ff - Y = x - ex*€ 6€(M).
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An g-symmetric form over A (M,¢(;Q€(M)) is the same as a
f.g. projective A-module M together with a pairing
At Mx M——— A 5 (X, Y)— (X, y) = ¢ (x){y)

such that

A(x,ay) = arx(x,y)

A(x,¥+y') = A(x,¥) + A(x,¥")

Ay x) = ex(x,y) €A (x,y,y' €M,a€A) .
The form (M,¢) is even if for every x€M there exits a€ A such
that

Mx,x) = a+eca €A,

An e¢-quadratic form over A (M,y € Q. (M) is the same (up to
isomorphism) as a triple (M,),u) consisting of a f.qg. projective
A-module M, an e-gymmetric pairing A: MXM-——3 A as above

and a function

»Q (A) = A/{a-cala €A}
such that
p(ax) = ap(x)a
pixty) = pix) - ply) = 2(x,¥) € Qg (A)
AXex) = pix) + eu(x) € A {x,y,y'€M,a€R),
i.e. an e-quadratic form in the sense of Wall [4,§5], the
correspondence (M,¢})——— (M,X,u) being given by
Ax,y) = (prep*) (x) (y) €A
ux) = y(x)(x) € Q. (A) (x,y €M)
The e-symmetrization functor

{e-quadratic forms over A} —— [e~-symmetric forms over A} ;
i

1+T
(M, §) —— (M, (L+T¢) )

is an isomorphism of categories if 1/2€ A, in which case the
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e-symmetric pairing A:Mx M A‘——,A;(x,y)p———+(1+T£)¢(x)(y) determi

the e-quadratic function u:M-——Q_(A);x—>¥(x) (x) by

It

W(x) = Fr(x,%) €Qc(A)  (xEM)

If A is a commutative ring with the identity involution a = a €A
(a€A) a quadratic form over A (M,WGQH(M)) (e=+1€A) is thus
essentially the same as a f.g., projective A~module M together
with a function
B M —-————7Q*1(A) = A
such that
i) ¥ is quadratic
umx)=a%(M€A (a€EA,XEM)
ii) the function
N M X M—— 3 A (X, Y (H(xty) - u(x) - uly))
is bilinear,
which is the classical definition of a quadratic form over a
commutative ring. For any ring with involution A the forgetful
functor
{split e-quadratic forms over A}
—————> {e-quadratic forms over A} ;
(M, ¥ € Qg (M) ———> (M, [¥] € Q_ (M))
defines a one-one correspondence of isomorphism classes;
the hessian forms appearing in the morphisms of split e-quadratic
forms are necessary for the definition of th even-dimensional

relative e-quadratic L-groups (in §2 below).
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(C, ) (even) e-symmetric
If is a O-dimensiocnal complex

(C,¥) g-quadratic

over A there are natural identifications

Qrcie) = 0s%i)  0ic e = e o)
oglc.€) = o _(wo(cy)
o'’ € ’
(HO(C),¢) {even) e-symmetric
so that o is an form over A such
(H7(C}, V) e-quadratic
e-symmetric (C,0)
that the Oth Wu class of is given by
e-quadratic (C,¥)

vp (91 : 1O @) ——H0(Z 3R, €) 3 xr—305(x) (X) = A (x,%)
(3514 = 0)

VO(¢)=HO(C)—~—*H0(22;A,6) ;Xh—»¢0(x)(x)=u(x)

Proposition 1.6.1 There is a natural one-one correspondence

between the homotopy equivalence classes of O-dimensional

(even) e-symmetric
complexes over A and the isomorphism
e~quadratic

(even) e-symmetric .
classes of forms over A. Poincaré complexe
e~-quadratic
correspond to non-singular forms.
Proof: See Proposition I.5.1.
{1
(M, ¢)

€~-symmetric

e~quadratic

form over A
(M, )

A sublagrangian of an 5

is a direct summand L of M such that the inclusion j€ HomA(L,h

e-symmetric
defines a morphism of forms
e-quadratic
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j : (L,0) —— (M., ¢)
i AL, 0)—— M, )
j*¢ € HomA(M,L*)

such that is onto. The annihilator of L
I* (¥+ed*) € Hom, (M, L*)

Lt ker (j*¢:M-—> L*)
{L* = ker (j* (d+ey*) :M—— L*)
is a direct summand of M containing L as a direct summand
L C L
A lagrangian is a sublagrangian which is its own annihilator
Lt =1L,

i.e. such that there is defined an exact sequence

i*¢
O———L ———3 M —>SL* —> 0
3 It (prep*)
(6] > L M > L* o .

A (sub)lagrangian (L,)) of a split e-quadratic form over A
(M,$€ BE(M)) is a (sub)lagrangian L of the associated
e-quadratic form (M, [V¥] € 5€(M)), together with a hessian
(-€)-quadratic form (L,X€Q__(L)) such that

J*3 = X - e e o (),
i.e. such that there is defined a morphism of split e-quadratic
forms over A

(3.2) & (L,0) ——>(M, )

{(even) e-symmetric
A non-singular form is hyperbolic
(split) e-quadratic

if it admits a lagrangian.
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an e-symmetric form over A (L*,4€ 0% (L*))

a f.g. projective A-module L
Given define the

e-symmetric

even g-symmetric
standard hyperbolic form over A
e-quadratic

split e-quadratic

o 1
€ QF (LBL*))

HE(L*,¢) = (LGL*,(
€ [}

o 1
HE(L) = (LOL*, ( )e Q<v0>€(LoL*))
€ o]

o] 1
(LBL*, < > € Q_{(LBL*})
o €

H_(L) =

€ )

B (L) = (LeL*, ( € 3 (LoL*))
0o o

The various hyperbolic forms are related to each other by
(W4T HH (L) = BE(L) = HE(L*,0) ,

with H (L) a split €-quadratic refinement of H.(L).

1f (L*, b€ Q<VO>E(L*)) is an even e-symmetric form then

¢ = Yreyp*r e Q(VO>€(L*) for some split e-quadratic form (M,}€ 6C(L*))

and there is defined an isomorphism of {even) e-symmetric forms
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1 o 1
( s HE(L*,¢) = (L8L*, )
0 1 € ¢

(o] 1
~—— RE(L) = (LeL*,< ))

Proposition 1.6.2 The morphism of forms

& (L,0) ———> (M, 8)

J & (L,0) ——> (M,$)

J ¢ AL, 0)——— (M,¥) ’
(3.2) & (L,0) ——— (M, )

defined by the inclusion j€ HomA(L,M) of a sublagrangian L in

e-symmetric (M, 6 €0% (M)
even €-symmetric (M. b€ Q(V0>€(M))
form over A extends
e-quadratic (M, v€Q_ M)
split e-quadratic M,0€ 5€(M))

to an isomorphism of forms

£ HS (LY, m®(LL/L, 64/¢) ——2L—>(M, )
£ : HE(L)®(LL/L,03/¢) —L—>(M, )
£ 0 H (LI®ILL/L, Y2 /4) — (M, ¥)
(£,x) : ﬁe(L)e(L*/L,’&*/@#Hm,m

Proof: See Proposition I1.2.2.

In particular, Proposition 1.6.2 shows that the form
(L1/L,¢+/¢) is non-singular if and only if (M,4) is non-singul:

and similarly in the other cases.

P
-
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e-symmetric (M,$;F,G)
An formation over A is a
e-quadratic (M,¥;F,G)

M, €Q° (M)
form over A together
M,y €0 (M))

€-symmetric
non-singular
€-quadratic

with a lagrangian F and a sublagrangian G. Such a formation
is non-singular if G is a lagrangian. An isomorphism of
formations
f: (M,¢;F,G) —=—— (M',¢';F',G")
{f : (M, F,G) —=— (M',¥*;F',GY)
is an isomorphism of forms
{f 1M, 9) —T—r (M7, 07)
£ M) —=— M b)
such that
f(F) = F' , £(G) = G' .

A stable isomorphism of formations

[£) : (M,$;F,G) —>——>(M',$";F',G")
[f] : (M,¥;F,G)—=2—(M',y';F',G")
is an isomorphism of the type
f : (M,@;F,G)Q(He(P);P,P*)———QL——é(M',¢‘:F',G')Q(HE(P');P"
f : (MV;F,G)®(H (P);P,P*) —>——>(M' V' iF',G")®(H (P');P"
for some f.g. projective A-modules P,P'.

An even €-symmetric formation (M,$;F,G) is an €-symme

form such that (M,4) is an even g-symmetric form.



69

A split e-quadratic formation over A

(F,G) = (F,((Z).e)c)
is an €-quadratic formation over A (H.(F);F,G) (with
(:):G—————iFQF* the inclusion), together with a hessian
(-€)~quadratic form over A (G,6€ Q—e(G)) such that
y*¥u = 6 - e€o* € HomA(G,G*) B
so that there is defined a morphism of split €-quadratic forms
over A
. o] 1
((J)®) + (6,0) s He (F) = <FeF*,< )
H o o
and (G,9) is a sublagrangian of ﬁe(F). The formation (F,G) is
non-singular if the sequence
(2)
u

(eu* y*)
o » G > FOF* >

> G* o]

is exact, i.e. if the underlying €-quadratic formation (HE(F);F,G)
is non-singular. An isomorphism of split e-quadratic formations
(a,B,9) = (F,G) —"L—=(F',G')
is a triple consisting of A-module isomorphisms ag€ HomA[F,F'),
Be HomA(G,G') and a (-€)-quadratic form (F*,y€Q_(F*)} such that
i) ay ¥ aly-~eyp*)*y = y'B € HomA(G,F')
ii) a*”lu = u'B € Hom, (G,F'*)

iii) & + u*yu = B*0'g € 0_ (G) .

Such an isomorphism determines a commutative diagram
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G ————G'
Y Y!
(u) (u')
F@F* —— F'@F'*
with

) : FOF* ——2 > F'QF'*

0 ax-1 ,

a aly-ep*)*
e

and hence there is defined an isomorphism of the underlying
e-quadratic formations
£ : (Hg (F);F,G) ————(He (F');F',G")

A stable isomorphism of split €-quadratic formations

[a,B,¥) : (F,G) —(F',G")

is an isomorphism of the type
{0,B,0) : (F,G)®(P,P*) ———>(F',G')@(P',P'*)

for some f.g. projective A-modules P,P', with

.24 = (2,(($)0rp%)

Proposition 1.6.3 i) Every t€-quadratic formation is isomorphic

to one of the type (H¢(F);F,G).
ii) Every €~quadratic formation of the type (H¢(F);F,G) admits
a (non-unique) split e-quadratic refinement (F,G).
iii) Every isomorphism of e-quadratic formations of the type

f : (Hg(F);F,G)——>(Hc(F');F',G")
can be refined to a (non-unique) isomorphism of split e-quadratic
formations

(a,B,0) : (F,G) ——(F',G")

Similarly for stable isomorphisms.

Proof: See Proposition I.2.4.
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homotopy equivalence of l-dimensional

A split e-quadratic

e-guadratic complexes over A

{»An e-quadratic

£ @ (Cop) ——(C’,¢")
is a chain equivalence f:C ———C' such that
§f1(¢) - ¥' = H(B) € Qp(c'e}
fo (W) - ¥’

n

0 € Q(C'¢e)

for some Tate 22-hypercohomology class 0 € 62(C35) with vanishing
lst Wu class
0,(8) =0 : ulicn —aﬁl(zzm,g) P X0, (x) (x)
(8, € Hom, (1, 1))
(A split e~quadratic homotopy equivalence is the same as a
homotopy equivalencej.

Let C be a 1-dimensional A-module chain complex of the

type
a
C : ...~4—+0—-+C1———~+c0——~+0A——a... .
1
Zz-hypercohomology $ €Q (C,e)
class is represented by
Z ,-hyperhomology Y€ Q; (€,e)
A-module morphisms
¢ CO—_._,C $ Cl-———-»C ¢ ¢Ct———C
s} 1’70 o’ 'l 1
ot P—ac G ctl—sc , y. : O——c
o] 10 o’ "1 (o]
such that

o, *+ bgd* = 0 1 CO—oCy, db) - by + €48 = 0 i C = Cy
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e~-symmetric (c,oeol(c,c))
A connected l-dimensional complex
e-quadratic (c,ve Ql(C,e))
eE~symmetric
determines the formation
split e-quadratic

o 1 €4
wmect,e5¢,,¢% = (cjact, < ) :Cl,im(< °> :c® —c @
€ ¢ d*
1
o, . Bho*h 0
(c,c% = (cl,(( gas b oy rav e

Proposition 1.6.4 There is a natural one-one correspondence

between the homotopy equivalence classes
(split) e-quadratic

(even) c-symmetric
of connected l-dimensional complexes over
(split) e-quadratic

(even) e-symmetric
and the stable isomorphism classes of

(split) e-quadratic
formations over A. Poincaré complexes correspond to non-singula
formations.

Proof: See Propositions 1.2.3,I.2.5.

1

M, $;F,G) (even) e-symmetric
of an format

The boundary §

M, ¥;F,G) e-quadratic

(M,$;F,G) (even) e-symmetric
over A is the non-singular form
(M, y;F,G) e-quadratic

over A

(GL/G,¢+/9)

{a(M.¢;F,G)
(GL/G, V2 /)

oM, ¥;F,G)

f
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Proposition 1.6.2 shows that the boundary form is stably
hyperbolic, with an isomorphism
3(M,¢;F,G)@H" (G*, 1) ——HE (F*,0)
g (M, V;F,G)BH_(G) ———>H_(F)
for some e-symmetric forms (F*,r), (G*,v) (with =0,u=0 if
{M,$;F,G) is even).

The boundary J(F,G) of a split e-quadratic formation (F,G)
is the boundary a(HE(F);F,G) of the underlying €-quadratic
formation (HE(F):F,G).

AM, ) e-symmetric
The boundary }3(M,4) of an even e¢-symmetric form over A
(M, ) e-quadratic
M, 6 € 0% (M) even (-g)-symmetric
M,d€ Q(vo>€(M)) is the non-singular (-¢)-quadratic
M, Ve OE(M)) split (-€)-quadratic

formation over A

-€

(M, ¢} = (H (M);M,F(M,¢))

o(M,¢) = (H_C(M);M,F(M'®))

1
(M. ) = (M, ( +VIM)
W+€¢* ’
where
F(M,¢) {(x,$(x)) € MBM* | x € M} C MBM*

is the graph lagrangian of (M,¢) in H (M) (in H__(M) if (M,¢)

is even).
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e-symmetric LE(A)
The Witt group of { even e-symmetric forms over A L(vo>€(A)
e-quadratic LE(A)

is the abelian group of equivalence classes of non-singular
e-symmetric
even e~symmetric forms over A subject to the relation
e-quadratic
(M, ) ~{(M',$') if there exists an isomorphism
(M, ¢)B(H,0) —(M',¢")B(H',8")
for some hyperbolic forms (H,6),(H',8").
Addition and inverses are by

(M, d) + (M',6') = (MBM',¢8¢"') , -(M, ) = (M,-¢)

E-symmetric

The Witt group of {even e-symmetric formations over A

€-quadratic
ME (R)
M(VO}C(A) is the abelian group of equivalence classes of
M. (A)
e-symmetric
non-singular § even e-symmetric formations over A subject to

e-quadratic
the relation
(M, ¢;F,G)~ (M',4';F',G') if there exists a stable isomorphism

of the type
[f] : (M,¢;F,G)®(N,v;H,K)B(N,v;K,L)S(N',v';H', L")
———(M',p";F',GIB(N', V' ;H KN BN, v ;K L)@ (N,v;H,L)
Addition and inverses are by
(M,¢;F,G) + (M',¢';F',G') = (MBM',0@¢';FOF',GOG")

-(M,¢:F,G) = (M,0;G,F} (= (M,-¢;F.G)) .
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Proposition 1.6.5 i) For n = 0,1 the n-dimensional L-groups

have natural expressions as Witt groups of forms and formations

1%, e) = LE(A) tra,e) = ME(a)
L, e) = Ly € ) Lyt ace) = mevy € (a)
Ly(A,e) = Lc(B) , Li(Ae) = M (A) .

E-symmetric
ii) An (even e-symmetric form is non-singular if aﬁd only if its
e-quadratic
boundary formation is stably isomorphic to O, in which case the
L (A)
form represents O in the Witt group L(vo)e(A) if and only if
L. (A)
it is isomorphic to the boundary of a formation.
E-symmetric
iii) An yeven e-symmetric formation is non-singular if and only
e-quadratic
even e€-symmetric
its boundary form is O. A non-singular { €-quadratic
split e-quadratic
M€ (A)
formation represents O in the Witt group M(VO)C(A) if and only
M (A)
if it is stably isomorphic to the boundary of a form.

Proof: See Propositions I1.5.1:7.5.2,1I.5.4.
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The periodicity Ln(A) = Ln+2(A’_1) = Ln+4(A) {(n>0) of

Proposition 1.2.3 i) combined with the expressions of
Proposition 1.6.5 i) identifies the quadratic L-groups

Ln(A) (n 3> 0) defined using quadratic Poincare complexes with
the quadratic L-groups Ln(A) {(n({mod 4)) defined by Wall [4]

using forms and formations.

(c.eeQ"(c,e))
complex is
(C,veQ (C,e))

e~symmetric
An n-dimensional
e-quadratic

highly-connected if

for n = 2i : H (C) = BY(C) = 0 (r # i)

for n = 2i+l : H (C) = H'(C) = 0 (r # i,i+1) and

2i+l-+* _
Hi(QO.C —C) =0

2i+1-# -
Hy (14T i C ——cC) =0

A highly-connected complex is connected; the boundary of a
highly-connected complex is a highly-connected Poincaré comple

Proposition 1.6.6 For n = 2i (resp. n = 2i+l) the homotopy

eguivalence classes of highly-connected n-dimensional

e-symmetric
complexes over A are in a natural one-one

€-quadratic
correspondence with the isomorphism (resp. stable isomorphism)

(—)1s—symmettic (—)le—symmetric

classes of forms (resp. {

(—)ie—quadratic split (—)i€—quadrati
formations) over A. Poincaré complexes correspond to non-singu
forms (resp. formations). The boundary operation on
highly-connected complexes corresponds to the boundary

operation on forms (resp. formations).

Proof: See Proposition I.5.3.

\‘_‘/‘ -
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1.7 Algebraic glueing

Geometric Poincare cobordisms (Y:X,X'),(¥Y':X',X") can be
glued together to define a geometric Poincare cobordism

(Y";X,X") with

T'=YUXT

We shall now recall from §I.3 the analogue of this glueing

operation for algebraic Poincaré cobordisms.

e-symmetric
The union of adjoining (n+l)-dimensional

e-guadratic
Poincaré cobordisms
c = ((f, E.,):COC'—D, (§6,08-9") € Q"L ((£. £.,),€))
C C' ¢ ’ ’ C C' r

c = ((f, £,):COC'——D, (§V,V8-V") €Q_,  ((£. £o.),€))

t = ((£4, £hu):CrOC"——D", (60, 0'8-¢") € Q"L ((£L, £, €))

(¢}
It

(L8, £4u):COC"——D", (8", 4 @8-¥") €0 4 ((£4, £hu).€))

e~symmetric .
is the (n+l)-dimensional Poincare cobordism
e-quadratic

cuc!

It

W ogn oy, " M " an n+l w g
(£ £50):CBC" — D", (63",08-¢") €0 (Lfe £8a) v€)))

CUC = ((£2 £2.):C8C" —D", (84", ¥8-4") €Q , ((£8 £l.),e)))
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defined by
r-1
dp (-) £ o
dpw = | O e 0
-1
o (TTEL, dp

" = L] " = ) L}
D} = D 8C;_ @D} ———»Dy | =D _,6C, 8D ,

fr=| o ) C, ~——D; = D _6C!_ @D}
0
fao< O ) Cr———D! = D _8C!_ 6D
86, 0 o
soy = | ()" Teyeg, " r e o
0 ()%, ¢ 54,
D"n-r+s+1 - Dn-:+s+1ec,n-r+s$D,n-r+s+1
——D; =D BC 190, (s 20, ¢!, =
S 0 0
8vg = (_)n_r“‘éf*' (')n_[_sTc“’éﬂ o
o (S 2PN

D"n—r—s+l - Dn—r—s+1$c.n-r—s$D,n—r+s

- ' D’
| ——— D/ = D ®C . 8D (s 20}



79

We shall write

iéfb" = 5®U¢v6®'
D" = DU,D' , .
sy = Sypu YT
¥
D c' D'

D"

The union operation for algebraic Poincaré cobordisms hz
a particularly simple expression (up to homotopy equivalence)
in the special case when all the chain maps involved are defir
by inclusions of direct summands, as follows.

e-symmetric (f£:C——D, (64,9))
An pair
(f:C——D, (6¥,¥))

is direct if
e-quadratic

each f€ HomA(Cr,D[) (r € Z) is a split monomorphism, i.e. the
inclusion of a direct summand.

The direct union of adjoining direct (n+l)-dimensional

e-symmetric
i Poincaré cobordisms

e-quadratic
' e n+l
gc = ((fo fo.):COC —+D. {8¢,98-¢") EQ ((fo £o0)08))
c = f, £.0):COC"—— D, (SU,yd-¥') € Q41 {fe £oi) o))

%c' = ((EL, Eaa):C78C" ——D", (50" ¢'@-0") € Q" (gL, £ 0
€' = ((EL, ELa):ClBC"———D', (8", 4'0-4") €Q 1, ((fh, o),

is the direct cobordism

Tet Fr FO) .c@C” B (TE" a@-o" n+l  =u Fu :
cuUc ((fc fC“).CQC ——D", (69", ¢0-0") €Q ((fC fC“),e

cdJc' ((}'E 'fé..) :CBC" ——D", (§Y", y®-y") € 04! (’t'e, Té..) (€

K \
f‘(>

]
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defined by
e
D" = coker( :CL— DrsD;)———~+i

dgw = ldp®dy,] : By .
£l

B

1 )
fc=( >:c-———>o;, fé,,:( ):c;——-»n;

o]} 1
156™) = 16¢@54°)
[60") = [6y@5¢']

ge-symmetric .
Every Poincare cobordism
e-guadratic

® c = (LE £'):COC'——D, (84, 08-4"))
is homotopy equivalent
{c = ((f £'):C0C"——D, (§¢,y8-¢'))
red {E = ((F ') :coc'——7D, (33, ¢8-0"))
to a direct cobordism§ _ o I '
c = ((£ £'):C8C'——D, (8¢, vd-y'))
with D = M(f £') the algebraic mapping cylinder of the chai
(E £') : COC'———— D .
(The algebraic mapping cylinder M(f) of an A-module chain m
f: C——D
is the A-module chain complex defined by
a, 177 0
dM(f) = 0] dC (o]
0 -)F de
=) : M(f), = D_8C__ 8C ——M(£) _, = D__,8C__,8C |
=) The A~module chain maps
f:C——M(f) , 9 : D ——M(f)
) defined by
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|
]
Q

C[————w—#M(f)r = Dr$Cr_10Cr

g=|0 |:D~——M(f) =DE _ 6C,

(o]
are such that each f€ HomA(Cr,M(f)r) (r € Z) is the inclusion of
a direct summand, and g:D———M(f) is a chain equivalence, with
a chain homotopy commutative diagram

f

C——i—D
£ g
M(f) ).

Furthermore, if c,c' are adjoining algebraic Poincaré cobordisms
there is defined a homotopy equivalence
cuc! -, cUc!'

from the union defined previously to the direct union.

The direct union is more obviously related to the glueing
operation on geometric Poincare cobordisms. For example,
if (Y:X,X'),(Y':X',X") are adjoining geometric Poincare cobordisms
then

agr{y v

x YIIXXT) = oM (YK XV G 0y O (YK XY)

—_
H

THYIXI X ) U g 0y OF (YT 5XY,X")
up to homotopy equivalence) .
Similar considerations apply to the guadratic kernels of

adjoining bordisms of normal maps.
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The correspondence of Proposition 1.3.3 i) shows that up
to homotopy equivalence the cobordisms of n-dimensional
e-symmetric .
Poincare complexes over A may be considered as
e-quadratic

quadruples

((D, ), (Cr), (CT,0"), (f £))
((D, &), (Chp), (C',¥"), (f £'))

I

consisting of a connected (n+l)-dimensional i

]

e~symmetric
€-quadratic
e-symmetric

(D,%) .
complex , n-dimensional % Poincare complexes
(D,£) e-quadratic

(C,0) (C',¢")
, , and a homotopy egquivalence

(C, %) (C'y")

{(f £') 2 (C,9)B(C', ') —— 3(D, )
(E £') : (C,¥)®(C',-¥')—— 3(D,E) ,

which we shall also called cobordisms. The union operation
(c,c’'}————scuc' defined above can be written in the g-symmetric
case as

((D,2), (C,9) (C', "), (f £')) U ((D',C'),(C'.¢'),(C",®'),(;' f"))

= ((DUED' Ly 2'),(Cr0) L (C",0") , (F E"))

with
fl

£

DuC,D'=C(( ):c‘—-——»DQD') .

and similarly in the e-quadratic case. In particular, given

connected (n+l)-dimensional e¢-symmetric complexes (D,f),(D',C')
[

and a homotopy equivalence of the boundary n-dimensional

-
e~-symmetric Poincare complexes
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g : (D, L) ——=>D',-¢")
we can glue (D,Z) to (D',z') by g, obtaining the (n+l)~dimens]
€-symmetric Poincaré complex
(D,C)Ug(D':C')
appearing in the union cobordism
((D,£),0,3(D,-¢), (0 1))uw ((D',g"), &D,-¢),0,(g O})

= ((Dlg)ug(ollcl)rolol (0 0)) ,

D, D', ]
( c)ug( ')

and similarly in the €-quadratic case.
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The formulation of the union operation entirely in ter:
e-symmetric
of complexes (i.e. dispensing with pairs) has tli
e-quadratic
advantage that in the low-dimensional cases n = 0,1 it trans
directly into the language of forms and formations, using th
correspondences of Propositions 1.6.1,1.6.4,1.6.6.
We shall now give an explicit description of the union opera
€e-symmetric
for forms and formations. In the applications
e-quadratic
(in §2 below) it is only necessary to glue along all the
boundary, so that only this case will be considered.

See Ranicki [5] for further details concerning the glueing

of forms and formations, at least in the e-quadratic case.

€-gymmetric (M,$;F,G) (M',$';F',G
Given formations

’
e-quadratic (M,¥;F,G) (M',¢';F',G
e~symmetric
and an isomorphism of boundary non-singular form
-quadratic

£ : 9(M,$;F,G) = (GL/G,d1/0)—>3(M',-¢';F',G')

(G'+/G',-¢

£ : O(M,¥;F,G) = (GL/G,Y+/¥)~—>3 AM',~p';F',G') = (G'L/G',-V¥
e-symmetric

define the union non-singular formation
e-quadratic

(M, p3F,G) U (M, 4" ;F',G")

i
(MOM', ¢@¢ ' ;FOF' ,G@im ( >G*/G———»M$M')0G')
it

M3 F, Gy Qe MY, 0 F,G)

it

]
(M@M‘,W@W‘;F@F',GQim(( >:G1/G-——)M0M')0G')

i'f

with j€ HomA(Gl/G,M), i'e HomA(G‘l/G',M') the A-module morph
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e-symmetric
appearing in any of the isomorphisms of forms extending
e-quadratic

the inclusions of the sublagrangians given by Proposition 1.6.2
(i j) : HE(G*,L)®(GX/G,d2/p) — (M, $),
(i' 3') : BE(G'*,0")B(G'L/G,¢'1/¢") ——(M",$")
(i 3) : H (G)®B(GL/G,¥+/V) — (M, V),

(i' 3') : He(G)B(G'L/G' ,W'L/P') —(M', ")

€-symmetric (M, 9) M',4")
The union of forms along a

€-quadratic (M,W), M',9")

even (-g)-symmetric
stable isomorphism of boundary non-singular
split (-€)-quadratic

formations

. - —€ .
[£] : oM,d) = (H (M),M,F(M,®))

v g = -€ 1y .Mt
AT =0t) = (TS MYLT ()

1
[a,B,0] : O(M,¥) = (Mr(< BIW)M)
Yy

1
— AM*,~) = (M7, ),—W’)M‘)
(b ey’ *)

e-symmetric
is the non-singular form
g-quadratic

[}

(M",¢") (M0} gy (M',9°)

(Mu’q)n)

"

M) U g0 (M0

defined further below. The union operation is characterized
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(M, 9) M', ")
(up to isomorphism) by the property that and
(M, ¥) (M',4")

are included in the union aﬁM ) as maximally orthogonal
(M", ")
subforms, that is there are defined morphisms of forms
gj (M) ——— (M",0") 3t (M) (M7, ")
Joo M ey LG M) M, )
with j€ HomA(M,M"), it € HomA(M',M") split monomorphisms, such

that the A-module sequence

3 Jt*e”
) > M > M" —> M

v
o]

3 JUH (BT HEPTH)
0 > M > M" > M * >0

is exact, and such that the stable isomorphism of formations
M, b) —" BM',-¢")
(M, ¥) —=—> O(M',~¥")

naturally associated to such inclusions is equivalent to

Tf]
under the relation on stable isomorphisms corresponding
[a,B,0]

(via Proposition 1.6.4) to the chain homotopy of homotopy
even (-g)-symmetric

equivalences of l-dimensional Poincaré
(~€)-quadratic

(M, 9) (M',6")

' are
(M, V) M' ")

complexes. In particular, if the forms

non-singular the union is just the direct sum
(M",06") = (M, ¢)®(M', ")
(M", ") = (M, ¥)@(M', V) ,

with j and j' the canonical inclusions.
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The union operation for forms is defined as follows.
In the e-symmetric case let
[£] : O(M,¢)———>;M',-¢")
be the stable isomorphism of even (-¢)-symmetric formations
given by the isomorphism

£ (H S(M)gM,T ))om'e(P);P,P*)

(M, ¢

o (TR MN) MY T YB(H (') ;

=%")
for some f.g. projective A-modules P,P'., Write the restricti
of f to the lagrangians as
a a;
a = : Mp —————> M'@>"'
a; a3

b b

b bl
B = : MBP* ————» M'@Pp'*
2 3

and let

b, b}

b* bl .
g7t = ( 1) : M'OP ' ———>MeP ¥
2 P3

Let (M*®P*, 1€ QE(M*QP*)) be the unique e-symmetric form such

that there is defined a commutative square

B
MOP® >M'GP'*
1 o] 1 [¢]
o o} (e} o}
¢ [e] -¢* O
a at*
o] 1 f= o] 1
[o] a*“l

MOPOM*GP* ——— > M'@P'GM' *BP ' *
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and let

[

t t

ata® = ( ) : M'*@p'* —— M'@P’
L} tl
3

The union e-symmetric form is given by
[ a*
(M", 4" € Q€(M")) = (MBM'*, )
€a t' ’
with the canonical inclusions defined by

1
j= ( ) ¢ (M, ) ——— (M", 0")
[¢]

bl
' = ( ) DM, 4) ———> (MY, ") .
®I
In the e~quadratic case let [a,B,0)] by the isomorphis
split €-quadratic formations

a a b b s s
(a,8,0) = (< 1)( 1)( 1))
a a b b s

2 23 2 P3/ NSy 83

o )
o) o) v 0
(M®P, ( ' < )MBP*)
(W+cw' O)
0 1
1 OJ
0 o -y' O
—(M'eP’, ( ,< )M'epP

(—(¢'+ew") 0) o] o]
fo) 1

for some f.g. projective A-modules P,P'. Let

s' s'
aga* = : M'*@P'* ——M'@p'*
$2 53
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-1 b' bi
B = : M'@P'* ——— MBP*
b2 b3

.

The union eg-quadratic form is given by
1} o
(M", 9" €Q (M"})) = (MBM'*, )
€ €a .

with the canonical inclusions defined by

1
i = ( ) T (M) (MY ,y")
o

it o= ( ° ) M) s (M, Y")
Vitey'*
See Ranicki [1,4.3],(5] and wall [8],[12) for some
applications of the union of forms. Here is another:
(M, 4) %(M',w
Mo Lo e
are j-equivalent if there exists an isomorphism

(even) €-symmetric
The forms over A
e-quadratic

£ : (M$)B(N,0) ~——"——(M',¢')B(N",0")

£ (M p)BIN, ) ————> (M' ,V")B(N',Xx")

(even) e-symmetric {N,8) (N',8")

for some non-singular forms .
€-quadratic (N',x")

in which case there is induced a stable isomorphism of the

(N,

even (-e)-symmetric ({-€)-quadratic)
boundary formations
split (-€)-quadratic
{[';f] 3 (M, ) —L— 3 (M, ")

[of) = (M) ——3(M',}")
(even) e-symmetric
In particular, if LCM is a sublagrangian of an

e-quadratic

(M, %)

M)

[(M,m (M',4") = (LL/L,61/9)
form then
M, ¥) (M',9") = (L*/L, bL/Y)

is 3-equivalent to {
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Proposition 1.7.1 The boundary operations 3:{forms}——{formations}

define natural one-one correspondences
e-symmetric
3 : {d-equivalence classes of )even €-symmetric forms over A}
e-quadratic
—— s {stable isomorphism classes of null-cobordant
even (-€)-symmetric
(-e)-quadratic formations over A}
split (-g)-quadratic .
Proof: It is sufficient to consider the e-symmetric case, the
others being entirely similar.

By Proposition 1.6.5 iii) every null-cobordant even
(-€)-symmetric formation is stably isomorphic to the boundary
9(M,$) of an e~symmetric form (M,¢). Thus it remains to show
that if (M,¢),(M',¢') are e-symmetric forms which are related
by a stable isomorphism of the boundaries

[E] : a(M,¢) —=—— a(M',¢")
then they are Jd-equivalent. Write the union non-singular
e-symmetric form as
(N',8") = (M:¢)LJ[f](M':'¢') '
and let
it s M, -¢') ——> (N',9")
be the canonical inclusion. Then the submodule
L = {(x,J'"(X)) EM'@N’ [xE€M '} CM'ON'
defines a subngrangian of (M',¢")®(N',0') such that
(LY/L, (¢'88')1/(4'06")) = (M,¢) .

Applying Proposition 1.6.2 there is obtained an isomorphism
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f @ (M,p)B(N,8) - (M',$")B(N",0")
with (N,8) = H(M',4') non-sinqular. Thus (M,¢) and (M',¢')
are j-equivalent.
[
Proposition 1.7.1 1is a generalization of the familiar
result (cf. Kneser and Puppe [1], Wall [10] and Durfee [2]))
that if (M,¢),(M',y') are quadratic forms over Z which
become non-singular over @ then they are a—equivélent if and
only if the boundaries 3(M,y), a(M',y') are isomorphic as
"non-singular quadratic linking forms over (Z,Z-{0})" -
see §3.4 below for the expression of 3(M,y) for such (M,y) as
a non-singular quadratic linking form
it et maomtm — oz oMt — 022y
with ‘

mt

= {x€@®, M| (y+¢*) (x) (M) e Z< Q)

the “"dual lattice", A a non-singular symmetric linking pairing
on the finite abelian group M'/M, and u a quadratic refinement
of A. The proof of Proposition 1.7.1 is a generalization of
the standard proof of the Novikov additivity property for the
signature: if (M,¢)},(M',¢') are symmetric forms over Z and
[£]1:9(M,¢)—>3(M',-¢') is a stable isomorphism of boundary
skew-symmetric formations over Z then the signature of the
union non-singular symmetric form over Z (M,¢)k)lf](M',¢')

is given by the sum of the sianatures of (M,$¢) and (M',¢")

GX((M, )} uff](M',¢')) = g*(M,¢) + o*(M', ') € Z,

which we shall generalize in Proposition 7.3.6. Proposition 1.

is generalized to complexes in Proposition 1.8.3 below.

-



7.

92

1.8 Unified L-theory

e-symmetric
In §I.6 there were defined lower L-groups
e-quadratic

L™ (A, €)
(ng -1), as we now recall. We shall also give a un
L (A, €)

e-symmetric Ln(A,c)
construction of the unified L-groups
e~quadratic Ln(A,e)
e-symmetric L" (R, €)
Define the lower L-groups of A
e-quadratic L (A €)
by
\ LG 2 -e) if o= -1,-2
L'(A,e) =
Ln(A,e) if ng-3
~ _ i . _ .
Ln(A,e) = Ln+Zi(A'( ) “e) if n<-1, n+2i30 ,
L"(A,6) = Lav™2(a,-e)
extending the semi-periodicity (n:
L (A,e) = L ,(A~¢)
1.4.2

of Proposition .
1.2.3 1)

Define the skew-suspension maps
— n n+2
S : L' (A,~g) ————> L (A,g) (n€ Z)

to be the skew-suspension previously defined for n?0 and n

and to be the appropriate te-symmetrization maps for -3<n¢

Proposition 1.8.1 If RO(ZZ;A,E) = 0 the skew-suspension maps

§: L"A,-e) ——1"2(a,e) (nez)
are isomorphisms.

Proof: See Proposition I.6.1.
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In particular, if there exists a central element a€ A such that
a+a=1€A (e.g. a=1/2€A) then ﬁ*(zz;A,e) = 0 and up to
isomorphism

L (Ae) = ha,e) = 1" a,-e) (nez)

cf. Proposition 1.4.3.

e-symmetric MaLe)
Define the {-categories (n€Z) to
e-quadratic L, (Ase)

be the additive categories given by

T Mave =

{connected n-dimensional e-symmetric complexes over A,
homotopy equivalences} (nz1)

{e-symmetric forms over A, isomorphisms} (n=0)

{even (-¢)-symmetric formations over A,

stable isomorphisms} (n=-1)
{even (-c)-symmetric forms over A, isomorphisms} (n=-2)
((-€)-quadratic formations, stable isomorphismsj} (n=-3)
Ln(Ar€) (as defined below) (n < -4)

Ln(AIE) =

{connected n-dimensional e~quadratic complexes over A,
homotopy equivalences} (n21)
{(-)le-quadratic forms over A, isomorphisms} (n=2iK 0)

{split (—)le—quadratic formations over A,

stable isomorphisms} (n=2i+1 <-1).
Note that by Proposition 1.6.4

e

{e-symmetric formations over A, stable isomorphisms} ,

L) = Lhe)
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pefine the orientation-reversing involutions

< Mae) —— LM (Ae) 5 (C,9) > (C,-3)
(n€ Z)
- ih(A,E)—————*Ih(AIE) i (Co) ——>(C, -¥) ,
and use the boundary operations of §§1.3,1.6 to define the
boundary functors
3 e —— DL e) 5o (c,0) ——a(C,8)
(n€ Z)
3 Ln(A.e)—————’Ih_l(AIE) ;o (C) >3 (C, )
For any object x
-(-x) = x , a(-x) =-(3x) , 2I(dx) =0

up to natural equivalence. The morphisms of the [f-categories

will all be called homotopy equivalences; objects x,y of the

same L-category are homotopy equivalent x=y if there exists a

homotopy equivalence
f:x——»y ,
in which case there are also defined homotopy equivalences
£l oy ek, f o mx Ty L Of & x —» 3y .

An object x is closed if 3x =0, and it is a boundary if x = 3y
for some object y. In particular, boundary objects are closed,
and if x is closed (resp. a boundary) then so is -x. For n» O
the closed objects are precisely the algebraic Poincaré complexes,
and for n ¢1 they are precisely the non-singular forms and
formations.

Given objects x,y in the same [-category and a homotopy
equivalence of the boundaries of x and -y

f: Ix —22> -5y

define the union XKny to be the closed object of the same

l-category constructed as in §1.7. For closed objects x,y

XUy =x8y
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A cobordism (z;f,9) of objects x,y in the same
n~dimensional (-category is a triple consisting of an
object z of the corresponding (n+l)-dimensional [-category,
and homotopy equivalences

‘ f : ox —~-> 3y , g:xuf-y%az.
For closed objects x,y this is just the cobordism of §§1.1,1.7.

A surgery on an object x of an n-dimensional [-category

is an operation
X b X'

sending x to an object x' of the same {-category; for n» O
this is to be surgery on complexes as defined in §1.5, and
for n< 1 it is the translation of this surgery from the
lanquage of complexes to that of forms and formations.
For example, if (M,4) is an e-symmetric form over A and LCM
is a sublagrangian the operation

(M, $) ———>(M',0"') = (LL/L,$1/¢)
is a surgery on (M,¢).

Proposition 1.8.2 i) Cobordism is the equivalence relation on

MaLe)
the set of objects of {n € Z) generated by surgery
L (A, )
n
and homotopy equivalence. The cobordism classes of closed

cbjects form an abelian group with respect to the direct sum &,

LM (A, €)
namely (n€Z2).
(Ln(A,E)
LMn,e)
ii) If x,y,2 are objects of ) and f:dx —>uy,g:iy-=33z
& (A, €)
n

are homotopy equivalences then
L"(a,€)

(X Ug-y)B(y U _-2) = (xJ_ -2z) €
f Y Y g qf Ln(A'E)

<
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Proof: i) Immediate from Propositions 1.3.3,1.5.1 and 1.6.5.
ii) It is possible to obtain x ugf—z from (x uf-y)ﬁ(y ug—z)
by surgery (as in the proof of Proposition 1.8.3 below).
{1
The homotopy equivalence classes of the null-cobordant

LNa,e) LA, €)
)

(i.e those representing O in §

objects of 5.
~n(AE) L (AyE)

are in one-one correspondence with the following equivalence

J:‘l’H'l (A,€)

classes of objects of .
Ln+l(A’€)

Let 2-equivalence be the equivalence relation on the

MiaLe

objects of {(n€ Z) generated by the elementary
Ln+1(A'€)

operations:

i) x+——>sx' if x' is homotopy equivalent to x

ii) Xr——>x' if x' is obtained from x by surgery

iii) x———x' if x' = x@y for some closed object y

Note that dx =dx' in each case, so that the homotopy type
of 3x is an invariant of the 3-equivalence class of an object
For n+l =0 l-equivalence is just the J-equivalence relation
on forms defined in §1.7 above. Proposition 1.7.1 is the

special case n+l =0 of:

Proposition 1.8.3 The boundary operation defines a natural

one-one cCor respondence

DS,
}

) : {4-equivalence classes of objects x of
(Ln+1‘A’€)

—=/_5 {homotopy equivalence classes of null-cobordant
SaL e

objects 3x of } (n€ Z) .
[<phre)
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Proof: Given connected (n+l)-dimensional e-symmetric complexes
over A (C,¢),(C',9') (for some n3»0} and a homotopy equivalence
of the boundary n-dimensional e-symmetric Poincaré complexes
over A

£ : J(C,0)——>3(C",%")
there is defined a union (n+l)-dimensional e-symmetric
e~symmetric Poincaré complex over A

(C",¢") = (C\JfC',¢LJ—¢W
Surgery on (C',¢')®(C",¢") by the connected (n+2)-dimensional
e-symmetric pair (g:C'@éC"——>C', (0,¢'®$")) with

g=1(1 0 0 1)

(C'OC")[ = C;QC[QBC[_ QC; -——>C!

1 r
results in an (n+l)-dimensional e-symmetric complex homotopy
equivalent to (C,¢), so that (C,¢) and (C',¢') are 3-equivalent.
Similarly for the other cases.
(]

The matrix identity of Wall (4,p.63] was used to prove
that the odd-dimensional surgery obstruction group L2i+l(")
defined as the quotient of the stable (~)i—unitary group of Z(w]
by the subgroup generated by the elementary (—)i—unitary matrices
is in fact abelian. Proposition 1.8.3 is a generalization
of this identity, and also of the related normal forms of
Sharpe (1] and Wall {1l1] for the elementary (—)i—unitary
group. The normal forms may in fact be deduced from the
e-quadratic case for n+l =0 (as has already been done in
Proposition 1.9.2 iii}). The sum formula of Proposition 1.8.2 ii)
is an L-theoretic analogue of the Whitehead lemma of algebraic

K-theory.
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1.9 Products

The tensor product A®ZB of rings with involution A,B
is a ring with involution

A®,B —3A®,B ; agbr——asb = b .

1f e€A, NEB are central units such that

t-=¢lea , f=nles

then €®n € A@ZB is a central unit such that
(€8m) = (een) ' € A®_B
z

If C is a p-dimensional A-module chain complex and D is a
gq-dimensional B-module chain complex then(ZQBD is a
(p+g)-dimensional ABHZB-module chain complex, with AG%ZB
acting by
A&EBXCQED——*—»C®ZD ; (a®b,x®y)—> ax @ by
As in §I.8 there are defined products in the 0O-groups
+
B : Q"(C, e)®,0" (D,n) ———0" " (C /D, c8n) ;
*
{¢_ € Hom, (C ,C)MSIS;o}e(eseHomB(D*,D)Msts»o}

(-) (MF)S @rle

“we)s = o n s-r

N~

r

*
€ Homy g g (€D " C®ZP)) pinss

Lnd
= 27 Hom, (C*,C) . @ Hom,(D*,D) |s >0}

=00 mér 7 n-r+s
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® : Q"(C,e)®,0, (D) — >0, (CB®, D, c@N) ;

{@SeHomA(c*,C)mS]s )0}®{wseﬂomB(D*,D) s» 0}

n-s!

F~——+{(¢®w)s = ZO(_)(m+r)s¢)r®T;ws+r
r=

€ Hom, ®,B ((C®,D)*,C&R,D) . o

= x* * |
r}_wHomA(C vC) pap Egiomy (D*, D) |

which extend to the L-groups:

Proposition 1.9.1 Given A,B,€,n as above there are defined

external products in the L-groups

®: L"(A,)@,L" (B,n) —— L™ (A®,B, con) ;
(C,0) @ (D, 8) ———>(C&,,D,486)

®: LA, e)®,L (B,n)——L (A®, B, c®n) ;

(C,¢)Qb(D.W)*—***—*(CQQZD:¢®W)
for all m,n€ 2Z.

Proof: See Proposition I.8.1.

Given rings with involution A,R we shall say that
A is an R-module if there is given a morphism of rings with

involution
RQ%ZA — 3 A ; r®ar—>ra

(We are anticipating here the definition in §2.2 below of a

morphism of rings with involution).

e



v
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Proposition 1.9.2 If A is an R-module there are defined intet

products in the L-groups
®: L"R,0)@,L" (A, e) —— 1" " (A,0e) i (C,0)®(D,0)—>(CR,
®: L"(R,0)®,L (R, e)—— L, (A,pe) i (C,9)B(D,y)—>(CED,

for any m,n€ Z. In particular, the symmetric Witt group LO(Rl

e-symmetric L*(A,¢€)

acts on the % L-groups of A {

e-quadratic L,{(&,¢)

§®; L2 (R)® L, L* (A, €)———>L* (A, €)
®: 10 (R)® L, (A, €)——> L, (A, €)

with the element
(R,1:R——>R*;r — (s —st)) € LO(R)
acting by the identity.
Proof: Compose the external products given by Proposition 1.¢

with the L-group morphisms induced by RQ%ZA—————>A, defining

2P o) —— 1™ a,0¢6)

®

§® : Lm(R,D)®ZLn(A,€)-—®—»Lm+n(R®
. m
®@: L (R,D)@zzbn(A,E) “_"Lm+n(R®7ZA,D&€)'_—’Lm

o (B0

l

The symmetric Witt group LO(R) of a commutative ring R

(with any involution) is a commutative ring with respect to t
internal product LO(R)®ZZL0(R)—>L01R), with unit (R,1) € L°

g-symmetric L*(A,€)

L-groups ? of an R-module A are a

and the S
L,(Ae)

e—-quadratic

LO(R)-modules.



The external L-group products appear in the product

symmetric

formula ot Proposition 11.8.1 for the signature
quadratic

of the cartesian product of an m-dimensional

geometric Poincaré complex X

and an n-dimensional

normal map (f,b):M—X
{geometric Poincaré complex Y

normal map (g,c):N—-sY

m+n

o*{XxY) = o*{X) Bo*(Y)EL (Z[nl(XxY)))

o, ({(Exg,bxc):Mx N—> X xY)

o,(f,b) Ro,(g,c) + o*(X) Bo,{(g,c) + o,(f,b) Bo*(Y)
€Lm+n(Z["1(X><Y)]) ’
identifying nl(Xx Y) = nl(x) xnl(Y) and

Z[n (Xx¥)] = ZIn (X)]8 ,Z[" (V)] .



1.10 Change of K-theory

Given a ring with involution A define the duality involution

projective class Ko(A) = K, (A) /Ky (Z)
in the reduced group 4 _
torsion KI(A)

Kl(A)/Kl(Z)
of the underlying ring A
o ¢ Ky(A)——K,(A) ; x = [Pl ——>x* = [P¥]
* : Ky (A)— K, (A)
X = T(F:M—"2p N)———>3x* = 7 (f*:N* "> M*)
P a f.g. projective A-module
with

fe€ HomA(M,N) an isomorphism of based f.g. free A-modules

A *-invariant subgroup xG;Rm(A) {m = 0,1) is a subgroup X of Rm(A)

such that x*€ X for all x€X.

€-symmetric

The projective class of an n-dimensional {
e-quadratic

(C,9)
complex over A is the projective Euler class of C
(Cop)
- <
(cy = 1 (17ic 1€ LN LY

which is such that
[c1* = (-)"icr ek, (a)
The projective class is a homotopy invariant such that
~ (C,9)
[C) = 0 € KO(A) if and only if is homotopy equivalent to
(C: ¥}

a complex such that each Cr (r€z) is a f.g. free A-module

(of which all  but a finite number are O, by hypothesis).
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(C,¢)
complex over A ; is based if each

(C,¥)

Cr (r € Z) is a based f.g. free A-module.

e~-symmetric
An

e-quadratic

e-symmetric
The torsion of a based n-dimensional Poincare
e-quadratic

(c.e€0"(C,c}) .
complex over A is the torsion of the, Poincare
(C,veq (C,e)) ‘

duality chain equivalence

It

o= (¢o;c""'——-c; €R, (a)

-
1

(T )y Ct 0 e Ry (1),
which is such that
™= ()"tek () .
In dealing with the torsion of based complexes we shall assume
that
T(c:A-—3) € X €K

which is automatically the case if € = t1 € A,

As in §I.9, given a *-invariant subgroup X ERm(A) {m = 0,1)

: n
e-symmetric LX(A,c)
define the intermediate L-groups of A X (nezZ)
e-quadratic Ln(A,c)
L7 (A, €) )
in the same way as but using algebraic Poincare complexes
Ln(A,E)

with K-theory in X, meaning the projective class if m = O,

and the torsion if m = 1 (in which case all the complexes are

to be based). In particular, for X = RO(A) we have

. .
LKO(A)(A'E) L*(A,€)

K. (A)
L, (a6

L}

L, (A, €) .

0N



The Tate Ez—cohomology qroups ﬁ"(z2;G) of a Elzzzl-module

G are defined by

87(z,:6) = (9€G|Ta= (-)"g}/{h + (-)"Th[h€G} (n(moa 2))

Proposition 1.10.1 Given #*-invariant subgroups XEYGim(A) (m=0

there is defined an exact sequence of the intermediate

gc—symmefric

L-groups
€-qguadratic
n n K _An n-1
...——sLx(A,e)———yLy(A,e)———»H (ZZ;Y/X)-————be (A,e) —.
X Y K _an X
.o .——)Ln(A,c)—+Ln(A,E)————+H (&2;Y/X)————)Ln_1(A,€)——~> .
(n€ Z)
with Te€ 22 acting on Y/X by the duality involution, with x the

map associating to an algebraic Poincaré complex the Tate
z, -cohomology class of its K-theory.
Proof: See Proposition I.9.1.
(]
As in §1.9 we introduce the following terminology for

the intermediate L-groups

Lx(Are) = Uy (ace) for XSK,(a) , Ly(hre) = Vy(hre) for XcK, (i
LXa,e) =u¥a, 0 ° X, 0 =via, e !
n n n n

UEo‘A’ (h,e) = uM(Ae) (= LA, e)

uKOm (A,€) = U _(A,€) (= L (A,€))

n n n*e

n - n — n
VKI(A) (A,e) = U{O} (A,e) = V (A,e)

K, ()
an (A, )

Ur{]o} (A,e) = vn(A,e)
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For € = 1 € A the notation is contracted in the usual fashion,

for example

L&(A,l) = L;(A) .

The original surgery obstruction groups of Wall [4] are
the simple quadratic L-groups of a group ring Z([n] with a
w-twisted involution

VE"}

LS (n,w) = (zZInl) .

The Lh—groups of Shaneson [1] are the free quadratic L-groups
h
Le(m,w) = V(2Z[n]) ,

and the Rothenberg exact segquence

...—-~L:(w,w)-———fL:(ﬂ,w)————»ﬁn(zz;Wh(ﬂ))————»Li_l(n,w)———+...

is the special case of the exact sequence of Proposition 1.10.1
for the intermediate gquadratic L-groups associated to
x = {n} © v =K (z[1]) ,
simple
since Y/X = Wh(m) is the Whitehead group of n. The
finite
L3 (n,w)

L-groups { h are the obstruction groups for surgery to
L,(m,w)

homotopy equivalence on topological normal maps (f,b):M--->X

{Simp]e

( simple

from compact manifolds M to geometric Poincaré

1 finite
complexes X. The projective quadratic L-groups originally
introduced by Novikov [1}

(W) = v, (zin])

have two distinct geometric interpretations: either as
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the obstruction groups for surgery to proper homotopy equivalence
on normal maps from paracompact manifolds to infinite locally
finite CW complexes with the Poincaré duality of such manifolds,
as in Maumary (1] and Taylor [1l], or else as the obstruction
groups for surgery to homotopy equivalence on topological

normal maps from compact manifolds to finitely dominated
geometric Poincaré complexes (i.e. Poincaré complexes in the
sense of Wall [3]) as in Pedersen and Ranicki [l]}. See Hambleton [1}
and Taylor and Williams (3] for applications of projective
L-theory to the description of the surgery obstructions of
topological normal maps of closed manifolds with finite
fundamental groups.

Proposition 1.10.2 The surgery obstruction of an n-dimensional

topological normal map (f,b):M——> X with X

simple G,(f,b)=OGL:(n1(X),w(x))
finite is such that 0,(f,b)=()€[£(nl(X),w(xH

finitely dominated o lf,b)=0€ Lgml(x) ,wi(X))
(£,b) 1M —> X
if (and for n 35 only if) (f,b):M—> X is normal
(£,b) x 1:Mx SL——> x x 51

simple

bordant to a ~ homotopy equivalence.



Given a topological normal map of n-dimensional pairs
((f,b),(3f,3b)) : (M,3M) ——> (X, 3X)
such that 3f:JM——> 3X is a homotopy equivalence there is

drfined a relJ surgery obstruction o,(f,b) € Ln(Z[nl(X)]) such

that the analogue of Proposition 1.10.2 holds for topological
normal bordism rel (3f,3b). By the realization theorems of
Wall [4,§85,6) every element of Ln(z[n]) (n »6) for a finitely
presented group m is the reld surgery obstruction ‘o, (f,b)

of such a topological normal map (f,b): (M,3IM) —>(X,3X).



§2. Relative L-theory

Bass [1] related the projective class group KO(A) of a
ring A to the torsion group Kl(A) = GL{A) /E(A), associating
to a morphism of rings

f: A——B
a change of rings exact sequence

f N f
Kl(A) » Kl(B) Kl(f) KO(A) rKO(B)

with the relative K-group Kl(f) defined to be the Grothendiech
group of triples (P,Q,h) consisting of f.g. projectjve

A-modules P,Q and an isomorphism h€ HomB(BGbAP,BdaAQ).

The sequence extends on the right to the lower K-groups
Kn(A) (n£-1) of Bass [2,XII] and on the left to the higher
K-groups Kn(A) (n22) of Quillen [1],{2} (with K2(A) the
Kz-group of Milnor {4])

f
..—*—+Kn(A)~———*Kn(B)——* Kn(f)—-—*Kn_l(A)——~#... (n€ Z)

Gersten [2] constructed a spectrum K(A) such that

K (A} = n (K(A)) (n€Z) ,

so that the relative K-groups K,(f) can be defined to be the
relative homotopy groups of the induced map of spectra

Kn(f) = nn(f:K(A)—*!ﬂ(B)) (n€ z2)

Wall [4] used the geometric interpretation of the surger
obstruction groups L,{(n) for a finitely presented group n as
bordism groups of normal maps to geometrically define the
relative L-groups L, (f) of a morphism f:n——>n' of such groups

as relative bordism groups, fitting into an exact sequence

cee— L (1) -f——)Ln(n')—+Ln(f)—+Ln_l(n)——> .ev (n(mo

\‘-‘/ "&\
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Wall [4,§7] also gave an algebraic definition of the

odd-dimensional relative IL-groups L 1(f), as the Witt groups

2i+
of pairs
(non-singular (—)1—quadratic form over Z (7} (M,V¥),

lagrangian L of the induced form over Z([n'] Z[r'] ® (M, Vb))

Z([n}
Sharpe [2] gave an algebraic definition of the even-dimensional
relative L-groups L2i(f) (which however only applies to the
simple L-groups, since it is based on the unitary Steinberg
group relations of Sharpe [1]).
Following the definition in §2.1 of algebraic Poincaré
e-symmetric
triads we shall define in §2.2 the relative
e~quadratic
LME, e)
L-groups (n€ Z) of a morphism of rings with involution
L (f,¢€)
n

f:A———B, to fit into an exact sequence

iAo LB, o) ——L (£, ) — L L A, e)—>. ..
£ (n€ 2Z)
..———»Ln(A,6)————*Ln(B,e)~——*Ln(f,E)‘——* Ln_l(A,s)——>...
L (f,¢€)
For nz1 is defined to be the relative cobordism group
L_(f,€)
n

of pairs

e-symmetric (C,¢)

Poincaré complex over A { ,
(C.¥)

((n-1)-dimensional {
e-quadratic

e-symmetric .
n-dimensional Poincare pair over B
e-quadratic

(g:BB,C ——>D, (5¢.%)) B8, (C.$)
)

® bounding
(9=B@AC"-—?D,(5W,¢)) B@A(C,W)

in evident analogy with the definition of relative geometric
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n
L (f,e)
cobordism groups., For n{ O is defined in terms of
L _(f,e)
n
forms and formations. (In Ranicki [12] there will be defined
@, e)
spectra such that
L,(A€)

1, (IO (A,€)) = L*(A,€)

Te(Lg(A,e)) = L,(A,¢)
using algebraic Poincaré n-ads, allowing the relative L-groups

to be defined as relative homotopy groups
{ L*(£,€)
L,(f,€)

See Ranicki [7] for a brief discussion of the algebraic

e (£:L°0 (A, ) —— 10 (B,€))

Ty (£:Ly (A, €) ——> L (B, €))

IL-spectra . The e-quadratic IL-spectrum ED(A'C) may be defined
using forms and formations, as was in Fact done in Ranicki [5]).
In §2.3 the construction is extended to some of the other

types of relative L-groups arising in topology, such as the
e—hyperquadrati7 in(A,e) (n€ Z) which fit into a long exact
sequence Lo

4T, J L, H
e Ln(A,e)-——w——a L (A,e)——>L (A,e)————*Ln_l(A,e)——+...

(nez) .

" (£:A——B,¢)

)
W
e

In §2.4 we shall define the I'-groups {
rn(f:A———+B,€)
e-symmetric
of cobordism classes of n-dimensional [ complexes
e-quadratic

;
. n -~ 3 :
over A which become Poincare over B, for some morphism of rings

with involution f:A-———B. The quadratic T'-qroups T, (f) z I, (f,1)



will be identified in §2.5 with the homology surgery obstructic
groups originally defined by Cappell and Shaneson [1]. (The rel
homology surgery theory will be discussed in §7.7 below).
TME, €)
We shall also define lower TI'-groups T (n<-1), using
n

forms and formations. Given a commutative square of rings with

involution

A——m—>A'
fl r lf-
B~——>B'
" (F,e)
there will also be defined relative I'-groups (n€ Z)
I (F,e)
n
to fit into a long exact sequence
T, e) — T (£, ) — T (F,e) —T" L (£, e)— ...

...———+Fn(f,e)———+rn(f',e)-———*Fn(F,e)————*Fn_l(f,er——* cee .

T*(F,¢)
The relative TI'-qroups in the special case 1 : A—sA' =,
T, (F,€)
c-symmetric
will be expressed as the cobordism groups of the
e-quadratic
complexes over A which become Poincaré over B and contractible
over B'. This expression will then be used in §3 for the
commutative square
1%[\

[ ]

———> S5 A

associated to a localization map A 74——45_1A inverting a

multiplicative subset SCA, allowing the relative L-groups



ated

L* (A—S 1A, ¢)
(of the appropriate intermediate type) to b

L,,(A——»S—IA,E)

L*(A,S,¢€) e-symmetric
identified with the L-groups of

L,(A,S5,€) €-quadratic

Poincaré complexes over A which become contractible over S‘lA
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2.1 Algebraic Poincaré triads

e-symmetric (T,€)
An (n+2)-dimensional triad over A (n20)
e-quadratic (r,c)

is a triad of finite-dimensional A-module chain complexes

C
r: f'l
D

such that C is n-~dimensional, D and D' are (n+l)-dimensional,

—_—.g_,D

b

[} 9 >C'

C' is (n+2)-dimensional, together with an element

o = (6',80",80,0) €™ 2(r,0)
Y= (60,800 €Q (T, €)

e~symmetric
of the triad Q-group defined in §1.3. Such a triad
e-quadratic

is Poincaré if
e-symmetric

i) the (n+l)-dimensional pairs over A
e-quadratic

(£:C —— b, (56,4) € Q" (£, e))

(£:C———D, (8¢,¥) €Q f,e)) ,

n+l(
{ﬁ':c_—*o-,(so',m e (e, en)

(£':C——D', (89" /Y) €Q , (f",¢))

are Poincare
ii) the A-module chain map

® C,n+2-*

o ———C(T)

C,n+2—*

(1+’I‘E)\}‘O > C(T)

defined by



%
n-r
()" T80 09
° =
o -
Erlogh* + (1) Te0 fagt
¢Of*g*
yn+2-r - O '
: C —>C(r), = C;8D 8D .8C
(147, ¥
()" 7F (e ) S99t
(14T ¥y =

B n-r gt
£'(L+T Jygh* + (=)0 " (1+T ) 8¥5g"*

*
(14T ) ¥ f*g*

. ~an¥2-r - o '
: C e C(F)r CrQDr-lonr-lmcr—z

is a chain equivalence.

Proposition 2.1.1 There is a natural one-one correspondence
between quadruples

c-symmetric . (C,¢)
(n-dimensional Poincare complex over A ,
e-quadratic (C,¥)

c~symmetric
. ; : - R
{(ntl)-dimensional Poincaré pairs over A
e-quadratic

(£:C—>D, (6¢,¢)) (f£':C——>D', (8¢',¢)) (C, 9}
' bounding ,

(£:C—D, (§¢,4)) (£':C—>D", (6d"',9)) (C,¢)

e-symmetric .
(n+2)-dimensional Poincare pair over A
e-quadratic
i
(e:D\JCD'-—~——>C',(¢',6® U . 80'))
¢ with boundary the union
(e:DL)CD'—————»C',(w',dw\dew'))

{u)uco'.aw\J®s¢w

\aw‘)

(DuCD',*wU‘l
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e~symmetric
and (n+2)-dimensional Poincaré triads over A
e-quadratic
(r,9)
, under which
(T, ¥)
C—~f~—aD
|
. f.l\lg.

D-__g____)c|

(680", 80,0) €™ 2 (r, )

—
< B
1] W

(W' 89" 84, 9) €Q o (Tve)

e=t(a () g7

L - : L
(DUD') = D 8C 8D ——>C/

e-symmetric

A cobordism of (n+l)-dimensional Poincaré
e-quadratic

(£:C—D, {64, 90)) (£':C'—D', (8¢',0"))

pairs over A is an

(£:C——D, (84,¥))  ((£':C'——D", (69 ,9'))

e-symmetric (r,e)

Poincaré triad over A {

(nt2)-dimensional g
(I, ¥)

e-quadratic
such that 5 is defined by

b o)

cec' ————— DD’

(g g") (k k') (h h*)

sC -—££———+6D

and



(69, v, 800-66",08~0') € Q"2 (r, €)

L,

As it stands this cobordism relation is trivial (i.e. with a

(8X, X, S¥B-8%", ¥@-47) €Q (T, ¢€)

e-symmetric .
single equivalence class), since every Poincare
e-quadratic
(£:C—D, (§¢,0)) g-symmetric
pair

is cobordant to O by the {
(£:C——D, (8¢,¥))

g-guadratic
(r.(0,68¢,68¢,¢))

Poincaré triad { with T defined by
(T, (0, 6¢,8¢,9))

c—f p
r : fl—\\g\*ll

D——~L——»D
However, in the applications we shall be considering the coborc¢
of algebraic Poincaré pairs in which the boundary is restrictec
in some way. The above null-cobordism will not in general be
restricted in that sense, so that the restricted cobordism neec
not be trivial. In verifying that such restricted cobordisms
are in fact equivalence relations we shall make use of the
following algebraic glueing operation, which is an evident
generalization of the union of algebraic Poincaré cobordisms
of §1.5. (The glueing is reguired for the verification

of transitivity; reflexitivity and symmetry are clear).



Let
(£:C—>D, (8¢, ¢)), (£':C"—> D", (8¢',6')), (£":C"—— D", (64", ¢"))
{(E:C———H’D,(SWpW)).(f':C'”—“*'D',(ﬁw'-W')).(f":C"-v~aD",(6$":¢"))
) ) {c—symmetric .
be (n+l)-dimensional Poincaré pairs over A.

e-quadratic

e-symmetric .
The union of adjoining Poincaré cobordisms of pairs

e~quadratic
i(r,«a
(l,V¥

with

"

(Su,v,868-8¢',08-¢")), (T',0'=(8v',v',8¢"@-50",0'0-0"))
(SX, X EYB-8¢' , 40-¢')), (T', ¥’

[}
[}

(6x° ’answle_swu'wue_wu))

fof'
cec' —————— DaD’

(k k')

r: (gg" (h h')

8§t
8¢ —— > §D

f'af”

crec” D'eD"

rr @ 9" M 1 (R ")
st

§C' ———————— 8D
is the cobordism

(T 0" = (6v",v",808-8¢",08-¢"))

(Tugl' o )

(56',6n°
(T ¥ = (8x", X", 6UB- 54", ¥@-Y") )

u

(rLJfF"W‘J(5W':¢')w')

with
fef"
cec" ——————> DBD"
(3 ) } Nk KD l (h b
ser o BET Sspe
defined by
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dee (177Mg" 0
dgen = | © des 0
r-1-~
o] (-) 9' dSC'

[ [ ' " = ' '
6CY = 6C_8C)  ®6C; ————>6Cy ) = §C _)8C, ,86C,

r-1, ,
dGD (-) h [¢]
ddD" = o] dD' (o]
_yr-1-,
[o] (-) h d6Dl
"o | " = .
GDr = GDKQD[_1$6D;-——~4-—+6Dr_1 6Dr_l$Dr_206D;_l
[o]
a a" = . " [T ' [
(g g") o] [¢] : CIQCI-—————«MSCr GCIG’Cr_lOéCr
o q"
h o]
g = . " LU [l [
(h h") o] Q : DraDr————————-+GDr SDrQDr_lﬁéDr
o h"
k o]
(k k") = o 0o 1 C 8Cp ———=8D, = 8D, ,,@D ®6D]
o K"
Vg [o] (o]
P _\h-r ., _ n-r+s+l
vp= | e ) Toiy O
S L]
(¢} (-} Q'Qé Vg

6C..n-r+s+1= 6Cn—r+s+1$C.n—r+s$6C,n-r+s+1

e ey §CT = §C BC! BSC!
r ror-1 r

(s20, ¢! =0



§v! =
S

: 8

6xs =

Xs o o
(_)n—r+1¢ég,* (‘)n_r_STeW;+1 o
0 (—)sg'lb; Xg
6C"n~r—s+l - 5c"_r-S+IQC'""r'sméc'"‘['5+l
—————>6Cy = 6C 8C;_ @8C!
Svg 0 0
(—)n_r+1véh'* (—)n-[+s+2Tevé-1 o
o ()% vy sv.
D"n-r+s+2 _ 6Dn-r+s+2$D,n—r+s+196D.n—r+s+l
———— o} = dpen;_esp;
GXS [0] o}
(_)n—r+lxéh.* (‘)n_r+5+1T€Xé+1 o
0 (-)h"x} 8y
6D"n—r—s+2 - 6Dn—r—s+2$D,n-r‘s+lm6D,n—r—s+2
—————>éD; = 6D @D’ ,@éD!

) he o\

£ o
(- N af

’ ' S - ' '
& 8C)_ ®6C) ——6D" = 6D 8D!_ 88D/

W



2.2 Change of rings

Let A,B be rings with involution.

A morphism

f: A———-B

is a function such that

f(at+ta') = f(a) + £f(a') , flaa') =f(a)f(a'),

fla) =f(a) , £(1) =1 € B (a,a' € A) .
Regard B as a (B,A)-bimodule by

BxBxA ————»B ; (b,x,a) ———b.x.f(a)

An A-module M induces a B-module BaAM, with BlAB = B, If N is
another A-module there is defined a morphism of abelian groups

HomA(M,N)———*—+HomB(BuAM,BuAN) ; g——(lag:bax+——>bag (x))

If M is a f.g. projective A-module then Ba,M is a f.g. projecti
B-module, and there is defined a natural B-module isomorphism
* I
Ba, (M*) ——(Ba,M) ® ;
bag+— (cay —— c.£(g(y}).bB) ,
allowing us to write

Ba,M* = Ba, (M*) = (BaAM)..

1f C is an (n-dimensional) A-module chain complex then BuAC is
an (n-dimensional} B-module chain complex, and the Z-module
chain map

C-—————,BnAC 3 Xp————s l@X

C*———~—»BDAC* : g (hax—s b.f(g(x)))
induces a change of rings Z-module morphisms in

{homology

cohomology



%’ £ : Hy(C)——H, (Bm,C)
f i H*(C)———H* (Bm,C) .

Let gAeA, CBEB be central units such that

—_ _ — _ -1 -
€, = € €A, €g = g € B, f(eA) = £p € B .

Given a finite-dimensional A-module chain complex C let TE€ z,

act on HomA(C‘,C) by the eA—duality involution T and on
A

. _ : R X
HomB(BaAC ,B.AC) by the € duality involution TCB.

The z[zzl-module chain map
f : HomA(C’,C)——————aHomB(BnAC*,BnAC) H

¢ ——— (bax —— (cayr—— c. £ (x(d(y))) .b))

(b,c€B, x,y€C*, BnAC = (EIAC*)*)

induces a natural transformation of the long exact sequence: of
QO-groups given by Proposition 1.1.2

H 147

8™ ) —— 0 (C,) ——Es 0™ (C,e) — 07 (C ) —— ...

H 1+T J
..._»én*l(BuAc, €)—0, (Bm,C,€) — Q" (Ba,C,c) —Q" (Be,C,e)—> ...

denoting both €A and €g by €. It follows that the various
algebraic Wu classes of §1.4 are invariant under the change
of rings. For example, the e-symmetric Wu classes v*(¢) of

an element ¢ € Qn(C,c) are such that there is defined a

commutative diagram



H o) ——f i (e, 0)

v, (9) v, (lap)

n-2r n-r

W25z, (1) T ) —————1" "2 (z,;B, (1) e

e~symmetric
An n-dimensional { (Poincaré) complex over A

e~quadratic

(C,4) e-symmetric

induces an n-dimensional (Poincaré)
(C,¥) e-quadratic
complex over B
{‘BaA(c,o) = (Ba,C,la¢)

Ba, (C,¥) = (Bm,C,lay) '

and similarly for pairs.

Proposition 2.2.1 A morphism of rings with involution

f : A— B

€-symmetric
induces morphisms in the L-groups
e-quadratic

£: L"(A,e)——L"(B,e) : (C,6)——> Ba, (C,$)
(n€ 2)
f : Ln(A,e)-———*Ln(B,E) i (C,y)——>Bag, (C,¥) .
[
e-symmetric
Define the (n+l)-dimensional relative L-group
g-quadratic

+
L™ (g, e)
(n) 0) of a morphism of rings with involution
Ln+1(f’€)
f:A———>B to be the abelian group of equivalence classes of

pairs



e-symmetric (c,4€Q"(C,

(n-dimensional % Poincaré complex over A {

e-quadratic (c,veq (c,

e~symmetric .
(n+l)-dimensional Poincare pair over B
e~quadratic

{(Q:BGAC—————#D,(6®,¢)€ Qn+1(g,€)) Ba, (C,9)
)

with boundary {
(g:Ba

C——D, (8¥,4) €0Q_,  (9,€)) Ba, (C, V)

A

under the relative cobordism equivalence relation

({C,0), (9:Ba,C——D, (66,8)) ~ ((C',0"), (g':Ba,C'——D’, (§¢',0")

({C,¥), (g:B@,C——D, (8¢, )} ~ ((C',¥"), (g :Bm,C'—>D", (59, ¥")

if there exists a pair
e-symmetric

({n+l)-dimensional Poincaré pair over A
e~quadratic

((h h'):ceC'——E, (v,08-6") € Q" 1 ((h '), €))

’

((h h*):C8C'——E, (x,48-4") €0_,, ((h h'),€))
c-symmetric

(n+2)-dimensional Poincaré triad over B
e-quadratic

(T, (8v,1@,v,608-80",1a, ($8-¢")) € Q™2 (r,e))

(T, (X, lm,x, 6U@-8" , 1m, (¥8-0")) €Q (T, €))

with
g8q’
B@A (CHC"') e3> DOD !
r : lﬂA(h h') )
>
B8, E F



The verification that relative cobordism is an equivalence
relation proceeds as in the absolute case in §I.3, with
transitivity requiring the union operation defined in §2.1
above. Addition in the relative L-groups is by the direct sum

and inverses are given by changing signs, as in the absolute

case.
t-symmetric (L*(£,€)

Proposition 2.2.2 The relative L-groups
e-quadratic L,(f,€e)

fit into a change of rings exact sequence
e e e L, o) S (B ) L (£, 6) —». .. —10(B, ¢
{ ...——,Lml(f,e)—-.Ln(A,e)—QLn(B,e)—>Ln(f,e)-—»...-«Lo(s,e
involving the forgetful maps
gLnH(B'E)——_ﬂnﬂ(f'E) i (D, 66)——> (0, (0:0 —D, (66,0)))
L1 (Bie)—— L . (£,8) i (D,84)—— (0, (0:0——D, (6¥,0)))
"™, e ——— LA, (n30)
((C:¢):(9:BQAC ——> D, (§¢,180)) ) ———> (C, ¢)
Loy {fre)——L (A, 8) ;

({C, %), (g:BR,C —> D, (8§¥,18¥) ) ) ——— (C, 1)

L™ (A, €) L" (8, €)
Proof: Exactness is obvious at fn20) and (n
L (A, €) L (B,€)

A )
As for (n 20) consider
L (f.¢)
n+l

{ ((C1¢) . (g:BBLC ——»D, (56.180))) € ker (L™ 1 (F. &) ——L"(a. )]
((C.¥) . (q:BB,C——D, (84,18Y))) € ker (L_,, (F, ) —>L_(A, €|
(h:C——E, (v, 8))

so that there exists a null-cobordism { over !
(h:iC———E, (X, ¥))

— -~



(C,9) e-symmetric
of . Write the union (n+l)-dimensional

(C,¥) e-quadratic
Poincaré complex over B as

(D',84")

(DlJBEACBﬂAE,6¢L)1u¢1ﬂv)

(D',8¢") (

BAE,éwu 18x)

PUpg B 18y
A
€e-symmetric .
and define an (n+2)-dimensional Poincare triad
e-quadratic

over B

g(F,(o,lav,6¢$—6¢',1u¢))
(FI(OIIQXIGW—Gw.Ilaw))
by
(9
o}
L]
BEAC-——~—————————+ D&D
r : 1®h k (i 1)
J .
B@AE —_— D ’
where
1
.o . Vo
1 =10 |: Dr————~~‘-)Dr DrGBﬂACr—leBQAEr
]
]
j =1 O |: B&. E v =
J AE,—— Dr DrQBEACr_IQBﬂAEr
1
(o]
= _r - =
k={ (-) : BEACI———--——~—»DQ+1 Dr+10B@ACr$BEAEr+l
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((C,4), (g:BB,C——>D, (66,186))) € L™ 1 (£, €)
It follows that
((C,¥),(g:B@®C——D, (8¥,18¥))) €L ., (f,€)

(0,667 € L™ (p,¢)

is the image of § under the natural map.
(D',8y') € Ln+1(B,€)

)

Define the (n+l)-dimensional relative even e-symmetric

n+l

L-groups L(VCQ (f,e) (n3 0) of a morphism of rings with
involution f:A——»B to be the relative cobordism groups of
pairs

(n-dimensional even ¢-symmetric Poincaré complex over A (C,¢),

(n+l)-dimensional even e-symmetric Poincaré pair over B

(g:B8,C——> D, (5¢,18¢))) .

where the (n+2)-dimensional e-symmetric Poincaré triads
appearing in the relative cobordisms are even in the sense
that all the e-symmetric Poincaré complexes and pairs
associated to it by Proposition 2.1.1 are even,

Proposition 2.2.3 i) The relative even e¢-symmetric L-groups

L(vo>*(f,e) fit into a change of rings exact sequence
...————9L(vo)n+1(f,e)——~—+L(vo)n(A,e)-—E—*L(vo>n(8,s)
—~*L®8"ﬁm)——»“n—ﬁL@&omm)
ii) The skew-suspension maps

n+2

5 : L"(f,e)——»L(vo) (f,-¢)

((C,¢),(g:BﬂAC'—“~—+D,(6¢,1ﬂ¢)))
|

——— {(SC,5¢), (9:BR,SC——5D,5(6¢,18¢)))

(n21)
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S L (f,e) ——>L (f,~€) ;

n+2
((C:W):(qu@AC‘-*'“’Dr(5¢,1@¢)))

F———-—»((SC,§¢),(q:BEASC-———4SD,§(6¢,1E¢))

are isomorphisms.

Proof: i) By analogy with Proposition 2.2.2.
1.4.2

ii) This follows from Proposition by applying the
1.2.2 1) ;

5~lemma to the skew-suspension morphism of the change of

rings exact sequences.

e-symmetric
Define the lower relative L-groups
e-quadratic
LM (f,€)
(n< O0) of a morphism of rings with involution
L (f,€)
n
f:A———>B by
L<vo>”"2(f,—e) n=0,-1

coker ( (ker (1+T__: L (B,-€) —>LLvy Y0 (B,=¢))

L" (£, ¢) ,
E— Lo(f,~€)) n=-2

Ln(f,c) (as defined below} n (-3

_ ! .
L (E,e) = L . (f,(-)7€) (ngO, nt2i21)

: n
e-symmetric L (f,e)

Proposition 2.2.4 The relative L-groups
e-quadratic Ln(f,e)

(n€zZ) fit into a long exact sequence
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f

%:...—-»L"*l(f,s)-—+L”(A,e)—li—>L"(B,e)~——+L"(f.£)————*...
.———*Ln+l(f,€)——+Ln(A,e)-—*-»Ln(B,€)~——’Ln(f,€)~——*

]

In the range -~»¢ng1 the change of rings exact sequenc
of Proposition 2.2.4 can be expressed entirely in terms of th
Witt groups of forms and formations defined in the absolute

case in §1.6
o Ay e (B) — M () —— L5 () —o 16 (B) —> LS (£)
[

— M<vo>‘€(A) —5—*M<v0>‘e(s)————+m<vo>’ (f)

—_ L<v0>'€(A)——£—+L<y0>'e(B)«—-—»L<v0>'s(f|

——*ME(A)—£—+M€(B)———»M£(f)———9L€(A)—£a-LE(B)—-—*LE(f)

—aM_ (A M By M__(F) — L (A) — ...
The relative Witt groups of forms and formations are defined
as follows.

The full force of the equivalence relation of
Proposition 1.3.3 i) (between the homotopy equivalence classe

ie—symmetric .

of Poincare pairs and those of connected

e-quadratic

e-symmetric e-symmetli
complexes) allows the higher relative
e-quadratic e-quadrat
Ln+1(f,s)
L-groups (n20) to be expressed as the cobordism
Lnep (E0€)

groups of triples
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(€, )
v

e-symmetric .
(n-dimensional Poincare complex over A
e-quadratic
e-symmetric (D,v)
connected (n+l)-dimensional complex over B R
e-quadratic (D, X)
9:B@, (C,4) —> 3(D,v)
homotopy equivalence
q=BﬂA(C,‘l’)——-—>B(D,X) .

((C,9),(D,Vv},q)

A cobordism between two such triples { ’
((C,¥), (D, x),9)

((C',¢'),(D',v'),9")
is a quadruple

{((C*, "), (D' ,x'),9")
g-symmetric (E,8¢)
(connected (n+l)-dimensional complex over A '
e-quadratic (E,S¢)
h : 3(E,8¢0) —— (C,-$)1B(C',4")
homotopy equivalence ’
h : 3(E,8¢) —— (C,-§)®(C* ,y")

e-symmetric (F,8v)

connected (n+2)-dimensicnal { complex over B {

’
e-quadratic (F,8x)

homotopy equivalence

5 BE, (E,50) U (gg1) (1gh) ((DrV)@(D'1=v")) —— 3 (F,6v)

1 BﬂA(E,GW)LJ(ggq.)(l@h)((D,X)Q(D':‘X'))-———*3(F15X)
In the low-dimensional cases this formulation translates

directly into the language of forms and formations:
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Proposition 2.2.5 The O- (resp. 1-) dimensiocnal relative

Li(e, e

e~-symmetric Lo(f,e)
even e¢-symmetric L-group L(v0>0(f,s) {resp. L<v0>l(f,e))
e~quadratic Lo(f,e) Ll(f,e)
is naturally isomorphic to the relative Witt group
IAST ) ME(£)
L<v0)€(f) (resp. M(vo)e(f)) of cobordism classes of triples
Le(f) Me(f)
even (-¢)-symmetric
{non-singular (-€)-quadratic formation
split (-e¢)-quadratic
e-symmetric
(resp. . even e-symmetric form) over A x,
€-quadratic
€e-symmetric
even t-symmetric form (resp. formation) over B y,
e-quadratic
even (-e)-symmetric
stable isomorphism of (-¢)-quadratic formations
spiit (-€)-quadratic
e-symmetric
(resp. isomorphism of even e-symmetric forms) over B
e-quadratic

g B@Ax ——— 3y ) R

where two such Hriples (x,y/g),{x',y',g9') are cobordant if

there exists a quadruple
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e-symmetric
( even e-symmetric form (resp. formation) over A z,

e-quadratic
stable isomorphism of formations (resp. isomorphism of forms)
over A

h : 5z2—» x®-x B

e-symmetric

even e-symmetric formation (resp.

split e-quadratic

connected 2-dimensional e-symmetric

(-€)~-symmetric form ) over B w,

even (-¢)-symmetric form
isomorphism of forms (resp. stable isomorphism of formations)
over B

kit ow —————>(BRRZ) U 1.1y (1gn) (YY) ).

(]
(In the cobordism relation for Ll(f,e) = Le(f) we are using
Proposition 1.6.4 to identify the boundary of the connected
2-dimensional e-symmetric complex 2z, a l-dimensional e-symmetric
Poincaré complex 3z, with the corresponding non-singular

e-symmetric formation).

-
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In §§3,4 we shall need the following extension to the
relative L-groups of the products of §1.9.

Proposition 2.2.6 Let R be a ring with involution, and let

f : A— B
be a morphism of rings with involution which are R-modules,
with f also an R~module morphism (f(ra) = rf(a) €B for all
r € R,a€A). There are then defined products

@ : LR, 0)8,L" (f:A—>B, ¢) — L™ (f:A——» B, pe)

(m,n€ Z)

@ : Lm(R,p)ﬂan(f:A——)B,e)—«»L {f:A—> B, pe)

mtn
Proof: Immediate from Proposition 1.9.2 and the definition of

the relative L-groups.

In particular, the symmetric Witt group LO(R) of a
commutative ring R (with any involution) is a ring with
o e-symmetric
1 = (R,1) €L (R}, so that the relative L-groups
e~-quadratic
L*(f, €)
of an R-module morphism of rings with involution
L,(f,€)
f:A— 3 B are all LO(R)-modules, and the change of rings
exact sequence of Proposition 2.2.4
cei— LA, 0 —E L (B, &) s L, &) —— P A, ) s ..
3...-———*Ln(A,e)—£——)Ln(B,e)——»Ln(f,e)—»Ln_l(A,e)-——> ..
(n€ 2)

is an exact seguence of LO(R)—modules.
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2.3 Change of categories

The unified L-groups of §1.8 were constructed using the
{-categories and the 3-functors. We shall now define relative
L-groups for a Jd-preserving functor of the f-categories, which
include the change of rings relative L-groups of §2.2 as a
special case.

Let A,B be rings with involution, and let EAGA, €. €B

B
be central units such that

As in §2.2 both €, and €, will be denoted by €,

A B

e-symmetric

An €-quadratic chain functor

€-hyperquadratic

F: [¥(A,€) ————> {*(B,¢)
F: L, (A ) — [,(B,¢)
F: Ly(A, ) ——— L*(B,¢)
(F: (A, &) —£"(B,e) Ine z)
is a collection of additive functors {F:Ln(A,e)———*Lh(B,c)lne 2z}

(F:.cn(A,e)——»L.“(B,e) Ine z}

such that 3F = F) , -F = F- (up to natural equivalence). There

are induced abelian group morphisms in the cobordism groups

F: LA, e)———1L"(B,¢)
F o Ln(Arf)——————* Ln(Ble) (n€ z2)

F : Ln(A,e)—-————»L"(B,e) .

L(F,e)

Define the relative L-groups of F Ln(F,e) (n€EZ) to be the abelian

LN(F. ¢)



groups of cobordism classes of triples (x,y,f) consisting of a

(" Ya,e) Bl

closed object x of In_l(A,e), an object y of Ln(B,e), and a
! n-1
(L7 e L")
homotopy equivalence f:F(x)———s3y. Two such pairs (x,y,f),

(x',y',£') are cobordant if there exists a quadruple (z,g,w,h)

e

consisting of an object z of Ln(A,e), a homotopy equivalence
JMase

s+l

(B, €)

g:3z ——3 x®-x', an object w of Ln+1(B,e), and a homotopy

Ms,e
equivalence h : F(z)LJ(f@_f,)F(g)(—yQy')—————»Bw, where
F(9)
(E®-f')F(g) : 9F(z) = Fo(z) —— > F(x®-x"') = F(x)®F(x"')
fo-f!'
———— Jy®-3y' = I(yB-y"')

Addition and inverses are given by
(x,y,£) + (x',y',£') = (x&x',y®y' fOf') , -(x,y,f) = (-x,-y,-f)
L*(F,¢)

Proposition 2.3.1 The relative L-groups Ly (F,¢€)

E*(F,€)
e-symmetric F:{*(A, €)— [* (B, €)
e-quadratic chain functor F:l (A, e) —— L, (B, €) fit
e-hyperquadratic Fif, (A, €)——[*(B,€)

into the change of categories exact sequence




...———»Ln(A,e) P >Ln(B,e)——-a-Ln(F,e)——*~»Ln_l(A,e)———ﬁ>...~

coo L (A, €) ~5—>Ln(a, e)———>L (F,e)—>L _; (A, e)—> ...

L (A, e) —EL" (B, e) — 1L (F, &) —> Lyg (Rre) —> ...

(nez) .

Proof: By analogy with Proposition 2.2.4 (which is a special c:

[]

The following examples of relative L-groups arise in
topology: .
i) A morphism of rings with involution
f: A————>B

e-symmetric
induces an chain functor
e-quadratic

f: [*(A,e) —L*(B,e) ; x w—~——¢BﬂAx
£ LA, e)—> L, (B,e) ; xr— BA;X

L*(f,¢)
The relative L-groups for this change of categories
L, (f, €)

are just the relative L-groups for the change of rings defined
in §2.2 above. The methods of II. associate to an
geometric Poincaré pair (X, 3X)

n-dimensional %
normal map of pairs (g,c): (M, 3M) ———s (X, 3X)

symmetric
the relative signature
quadratic

o% (X, 9X) € L(Z [T (3X) ) —— Z[T) (X))
9,(g,c) € L (Z[n) (3X) ]——Zn (X ]) .

(The terminology is contracted in the usual fashion for € = 1}



The relative quadratic signature is the obstruction for frame
surgery to a homotopy equivalence of pairs. The relative quad

L-groups L, (f) were first defined by Wall {4] using geometric

odd-
methods; the g dimensional relative quadratic L-groups
even-
L2*+l(f) Wall [4,§87)
were first obtained algebraically by .
th\f) Sharpe {2]

€e-symmetric

ii) Given an integer m 21 define an functo
e-quadratic

m: [*(A,e)—— [*(A,e) ; Xx+——>mx = xXOx®,.,.0x (m tim

m: L,(A,e)—— L, (A, €) ; xr——>mx = xOx0,,.0x (m tim

g-symmetric

The relative L-groups are the mod m L-groups of
e-quadratic

L*(m:<{* (A, ) ——> L*(A,€))

L*(a, E;Zm)

L,(A,E;Zm) Ly(m:d (A, ) ——> L, (A,€)) ,
and fit into the exact sequence

vt a0 L4, 0 —— " (A, sz ) — L a0 —

v L (A e) "L (A, ) — L (A,e;Z ) — L (A, e)—> .

A geometric zm-Poincarécomplex {resp. Z_-manifold) (X,3X) is
Z —maniltol

geometric Poincaré pair (resp. manifold with boundary) such t

the boundary is the disjoint union of m copies of the Bockste

geometric Poincaré complex (resp. manifold) 6X

X = UGX
m
symmetric
The mod m . signature of an n-dimensional
gquadratic



geometric Em—Poincaré complex (X,3X)
normal map (f,b):(M,3M) —=(X,3X) from a Zm—manifold (M, aM)

to a geometric mmAPoincaré complex (X,2X) ((3f,5b) = %# (8£,6b))
is an element
o* (x;2) €L (Z[n (X));Z)
oL (E,b;Z ) € L (Z[m)(X)]:2Z)

defined using the methods of II. exactly as in the case m = 1.
The mod m quadratic signature is the obstruction to

surgery to a homotopy equivalence of Zm-objects. Surgery on
Z“r manifolds plays an important role in the characteristic
variety theorem of Sullivan [2], and in the subsequent work of
Morgan and Sullivan [1]), Wall (13], Jones [2] and Taylor and
Williams [1] on characteristic classes for the surgery

obstructions of normal maps of closed manifolds.

iii) The e~-symmetrization is an e-hyperquadratic chain
functor
14T ¢ Ly(A,€) —————> [*(A,€) .

The relative L-groups of 1+T€ are the e-hyperquadratic L-groups

of A L*(A,e), which fit into the exact sequence

S PR, J ag H
...—*—»Ln(A,s)—————+I)(A,e)———»L (A.e)—"'+Ln_l(A,e)*——*.-. (n€ 2)

and are 8-torsion groups (by Proposition 1.8.2).

In §7.4 the hyperquadratic L-groups E*(A) (e = 1) will be used
to define a "hyperquadratic signature" invariant

8*(x)€ ﬁn(n[nl(x)}) for an n-dimensional normal space X in the
sense of Quinn {3]. In particular, given an (n+l)-dimensional

degree 1 map of geometric Poincaré pairs
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g : (N,M) ——(¥,X)
such that the restriction f = g| : M——— X underlies a normal
map

(f,b) : M—— X

there is defined a hyperquadratic signature

*(g,£,01e L™ (z(n (1) 1)
such that
HO*(g,€,b) = o0,(£,b) €L (ZIn ()]},
as follows. (This is the hyperquadratic signature
8*(NLJf—Y) of the (n+l)-dimensional normal space obtained from
(N,M}) and (Y,X) by glueing along f:M ——X),

In the first instance, recall from §I1.9 (and see also §7.3
below) that a stable spherical fibration p:X——>BG cver a
finitely dominated CW complex X has associated to it a Tate
22— hypercohomology class

apy € tcmr™hy
with X the universal cover of X (say) . The hyperquadratic Wu

classes of @(p) are the equivariant Wu classes of p

Ve (P) = V,(8(P)) : Hy(X)——H*(Zy;z(n (X)])

The equivariant Wu classes are stable fibre homotopy invariants
which are generalizations of the familiar mod 2 Wu classes
v.{p) € H*(X;Zz). Let (p,q,r)} be a triple consisting of two
stable spherical fibrations p,q:X———BG over X and a stable
fibre homotopy equivalence r:pr——2~—>q|Y of their restrictions
to a subcomplex!Y of X, which is classified by a homotopy

r:plyraly t ¥Y———>BG .
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The relative version of the above construction associates to
(p,q,r) a Tate Zz—hypercohomology class

8(p,q.r) € 3°(C(X, 1) 7%
with image 6(p) - 8(q) € 60(C(i)_*) under the map induced by the
projection C(X)—— C(X,Y). If r extends to a stable fibre
homotopy equivalence p—Y—+q then 8(p,q,r) = O. The relative

equivariant Wu classes of (p,q,r) v,(p,q,r) are the

hyperquadratic Wu classes of g{(p,qg.,r)
Ve(Pidir) = 0, (0(P,q,r)) : H (R, 9)— o HY(Zi Zn (X)])
and are such that
~ -~ Velpyq,r) .
V*(P)-V*(Q):H,(X)——~*H.(X,Y)‘—————-—*H*(2272[n1(x)n .
A stable fibre homotopy self equivalence
C I VvV—V
of a stable spherical fibration v : X ~——— BG over X

is classified by a map ¢ : X ———G = QBG .

The equivariant suspended Wu classes of ¢ gv,(c) are defined by

0V, (€) = vy (P,q,r) 2V, (0 ) EH, (XxI,Xx{0,1}) = H_,(X)
—— HY(Z 3 Zn (X))
with o € %% x1,%x {0,117 defined by
’

6\) c = 0(p = adjoint of ¢ : Xx I—BG,gq: XxI—*—>BG,

r=id.:ply, (0,1 " eF——>aly, {o,1} © e
The equivariant suspended Wu classes were defined in §I1.9 in
connection with a formula for the change in the quadratic kernel
g, (f,b}) of a normal map (f,b):M ——X caused by a change in

the bundle map b:v,——v which we shall generalize in

M X’

Proposition 2.3.2 below to the quadratic signature

O (£,b) EL_(Z[n, (0]).

VY-.(\
i }

x
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Given a chain map f:C———> D of finite-dimensional A-modu
chain complexes define the {-groups 6n+1(f,e) (n€ Z) to be the
relative groups appearing in the exact sequence

n+l ~n+l f%(1+Te) n
v+ Q (D,e)—Q (fle)——*Qn(C,e)————————* Q' (D,e)—... .

For example, if f = 1 : C———3»D = C then 0*(f,c) = a*(C,E).

An element (¢,¥) € 6n+l(f,€) is an equivalence class of

collections of chains

n+l-r+s r

{(6,,¥) € Hom, (D ,Dr)oHomA(c“‘ _S,C[) lrez, s»o0}

such that

abg + (e ar + (™S + (15T 0 )

n-r _
~ (1+'r€)f¢vof* : D —ﬁ,nr .f s=0 o
- n-r+s i (¢_,=0)
0O :D Dr s21
av_+ (v ar + ()" Sy o (9%t y ) =0
s s s+l € s+l
chEsTl_ e (530

r
The e-hyperquadratic L-groups Ln+1(A,e) (n) 0) can be viewed as
the cobordism groups of objects (f:C——D,(¢,¥} € 5"+1(E,EH

such that (f:C———=D, (¢, (1+T)¥) eg™!

{£,€)) is an
(n+l)-dimensional e€-symmetric Poincaré pair over A.

Let now g: (N,M)—— (Y,X) be a degree 1 map of
(n+l)-dimensional geometric Poincaré pairs such that g|=f :M—
is part of an n-dimensional normal map (f,b) : M —— X,

Let Y be the universal cover of Y, and let ﬁ,ﬁ,; be the

induced covers of M,N,X. There is then defined a commutative

diagram of z[nl(Y)]—module chain complexes and chain maps
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~ £ ~ e !

C(X) —————> C{M) ————C(f")

1 1

4 g ~ h Yy

cy) > C(N) —Clg)
RO J _ he ¥
C(Y,X) > C(N,M) » C((9,£)")

Now b:vM—————+vx defines a stable fibre homotopy equivalence

of the restrictions to McN of vN:N——*——5BG and g*vY:N‘~———§BG

: = ~ =
boe vgly = vy > g*vyly = £*vy

so that by the above construction there is defined an element

8 (vyia*vy,b) € B2, ™ = M@, ™M = g e
with image
8(vy) - (9,6 Py € %™ = M e M)

a~

+ S
= ™Y .
Let F:Z”ﬁ+—————a2”§+ be the geometric Umkehr map associated
to (£,b), so that Y. (IX])€ Qn(C(ﬁ)) {¥p = quadratic construction)

is such that

%] n ~
(1+T)¢F([X]) = ¢ﬁ([M]) = B Teg(IX]) €0 (C(M))
and

o, (£,b) = (C(eh) e b (Ix1) €0 (cte))) € Lz (] .

Now 6"+1(i) fits into a commutative braid of exact sequences
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e N

t
Q4q (1) o, (cee) o"(cgh))
\ /"
SRS 0, (ctg'))
o™licig') 0"l 0, (i)

\/\/

! ] “n+l !
The elements e%wF([X]) € Qn(C(f )). h e(vN,g*vy,b)G o" (C(g’))
have the same image in Qn(C(g!)), and in fact there is defined

an element

8(g.£,b) € Q" (i)

with images e%wF([X]), ﬂ‘e(vN,g*vy,b). The hyperquadratic
signature of (g:(N,M)——(Y,X),(f,b):M ——>X) is defined
to be

Ay _ . ! ! an+l

o*{g,f,b) = (i:C{f") ——C(g’),06(g,f,b))EL (E["l(Y)]),

and has image o,(f,b) € Ln(zlnl(Y)]). If b:vM-———+vx extends to

crvg——— v, then 8(vg,g*vy,b) = O and 3*(g,f,b) = O.

Y
(I should like to thank Jean Lannes for his suggestion that I
apply the algebraic theory of surgery to normal maps which

bound as degree 1 maps).
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Let (f,b):M——X, (f,b'):M——— X be n-dimensional normal
maps with the same underlying degree 1 map f:M———X, so that
b' = bc : VM-4——~*VX for some stable fibre self homotopy

equivalence ¢ : v,,————>V In Proposition I1.9.10 the

M
difference of the Zz—hyperhomology classes Y,y' appearing

M*

in the quadratic kernels

o, (f,b) = (ceehy,veq (cieh))
g, (f,b') = (C(f!),w' € Qn(C(fl)))
. antl ~
was expressed in terms of Gv c €eqQ (C(M)) as
M’

1
V- ¥ o= e%H(BvM'C) e Qn(C(f ))

Proposition 2.3.2 The difference of quadratic signatures is

given by

o,(E,b) - o, (f,b*) = HG*(g,fUf,bU-b") € Ln(Zlnl(X)]) ‘
with

g=fx1l: (MxI,Mx{0,1})—(XxI,Xx {0,1})

fuf

il

9] @ Mx {0,1} ———— X x {0,1}

The hyperquadratic signature 8*(g,f\Jf,bLJ—b') € En+l(mlnl(x)])
is represented by
0*(g,fuf',bu-b")
= (i= 1 :ciehecrh) ——c@h =ceh,

(g . fUf,bu-b') = (v,8% 1,0 ed™ i)
VMIC

= o (cieh)ed™ ey hen cieh te ciehy .

Zlny (X)]

{3



2.4 I'-groups
Let f:A———B be a morphism of rings with involution,
as before.
e-symmetric (C, %)
An n-dimensional complex over A is
e-quadratic (c,¥)
BﬂA(C,¢)

BE, (C,¥)

e-symmetric

B-Poincaré if { is an n-dimensional {

e-quadratic
Poincaré complex over B. Similarly for pairs and triads.

e-symmetric

The n-dimensional even e-symmetric I-group of f

e-quadratic

I (€, ¢e)
F(vo>n(f,e) (nz0) is the B-Poincaré cobordism group of

Fn(f,c)
e-symmetric
n-dimensional even e-symmetric B-Poincaré complexes over A.
e-quadratic
In particular
T*(l:A—>A,e) = L*(A,¢)
F(vo)'(l:A————+A,c) = L(vo)*(A,E)

F (l:A-——>A,€) = L,(A,€) .

The quadratic TI'-groups [, (f) = I, (f,1) are projective

analogues of the original I'-groups of Cappell and Shaneson [1]

The morphism f:A——B is locally epic if for every fini
subset BO§ B there exists a unit u€B such that
uBO € im(f:A-—-—3B)<B .

(This definition is due to Cappell and Shaneson {1]).
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For example, if f:A—-—B is onto it is locally epic; also,
a localization map f:A-— S_lA is locally epic - see §3
below for the application of the I'-groups to the L-theory of
localization. In dealing with I'-groups we shall always
assume that f:A——B is locally epic. (It is in fact
possible to develop TI-theory for more general morphisms -
see Vogel [3] and the discussion in §3.2 below).

An A-module morphism gGHomA(M,N) is a B-isomorphism

if 1ag€HomB(BEAM,BEAN) is a B-module isomorphism.

Proposition 2,4.1 Let f:A—— B be a locally epic morphism,

and let M,N be f.g. free A-modules. A morphism gGHomA(M,N)
is such that laqGHomB(BEAM,BQAN) is onto if and only if
there exists an A-module morphism h€HomA(N,M) such that
ghGHomA(N,N) is a B-isomorphism.

Proof: Assume that l@g € Hom, (B&,M,B8,N) is onto, so that
there exists b€ HomB(BEAN,BﬂAM) right inverse to 1l®g, with
(l1Rg)b = 1€ HomB(BEAN,BEAN) . Choose bases for M and N,

and let (bij) (bijGB) be the corresponding matrix of b.
As f is locally epic there exist a matrix ‘aij) with
entries aijGA and a unit u€ B such that

f(aij) = biju € B .

Let h(-ZHomA(N,M) be the A-module morphism with matrix (aij) .
Then 1®gh = ueﬁomB(BﬂAN,BﬂAN) is a B-module isomorphism,
so that ghé€ HomA(N,N) is a B-isomorphism.

The converse is obvious.
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An A-module chain map g:C——D is a B-equivalence if
1®qg : BEAC ————~4BQAD
is a B-module chain equivalence.
1f (C,$) is an n-dimensional e-symmetric B-Poincaré
complex over A and g:C ——D is a B-equivalence with D an
n-dimensional A-module chain complex then (D,g%(¢)) is also
an n-dimensional e-symmetric B-Poincaré complex. Furthermore,
({g 1):CQD—~——*D,(O,¢0—9%(0))) is an (n+l)-dimensional
¢-symmetric B-~Poincaré pair over A, so that
(., 0) = (D,g* () e TN (£, )
Similarly for the e-quadratic and even g-symmetric cases.
The semi-periodicities of the L-groups given by
Propositions 1.2.3 i), 1.4.2 extend to the TF-groups:

Proposition 2.4.2 If f:A——B is locally epic the

skew-suspension maps

n+2

B r"(f,e)———.r<v0> (f,-€) ; (C,9)—>(SC,5¢)

(n2 0)

§ : T (f,e) — T (f,-¢) ; (C,¥)——(5C,5¥)

n+2
are isomorphisms.
e-symmetric

Proof: Given an n-dimensional B-Poincaré complex
e-guadratic

(c,e€Q(C,e))
over A and an (n+3)j-dimensional
(C,ve Qn(C,E))
even (-g)-symmetric

B-Poincaré pair over A
{-€)~quadratic

(9:SC—D, (8%,54) € o<vo> "”(q.-c))
we shall define an

{9:8C——D, (8¥,5¥) €Q_ 4(9.-¢€))



€-symmetric

(n+l)-dimensional { B-Poincare pair over A

€-quadratic
(g*:C——>p*, (8¢ ,0) e " (g, €))
{(q':C——+D‘,(Gw'.¢)€Qn+l(q'.€))
as follows.
Without loss of generality it may be assumed that
€, =0 (r<0O,r>n) , D =0 (r<0,r>n+3)

and that in the symmetric case

_ . nnt3
6¢n+3 =0:D -v—~—»Dn+3

even (-€)-symmetric .
Define an (n+3)-dimensional { B~Poincare

(~€)-quadratic

(g":5C——>D", (66,50) € 0wy " (g, -e))

pair over A § . by
{(g":SC ————» D", (§y",SY¥) €Q,,3(9" 75N}
g : Cr—l »D; = Dr (2 {r < n+l)
9" =//9 .
1 C —»py = p ep"t3
o 0 1771
( N
(‘)n+3 td, 0) dD
"L ————y B -
D L= 0—>D . D ,,®0 3 —> D
dp, -84,
(ay )
o] nt3 - (L+T_ ) 84,
——> D, ———D, @D —>Dg—> 0 —>
s¢ = 8¢ _a0
with s S (s30) except for
Sy = 8¢ 80
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8¢ o]
0 Wl o pl .o n+
s : D"" = D@D ,—3D" 5 = D 8D
o (=) €

54" =

§¢ [o]
o . D,.n+2 - Dn+200n+3____*_D" =D QDn+3
o 1 1 1

6¢0 0 n+3

L pvt2 L pPt2gpnt3 . e = poeD
0 1 1 1

e |

Now 1®&d4d., € HomB(BE ! BEADB) is onto. Stabilizing if necessa

p" ADII

it may be assumed that Di and D6 are f.g. free A-modules,
so that by Proposition 2.4.1 there exists an A-module morphi
e€ HomA(D",Di) such that dD“e€3HomA(D",D6) is a B-isomorphis

Define an (n+l)-dimensional A-module chain complex D' and a
B-equivalence

h: p" ~———— SD'

by
- . nt o= pv v = pe
dy, =dp, ¢ Dl =Dy, ——D! , =Dy (r #0.1.2.3)
-1 . pe Vo e
h=1:Dj——Dl_, =D (r#0,1,2)
a | d
W, " D" . D"  _L._ D" . _

D HE T 4 D3 ,D2 D1 DO o]

SD‘:...—-»DS ;D%QD(')' YDI———>0-—>O—
Then
{(M'.m = (h*s47,0) e " ligr e
g' = hg" ¢+ C —»D' ,
(89, ¥) = (h%éw V) € Qn+l(g ,€)



e-symmetric .
define an (n+l)-dimensional B~Poincare pair over A
e-guadratic

{g':C——D"', (30',¢))
, as required.
(g':C———>D"', (§¥',§))

The above construction shows that the skew-suspension map

§:Fn(f,c)——~——»F<vo>n+2(f,-6)

is one-one; to see that it is

S:T (f.e)———>T . (f,-€)
(C,¢)y =0
also onto set in the construction, which now associates
(C,¥) =0

even (-€)-symmetric
to an (n+3)-dimensional B-Poincaré complex
(-€)-quadratic

(D, §¢)
over A (ny -1) a B-Poincaré cobordant skew-suspension
(D, 6¥)
S(p',86")
S, 600y
[
e-symmetric r(g,¢)
Define the lower I'-groups (ng -1} by
e-quadratic T ()
, F<v0>n+2(f,-£) no=-1,-2
r'(f,e) = if
Fn(f,e) (as defined below) ng-3
TolEe) = T o (6, (=) e)  (n+2ip0)
I™(E,e) = Ty (g, -0
thus extending the semi-periodicity (n> 0)
Fn(f,E) = Fn+2(f,-€)

of Proposition 2.4.2.



We shall justify the above definitions of the unified
I (£, e) A
r-groups (n€ Z) by extending the definition of the
r (f,e)
n
relative L-groups in §2.2 to relative I'-groups. First, however,
we shall express the T'-groups for n<1l in terms of forms and

formations, extending the expressions of the L-groups for ngl

as Witt groups in §1.6.

e-symmetric 3(M,¢€ o M)
An form over A is B-non-singular
ge—quadratic (M, b€Q (M)
¢ € Hom, (M, M*) BA, (M, ¢)
if is a B-isomorphism, i.e. if
(1+T€)W€H0mA(M,M") BEA(M,W)

€e-symmetric
is a non-singular form over B,
e-quadratic
e-symmetric
A B-lagrangian of a B-non-singular form
e-quadratic
(M, $) e-symmetric
over A is a morphism of forms over A
(M, V) e~quadratic
j ¢ (L,0) ———> (M, )
j : (L,0)——> (M, ¥)
which becomes the inclusion of a lagrangian over B, i.e. such

that the sequence of A-modules

3 j*e
0 > L —5 M > L* >0

3 JE(L+T )
o] > L —> M > L* >0

induces an exact sequence of B-modules. A B-non-singular
|

e-symmetric
form over A is B-hyperbolic if it admits a B-lagrangian.

e-quadratic



€-symmetric re(f)

The even €-symmetric Witt T-group F<v0>€(f) of a locally

e-quadratic Pe(f)
epic morphism f:A———>B is the abelian group of equivalence
€e-symmetric
classes of B-non-singular even e-symmetric forms over A
e~quadratic
subject to the relation
(M,9) ~ (M',¢') if there exists an isomorphism of forms
g : (M,¢)®(H,0) —=——(M',¢")B(H',0")

for some B-hyperbolic forms (H,8),(H',6'

Proposition 2.4.3 i) There is a natural one-one correspondence

between the homotopy equivalence classes of O~dimensional
(even) e~-symmetric R
B-Poincare complexes over A and the
e-quadratic

(even) e-symmetric
isomorphism classes of B-non-singular

e-quadratic
forms over A.
ii) There is a natural identification of the O-dimensional
I-groups of f:A———»B with the Witt groups of B-non-singular
forms over A

rO¢f,e) = 1€

(f)

rv 2P (f,e) = Iv € ()
ol (£ o

rolf,e) = T_(f) .

Proof: i) Immediate from Proposition 1.,6.1,



(even) e-symmetric .
ii) Given a l-dimensional B-Poincare pair
e-quadratic
(g:C—>D, (6¢,¢) € o' (g,€))
over A such that
(g:C—nD, (‘W.‘b) 901(9,8))
C, =0 (r ¥ 0) ¢+ D, =0 (£ #),1)
there is defined a B-lagrangian

9* T §¢ €
o} ) 1 el
ds : (D7,0) —> (C .¢0)0(D le' )

1 [0}
T66¢0
g*
0 1 o] o}
d[‘; : (D ,O)——————»(CO,WO)O(D .Dl’ (1 0)) f
(1+T€)6¢0

(even) e-~symmetric

[o]

(.0
so that is a stably B-hyperbolic
(C7 ¥y

e-quadratic

FE(E) ( TCvd©(£))
form over A, representing O in . Conversely,

Fc(f)

stably B-hyperbolic forms correspond to the boundaries of

l-dimensional B-Poincarée pairs under the correspondence of i).

[]

(even) e-symmetric
A B-non-singular formation over A
€-quadratic

{(even) e-symmetric
is a non-singular form over A

{(M,¢;F,G)
e-quadratic

(MY;F,G)

(M, 9)
{ together with a lagrangian F and a B-lagrangian
(M, ¥)

is a non-singular

(G,0) ——> (M, ¢) BEA(M,¢;F,G)
. Thus
(G,0) —— (M, })

B@, (M, y;F,G)
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(even) e-symmetric
formation over B. There are evident notions
e-quadratic

of isomorphism and stable isomorphism for B-non-singular

formations, generalizing the case f = 1 : A——B = A
(already treated in §1.6).

Proposition 2.4.4 i) There is a natural one-one correspondence

between the { homotopy equivalence classes of
e-quadratic

(even) e¢-symmetric
l-dimensional B-Poincaré complexes over A
e~quadratic
and the stable isomorphism classes of B-non-singular
(even) e-symmetric
formations over A.
e-qguadratic
1
rHie,e) (rqudti.en

.ii) The l-dimensional T-groups have
Fl(f.e)

natural expressions as Witt groups of B-non-singular

(even) c-symmetric
formations over A.

e~quadratic

iii) The forgetful map
PO (£, ) ——> L{vOR (Bye) & (M,05F,Gl—s BB, (M, 6 F,G)
Yl(f,e)——~———9L§(B,s) i (M,y;F,G)——— BB, (M,V;F,G)
is one-one, where
X = im(KO(A)———)KO(B))g KO(B) .

Proof: i) A straightforward generalization of Proposition 1.6.4.

ii) Immediate from i),



(C.¢e Q(vo>1(C,e)) even e-symmetric
iii) Let

be a l-dimensional {
(C,be Ol(C.E))

e-quadratic

B-Poincaré complex over A such that c, =0 (r #0,1),

C1 is f.g. free and
- 1
B®, (C,¢) = O €L(VO>X(B,E)
B&, (C,¥) = 0 eL’l‘(B,e)

By Proposition 1.6.5 iii) there exists a 2-dimensional

even e€-symmetric .
Poincare pair over B

e-quadratic
(9:B8,C ——— D, (0,18¢) € 0¢vy % (q,€))
with Dr =0 (r # 1)

(g:B&,C———> D, (0,18Y) € Q,(g,€))

and [Dlle XC EO(B). Stabilizing if necessary it may be assumed

that Dl = BBADi for some f.g. projective A-module Di. Let DI

be a f.g. projective A-module such that DiODI is a f.g. free
9

A-module, and let : BR,C,———> B®&, (D1®DY) have matrix
o - A1l

je B) with respect to the B-module

bases induced from A-module bases of Cl and Di@Di.

representation (bij) (bi

As f:A——B is locally epic there exists a unit u€B such

that ubij = f(aij)e B for some matrix (aij) with entries
: - H 1 L}
aije A. Define an A-module morphism g'€ HomA(Cl'Dl) by
(aij) (1 0)
. . . 1 " I
g’ C1 Dl$D1 7D1

(g':C—=>D", (0,4) € Qlvd (a',€))
Then is a 2-dimensional

(g':C——D"', (0,¥) € 02(9'16))
even e€-symmetric .
B-Poincare pair over A (with D;: 0 for r#¥l),

e-quadratic



lic,o) =0 e 1 (f,e) .
1

Let F be a commutative square of rings with involution
A— ————RA'

f F £

B———————B' ,
with f:A——»B and £':A'——B' locally epic morphisms.

(even) e-symmetric

pDefine the (n+l)-~dimensional relative

e~-quadratic

e, e (v " i, e
r-group {ny 0) to be the relative
Tsp(Fr€)

cobordiam group of pairs

(even) e-symmetric .
{n-dimensional B-Poincare complex
e-quadratic

(even) e-symmetric
over A x, (n+l)-dimensional
e-quadratic

B'-Poincaré pair over A' with boundary A'ﬂAx) .

As usual, the skew-suspension maps

n+2

§: I"(F,e) ——— v (R, -e)

_ (nz 1)
S : Fn(F,c)———————+Fn+2(F,—e)

are isomorphisms. The lower relative I'-groups are defined by




T 2 ———> T (P, =€) (n = -2)
Fn(F,e)

(as defined below) (ng -3)

I‘n(F,e) =T (F,(-)ie) (n £0, n+2i3 1) '

n+2i

generalizing the definition of the lower relative L-groups

in §2.2 (the case fF =1 : A—>B = A, f' =1 : A*—>B' = A'),
I'*{(F,e)

Proposition 2.4.5 The relative I'~groups fit into a
T, (F,¢€)

change of rings exact sequence

JUPRNEG L0
%...———ar

n+l

(£ ey—> M p, ey 1 (f, ey —— Tt (E ey —> ...

,e)——*Fn+l(F

n+1 (E s€)=—T (f,e) —>T (£',e)— ..

(nez) .

t]
Given a morphism of rings with involution f:A——>B we
shall say that an A-module chain complex is B-acyclic if
H, (B®,C) = O .

A finite-dimensional A-module chain complex C is B-acyclic
if and only if BEAC is a chain contractible B-module chain
complex.

e-symmetric (C,9)
An {

complex (resp. pair) over A
e-quadratic (C,¥)
({(C~——>D, (§¢,¢)) .
(resp. } is B-acyclic if C (resp. C,D)
z(C————#D,(GW,W))

are B-acyclic A-module chain complexes.



In Propositions 2.4.6,2.4.7 below we shall express the
T'*(F,¢)
relative T'-groups for a commutative square of the type
I, (F,e)

1

o —D

e
F
—

o — D

as the cobordism groups of algebraic B-Poincaré B'-acyclic
complexes over A. In §3 this expression will be used in the

special case

A———l——yA

[l
-1

A———S A

to obtain the localization exact sequence in algebraic L-theory.
We shall give a geometric interpretation of this expression
in Proposition 7.7.2.

Proposition 2.4.6 Let F be a commutative square of rings with

involution of the type

L ,a

e e
B

|

m
W2

|

with f:A——B and f':A — ,B' locally epic.
e~-symmetric r(r,e)

i) The relative F~group (n21) is naturally
e-quadratic T, (F,e)

isomorphic to the cobordism group of connected (n+l)-dimensional

even (-€)-symmetric .
5 B-Poincare B'-acyclic complexes over A.

(~€)-quadratic



The maps appearing in the T'-group change of rings exact sequence

are given by
(e, e) ——— T (F,e) ; (C,0)———>53(C,¢)
(n21)

T (£, e)———T (F,e) ; (C,4)——>53(C,¥)

Er“(F,e)~——7r"”1(f,e) =™ (-0 5 (CL 8 2 (C, 0)
(n21)

P (Fye)——T _,(f,e} =T (f,-¢) 3 (C,¥)—>(C, 1)

(o]

I~ (F,¢c)

ii){ is naturally isomorphic to the cobordism group of
FO(F,E)

even (-¢)-symmetric

1-dimensional { B-Poincaré B'-acyclic complexes

(-e)-quadratic
over A.
iii) Fn(F,e) {ny 2) is naturally isomorphic to the cobordism

group of (n-1)-dimensional e-quadratic B-Poincaré B'-acyclic

complexes over A.

n
" (F,e)

Proof: i) An element of{- (n> 1) is the cobordism class
I' (F,e¢)
n

of a pair

e-symmetric
((n-1)-dimensional B-Poincaré complex
e~-quadratic

(C,9) e-symmetric )
over A , n-dimensional B'~-Poincare
(C,¥) e-quadratic

(g:C——>D, (8¢,4))

pair over A )
(g:C———D, (8y,¥))

(C' 9"}
by definition. Let be the connected (n+l)-dimensional
k (C',9")



even (-t£)-symmetric
B-Poincaré B'-acyclic complex over A
{~€)-quadratic
§S(c,¢)
obtained from the skew-suspension )_ by surgery
S(C, ¥}

even (-¢)-symmetric
on the connected (n+2)-dimensional
(-¢)-quadratic
S(g:C———>D, (8¢, ¢)) ((C,8),(g:C—D, (54, 4)))
pair 4 _ . Thus !
S(g:C —— D, (6¥, ¥)) ((C,¥),(g:C-——D, (8¢, ¥)))
(C',6")
determines an element of the cobordism group of
(c', ")
even (-€)-symmetric .
connected (n+l)-dimensional B-Poincare
{(-€)-guadratic
B'-acyclic complexes over A.

(C',9')
Conversely, let { be a connected (n+l)-dimensional
(C',¥')

even (-¢€)-symmetric .
B-Poincare B'-acyclic complex over A
(-€)~quadratic

such that C; = 0 {(r<0,r>n+l), as is the case up to homotopy

equivalence. Surgery on the connected (n+2)-dimensional

(g':C——D", (0,¥'))

even (-€)-symmetric (g':C——>D",{0,9"))
pair over A
(-€)-quadratic

defined by
[ . ' t - ' (-
g' =1 : Cn+l~—'—~7Dn+l Cn+1 . Dr O (r # n+l)
s(c, 4)
results in the skew-suspension{ _ of an (n-1l)-dimensional
5(C,¥)

(€, )
¥

e-symmetric .
B-Poincare complex over A
€-quadratic
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e-symmetric
The n-dimensional pair over A
e-~quadratic

?g:c———+D1(0,¢))
{g:C—>D, (0, ¥))

defined by
= . - crac' Nl _ c'htl -
g = (01) : Co = C10C ————+Do = C Dr O (r # 0)
(c'sd"}
is B'-Poincare. Thus determines an element
(c', ")

{ ({C,9), (g:C——D, (6,4)) € T"(F,¢)

({C,¥) , {g:C——D, (¥, ¥)) €T (F,¢)

rO(F, ¢)

ii) An element of { is the cobordism class of a pair

FO(F,e)

even (-€)~symmetric

{l1~-dimensional { B-Poincaré complex

(-€)-quadratic

(C,¥)

(C,9) even (-¢)-symmetric
over A . 2-dimensional

(g:C —D,

B'-Poincaré pair over A
{(g:C—D,

(-€) -quadratic

(6%,4))
)
(89,¥))

by definition. As in the proof of Proposition 2.4.4 iii) it

may be assumed that

r

C =0 (r #0,1) , Dr =0 (r # 1) .

(g:C—> D, (8¢,¢))
It follows that the result of surgery on
(g:C—— D, (8¢, ¢))

even (-€)-symmetric
is a l-dimensional % B-Poincaré B'-acyclic
(-e)-quadratic
{(c',o')
complex over A .
(C',¥*)



even (-¢)-symmetric
Conversely, given a l-dimensional
(-¢)-quadratic
(C',¢")
B-Poincare B'-acyclic complex over A there is defined
(C',9")
an element
{(<C'.¢'),(o=C'-——’o,<o,¢')))e 19r, &)

((C'4"), (0:C"—0,(0,§"))) ET,(F,¢)

iii) Given a connected (n+l)-dimensional (-¢)-gquadratic
B-Poincare B'-acyclic complex over A (C,¥y) we shall define

an (n-1)-dimensional e-quadratic B-Poincaré B'-acyclic complex
over A (C',¢') such that

(C,¥) = 5(C' ') €T ., (F,-¢)

and (C',¢') = (C",9") if (C,¥) = S(C",y"), as follows.
Without loss of generality it may be assumed that

C_ =0 (r< O,r »>n+l) and that Cn,C are f.g. free A-modules.

Y n+l

By Proposition 2.4.2 there exists an A-module morphism

; ‘s .
r)GHomA(Cn,C such that hd(EHomA(Cn,Cn) is a B'-isomorphism.

n+1)
Define an A-module chain complex D and an A-module chain map

g:C———>D by

d 4
C : ...——-»0-——->Cn+1———-+cn—>cn_l———->
g 1 h
hd
3] :...—-+0-—+Cn+1—o—+Cn+1——~*O-——+ PN .

The complex obtained from (C,¥) by surgery on the connected
(-€)-quadratic B'-acyclic pair over A (g:C—>D, (0O,¥)) is the
skew-suspension S(C,¥) of an (n-1)-dimensional e-quadratic

B-Poincare B'-acyclic complex over A (C',¥').



n
I (F,e)
The low-dimensional relative T-groups % (ng1) of
I (F,e)
n

a commutative square of rings with involution of the type

1

A ———— A
B —————B'

can be expressed in terms of forms and formations, as follows.

(even) e-symmetric (M, ¢1L)

A B-non-singular E

(M, 1)

B'-form over A
e-quadratic

(even) e-symmetric (M, %)

is a B-non-singular { form over A
e-quadratic (M, ¥}
(L,0) ——(M, ¢}
together with a B'-lagrangian .
(L,0) —— (M, )

{even) e-symmetric

A B-non-singular { B'-formation over A
€-quadratic

(even) e-symmetric
is a non-sinqular form over A
e-quadratic

{(M,MF,G)
(M,¥;F,G)

(M, )
g together with a lagrangian F and a B-lagrangian
(M, %)

(G,0) ——> (M, ¢)
such that the projection G ——— M/F is a
(G Q) ——— (M, ¥}
B'-isomorphism.

A B-non-singular split e-quadratic B'-formation over A

(F,G} is a morphism of split eg-quadratic forms over A

{

Y
(( ).6) : (G,0) ———H_(F)
"

defining a B-lagrangian of ﬁE(F], and such that u€ HomA(G,F*)

is a B'-isomorphism.



(even) €-symmetric
The boundary of a B'-non-singular

e~quadratic
(M,¢;F,C)

formation over A { is the B-non-~singular
(M, ¥;F,G)

{even) e-symmetric
B'-form over A
e-guadratic

(M, 9:G)

3(M,$;F,G)
{ 3(M,¥;F,G) (M, ¥;G)
e~symmetric
The boundary of a B'-non-singular 1§ even e-symmetric
L e-quadratic
(M, € 0% (M)
form over A M, 0 € Q(vo>€(M)) is the B-non-singular
M, bEQ (M)
even (-€)-symmetric

(~€)-quadratic B'-formation over A

split (-€)-quadratic

5 (M, 0) m'e(MnM,(l):(M,0>——+H’€(M))
0

T(M,8) = (H_E(M):M,(l): (M,0)——>H__(M))
o

JM ) = (M,(( 1 *>,w>m

Vvtey



Proposition 2.4.7 Let F be a commutative square of rings with

involution of the type

A—————l——-——»A
fl F lf'
B ————»B'
with f and f' locally epic.
O, €)
i) F—Z(F,—e) is naturally isomorphic to the Witt group
FO(F,e)
even (-g)-symmetric
of B-non-singular (~e)-quadratic B'-formations over A,

split (-e)~quadratic
with

o]

PO, ey ——r0(F el 5 (M, 6) —— 3(M,4)

I 2(f",-e) T 2(F =€) ;5 (M, o) ———>3(M,¢)

Fo(f',c)——_——+ro(F,€) : (M) 53 (M, )

Pl(F,e)

ii) F-I(F,—e) is naturally isomorphic to the Witt grou

Fl(F,e)

e-symmetric
of B-non-singular even e-symmetric B'~forms over A, with
e-guadratic
Fl(f',e)—————+F1(F,c) : (M, ¢;F,G)—— 5 (M,¢;F,G)

-1 1

I (f',~e}) ——>T ~(F,-€) ; (M,$:F,G)r—>3(M,¢:F,G)

Fl(f'rE) ”'-‘“’FI(F,€) ; (M Y;F,G)— 3 (M, ¥;F,G)

-~



Proof: The expression of the low-dimensional relative I'-groups
in terms of forms and formations follows from Proposition 2.4.6
and the following generalizations of the correspondences of
Propositions 1,6,1,1.6.4:
i) the homotopy equivalence classes of l-dimensional
(even) e-symmetric .
B-Poincare B'-acyclic complexes over A
e~-quadratic
are in a natural one-one correspondence with equivalence classes
{even) t€-symmetric
of B-non-singular B'-formations over A,
split e-quadratic
ii) the homotopy equivalence classes of connected
(even) e-symmetric .
2-dimensional B-Poincare B'-acyclic
e-quadratic

complexes over A are in a natural one-one correspondence with

{even) {-e)-symmetric
equivalence classes of B-non-singular

(-¢)-quadratic
B'-forms over A.

(We shall give a more detailed account of these correspondences

in §3 below, in the special case

f'= inclusion

—

1
_—

F
— s A ).

Lz
"
—
> ——

1
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2.5 Change of K-theory

There are evident extensions of all the results of
§§2.1- 2.4 to the intermediate L-groups of §1.10 and their
intermediate I'-group analogues. Here, we shall only state
the extensions for which we shall need a reference.

Given a morphism of rings with involution

f : A ————B

and *-invariant subgroups xq;Em(A), YS;Em(B) (m = 0,1) such

that
BQAXQY -’;Km(B)
e-symmetric

define the relative intermediate L-groups
€-quadratic

LY L (f,€)

Y.X (n€ Z) in the same way as the relative L-groups
Y, X
Ln (f,¢)

L*(f,€) — ~
(which are the special case X = KO(A), Y = KO(B))

L,(f,¢)
but using only algebraic Poincaré complexes over A with
K-theory in X and algebraic Poincaré cobordisms over B with
K-theory in Y.
Given a morphism of z[zzl—modules
f: G——H

define the relative Tate Zz-cohomology groups ﬁ*(zz;f) by

“n {(x,y) € G®H|Tx = (1" 1k, £x = y + (—)"'1Ty)
HAZ i ) = {n{mod 2))

{eu+ ()" tru, fut v+ (-) "ol | (u,v) € GaH)

to fit into the long exact sequence

e R . .
w—oh" l(zz;n)-—m“*l(zz;f)—»H"(zz;c)—f—ﬂl“(zaz;ﬂ)——»... .
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Proposition 2.5.1 Given a morphism of rings with involution

f : A——>B
and *-invariant subgroups XQX'QEN(A), YCcy'c Em(B) (m = O,1)
such that

~ . .
BEXCYCK (B) , BEX'SY'S K (B)

there is defined a commutative diagram of abelian groups with

exact rows and columns

. . .

|, b

n n n n-1
..n—4~9Lx(A,€)—'———# LY(B,E)—~—~—?LY’X(f,e)-—W~>LX (A,e)—m>...

oo [

n n n n-1
...4~—+Lx,(A,e)——;—+Ly,(B,e)————+Ly,’X,'(f,e)——aLx. (A,e}—> ...

| | | J

BNz ANz, ) ™ (Z, ) —— N (xR

Lo Lo

n-1 n-1 n-1 n-2
...——+LX (A,e)——~—»LY (B,E)———»LY‘X(f,E)————~)Lx (A,e} —>...

L 1 l

Similarly for the e-quadratic L-groups L,.
Proof: Immediate from Propositions 1.10.1,2.2.4.
(1
Given a locally epic morphism of rings with involution
f: A—B

and a *-invariant subgroup X¢ Em(B) (m = 0,1) define the

e-symmetric F;(flﬂ
intermediate I'-groups X (n€Z) in the
e-quadratic I (f,e)



r (£, ¢) -
same way as é (the special case X = KO(B)) but using
I (f,¢)
n
algebraic B-Poincaré complexes over A (based if m = 1) such
that the induced algebraic Poincaré complexes over B have

K-theory in X.

Proposition 2.5.2 The intermediate I'-groups associated to

*»-invariant subgroups XCYGC Rm(B) (m = 0,1) are such that

there is defined an exact seguence
{...—?F;(f,c) — (e ) — A"z, /0 —s 1y Mt

v X ) —or (£, 0) Nz, v/%) X (0L
n 2 n-1
{nez) .
Proof: As for Proposition 1.10.1 (the special case

f=1:A—>B = A).

It follows from the intermediate analogues of
Propositions 2.4.3,2.4.4 that the original r-groups of Cappell
and Shaneson [1] are the intermediate quadratic I-groups

Po(f) = Fif(")}

(£:Z{n]—>B) (e = 1)
of a locally epic morphism f£:Z{w]——B, with {f(n)}C Rl(B\.
Similarly, the P-groups of Matsumoto [1] are the intermediate

t-quadratic I'-groups

P (&) = r{fE M Yt gn) —zmin ], 0
associated to a group extension
£
€ : (1} > C —> 1 ——————3 7' ——3 {1}

with C a cyclic group and t€n the image of a generator of C.
See §7.8 for a discussion of the geometric significance as

codimension 2 surgery obstruction groups of the - and P-groups.



§3. Localization
Let A be a ring with involution, and let ST A be a
multiplicative subset of non-zero-divisors such that the ring
with involution S 1A inverting S is defined - this is the
"localization of A away from S". We shall now apply the theory
e-symmetric

of §§1,2 to express the relative L-groups
e-quadratic

A as the

L+ (A — s I, ) -1
of the inclusion A-————S

L, (a——s1a,e)
cobordism groups of algebraic Poincaré complexes over A
which become contractible over S™IA.
Our role model here is the localization exact sequence
of algebraic K-theory, which identifies the relative K-groups

K,(A————»s-lA) appearing in the change of rings exact sequence
...———-—»Kn(A)——>Kn(S_1A)——- Kn(A—»s'lA)——»Kn_l(A)—+... (n€z)

(where Kn(A) = Kn(exact category of f.g. projective A-modules))
with the K-groups
Kn(A,S) = Kn_l(exact category of S-torsion A-modules of
homological dimension 1) (ne z),
that is
Kn(A———-—?S_lA) = K (A,8) (n€z) .
This identification was first obtained for central S (as = sa
for all a€A,s€8) by Bass [2,IX} for n=1, and then extended
to ny 2 by Quillen (Grayson [l]}, and to n€ O by Carter [1].
The extension to eccentric localizations A—————»S_IA
(i.e. those in which S is not necessarily central in A) is due

to Grayson {2].



170

The "S-adic completion of A" is the inverse limit

A = Lim A/sA
Lim
s€S ,

which fits into the cartesian square of rings

A
A

—— 5 A

The functor

{h.d. 1 S-torsion A-modules}——{h.d. 1 g-torsion R—modules};

M REAM
is an isomorphism of exact categories (an observation due to
Karoubi [2]), so that it induces excision isomorphisms in the
relative K-groups
Ky (A,S) — K, (A,S)

and there is defined a Mayer-Vietoris exact sequence

-1 ~ P
...——#Kn(A)———»Kn(S A)OKn(A)——% Kn(S A)———»Kn_l(A)——>... (n€ Z)

In particular, this applies to the "arithmetic square"

Z[n) ———>Qin]

A -
ZIn)———0ln]
associated to a group ring A =2Z[n) with §=2z-{0}<a,
A -~ .
2 = LimZ/sZ = 2z | rime)
Qém /s g’ p PP
the profinite completion of Z, and
~ Ao ~ A
[ 0-=58"2- [Tw, .2

the ring of finite adeles of Z.



Following some generalities in §3.1 on the localization
of rings with involution we shall define in §3.2 the
L"(a,s,¢)

L~groups { (n€ Z) of S_lA—acyclic

{c—symmetric
Ln(A,S,e)

e-quadratic
algebraic Poincaré complexes over A. In §3.3 the algebraic Wu
classes of §1.4 will be generalized to linking Wu classes,
the analogues of the Wu classes appropriate to S—IA-acyclic
complexes over A. In §§3.4,3.5,3.6 we shall show that there
are natural identifications

L*(A,S,¢€)

)

{ Lg(A—»S_IA,E)
s -1
Ly(A——>S "A,e) = L,(A,S,¢) '

the groups on the left being the relative intermediate

e-symmetric
L-groups of the localization map

e-quadratic
A s 1a

associated to the *-invariant subgroup
$ = im(R.(A)——K_(s"1A)) C & (s 1A)
(¢} (e} -0 !
so that there is obtained a localization exact sequence in

algebraic L-theory
1p, ey——tM(a,8,6) —L" T(A, ) —. ..

SL...—~—~»Ln(A,€)—*+Lg(S_
1

...—.Ln(A,c)__.Li(s_ A,€)—L_(A,S,€)—L__ (A, €)—...

(nez) .
(Special cases of these sequences have been obtained by many
previous authors, listed belowj. In §§3.4,3.5 the low-dimensional
L"(A,S,¢€)

L-groups { (ng 1) will be interpreted as

e-symmetric
Ln(A,S.E)

e~quadratic

Witt groups of non-singular S_lA/A—valued linking forms and

()

#uie



linking formations involving S-torsion A-modules of homological
dimension 1. It will thus be possible to express the lower-
dimensional €-symmetric L-theory localization exact sequence
as a localization exact sequence of Witt groups

...'——+L2(A,S,E)——-*ME(A)-——+M§(S_1A)———»M(vo>C(A,S)———»LE(A)

———+L§(s'lA)———+L<v0>€(A,S)—~—+M<vo>'s(A)———+M<v0>;€(s'lA)
—M_ (A,S) — Lev S (M) —— Ly S (8T M o L__(a,5)

S o-1 “ 5 -1
—> M (A) s M (57 TR) — M _(A,S)—— L _(A)—> L (57A)

—— T (A5 —m_ (A ——ME_(s7TIA) B _(A,5)—...

which extends to the left as the localization exact sequence
in the higher-dimensional e-symmetric L-groups (non-periodic
in general) and to the right as the 12-periodic localization

exact sequence in the te-quadratic Witt groups. Here,

Lf @) = O, ¢) ME(a) = Lta,e)
Livgd S (A) = L2 (a,-¢) (resp. M@ = tha,-e)) s
Lo (A) = Lo (A €) M_(A) = L) (Ac)

ce-symmetric
the Witt group of non-singular even ¢-symmetric forms

e~quadratic

LS sl = L2s7lae)
(resp. formations) over A, and L(v0>§(s-1A) = L;Z(S—IA,-E)
LS(S-IA) = L3s7 e
-1 1 -
MEsTha) = LisTla, e
(resp. M(vo)g(s_lA) = Lgl(S—IA,—e)) is the Witt group of
S,.-1 S, .~
misTlay = 15is7la, e
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c-symmetric
non-singular even e-symmetric forms (resp. formations) over
e-quadratic
SalA involving only the f.g. projective S-lA-modules induced
from f.g. projective A-modules. The relative L-group

Ly a,8) = 10,8, e) MCv>E(A,S) = L1(A,S,6)

LC(A,S)=L—2(A,S,—€) (resp. M_(A,S) L'l(A.S.—s) )

LE(A,S)

"

Ly(A,S,€) M_(A,5) = L,(A,S,¢)
even e-symmetric

is the Witt group of non-sinqular e-quadratic

split e-quadratic

linking forms (resp. formations) over (A,S).
A localization exact sequence for Witt groups of the type
.——»MC(A)—»Mé(s'lA)—m»M‘(A,S)—»L‘(A)——»L;(s'lm
— 15,5 —n @) —u (sl — ...

for arbitrary rings with involution A was first obtained by
Karoubi [2],[3) in the case 1/2€ A (when the various categories
of linking forms over (A,S) coincide), following on from the
work of earlier authors for Dedekind rings A - see §4 below

for a discussion of the L-theory of Dedekind rings.

A localization exact sequence for the surgery obstruction

groups of the type
oL (ZI1]) ——> L2 (@[1]) —> L (Z[1],5) —> L (Z[1]) — ..

(n{mod 4), S = Z-{0}Y<C Z[n])
was first obtained by Pardon {1],(2],[3] for finite groups 7,

following on from the earlier work on linking forms in
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odd-dimensional surgery obstruction theory of Wall (2], Passman
and Petrie [1], and Connolly [l]. The algebraic methods of
Pardon [2] apply to the quadratic L-groups of more general

1

localizations, provided that 1/2€S "A (e.g. if 2€5).

The localization exact sequence of Witt groups

LE (A) ——»Lg (s™1a) —>L<vo>€ (4,8) —»M<v0>'C (A)—»rw(vO);E s 1a)

has also been obtained by Carlsson and Milgram [3].
In §3.6 we shall apply the localization exact sequence

€~symmetric
in the L-groups to prove that
e-quadratic

it im(i(z,:57ta/n, 6) ——iit(z,in,0)) = 0
there are defined
for all A,S,¢

excision isomorphisms in the relative L-groups

L"(a,5,e) —==—»1L"(R,8,¢)

. (n€z)
Ln(A'S,E)———:L——¥Ln(A.S,C) ’

giving rise to a Mayer-Vietoris exact sequence in the absolute

L-groups

{...—sL"(A,e) ——»Lg(s'lA,e)eL“(?\,s)——+L’s‘(§'1?\,e)—»L"'1(A,c)»~».
1

oL (Ae) —L (ST A,e)eLn(S,e)—»Lﬁ(é‘lf\,e)—»Ln_l(A,s)——+.
(hez) .

Such a Mayer-Vietoris exact sequence was first obtained by

Wall [8]) for the quadratic L-groups of a finitely generated

ring A with S = Z-{0}CA, using arithmetic methods such as

the strong approximation theorem for algebraic groups over Q.

Karoubi [2] Jbtained such a sequence for more genral localizations

A—————>S_1A, but with the restriction 1/2€A. Bak [2] has



obtained a similar sequence in the context of the unitary
algebraic K-theory of Bass [3].

In §3.6 we shall also use the localization exact sequen
for S = Z-{0}C A and the natural action of the symmetric Witt

ring Lo(ﬁ) (which is of exponent 8) on the relative L-groups

to prove that the natural maps

{ L*(A,S,e) = L*{(A,S,¢)
L‘(A,S,E) L*(A,S,E)

1

{ L*(A,E)——————+L§(S_ A,€)

1

L, (A e)——13(s71a,e)

are isomorphisms modulo 8-torsion for any torsion-free ring
with involution A (e.g. a group ring A = Z([n], in which case
S~1A = @[n]). Results of this type were first obtained for
the surgery obstruction groups L,{(Z{n)) of finite groups .

Taking for granted the result that the natural maps
L3, (@n]) ——— L, (RIn]) (i(mod 2), 7 finite)

are isomorphisms modulo 2-primary torsion it is possible to
interpret Theorems 13A.3, 13A.4 i) of Wall {4] as stating
that the natural maps

L, (Z(n])———L5, (@[7]) (i(mod 2), 7 £inite)

are isomorphisms modulo 2-primary torsion. Passman and Petrie
and Connolly [l] showed that the natural maps

l(Q[ﬂ]) (i(mod 2), nfinite)

S
Lzin)——Ly,,

Lais
are isomorphisms modulo 2)—torsion, j £3. (Actually, they wer
working with the simple quadratic L-groups). Karoubi [2] obta

similar results for the L-groups of arbitrary torsion-free ri

with involution such that 1/2€A.

e
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The localization exact sequence and the Mayer-Vietoris
exact sequence associated to a localization-completion squat
are key tools in the computations of the surgery obstructior
groups L,(Z[n]) of finite groups n due to Wall [9], Bak {2],
Pardon [5], Carlsson and Milgram [1],[2]), Kolster [l], Bak &
Kolster (1), Hambleton and Milgram [2].

The localization exact sequence for the quadratic L-gr
L,(R{n]) of group rings R[] (R=S_lZ§Q, s czZ-{0}) has a ge
interpretation involving homotopy-theoretic localization,

which is discussed in §7.7. below.
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3.1 Localization and completion

We refer to Chapter II of Stenstrdm [l] for the general
’theoty of localization in noncommutative rings.
Let A be a ring with involution.

A subset SCA is multiplicative if

i) st€$S for all s,t€Ss
ii) if sa=0€A for some s€S,a€A then a=0€A
iii) s€s for all s€S f
iv) for all a€A,s€S there exist b,b'€A, t,t'€s
such that at =sb, t'a=b's€A
("the two-sided Ore condition")
v) 1€S8 .

The localization of A away from S S—lA is the ring with involution

Jlefined by the equivalence classes of pairs

(a,s) EAXS .

rﬁnder the relation
(a,s) ~ (b,t) if there exist c¢,d€ A such that
ca=dbe€A, ¢cs = dt € SCA ,

ith S

(a,s) + (a',s') = (b'a+ba’',t) if b,b' €A are such that o
t = b's = bg' € SCA,
(a,s).(a',s') = (ba',ts) if be€A, t€ S are such that :

ta = bs' € A,

(a,s) = (b,t) if b€A, t€S are such that
ta = bs € A
rfhe equivalence class of (a,s) = (1l,s).(a,l) will be denoted by

a g glp
S
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as usual. The injection
A———————-)S—lA ; al————-»%
is a locally epic morphism of rings with involution.

An A-module chain complex C is S-acyclic if H*(S_l

A@AC) =
that is if it is S-lA-acyclic in the sense of §2.4.

Here are some important examples of localization:

i) if A is an algebra over an integral domain R, then

S = R-{0}TRCA

is a multiplicative subset of both R and A. The localization
S "R = F is the quotient field of R and S_lA = F8pA is the
induced algebra over F.

ii) if A is an algebra over a commutative ring R, and
? is a prime ideal of R, then

S = R-PCRGA
is a multiplicative subset of both R and A. The localization
sTIr = Rp is the "localization of A at ®', and S 'a = Ap is
the "localizaéion of A at P".
(The L-theory of localizations of type i) and ii) will be
studied in §4 in the case when R is a Dedekind ring).
iii) if A is a ring with involution and o : A——>A is
a ring automorphism such that a(a) = a_l(E) € A for all a€A
(e.g. a =1) let x be an indeterminate over A such that
ax = xa(a) (a€A) .

The "a-twisted polynomial extension of A" Aa[x] is then defined,

a ring with involution

A [x] ——> A _[x] : z a.x) s E xJa.
o Q j= J ]=O J

The multiplicative subset
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X = {xklkao} C A lx]
is such that the localization
-1 _ -1
X A _[x) = A, [x,x 1

is the "a-twisted Laurent polynomial extension of A",
The L-theory of such polynomial extensions will be dealt with
in §5 below.

iv) if A = Z[n] is the group ring of a group m which is an
extension of a finitely generated torsion-free nilpotent group
by a finite extension p of a polycyclic group then

§ = {1+i]i€ker(Z[r] —> Z[p])}CA
is a multiplicative subset, such that a finite-dimensional
A-module chain complex is Z[p]-acyclic if and only if it is
S—-acyclic. This example is due to Smith [1],[2].
We shall consider a particular case of this type of localizatior
in §7.9 below, for n = Z, p = {1}, in connection with the

algebraic theory of knot cobordism.

A multiplicative subset SCA is central if
as = sa € A for all a€A,s€8S .
For central SCA it is possible to express the localization
S—lA in the familiar way as the set of equivalence classes
of pairs (a,s) € AxS under the relation

fa,s) ~(b,t) if at = bs € A ,

with
(a,s) + (a',s') = (as'+a's,ss’)
(a,s).(a',s') = (aa',ss')
(a,;s) = (a,s) .

—



We shall now develop some general properties of modules

and chain complexes over a ring with involution A and the

1

localization S “A of A away from a multiplicative subset sCA

{which in general will not be assumed to be central).
An A-module M induces an 5 lA-module
1 1

§ "M =§ A@AM .

The elements of S-lM can be regarded as the equivalence classe

gof pairs {(x,s) EMx S under the relation
(x,s) ~ (y,t) if there exist c¢,d€A such that
cx = dy € M, cs = dt € SCA
with

(x,8) + (x',8') = (b'x+bx',t) if b,b'€A are
such that t = b's = bs' € SCA
(a,s) (y,t) = (by,us) if b€A,u€S are such that
ua = bt € A .
(Again, if SCA is central this can be simplified to
(x,8) ~(y,t) if tx = sy € M

(x,s) + (x',s8') = (s'x+sx',s5")

(a,s) (y.t) = (ay,st) ).
If M is a f.g. projective A~module then S_lM is a f.g. projec
S—lA—module, and there is defined a natural S_lA—module

isomorphism

sTlme) = S-lﬂomA(M,A)——~——+(S_lM)' = Homg—lA(S—lM,S_lA)
f— g
allowing us to write
sThux = sThmx) = (s7imye
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An A-module morphism f € HomA(M,N) induces an S_lA—module
morphism

-1

s7te s g7l

Mo s Iy e £é5l

An S-isomorphism is an A-module morphism f€ HomA(M,N) such that

lM,s‘ln) is an g71

S'lfe HomS—lA(S- A-module isomorphism, i.e. f is an
S—lA-isomorphism in the sense of §2.4.
An A-module M is S-torsion if
sm=o0,
that is if for every x€ M there exists s€S such that
sX=0 €M,

An (A,S)-module M is an S-torsion A-module of homological
dimension 1, that is an A-module which admits a f.g. projective
A-module resolution of length 1

[¢) ﬁPl d %PO h > M 30

with d€ HomA(Pl,PO) an S-isomorphism.
The S-dual M" of an (A,S)-module M is the (A,S)-module
A -1
Mt = HomA(M,S A/A)

with A acting by
AxMh — MY (@ f) ey (X f(x).2) .
The S-dual has f.g. projective A-module resolution

*
R . ar Pt Th L, wm" 0

with

Th : P& ——> M ; f r——-~>([x]k——-—*£é11)

(XGPO, [x] €M, s€5S, yGPl, sx=dy€Po) .

The natural A-module isomorphism



; xr— (f—f(x))

will be used to identify

If M,N are (A,S)-modules there is defined an 5-duality
isomorphism of abelian groups
HomA(M,N)———»HomA(N*,M‘) ; Er— (£7:gr— (x+—>gf (x)))
For example, a (Z,Z-{0})-module M is the same as a finite
abelian group and the (Z-{0})-dual
M™ = Hom, (M,Q/Z)
is the character group.

An n-dimensional (A,S)-module chain complex is an A-module

chain complex

d d d d

C:0—>c ——>C — ... > C, > C >0

such that each c, (0€r<n) is an (A,S)-module. The S-dual

A-module chain complex
RN a* g a

n-~ ~ PN ~ ~
c : 0—¢] ] ch,——Ch ——0

is also an n-dimensional (A,S)-module chain complex. The homology
A-modules H,(C) are S-torsion (but not in general (A,S)-modules),
since localization is exact

s, (c) =u, sty =0

The S5-~dual cohomolcgy Hg(C) are the S-torsion A-modules defined by

r _ n-
HS(C) = H (C

n-r ) = ker{d :Cr~——+Cr+l)/im(d :Cr_l———>Cr) (0 r<n)

If e€A is a central unit such that

H E=€_1€A
then % € S_lA is a central unit (also to be denoted by ¢) such that
-1

& =& esha
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e-symmetric
Further below we shall define the even e-symmetric
e-quadratic
Qg(C,C)
Qg-groups Q<Vo>§(c'€) of a finite-dimensional (A,S)-module
ofc, o
chain complex C, generalizing the Q-groups of a finite-
dimensional A-module chain complex defined in §1.1. (Indeed,
the Qs—qroups of C will be defined to be the Q-groups of a

finite-dimensional A-module chain complex D such that

x-1

H, (D) = H (C), H*(D) = HS

(C)). The localization exact sedquenc
e-symmetric

of §3.2 will identify the relative { L-group
€-quadratic

Lg(A——»s‘lA,z)

s -1 (n2>0) with the cobordism group of

L (A—>S "A,€)
even e-symmetric

"n-dimensional { Poincaré complexes over (A,S)"
e-quadratic

(C,0€QLvdc(Ce))
with C an n-dimensional (A,S)-module chain

c,veadic,e)
v

complex and % such that there are defined Poincaré duality

isomorphisms of S-torsion A-modules

~

S
6o : HE(C) —>H__,(C)

~s

—H_ _,(C) .

S . *
(1+T€)¢o : HS(C)
In §3.4 (resp. §3.5) we shall identify the n-dimensional

(even) e-symmetric .
Poincare complexes over (A,S) for

e-quadratic

e



s
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(even) e-symmetri
n = 0 (resp. n = 1) with the "non-singular
split e€~quadratic

linking forms (resp. formations) over (A,S)", going on in §3.
L’S‘(A——»s‘lA,e) (-= <ng1)
to identify the relative L-groups s -1
Lo (A—=5 "A,¢€) (n€ Z)

with the Witt groups of such objects by analogy with the
identifications of §1.6 of the absolute L-groups
{Ln(A,e) (-e<ngl)
with the Witt groups of forms and format
L (A, e} (n€Z)
over A. A "linking form over (A,S)" is an (A,S5)-module M
together with a pairing
MxM— 55 iam
and a "linking formation over (A,S)" is a linking form over (
together with a lagrangian and a sublagrangian. The familiar
equivalence of categories
{s-acyclic l-dimensional A-module chain complexes}
——{ {A,S)-modules} ; C'———————+HO(C)
will be generalized to equivalences
{S-acyclic algebraic Poincaré complexes over Al

—™ sy {algebraic Poincaré complexes over (A,S)

The maximal S-torsion_ submodule TM of an A-module M

is the submodule

TGM = {x€M|sx=0€M for some s€ S}

ker (M ——» 5" IM;x ——> 2) cM
The A-module M is S-torsion if and only if

TSM =M
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The linking pairing ¢g of an n-dimensional e-symmetric
complex over A (C,¢ € Qn(C,e)) is defined by

S

. n-r+l
bg ¢

TSH' (€) x TgH (€) —ss tasa ;
(x,y) 3 20, (x) (2)

n-r n-r+1

n-rtl e, ses, dtz=sy€C )

(xect, yec
and satisfies
1) 05k, y+y’) = 45(x,y) + 85 (x,y")
ii) og(x,ay) = asg(x,y)

(_)r(n-r+1)®s

i) 85 (y,x) = o (% ¥)

(xeTH (C), y,y' e TSHn_r+l(C) , a€A)

The name arises as follows.
Let M be a compact n-dimensional manifold, and let M be
a covering of M with group of covering translations m such

that the orientation map of M factors as

wi(M) : nl(M)-—~w—»n-——E—»>Zz
for some group morphism w, so that there is defined a symmetric
Poincaré complex over Z[mn] with the w-twisted involution
a* (M) = (C(M),4€Q"(C(M))
(as recalled from II1. in §1.2 above). Define a multiplicative
subset
s = m-{0}Czn)
The linking pairing of o*(M)

n-r+l

0 = TR® (F) x T H () ———0(n)/2(7)

agrees via the Poincaré duality H*(ﬁ) Ed Hn—*(ﬁ) with the pairing



TGH . (M) x TGH g () e @) /Z 7]

defined by the geometric linking numbers of torsion homology
classes, as originally studied by deRham [1] and Seifert [1]
(for = = {1}) and more recently by Kervaire and Milnor [1],
Wall [2] and Pardon [3] (for w finite) in connection with

odd-dimensional surgery obstruction theory.

In §4.2 below we shall identify the cobordism class

c,¢)er?ia, e 2i
of a -dimensional e-symmetric

€, e’ e 2i-1

f(cweou(c,e))

2i-1

over a Dedekind ring A
lic.oe o™ (c, e

Poincaré complex
with a cobordism class of the non-singular (—)lc-symmetric

intersection
pairing

linking

8 ¢+ i@ /mgut(c) xul o) /mgut (00— A
s i i -1
OO TSH (C) x TSH (C)——S "A/A

where
s = A-{o0}Ca
The expression in §3.2 below of the relative L-groups

of a localization map A-——s )

A as the cobordism groups of
S-acyclic algebraic Poincaré complexes over A will be based
on the following results:

Proposition 3.1.1 i) An n-dimensional S_lA—module chain complex D

with projective class
- = -1 o o-1
[R] € lm(Ko(A)———bKO(S A)) (;KO(S A)

has the chain homotopy type of sTlc = S—IA@AC for some

n-dimensional A-module chain complex C.
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ii) An S-acyclic finite-dimensional A-module chain complex C it
chain equivalent to a complex C' for which there exist A-module

morphisms e € HomA(C;,C;+l) (r € Z) such that the A-module morph!

s = de + ed : C;‘~———>C; (rez)
are S-isomorphisms. (If SCA is central can take C'=C,s€8S).
Proof: Clear denominators.
[

Localization is exact, so that for any A-module chain

1

complex C there are natural identifications of S$”"A-modules

-1

H*(S—IC) s "H, (C)

]

Hr(s™lcy = s7lus(cy .
Thus C is S-acyclic if and only if the homology A-modules
H,(C) are S-torsion; similarly for C*,H*(C).
A chain map of A-module chain complexes
f: C——>C'

is a homology equivalence if it induces isomorphisms in the

homology A-modules
f, ¢ H (C) —=2—s H (C') .

In particular, a chain equivalence is a homology equivalence.
A homology equivalence of finite-dimensional chain complexes
is a chain equivalence, but in general homology equivalences
are not chain equivalences.

A resolution (D,g) of an n-dimensianal (A,S)-module
chain complex C consists of an (n+l)-dimensional A-module
chain complex D together with a homology equivalence

g: D——>C .
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The S-dual chain complex ¢"™" admits a dual resolution

p
(Dn+1 ,Tg) inducing the A-module isomorphisms

Tg, + H O™ = W™y iy (") = W]TT

fr— (g (x)— 0,

(fep™!f yep , yep

n-r s€5, sx=dy€D }

n+l-r’ n-r
For example, a resolution (D,g) of a O-dimensional (A,S)-modL
chain complex C is a f.g. projective A-module resolution of |

(A,S)-module CO

a q
O——+D1 'DO co——»o

with d€ Hom, (D, ,D) an S-isomorphism, and (Dl—t,Th) is the d
resolution of Cg
0——»DO—-L»DI——T—9—~>CO—
defined above.
A resoclution (h,k) of a chain map of n-dimensional
(A,S)-module chain complexes
f: C————C'
is a triad of A-module chain complexes

'
—————>

1

——

O("—'—U
O‘-——U

‘

(i.e. a chain map h:D-—-»D' together with a chain homotopy
k:fg=g'h:D —>C"') such that (D,qg) is a resolution of C and
(D',g') is a resolution of C'. Note that f is a homology

equivalence if and only if h is a chain equivalence.
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Proposition 3.1.2 i) Every n-dimensional (A,S)-module chain

complex C admits a resolution (D,g), and every chain map
f:C—C' of n-dimensional (A,S)~module chain complexes
admits a resolution (h,k).
ii) There are natural identifications of sets of homology
equivalence classes
{n-dimensional (A,S)-module chain complexes}
= {S-acyclic {(n+l)-dimensional A-module chain complexes}
(n>»0).
Proof: i) Given an n-dimensional (A,S)-module chain complex C
write a f.g. projective A-module resolution of Cr (OS r&n) as

£ h
o Pr Qr Cr———-+0 '

and resolve d€ HomA(Cr’cr—l) (1<r<n) by

0 ———»Pr——f—v Q[—~h—¢Cr-————»0

il lj ld (£i=3£,hj=adh)
f h

o Pr-l Qr—l Cr—l 0

As d2= O there exist chain homotopies k€ HomA(Qr,Pt_z) (2€ r €£n)
such that

L2 _ 2
i = kf € HomA(Pr’Pr—2) , 37 = fk € HomA(QI,Qt_z)
Define a resolution (D,g) of C by

i ()%
dD = r ; Dr = Pr—lQQr Dr—l = Pr~2$Qr—l
f (=) 3
(L$e¢n+l, Py =0 = 0)
g =0 (-)n : D, = P, _ 80, ———C_ (0%r<n)

Similarly for chain maps.
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ii) Given an S-acyclic (n+l)-dimensional A-module chain complex

D define an n-dimensional (A,S)-module chain complex C with
resolution (D,q), as follows. Since S_lD is a chain contractible
-1

S "A-module chain complex there exist A-module morphisms

e€ HomA(Dr,D[+1) (0&r<n) such that the A-module morphisms

s=de+ed:D———sD {O<rs<nkl)
are S-isomorphisms, by Proposition 3.1.1 ii). Define a
collection of f.g. projective A-modules and A-module morphisms
(P,Q,ﬁﬁh,i,i:k)
as in i) by
d (o] 0 .

e d o] .

: PO = Dl©D3$D5®...*ﬁ—_>QO = DO®D26D40...
£ =
s (o] o} .
e2 s (o} .
2

: Pr = Dr+lmDr+300r+SQ"'
——'—————*Qr = Dr+1$Dr+3$Dr+5$"‘ (r>1)
d o (o] .
e d (o} .
i =
o] e d .
i
Pr = Dr+l$Dr+3®Dr+5m"'

TPy 2 D@D 8D 4. (3 0)



s} o
1 0
o} 1
: Q
j = !
d o]
e d
(o] e
Q[‘
0 o]
1 0
ko= o 1
Q

g = projection : Q,

The n-dimensional (A,

{(D',qg') with

(as in 1)) such that
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o] .

O .

0 .

= 020D4006$...—>QO = D,@D,8D,®. ..
o] .

0 .

d .

= Dr+1$Dr+30Dr+5$ o

—0, ;- D @D . ,0D . ,8... (ry 2)
0 .

o]

o}

= Dr+100r+3eDr+5$ .

——>P__, =D __,8D 8D  .8... (r 22)
—_ Cr = COREI(f=Pr—“-—?Qr) (r 20) .

Sy-module chain complex C has a resolutio

Dy = P._ 80, (r 2 0)

P' is chain equivalent to D, Thus (D,g) i

also a resolution of C.
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Given a finite-dimensional (A,S)-module chain complex

e-symmetric 0g(C.e)
define the even e-symmetric Qs—grougs Q<v0>§(C,c) by

e-quadratic Qf(C,C)

opcc.er = " hip,~e)

vy aic,e) = oy hip,-e)  (nez)
S = -
0 (C,e) = Q. (D,~¢€)

for any resolution (D,g) of C. The Qs—groups are independent
of the choice of resolution, on account of the chain homatop
invariance of the Q-groups. As already noted above the

relative L-groups of a localization map A————»SulA will be

expressed in §§3.2- 3.6 as the cobordism groups of algebraic

Poincaré complexes over (A,S) defined using the Qs—groups.

(It does not in general seem to possible to express th
Qs-groups of a finite-dimensional (A,S)-module chain complex
directly in terms of C, although there are natural candidate
for such expressions: let HomA(C",C) be the Z[Z,]-module
chain complex defined by

d : Hom,(C",C) = p+£=rH0mA(Cp,Cq)~————9HomA(C ,C)

r-1
39egn
£ d.f + (-) fd]
T HomA(Cp,Cq)——————#HomA(Cq,Cp) ;

Eb b i x— (Y ——d (V) (X)) (C;” =



vVogel [2,2.4]) has shown that for any finite (A,S)-module chain
complex C there is defined a long exact sequence of Q-groups
e 05(C, 6 — 05 (C, &) — 0, (C,-e)—— DB (C, e —> ...
n n n+l n-1
in whieh the groups Q,(C,e) are defined by

_ t
Qn(C,z) = Hn(Wﬂ (C QAC)) (n€ 2)

zZlz,]

with T€ Zz acting on CtEAC by the e-transposition involution
. t . _yPa
Ts : Cp@ACq~A—~-——quQACp ; XAy —— (-) " CyBex

exactly as in the original definition of the Q-groups in §I.1.1.
S = - -

The maps Qn(C,e) = Qn+l(D’ €) ——— Qn+l(c’ €) are the ones

naturally induced by gtﬂg :CtﬂAC—-—‘»DtﬂAD for any resolution

g:D——>C of C by a finite f.g. projective A-module chain
complex D, using the slant isomorphism of Z[Rzl‘module chain
complexes
\ : D'®,D ——>Hom, (D*,D) ; xByr—> (F—>F(x).y)
to identify
Q,(D,€) = H (W&

nE
713[%2] D EAD))

A chain map of finite (A,S)-module chain complexes
f: C—-—>C'

induces a natural transformation of exact sequences

oD 0 QS (C ) 0 (€ me) B (Coe)— .

-5 s =S
£y 1 Fe 1 fa lf%

02 (e ) R (€ ) (€ me) TS (Ch ey

However, a homology equivalence f:C ———>C' need not induce



isomorphisms fi,f% {although the maps fi are isomorphisms},
since already the Z[Zzl—module chain map inducing fg

ftar : cta,c——crtac
A A
need not be a homology equivalence. For example, if
S = {2k|k> 0}CA =2

and f:C——C' is defined by
C
fl
C

f C0 = ZZ———*—+C6 = Zy 12

e 00—, —> 0 — 00—, ..

|, ]

NN >0 Z4 zz———+o —_— ...

with

a' : Cé = z4—————9Cll = Z

it is the case that

fR/f = O : CEZC-—-—+C‘BZC'
Vogel [2,§3]) has also shown that for every "n-dimensional
e-quadratic complex over (A,S}" (C,¢€ Q:(C,C)) there exists a
finite (but not necessarily n-dimensional) (A,S)-module chain
complex C' with a homology equivalence

f: cC——C"

such that

£5(¥) € im(D] (C' ) Q3 (C' e))
and hence that the €-quadratic L-groups Ln(A,S,E) (n2 0)
defined in §3.2 below using n-dimensional €-quadratic
Poincaré complexes over (A,S) (C,¥€ O:(C,E)) with C
n-dimensional are isomorphic to the €-quadratic L-groups

fn(A,S,e) (n 0) defined using €-quadratic Poincaré complexes



197

over (A,S) of type (C,#€0°(C,e)) with C finite. For example,

with £:C——>C"' as in the special case above (S= {2k}C A=17Z,

C. =2

o P etc.) the map

3Seny = Sicry =
o5c) = z,———aSc) =z

4 (e = 1)

4

is an isomorphism, whereas the map

=S _ S =
Q(C) = Zy—— 0 (C) = Z,

is not an isomorphism. Similar considerations apply in the
e-symmetric
case, with an exact sequence

even €-symmetric

ceam> QR (€, 8} —— 03 (C,€) ——> " (¢, me) —— B0 (c, ) — ..

n

-1
g (Cie)

...——>6<vo>g(c,e)—»Q<vO>g(c,e)~——> Qn+1(C,—€) — 6<v0>
B LY

for any finite (A,S)-module chain complex C).

The S-adic completion of A is the inverse limit

A = Lim A/sA
s€S

of the inverse system of abelian groups {A/sA|s€S}, with S
partially ordered by
s &s' if there exists t€5S such that s' = st € § ,
the structure maps being the projections
A/StA ~———A/sA (s,t€8) .
Thus an element A€ A is a sequence
a = {a_€n/sa[s€s)
such that
a_ = [ast] € A/sA (s,t€8) .

s

In dealing with completions we shall always assume that S is
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central in A, so that each A/sA (s€S) inherits a ring structure
from A, and A is a ring with involution

— ~

c Ae— A ; 4 = {aseA/sA[seS)k—g“_.é = {a_€A/sh|s€sS) .

For example, the ring of m-adic integers

z = Lilﬂ zZ/m*%2 (k3 0,m% 2)

is the {mk}-adic completion of Z . The inclusion
it A sA; ar——{[a] EA/sA|s €S}
is a morphism of rings with involution such that
§ = its)CA
is a multiplicative subset.
A commutative square of rings with involution

A————B

B! ————— A’
is cartesian if it gives rise to an exact sequence of abelian
groups with involution

0] > A -+ B®B ' +A' ——— 0 .

In particular, the localization-completion square

1

A———»S A

~ A_ln

A — S5 "A

is cartesian. As described in the introduction to §3 such a

square gives rise to excision isomorphisms in the relative
|

K-groups

K, (A,5)—K,(A,S)



(which follows from the isomorphism of exact categories
i : {(A,S)-modules}—™2 5 (A,§)-modules} ;

MpPb——— M= AGAM = gég M/sM )

and a Mayer-Vietoris exact sequence in the absolute K-groups

~ -1 A_lA
...fﬂﬁKn(A)<——4Kn(A)$Kn(S A)—~—+Kn(S A)'A~*Kn_1(A)—* e

In §§3.2,3.6 below we shall identify the relative
1

e-symmetric L§(A——»‘+S— A,e)
L-groups s -1 with the cobordism
e-quadratic Ly{A——>S "Aa,¢)

L*(A,S,¢) even e-symmetric
of Poincaré complexes

groups ?

L, (A,S,¢) e-quadratic

n
(C,9€ Q(vO?S(C,e))

over (A,S) { with C an n-dimensional

(C,¥E€Q (C,e))
(A,S)-module chain complexes. The functors
i : {n-dimensional (A,S)-module chain complexes}

——— {n-dimensional (A,S)-module chain complexes} ;

Cr——C = AB,C {n30)

are isomorphisms of categories. Thus if the induced maps

i 0 (C o) i E(E,0)

i oS, e)——o5C, )
are isomorphisms there are defined excision isomorphisms in
the relative L-groups
L*(A,S,€) — 2> L*(a,5,¢)
gL,(A,s,e)—'x;»L,(f\é,e)
and there is defined a Mayer-Vietoris exact sequence in the

absolute L-groups

. ( Al



...———’L"(A,c)—~»L“(?x,g)m.g(s'l;\,e) — R E e e a,

L (Be) —L (R,e)enS 57T, e) L
(n€EZ) .
Use the cartesian property of the localization-completion squa
to define the abelian group morphism

o

5 : Ho(zz;s‘lA,e) .,Ho(zz;s'lA/A,g) =H

§

EE— §1(22;A,s).

Z,:5 1a/n,e)

In Proposition 3.1.3 ii) we shall show that {lfﬁ e
for all A,S,¢
the completion map i:(A,S)——ﬁ(;,g) does induce isomorphisms ir
oty § . . o
5 s -groups. The conclusions regarding excision isomorphis
Q.
and Mayer-Vietoris exact sequences in the L-groups will be
drawn in §3.6.

The property of the completion map i implying excision
in the K- and L-groups can be abstracted as follows.

Let (B,T) be another pair such as (A,S), with B a ring
with involution and T B a multiplicative subset. A morphism
of such pairs

f: (A,S)———(B,T)

is a morphism of rings with involution

f: A——>B
such that

f(S)CTCB .

If C is an n-dimensional (A,S)-module chain complex then
BBAC is an n-dimensional (B,T)-module chain complex;
if (D,g) is a resolution of C then (B@AD,lEq) is a resolution

of BEAC.



The morphism £:(A,S)——(B,T) is cartesian if
i} £l : S———>T is a bijection
ii) for each s €S the abelian group morphism
A/sA ——B/f(s)B ; [a)lr—— [f(a)] (a€A)
is an isomorphism .
Cartesian morphisms were introduced by Karoubi [2].
In particular, the completion map
i: (A,5) ——(A,85)
is a cartesian morphism.
Define a direct system of abelian groups
{A/sA|s € S}
by giving S the partial ordering
s{s' if s' = ts € S for some t€S ,
and defining the structure maps by
A/sA ———»A/s'A ; [a)r———[ta) .

Use the abelian group morphisms

{3

A/sh — s Ia/n ; fal— (s€s)
to identify

s'lA/A .

Lip A/sA
S€S

It follows from this identification that a cartesian morphism
f: (A,S)—>(B,T) induces isomorphisms

£ : Lip A/sA = sTIa/a ——Lim B/tB = T 1B/B
s€s tet

and hence that the commutative square of rings with involution



B ———~——7T‘lB
is cartesian. There is thus defined a short exact sequence of

Z[Zzl—modules

1 1

O——>A ——>»B@S A——>T "B—>0

inducing a long exact sequence of Tate Ez-cohomology groups

R T ) ———-»ﬁ“(zz;a,emﬁ"(zz:s'lA,e)

——-——»ﬁ“(zZ;T'lB,e) —‘L»ﬁ"*l(zz;;\,s) — ... (n€z)

Proposition 3.1.3 i) A cartesian morphism

f : (A,S)—(B,T)

induces an isomorphism of exact categories

f : {(A,5)-modules} —— {(B,T)-modules} ; M———BaM .
If M,N are (A,S)-modules there are defined Z-module isomorphisms

M—— BE,M ; x — 18x

Hom, (M, N) —"— Hom (BR,M,B&,N} ; gr—> (b8x +—>b&q (x))

M~ = HomA(M,S_lA/A)—";«)(BQAM)A = HomB(B@AM,T_lB/B) ;

g—> (b@x+——b.f(g(x)))
ii) If f:(A,S)——>(B,T) is a cartesian morphism and C is a
finite-dimensional (A,S)-module chain complex the induced
abelian group morphisms
f : Q;(C,e)-———»o;(BEAC,c)

f : Q(vo)g(c,e)———-»Q(vo),*I'.(BﬂAC,e)

£ 1 Q}(C,e)———> Q] (B,C,€)



isomorphisms
are monomorphisms. If

isomorphisms

§=0: ﬁo(zz;T"ls,e)v«—ml(22;A,e)
the maps f :Q(vo>§(C,€)————*>Q(vo>§(BﬂAC,€) are also isomorphit

Proof: i) See Appendix 5 of Karoubi [2}.
ii) Let (D,g) be a resolution of C, and consider the commutatis

diagram of abelian group chain complexes

HOMA(I,Q)
HomA(D',D) - HomA(D*,C)
f f
HomB(l,lﬂAg)
— *
HomB(B@AD*,B@AD) HomB(BﬂAD ,BEAC) .

As g:D———C is a homology equivalence (by definition) and D*
is a f.g. projective A-module chain complex the chain maps
HomA(l,g), HomB(l,IGAg) are also homology eguivalences.
As f:(A,S)——» (B,T) is cartesian and D* is a f.g. projective
A-module chain complex the chain map

f : HomA(D*,C)<——+HomB(B@AD*,BNAC)
is an isomorphism of abelian group chain complexes. It now
follows from the commutativity of the above diagram that
the Z[Ezl—module chain map

f : HomA(D*,D)-7A+HomB(BﬂAD*,BEAD)
is a homology equivalence, so that it induces isomorphisms
. {‘Zz—hypercohomoloqy
in the groups

Zz—hyperhomology



£:0l(c,e) = "D, -e) —— Q] (B@,D, €)

n+l
Q" (88,0, -¢)
£:Q3(C,e) = 0, (D) —"—> 0T (BE,D,€) = Q,, (BA,D,-c)

(n€ Z)

As D is S-acyclic, for every ¢€Qn+l(D,-€)
im(Sg(¢) s (0) — Al(z, 58, 00)
¢ in(8:1%z, 57 a/A, 00— it (z:ia, )
(cf. the definition in §3.3 below of the "linking Wu class"

n

S s 1™ oy ——i%z,:s7lasm, )

such that 80g(¢) = U, (8)). We can thus identify

Qv Bc o) = 0w o, -e)

n+l

= ker (v,:Q (D,~c)*—>HomA(Hn+l(D) ,im(ﬁo(zz;s’lA/A,e)

— il (z,:,0)))

It follows from the exact sequence
s, 2.00 -1 al
O——im(&8:H (Zz;'l‘ B,e)——>H (Zz;A,e))
R o] -1 ~1
——>im(H (ZZ;S A/A,e)—>H (Zz;A,e))
.50 -1 a1
—>im(H (ZZ;T B/B,e) ——H (ZZ;B.E))-—~—+0

that if § = O there are also induced isomorphisms

n+l

£ Qupg(Cre) = v " (D, ¢)

— Q<vo>,’ll(BaAc,e) = Q<v0>n+l(BQAD,-c)

(n€ 2)
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3.2 The localization exact sequence (n 20)

Let A,S,¢ be as in §3.1 above.
Let

. im(F g sl 2 g1
S = im(K,(A)—K (ST 'A))C Ky(ST A)

be the *-invariant subgroup of the projective classes [S_lP]

1 1

of the f.g. projective S “A-modules S "P induced from

f.g. projective A-modules P,

Ln(A————ﬁs_lA,e) e~symmetric
S
Let

(n€ Z) be the relative
e-quadratic

LS (A— s1a, e
L-groups appearing in the exact sequence

1 1

coo—aL A, ) ———»Lg(s' A, g)—> L[S‘(A——»s‘

1 1

oL (A e) = LS (5TA, €) —> LD (A—s”
(even) e-symmetric
An n-dimensional complex over (A,S)

e-quadratic

(C,9)
(c,¥)

is an n-dimensional (A,S)-module chain complex C

0€Qg(C,e) (0€QlvS(C,€))
together with an element s .
veo (C.e)

Such a complex is Poincaré if the A-module morphisms

00 : Hg(C)———*—+H (C)

n—-%

(l+T€)\PO : H§(C)—~———*H {C)

n-%
are isomorphisms. There is a corresponding notion of pair.

e-symmetric
Define the n-dimensional L-group of (A,S)

e-quadratic

n
L (A,S,¢€)

(n? 0) to be the cobordism group of n-dimensional
Ln(A,S,C)

Aey— " LA, e) ...

A,E)—> Ln_l(A,e)———> ‘e
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even e€-symmetric .
Poincare complexes over (A,S}).
e-quadratic

Proposition 3.2.1 A cartesian morphism f: (A,S)—— (B, T)

(Such that & = 0 : ﬁo(zz;'r‘la,e)———»ﬁl(zzm,e)

2 induces
e-symmetric
isomorphisms in the L-groups
e-quadratic
£: L"(a,8,e) —— L"(B,T, )
(n20)
f : Ln(A,S,e)»—~———* Ln(B,T,E) .

Proof: Immediate from Proposition 3.1.3 ii).

{1
In Proposition 3.2.3 below we shall apply the algebraic

I~theory of §2.4 to identify

L"(a,s,¢€)

1 (n20)
Ln(A,S,e) .

Lg(A—Aas'lA,e)
L (a——s1a,e)

In §3.6 this will be extended to the range n<-1, and these
identifications will be used together with Proposition 3.2.1
to obtain Mayer-Vietoris exact sequences for the L-groups of

the rings with involution appearing in the cartesian square

1

B-———>T "B

associated to a cartesian morphism (A,S)—--->(B,T).



Proposition 3.2.2 i) The homotopy equivalence classes of

(even) c-symmetric .
n-dimensional (Poincare} complexes over (2
€-quadratic
are in a natural one-one correspondence with the homotopy
equivalence classes of S-acyclic (n+l)-dimensional
{even) (-€)-symmetric
(Poincaré) complexes over A.
(-€)~quadratic
Similarly for pairs.
L"(a,s,¢€)

ii) (n>0) is naturally isomorphic to the cobordisn
Ln(A,S,e)

even (-¢)-symmetric
group of S-acyclic {n+l)-dimensional

(~¢)-quadratic
Poincare complexes over A,
Proof: i) Immediate from Proposition 3.1.2.

ii) Immediate from i).

[]

We shall be mainly working with the characterization of

L*(A,S,¢)

the L-groups as the cobordism groups of S-acyclic
L,(A,S8,¢)

algebraic Poincare complexes (Proposition 3.2.2 ii)), because

all the A-module chain complex manipulations developed in §1
L* (A, €)

in connection with the L~groups specialize to
L,(A,€)

manipulations of S-acyclic complexes. In particular, if it is

insisted that all the A-module chain complexes involved be

S-acyclic there is obtained from §1.5 an algebraic S-acyclic

surgery theory with which to analyze S-acyclic algebraic

Poincaré cobordism. (Localization in geometric surgery theory

e



., S)

will be discussed more fully in §7.7 below. For the present
note that if (f,b):M——— X is an n-dimensional normal map
which is a rational homotopy equivalence (n,(f)&p = O) then
quadratic kernel

o, (£,b) = (C(£!),¥)
is an S-acyclic n-dimensional quadratic Poincaté complex ove
Z[ﬂl(x)] , with

s = zZ-{o) Cz{m (X)) .

The S-acyclic cobordism class of the skew-suspensjon
S —_
o, (f,b) = So,(f,b) € Ln+l(ZI"1(X)l.S) (e=1)

is the obstruction to making (f,b) normal bordant to a homot
equivalence by a bordism which is also a rational homotopy
equivalence, i.e. it is the "local surgery obstruction" in t
sense of Pardon [3]. The chain level effect of a "local surc
on a conglomerate Moore space" in the sense of Pardon [3] is
that of an S-acyclic surgery on a connected S-acyclic
(n+l)-dimensional quadratic pair over z[ﬂl(X)]
(S:C(f!)————~+D,(6w,W)) with Dr =0 (r # k,k+1) for some k,

0O¢k ¢n+l).

Propesition 3.2.3 i} There are natural identifications

gL'S’(A—+s’1A,e) = 1."(a,s,e)

s -1 (n30)
an-———»s A,e) = Ln(A,S.e)

under which the maps appearing in the localization exact

sequence
...———.Ln(A,s)—oLg(S_lA,c) ——-—*Lg(A—-» s™1a,e)— 1" LA,
g - -
{ .———*Ln(A,e)———+L“(S 1A,E)—~“ﬁL§(A-OS lA,e)———-an_l(A,
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are given by
J s Lrs‘(s—lA,c)———-»Ln(A,S,g) : s71c, pi———38(C, §)
J ¢ Lﬁ(S'H\,s)—«—»Ln(A,s,e) ; s‘l(c,w)»———»ﬁ(c,w)

"Lia,-€) ; (C,0)——(C,0)

LA, 8, 6) —1" a6 = Ly
i A,-e) ; (C, ) ——(C, )

L (A8 e)——> L (Ae) = L, ¢

{(n >0)
ii}) The skew-suspension maps in the te-quadratic L-groups
§ : L (A,S,€) ——L_,,(A,S,~€) ; (C,¥)——>(SC,5¥%) (n»0)
are isomorphisms,

Proof: i) It follows from Proposition 3.1.1 i) that the maps

ra——sla,e) ——12(s A0 5 (c s (e, 6)
a S -1 a (n30)

I‘n(A————)S A,C)—«—-«)Ln(S A,e) ; (C,0)—>S “(C,¥)

are isomorphisms, so that there are natural identifications

LE(A—-»S‘IA,e) = t(F,¢€)

1

S _ (n>0)
Lo (A——5 "A,€)

Fn(F,e) v

e-symmetric

the groups on the right being the relative I'-groups
e~quadratic

of the commutative square of rings with involution

1
A——————>3

1 F
A—v—~———+5—lA
L"(a,s,¢)
By Proposition 3.2.2 ii) (n3y0) is naturally isomorphic
L (a,8,¢)

to the cobordism group of S-acyclic (n+l)-dimensional



Poincaré complexes over A, which is just

even (-€)-symmetric
{(—g)—quadratic

n
T (F,e)
the expression obtained for { (n»0) in Proposition 2.4.6.
I (F,e)
n
We can thus identify
Lt a—-ss7la,e) = I"(p,e) = L"(A,S,€)
S
. a (n30)
Ln(A————as A,e) = Fn(F,e) = Ln(A,S,E)
Explicitly, the isomorphism
LQ(A——.S_lA,EJ—«’:/———»Ln(A,S,e)
LrS\(A———»S—lA,E)——i——-?Ln(A,S,E)
sends the element
((c.eeQ"t(c,e)) 57 (F:c—p, (89,00 €Q"(£,©))) €LY (A—s71n, 6
((C.¥veQ, _ (Cre)), 8 (£:C—D, (8V,¥) €0, (£,6))) e L (a—s5ta,0)

(c',9")eL(a,s,¢)
to the cobordism class of the S-acyclic
(C',¥') €L (AS,e)

even (-g)-symmetric .
(n+l)-dimensional Poincare complex over A
(~¢)~quadratic

(C',9") S(C', 9"
obtained from the skew-suspension § _ by surgery
(C',y") S(C', ")

even (-eg)-symmetric

on the connected (n+2)j-dimensional
(~€)-~quadratic

1 . S(f:C ——D, (§4,0))

S “A-Poincare pair over A Yy _ . In particular,
S{f:C——D, (§¥,0))

' t - 18 ~1 n -1
(C',9") = 35(D,&¢) s (D,6¢>ex,S(s A,€)
for C = O and

1

{4ty = a8(D, ¥ s Vo, 84y € Li(s— Ae)

ii) Immediate from i) and Proposition 2.2.3 ii).



The pair (A,S) is m-dimensional if every f.g. S-torsion
A-module M has a f.g. projective A-module resolution of
length m+1l

0——>FP ——me—)..,—)Pl——)Poﬁ—bM————»O .

m+l
For example, if A is m-dimensional (in the sense of §1.2) then
(A,S) is m-dimensional; if nm is a finite group and p is a prime
such that p} 7| then (Z["],{pklk » 0}) is O-dimensional.

By analogy with Proposition 1.2.2 ii) we have:

Proposition 3.2.4 If (A,S) is m-dimensional the skew-suspension

maps in the te-symmetric L-groups

5 : L"(A.S,e)———— "2 (a,5,-¢)  (n72mtl)

are isomorphisms, and there are natural identifications

2ia,s,6)
2i-1 = the cobordism group of S-acyclic
L (A,S,€)
2m+1 fom-1
~dimensional (-) ™™ ‘¢-symmetric Poincaré
2m

complexes over A {ipm+l)

under which L"(a,S, e)— >L" 1 (A, &) (ny2m+1) becomes the

forgetful map

ia,s, 0 — 2 la, e 5o, 05 e, 0
i- i il (i m+l)
2 ta,s, g——12i2a, 0 5 o o—5 " e, 0
In particular, for m=0
2ilia,s, 0 =0 (ip1) .
t?ta,s, e
Proof: In order to identify 2i-1 (i »mtl) with the
L (A,S, €)
2m+1
cobordism group of S-acyclic -dimensional
2m



i-m-1 . ; - ; R
(-) e-symmetric Poincaré complexes over A it suffices

{(by the S-acyclic counterpart of Proposition 1.4.2) to show
that it is possible to perform S-acyclic surgery on a

connected S-acyclic (n+l)-dimensional even (-€)-symmetric

n+l

Poincaré complex over A (C,¢€ Q(vo> (C,-€})) (n3 2m+l1)

ao as to obtain a skew-suspension, killing Hn+l(C). Working
exactly as in the proof (in I.) of Proposition 1.2.2 use a

f.g. projective resolution of the f.g. S~torsion A-module HO(C)

O-—>D -——-—*Dm———’...—fD —>D ————#HO(C)—%O

m+1 1 (¢]

to define a connected S-acyclic (n+2)-dimensional even

(-€)-symmetric pair over A (f:C——D, (0,¢) € Q<v0>n+2(f,—€))

with which to perform such a surgery.

In particular, if (A,S) is O~dimensional we have that

L21_1(A,S,e) (i 1) is the cobordism group of S-acyclic

1

. . i- : .
O-dimensional (-} c-symmetric Poincaré complexes over A

i-1
€

(C,¢ € €, -) )). Now Hy(C) is an S-torsion f.g.

projective A-module, and S consists of non-zero-divisors,

so that H (C) = 0 and L*'71a,s5,6) =0 (i>1).

Let
f : A——>8B
be a morphism of rings with involution for which there exists

a multiplicative subset SCA such that f factors through the

localization S 1A

1

£ : A—>S A —B

with the property
f a finite-dimensional A-module chain complex C is B-acyclic

if and only if C is S-acyclic.



It then follows that
r"(f:A—>B,€) = the cobordism group of n-dimensional

¢-symmetric B-Poincaré complexes over A

the cobordism group of n-dimensional
e-symmetric S—IA—Poincaré complexes over A

1

)

mMa—ssa, e = L2s™ Al (nyo)

and similarly for the e€-quadratic case. The connection between
the I'-groups and the L-groups of localizations has been
investigated in the quadratic case by Smith {1] (following some
preliminary work of Cappell and Shaneson in the commutative
case). In particular, Smith showed that if
£ : A= 2Z[n)——— 3B = Z(p]
is the morphism of rings with involution induced by a surjective
group morphism f:m———>p such that p is a finite extension of
a polycyclic group and ker (f:n——p) is a finitely generated
nilpotent group then the multiplicative subset
S = {1+ili €ker(f:A——>B)}1CaA
is such that the evident factorization
f:A—— s laA— 58
does indeed have the property %, and hence that
ry(£:a——B) = L5(s7ta) .
The case of the projection induced by f:n=2Z ——p = {1}
f:A=2Z[Z)—>B = Z
is of particular interest, since the groups

P (f:z(Z]—Z) = I (zZ(Z8]l—>s tziz]) = LS ziz)

are closely related to the high-dimensional knot cobordism

groups C,, as described in §7.9 below. More recently, Vogel [3]



has obtained natural identifications of the type
I, (f:Aa—sB) = LX(A)
for any locally epic morphism f:A——— B with a factorization
f: A——>pA-——B
satisfying the property
% a finite-dimensional A-module chain complex C is B-acyclic
if and only if C is A-acyclic

universally, with A —— B onto.
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3.3 Linking Wu classes

The linking Wu classes are the S-acyclic counterparts
of the algebraic Wu classes of §1.4.
Let T€ Z, act on the additive groups A, S_lA, S_lA/A
Zz-cohomology
by T:x+———€x in each case. Define the Z,-homology
Tate Ez-cohomology
B (Z,:G, )

lA, S_IA/A by analogy

groups 4 H _(Z,;G,€) (r€2z) for G = s~
A" (z,iG,€)
with the case G = A considered in §1.4. The short exact

sequence of E[sz—modules

1

0 ——> A —> 8§ A—————)S—IA/A———)O

induces a long exact sequence of abelian groups

oYz, e)—u (z ;57 A, e) —H  (z, ;5" A/A, €)
2 2 2

‘~—~—>Hr+1(EZ;A,E)———~*...

- ,g71 .71
co = H (Zy:A,€) —>H (Z,;8 A,e)—H (Z,:S A/A,€)

(rez)
-A*——’Hr_l(22;A,e)———~+...
R L (ZZZ;A,E)-—-’QI (zz;s‘lA,e)—’ﬁ‘ (zz;s_lA/A,e)
———+ﬁr+1(?22;A,e) —_— .

Let C be an S-acyclic finite-dimensional A-module chain

. S
e-symmetric v (9)
complex. The rth e-quadratic linking Wu class v;(w)
e-hyperquadratic Gf(e)
n+l

¢ €0Q (C,¢€)
of an element { ¢ € Qn+l(C,€) is the function

o e 0", e

TN
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vy i o) —— w2z 557 A, (1) g

i

1 n-r 1
XrﬂA*ﬂ(g)-(¢n_2r‘1+ (-) ®n_2rd')(y)(y)-(§)

r . yh-r+l S | yh-r+l .
vg¥) : H (C)——>H r_n(zz,s A/A, (-) €) :

2
1 —T—
X (J) . (¥, _ nel t ¢2r @) (V) (Y) . ()
@) 1) —— iz, is T avmL e
xr—s () (8 o 1+ YT At iy ()L (D)

(xec" T yec™ T ses, sx=atyec" T,

Motivation: the cohomology classes x € Hm(C) of an S-acyclic
A-module chain complex C are in a natural one-one corresponder
with the chain homotopy classes of A-module chain maps

x : C -————*Cm(A,S),

where Cm(A,S) is the S-acyclic A-module chain complex

defined by
d:C,(AS) =A—C (AS) | = st a—— 3
C,(A,S), =0 (i # m-1,m
The linking Wu classes are such that
B oo = xteree™lic w80 =1 z,is7 s, 0"
VEH) (x) = xy (V) €0, (C 1 (A,S),€) =Hy _ (Z,iS 'A/A, ()"
o) = 220 ed™c, . a0 =i zysT A e

Now Cm(A,S) is the direct limit

Cm(A,S) = Ig%g Cm(A,S)

of the directed system {Cm(A,s)lse S} of finite-dimensional

S-acyclic A-module chain complexes defined by



d : Cm(A,s)m = A —— Cm(A'S}m-l = A ; ab——>»as
Cm(A,S)i =0 (i # m-1,m)

with s{s' if there exists t€ S such that s' = st € S and

at i=m-1
Cm(A,s)i—~—~» Cm(A'S')i Pa b

a i=m
€-symmetric V§(¢)(X)
The linking Wu class r is the obstruction
e-quadratic vg (¥) (x)
n-r+l (C,4) »
to killing x€H (C) (= Hr(C) if is Poincare) by
(C,¥)

e-symmetric
S-acyclic surgery on an pair of the type
€e~quadratic

{ (x:C——C___ (A,s), (86,6) €0" P (x,e))
(s€S)

(x:C———2C__ L (A,8), (84,9) €Q,,,(x,€))

By analogy with Propositicn 1.4.1 we have:

Proposition 3.3.1 i) The linking Wu classes are related to

each other by

S
v (¢}
GE(J¢) : Hn—r+1(c)____74’_§Hn—2r(ZZ;S~1A/A’l_)n-r+l€)
_4.9”%@”1(22;5‘%/&5)
r
5 . yh-r+l vg ¥ -1 n-r+l
v ({1+T )4) : H (C)———>H, (Z,:;S "A/A,(-) €)
B 1+T
——ﬁ~li—*ﬂn-2r(zz;s—lA/A,(-)n_r+1d
S
_ 0 (8 -
v hme) - 8" o) — L iz 57 asm, o)
H o1 _\n-r+l
sy (B8 TA/A, (-) €)

weo"c,er, veo , (o), e (c,e)




ii) The linking Wu classes are related to the algebraic Wu

classes of §1.4 by

5
_ v (9) _ _ -
v (o) BT o) "z 55T AR, ()" AR
8 Hn—2r+1(zz;A'(_)n—r+1E)
r
r . pyn-r+l Vs(w’ -1 n-r+l
oy T o) —S— ) zsTham, ()T Y
3 n-r+l
2 m, (Zyi, ()T e
S
_ v (8) ap -
9,.(0) : BT ) —E—— " hzy 5T AsA 0
—_— ﬁr(ZZ;A,e)

iii) The linking Wu classes satisfy the sum formulae

Vo) () - Ve 0 - v o) ()

{ Sty + Sy € BozyisTlam, (1 e = 2n)
0 e W2 (z 57 la/m, (1) " e (n # 2r)

Vg LH) (x+y) = vg (b} (x) = vg (W) (¥)

i { (1+T€)¢g(x,y) P Ho(zzgs'1A/A,(-)‘*1g) tn = 2r)

0O € H (zz;s’lA/A,(—)”'t+lc) (n # 2r)

2r-n

W) (x+y) - V301 0 - S0 (v) = 0 € BN (zyisTasaLe)

(x,ye " T ()

s
$
with 5‘ o g it ey x w5 0y ————o s71a/A the linking
(14T )03
(c,o 0%t (c,ey)
pairing of (n=2r). Furthermore,
(Co¥€Q, ,,(C,e))

Vfw)(x) =¢S(X.x)€HO(Z s_lA/A,(—)”lr) (n=2r)

2?

t
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As a first application of the linking Wu classes we have
the following S-acyclic analogues of Proposition1.2.2 i):

Proposition 3.3.2 i) If A,S,e are such that

ker 3:0%(z,:5 ta/n,e)——iil(zia,6)) = 0

there is a natural identification

L"(A,S,e) = the cobordism group of S-acyclic (n-l)~-dimension

€e-symmetric Poincaré complexes over A (n2 2)

under which Ln(A,S,s)—v~—aLn—l(A,€) becomes the forgetful map.
In particular, this is the case if ﬁO(ZZ;S'lA,e) =0

{e.g. if 1/2€5 1a).

ii) If A,S,e are such that

~1

ﬁo(zz;A.E)wﬂﬁo(zz;s A,e)

is an isomorphism then the skew-suspension maps

5§ : L"a,s,e) ——1"?%@a,5,-6) (ny0)
are isomorphisms. In particular, this is the case if 1/2€ S_lA,
Proof: i) By the S-acyclic counterpart of Proposition 1.5.2 it
suffices to show that it is possible to perform S-acyclic
surgery on a connected S-acyclic (n+l)-dimensional even

n*lic,-e)) (ny2)

n+l

(-€)-symmetric complex over A (C,b € Q(vo>
s0 as to obtain a skew-suspension, killing H (C}. For any
element x € Hn+l(C) we have

~s _ _ Al .

Svg(e) (x) = vyld) (x) = O € H  (Z,;A,€) ,
so that

VS0 () € ker (8:0%(z,;57 a/A, ) — Bl (z,5n,0)) = 0 .

It follows that x€ Hn+1(C) may be represented by an A-module

chain map

[



X C——an+1(A,s)

for some s€S {(with Cn+l(A,s) as defined above) such that the
is defined a connected S-acyclic {n+2)-dimensional even
(-e)-symmetric pair over A

(x:C —r~—>Cn+l(A,s) c(80,0) € Q(vo)n+2(x.—€))

Surgery on this pair results in a connected S-acyclic
(n+2)-dimensional even (-€)-symmetric complex over A
(C'.0'60<v0>"+1(c',~e)) such that

#" ey = v/ m .
Now Hn+l(C) is a f.g. S-torsion A-module, so that it is possi
to kill Hn+1(C) in (C,¢) by successively killing off a finite
set of generators.

ii) Consider the exact sequence of abelian groups

ﬂl(zz;s_lA/A,e)———a—»ﬁo(zz;l\,e)———9?10(22;5-11%,5)

s 10z ;57 IaA 0) S itz i, 0

If ﬁo(zng,c)——-—»ﬁo(zz;s'lA,e)is onto then

(o]

ker (8:8°(z s’lA/A,e)—»ﬁltzz;A,e)) = 0

27
and by i) we can identify
Ln+2(A,S,c) = the cobordism group of S-acyclic
{(n+l)-dimensional e-symmetric Poincaré

complexes over A (n20)

If ﬁo(z2;A,e)————*ﬁo(zz;s_lA,e)is one-one then

1(zz;s‘lA/A,e)———»ﬁo(zzz;A,e)) =0

im(s:ﬁ
and every S-acyclic e-symmetric complex (or pair) over A is

even. Thus if ﬁo(zz;A,e)-~—~?ﬁo(zz:s—lA,e) is an
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- igomorphism we can identify

Ln+2(A,S,e) = the cobordism group of S-acyclic
(n+l)-dimensional even e-symmetric Poincaré
complexes over A

= L"(A,5,-e) (n20) .
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3.4 Linking forms
In the first instance we define some subqguotient groups
of S‘IA, which are needed to define the various types of linking
form that arise in the localization exact sequences of Witt
groups.
Write QC(S—lA/A) for the Ez—cohomology group
ofs7tasa) = w0z, 57 asa,e) = (besTIA|b- cbea}/a

and let QE(A,S) be the subgroup of QE(S_IA/A) defined by

Q% (a,s)

)

in(10(2Z,: 5™ A, ) —— 1 (2,57 asm, 0))

{bes lalb-¢b = a-ca,aenl/aco (s tasa)

"

Write QE(S_lA/A) for the Zz—homoloqy group
-1 _ ~1 _ e-1 = -1
Q. (STTA/A) = Hy(Z,;S” A/A,e) = 8" A/la+b-cblaen,bes  a} ,

and define also the abelian group

o] -
QE(A,S) coker(l+Te:HO(Zz;A,E)————*H (ZZ;S lA,EH

{bGS_lA|b= ebl/{a+ calae A}

The e-symmetrization map

14T Qs(s'lA/A)_—«»QE(s‘lA/A) ; Kby x + EX

factorizes as

-1 P 4 ¢ e -1
1+TE : QE(S A/A)“‘-—?QE(A,S)~*——>Q (A,8) —Q (S5 "A/A)

with

Pt Q(STIA/A) —— 0 (A,8) 5 x> x4+ eX

q: 0 (A,S)————>0(A,8) ; x+—>x

r = 0%(a,s) oS sTlam) s oxem ox



An e¢-symmetric linking form over (A,S) (M,X) is an

(A,S)-module M together with an A-module morphism A€ HomA(M,MA)
such that

€x” = X € Hom, (M,M")
Equivalently, X € HomA(M,M‘) can be regarded as a pairing

A MxM——s 5TIAZA 1 (x,y) e A (x,y) = A(X) (y)
such that
1) Ax,y+y') = Alx,y) + d(x,y"')
ii) A(x,ay) = ar(x,y)
iii) My,x) = eX(x,y)
(x,y,y'€M,a€n)
For example, an e-symmetric linking form over (Z,Z-{0})
(M,%) is the same as a finite abelian group M together with
a bilinear e-symmetric pairing
A MXM——m—— /%

If (M,)) is an e-symmetric linking form over (A,S) then
€,e-1
A(x,x) €07 (S "A/A) (x€EM)
The linking form (M,X)} is even if
€ €, a~1
A{x,x) €E0°(A,S)SQ (S "A/A) (x € M)

An g-quadratic linking form over (A,S) (M,A,u} is an even

e-symmetric linking form over (A,S) (M,)) together with a funct
u : M *“*‘)QE(AIS)

such that
i) u(ax) = an(x)a €0_(A,S)
ii) wix+y) - u(x) - u(y) =206y} + eX(x,y) € Q_(A,S)
iii) qu(x) = A(x,x) € 0 (A,S)

(x,y EM,a€A)
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This definition is due to Wall [2] (in the special case
(A,S) = (Z([n],2Z-{0}) arising in odd-dimensional surgery
obstruction theory). If A is a commutative ring with the
identity involution a = a € A (a€A) and 1/2¢€ S_lA a quadrati
linking form over (A,S) (M,A,u) (e=1€A) consists of an
(A,S)-module M together with a function
b M——— 0, (A,S) = s 1A/2A
such that
i) plax) = a’u(x) € sTIA/2A (x€M,a€A)
ii) the function

Nr MM — s STRAR ) e S y) - (0 - aly)

is bilinear.

A split e-quadratic linking form over (A,S) (M,A,u) is

an even e-symmetric linking form over (A,S) (M,)) together
with a function
Vi M—— QC(S_IA/A)
such that
1) v(ax) = av(x)a € o_(s 'a/a)
i) vixty) -v{x) -v{y) = X(x,y) € QE(S_lA/A)
iii) gpv(x} = A(x,x) € 0°(A,S)
(x,yEM,a€Aj .,
in which case the function
H: M— QE(A,S) 3 X ——3 pV(Xx)

defines an €-quadratic linking form (M,A,u). This definitior
due to Karoubi (2]. In Proposition 3.4.2 below we shall shov

that every e€-quadratic linking form (M,A,u) has a split



e-quadratic refinement (M,),u) (withu= pv), and that if

lA there is no difference between t€-quadratic and split

172€s”
e-quadratic linking forms over (A,S). If A is a commutative
ring with the identity involution a split gquadratic linking
form over (A,S) (M,X,v) (€=1€A) consists of an (A,S)~module
M together with a function

Vo My Q+1(S_1A/A) = s lam
such that

i) v(ax) = azv(x) <] S-lA/A (XEM,a€n)

ii} the function

PP MXM———ps_lA/A ;o (X, y)——(V(xty) - v(x) - v(y))
is bilinear.
The associated quadratic linking form (M,A,p =pv) is obtained
by composing v with
p=2:0,(stam =staa——o, (a8 = s A/ ;
b ————2b

{which is an isomorphism if 1/2€s la).

(even) e-symmetric
An linking form over (A,S)
(split) e-quadratic
(M, )} ~
_ is non-singular if X € HomA(M,M } is an
(M, 2, 1) (M, x,v))
isomorphism.
(even) e-symmetric
A morphism (resp. isomorphism) of e-quadratic
split e~quadratic

linking forms over (A,S)



£: M) —— » (M', A1)
f @ MA,u)—————(M', A" u)
£ (M,A,V}—-———— (M A", V")

is an A-module morphism (resp. isomorphism) f € HomA(M,M‘)

such that
£xf A 1
At MxM— —  3M'xM'—————S TA/A
and
ot M LYY L Q, (A.S)
viM £ mo—¥ o sTham .

In Proposition 3.4.1 below the isomorphism classes of
{non-singular) linking forms over (A,S) will be identified
with the homotopy equivalence classes of S-acyclic l-dimensional
(Poincaré) complexes over A. In Proposition 3.4.7 this will be

LZ(A,S,—Q) ({A,S) O-dimensional)

L%a,s,¢)
extended to an identification of 2
L "(A,S,-¢)
LO(A,S,E)
LC(A,S) e-symmetric
L<VO>E(A:S) even e-symmetric
with the Witt group of non-singular
LE(A,S) e-quadratic
ZE(A.S) split e-quadratic

linking forms over (A,S). Thus the even-dimensicanal e-quadratic
L-groups of (A,S)
|

_ i
L,; (A.S.€) = Ly(A,S, (=) 7€)

are the Witt groups of the split (—)le—quadratic linking forms

over (A,S), rather then the Witt groups of (—)1e—quadratic



linking forms. However, if 1/2€ sl (e.qg. if (A,S) = (Z[n],Z-{

it will be shown in Proposition 3.4.2 below that the forgetful
functor
{split e-quadratic linking forms over (A,S)}

————— {eg-quadratic linking forms over (A,S)}
is an isomorphism of categories, so that the Witt groups are
also isomorphic. See Ranicki [6,§6] and §5.1 below for an
example of a pair (A,S) (with 1/2 ¢ S_IA) for whiﬁh the Witt
groups are not isomorphic.

e-symmetric
An ) e-quadratic map (resp. homotopy equivalence)

split €-quadratic

E-symmetric
of S-acyclic 1-dimensional e-guadratic complexes over A
€-quadratic
f: (Cid)——3(C',0")
£ : (Cb)————(C', V")
£ 3 (Ch) ———(C' ")
is an A-module chain map (resp. chain equivalence)
f: C—C'
such that

£¥ ) - ¢ =0e otc,e

n

£, (¥) - LN H(B) € Q,(C’,¢)

t

- ] ]
f%(w) Y H(8) € Ql(C 1 €)
for some Tate mz—cohomology class 6 € 62(C',e) such that

Ui(8) =0 : Hl(C')—————’}Ail(ZZ;A,c)

o : Hl(c')——+ﬁ°(zz;s‘1A/A,e)

I

It

Gf(e)
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An e-quadratic homotopy equivalence in this sense is the same
an e-quadratic homotopy equivalence in the sense of §l.6.
e-quadratic
An map f:(C,¥)—> (C',¥') determines an
split e-quadratic
e-symmetric
map
e-quadratic
£ : (C,(l+T€)W)——“‘—*(C',(1+TC)¢')
£ (C¥) ———————(C',¥*)
since
£2 (4T W) - (T ¥ = (14T )H(8) = 0 € otict e
95(8) = o N
- 1 L ~0 -1 §
vl(e) : HW(C') ——————H (Z,iS S/A,€)——H (Zyi A,
e-symmetric
even €-symmetric

Proposition 3.4.1 The category of linking
e-quadratic

split €~quadratic
forms over (A,S) is naturally equivalent to the opposite of t
(-¢)-symmetric
even (~g)-symmetric
category of S-acyclic l-dimensional
(-¢£)-quadratic
{(-¢)-quadratic
(~€)~symmetric
(-€)-symmetric
complexes over A and maps.
(-€) -quadratic
split (-e)-quadratic
Isomorphisms of linking forms correspond to homotopy equivale

of complexes. Non-singular linking forms correspond to Poinca

complexes.
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Proof: The linking pairing of an S-acyclic l-dimensional
(-e)-symmetric complex over A (C,¢€Ql(C,—€))

S

#5 : L) mh @ —sTam 5y Lo 0 ()

1

(x,y€C ,zGCO,seS,d*z=sy€C1)

defines an e-symmetric linking form over (A,S)
M, = w0

The Oth (-¢)-symmetric Wu class of (C,¢) factors as

s

vo ()

o)+ uh e 20z, is7 A/, o) stz )

27
and

o%(s™asm

ker (§) = QE(A,S)QHO(zz;s’lA/A,c)
so that the complex (C,¢) is even (v0(¢) = 0) if and only if the
linking form (M,}) is even (A (x,x) Zvg($) (x) € 0°(A,S) S Q% (s 1a/A)
for all x€M=H1(C)).
The Oth (~¢)~-quadratic linking Wu class of an S-acyclic
l-dimensional (-¢)-quadratic complex over A (C,V€ Ql(C,—e))
vatw ¢ B ——n (2,57 A/, 0 = 0 (s asm)

Y (21,00 + 4% (2) (2).¢D)

1

tvecl,zec®, ses,a*rz=syech

defines a split e-quadratic linking form over (A,S)
1 S O
(M, 2,v) = (H (C),(1+T_€)uorvs(¢))
with associated e-quadratic linking form over (A,S)

0]
M) = (BHE), (L+T_ )ug,pvg (9) suY (C)——0_(A,5))



A map of S-acyclic l-dimensional (-e)-symmetric complexes
over A
f: (Cip)———(C',d")
induces contravariantly a morphism of the associated e-symmetric

linking forms over (A,S)
e 2 mhen,epS) ——ml,ed)

Conversely, every morphism of the associated e~symmetric linking
forms is induced by a map of complexes.
A map of the (-¢)-symmetrizations
£ 2 (Co(1+T_ ) 9)———(C', (L+T_)¥")
of the S-acyclic l1-dimensional (~e)-quadratic complexe over A
(C,¥),(C',¥*) induces contravariantly a morphism of the
e-quadratic

associated linking forms over (A,S)
split e-quadratic

1 s _o0,,, 1 S _ 0
f* : (H (C'),(1+T_€)W' .PVS(¢ )} ——(H (C),(1+T_€)WO:PVS(¢))
1 S 0 1 S O
£* : (H (C'),(1+T_e)¢6 ,VS(¢'))-—~—*(H (C),(1+T_€)¢O,VS(¢))
(~e)-quadratic
if and only if f:(C,¥¢)———(C',¥') is a
split (-€)-quadratic
map, since by the exact sedquence of Proposition 1.1.3 there
exists an element 6 € 62(C',-e) such that

fa(¥) - ¥’ = H(B) € Q,(C',-2)

and there is defined a commutative diagram
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H (c' )
v (f (p)) - Vg (w ) = v {HO9)
v (8)
v (0)
is” A/A,e)——*i—»o (s”lasa) ——9B _, of(a,s)
8 p
0 3j q

H(ZgiAs e} ————=—— Q (A, §) ——3——0%(a,8)

involving the exact sequences

o——flz,;s7 /A, 00— o_(s7ta/a) —— o (a,s)

0—— 8%z iA, ) o s ——3 5 0%(a,9)
with
H : ﬁl(zz;s'ln/;\,e) -——————*QE(S-lA/A) P X —— X
jo: ﬁo(zz;A,e)—————————»Qs(A,S) Par———>3g .
(even) e-symmetric
Conversely, given an e~quadratic linking form
split e-quadratic
(M, })
over (A,S) (M, X,p) we shall construct an S-acyclic l-dimensional
(M, X, V)
(even) (-¢)-symmetric (C,o€ Ql(C,—c))
(~¢)-quadratic complex over A (C,y € Ql(C,-e))
(-e)-quadratic (C.weol(C,-e))
“such that
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whe) 09) = Mo
wher, (er_vS.evi () = (A,
wher, e e v = o,

as follows.
Given an e-symmetric linking form over {A,S) (M,A) let

a ,¢ —M" >0

o] ~y Cl o

be a f.g. projective A-module resolution of the S-dual
(A,S)-module M~ of M. The A-module morphism A€ HomA(M,M”) can

be resolved by a chain map

such that there is defined a commutative diagram

*
o @& e M 0
oot -¥, !
) N d — Cy———M"——>0

We thus have A-module morphisms

such that

and

At M= coker(d*:CO——vﬂ Cl)—~—~—»MA :

X (y 20 (x) (2))

(x,vecl, zec®, ses, arz=syech



The relation T€X =X € HomA(M,MA) is resolved by a chain homotopy

b F Tigbg ¥ 4 1 70—,

as defined by an A-module morphism

1
¢1 CT— Cl
such that
Tx o . A0
@0-+c05 = -old* : C ——————+C1 .
~ 1
* = .
bote9d = dé; : CT——C,
Now

dby +e0d) = (B +edp) - (o, +edf)® = 0 : cF—c

and dElkmh(Cl,CO) is a monomorphism, so that
1

@1 + e¢i =0 :C ———————+Cl

The S-acyclic l-dimensional (-e)-symmetric complex over A
(C,6€Ql(C,-€)) is such that
whic) 60 = My

l-x . . ,
—*C is a chain equivalence

by construction. The chain map ¢O:C
if and only if it induces an A-module isomorphism

~

=2 : ut - -
(0g) e = 2 2 H(C) = M———H (C) =M,

so that the complex (C,¢) is Poincaré if and only if the linking
form (M,)} is non-singular.

Given an e-quadratic linking form over (A,S) (M,X,u) let

d -~
(0] — Cl 'CO -+ M [0}

be a f.g. projective A-module resolution of the S-dual M"
(as above), stabilized so as to have C1 a f.g. free A-module.

Write the dual resolution for the double S-dual (M™)" = M as
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0O d* ey o
Choose a base {xi|1$ i< n} for cl - Ci and let
{yije S'1A|l$ i,j< n} be such that

i)y =y € s7la (1<i,ign

ii) X(exi)(exj) = vy € sla/a (1gic< j<n)

iii) u(exi) =y;; € 0. (A,8) (1¢ i< n)

Define an A-module sStructure on HomAlCI,S_lA) by

A x HomA(cl,s‘lA) ———»HomA(cl,s‘lA) ;
(a, f) ——> (x r———»f(x)a)

The A-module morphism

a Cl-——~—vHomA(Cl,S_lA) ;

n n
i=

a.x, —> b.x. ——> b.y..a. a.,b. €A
1 ! (j);l 13 1si2,j\<n 3i3%) BBy €N

is such that

i) a(y) (x) = ea(x) (37 € s tasa
ii) A(ex) (ey) = a(x)(y) € s lasa

iii) w(ex) = a(x)(x) € Q. (A,S)
(x,y€C).

Now

(d*z) (y) eac s !a

(d*z) (A*z) € im(1+T_:A—— A;ar—>a+€a)S s1a

(yGCl, 2€CO) f
so that there is a well-defined A-module morphism
by ¢ O (chym=c

1 Pz (y——ad* (2) (y))

O
such that
for some wle HomA(C ,CO)

dbg + ¥y + evf = 0 Oy



The S-acyclic l-dimensional (-¢)-quadratic complex over A
(C,v€ Ql(C,-e)) is such that

wher, arr_eS v = o

by construction.

Given a split e-quadratic linking form over (A,S) (M,\,v)
let (C,¥) be the S-acyclic l-dimensional (-¢)-quadratic complex
over A constructed as above, but with wle HomA(CO,CO)
determined by v:M —— Qc(s—lA/A), as follows.

Let {zi€S~1A11$i\<n) be such that

_ -1 .
v(exi) =z, € QE(S A/a) (lgign) ,

and define an A-module morphism

B : Clﬂ—vuomA(cl,s‘lA) ;
) ) ) o+ )b
a. x.—> b.Xx,r—— b.y..a, + b.z.a.)
i=1 11 j=1 11 l€icjen 4131 4z P
(@j.bj€R)
such that
a(x)(y) = B(x)(y) + ¢B(y) (¥ € s™'a
v(ex) = B(x) (x) € _(S T A/A) (x,yech).

Let wle HomA(CO,CO) be an A-module morphism such that
o « * ~1 (¢}
wl(Z)(Z) = -B(d*z) (d*z) € QC(S A) (z€CT)
- . 0

dwo + wl + ewi =0 :C ————+C0 .
The S-acyclic l-dimensional (-¢)-quadratic complex over A
(C,y€ Ql(C,—s)) is such that

1 s O -
(H (C),(1+T_€)WOIVS(¢)) = (M, X,v) ,

by construction.



Proposition 3.4.2 i) Every e-quadratic linking form over (A,S)

(M,X,u}) admits a split e-quadratic linking form (M,X,v}) with

v a refinement of u,

v -1 p
M M————Q (S A/A)——*—»QE(A.S)

ii) If A,S,e¢ are such that
im(G:ﬁo(zz;s'lA/n,e)——+ﬁl(zz;A,e)) =0
~0 ~0 -1 : :
H (ZZ;A,C)————*H (ZZ;S A,e) is an isomorphism

1

im(ﬁl(zzgs' A,c)———»ﬁl(zz;s'lA/A,e)) =0

then the forgetful functor

even e-symmetric
( e-quadratic linking forms over (A,S))
split e-quadratic
e-symmetric
—————3 ( { even e-symmetric linking forms over (A,S)}
e-quadratic

is an isomorphism of categories. In particular, this is the

case if 1/2€A; if 1/2e57!

A (e.g. if 2€5S) the forgetful
functor
(split e-quadratic linking forms over (A,S})
——— (e-quadratic linking forms over (A,S))
is an isomorphism of categories.

Proof: i) Immediate from Proposition 3.4.1.

ii) Let 5 (A,S) be the subgroup of Q _ (A,S) defined by
€ €
66(1\,5) = {b+eblbes tal/{a+ealacal ,

and define abelian group morphisms
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= pl : QE(S_lA/A)—»E)E(A,S) : bre—— b+ b

e

g =al : 0 (A,5)——Q“(A,5) ; xr——x
By i) we have that for every e-quadratic linking form over (A,S)
(M, X, u)
u(x) €Q (A,S)CQ_(A,8) (x€M)
The isomorphisms of categories of linking forms may now
be deduced from the correspondences of Proposition 3.4.1 and

the exact sequences

0—Qf (A, S) —‘—»QE(s’lA/A)——»im(@:ﬁo(az;s"lz\/mc)———»ﬁl(EZ;A,s))

___4)0
o—sker (RO (Z:8, 01— 10(z,:571n,6)) —> B, (A,5) —La0® (A, )
~0 ~0 -1
coker (H (ZZ;A,S)—~—+H (zz;s A,e}))—> 0O
T ! Al -1
O——rim(H (Z,ih,€)—>H (Z,;S "A/A,¢€))

———-vos(s‘lA/A)_ﬁ_.ae(A,sp--—»o
{which are valid for any A,S,c).
[1
Proposition 3.4.1 related linking forms over (A,S) to
S~acyclic l-dimensional complexes over A. Proposition 1.6.4
relates such complexes to formations over A which become
stably isomorphic to O over S—lA. We shall now establish
the direct connection between linking forms and such
formations - such a connection was first observed by Wall [1]

in the case (A,S8) = (Z,7Z-{0}).



€-symmetric

An S-lagrangian L of an % form over A

e-quadratic
(K,a € Q°(K))
is a f.g. projective A-submodule L of K
(K,BGQE(K))
{not necessarily a direct summand) such that the inclusion
j€e HomA(L,K) defines a morphism of forms over A

i : (L,0) ——> (K,a)
j : (L,0)—— (K,B)

which becomes the inclusion of a lagrangian over S—lA.

(An S-lagrangian is an S—lA—lagrangian in the sense of §2.4).
(even) €-symmetric (Q,¢;F,G)
An S-formation over A
£-quadratic (Q,¥;F,G)
(even) e¢-symmetric (Q, ¢)
is a non-singular form over A
e-quadratic (Q,¥)

together with a lagrangian F and an $S-lagrangian G, such

-1
L S T(Q,¢)

that S F and S‘IG are complementary lagrangians in

s o,

1

-1 “lrgs1g |

s Q=5
It follows that FNG = {0}, and that Q/(F+G) = coker (G—> Q/F)

((even) (-€)-symmetric
is an (A,S)-module supporting an J
l(—e)—quadratic

linking form over (A,S) (as made precise in Proposition 3.4.3

below). The S-formation is non~singular if G is a lagrangian.

1

(Ah S-formation is an S ~A-formation in the sense of §2.4}.

(even) ec-symmetric
An isomorphism of S-formations
e~quadratic

over A



{f 2 (Q,9;F,G) ~————>(Q',¢';F',G")
£+ (Q¥;F,G)———— (Q',¥';F',G")
(even) e-symmetric
is an isomorphism of the forms
e-quadratic
[f : (Q,9)——— (0", ¢")
£ (Q/9)——> (0", ¥")
such that
f(F) = F' , £(G) = G'
(even) e-symmetric
A stable isomorphism of S-formations over A
e-quadratic
[f) : (Q,¢:;F,G) ————— (Q',¢"';F',G")
[f] : (Q,¥;F,G) ———>(Q"',¥"';F',G")

is an isomorphism of the type

{f ¢ (Q,4:F,G)®(H(P) ;P,P*) ——— (Q' ,¢';F',G')O(H (P*) ;P ,P'*)

£ : (Q.w;F,G)Q(HE(P);P,P*)————~*(Q‘,W':F',G‘)Q(HE(P');P',P")
for some f.g. projective A-modules P,P'.

A split e-quadratic S-formation over A

(F,6) = (F, ((1),0)6)

is an e~quadratic S-formation (HE(F);F,G), with (:):G——~+F$F*
the inclusion, together with a hessian (-€)-gquadratic form
over A (G,8¢ Q_E(G)) such that
Y*u = 0 - ef* € HomA(G,G*)

Then u€ HomA(G,F*) is an S-isomorphism, and

(FOF*) / (F+G) = coker (U:G ——F*)
is an (A,S)~module supporting a split (-€)-quadratic linking
form over (A,S5) (as made precise in Proposition 3.4.3 below).

The S-formation (F,G) is non-singular if G is a lagrangian,

i (\
|
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that is such that the sequence

> G <Z) > FOF* feu® v d G* > 0

is exact.

An isomorphism of split e-quadratic S-formations over A
.
(@B,9) = (F,((f),8)6) ———(F', ((},),8"16")

is a triple (a€ HomA(F,F'),BG HomA(G,G'),OE Q_E(F')) such that
o and B are isomorphisms, and such that

1

i) ' = a* "u e HomA(G,F‘*)

ii) y'8 = ay + aly - ey*)*u € Hom, (G,F')

iii) B*8'B - 8 - uryy € ker(S‘I:Q§€(G)~—vo_e(s‘lc))

A stable isomorphism of split e-quadratic S-formations over A

{a,B,%] : (F,G)——>(F*,G")
is an isomorphism of the type
(a,B,¥) : (F,G)®(P,P*)—— (F',G')®(P',P'*)
for some f.g. projective A-modules P,P', with (P,P*) = (P,((?l
(even) e-symme:!

Proposition 3.4.3 The isomorphism classes of €e-quadratic

split €-quadra
linking forms over (A,S) are in a natural one-one corresponde
(even) (-¢€)-symmetri

with the stable isomorphism classes of {-€)~quadratic
Lsplit (-€)-quadratic
S-formations over A. Non-singular linking forms correspond to

non-singular S-formations.



Proof: Proposition 3.4.1 gives a natural one-one correspondence
between the isomorphism classes of (non-singular)
(even) €-symmetric
e-quadratic linking forms over (A,S) and the
split €-guadratic
(—€)-symmetric
(-€)-quadratic homotopy equivalence classes of S-acyclic
split (~€}j~quadratic
(even) {(-€)-symmetric
l-dimensional (-€)-quadratic (Poincaré) complexes over A.
(~€)-quadratic
A straightforward modification of the proof of Proposition 1.6.4
shows that the latter are in a natural one-one correspondence
with the stable isomorphism classes of {(non~singular)
(even) (-€)~symmetric
(~€)-quadratic S-formations over A, Explicitly, a
split (-€)-quadratic
(even) (-€)-symmetric
{non~singular) (~€)~quadratic S-formation over A
split (-¢}-quadratic
(Q/9:F,G)
(Q,¥;F,G) corresponds to the (non-singular)

Y
(F,((p),e)G)

(even) e-symmetric (M, })
e-quadratic linking form over (A,S) (M, A, 1)
split e-quadratic (M, 2, V)

defined by
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A : M= Q/(FIG) —>M" ; xs——»(th»éo(x)(g))

(x,y€EQ,9g€G,s€5,sYy ~gEF)
A : M= Q/(F+G)}——— M~ ; xX+—> (y#—-——b%("f‘f‘v*)(x) (g9))

bt M = Q/(F4G)——>Q_(A,S) i ¥r—r S(¥-c¥) (¥) () - ¥(y) (y)

(x,y€Q,9€G,s€ 5,8y ~g€F)
A : M = coker (u:G—F*)———M" ; xr——»(yr—-—%y*(x)(q))

v : M = coker (u:G ——%F*)—~———>Q€(S_1A/A) H

1 1
yr—1(3)-8(3) (9} . (3}
(X, YEF*,g€EG,sES,sy=pg€F¥*)

]

form over A is S-non-singular

e-symmetric (K, a€ 0% (K))
An
e-quadratic (K, 8€0Q _(K))

S_l(K,u) e~symmetric 1
if is a non-sinqular form over S TA,

sk, g e-quadratic

a€ HomA(K,K‘)
that is if is an S-isomorphism. (Thus an
B+ ef* € HomA(K,K*)

1A~non—singular form in the sense

S-non-singular form is an §

of §2.4. S~-non-singular forms were called "non-degenerate" in

Ranicki [6]1, but an explicit reference to the multiplicative

subset SCA now seems preferable).

We shall now use the correspondence of Proposition 3.4.1

even e-symmetric

to characterize the non-singular 2 . ) linking
split e-quadratic

LO(A,S,C)

in terms of
LolA,8,¢)

forms over (A,é) representing O in

e-symmetric
S-non-singular forms over A.
e-quadratic



e-symmetric
The boundary of an S-non-singular even g~symmetric
e-quadratic
(K, a €0 (K))
form over A (K,a € Q<vO>E(K)) is the non-singular
(K,B€0Q_(K))
even €-symmetric
e-quadratic linking form over (A,S)
split e-guadratic
J(K,a) = (5K, })
G(K,a) = (3K,A,p)

I(K,B) = (9K, A,v)

defined by
A K = coker (a:K—3K*) w3 3K" ; X (Y —> xéz))
u : 3K = coker (a:K K*)———~»Q€(A,S) P Y Xéil
v JK = coker {(a:K-— K*)—A--’Q€(S_1A/A) i

Y (2).8(2) (2) . (D)

(x,y€K*,z€K,s€8S,sy=a(z) €K*,a=B+eB* in the e¢~quadrat:

The boundary linking form corresponds (via Proposition 3.4.3)
even (-g)-symmetric
to the boundary (-e)-quadratic S-formation over A

split (-¢)-quadratic

AK,a) = (0 C(K) K, T )

(K, a) |
(r = { (x,a(x))EKBK* | x€l
= . (K, a)
i(K,a) = (H_E(K),K,[‘(K’u))
/1
J(K,B) = (K, { /BIK)
k8+€B*
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The boundary operations

3 : (S-non-singular forms) —— (linking forms)
are thus seen to be special cases of the boundary operations

3 : (forms)————> (formations)
defined in §1.6. (The boundary operations on S-non-singular
forms can also be expressed in terms of the "dual lattice"
construction familiar in the classical theory of quadratic
forms over Dedekind rings (particularly in the case
(A,S) = (z,2-{0}), when 1A = @), as follows.

(even) e~symmetric

A lattice in a non-singular form over S°H
e-quadratic

(Q./¢) (even) e-symmetric
is an S-non-singular form over A
(Q,¢) e-quadratic

(K,a)
{ with K a f.g. projective A-submodule of Q, such that
(K,B)

the inclusion j € HomA(K,Q) extends to an isomorphism of

forms over S la

i sk, a)———(0,0)
case) .

i 87Nk, B)—— (0, W)

(even) e-symmetric 1 (Q,¢)
A non-singular form over S "A
e-quadratic (Q,¥)
admits such lattices if and only if Q is isomorphic to S_lK
#

for some f.g. projective A-module K. The dual lattice K" of
(K,a) C (Q,¢)

a lattice is the A-submodule
(K, B) C (Q, V)

{xe0lo(x) (K)cACSs tar <o

ey
= =
** bl
L} it

{x€ 0] (bred*) (x) (K) CACs ta)Co
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The A-module isomorphism

#

K“-—~—a K* ; x——3 (y —> ¢ (x) (V)
K" ———— K* ; xr—— (yr——s (Y+e¥*) (x) (y))

' im{a:K——> K*) C K*
sends K<K" to , So there is induced
im(B+eB*:K———> K*) S K*
an isomorphism of (A,S)-modules

i kYK —— 53K = coker (a:K —» K¥)

kYK —— 9K = coker (B+eB*:K ——> K*)

g-symmetric (Q/9)
Given a non-singular even €-symmetric form over S_lA (Q, %)
e-quadratic Q. ¥)

(K,a) C (0, 9)
and a lattice j (K,a)C (Q,¢) define a non-singular

(K,B) C (Q,¥)

( even e-symmetric (K*/K,X)
e-quadratic linking form over (A,S) (K#/K,A,u) by
split e-quadratic (K#/K,X,V)

y ik k—— w0t x— (v 0 0 (v))
b KPK s 0 (AS) 5 x s 0 (%) (x)
vkt k—s o (s 5 x s b (0 ()
(x, Y€ K',o = y+ed* in the e-quadratic case) .
The isomorphism of (A,S)-modules K‘/K——Qi+8K defined above
even e-symmetric
actually defines an isomorphism of e~quadratic
split e-quadratic

linking forms over (A,S)



(K*/K,X) — 5 ) (K,q)
k7K, 0 0y s (K, 0)
(kKA V) s 3 (K, B) ).
c-symmetric (K,a)
An S-non-singular form over A is
e~quadratic (K,B)

S-hyperbolic if it admits an S-lagrangian, or equivalently if

e~symmetric -1
is a hyperbolic form over S A with a
e-quadratic

g1 (K, a)

s"1(k,8)

1

lagrangian isomorphic to S 'L for some f.g. projective

A-module L. (Thus an S-hyperbolic form is the same as an

S—lA—hyperbolic form in the sense of §2.4).

(Cro€ Qv H(C,-e))
be an S-acyclic

Proposition 3.4.4 Let
(C,v€0Q,(C,-€))

even (-e)-symmetric .
l1-dimensional Poincare complex over A,
(-€)-quadratic

even e-symmetric

with associated non-sinqular linking form
split e-quadratic

= e, )
over (A,S) 1 s o .
M) = 1O, (1T 8T, vg (9))

“ic,0) € .%a,s,€)

i) The S-acyclic cobordism class {
(C,¥) € LO(A,S.E)

(M, )
depends only on the isomorphism class of 3 .
M, 2, v)
(c,4) = 0 € 1%%a,s,e) (M, 2)
ii) if and only if is
c,§) =0¢€ LO(A,S,E) (M, X, v)

I (K,a)
isomorphic to the boundary § of an S-hyperbolic
o (K,B)



e~symmetric (K,a)
S-non-singular form over A .
e-quadratic (K,B)

Proof: By the S-acyclic counterpart of Proposition 1.3.3 iii)
even (-€)~-symmetric

an S-acyclic l-dimensional Poincaré complex
(-€)-quadratic

(9 (a8, €)
over A represents O in if and only if it is

(c,¥) Ly(A,S,¢€)
3(D,n)
homotopy equivalent to the boundary of a connected
3(D,z)

even (-e)-symmetric
S-acyclic 2-dimensional complex over A
(-€)-guadratic

(D,ne Qv ¥ (D, ~€))
with D a f.g. projective A-module chain
(D,C € QZ(D,'E))

complex of the type

D: ...— 0—~—»02—-d—~>01—d+1)0——»0—~»... .

(C,¢) = 3(D,n)
Let be an S-acyclic boundary, as above.

(C,¥) = 3(D,7)
even e-symmetric
The associated g linking form over (A,S) is
split e-quadratic

the boundary

(Hl(c),®g) = J(K,a)
ey, (14T )45, vg (4)) = 3 (K,B)

c-symmetric
of the S-non-singular form over A
e~quadratic



a* n, +dn d
(K,a) = (coker :Do—————7D1$D2), ° L J € 0% (K))
o da* (o]
a* 4 d
(K,B) = (coker :DO-—¥01$02). 0 }GQ (K))
(1+1_)cg o o €

(D, n)
(which is obtained from i by a surgery killing H2(D)).

(D,2)

e-symmetric
Moreover, the morphism of forms over A
e-quadratic

¢}
1 i (Dy,0) ———> (K, a)
1

o)
]> ]: (02,0)——-7(K,8)

1
(X,a)
is the inclusion of an S-lagrangian, so that is an
(K,B)
S-hyperbolic form.
(K,a)
Conversely, let be an S-hyperbolic S-non-singular
(K,8)

e-symmetric
i form over A, and let

e-quadratic

j : (L,0) —— (K, q)

j o« (L,O) ——> (K, B)

be the inclusion of an S-lagrangian. Define a connected
even (-¢)-symmetric

S-acyclic 2-dimensional complex over A
(-e)-quadratic

(,n€ 0vey 2 (D,-e))
by

(D,Z€0Q,(D,=¢))
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= 4% . = g% = 1%
d=3*:D) =K*—— D) =L
aJj
d = : Dy = L———>D, = K+
(B+eB*)j
O
l:D=L——§———~DZ=L
Ng = a:Dl=K————»—>D1—K* ,ns=0(s>l)
-€ 2 02 = L*————~+Do = L¥
(8]
F:Dp =L — D, = L
- . pl - = K*
Lo— B.D-K—'———-——)Dl—K
O:DZ=L*~—-»DO—L*
%sB*j:DO=L——————«)D1=K"'
C =
1 o:ol=x————-»oo=L*
(&)

tp =X :+ D =1L ———> Dy = L*

for any B€ HomA(K,K*) representing 8 € Qe(K)' and any x € HomA(L,L*)
such that
j*83 = x - ex* € HomA(L,L*)
SR, a) even e-symmetric
The boundary is the non-singular
3{K,B) split e-quadratic
linking form over (A,S) associated by Proposition 3.4.1 to

even (-¢)-symmetric
the boundary S-acyclic l-dimensional
(-€¢)-quadratic

it

(C,¢)
(C,¥)

. a(D,n)
Poincare complex over A 1
a(D,t)

3 (Kya)

)

1 E
(H™(C) ,85)

3 (K,B)

)

1 s .0
(H(C), (I4T_ ) ¥, vg ()



are S-acyclic

(C,$) {(C',¢')

It remains to show that if
(c'y)

14
(C, )
even (-g)-symmetric .
l1-dimensional { Poincaré complexes over A
(~¢)-quadratic
which are related by an isomorphism of the associated
even eE-symmetric

non-singular { linking forms over (A,S)
split e-quadratic

@l 08— mlc),80%)

whr s @er_ S Q) ———whieny, er v vg e

(C.9)
(C.¥)

Proposition 3.4.1 associates to such an isomorphism a

then
1] L} 0
(C',¢') € L"(A,S,€)

(C',v') € LO(A,S,E)
%(-e)—symmetric
homotopy equivalence
split (-e)-quadratic
£ (Crp)—(C",9")
%f: (Crp)—=—(C" ") ,
so that
2 0) = o' € awpdlict, e
%f%(W) =¥’ + H(B) € Q,(C,-¢)
for some 6 € 62(C',—s) such that

Gi(e) =0 : Hl(C')———*ﬁO(Zz;S_lA/A,g)

(C,$)®(C',-0") ]
Now is the boundary of an S-acyclic

(C,P)B(C' /- (P +H(B)))
even (—-e)-symmetric

2-dimensional Poincaré pair over A
(-€)-guadratic
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“((f 1):COC'——C', (8¢, 08-¢") €O<v0>2((f 1),-€))
{((f 1):CoC"— C’, (89,4~ (P ' +H(8))) € Q, ((f 1),-¢€))

so that

(C',9') € LO(A,S,E)

1

(C,¢)
{(C,w) = (C',p'+H(B)) € LO(A,S,E)
We shall prove that
(C' p +H(B8)) = (C',¥') € L,{A,S,¢)
using the langquage of S-formations (Proposition 3.453),
as follows.
Given non-singular split (-e)-quadratic S-formations

over A (F,((I),e)c),(F,((:).e')c) such that
1] _l -1
6' - 0 €ker(s :QE(G)—'QE(S G))

we have to show that the non-singular split (-e)-quadratic
formation over A (F,((:),G')G)Q(P,((':),-B)G) is stably

1

>,B)K) of an
B+ef*

isomorphic to the boundary ) (K,B) = (K:((

S-hyperbolic S-non-singular e-quadratic form over A (K,BE?QE(K)).

By Proposition 1.6.2 the inclusion of the lagrangian

< ¥ \) i (G,0) ————H__(F)
u

extends to an isomorphism of hyperbolic (-g¢)-quadratic forms

over A
Y vy o 1 o 1

T H__(G) = (GBG*, ) —™—>H__(F) = (F@F*, )
TRY - o o 0 o

Define an S-non-sinqular e€-quadratic form over A

-0 fo) 'Y*‘lj ‘EU*Y 0 o\ _u’*y *
(K,8) = (G®F, ( + . - -
w O u b /\O 8'-8/ \-ey*n u*

€ QE(GQF)).

Tl

-

.



For some S-isomorphism se€ HomA(F,F) there is defined a morphism
of e-quadratic forms over A

0
< ): (F,0) ———(K,B) = (G®F,B)
s

which is the inclusion of an S-lagrangian, so that (K,B) is an
S-hyperbolic form. The isomorphism of non-singular split

(-e)-quadratic formations over A

-1 -ey O SH*y o our 1 )
o 1 o 0 -ey*u n* 1 (¢]
(a,b,c) = ( ’ ,
u 0 It 1 o] 0 o 1
w O 1§ 0 -YY*u eyu* ¢y -1
o ¥* o o
o o o o
0O «y*e6'-9 O )
o o 0 0

J (G®F, B) ® (G*@F*,GOF)
=Y Y
“‘*‘*—+(F,(( ).-G)G)O(F,(( ),e‘)c)e(F*sF*,FmF)
u u

defines a stable isomorphism

Y Y
la,b,c] : D(K,B)—————*(F,(< },—B)G)Q(F:(< >,B')G)
u U

It follows that the S-acyclic l-dimensional (-¢)-quadratic
Poincaré complexes over A associated to (F,q:)e)G) and

(F,((:),O')G) are S-acyclic cobordant
(C,¥) = (C,v') € Ly(A,S,¢6)

{]



e-symmetric
A sublagrangian of an e-quadratic linking form
split e-quadratic
(M, 1)
over (A,S) (M,),py) is a submodule L of M such that

(M,2,v)
i} L and M/L are (A,S)-modules
ii) the inclusion j€ HomA(L,M) defines a morphism of
g-symmetric

e-quadratic linking forms over (A,S)

split e-quadratic
j @ (L, 0)—————> (M, })
j : (L,0,0) ——>(M,},u)
j : (L,0,0)———>(M,),V)
iii) the A-module morphism
[x] : M/L—>L" ; xb—> (y —> 1 (x) (y))
is onto.
The annihilator of a sublagrangian L is the submodule
Lt = ker(j"A:M —— L% xr—3 (y— X (x) (y)))CM
which contains L
LC Lt .
Both It and L1/L are (A,S)-modules, where
Lt/L = ker ([A]:M/L—>L") .,
A lagrangian is a sublagrangian L such that

[x]1 € HomA(M/L,Ll) is an isomorphism, that is



(even) ¢-symmetric
A non-singular linking form is
(split) e-quadratic

hyperbolic if it admits a lagrangian.

Proposition 3.4.5 i) Given a sublagrangian L of a non-singular

(even) e-symmetric (M, )}
€~-quadratic linking form over (A,S) (M,2,u) there is
split e-quadratic (M, 2, V)

{even) ec-~symmetric
defined a non-singular < e-quadratic linking form over (A,S)
split e-quadratic
{LL/L,A1/)) (M, )®(LL/L,-24/)}
(LL/L,X4/Xx,ut/u) such that (M, A, u)®(LL/L,-A4/X,-ut/y) is
(LE/L,A2/X, vi/v) (M2, v)B(LY/L,~21t/X,-vi/v)
hyperbolic, with lagrangian
a = {(x,[x]) eMBLL/LIx€ Lt} CMOLL/L .
(even} e-symmetric
ii) A non-singular linking form over (A,S) is
(split) e-quadratic
(-€)-symmetric
hyperbolic if and only if the associated
(split) (-¢£)-guadratic
homotopy equivalence class of S-acyclic l-dimensional

Poincaré complexes over A contains the

{even) (-¢)-symmetric
(-e)~-quadratic

((cioeat(c,-e))

boundary 2 of an S-acyclic 2-dimensional

(C,VveQ;(Ci-e))

(even) (-€¢)-symmetric .
: Poincarée pair over A

(-¢)-quadratic
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(£:C——>D, (66,0) € Q2 (£,-¢)) )
with H®{(D) = 0.

(£:C———3D, (8, ¥) €0, (f,-¢))

Proof: i) Trivial.
(£:C—D, (69,0))
ii) Let be an S-acyclic 2-dimensional
(f:C——D, (8¥,¥))
(even) (-e)-symmetric . 2
Poincare pair over A such that H°(D) = O
(~£)-quadratic
{even) e-symmetric
The non-singular linking form over (A,S)
split e€-quadratic
whic) o8 (C,6)
1 s o associated to the boundary
(H (C),(l*T_E)WO,VS(W)) (C,¥)

is hyperbolic, with lagrangian
. 1 1 1
L = im(f*:H (D)——H (C)) C H (C)

The correspondence of Proposition 3.4.1 associates to a
hyperbolic (even) e-symmetric linking form over (A,S) (M,))
woth a lagrangian L a map of S-acyclic l-dimensional (even)
(—€)-symmetric complexes over A

£ : (C,¢) ——>(D,0) ,
with f:C———D a chain map of f.q. projective A-module

chain complexes

d
C : ... y O C1 rC0*~——*O —_— >, ..
£ fJ l?

d
D: ....——>0 > D1 > DO o —>...

resolving
£* = inclusion : HY (D) = L ————Hl(C) = u .

From the exact sequence of Proposition 1.1.4 we have

7
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s€ker (£%:01(C,~e)—> 01 (D,-¢)) = im(2:0% (£,-e)——0l(c,-e)]
so that there exists an S-acyclic 2-dimensional (even)
(-€)-symmetric Poincaré pair over A (f:C——D, (6¢,¢) € Qz(f.—s
such that H2(D) = 0, with boundary (C,¢). Thus a non-singular
(even) e-symmetric linking form over (A,S) (M,X) is hyperbolic
if and only if an associated S-acyclic l-dimensional (even)
(-e)-symmetric Poincaré complex over A (C,4¢) is such a boundary

The correspondence of Proposition 3.4.1 also associates

e-quadratic
to a hyperbolic { linking form over (A,S)
split €-quadratic
(M, A,u) (-€)-quadratic
with lagrangian L a map of
(M, A, V) split (-€¢)-quadratic

S-acyclic l-dimensional (-€)-quadratic complexes over A
f : (C,¥) ——>(D,0)
with f:C——D exactly as in the e~symmetric case dealt with
above. It is possible to choose resolutions such that
fe HomA(CO,DO) is an isomorphism. (Explicitly, given a f.qg.

projective A-module resolution of M~

o——»cl——yd Cg—M ———0

write the dual resolution of (M")" = M as

*
0— P8t 1 e .y .o

Define a f.g. projective A-module

p=ctmcel,

let g€ HomA(P,Cl) be the inclusion, and let he€ HomA(CO,P) be

the restriction of d*e HomA(CO,Cl), so that

da* = gh € HomA(CO,Cl)



The S-acyclic l-dimensional f.g. projective A-module chain
complex D defined by

5:h*:ol=p*——ﬁn =C.,D =0 (£#0,1)

is a resolution of L”

&} Dl rDo L —m—>0

f =g* : C

f=1:C,——>D, =C
is a resolution of
f* = inclusion : Hl(D) = L-————*HI(C) =M

with f€ HomA(CO,DO) an isomorphism). By the definition of a

(-e)-quadratic
map we have that

split (~e)-quadratic

£4 (V) = H(B) € 0, (D,-¢)

for some element 6 € éz(D,-e) such that

v (8) =0 : Hl(o)——+ﬁ°(zz;A,e)

(0 =0 : Hl(n)m»ﬁl(zzz;s'lA/A,e)

On the chain level the elements ¢ € Ql(C,—e), 8 € 62(D,—e) are
represented by A-module morphisms
O ~ 1 0

WO:C~—>C1,W0:C—>CO,¢1:C——?C

1
60 s D *——*Dl , 0 : D——D

such that
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AUy *+ Vod* + by + eyt =0, do_; + B_d¥ + 0, + €8x, =0

- = - Y = * . =
60 z66 o, deo e_l + cetl o, God + 8_1 cejl =
F* = fo f* = g Fo. £* =
Foof* = 6 . FUgf* =8, , Ty E* = 6,
The vanishing of the (-¢)-hyperquadratic Wu class
linking

31(9) 0 : Hl(D)————)ﬁo(Ez;A,s) : xr——waeo(x)(x)

WS =0 ul(p)— ﬁl(zz;s'lA/A,e):
1 ~ 1.
XP““*(g)-(9_2+9_1d*)(Y)(Y)-(g)

(xepl,yep®,ses,sx=d*yeph)
implies that there exists an A-module morphism x € HomA(Dl,Dl)
such that

8 = X + ex* € oy (b c ot !
1

£(w) + §od*) F* - dxd* € ker (s io, (0% —— g _(s710%)

Define 8°'€ Q2{C,-¢) by

1 1

PSS e ~ (0]
' = *kFx - * .
8_2 f “dyd*f (¢1-+wod Yy 2 C A~——~+CO

0; =0 (s # ~2) ,

and let
U=y o+ H(8') € Q) (C,-¢)
Then
f%(w') =0 € Ql(D,-E)
and

vl(e‘) =0 : HI(C)———~—w+ao(EZ:A,c)

vite') = o : wlc)—— itz islasm, o)



Now (C,y') is an S-acyclic l1-dimensional (-e)-quadratic
Poincaré complex over A which is the boundary of an S-acyclic
2-dimensional (-e€)-quadratic Poincaré pair over A

(F:C——D, (6¥',y') € Qz(f,—s)) and such that there is defined

(-€)-quadratic
a homotopy eguivalence

split (~¢)-quadratic
1 : (Cy)——(C,¥")
with (C,¥) a complex associated to the hyperbolic

ie—quadratic (M, A, 1)

linking form over (A,S) {

split e-quadratic (M, A, V)

[

Next, we shall relate the (sub)lagrangians of the boundary
linking form over (A,S) of an S-non-singular form over A to
morphisms of S-non-singular forms over A which become

1

isomorphisms over S "A. This relationship will then be used

in Proposition 3.4.7 to identify the relative L-group
gLO(A,s,e)

LO(A,S,C)

with the Witt group of non-singular

even e€-symmetric
i linking forms over (A,S).

split €-quadratic
e-symmetric
An S-isomorphism of S-non-singular forms
e-quadratic
over A
£ : (K, ) ——>(K',a')
f : (K,B)————{(K',B')

is an S-isomorphism of A-modules f € HomA(K,K') such that
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Yk)y = (orcet k).

%f*a‘f - a € ker(s 1:0%(k)—> 0 (s”

£%6'f - 8 € ker (s :o_(K)—0Q (s KN S0 (1)
(# {0}, in general)

Then

l(K',u')

{ sl . sk, @) ——— 8~
-1

s7le : s7hk,g)—— s7Hk' L8
i ) . ) ft—symmetric -1
is an isomorphism of non-singular fcrms over S A
€-quadratic
Note that if 1/2¢€ S—lA there is a natural identification of
sets of S-isomorphism classes
{S-non-singular e-quadratic forms over A)
= (S-non-singular even e-symmetric forms over
(Specifically, if (K,B),(K',B') are S-non-singular €-quadratic
forms over A which are related by an S-isomorphism of the
e-symmetrizations
f : (K,B+eB¥)——— (K',B'+eB8'¥*)
then

s"l(f*B'f-B) = %(E*B'f—a) -%c(f'B'f-B)* =0 € QE(S—]'K) ,

so that there is also defined an S-isomorphism of €-quadratic
forms
f: (K,B)—>(K',B") ).
An equivalence of S-isomorphisms of S-non-singular
e-symmetric
forms over A
e-quadratic

{g,9') : (£:(K,a)— (K',a'}) —(£: (K, 0) —>(K',a'))
(9:9") : (£:{K,B)——> (K',B')) ——> (£: (K,B) ——> (K',B"))

is defined by S-isomorphisms of forms



g @ (K,a)——(K,a) , g' : (K',a')——>(K',a")
g : (K,B)———(K,B) , g’ : (K',8')——(K',B")
with g€ HomA(K,K), g'e HomA(K',K') isomorphisms, and such that

the there is defined a commutative diagram
K ————> K'
K-———K'
{even) e-symmetric
A non-singular linking form X is
(split) e-quadratic
stably hyperbolic if there exists an isomorphism of such
linking forms
Xey ———— vy
with Y,Y' hyperbolic.

{K,a € 0 (K))

Proposition 3.4.6 i) Let (K,a € 0(v >€(K)) be an S-non-singular
o

(K,B€Q.(K))
e~-symmetric
even e-symmetric form over A. The sublagrangians L of the
e-quadratic
even €-symmetric
boundary e~quadratic linking form over {(A,S)

split €-quadratic

2(K,a) = (M,})
J(K,a) = (M,A,u) are in a natural one-one correspondence
J(K,B) = (M,A,v)

with the equivalence classes of S-isomorphisms of S-non-singular



ce~symmety ic
even e€-symmetric forms over A
e-quadratic
f : (K,u)————»(K',u")
f: (Kia)——> (K',a")
£ : (K,B)——(K',8") ,
under which
L = coker (f:Kk -—>K') € M = coker (a:K —>»K*)
(with a = B+eB* in the e-quadratic case)
and
(L/L, X4 /X)) = 3(K',a')
(LY/L, M/ X, ut/n) = H(K',a')

(LL/L, A/ X, v/ V)

n

S(K',B")
(K',a')
Lagrangians L correspond to S-isomorphisms with ( (K',a') non-singular.
(K',8")
even €-symmetric
ii) A non-singular e~quadratic linking form over (A,S)
split e€-quadratic
(M, )
(M,2,u) is stably hyperbolic if and only if it is isomorphic
(M, ,v)
I (K,a)
to the boundary 2({K,a) of an S-hyperbolic S-non-singular
3 (K,B)
e-symmetric (K,a)
even c-symmetric form over A (K,a).

e-quadratic (K,B)



Proof: i} Given an S-isomorphism of S-non-singular
(even) e-symmetric
forms over A
e-quadratic
{f : (K,a) ——> (K',a')
£ : (K,B)——>(K"',B")

even e-symmetric
define a sublagrangian L of the boundary { (e-quadrati

split g-quadratic

J (K, a)
linking form over (A,S) by the resolution
3 (K, B)
0 s k—f kL — 0
1 f*a'
a

Q———>K————3K¥* ———9» M ——0
with a = B+€8*(§HomA(K,K*), a'= B'+ep'* € HomA(K',K'*) in the

e-quadratic case. An equivalence of S-isomorphisms of
{even) e-symmetric
S-non~-singular forms over A
e-quadratic
(g,9") : (£: (K, 0) —— (K*,a') ) —> (£: (K, @) ——> (K',a'))
(3,9') t (£:(K,B)——>(K',B')) ——> (£: (K,B) ——(K',B"))
even e-symmetric (e-quadratic)
induces an isomorphism of

split e-guadratic

linking forms over (A,S)

{h D 3(K,a) —=—> 3 (K, q)
ho: (K, B)—2—> " (K,§)

such that
h(Ly = LSCH ,

where h€ HomA(M,ﬁ) is the isomorphism with resolution
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el

«a
xRl b—— =
Q
»*
|
—
NE— 32
>

e-symmetric
) Conversely, given an S-non-singular even e-symmetric
e-quadratic
(K, a)
form over A (K,a) and a sublagrangian L of the boundary
(K, B)
3(K, a) f: (K,a) ——+(K',a')
3(K,a) define an S-isomorphism \f: (K,a) ———(K',a’)
3 (K, 8) (£: (K, BI——(K",B")

as follows.

In the first instance, define an S-acyclic l-dimension

even (~¢)~-symmetric (C,¢€Q<v0)l
(- €)-quadratic Poincaré complex over A (Cc,ve Ql(C,-
(- €)-quadratic (C,pe Ql(C,~

even e€-symmetric
with associated non-singular j e-quadratic linking forr
split e-quadratic
(K, a)

over (A,S) { 3(K,a) by

3K, B)
a
da =¢a C1=K————"’CO=K*,Cr=O(r;‘O,1)
B+ €B*



1:c® = k——c) =K 1
% = 1 ¢4 =0:C = KE——Cy =
-€ c™ = K*————oCO = K*
(o]
1:C =K——C =K N o
o= L ;b = B s €0 = K——Cy =
0:C = K*——Cy = K*
~ a = B+ef* € HomA(K.K*)
for any B€ HomA(K,K‘) such that _ .
8 =8 € Q. (K
Let e € Hom, (K*,M) be the natural projection
coker {a:K——>K*)
e : K¥ ———3M = coker (a:K——> K*)
coker (B+eB*:K ———>K*) ’

define a f.g. projective A-module

K' = e (L) K+

and let f€ HomA(K,K'), g€ HomA(K',K*) be defined by

al

£ =4al : K ————>K!'
B+eB*|

g = inclusion : K'——K* |

The A-module chain complex D and the A-module chain map

h: C———>D
defined by
C: om0 ——K—- skt s, .,
h g* 1
f*
D: ...—30——K'*———23K*—20—> ...

(with o = RB+eBR* € HomA(K,K*) in the e-quadratic case) are such

h, = (inclusion) : HO(C) =M ~——-—»HO(D) = L .

K*

that
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even e-symmetric
The morphism of {e-quadratic linking forms over (A,S)
split e-quadratic
defined by the inclusion
(L,0) ~———————> 3 (K,a)}
{L,0,0) — ¢ (K,q)
(L,0,0) —— 3 (K,B)
e-symmetric
is associated by Proposition 3.4.1 to an je-quadratic

split e-quadratic

map

h : (C,¢) —— (D, 0}

h : (C,¢)—> (D,0)

h : (C,¥) ———* (D,0) ,
so that

h%(w =0 € Q(vo>l(D,—E)

hg (¥)
hy (4)

H(0) € Q,(D,~¢)

H(8) € Ql(D,-E)

for some 8 € 62(0,—5) such that

9,10) =0 : alm = Lh-'—**f-lo(zz:b.,e)
5o =0 : uho) = L———itz,is7lam,0)

Working exactly as in the proof of Proposition 3.4.5 it is

possible to replace Y€ Q,(C,-€) by ¥+ H(8') €0y (C,~€) for

v, (8') =0
some 8' € 02(C,Le) such that Aé , to ensure that
VI(O') =0

hg(¥) = 0 € 0, (D,~¢)
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ht(e) = 0 € 0wyl (D,-e)
It follows from h%(W) =0 € Ql(D,-e) that there exists a
h%(w) =0 € Ql(D,—E)
even (-¢g)-symmetric
connected S-acyclic 2-dimensional (-e)-quadratic pair
(-e)-quadratic
(h:C——D, (80, 9) € Q> (h,~e))
(h:C————*D,(aw,w)€'02(h,—e)) . Define an S—non;singular
(h:C——D, (8¢, ¥) € Qz(h,-s))
e-symmetric (K',a'€ (k"))

even ec-symmetric form over A §(K',a'€ Q(VO>€(K')) by

e-quadratic (K',B'€0Q_(K'))
a' = ~8¢,
o' = - (84y+ ebyf) : Db = Kt ————D, = K'*
B' = -8y,

The S-isomorphism of S-non-singular forms

f: (K,0)———(K',a')

f : (K,0)——>(K',q")
f : (K,B)——> (K',8")
3(K,a)

determines the sublagrangian L of { 3(K,a), with
3(K,B)
L = coker (f:K——*K') etc.

ii}) We need a preliminary result.
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r-symmetric
Lemma An S-isomorphism of S-non-singular even e-symmetric
e~-quadratic

forms over A

f : (K,a) ————3(K',Q')
f: (K,o)——> (K',a')
f : (K,B)— (K',B")

determines a lagrangian L of the boundary

even e~symmetric I (K®K' ,a®-a')
e-quadratic linking form over (A,S) J(KOK',a®-q').
split e-quadratic J(KeK',B8-8")

(even) e¢-symmetric
Proof: The S-isomorphism of S-non-singular
e~quadratic

forms over A

a'f 0 0o 1
( : (K,a)®(K',—aq')—— (K'*éK "', ( ) )
ef 1 € -a'
(B'+eB'*)f O o} 1
( >: (K,B)®(K',-B"')—>(K'*&K', ( )
ef 1 o -g'

has non-singular range, so that it determines a lagrangian L of

{ I(KBK' ,ad-a')

by i).
I(KBK' ,BH-B ')
t
(K,a)
Let now be an S-hyperbolic S-non-singular
(K.B)

(even) e-symmetric
{ form over A, and let j€ HomA(L,K) be the

€ ~quadratic
j*a € HomA(K,L*)

inclusion of an S-~lagrangian L. As
J* (B+eB*) € Hom, (K, L*)



becomes onto over S_lA.there exists k € HomA(L*,K) such that

s = j*ak € HomA(L*,L*)
gs = j*(B+eB*)k € Hom, (L*,L*)
is an S-isomorphism. Applying the Lemma to the S-isomorphism
(even) e-symmetric

of S-non-singular g forms over A
e-quadratic

/0 s

(3 k) : (K',a') = (LOL*, ( } —(K,a)
es* k*ak
o] (o]

(j k) : (k',B') = (L®L*, ( ) ——({K,8)
o] k*Bk

HK,a)®3(K',-a')

we have that is a hyperbolic linking form
IK,B)BIK',-B")

over (A,S). Furthermore, there is defined an S-isomorphism

of S-non-singular forms

s* l¢] o] 1
< ¢ (K'ya') ———— (L®L*, )
o] 1 € k*a k

s* 0o 0 1
< > : (K',B') ————>(LOL*, )
0 1 o k*B k

MK',a')
with non-singular range, so that is hyperbolic by i).
(KB Y)
J(K,a)
We have just shown that is a stably hyperbolic linking
IK,B)

form.
It remains to prove the converse, that a stably hyperbolic
even e-symmetric
e-quadratic linking form over (A,S) is isomorphic to

split e-quadratic
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e-symmetric
the boundary of an S~hyperbolic even e¢-symmetric form over A,
€-quadratic
(M, %) even E-symmetric
Let be a non-singular linking
(M, 2, v) split e-quadratic
form over (A,S). By Proposition 3.4.1 there exists an S-acyclic
even (-¢)-symmetric

l-dimensional Poincaré complex over A
(-¢g)-quadratic

{ (o€ >t ic,-e))
such that

(C,¥EQ(C,-6))
wh(e),05) = M)
), (e ug,vJ) = L)

(c,) e%(a,s,¢)
The S-acyclic cobordism class depends only
(C,¥) € Ly(A,S,€)

(M, })
on the isomorphism class of (Proposition 3.4.4 i)),
(M, 2,v)
(M, X)
vanishing if is hyperbolic (Proposition 3.4.5 ii)).
(M, 2, v)
(M, )
It follows that if is stably hyperbolic then
(M, 2,v)

{(cm =0e 1%a,s,¢)

(C,¥) = 0 € Ly(A,S,¢)

(M, )
and hence (by Proposition 3.4.4 ii)) that is
(M, X, v)
i
3K, a)
isomorphic to the boundary of an S-hyperbolic
3(K,R)

e-symmetric (K, a)
form over A . It may be

S-non-singular
(K, B)

€-quadratic
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verified that if (M,)) is the e-symmetrization of a stably
hyperbolic e-quadratic linking form over (A,S) (M,A,u) then
the S-hyperbolic S-non-singular e-symmetric form (K,a) arising
is even, and that (M,A,u) is isomorphic to the boundary 3(K,a)
[1
e~-symmetric

even e-symmetric
Define the Witt group of linking
e-guadratic

split e-quadratic

LE(a,s)

L{vy> (A, )
forms over (A,S) to be the abelian group of
LE(A,S)

\ L (a,S)
e-symmetric
even E-symmetric
stable isomorphism classes of non-singular
e-quadratic
split €-quadratic
linking forms over (A,S), the stability being with respect to
the hyperbolic linking forms (i.e. a stable isomorphism of
linking forms X,X' is an isomorphism XY ——X'@Y' for some
hyperbolic linking forms Y,Y'). Addition is by the direct
sum @, and inverses are given by
-(M,}) = (M,-\) € LY(A,S)
-(M,2) = (M,-)) € LLv > (a,s)

-(M,A,u) = (M,-A,-u) € LC(A,S)

n

- (M, A, v) (M,-1,-v) € EE(A.S) '

since the diagonal A = {(x,x) € MBM|x €M} C MBM is a lagrangian

of X®-X for any non-singular linking form X, by Proposition 3,

LY
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There are evident forgetful maps
€ €
L<v0> (A,S)——>L (A,S) ; (M,}) —————>(M,]})

Lo (A,S)——> L& (A,S) 5 (M, A, u)—— (M)

L (A,8) ————L_(A,S) 5 (M,A,v)+——> (M,X,pv)

(even) e-symmetric -1 (Q,¢)
A pon-sinqular form over S "A

e-quadratic (Q,¥)

with projective class
(0] € 5 = im(K.(A)—— K (s a)) S K (s 'a)
0 0 = X

s7Hk,a)
is stably isomorphic to -1
S T (K,B)

for some S-non-singular

(even) e-symmetric (K,a)
form over A . It follows from

e-quadratic (K,B)
Proposition 3.4.6 ii) that the boundary operations
3 : (S-non-singular forms over A)

——— (linking forms over

give rise to well-defined abelian group morphisms

3 Lg(S‘lA)———-?L(v()?e(A,S) ; sTHk, > 3(x, )
3 L<v0>§(s“1A)—-—+L€(A,S) : sTHK, a) ——> 3 (K,0)
3 Li(S_IA) ———— L_(AS) ; s™ (K, 8) —> 3(K,8)

There is also defined a morphism

€

S(S_lA) — 5 (A,8) S_l(K'n)F———*’ J(K,a)

3 ¢ L

namely the composite

€,qo~1 a
LS(S A)

— Ly € (A,S) ————> LF(A,S)

(A,S))



The correspondence of Proposition 3.4.3 associates toa
(even) e-symmetric (M, %)

e-quadratic

linking form over (A,S)
(M2 ,u)

non-singular %

(even) (-e)-symmetric
a stable isomorphism class of non-singular
(~e}-quadratic

(0,¢;F.G)

formations over A (i.e. the associated S-formations,
(Q,¥;F,G)

regarded as formations), and it follows from Proposition 3.4.6 ii)

that there are well-defined abelian group morphisms
LS (A, 8) ———> M S (A) ; (M,\)——> (Q,4:F,G)
L{vg>" (B,8) ——— M > (A) ¢ (M) ———(Q,8:F,G)

Lo (A, S)————M__(A) ; (M2, 1) r——>(Q,¥;F,G)

€
from the Witt groups of linking forms over (A,S) to the Witt
groups of formations over A defined in §l.6 above. There is

also defined an abelian group morphism
L (A,S) ————M__(A) ; (M,},v) b——(Q,¥;F,G) ,
namely the composite

Lo (AS) ——L_(A,S) ——> M__(A) .

€

e-symmetric

Define the lower even-dimensional L-groups
E-quadratic
sz(A,S,E)
of (A.S) (k£ -1) by
L2k(A,S,E)

L (A,S) (k=-1)
2%, 5. ¢) €

it

Loy (A8, €} (k€-2)

Ly (A,S,8) = 1. (A8, (-) e) (K¢ -1,k+i20)

2k+2i



Proposition 3.4.7 i) The localization exact sequence of algebraic

Poincaré cobordism groups

L@, (o fa——> 12T (ko —— 1 aus. (ke
——12 L, kg ——1Z s ko,
k=0
is naturally isomorphic for k =-1 to a localization exact
k-2

sequence of Witt groups

“Sysiay

—-€
> (A)~—>M(VO>S

18
Lf ) —LE(s 1a) ay, W A,y —m <y

€ €,.-1 9 S -1
I.(vo) (A)———’L(vo)s(s A)HLE(A,S)—**M_E(A)—*M_E(S A)

L. (&) —»Lg(s‘lA)j—» L (A 5)—> M__ (&) ———)Mfe (s7tay

ii) There are defined natural abelian group morphisms
L@, 50 ———1%@,s, %) ke

{A,S) is O-dimensional
for all A,s,e. If ~ Al -1 0
ker (8§ :H (Z,:8 A/A,c)-—>H (ZZ;A,F)) =0

k21
then for i these are isomorphisms, and (')2k is naturally
k=1

isomorphic to a localization exact seauence of Witt aroups

- 3 - e -
L (M——»L;(S Ly —2s1f (a,5) M S () ——mf (s La
LZ(A,-e)——)Lg(s_lA,-e)—%—ﬂ,c(A,S)ﬂ SME Ay *»Q,M; (s'ln) .

iii) For all A,?,e the forgetful map of Witt gqroups
EE(A,S)——»L€(A,S) 5 (M, A, v)———>(M,),pv)

is onto, and there are natural identifications
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coker (3:L5 (571A) —> L_(A,5)) = coker (3:Llv >Eis7ha) L (A,
= ker (M__(A)——M> (s71a)) .
-€ ~-€
If (A,S) is O-dimensional
ker (L¥(A,5)——M ™€ (a)) = ker(L<v0>e(A,S)—»M(VO)_E(A))
= coker(LE(A)——»Lg(s‘lA))
NG -1 A1
im(8:H (Z,:S A/A,e) —H (Z,:A,€)) = 0O
A0 ~0 -1 . , .
If H (Z2IA,€)‘““.‘-9 H (ZZ;S A,€) is an isomorphism

-1

im@'(z,:57 0, o) ——it(z,:57la/m, 0) = 0

the forgetful maps identify
Lv>®(A,5) = L°(A,S)

_ €
LC(A,S) = L<v0> (A,S)

[}

LE(A,S) LC(A,S) .

In particular, if 1/2€s 1A

L‘E(A,S) = L _(A.8) ,

and if 1/2€ A then
. _ € _ €
L (A,S) = L _(AS) = I.<v0> (A,S) = L (A,S) .

even (-¢)-symmetric
Proof: i) An S-acyclic l-dimensiocnal
(-€)-quadratic

. (C, o€ Q<v0>1(C,—e)) .
Poincare complex over A represents O in
(C,ve Ql(C,-EH

LO(A.S,E)
if and only if the associated non-sinqular

LO(A,S,E)
even e-symmetric
linking form over (A,S)

split e-quadratic

Ly ( \;
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1 s o represents O in <
(H™(C), (14T __ )by, vg (¥)) Lo (A,S)

1 S €
{(H (C),¢o) L<v0> (A,S)
by Propositions 3.4.4 ii), 3.4.6 ii). It follows that the
correspondence of Proposition 3.4.1 gives rise to isomorphisms

of abelian groups
o] € 1 S
L (A,S'E)*—**L<VO> (A,8) ; (C,¢)r—>(H (C),¢O)
L. (A,S,€) — T _(A,8) ; (Cop)—>H (), (1+T_ 10>, (p)
o (RS, e (A ; ' ' —e¥orvg
The exactness of the Witt group sequences

€ €, -1 3 € -€ -€
L (A)-—)LS(S A)——#L(vo) (A,S)-—)M(vo> (A)-——»M(vds (S

L, (A)—r1S (s‘lA)-—a—*i€ (A,S) —>M__(A) —>M>_ (s™1a)
can now be deduced from the exactness of (*), and (*)_, (which
is given by Proposition 3.2.3 i)), or else may be established
directly using Proposition 3.4.6 ii). The direct method also

applies to the exactness of (")_2

€ €,e"1 P S -1
L(vd} (A)——~+L(VO>S(S A)-——*LE(A,S)"“**M_E(A)‘““’M_C(S A)

ii}) Define abelian group morphisms
tf a5 ——12%@,s, (1% 5 m—— 8.0 k3D

by sending a non-singular e-symmetric linking form over (A,S)
(M,X) to the k-fold skew-suspension

2K+ ke k)

sc.e) = (s*c,5% e acvyd
of an S-acyclic l-dimensional (-¢)-symmetric Poincaré complex
over A (C,¢€Q1(C,—e)) such that
wher,eS) = o,

as given by Proposition 3.4.1. The S-acyclic cobordism class
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§k(C,¢)e sz(A,S,(—)kf) depends only on the isomorphism class
of (M,)) (which may be proved exactly as was done in
proposition 3.4.4 i) in the even e-symmetric case), and vanishes
if (M,)) is stably hyperbolic (Proposition 3.4.5 ii)), so that
the morphisms are well-defined., 1f

{A,5) is O-dimensional

~ Ay 1 ~0 then by

ker (§:H (EZ;S A/A,e)—H (Zz;A,c))= 0]

3.2.4 k21l

3.3.2 1)

there are natural identifications for {
k=1

Proposition &

sz(A,S,(-)ke) = the cobordism qroup of S-acyclic l-dimensional
(-€)-symmetric Poincaré complexes over A f

so that the morphisms are onto. Moreover, if
(M,X2) € ker(LC(A,S)-———>L2(A,S,—E)) then (C,¢) is homotopy
equivalent to the boundary 3(D,n) of a connected S-acyclic
(~€)-symmetric complex over A (Dn1GQZ(D,-e)), and the proof
of Proposition 3.4.6 ii) generalizes to show that (M,}) is
stably hyperbolic, so that the morphisms are also one-one,
and hence isomorphisms.

iii) Immediate from i),ii) and Proposition 3.4.2 ii).
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3.5 Linking formations

A "non-singular linkirg formation over (A,S)" is a
linking form over (A,S) together with an ordered pair of
lagrangians. In Proposition 3.5.2 below we shall show that
the homotopy equivalence classes of S-acyclic 2-dimensional
algebraic Poincaré complexes over A are in one-one correspondence
with the "stable equivalence” classes of non-singular linking
formations over (A,S), and in Proposition 3.5.5 the cobordism
groups of such complexes will be identified with Witt groups
of linking formations. There is an evident analogy between
the theory of forms and formations set out in §l1.6 and the
thecry of linking forms and linking formations.

(even) e-symmetric
An linking formation over {(A,S)

€-quadratic
(M,X;F,G) (even) e-symmetric

is a non-singular linking
(M, X, u;F,G) e-quadratic

(MIA)
form over (A,S) % together with a lagrangian F and a
(M,A'u)

sublagrangian G. The linking formation is non-singular if G
is a lagrangian.
(even) €-symmetric
An isomorphism of linking formations
€~quadratic
over (A,S)
f: (MXA;E, Q) ————— (M',\";F",G")
f : (M,A,u;F,G}r—- —>» (M', Ayt F'.G")
[
{even) c¢-symmetric
is an isomorphism of the linking forms

e-quadratic

over (A,S)



£ (M A)————— (M, )")

£ (M A, u)— (M, 27, ")

such that
f(F)y = F' , £(G) = G' .
(even) e-symmetric
A sublagrangian H of an linking
e-quadratic
(M, A;F,G)

is a sublagrangian H of

formation over (A,S)
(M, A, ¥;F.G)

(M, })
such that
(M, X, u)
i) HCG, with G/H an (A,S)-module
ii) FNH = {0}, M = F + HL .

(even) e-symmetric

An elementary equivalence of {
e-quadratic

linking formations over (A.S) is the transformation
{(M,X:F,G)*————*ﬁ—*(M',X':F',G‘)

(M, A, 1 F,G) > (M', A, u';F*,G")

(M, X;F,G)
determined by a sublagrangian H of , with
(M, A, u;F,G)
(M',X'";F',G') = (HY/H,>1/);Fn HL,G/H)
(M', A, u'F',GY) = (HE/H, AL /X, ut/u; F nHL,G/H)

{where FnHY stands for the image of the natural injection
FrnH: ~—3H4/H;x+—>|x}). Note that there are natural
identifications of S-torsion A-modules
F'nG' = FNG , M'/{F'+G') = M/(F+G) , G'+/G' = Gi/G
- in general, only GY/G is an (A,S)-module.
Elementary equivalences an isomorphisms generate an
{(even) e-symmetric

equivalence relation on the set of
c-quadratic



linking formations over (A,S), called stable equivalence. Note

(M, A;F,G)
that is stably equivalent to O if and only if

(M,A,u;F,G)

M = F&G .

In Proposition 3.5.2 ii) below the stable equivalence classes
of (even) e~symmetric linking formations over (A,S) will be
shown to be in one-one correspondence with the homotopy
equivalence classes of connected S-acyclic 2-dimensional (even)
(-e)-symmetric complexes over A, with non-singular linking

formations corresponding to Poincaré complexes.,

Given an-(A,S)-module L define the standard hyperbolic

even e-symmetric

¢-quadratic linking form over (A,S)

split e-quadratic

HE(L) = (LOL™,X:LOL" x L@L‘——»s'la/A;

((x,y), (x',y"))r—— y(x') +ey'(x))

HE(L) = (LQLA'X,uiLQLA'———’QE(A,S);
(%, y)——— y(x) + ey (x))
ﬁe(r.) = (Lm.”,x,v:LeL‘—vQE(S’lA/A);(x,yW—»y(x)) .

for which both L and L" are lagrangians.

A split e-quadratic linking formation over (A,S)

(F,G) = m((”e)c)
is an e-quadratic linking formation aver (A,S) of the type
(H_(F);F,G}, with (Z):G-———%F@FA the inclusion, together with
a function

8 : 6 ——20_ _(AS)
such that (G,y p€ HomA(G,GA),e) is a (-¢)=quadratic linking

form over (A,5), the hessian of (F,G). {Such objects were
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first considered by Pardon [2]). Note that the existence of
the hessian 6 ensures that G is a sublagrangian of the hyperbolic
split e-quadratic linking form ﬁe(F). The linking formation (F,G)

is non-singular if G is a lagrangian, that is if the sequence

o > G + FOF" * G »0
is exact.
An isomorphism of split e-quadratic linking formations
over (A,S)
(a,8,¢,¥) : (F,G) ——>(F',G")
is a quadruple

(@ € Hom, (F,F'),B € Hom, (G,G") ,$ € Homy (F",F) ,¥:F"——Q__(A,S))

with a,8 isomorphisms and (F",¢,¥) a (-€)~quadratic linking
form over (A,S), such that

i) a" 7l = w'B € Homy (G, F'7)

ii) ay + 0"y = '8 € Hom, (G.F')
iii) 8 + du = 6'8 : G———0__(A,S) .

The isomorphism of (A,S)-modules

~

a ad”
£ =< _1) : FOF" ———>F @F

o a
defines an isomorphism of the underlying e-quadratic linking
formations over (A,S)

f (HE(F);F,G)————*{HQ(F');F',G') .
Conversely, every such isomorphism arises from a triple (a,B,¢)
satisfying i) and ii).
A sublagrangian H of a split e-quadratic linking

formation over (A,S) (F,G) is a sublagrangian H of the



underlying e-quadratic linking formation (H_(F);F,G) such that
i) 8 = 0 : H—— Q_E(A,S), where j€ HomA(H,G) is the
inclusion,
ii) vyj = O € Hom, (H,F), i.e. HS F"C FOF".

An elementary equivalence of split e-quadratic linking

formations over (A,S) is the transformation
(F,G) ————=>(F',G")

determined by a sublagrangian H of (F,G), with

F' = FANHY = ker (37p":F——>H")

G' = G/H = coker(j:H———>G)

Y' : G'=———>F' ; [x]+—>v(x)

p' o G 'Y [X) s (Y ey W (X) (y))

9' + 6'———>0__(A,S) ; [x]——>0(x) (x€G,y€EF").

(The e-quadratic linking formation (HE(F');F',G') underlying
(F',G') is then obtained from (HC(F);F,G) by an elementary
equivalence of e-quadratic linking formations).

Elementary equivalences and isomorphisms generate an
equivalence relation on the set of split e-quadratic linking

formations over (A,S), called stable egquivalence. Note that

(F,G) is stably equivalent to O if and only if u € HomA(G,FA)

is an isomorphism. In Proposition 3.5.2 iii) below the stable
equivalence classes of split e-quadratic linking formations

over (A,S) will be shown to be in one-one correspondence with
the appropriate equivalence classes of connected S-acyclic
2-dimensional (-t)-gquadratic complexes over A, with non-singular

L N . :
linking formations corresponding to Poincaré complexes.,



Prior to such an identification we need some preliminary
results on the homotopy classification of 2-dimensional
complexes.

A 2-dimensional A-module chain complexes C is in
normal form if Cr =0 (r # 0,1,2) and each Cr {r = 0,1,2)
is a f.g. projective A-module,

d d

Ct veer—>0Cy=—3C = > == >0——F. .. .

e-symmetric
A connected 2-dimensional complex over A
e-quadratic

(C,9)
is in normal form if C is in normal form and
(C,¥)
2
$€Q7(C, k)
has a chain representative
Ve OZ(C,E)

x*
¢ € Holeﬂzl (W,HomA(C ,C))2
such that

Y € WR Hom, (C*,C),

Zf%zl
0, € Hom, (7, C))

. A 2 . . .

i) o is an isomorphism
b, € Hom, (C Cy)

_ 2
¢; = o€ HomA(C Cy)

ii) 1 2
b, =0¢€ Hom, (C Col e WO = 0 € Homy (C",C) .
e-symmetric (C, 9} .
An complex in normal form is Poincare if
e-quadratic (c,¥)
b, € tom (ct.Cp)
¢! A 1 . . .
and only if 1 is an isomorphism.
(1+T[)wOE£HOmA(C ,Cl)
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A stable isomorphism of connected 2-dimensional

e~-symmetric
complexes over A in normal form
e-quadratic
[£] = (C,¢)———(C',0")
[£] :+ (Cy¥)——>(C',¥")
€-symmetric
is an isomorphism of { complexes
€-quadratic
{f : (C, 98¢ (P) ——— (C', 0" )@ (P')
£ (C,)8C, (P) ————>(C*,¥")@C_(P')

for some f.g. projective A-modules P.P', with

cé(p) = (b,ne0%(D,e))

C.(P)

[}

(D,£ €0Q,(D,e))

e-symmetric
the contractible 2~dimensional complex over A
e-quadratic

in normal form defined by

(2) '
e (1 0)

D: ...—>0—>P > P*@P » P*¥ —> 0 —> ...
O
1 D =P—~—~)Dz=p
0 1 1
N~ = : D = PP* ————> D, = P*®P
(o] 1
-€ [¢]
2
€ : D° = P*——D_ = P*
8]
-r+
ng = © plrts D (spl)
(0]
1 N~ =P -———+D2 = P
o] o] 1
L~ = : DT = P&P* —> D, = P*@P
) (¢} ]
I - € (6]
I o} D2=P*————>DO=P*
: 2-r-s
\ cq—'O D —aD_ (572 1)



cf(p")
and similarly for .

c (Ph

Proposition 3.5.1 The homotopy equivalence classes of connected

e-symmetric
2-dimensional complexes over A are in a natural
e-quadratic
one-one correspondence with the stable isomorphism classes of
e-symmetric
connected 2-dimensional complexes over A in
e-quadratic

normal form.
Proof: A stable isomorphism is a homotopy equivalence. Therefore
it is sufficient to prove that every connected 2-dimensional

e-symmetric

complex is homotopy edquivalent to one in normal

e€-quadratic
form, and that homotopy equivalent complexes determine stably
isomorphic complexes in normal form.

e-symmetric
Every 2-dimensional complex over A
e-quadratic
2
(C,$€07(C,¢€))
is homotopy eguivalent to one in which the

c,p€ QZ(C,E))
chain complex C is in normal form, and for such C the class
¢

is represented by A-module morphisms
v
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dpo - $od* = 0 : C ——C , by + $yd* = 0 : CT——C, ,
$,0% + 6 - €85 = 0 CO——»C2 ,
ddy - §d* + 85 + €64 =0 : CT—C,
dgy + by - €0% =0 : C°—mCy
,a% - ¢, - 81 =0 : clemc,
dé, - ¢ €d* = 0O c?sc ) €d* = 0O c’—c
2 1 1 ' 72 2 2
— ~ o}
- - * =
Ay - Fpd* - ¥y + €l =0 2 C—Cy
~ 1
dwo + wod - wl + eWi =0 C -——+CO .
- B 0
Ay + Byd* + 4, +oeYd =0 C
(C,9)
Such a complex is connected if and only if the A-module
(C,¥)
morphism
= 2
(d ¢O) : CIQC ~f~4——?CO
d v * 2 -— C
( (w0+ew0)) : C1$C —_— 0

is onto, in which case we shall construct

(€', 6 €0?(C,e))
complex '
(€', 9" €eQ,(C,€))

in normal form,

a homotopy equivalent

as follows.
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Define a connected 2-dimensional e€-symmetric complex

over A (C',¢'€ Qz(C’,E)) in normal form by

(d
d’ = o]

(0

2
. (- (- —~h*) -
). Cy = C,———C} = ker((d -63):C,8C°——C) ,
1) :Cl———ct =2,
1 )
c'? = Cz———‘)C(‘) =c?,

§.-6,a% a C o ar ’
56 = ( o1 > : C'1 = coker ( ( >:C0———$Cl$C2)~—-—¢C

—ed* o] ¢0
P 0 Vo= - . 1 Vo=
¢O = € C —~*—7C2 = C2 ' ®i = I¢2d* o] : C! ——~+C2 = C2
¢! =0 C’2 = C,—»C! b = ¢ C‘2 = CZ————wc' = C
1 2 1 T2 2 2

given by

fell

C

—»o-—~—»c’——-—»c »C(')—*—>o—-»...
1 (1 0) |¢>
d &

———-9()————+C 744* C —_— C —2> 0 —> ...

defines a homotopy equivalence of 2-dimensional e-symmetric

complexes over A

£ 2 (C', 9" )—(C,0) .

Given (C.,y) as above we define first an auxiliary

2-dimensional e-quadratic complex over A (C",y" € QZ(C",E))

[¢]
v

d

(s
v = (0

qd
. Cc" = " oo 2
( ) C2 —C2————7C = C,8C

1 1 ’

(Y *tey
0" Y0 e L 2 v o= 2
. H C1 = ClQC ——VJ*—?CO COQC

WO _ AOp . o
1) :c"? o= clec,———Ch = C,

1

by

’



- ] 0
o =( ° j: cl < clec,——cr = cac?

5\ _ar o 2 1° %
=, L and _ n2 " oo 2
g =0 :c?=cf——cy = coec
ST LI
vy o= ( ° ): c© = cPac,——cy = cac’
o o
o L enl sl - 2
Weo:c clec,——cy = cooc
Y+, d* O
vy = ( L : c9 = cPec,——cy = ¢ 8¢’
o 0

The chain equivalence

f* : C —o—w——C"

given by
d d
c ...———»0————-C2————fc 'CO »O > ...
" 1 1
‘ ,l () 1(())
3" a”
c" : ... » 0 CE Ci—-———*C&————*O-———%...

defines a homotopy equivalence of 2-dimensional e-quadratic
complexes over A
£' 1 (C,y) ——(C", ")

Defien a 2-dimensional A-module chain complex C' in normal

form by
a - 5
. - [ *y .
, ( ) : C2 C2-——% Cl ker ( (4 w0+6w0).Cl®C -——*CO\
4! = (o]
(0 1) : ¢! ——>C) = C?
) 1 0

Choose a splitting map

3 2
. C.—————»C.8C
. 0 1

for (d Eo+ew6):cloc2——-+co, so that
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(d ﬁonwa)(j) = Aj + (Bpredt)k = 1 3 Cg———C

k

and define a chain equivalence

f' : C"—-C"
by
ar an
C" i Lo 0 — O ———— C) ——— C5 —— 0 —> ...
1] + 1
£ £} £1 £5
4’ a'
c' ...————)O~—»Cé—~——v Ci»—-~rC6——+0 —_ e
’
with
f' = (-k -€) : Cr =C oc’—— ¢t = c?
o= | Yo T o o
y =<1—]d €3 (Y +evs) )
1 = F -
-kd ek(i"onwa) -
. 2 _ = . 2
Cl = C8C ———>C] = ker{(d VY +tedd) :C,8C° —C.)
£ =1 :Cy=Cy——Ch =C, .

The connected 2-dimensional e-guadratic complex over A {C',%")
defined by
- £V (LT '
v f*(W ) € QZ(C 1 €)

is in normal form, and there is defined a homotony equivalence

£ = £'0" ¢ (C ) ———>(C"' V")

Tha above procedure associates to an isomorphism class of
c-symmetric {C,$)

connected 2-dimensional complexes over A
e-quadratic (c,¥)
with the chain complex C in normal form an isomorphism class
€-symmetric (C',0")

of connected 2-dimensional complexes over A
e-qgquadratic (c*.vY)

in normal form. The association preserves homotopy types, and
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also the direct sum ®. In particular, if C is a chain
contractible 2-dimensional A-module chain comnlex in normal

form it is isomorphic to one of the type

(o)
o (0 1)

C: ... 0 —3pP ——»PQ0 ——— Q@ —>0 —> ...

(C',¢")
for some f.g. projective A-modules P,Q, so that { is
(C',9")

ctp)
isomorphic to g , and hence is stably isomorphic to O.
C (P)
£

It follows from the Lemma below that homotopy equivalent

(C,0) ((C,4) .
with C and C in normal form determine

complexes g B
(C,¥) (C,¥)

€'e' (€8
stably isomorphic complexes in normal form ' s
(C'.,%") (c',v')

(C,¢) (C.9) e-symmetric
Lemma Let be 2-dimensional

(€. ) e-quadratic

complexes over A with C,E in normal form. There exists a

€,

homotopy equivalence
£ (C,4) ——(C,$)
£ 0 (C, ) ————>(C,¥)
if and only if there exists an isomorphism
(C,¢)®(D,0) ——— (C,$)®(D,0)
(C,¥)®(D,0) ———> (C,¥)®(D,0)
for some contractible 2-dimensional A-module chain complexes
D.D in normal for.

Proof: This is a special case of Proposition 1.1.5.
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(even) e-symmetric (K, a; L)
An S-form over A is an
€-quadratic (K,B;L)

(even) e~svmmetric (K,a € Qf(K))

form over A {

S-non-singular
e-quadratic

(k,B€ QE(K))
together with an S-lagrangian L. Such an S-form is
(K,a)

non-sinqular if is a non-singular form. (An S-form is
(x,8)

an S A-form in the sense of §2.4).
(even) e-symmetric
An isomorphism of S-forms over A
e-quadratic
f : (K.o;L) —¥—3 (K',qa";:L")
f : (KB:;L)——=—>(K',B';L")
(even) e-symmetric
is an isomorohism of the forms over A
e-quadratic
if : (K, a) ——3(K',a')
£ @ (K,B)——>(K',8")
such that
f(L) = L' .
(even) ec-symmetric
A stable isomorphism of S-forms over ?
e-quadratic
(€] : (K,a;L) ———>(K',a’;L")
[£] : (K,B;L)—=—> (K", B';L")
is an isomorphism of S-forms
f 1 (K, aiL)@(M, ;N ——— (K!,a’ ;L0 )@(M', 4" ;N")
oo (K,BiL)®(M,¢;N) ——>(K',B';L')®M'.';N")
(even) €-symmetric

for some non-singular S-forms over A
e-quadratic

e
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(M,0)
, such that N is a lagrangian of
(M, ;N)

(M', ' ;NY)

(M,¢;N) {(M‘A';N')
(M)

(M',0")

and N' is a lagrangian of .
M’ %)

Proposition 3.5.2 i) The stable equivalence classes of

even ¢-symmetric
e-quadratic linking formations over (A,S) are in a
split e-quadratic
natural one-one correspondence with the stable isomorphism
e-symmetric
classes of even e-symmetric S-forms over A. Non-singular
e-quadratic
linking formations correspond to non-singular S-forms,
ii) The stable equivalence classes of (even) e-symmetric
linking formations over (A,S) (M,);F,G) are in a natural
one-one correspondence with the homotopy equivalence classes
of connected S-acyclic 2~dimensional (even) (-¢)-symmetric
complexes over A (C,¢ € Qz(C,-s)). Under this correspondence

the exact sequence of S-torsion A-modules
1 %0 2. %
0——H" (C) ———'Hl(C)—*Hl(QO) —H(C) > Hy(C)— O

can be identified with
0—»FNG ——>FN Gt —»GL/G —> M/ (F+G) —> M/ (F+G1) —>0 ,
and

s A -
Vo (4) = H2(C) = M/(F+G)——~>Ho(z2,-s 1A/A,£) 3 X F—— A (x) (&

Non-singular linking formations correspond to Poincaré compl
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iii) There is a natural proijection of the set of homotopy
equivalence classes of connected S-acyclic 2-dimensional
(-e)-quadratic complexes over A (C,} € QZ(C,—e)) onto the set
of stable equivalence classes of split e-quadratic linking
formations over (A,S) (F,((:),G)G). If the complexes (C,V¥),
(C',¥') project to the same stable equivalence class then
(C',¥') is homotopy equivalent to a complex obtained from
(C,¥) by an S~-acyclic (-e)-quadratic surgery preserving the
(-e)-symmetric homotopy type, and

Pvg(¥) = pva(¥') : HL(C) = ker (n:G—F") ——Q__(A,5) ;

x— 0 (x) .
{]
(Before embarking on the proof of Proposition 3.5.2 we remar
on the similarity between these correspondences and those of

{linking forms over (A,S)) ¢——

(s-acyclic l-dimensional complexes over A) (Proposition
(linking forms over (A,S))é—
(S-formations over A) (Proposition
(formations over A) ¢——
(l-dimensional complexes over A) (Proposition
e-symmetric
In particular, given a connected l-dimensional
e~quadratic
.o eat(c.en
complex over A with a corresponding
(c,ve OI(C,C))
e-symmetric (M,2;F,G)
formation over A the exact
split e-quadratic (F,((:),e)c)

sequence of A-modules

k

3.4.1)

3.4.3)

1.6.4).
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0} ¢O 1 ®0
O-—>H (C)-———+Hl(C)———~+H1(¢O)~—~—»H (C)»«———*HO(C)~—4ﬁ o]
{with b = (1+T€)w0 in the e-quadratic case) may be identified

with the exact sequence

0—3FPnG——> Fn Gt ——GLt/G —> M/ (F+G) —>M/ (F+G+)—>0

and

UNCINE Hh(C) = N/ (F4G) —— B0(Z, 1A 6) 1 [xI—a(x) (x)  (xEM)

VI(W) : HO(C) = FAG = ker(u:G-——vF*)——~—*ao(ﬂz;A,c);
y—8(ylly) ).
even c-symmetric

Proof: i) Given an { linking formation over (A,S)
e-quadratic

(M,A;F,G)
we have from Proposition 3.4.6 that the

(M,A,u;F,G)

linking form is isomorphic to the

even e-symmetric (M,2)
g-quadratic (M, A, )

boundary 3 (K,a) of an S-hyperbolic S-non-singular

(K,a € Q% (K})
form over A ., and that

(K, € 0¢v > (K})

e-symmetr ic
even g-symmetric

coker (a:K—>K*)

F

coker(f:K———»KF) cM

G coker (g:K—>K ) M = coker {a:K—K*)

H

e-symmetric

for some S-isomorphisms of S-non-singular
even £-symmetric

forms over A
f (K.u)———~*(KF,GF) P (K.ﬂ)~‘4~?(KG,GG)

c-symmetric
) noq—singular. The S-form

with (KF,a
even f-symmetric

F

(M,2;F,G)
over A associated to is defined to be
(M,2,u;F,G)
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an, O f

€ i .
(KF@KG, (0 ) € Q (KF$KG),1m( (g ) .K*——‘~—»KF$KG)) .

-ag
We defer to 11) the proof that the stable isomorphism class of
this S-form is independent of the choice of S-non-singular
form (K,a) such that
{M, )} = J(K,a)

{(M,X,u) = A(K,a) .
We shall now prove that the S-forms associated to stably
equivalent linking formations are stably isomorphic.
even e-symmetric

Given an linking formation over (A,S)
e-quadratic

(M, X:F,G)
and a sublagrangian H write the linking formation
(M, A, u;F,G)

obtained by elementary equivalence as
(M',X';F°,G') = (HL/H,AL/X;F NnHL,G/H)
(M' A, u";F',G') = (HL/H, AL/, ut/u;FnHLY,G/H)
Continuing with the previous terminology, let
h : (K,a} ——(K', a")

e~gymmetric
be the S-isomorphism of S-non-sinqular forms
even e-symmetric

over A associated to H by Proposition 3.4.6 i), with
H = coker{h:K———K') & M = coker (a:K——> K*)
(M',x') = 3(K', ")
{(M',*',U') = 3(K',qa")
AS H G there is also defined an S-isomorphism

g' : (K',a‘)—‘-“+(KG,aG)

NS
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g =g'h : (K,a)——ha(K',u')—E—-—*(KG.GG) .
The composite

{inclusion] {xl
P———— M/Ht ——— > n"

is onto, with resolution

[¢] K ﬁ'—ﬂ K ~» F » O

] *
a'h 3 O

* -
o— k'* ~ g 0

Thus the (A,S)-module F' = ker (F——H") has f.g. projective

A-module resolution

O —>K —f J ——>F'—> 0
with
£
e = : K——m——> J = ker((f*aF -h*):KFQK'*~————* K*)
a'h

e-gymmetric
Define a non-singular form over A
even e-symmetric

ap (o] [¢]
(R,p) = (KFQK'*QK‘, 0] [¢) 1 € QC(KFQK‘*QK‘)) ’
0] € a'
and let L be the sublagrangian of {(R,p) defined by
f
L = im( [ -a'*h |: K—-——»KF&K'*a)K')gR ,
h
so that

(LY/L,A4/2) = (K )

FroQps



e-symmetric
is also a non-singular form over A.
even €-symmetric

The S-isomorphism of f.g. projective A-modules

o Ker ((f*a, eh* 0) :K 8K '*0K'— K*)
f£ro=lo |: k'K,
F ;
1 im((-a"h (K > K @K' *0K ")
h

e-symmetric

defines an S-isomorphism of S-non-singular
even e£-symmetric

forms over A

£ (K, at) (K, ap,)

such that

coker (f':K'—» KF,) = coker(e:K———>J) = F'

(MIIX')

is the associated lagrangian of 3(K',a')

(M', A7, u")
e~symmetric

Thus the S-form over A associated to
even e-symmetric

(M',A';F',G")
is given by

(M', X', u';F",G")
o £!

a

F' € .

(Kp 8K, (O Y >eo (K @K )5 im( (
G

5 >:K'—+KF,$KG)) .

c-symmetric
S-form over A

even e-symmetric

Define an
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(Q,65P) = (K BK'*®K 8K, ‘ .

G
£ o}
-a'h -a'
im( K@K ' ———— K OK ' *6K ‘0K ) )
o} 1
g q'

(K,0)——(0,¢) = (KFQK'*QK‘QKG,M

e-symmetric
extends to an isomorphism of forms over A
even €-symmetric

[¢) 1 ap, ¢}
HE(K,O)Q(KA/K,¢1/¢) = (K®K*, ( >)$(KF,$KG,( )
€ 6 [¢) -ag

> (Q, ¢)

£ 8 € 0% (K*)
sending K@®im( 5K'————+KF.9KC) to P, for some ¢ .
9! ’ 8 € 0Cvy> (K*)
€-symmetric
Thus there are defined isomorphisms of
even c¢-symmetric

S-forms over A

e ap (o} f
(H (K,e);Km(KF.mkc.< ) im( K —KL 8K ))
[¢) e q'

————>{Q, $; P)



op 0 £
(Q,¢:P)~—+(KF$KG.( ;im( :K—»xF@KG)m(HE(r
~ag g

e-symmetric

Thus the % S-forms over A associated to stably

even e€-symmetric
even ¢-symmetric
equivalent linking formations over (A,S)
€ -quadratic
(M, X;F,G) (M',X';F',G")
’ are related by a stable
M, A, u;F,G) (M', A", u' ;B ,G)
1somorphism

ap Q ) f
(KF$KG,<O >;1m( :K~»KF$KG))

_gG g

n. O £
_«_—~—+(KF,$KG, <o » ;im( g :K-___>KF,$KG)) .
G

Given a split e-quadratic linking formation over (A,S)
(F,((Z),S)G) we shall obtain an £-quadratic S-form over A (K,Ff
as follows. Let u€ HomA(L',L*) be an S-isomorphism of
f.g9. projective A-modules defining a resolution of F by

u*
O—— [, ——> [['* ——>» F —>0 .

let e€ HomA(L*wL'*,FwF‘) be the projection appearing in the

corresponding resolution of F®F"
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L),

™

Juuy

< . : )
eu* O e

O0——18L' ——————— L[*@L'* — > F@F ——> 0 ,

define a f.g. projective A-module
K = e lc)cLraL'x ,
and write the inclusion as
() k) : LBL'—— K
There is then a natural identification
coker (j k) :LOL'——>K) = G

and there exists an S-non-singular e€-quadratic form over A

(K,8 €Q_(K)) such that the inclusion (I):G«——»NF‘ is

resolved by

(3 k) el
O——I®L' ————> K > G -0

j‘(B+eB‘)> (y
( o u k* (B+eB*) u)
cu* O

0 > LOL' ~» L*@L'*® ——————> FOF ——> 0

(As in Proposition 3.4.6 i) (K,B) is only determined by G
up to S-isomorphism, i.e. only the coset

(8] € Q_(K) /ker (S_]‘:QE (K) —Q, 5" k)
is determined). Proposition 3.4.3 associates to the (-e)}-qu
linking form over (A,S)

G,y u€ HomA(G,G‘) /8:6— 0__(A,S))

the e-quadratic S-formation over A
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~(B+eB*)*j O

) € Q_ (K*@K) ;K*, im( ( >:LGL'———)K'®K))

3j k

0 : G = coker ((j k):LOL'—> K} ———» Q_C(A,S) :
kb ety - 0 00
(XEK,S€S,yEL,y' €L',sx=i(y) +k(y') €K)

for a unigue e-quadratic form over A (K,B€ Qe(K)) in the
prescribed S-isomorphism class. The e-quadratic S-form over A
associated to (F,G) is defined to be
(K,BGQC(K);im(j:L———-‘> K)) .

The verification that stably equivalent split e-quadratic
linking formations over (A,S) determine stably isomorphic
e-quadratic S-forms over A proceeds as in the (even) €-symmetric
case.

e-symmetric

Conversely, given an even e€-symmetric S-form over A
e-quadratic
(K,a €0 (K) ;L) even e-symmetric

(K,a € O<V0>E(K);L) we shall define an c-quadratic

(K,8€ Q. (K) ;L) split e-quadratic
(M,A;F,G)
linking formation over (A,S) (M,A,u;F,G), as follows.
(F,G)
(even) e-symmetric (K,a;L)
Given an S-form over A
e~quadratic (K,B;L)

let j€ HomA(L,K) be the inclusion, and apply Proposition 1.6.2
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to extend the inclusion of the lagrangian

i ¢ 8,0 —— s7hk, @)

j s (S_IL,O)—————fs—l(K,B)

(even) e-symmetric

to an isomorphism of non-singular forms
e-quadratic

over s 1a

-1, -1 o 1 -1
GG 39 ¢ (5" lues Iy, y — 571k, q)
¢ i'*aj’

o 1
(5 39 : (s"tres lix, ( )) s ke
o o

for some j'€ Homs—lA(S'lL*,S‘lK) such that

iy - -1 -1
j*aj’ =1 € Homs lA(S L*,5 "L*)

; ~ -1 -1
J*(B+eB*)j' =1 € Homs-lA(S L*,5 L)

By Proposition 3.1.1 there exists an S-isomorphism s€ HomA(L*,L‘)

such that
. -1 -1
= * < - *
j's k € HomA(L ,K) € HomS lA(S L*,S “K)

(K,a;L)
(stabilizing g if necessary). In the e-quadratic case
(K,B;L)

i85 =o€ o sl

so that k*Bk € ker (s1io_(L#)——0_(571L#*)) and there exists

an 5 la-module morphism X € HomS—IA(S—lL*,S-lL) such that

k*8k = x - cx* € Homg-1, (s 114,57 1L)

Applying Propésition 3.1.1 again let t€ HomA(L*,L*) be an

S-isomorphism such that

t € Hom, (L*,1. ) C Hom,~1 (s™lx,s7 Ly
A A < st
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Replacing s,k,x by st,kt,t*yt ensures that
k*Bk = 0 € QE(L*) .
Define an S-isomorphism of f.g. projective A-modules

{u = Jrak s Lr =Lt

u J*(B+eB*)k : L*¥ —>L* |

(even) e-symmetric
The S-isomorphism of S-non-singular forms
e~quadratic

over A

u* 0O o u o 1
( : {LOL*, )) 3 (L@L*, }
[¢] 1 ceu*  k*ak e k*ak
u* O o] u 6] 1
( ) : (LOL*, < ) ————(18L*, )
¢} 1 (o] o} (o} o}

has non-singular range, corresponding by Proposition 3.,4.6 i)
to a lagrangian
F = coker{(u*:L——>L) G M
geven e~symmetric (e-quadratic) )
of the boundary linking form

split e-quadratic

over {A,S)

u*  k*ak

&} u
J(LeL*, < ) = (M) (= (M,A,p)
€

o] u .
3(1.61-*.< )) = H_(F) = (M,},v) .
[¢] (6]

The inclusion of the lagrangian
P M

is resolved by



> LOL*

F
o] u
1
[¢] u ) e k*ak
(u* k*ak

[0} > LOL* > LO*SI,

v
[e}

> M

with k*ak = k*(B+eB*)k =

>0

0 € HomA(L*,L) in the e-gquadratic

(even) e-symmetric
case. The S-isomorphism of S-non-singular

e-quadratic
forms over A

o u
(i k) : (LeL*, ( \) ) ————~(K,a)
eu*  k*ak

(6] u
(3 k) : (L@L*, ( > } ————> (K, B)
o o]

corresponds by Proposition 3.4.6 i) to a sublagrangian

G = coker{(j k):L®L*——>K)C M

even e-symmetric

(e-quadratic)
of the

linking form over
split e-quadratic
(M, 2) (M, A 1))
~ , such that the inclusion
(M, A, v} = He(F)
Ge—— M

has resolution

N (i k)
0 ———> LOL —> G —> 0
( 0 u > K *o
cu* k*oak
o} » LOL*

— I*@L ————> M ———> 0

with o= B+eB*, k*Bk =

O in the t¢-gquadratic case.

(A,S)
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e-symmetric
The above procedure associates an { even g-symmetric

e~quadratic

(Kya;L) even e~symmetric
s-form over A (K,a;L) the e-gquadratic linking
(K,B; L) split e-quadratic

formation over (A,S)
(M,A;F,G)
(M,X,u;F,G)

Y
(F,((u),e)G) .

where the hessian (G,y"u € Hom,(G,G"),0:G——>0__(A,S)) is the
(-~¢)~quadratic linking form over (A,S) associated by
Proposition 3.4.3 to the e-quadratic S-formation over A

-€Bj B*k
(HE (K*) ;K*, im( {LOL' ——— K*®K)) .
3j k
(For an even e-symmetric S-form (K,a;L) Proposition 1.6.2
actually gives an extension of j€ Homs-lA(SﬁlL,S_lx) to an

. . . ; ~1
isomorphism of non-singular even e-symmetric forms over S A

- - - o 1 -
(531 vy = (s7tres 1L*,< >)“»s Lk, 0
€ 0 ,
leading to an S-isomorphism of S-non-singular even e-symmetric
forms over A

o} u

3 k) : {L@L*, ( >)'————-*(K,0) .

cu* o]
In this way it can be proved that every e-quadratic linking
formation over (A,S) (M,),u;F,G) is stably equivalent to one

of the type (HE(F):F,G))-
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even e-symmetric (e-quadratic)

It remains to show that the
split e¢-ouadratic

M A 3F ,G ) (M X _,u iF G ))
linking formations over (A,S) § rororr rrrror

(Fr,Gr)
(even) e-symmetric

(r = 1,2) associated to an S-form over A
e-quadratic

(K,a;L)
{ using two different choices (kl,ul),(kz,uz) of the pair

(K,B; L)

* * *
(k€HomA(K,L ),uellomA(L ,L*))

(that is. two different extensions of the inclusion j€ HomA(L,K)

(even) e-symmetric

to an S-isomorphism of S-non-singular
€-quadratic

forms over A

u
r

(3 k) & (LeL*, ( ))—v(K,a)
*
eu: kr&xkr
(r = 1,2)
o] ur
(3 k) o+ (LOL*, ( ))—————v(K,B) )
o o0

are stably equivalent. The two choices are related by an A-module

morphism h € Hom, (LL*,L) and S-isomorphisms vl,vze HomA(L*,L‘)

A
such that
U vy = uyvy € HomA(L*,L*)
- = 3 *
k2v2 klvl jh € HomA(L LK)
~-€

viuih € Q (L)
-€

viulh € O(VO) (L*)

We shall consider separately the effects of the transformations

(kl,ul)b—-——-»(klvl,ulv1

)h-«»(k1v1+]h,ulvl) = (k2V2,U2V2)F——$(k2,u2).



If the choices (kl'ul)'(kZ'u2) are related by an

S-isomorphism v € HomA(L‘,L*) such that

= * * = > '
uy u,v € HomA(L JL*Y k1 k2v € HomA(L ,K)

(M) %) F),Gy) (M)A 5 F),G))

then the sublagrangian H of Y
1
(Fl,( >,61)G1)
!

defined by the resolution

6 )

O0——LBL* ————> [HL* ————>H—>0

1 (3 ky)
(3 k)
0——L8L* ————> K —————>G;——>0

is such that
I n . n = s
(HE/H, A3/X i F N HY, G /H) My, 25iF5,G5)
1 1 4 » i = .
((H /H,AI/X,ul/u,Flr1H 'Gl/H) (Mz,xz,uz,Fz,Gz)

(v,! Yy
(Fym B <l ,[Bll)Gl/H) = (Fz.(( .92)62)
ull v,

Thus the linking formations associated to the choices (kl,ul),
(ky,u,) are related by an elementary eguivalence,

1f the choices (kl,ul),(kz,uz) are related by

u = u

* * = 3 *
1 € HomA(L JL*) Kk k, + 3k € HomA(L K}

2 2 1

for some h€ HomA(L*,L) such that

uth € Q°°

H (L*)

uth € Qdvg> (LY



even e€-symmetric (e-quad
there is defined an isomorphism of
split e-quadratic

linking formations over (A,S)
f : (Ml,kl:Fl,Gl)'~————¢(MZ,XZ;Fz,Gz)
(f:(erxl,ule],Gl)——‘-*(lekz,uz;FZ.GZH

(119101‘11) : (FL’GI)F-—»(FZ’GZ)

< . u >
eui kiukl

0 —— LeL* ————— L*¢L ——————> M1 —>0

1 =-h 1 o]
( > o U < ) £
0 1 euy  kjok, h o

with

1 "2
0 ——> LOL* > L*®L — M, ~———>0
(3 ky)
0 —— > LOL* — G — 0
1 -h
1 q
0o 1
(3 ky)
0 ~——> LOL* — K —G, ——> 0

A L * ~ s
and (Fl coker(ul.L —3 L*), b€ HomA(Fl,Fl),W.[l—-*0_€(A.S

the (~€)-quadratic linking form over (A,S) associated by
Proposition 3.4.3 to the e-quadratic S-formation over A

-€h

(HC(L);L,im(< ): L* —— LOL*))
u

1

This completes the verification that the stable equive
(M,X;F,G) ((M, ), 4;F,G))

class of the linking formation {
(F,G)



(K, L)
associated to the S-form i is independent of the choice
(K,B;L)

of (k,u).

ii) A connected S-acyclic 2-dimensional (even) (-€)-symmetric
complex over A (C,¢ € QZ(C,—e)) is homotopy equivalent to one in
normal form, by Proposition 3.5.1. Given such a complex in normal
form we shall construct an (even) e-symmetric linking formation
over (A,S) (M,X;F,G), as follows.

1 *
Choose a cycle representative ¢ € Homz[zzl (w,HomA(C ,C))2
in normal form, i.e. such that ¢o€ HomA(CO,Cz) is an isomorphism
(which we shall use as an identification), and $l= o€ HomA(Cz,Cl).

It is thus possible to write the diagram of f.g. projective
A-modules and A-module morphisms

ax 1 a*

c¥ — —> ¢ > C

as
j j*a*
L K L*
JR W
1 nite —¢
5 *
LT 9, e A

with je HomA(L,K), a€ HomA(K,K*), ne HomA(L',L) such that



j*@j = O € Hom, (L,L*)
a - ea* + ajnj*a*r = 0 € Hom, (K, K*)
n+en* =0€ Hom, (L*,L) .
The sequence of f.g. projective A-modules and A-module morphisms

i j*a
o] > I, — K > L®# ——0

becomes exact over S-IA, so that there exists an A~module morphism
k € HomA(L*.K) such that the A-module morphism

u = j*ak : L*——>L*
is an S-isomorphism. Let (M,1) be the non-singular (even)
e-symmetric linking form over (A,S) associated by Proposition 3.4.3

to the non-singular (even) (-€)-symmetric S-formation over A

o] o 1 0] 1 o]
(0] o] 0] 1 0 1
(LOL*OL*SL, pim( :LOL* — LBL*BL*SL),

-€ o n [¢] o] O
0 -e¢ o] o] o] (o]

1 (o}

o 1

im( : LOL* —— > LOLYOL*SL) ) .
(0] u
eu* k* ak

Define a lagrangian F and a sublagrangian G of (M, ) by the

resolutions
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u* ())
o

O— IBL* — 3 L*@, ———————— P F——— O
o} 1§
1 (o} u (
€ k *ak J
eu* k*ak
O LBL* —> L*®L, > M >0
r
j*a
) ( >
k*a
(3 k)
(o] > LOL* — K — G ——0 .

Then (M,X;F,G) is the (even) e-symmetric linking formation
over (A,S5) associated to the complex (C,4).
Replacing ¢ by a different cycle representative

2
1] * -
'€ HomZZHZZ](w'HomA(C ,C))2 of ¢ €Q°(C,-€) replaces (a,n) by
{a' GHomA(K,K*),n' GHomA(L*,L)) such that for some xGHomA(L*,L)
a' - a = ajxj*a* € HomA(K,K*)
n' - n=-x + ex* € HomA(L*,L) .
The A-module isomorphism fe HomA(M,M‘) given by the resolution

0] u >
eu* k*ak

Q——— L&L* —> [.*@1. » M — 0
1 o
1 [¢] u ) f
( u*y 1
cu* k*a'k
—— [*@L

—_— > M'——30

O ———> LBL*

defines an isomorphism of the associated (even) e-symmetric

linking formations over (A,S)

£ : (M, X;F,G)——>(M',A";F',G") .

A

P



The verification that the stable equivalence class of
(M,A;F,G) is independent of the choice of
(k € HomA(L*,K),ue HomA(L*,L*)) proceeds exactly as in the
proof of i) above - indeed, if (C,¢ € Q2(C,—€)) is even then

¢ € Q(v0>2(C,—e) has a cycle representative with

¢2 = n=20FE€ HomA(L*,L) (L = C2) ,

in which case (K,a € QC(K);im(j:L-———+K)) is an e-symmetric
S-form over A and (M,\;F,G) is the associated even e-symmetric
linking formation over (A,S). Moreover, if (C,$) = C °(P) for
some f.g. projective A-module P we can take

(k,u) = ((é):P*—)P*QP,l:P‘———»P*)
so that the associated even e-symmetric linking formation is
(M,);F,G) = O.

We have shown that the stable equivalence class of the
(even) e-symmetric linking formation over (A,S) (M,X;F,G)
associated to a connected S-acyclic 2-dimensional (even)
(~€)-symmetric complex over A (C,4) in normal form depends
only on the stable isomorphism class of (C,¢), which by
Proposition 3.5.1 is just the homotopy equivalence class of (C

Conversely, given an (even) e-symmetric linking
formation over (A,S) (M,\;F,G) we shall construct a connected
S~acyclic 2-dimensional (even) (-ec)~symmetric complex over A
(C,¢) in normal form, such that (M,X;F,G) is in the stable
equivalence class determined by (C,¢), as follows.

Let (D,n€ Ql(D,—c)) be an S-acyclic 1-dimensional (even)
(-e)-symmetric Poincareé complex over A associated to the
non-singular (even) e-~symmetric linking form over (A,S) (M,))

by Proposition 3.4.1, with D an S-acyclic l-dimensional
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f.g. projective A-module chain complex

D: ... 0 — D1 ~—g——$ DO —> 0 —> ... ,

such that

1 s, _
(HY(D),ng) = (M,3) .

Let e€ HomA(Dl.M) be the projection appearing in the resolution

a* 1 e

O-——»DO——~——>D ——* M —> 0 ,

and define f.g. projective A-modules

pj = (e h(F®, by = (et .

i - 3 [ ] " "
Define A-module morphisms f'é€ HomA(Dl'DO)’ f" e HomA(Dl,DO) to
be such that their duals are the inclusions

1

£rx s o't = e p) —pt

1 1

g% : p*t = e7l(g) — D

1] 1] " "
and let d'€ HomA(Dl’DO)' a* e HomA(Dl,DO) be the duals of the

restrictions of d*e HomA(Do,Dl)

d'+* = a* DO————'—>D'1 a"* = d* : D ——> D"

(which are well-defined since
im(a*:0°——ph) = e lioysetmneliay .
Let D',D" be the S-acyclic l-dimensional f.g. projective

A-module chain complexes defined by

= LI = v o=
dp, =4 D} ——+D} = Dy , D; 0 (r # 0,1)
dpn = a@" D'i——»Dé =Dy s Dl =0 (r # 0,1)
and let
f£* : D——>D' , f* : D—>D"

be the A-module chain maps defined by



D: ...~ 0-—>D —D, 0 >,
£ f'l ll

D': ...—> O—-—+Di ——££—+D6~———+0 —_— ...

D : ...—»o——wl—i—mo—+o—~>...
£ f..l ll

y d"

D": .,..—/0 ~—~*Di *—->D'O'—?0————-)...

so that

£'* = inclusion : Hl(D') = F-——-—»Hl(D)

n

M
f"* = inclusion : Hl(D") =G —— HI(D) =M |
These inclusions define morphisms of (even) e€-symmetric linking

forms over (A,S)

(F,0) ———— (M, %) , (G,0) —> (M, )
which by Proposition 3.4.1 correspond to maps of S-acyclic
1-dimensional (even) (-c)-symmetric complexes over A
£' : (D,n)———(D',0) , £" : (D,n) —— (D",0) .
Thus there are defined an S-acyclic 2-dimensional (even)
{(-€)-symmetric Poincaré pair over A
(£':D———D", (6n*,n) €Q°(£',-¢))
and a connected S-acyclic 2-dimensional (even) (-t£}-symmetric
pair over A
(f":D-—> D", (én",n) € Oz(f“,—c)) .
The union
(C,8) = (D'U D", =6n"U 80" € 07 (D'U D", -e))
(as defined in §1.7) is a connected S-acyclic 2-dimensional
(even) (-¢)-symmetric complex over A. Next, we show how to

recover the stable equivalence class of (M,X;F,G) from (C,¢).



The relative Z,-hypercohomology classes (6n',n) GQZ(f',—E),
(Sn", ) €Qz(f",—€) are representad by A-module morphism

o] ~ 1 1

ﬂo : D ————)Dl B no : D ———~)DO B nl : D -~—>Dl
§nt : Dl spr, 6ng : 0"l sy
o 1 "ot 1
such that
~ o ~ 1
* = . - - * =
dno + nod 0: D —Dg dnl 5 €ns o] D*———D;
1 ~ (¢}
* = . * * = »
no+ oENY 0 :D —*D; . nld + Ny v ENE =0 D ——***Dl ,
frn, = -6ntd'* : pO——D2 , R E'* = a'sny : D' 1D
a o : 1 ' 0 (o2 o’
1
‘ tx = LI R . 1 1]
f nlf 6n0 EGnO : D »Dl '

(¢} ~
" = ~&ntdrE . " Wk = A"Rpt . «
f no énod + D ~—~—>Dl . nof = d éno : D R DO'

" P w o wa . el "
£ nlf * o= cSnO c&no' : D —«———»Dl .

Define a connected S-acyclic 2-dimensional (even) (-¢)-symmetric

complex over A (C',¢>‘€QZ(C',-€)) by

£
. Voo [ ' "
q - (f> €2=D B Tl bt
Ccr , C;: =0 (r # 0,1,2)
(d' -a") : Cj = Dj@Dy ~—=Cf = Dy
,0 _ 0 Vo
o C =D —-—*—>C2 = D1
-én! 0
oy = ( 0 sork - D'len"l—————»ci = D@Dy
o &nn
0
~ 2 gl -
o c'f =D ————>C) =D,
. IS TS U B
(nyf'*0) : C D' 8D >y =D,
#) = o
! c? = pl———c; = preo
£ 1 1771
n
05 = ny ct? = pl—mcy =D,



There is defined a homotopy equivalence
h : (C,p) ———(C",8") ,

with h:C —— C' the A-module chain equivalence given by

_f'
4a' 1 o]
d <
o} 1 a”
-£"
- 1 "
Ci: o™ O0—D —> DIQDOQD1 _— DOQDO—ﬂvO-—*...
1 [¢] [¢]
h -1 f! (1 -1)
( o o 1
£ (d' -da")
c¢': ...—>0—D > D@Dy D,—>0-—

1 171 it ¢

Now apply the method of the proof of Proposition 3.5.1 to obtain
from (C',¢') a homotopy equivalent S-acyclic 2-dimensional (even)

{(-€)-symmetric complex over A (C",¢“€02(C",-c)) with

f‘
£
deu= (¢}
- n oo TR R wanl
€y = D —>Cy = ker((q' d ng) :D{@D]eD —>Dy)
© 0 1) : ¢} ——cy = pt
¢}
W0 w oo
1 :C = Dl———-—~-)C2 = Dl
—én(') o} f*
_gn ! " M
£ nlf * céno £
0(“) = ef'* cf"* o

dqrx

: C"l = coker (| ~d"* :DO——*D'IQD"]‘GDL)~—~——?Ci



{(nlf'* n o) c"1~—»c5 - ol
or =
1 o : c"z——>ci
A B | e - b
¢y =Ny ¢ 2 =Dy
As before, write
dtw =3 00 = ol =k
¢r = a C"l = K————>(C! = K*
o l r

and let sGHomA(Dl,Dl) be an S-isomorphism such that

P SR a -1, -1
sf =1 € HomA(Di,Dl)CHomS lA(S Dl,S Dl) '

so that the A-module morphism

it d'*
= .+ = pt - " 0 W ,1
k=10 |:L*=D—K = coker([-d"* |:D ~—>D'"@D" ®D,)
[e] —no

is such that thue v dehwed an Soisomovphinm

u = j*ak = gg* ; L¥ — 5 L*
The (even) e-symmetric linking formation over (A,S) (M',A';F',G')
associated to the complex (C,4¢) (via (C",9")) is thus described

by the resolutions

(0

0 ———— LBL* — LBL* —> F! > 0
o) es*
1 O es*
( € k*ak
J s k*ak “
00— ———> LOL* —> [*®1, —>M'— 30
A
) ira
1 )
k*a
(3 k)

O—— L* ———> K —————3 ' ———> 0



Let H' be the sublagrangian of (M',6X';F',G')

( : . >
1 [¢] i*

with resolution

QO —— D, 8D

1 > D1$D' ~—> H ' O
0 1

1 0 0
1 [¢]

Y
Q> DIOD > K

+>G' ——>»0
There is defined an isomorphism of (even) e-symmetric linking
formations over (A,S)

(M, \;F,G) ——————> (H'4/H' , A" L/N';F'N H'L,G'/H")

so that (M', A';F',G') is stably equivalent to (M, A;F,G).

Next, we consider the effect on the complex

(C,9) = (D'\)DD“.—Gn'unén")
of the elementary equivalence

(M, X\;F,G)—>(M,A;F,G) = (HL/H,AL/A;Fn HY,G/H)

determined by a sublagrangian H of (M,X;F,G). Let the inclusion

j€ HomA(H,G) have resolution

o] > DO ars D"'1-——44+ H—>0
11 g* 3
"
0 ——2p° 4 »prl >G > O
with g*€ HomA(D“'l,D"l) the inclusion of D"'1 = e-l(H)g Dl

in D"l = e—l(G)E Dl, where GGHONA(DI.M) is the projection

!

(as above). The A-module chain map

£M"' . D ———— D™

defined by



d
D : ...—>0 ———+D1—-AA—+ DO—*-+()————+...
PGl qf" 1
am
D" ...——~*»C)~—~—+Di” D0 L,

is such that there exists a connected S-acyclic 2-dimensional
(even) (-¢)-symmetric pair over A
(fll':D___—____’DllI,(Gnlll'n)eoz(flll‘_e)) .
The S-acyclic l-dimensional (even) (-¢)-symmetric Poincaré
complex over A (D,n€ QI(B,—E)) obtained from (D,n) by S-acyclic
surgery on {(f"':D———D"',(8n"*,n)) has associated non-singular
(even) e¢-symmetric linking form over (A,S)
1 =~ =S —
(H(B) ,Ag) = 4,X) .
Define S-acyclic 2-dimensional A-module chain complexes D',D” by
1-

b‘l = C(f'nof"'*:D"' * "D') ,

D"

OC({g:D" ———D"")
and let

f* : D—>D' , f" : D——D"

be the A-module chain maps defined by

f o] (¢] 2
£ = : D= D ep" @™ ' ——spr = prgpm 2t
r r r+l r r
0 0] 1
_ (f" 0 O) 4 2-r —
£ = :D_=Dpep @ ° F——F" = prgp:
o 1 o r rr+l r rr+l
(rez) ,
so that
f'* = inclusion : H (B') = F——ul(D) = M
f"* = inclusion : Hl(ﬁ") = G —— Hl(ﬁ) =M .

Ve
-
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There exist connected S-~acyclic 2-dimensional (even) (-€)-symm
pairs over A

(F':5 —— 5", (Fn'. ) €Q°(F .-e)) ,
(£":5 ——— B". (80", € 0% (F,-0))
such that the union
(€8 = (B'UFb",-Tn'UFER" € Q° (D' v 5B" - <))
is a connected S-acyclic 2-dimensional (even) (-€)-symmetric
complex over A associated to (M,%;F,G). It may be verified that
(C,9) is homotopy equivalent to (C,4$), the complex associated

to (M,x;F,G).

This completes the proof of ii}. It remains to complete
even g-symmetric
the proof of i). Given an linking formation
e-quadratic
(M,2;F,G)
over (A,S) let (K,a),(K',a') be S-non-singular
(M, ,u;F,G)
e-symmetric
forms over A such that
even e-symmetric
M,2) = 3(K,a) = 3(K',a')

(up to isomorphism), so that

F

I
"

coker (f:K ——> KF) coker(f':K'f~—>Ké)

G

coker {(g:K ————)Kr) = coker(g':K'————*Ké)

e-symmetric
for some S-isomorphisms of S-non-singular

even e-symmetric
forms over A

£ 5 (Ka)——>(Kg,0p) , E' 2 (K',a0) ——> (Kf,a0)
g 1 (K,o) —(Kg,ag) , g’ ¢ (K',a') —> (KL, ag)

with (KF’aF)’(K§'a§) non-singular. We have to show that the

\\-ﬂ/ /‘“\
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e-symmetric
associated S-forms over A
even e-symmetric

o (s} e f
(KFOKG, (0 €Q (KFSKG);lm( :K———~*KF®KG))
-ag g
o O c _[E
(KFQKG, (0 , €Q (KFOKG);lm( , :K -———*KFQKG))
-ag g

are stably isomorphic. The S-acyclic connected 2-dimensional
(-€)-symmetric
complexes over A in normal form obtained
even {-€)-symmetric
from the S-forms (as in i)) are homotopy equivalent, since they
correspond to the same linking formation, and are therefore

stably 1somorphic (by Proposition 3.5.1). It follows that the

S-forms are stably isomorphic.

iii) A connected S-acyclic 2-dimensional (-t£)-quadratic
complex over A (C,WE?QZ(C,—S)) is homotopy equivalent to one
in normal form (by Proposition 3.5.1). Given such a complex
in normal form we shall construct a split €-quadratic linking
formation over (A,S)

(F.G) = (F,((]),0)6) ,

as follows. Choose a cycle representative V€ (WR HomA(C*,C))2

Z[ZZz]
in normal form, i.e. such that woe HomA(CO,CZ) is an isomorphism
(which we shall use as an identification), 60 =0 € HomA(Cz,Co),

wl = 0 € HomA(Cl,CO). It is thus possible to write the diagram

of f.g. projective A-modules and A-module morphisms



d i

- s Sy
¢, < o

as

j * (B+eB*)*

T ——— % Kk —————————— [,*

>

—> K* ] —> L* '

with j€ HomA(L,K), Be HomA(K,K*), X € HomA(L,L*) such that
j*Bj = x - ex* € HomA(L,L*)
Let (F,G) be the split e~guadratic linking formation over (A,S)
associated by i) to the eg-quadratic S-form over A
(K,BGQC(K);im(j:L———»K))

Replacing ¥ by a different cycle representative

V'€ (WA, Hom, (C*,C)), replaces B,X by B',x' such that
2
B' - B =w - ew* € HomA(K,Kt)
x' - x = i*wj + n + en* € Hom, (L,L*)

for some w€ HomA(K,K*), ne HomA(L,L*). Neither the e-quadratic
S-form (K,B;L} nor the split e-quadratic linking formation (F,G)

are affected by such a change.



In particular, if P is a f.g. projective A-module the
e-quadratic S-form over A (K,B;L) associated to the contractib

S-acyclic 2-dimensional (-€)-quadratic complex over A C_E(P)

0 1
(P@&P*, iP) '
o o

corresponding by i} to a split e-quadratic linking formation

(F,G) stably equivalent to O (take k = (é): L=P—>K = P&P*) .

is given by

(K,B; L)

Thus the stable equivalence class of the linking formatic
(F,G) associated to (C,V¥) depends only on the stable isomorphi:
class of (C,V¥), which by Proposition 3.5.1 is the same as the
homotopy equivalence class of (C, ).

Conversely, given a split e-quadratic linking formation
over (A,S) (F,G) we shall construct a connected S-acyclic
2-dimensional (-e)-guadratic complex over A (C,¥) in normal
form, such that (F,G) is in the stable equivalence class
determined by (C,¥), as follows.

Let (K,B;L) be an e-quadratic S-form over A associated
by i) to (F,G), and let j€ HomA(L,K) be the inclusion. For any
Lift B € Hom, (K,K*) of BEQ_(K) there exists X € Hom, (L,L*)
such that

j*Bj = x - €X* € HomA(L,L*) .

Given such a choice (§,x)e HomA(K,K*)QHomA(L,L*) define
(C,yp€ Oz(C,-E)) by
(B+ef*)j : C, = L——>C, = K*

J* 0 = KOy = LY



AL

= . = L* = L* = *x5 . = =

bp=0:¢C L¥ —Cy = L* , § = €B*j : C L ——cC,

Vo=0:ct sk —sc_ =r1x, y o=y :C = p—>c =1t
1 o ¥ T X o

The method of proof of i) shows that the homotopy equivalence
class of (C,¥) depends only on the stable equivalence class ¢
(F,G) together with a choice of hessian (E,x)e QE(K,L) for tt
S-lagrangian L of (K,B€ QE(K)), where

(B, x) € Hom, (K, K*) @Hom, (L,L*) | §*B3 = x - ex*}

0 _(K,L) =
€ {(m-ew*,j*mj+n+en*)|(m,n)GHomA(K,K')OHomA(L,L*)}

(Define a split e-quadratic S-form over A (K,E;L,x) to be an

S-non-singular split e-quadratic form over A (K,Eeae(!())
together with an S~lagrangian L and a choice of hessian x €0
The homotopy equivalence classes of connected S-acyclic
2-dimensional (-¢)~-quadratic complexes over A are in a natur:
one-one correspondence with the stable isomorphism classes
of split e-quadratic S-forms over A).

It remains to show that if (C,w),(C,E) are the complext

associated to two different choices x,; € HomA(L,L*) such th

J*Bj = x - ex* = X - ex* € Hom, (L,L*)
then (C,V¥) is homotopy equivalent to a complex obtained from
(C,¥) by an S-acyclic (-e)-quadratic surgery. As before, let
k € HomA(L*,K) be such that
i) u = j*(B+eB*)k € HomA(L',L*) is an S-isomorphism
ii) k*Bk = 0 € QE(L*)
Also, let x'€ HomA(L',L) be such that

k*Bk = x' - ex'* € Hom, (L*,L) ,

and let (C',¥'€ QZ(C',-E)) be the connected S-acyclic

2-dimensional (-e¢)-quadratic complex over A in normal form
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associated to the e-quadratic S-form over A

(K,B € Qe(K);im(k:L*———»K))

with choice of hessian (B,x') € QE(K,L*), corresponding by i)

to the split e-quadratic linking formation over (A,S)

(F",(< _EY>.6)G)

Let (C",y" € Qz(C".*e)) be the connected S-acyclic 2-dimensional
{~¢)-quadratic complex over A obtained from (C,¥) by surgery
on the connected S-acyclic 3-dimensional (-e)-quadratic pair

over A (f:C—D, (8y,¢) € 03(f,—€)) defined by

= * = = =
dD cu* D2 L——-——-—~>Dl L , Dr o (r #1,2) ,
‘- {l C2 = L-—————*D2 =L
* = * =
k C1 K* ———> Dl L
sy, = -x' : DY = L*—»D, =1L ,
1 1
= £ =
84y = 0 : D'—>D,  (r =1.2)

The A-module chain equivalence

h:c——C'

given by
[ (B+eB*)§ - (B+eB*)k
j* o] €
1 o
_ ~k* eu* O
¢} €u
C":vv.—>0 LOL* — —— S K*BLBL* — > L*@L—30->...
(0 1) (-1 (B+eB*)j 0O) (0 1)
+eB*)k k*
C'iviim=s 0 —L* (B+eBr) > K* > L — > 0-—>...

defines a homotopy equivalence
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h @ (C" ") —(C' ") .

Now (C,y) is homotopy equivalent to a complex obtained from
(C",y") by S-acyclic surgery (since (C",¥") is obtained from
(C,¥) by S-acyclic surgery), so that (C,¥) is also homotopy
equivalent to a complex obtained from (C',¢') by S-acyclic
surgery. The complex (C',y') is independent of the choices
x,Y(EHomA(L,L*), and the effect of successive S-acyclic
surgeries may be composed (cf. Proposition I.4.7}, so that
(C,¥) is homotopy equivalent to a complex obtained from (C,y)
by S-acyclic surgery.

1

(even) e-symmetric

An S-non-singular formation over A
e-quadratic

(even) c-symmetric
ia non-singular form over A
€-quadratic

(K,a;1,J)
(K,B;1,J)
(K,a)
together with a lagrangian I and an S-lagrangian J.
(K,B)
(An S-non-singular formation over A is an S-lA-non—singular
formation over A in the sense of §2.4). The induced
s k,a:1,0)

formation over S ‘A { is

§(even) e-symmetric
sV, 8;1,0)

e~guadratic

non-singular, and it is stably isomorphic to O precisely

(K,a;1,J) -1 1 -1
when is an S-formation (i.e. S "K = S "1®&S "J}.
(K,B;1,J)
i (K,a;1,J)
The S-non-singular formation is non-singular if
(K,B;1,J)
(K,a)

J is a lagrangian of .
(K, 8)
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€-symmetric
The boundary of an S-non-singular even c-symmetric
e-quadratic
(K.a € Q%(K);1,J)
formation over A (K,a€ Q<v0>€(K);I,J) is the non-singular
(K,8€QE(K) ;1,3)
even €-symmetric
e-quadratic linking formation over A
split e-quadratic

MK, 0;1,T) (M, A;F,G)

1]

3(K,a;1,3) = (M, x,u;F,G)
3(K,B;1,J) = (F,G)

associated (uniquely up to stable egquivalence) to the

€e~symmetric (K,a;J}
non-singular even €-symmetric S-form over A (K,a;3).
e-quadratic (K,B;J)

An S-non-singular formation is non-singular if and only if
its boundary is stably equivalent to O.
(The boundary operations

Jd : (S-non-singular formations over A)

———— (non-singular linking formations over (A,S))
can also be expressed in terms of the "dual lattice"
construction, by analogy with the corresponding expression
in §3.4 for the boundary operations

9 : {S5-non-singular forms over A)
——— (non-singular linking forms over (A,S)),
(K, o) (even) e-symmetric

A lattice in a non-singular form
(K,B) v~quadratic



-1 (Q,9) (even) e-symmetric
over § "A {(which is an form over A
(Q,¥) ge—quadratic
s"hk, 0 = (0,8)
such that 1 } is non-singular if it is a
S T(K,B) = (Q.¥)

non-singular form over A, or equivalently if the lattice KCQ

is self-dual

¥

K (x€0le(x) (K)C ASS A} = K

k¥

"

{x€ 0] (p+ev*) (x) (KIS ACSs™iA) = k .

m

(even) e~-symmetric
Given an S-non-singular formation over A
e-quadratic

(K,a;1,J)
there exist
(K,8;1,J)

- -1
(K;,0;) S “{K,a)
1 in {

i) a non-singular lattice { -1 such the
(KI.GI) S T (K,B)
L s7h o= 1osTkk
(Ky,ap)
is a lagrangian of ,
(KI,BI)
kpa)  (sTHK@)
ii) a lattice in 1 such that
(KJIBJ) 5 T(K,8)
k;ns Tl = gcsT
(K;,0.)
is an S~lagrangian of Jra ,
(KJ,BJ)
ke [s7hkw
iii) a lattice in 1 such that
(K',B%) S T(K,B)
-1
<
K'CR Ak §STK
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The boundary
split e-guadratic

over (A,S) is given by

H

I(K,0;1,J)

(K, B31,0) = (K /K',K /K'Y

‘even g-symmetric¢ (-¢)-quadratic

linking formation

(K", a’) ;K /K' K /R")

using Proposition 3.4.6 i) to translate the S~isomotrphisms

(even) e-symmetric
S-non-singular forms over A
e~quadratic
(K'IG')—““*“*(KIIGI) (K',Q')‘“'—“—*(KJ,“J)
L
(K'IB')———)(KIIBI) (Klrel)—’(KJlBJ)

defined by the inclusions into the lagrangian KI/K' of the

even €-symmetric (e-quadratic)

boundary % linking form over A(A,S)

split e-quadratic

3k',a) = k' rk et

atk,8Y) = (kP et/ey = H (ko /)
and the sublagrangian KJ/K).
A(M, ) €-symmetric

The boundary 4 3 (M, }) of an even e-symmetric linking

I(M, A, u) e-quadratic
(M, ) even (-¢)-symmetric
form over (A,S) (M, 2) is the non-singular § (-¢)-quadratic
(M, X, p) split (-¢)-quadratic

linking formation over (A,S)

AM,A) = (H S(My;M,T )

(M, X}

BMN) = (H_ (M) MLT )
1

SM AL ) = (M, su)M)
by



where
F(M’” = {(x,)(x)) € MBM" | x € M} € MOM"

is the graph lagrangian of (M,A) in H (M) (in H__(M) if (M,})
is even).

The boundary operations on S-non-singular formations and
linking forms are related by the factorization

3 : {linking forms over (A,S)} = {S-formations over A}
— {S-non-singular formations over A}
———E——>{linking formations over (A,S)} .
(even) (-g)-symmetric

Thus if the S-formation over A

(-€)-quadratic

(K,a;1,J)
associated by Proposition 3.4.3 to an

(K,B;1,J)

(even) e-symmetric (M, 1))
linking form over (A,S) is

e-quadratic (M, A, u)

(even) (-€)-symmetric
regarded as an S-non-singular

(-€e)~-quadratic
formation over A there is a natural identification
(up to stable eguivalence) of the boundary

linking formations

even (-€)-symmetric ((-€)-quadratic)
split (-e)-quadratic

over (A,S)

3(K,a;1,J)

I (M, A)

I(K,B;1,J) AM A ) .

(There is an evident analogy between the boundary operations
) : {}inking forms}-——{linking formations}
and the boundary operations of §1.6

3 : {formg}————>{formations} .



To complete the analogy we can also define boundary operations
3 : {linking formations} —————{linking forms}
corresponding to the boundary operations of §1.6
3 : {formations} ———— {forms} .
(even) e-symmetric
The boundary of an Ye-quadratic linking formation over (A

split e-quadratic

(M,X;F,G) (even) e-symmetric
(M,A,u;F,G) is the non-singular e-quadratic linking
(F,G) split €-quadratic

form over (A,S)
i(M,A;F,G) = (G1/G,A1/})
TAMA Ui F,G) = (GL/G,A4/h,ut/p)
T(F,G) = (G4/G,A4/A,vi/v) (H_(F) = (FF",A,v)) .
e-symmetric
even €-symmetric
An linking form over (A,S) is non-singular

e-quadratic

split e-quadratic

L (a,s)
€
L(v0> (A, S)
(resp. represents O in the Witt group } if and only
L_(A,S)
€
LE(A,S)
even (-c)-symmetric

(-£)-quadratic

if its boundary linking formation
split (-€)-quadratic
split (-e)-quadratic

over (A,S) is stably equivalent to O (resp. if it is isomorphic
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e-symmetric
even g-symmetric
to the boundary of an linking formation
€-quadratic
split e-quadratic
over (A,S))).
(€0 € 0w P (C,me))

Proposition 3.5.3 Let be an S-acyclic
(C;WGOZ(C.—E))

even (-g)-symmetric
2-dimensional Poincare complex over A,
(-¢)-quadratic

(M,X;F,G)
and let be an associated non-sinqular
(F,G)

even ¢-symmetric
linking formation over (A,S).

split e~quadratic
(C,¢9) € Ll(A,S,C)
i) the S-acyclic cobordism class
(C,y) € Ll(A.S,C)

(M,X;F,G)
depends only on the stable equivalence class of .

(F,G)
c,4) =0 e tlas,e (M,};F,G)
ii) if and only if is
(C,b) = 0 € L;(nS,¢) (F,G)
3(K,a;I,J)
stably eguivalent to the boundary of an
3(K,B;1,J)
e-symmetric (K,0;1,3)
S-non-singular formation over A
e-quadratic (K,B;1,J)
such that
sThk,ai1,9) = 0 e ME(sTla) = LisTIALe)
sTHK,B;1,9) = 0 e mi(sIa) = 1557 AL 0)
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If ker(S:GO(zz;s"lA/A,e)———431(zz;A.e))= 0
it is possible

For all A,S,¢

(K,a;I,J) e~symmetric
to choose to be an S-formation over A

(K,B;1,J) e-quadratic

{i.e. such that s 'k = s™lies™1y), so that

(M,2;F,G)
if and only if is stably
(F,G)

[}

(C,6) = 0 € Lr(a,s,¢6)
(C. )

g € LI(A,S,E)

(N, E) (-€)-symmetric
equivalent to the boundary of a

3{N,g,p) (-¢) -quadratic
(N, &)
linking form over {A,S) .
(N, E,p)
ii)
Proof: i) Immediate from Proposition 3.5.2 .
iii)

ii) By the S~acyclic counterpart of Proposition 1.2.,2 iii) an

even (-¢)-symmetric .
S-~acyclic 2-dimensional Poincare complex
(~e)-quadratic

(o€ 0tvp?(Cime) ta,s, o)
over A represents O in if and
(Crb e Q,(C,-e)) Ll(A,S,e)
3(D,n)
only if it is homotopy equivalent to the boundary of
3(D,z)

even (-¢g)-symmetric
a connected S-acyclic 3-dimensional
(-e)-quadratic

(D,n€ vy’ (D,-€))
complex over A with D a f.g. projective

(D,z € 03(0,—5))
A-module chain complex of the type

d d d

D ...~—*>O-—>D3~——-—)D2—~"D1—-——>DO-—>O — .. .



(C.9) 3(D,n)
Let then be the boundary of such a
(C,b} = 3(D,t)

(0, (D',n' € Qevy>> (D', =€)
complex , and let } be the
(D,Z) (D',L'€ 03(D'.—E))

even (-€)-symmetric
connected 3-dimensional complex
(-€)-quadratic
(b,n)
obtained from y surgery on the connected 4-dimensional
(D,Z)
even (-e)-symmetric (£:D —38D, (O,n) € O(VO>4(f,-€))
pair over A
(-e)-quadratic (f:0— 8D, (0,) € 04(f'—€))
defined by
f =1 : D3—*-# GD3 = D3 , 6Dr =0 (r # 3) .
(D',n') = S(D",n")
Then _ is the skew-suspension of a l-dimensional
(D*',¢') = S(b",¢")
c-symmetr ic (o*,n" e o' (p",€))
complex over A such that
e-quadratic (D",z" € Ol(D",E))

s, e

-1 e .
s 7 (p",n") . -1
is Poincare and null-cobordant over § "A.
e-symmetric
The homotopy equivalence classes of l-dimensional
e-quadratic

-1 ; . X
S "A-Poincaré complexes over A are in a natural one-one
correspondence with the stable isomorphism classes of

e-symmetric
S-non-singular formations over A (by a
split e-quadratic

straightforward generalization of Proposition 1.6.4).
|
e-symmetric
In particular, the S-non-sinqular formation
e-quadratic



(D" ,n")

over A associated to { is given up to stable isomorphism
(D",

by
o] 1 d n

(Koai1,J) = (D,8D%, D, im( ©) .p.ep'— 0 e0%))
2 2 . 3 2

€ ny 6] a

1

0 1 d  (1+T__)¢
(K,B:1,9) = (Dzmoz,( );Dz,m(( €79 :p 0! —p,e0%)
0 ¢] (] d*

and is such that

s lik,a31,3) = s ") =o€ M;(s'lA) = Lé(s“lA,z)
s k,8:1.0) = sTE ey =o€ Mf(s’lA) - Lf(s‘lA,e) }

even e-~symmetric
The non-singular linking formation over (A,S)
split £-qguadratic
(C,¢)
associated to is the boundary
(C,¥)
(M,A;F,G) = 3{K,a;I,J)
(F,G) = a(X,B;I,J) .

Since D is S-acyclic there exists an A-module morphism

g€ HomA(D2,D3) such that the composite

d
= B - —
s gd .D3 f-~*D2 D3
is an S-isomorphism. Let
f: D———gD

be the A-module chain map defined by

qJ d d

3——702 —————?Dl———‘—* DO—‘—**O —>. ..

« .0 —>D

S

...——)O———~>Dl—~~~~—>D3——‘+O——-————70 —30 —> ...

Ll

o e————— U
e
q

LU !



if vg(n) =0 : H3(D)———>ﬁ°(zz;s“lA/A,£)
so that then

) =0 e 0wy eB,-e)

f (c) = 0 € 0;(8D,-¢)

even {(-¢)-~symmetric
The connected S-acyclic 3-dimensional
(-e)~quadratic
(B 0" €0y (B, -e)) (D, )
complex over A - = obtained from
(D'.C'eoa(o':'ﬂ)) (th)
(£:D——— 8D, (O,n) eo<vo>‘(?,—e))
by surgery on the pair - ~ - is
(f:0— 68D, (0,C) € 04(f,-£))
(d'/n*) = §(@",n"
the skew-suspension - _ .. . of an S-acyclic
(D',t*') = S(D",")
e~symmetric (8" " e QL(B".E))
l-dimensional complex over A R - .
e-gquadratic (b", " € Ql(D“IE))
(D",

(- )~symmetric
The linking form over (A,S) associated to
(-£)~quadratic

{o",z
m,0) = B g
im.s,p) = @@y, gyt eeg )

is such that up to stable equivalence
B(M,A;F,G) = 3(N,E)

(F,G) =3 ‘NIC JO)

2.0 - ~
If ker(§:R"(z,:s 1A/A,£)——~—>H1(ZZ;A,€)) = 0 then for any
S-acyclic 3-dimensional even (-¢)-symmetric complex over A
(D,n € Qv *(D,-€)) we have
v (m 3
3 ° ~0 -1 ~1
vo(ﬂ) =0 : H (D) —————> H (EZ:S A/A,€) ———>H (ZZ;A,E)

(by Proposition 3.3.1 ii)}), and so v3{n) = O.
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c-symmetric
Conversely, given an S-non-sinqular formation
e-quadratic

(Kyo;1,J)
over A such that
(K,B;1,J)

s k,a;1,9) =0 € Mg(s'lA;

s L(k,8:1,0)

o€ M(sa)
we have to show that the S-acyclic 2-dimensional
even (-¢)-symmetric (C,¢ € Q<V0>2(C'-€))

Poincaré complex over A
(-e)-quadratic (C,v € QZ(C,-E))

even e-symmetric
associated to the boundary linking
split e-quadratic

3(K,a;1,J) = (M,A;F,G)
formation over (A,S) is an S-acyclic

2(K,B;I,J) = (F,G)
(K,a)

boundary. As I is a lagrangian of we can identify
(K, B)

0 1
(K,a) = (IeI*, ( ))
]

€

o 1
(191*,< )
0o o0

for some e-symmetric form (I*,06€ QE(I*)) (by Proposition 1.6.2).

(K,B)

®

Write the inclusion of J in K = I®I* as

3
( ): J ——— 101*
k r

such that in the e-quadratic case

j*k = x - ex* ¢ J——>J*
for some (-€)-quadratic form (I, x€0_.{J)}. Define a l-dimensional
gz-symmetric 1 (D.HGQl(D,C))

S "A-Poincaré complex over A by
1e—quadratic (D, €Q,(D,e))
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a = k* : D1 = I————»DO = J* Dr =0 (r # 0,1)
€5 D0=J—»Dl=1
no = 1 '
j*4+Kk*0 : D' = I*—— D = J*
(e}
n, = 06 Dl = J* — D, = I
1 1
€3 DO = J————-)D1 =1 o
¢ = L , ¢y =-x: D’ =J—>p, = Ik
0: D = I+—>D, = J*
Now
( s7Lo,m = sThk,ai1, 3 = 0 € LlisTla e = MS(sT A
z st = sThk,8:1,0) =0 e tsThA ) = MisTIn)

e-symmetric -1
so that there exists a 2-dimensional S
e-quadratic

A-Poincaré

(£:D ——>8D, (6n,n) € Q2 (£,€))

pair ovet A Let

(£:D——» 6D, (62,1) € Q, (f,e))
g(o',n'e 0> (D" =€)
(D', €0,(D",-¢))

be the connected S-acyclic 3-dimensional

even (-g)-symmetric
complex over A obtained from the
(~€)~quadratic

S(p,n)
skew-suspension }) _ by surgery on the skew-suspension
S(D.,z)
S5(£:D——68D, (§n,n)) even e-symmetric
_ . The boundary
S{(f:D—>38D, (87,1)) split e-quadratic

3(K,a;1,J)
linrking formation over (A,S) is the linking
a(K,B;1,3)

formation assoqiated to the S-acyclic boundary

(C.0 € Qg% (C,=€)) = 3 (D' ") 5(0,n)
, up to homotopy

(Chen,(C-e)) = 5 (D',0") I5(D,T)

equivalence) .
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e-symmetric

even g-symmetric

Define the Witt group of linking
e-quadratic

split e-quadratic

ME(a,s)

M<VO>C(A,S)
formations over (A,S) to be the abelian group
ME(A.S)

M (A.S)
€

with one generator for each isomorphism class of non-singular

e~symmetric (M,};F,G)

even e-symmetric (M, A;F,G)
linking formations over (A,S)

e~quadratic (M, X, 1;F,G

split e-quadratic (F,G)

subject to the relations:
in the (even) e-symmeotric case
(M, A\;F,G) + (M',X';F',G') = (M@®M',) ®)\';F®F',G8G")
(M, X;F,G) + (M, x;G,H) = (M,};F, H)
(M, 2;F,G) = (LY/L,2Y/2;FNLY,G/L)
if L. is a sublagrangian of (M,);F,G)
(M, x;F,G) = (LL/L,X+/X;F/L,G/L)
if L is a sublagrangian of (M,A;F,G)
such that LCFNG,
similarly in the e-quadratic case,
in the split e-quadratic case,
(F,G) + (F',G') = (F®&F',G8G")
(F,G) = (FNLt,G/L) if L. is a sublagrangian of (F,G)
Y(M,A,u) = 0 if (M,r,p) is a (-e)-quadratic linking

form over (A,S).

L »
T



In particular, stably equivalent linking formations represent

the same element in the Witt group. There are defined forgetfu

maps

M(vO)E(A,S)——#ME(A,S) i (M,A;F,G) —— (M,\;F,G)

M (B,5) ——M D (A,8) ; (M}, u3F,G)——>(M,\;F,G)

M (A,S) ———>M_(A,S) i (F,G)+——>(M,A,i;F,G)

In order to verify that ﬁC(A,S)———~*ME(A,S) is well-defined

we have to show that
3(M,A\}) = 0¢€ ME(A,S)

for any {(-e)~quadratic linking form over (A,S) (M,\,u);

for any non-sinqular e€~-quadratic linking formation (HE(F);F,G

we have
(HC(F);F.G) = (HE(F);F,FA)O(HE(F);FA.G)
(HE(F);F“,G) € M_(A,S5)
so that for any even (-g)-symmetric linking form (M,})

M) = (H (M) M, T (H (M) M7, T

0!
=0 € MC(A'S)'

M, 0!

The following result is the analogue for linking

of Propositicn 1.6.5 iii) (a formation represents O in

format

the Wi

group if and and only if it is stably isomorphic to the bound

of a form).

even £-symmetric

Proposition 3.5.4 A non-singular { e-quadratic linking

split €-quadratic

(M,x;F,G)

formation over (A,S) (M,x ,u;F,G) represents O in the Witt ¢

(F,G)



E
M<v0> (A,S)

MS(A,S) if and only if it is stably equivalent to the
ME(A,S)
Y (K,0;1,J) e-symmetric
boundary J(K,a;I,J) of an S-non-singular even c-symmetric
S(K,B;1,J) e-quadratic
(K,a;1,3)
formation over A (K,a;1,J) such that

(K,B;1,J)

s"l(K,u;I,J)

€,.-1
O € MS(S A)

s k,a;1,9)

€, -1
o€ M<v0>S(S A)

s7hk,8:1,9) = 0 € M (s7a) )

1£ ker (3:8%(z,:57 /A, e) —iil(z,:8,60) = 0
For all A,S,¢ it is possible
For all A,S,e
K,0:1,J)
to choose (K,0;1I,J) to be an S-formation (i.e. such that
(K,8;1,3)
(M,};F,G) = 0 € My >"(A,S)
57k = s7'1es713), so that 4 (M,A,uiF,G) = 0 € M_(A,S)
(F,G} = 0 € M_(A,S)

(M,X;F,G)

if and only if (M,2,u;F,G) is stably equivalent to the
(F,G)
J(N,E) (-e)-symmetric
boundary I(N,E) of an even (~f£)-symmetric linking

5 (N, E,0) (~¢)-quadratic
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(N,E)
form over (A,S) (N, E) .

(N, ,p)
Proof: It is convenient to introduce the following construction,
which associates an element

((Q/8),£,(Q",¢')] € Mlv 2" (A,S)

to an isomorphism of the non-singular e-symmetric forms over S_lA

£ 185 10,6) ——— s r,00)
induced from non-singular e-symmetric forms over A (Q,¢),(Q',¢').
Let u€ HomA(P,Q) be an S-isomorphism of f.g. projective
A-modules such that
quHomA(P,Q')gﬂoms_lA(s_lp,s'IQ') .
(Such u exist for P = Q). Let (P,0) be the e~symmetric form
over A defined by
& = u*u : P ——>p* |
The S-isomorphisms of S-non-singular e-symmetric forms over A
u: (P,6) —>(0,9) , fu : (P,0) ———> (Q',0")
correspond by Proposition 3.4.6 i) to lagrangians
F = coker{u:P———>Q) , G = coker (fu:p ——Q"')
of the boundary even e-symmetric linking form over (A,S)
(M,A) = J(P,8) .

Set

"

[(0/0),£,(Q",8")] = (M,A;F,G) € M{v>“(A,S) .

Lemma 1 The Witt class [(Q,4),f,(0',6')] €My ) (A,S) is
independent of the choice of S-isomorphism u€ HomA(P,Q).
Proof: If LE HomA(ﬁ,Q) is another choice of S-isomorphism
there exist a f.g., projective A-module 5 and S-isomorphisms

v € HomA(ﬁ,P), G(ZHomA(S,ﬁ) such that



uv = uv € HomA(g,Q) .

Therefore it is sufficient to consider the effect of replacing
u € Hom, (P,Q} by U=uve HomA(E,Q) for some S~isomorphism
ve HomA(ﬁ,P). The non-singular even e-symmetric linking
formation over (A,Sj

(M, );F,G}) = (5(P,8);:;coker(u:P—>Q),coker (fu:Pp ——Q))

is replaced by

So)

(1,%;F,6) = {1(P,8);coker (u:P——>0Q),coker (Fu:P —Q))
with
6 = u*¢d = y*gv € HomA(ﬁ,ﬁ*)
By Proposition 3.4.6 i) the S-isomorphism of S-non-singular
e-symmetric forms over A
v : (P,8)——>(P,8)
determines the sublagrangian
H = coker(v:?—a——» pP)
of (ﬂ,i) = 3(5,5). Now HC Er\E, and there is defined an
isomorphism of non-singular even c¢-symmetric linking formations
over (A,S)
(M, 3; F,G) = (HL/H,X3/X; F/H,G/H)
so that

(Hi/H,X2/%;F/H,G/H)

(M:2;F,G)

(M,X:F,6) e Mmwp(a,s) .
[
Lemma 2 Given non-singular e-~symmetric forms over A (Q,¢),(Q',¢'}),
(Q",¢") and isomorphisms of the induced forms over S-IA
£: 50,0 s oo L e s 5T e s, 0m)

the composite isomorphism



£f : sTH(0,0) ——— s7HQ", 4™
is such that
[(Q,9), £ F, (0", ") ] = ((Q,¢),F,(Q",¢'}]1@®[(Q', 0"}, £',(0",9"))

€ M<v0>€(A,S)

Proof: Let u€ Hom, (P,Q) be an S-isomorphism such that

[ - -1 -1 [
fu € HomA(P,Q )y C HomS 1A(S P,S Q")

1

£'fu € Hom, (P,Q") CHomg-1, (S~ p,s o) ,

and let 8 = u*$u € o (my (as before). Let F,G,H be the lagrangii.
of J2(P,08) = (M,)) associated by Proposition 3.4.6 i) to the
S-isomorphisms of S-non-singular ec-symmetric forms over A
u : (P,8) ——>(Q,9)
fu : (P,0) ————>(Q', ")
f'fu : (P,8) —(Q",%") .
Then
[(Q. ¢),£,(Q", ") IBI(Q",¢"),£',(Q",6")]
= (M, A;F,G)®(M, A;G,H)

= (M LGEH) = (00, £16, (07, 0")] € Mwp> (A,

1
Lemma 3 Let {Q,¢),(0',9') be hyperbolic e-symmetric forms over
with lagrangians L,L'., If an isomorphism of the induced hyperb
¢-symmetric forms over s71a

1

£: 57 Q.00 —s"tar, 00

is such that
es ) = s7hire s7 o
then

[(Q, 01,6, (0" ,6")] = O€ M(vO}C(A,S)



Proof: Choose direct complements to L in Q and to L' in Q',

so that
o 1 e
(Q,¢) = (LOL*, € Q (LBL*))
€ 2]
o 1 c
(Q',¢') = (L'BL'*, < € QT (L'®L'*))
€ a'

for some e-symmetric forms over A (L*,a € QE(L*)),
(L'*,a'€ 0 (L'*)). There exist S-isomorphisms s € HomA(L,L),

t € HomA(L*,L) such that

s o] g k
I3 =
(o] t (o] g'
-1

* ' [ - -
€ HomA(LQL ,L'®L )g HomS lA(S L®S

1 1 1

L*,S L'@S "L'%*)
for some S-isomorphisms g€ HomA(L,L'),g'G HomA(L*,L') and some
k € HomA(L*,L'). The S-isomorphism of S-non-singular €-symmetric

forms over A

s o] 0] s*t
u = : (P,8) = (LOL*, )
[¢] t et*s t*rat

o 1
—>(Q.,¢) = (LOL*,( )
€ a

determines a non-singular even t-symmetric linking formation
over (A,S)

(M, 3}F,G) = (d(P,0);coker (f:P—>Q),coker (fu:P —>0'))
such that

[(Q,¢),£,(Q",¢"')] = (M,X;F,G) € M<VO>E(A,S) .

The S-isomorphisms of S-non-singular e-symmetric forms over A
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t*s O o) s*t
h = : (P,8) = (LeL*, )
(o} 1 €t*s t*at

(o] 1
—-> (L®L*, )

€ t*at
s [¢] (o} s*t
i= ( : (P,8) (LeL*, )

o] 1 et*s t*at

[

o} t
———> (L®L*, )

€t*  t*at
g 0\ o] s*t
j= : (P,8) = (LOL*,

€t*s t*at
o] g’
——> (1. ®L*, )
€eg'* t*at
correspond by Proposition 3.4.6 i) to a lagrangian

H = coker (h:LOL*—> [BL*) C M coker (§:P ———> P¥)

and the sublagrangians

I = coker(i:L8L*——>LOL*) T M

coker (§:P ——>» P¥*)

J

coker (§:LOL* —> L'®L*) € M = coker (6:P ———» P*)
of the boundary even e-symmetric linking form over (A,S)
(M,A\}) = 3(P,8). Now ICFNH, JCGNH and the even e¢-symmetric
linking formations over (A,S) (IY/I,A1/X;F/I,H/1),(JY/J,x1/X;H/3,G/J)
are stably equivalent to O, so that
[(Q.¢),£,(Q',¢')] = (M, X;F,G)
(M, x;F,H)®(M,X;H,G)

(I4/1,X2/3;F/1,H/1)8(J2/J, AL /X;H/T,G/3)

oe M<v0>€(A,S)
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The Witt class 3(K,a;I,J) € M<V0>€(A,S) of the boundary
even e-symmetric linking formation over (A,S) of an S-non-singul
e-symmetric formation over A (K,a;I,J) may be described as follo
Choose a direct complement to the lagrangian I in K, so that

o 1
(K,a) = (I@I*,< € Q% (181%))
€ [+]

for some 8€QF(I*). The inclusion of the S-lagrangian

j o} 1
): (J,0) ——>> (I8I*, )
k € 0

extends to an S-isomorphism of S-non-singular e-symmetric forms

over A

i 3 0 s* o 1
) (Jear, ( ) — (I81*, )
k k €s ¢ € 8

for some S-isomorphism s € HomA(J,J). Define an isomorphism of

hyperbolic ¢-symmetric forms over st

js™t 3 - o 1
f={ 1. : 5”1 ear, >)
\ks k € [+
- -1 o 1
———3 (IQI“,( ) .
€ 3]
Then
o 1 o 1 .
(K,a;1,J) = {(J®J*, ),f,(IGI*.< Y1 € M{v > (A,S]
€ [ € ]

(To verify that this is the linking formation associated to the
non-singular e-symmetric S-form over A (K,a;J) used to define

3(K,a;1,J) use the S-isomorphism

s 0
u = ¢ P o= JBJ* e JBT*
o] 1

o] 1 o] 1
in the construction of [(J®J*, ), £, (IBI*, Y1) .
€ ¢ € 0

T

—

e



Lemma 4 If (K,2;I,J),(K',a';I',J') are S-non-sinqular e-symmetr
formations over A such that the induced non-singular e-symmetri
formations over s YA s”l(k,a;1,3),8" (k' ,at;1°,3%) are
isomorphic then
(K, 051,3) = D(K',a'i1',3%) € M{vy> (A,S)

Proof: As above, let
1) -1 (0 1> 1

) ————> S T (IeI*, ) =8 "{K,a

€ ¢ € <]

. o 1
f' : 8 (J'eJ'*, ( )
e ¢

-1 0 1 -
——sT (181, ( > )y =5

-1 Y
f : sTT(JeJ*,

€ 2
be isomorphisms of the induced hyperbolic e-symmetrjc forms
over S-lA. Let
g : s'l(K,u;I,J)———————»s“l(K',u';I'.J')
be an isomorphism of the induced non~singular e-symmetric
formations over S—lA. The isomorphisms of hyperbolic e-symmetr i

forms over S”1a

g : s’l(K,u)——~—»s'l(K',u')
-1 -1 0 1 o] 1
h = f' “gf : §8 ~(J&J*, )_ﬂ__>s-l(J.QJ..' )
€ ) € '

are such that
1 -1

g(s"'1) = s 1'Cs K’
nistoy = sTlarc s lgrear

Applying Lemma 3, we have

[(K,a),g,(K'a’)] = 0 € My > (A,S)

(o] 1 o] 1 c
[ (J®J*, ),h,(J'GJ'*:( )1 = 0 € M(vy>" (A,S)
¢ ¢

€ €
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Applying Lemma 2, we have

[¢] 1 (o) 1
3 (K,a:1,J) = [(JBJ*, ( ), £, (181%, )]

€ € 4]

o 1 o 1
= [(J8J*, < ), h, (J'®J'*, ( )]
€ [ € [
o 1 o 1
S{(J'eIT'*, JE L (I'BIE, 3
€ [ € 6’

®[(K',a'),9 %, (K,a) ]

[¢] 1 o 1
= [(J'&J'*, < ) YoE' L (T'BI*, )]
€ [N € 9

= J(K',a';10,0") € MY (A,8) .

©

1

Lemma 5 If (K,a;I,J) is an S-non-singular e-symmetric formation
over A such that

sTHK,a51,9) = 0 € M (sTTa)
then

I(K,a;I1,J) =0 € M<VO>E(A,S)

Proof: Let (D, n€ Ql(D,E)) be the l-dimensional e-symmetric
1

S 'A-Poincaré complex associated to (K,0;1,J), with
d=k':Dl=I“‘>DO=J* , Dr=0(r;€0,l)
o _
€] D" = J--————»Dl =1
n. =
0 j* o+ k* Dl = ]*~*——¢DO = J*
ny =8 :bl = v yp =1
1 1

for some c-symmetric form over A (I*,0¢ QE(I*)) such tha"

0o 1
(K,a) = (I®I¥*, |
€ (<]
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1
with ( ):J————»I@I* the inclusion. Now
k

s ho,m = shk,a51,0) = 0

1 1

ertisTa, e = mSisTha) = ttaa—sThae
so that there exists a 2-dimensional e-symmetric s a-poincaré
pair over A {f:D——368D, (8n,n) € Qz(f,c)) with 6D a

f.g. projective A-module chain complex such that GDr= 0 (r#0,1,2).

Define an A-module chain complex 8D' and an A-module chain map

g : éD ————68D"
by
&b : ...—>0 —> 8D —i»anl—i»éno—%»o—m..
9 1 1
80" ...—»o———»soz—d—aaol———-«»o ——0—>. .. .

and let (D',n’'é€ Ql(D',c)) be the l1-dimensional e-symmetric
s la-poincaré complex over A obtained from (D,n) by suraery

on the 2-dimensional e-symmetric pair over A

%
(9f:D ——2 8D, (q,1) *(5n,n) € Q2 (gf,€))
{which becomes connected over S_lA). The S-non-singular
e-symmetric formation over A associated to (D',n') is given by
o 1 tnt
(K',a';1',3%) = (Di9°'l, } :Divim(<d O>=D'O‘—’D'1$D'l))
€ ni, ' .
The boundary even e-symmetric linking formation over (A,S)
5(K',a';I',J") is stably equivalent to J(K,a;1,J), by
Propositions ;1.5.1 i}, 3.5.2 ii), since 3{K,a;I,J) corresponds
to the S-acyclic 2-dimensional even (-€)-symmetric Poincaré

complex over A 35(D,n), and 35(D,n) is homotopy equivalent
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to 3S(D',n'). Define an A-module chain complex §D' and an

A-module chain map

g’ D'—————4D"
by
dl
D' i .. >0 ——>D] — —> Dj—>0 —>...
]
g' 1 g
§p' + L..~—>0-—>0 ——> 8D0y—> 0 —> ... ’
with
d [¢] nof*
a =(-f a -8ng
0O 0 -g*
: D! = D #p.@Dl ———»D' = D B6D,BSD
R 1 2 o] 0 °r1 '
[ - . LI 2_ B' =
g' = {(f 4 Gno) : D§ = DOMDIQGD —-——>6Do <SDO .

The 2-dimensional e-symmetric pair over A
= 2
(9':D'—> 68D, (O,n') €0 (g’ ,¢e))

is S-lA—Poincaré, so that there exists an A-module morphism
ie HomA(D',dDo) such that the composite A-module morphism

"% [ 3
e o_ 9 o_"o o, * 0
s=1n0q* : D0 —> D —~——->Dl-—*>6D
is an S-isomorphism. Define a 1-dimensional A-module chain
complex D" and an S-equivalence

h @ D'————>D"

by
4’
D' : Lii—> O —> Di-A~4——s Dé——»—»0-~% ..
h il lq'
o 8]
D" : . .—> O0——4D —*———>6DO—>O->... .
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Let

o= k¥ e otorey
so that (D",n") is a l-dimensional e-symmetric S‘1A~Poincaré
complex over A corresponding to the S-non-singular e-symmetric

formation over A

o 1 eny
(K", a" 1%, 3%) = (dreprl, 2o imd ™0 Ype0, prgpl
1 " 1 wa 1
€ ny d

"

o 1
= (60 @D, ;60°, im(s: 80°— 6p°))
0  \e inrie
11,1
1
with
sl = g7lgeg g7k

Proposition 1.6.4 translates the homotopy equivalence of
1-dimensional e-symmetric Poincaré complexes over s ia

h : s'l(D',n')—-+s'1(D",n")

into an isomorphism of non-singular e-symmetric formations

over S“lA

ho: s HK, a1, aves LS ey a0x, g

— s hk, a1, ames T S ey e, 0
Applying Lemma 4, we have
3(K,x;I,J) = 3(K',a';I',J3")
= 3(K",a"3I",J") = 3(K",a";1I",I") = O € M<vo>€(A,S)

It follows from Proposition 3.5.3 ii) and Lemma 5 that
the correspondence of Proposition 3.5.2 ii)
(S-acyclic 2-dimensional even (-c)-symmetric Poincaré
complexes over A (C,¢))
«——> (non-singular even e-symmetric linking

formations over (A,S) (M,A:;F,G))



can be used to define ah abelian group morphism
1
LT(A,S, &) ——> M > (A,8) 5 (C,8) ——>(M,X;F,G) .

we shall prove that this is in fact an isomorphism, so that
applying Proposition 3.5.3 ii}) again it will follow that a
non-singular even e-symmetric linking formation over (A,S})

(M, X;F,G) representing O in M(v0>E(A,S) is stably equivalent

to the boundary J(K,a;I,J) of an S-non-singular e-symmetric
formation over A (K,a;I,J) such that S—l(K,u;I,J) =0€ M;(S—IA).
In order to verify that the correspondence of Proposition 3.5.2 ii)

also defines an abelian group morphism
mv>(a,5) —— a8, 0 1 (M, MF, G (C, 0)

we have to show that the S-acyclic 2-dimensional even
(-€)-symmetric Poincaré complex over A associated to the
non-singular even e€-symmetric linking formation over (A,S)
(M, X;F,G)® (M, A;G,H)
(M, A;F,G) is S-acyclic cobordant to the complex
(M, A\;F,G)
(M, A;F,H)
associated to (Lt/L, AL /X;FNI1L,G/L), for any non-singular
(LX/L,A/X;F/1L,G/L)
even €-symmetric linking form over (A,S) (M,)) and lagrangians
lagrangian H of (M,X)}
F,G together with a sublagrangian L of (M,A;F,G)
sublagrangian L of (M,)A) such that LS FNG

We shall consider the three cases separately.



Recall from the proof of Proposition 3.5.2 ii) that the
S-acyclic 2-dimensional even (-¢)-symmetric Poincaré complex
over A (C,¢$ € Q(vo>2(C,—e)) associated to the even e-symmetric
linking formation over (A,S) (M,X;F,G} is the union

(C.¢) = (8DULLED' ,-6n Unén'GQ(VO)Z(GDUDSD',‘C))
of the S-acyclic null-cobordisms (f:D——>8D, (§n,n) € Q(V0>2(f.—€)),
(F':D— —38&D", (', n) eo<v0>2(f',—c)) associated to the
lagrangians F,G by Proposition 3.4.5 ii), with (D,n€ Q(vo>1(D,-c))
the S-acyclic complex associated to the linking form (M,}) by
Proposition 3.4.1. Let (f":D-—>§&D",(8n",n) € Q(v0>2(f",-s)) be
the S-acyclic null-cobordism of (D,n) corresponding to the
lagrangian H of (M,A), so that the S-acyclic complexes associated

to the linking formations {(M,X;G,H),(M,X;F,H) are the unions

[

Vo ' " . " v NLrspt "
(C'y9") (6D" U 8D", ~8&n LJn6n € Qvy> (8D' U D", -£) )

(C",4") = (6D URBD",=8n U, 6n" € 0Cv>* (6D U 8D", ~€))

Now (C",¢") is homotopy equivalent to the S-acyclic complex
obtained from (C,$)®(C',9') by surgery on the connected S-acyclic

3-dimensional even (-g)-symmetric pair over A

((g 9'):COC'——5D", (0,480') € Qv > ((g 9'),-€))
where

g=(0 0 1) : C_ = 6Dr$Dr

83D ———>» 4D’
r r r

-1
(r €z)
g'=(1 0 0) : C' = 4ép'eD @8D" ———> 8D
r r r-1l r r

It follows from the S-acyclic counterpart of Proposition 1.4.2 that
|

(€, 0)8(C',0") = (c",") € L (a,s,¢€)



The S-acyclic complexes associated to the stably
equivalent even e-symmetric linking formations (M,);F,G),
(Lt/L,A/X;F0O LY, G/L) are homotopy equivalent (by
Proposition 13.5.2 jii)) and hence represent the same element
of LY (a,s,¢).

Given a non-sinqular even e-symmetric linking formation
over (A,S) (M,};F,G) let (K,a;J) be a non—singula; e-symmetric
S-form over A associated to it by Proposition 3.5;2 i).

Let j€ HomA(J,K) be the inclusion, and let

0 s >

(i k} = (J8J*, ) —> (K, a)

es*  k*ak
be an extension of the inclusion to an S-isomorphism of
S-non-singular e-symmetric forms over A, with

s = j*ak : J* ——— > J*

an S-isomorphism. Given a sublagrangian L of (M,X) such that
LEFNG there exist a f.g. projective A-module J', an A-module
morphism j' € Hom

A
v € Hom, (J',J} such that the inclusions L—>F, L ~—> G have

1)

O > JOI* 3 J'@J* —————> L ———>0

IR I [

0 —>JJ* ———————> J@J*——— > F —> 0

(J',K) and S-isomorphisms u€ HomA(J',J),

resolutions

- \
00
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o 1)

0—>J@J* ————> J'@J* - L >0
1 (3i* k)
(3 k)
o Jog* — K —> G———>0 .

Let (C,¢(30<v0>2(c,-€)) be the S-acyclic 2-dimensional even
(-€)-symmetric Poincaré complex over A in normal form associa
to the S-form (K,a;J) (as in the proof of Proposition 3.5.2 i
Define a 3-dimensional S-acyclic A-module chain complex D and
chain map

f: C——>D

by

P eee—™ > 0 —> O J'* u?

> J* * 0 cen

Let (C',¢'€ Q(v0>2(C',—€)) be the S-acyclic 2-dimensicnal eve
(-€)~symmetric Poincaré compiex over A obtained from (C,$) by
surgery on the connected S-acyclic 3-dimensional even
{(~-€)-symmetric pair over A (f:C—D,(0,¢) € Q<v0>3(f,-e)).
Let (C",$" € Q<v0>2(C",—€)) be the S-acyclic 2-dimensional eve
(-€)-symmetric Poincaré complex over A in normal form associa
by Proposition 3.5.2 ii) to the non-singular e-symmetric S-fc
over A (K,a;im(j':J'—> K)), which corresponds by
Proposition 3.5.2 i) to the non-singular even e-symmetric

linking formation over (A,S) (Lt/L,AY/X;F/L,G/L). The chain
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equivalence

h:C'————>cC"

€ i*
<u> @3 -a3 (g (1 u%)

C':'...m20 3] —JI8F' ——————— K¥—— J*@J'* —— J*—>0-—>,..

given by

=3

(v -g) 1 {0 -1)

@y 31 !
C'":'ie. ™0 —0 —> J' —» K* y J'* —> 0 —> 0 —>.,.

defines a homotopy equivalence
h : (C',¢"')—(C",0") .
It follows that
(C,¢) = (C',0") = (C",¢") € Ll(A,S.C) ’
verifying that the S-acyclic complexes associated to the linking
formations (M,X;F,G), (Lt/L,XL/X;F/L,G/L) are S-acyclic cobordant.

This completes the identification
1 €
L™ (A,S,e) = M(v0> (A,S) .

e-quadratic
The verification that a non-singular

split e-quadratic

(M, 2, u;F,G)

linking formation over (A,S) represents O in the
(F,G)
M (A,S)
Witt group! _ if and only if it is stably equivalent to
M _(A,S)
€
(K, a;1,J) even €-symmetric
the boundary of an S-non-singular
I{K,B8;1,0) e-quadratic
(K,0;1,J)
formation over A such that
(K,8;1,J)
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-1 €, .~1
S T(K,0;1,J) o€ M<v0>S(S A)

slk,B;1,0) =0 € Mg(s'lA)

I

proceeds by analogy with the case of even e-symmetric linking
formations dealt with above.
It remains to prove that
if ker (8:8%z, ;57 a/a, e)—— il (zZy5h,0)) = O
for all A,S,¢ a non-sinqgular

for all A,S,¢

even e-symmetric (M,2;F,G)
e-quadratic linking formation over (A,S) { {M,A,u;F,G)
split e-quadratic (F,G)

M{v > (A, 5)

represents O in the Witt group MC(A,S) if and only if
M_(A,S)
3(N,E)
it is stably equivalent to the boundary 3(N,E) of an
3N E,p0)
(-€)-symmetric (N, E)

even (-¢)-symmetric linking form over (A,S) { (N,£)
(-g)-quadratic (N,E,p)
even e-symmetric
For linking formations this follows from
split e-guadratic
Proposition 3.5.3 ii). (The projection of Proposition 3.5.2 iii)
(S-acyclic 2-dimensional (-e)-quadratic Poincare
i
complexes over A (C,V¥})

-——> {non-singular split e-quadratic linking formations

over (A,S) (F,G))



can thus be used to define an isomorphism of abelian groups
[‘l(A,Sv,C)———*ﬁc(A,S) i (C ) s (F,G) ).

The method of proof of Proposition 3.5,2 ii) is readily

modified to give the corresponding result for e-quadratic

linking formations.

1

(even) e-symmetric -1
A non-sinqular formation over S "A
e~quadratic

(Q,¢:F,G)
with projective class
(Q,$:F,G)

[G] - {F*] € S = im(EO(A;‘aEO(s‘lAnsEo(s‘lA)

s Mk, a:1,d)
is stably isomorphic to -1 for some S-non-singular
S "(kK,8;I,J)
(even) e-symmetric (K,a;1,J)

formation over A . It follows
e-quadratic (K,B:I,J)
from Proposition 3.5.4 that the boundary operations
3 : (S-non-singular formations over A)
————> (linking formations over (A,S8))}

can be used to define abelian group morphisms

32 uSsT s m d S 5 sTHK, 1,9 0(K, a1, )

9 M(v0>§(s‘1A)—«>ME(A,S) ; s'l(K,u;I.J)*—-» (K, 0;1,3)

Mi(S-lA)-———‘)ME(A,S) ; s™ (K, B3T,0)— (K, B:1,) .

-5

There is also defined a morphism
, €, .-1 € -1 A
bt Mg(8 TA) — > M (A,S) ; § T(K, I, J)> (K, 0;1,d) ,

namely the composite

mE(s™!

g Ay——2 Mcvg> (A, 5) ———> ME(A,S) .



Juv

The correspondence of Proposition 3.5.2 i) associates to a
even e-symmetric
non-singular e-quadratic linking formation over (A,S)
split ¢-quadratic
(M,X2;F,G)
{M,%x,1;F,G) a stable isomorphism class of non-singular
(F,G)
e-symmetric (K,a;L)
even e-symmetric S-forms over A (K,a;L), and it follows
e-quadratic (K,B;L)
from Proposition 3.5.4 that there are well-defined abelian

group morphisms
MY (A, 8) —— LE(A) ; (M, A;F,G)—(K,a)
M (R, S) —— L{vd “(A) ; (M,A,uiF,Gl—(K,q)
M (A,8) ———— L _(A) ; (F,G)——>(K,B)
from the Witt groups of linking formations over (A,S) to the

Witt groups of forms over A defined in §1.6 above.

e-symmetric
Define the lower odd-dimensional L-groups

€-quadratic

12**lias, )
of (A,S) (k<-1) by
Lok (ReSse)
M__(A,5) (k =-1)
L**a,s,e) = €
Loar (Ar8,6) (K <-2)
- i _ .
Lyge (ArSi€) = Ly oi 1 (A5, ()1e)  (kg-1,k+i30)
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Proposition 3.5.5 i) The localization exact sequence of algebraic

Poincaré cobordism groups

+ -
L2, (ko ——nd s (ke — L s, () ke
—— 1o, ko ——2k s, (ke ™) k1
k=0
is naturally isomorphic for k=~-1 to a localization exact
kg -2

sequence of Witt groups
ME(A)——ng(S_lA) —7'—>M<vo>€(A,S)———»Le (A) ——+L§(s‘lA)
MCv > (A)—Mv > E (s Ay oM (A, S) —> L¢v. > (A) —> Lev > (57 1Ay
0 0’s AL o 0’s
ME(A)—bMi(S_lA);)ﬁe(A,S) ———»LE(A)——-)Li(S_lA)

ii) There are defined natural abelian group morphisms

2k+1

MEa,s) —— X s, () %) ko1

(A,S) is l-dimensional
for all A,S,¢e. If et Y ~0
ker (§:H (Ez;s A/A,e)—H (ZZ;A,E))= o]
k31
then for these are isomorphisms.
k=1

iii) If (A,S) is O-dimensional then
€ €
M_(A,S) = M(vo) (A,5) = M (A,S) =0,

and there are defined localization exact sequences of Witt

groups
0—— 15 () —— 15 (57 1A) 215 (a,8)

— M (a) ~—->M;€ (sTlay——o0 ,
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0——>LE(A) —> Lg(s‘lA)—a, Loy (A, S)
—— M A —— MCv ey o* s lay— >0,

S5ty -2 (a,s) M ()

€
0o—— L(v0> (A) ~———>1.<vo> S

—® 57 b a8 — 1 () ——15_(s71a)

3T _(A,5) M _(A)——wE (5T Ia) (A, s) L

im3:1%z ;57 a/n, e)——= il (z,a,60) = 0
iv) If ﬁo(zz;h,e)————*ﬁo(zz;s—lA,e)is an isomorphism
ﬁl(ZZ;A,e)————aﬁl(zz;shlA,e)is an isomorphism

there is a natural identification of Witt groups of linking

formations over (A,S)
€
My  (A,8) = M°(a,S)

€
M_(A,S) = M<v0> (A,S)

"

M. (A,S) = M_(A,5) .

In particular, if 1/2€A
= € 3
Mc (A,S) = M_(A,S) = M{vy> (A,S) = M (A,5) .

Proof: i) 1t has already been verified (in the course of the

proof of Proposition 3.5.4) that there are natural identifications
1 _ €
L7(A,S8,e) = M(v0> (A,S)
Ll(A,S,s) = MC(A,S) .

(*)
The localization exact sequence of L-groups E can thus be
(*)
-3

identified with the localization sequence of Witt groups

M° (A)——vM;(S_lA) 2 —»M<v0>g(A,S) — 1.5 (A) ——ﬂx,;(s”lz\)

M_(R) ——77“’?(9—11\)—' T M. (A, 8) == =21 (R) ——ﬂ,f(s‘l;\)
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The exactness of the Witt group sequence can also be establishe
directly, using Proposition 3.5.4. The direct method applies

also to the verification of the exactness of *y 4

€ €g1
M(VO) (A)—ﬁ“—$M<VO>S(S A) —>M:(A,5)

—.L<VO>C(A)——>L<VO>§(S‘1A) .

ii) Define abelian group morphisms

2k+1

ME A, 5) —— 2% aLs, (%) muF.e—— 5K C, e (k>

by sending a non-sinqgular e-symmetric linking formation over (A
(M,A;F,G) to the k-fold skew-suspension 5%(c.4) of an S-acyclic

2-dimensional (-e€)-symmetric Poincaré complex over A (C,¢ € 02(C

associated to (M,A;F,G) by Proposition 3.5,2 ii). The S-acyclic

2k+1(A,S,(—)ke) depends only on the

cobordism class 55(C,¢) € L

stable equivalence class of (M,);F,G) (proved exactly as in

Proposition 3.5.3 i)), vanishing if (M,X;F,G) = O € M®(A,S)

(proved exactly as in Proposition 3.5.4), so that the morphisms
(A,S) is l-dimensional

are well-defined. If A Al -1 ~0

ker (8:H (Z,;S™ "A/A,€) —H (Z,iA,¢€)) = O

k31
L2k+l

then for (A,S,(-)ks) is the cobordism group of

k=1
S-acyclic 2-dimensional (-€)-symmetric Poincaré complexes over
3.2.4

(by Proposition }), so that the morphisms are onto.
3.3.2

If (M,\:F,G) € ker (M€ (A,5) — L2K*1

(A,S,(—)kc)) the S-acyclic
complex (C,¢) is homotopy equivalent to the boundary 3(D,n) of
a connected S-acyclic 3-dimensional (-¢)-symmetric complex
over A (D,n€ QJ(D.—E)), and the proof of Proposition 3.5.4
generalizes to show that (M,X;F,G) = O € ME(A,S), so that the

morphisms are also one-one.
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iii) If (A,S) is O-dimensional Proposition 3.2.4 shows that
Ll(A,S,e) = L3(A,S,'€) =0 ,
so that
€ €
M{v,? (A,8) = M (A,5) = O .
The proof of Proposition 3.2.4 generalizes to also show that
-1 _
L “(A,S,-g) = ME(A,S) =0 .

1m(3:ﬁ°(zz2;s'1A/A,e)-—.ﬁl(zz;z\,e)) =0
iv) If

ﬁo(zz;A,e)———+ﬁ0(22;s—1A,e) is an isomorphism
Proposition 3.4.2 ii) gives an identification of categories

(even e-symmetric linking forms over (A,S))
= (e-symmetric linking forms over (A,8))
(e-quadratic linking forms over (A,S))
= (even e-symmetric linking forms over (A,S))
There is thus also an identification of categories
(even e-symmetric linking formations over (A,S))
= (e-symmetric linking formations over (A,S))
(e-quadratic linking formations over (A,S))
= (even e€-symmetric linking formations over (A,S))
giving rise to an identification of the Witt groups
Ml S (A,8) = M (A,S)
M (A,S) = M(v>©(A,S) .
If ﬁl(zz;A,e)————*ﬁl(zz;s-lA,e)is an isomorphism Proposition
3.4.2 ii) gives identifications of categories

(split e-quadratic linking forms over (A,S}))

= (e-quadratic linking forms over (A,S))
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{((-e)-quadratic linking forms over (A,S))
= (even {-e)-symmetric linking forms over (A,S}},
so that there is an identification of stable equivalence classes
(split e-quadratic linking formations over (A,S))
= (e-quadratic linking formations over (A,S)) ,
giving rise to an identification of the Witt groups

M_(A,S) = M _(A,S) .



3.6 The localization exact sequence (né€ Z)

In the course of §§3.4,3.5 the definition of the

e-symmetric Ln(A,S,c)
L-groups (n3 0) of §3.2 was extended
e-quadratic Ln(A,S,e)
to the range n¢ -1, by S-acyclic analogy with the lower
L"(a,e)
L-groups (ng -1) of §1.8. Combining the results of
L (A,€)
n
Propositions 3.4.7,3.5.5 we have:

Proposition 3.6.1 i) There is defined a localization exact

e-symmetric
sequence of L-groups
e-quadratic

o tP a0 ——LlsTha, e e s, e —— 1" ha e —

S, o1 3
oL (A e) —— L2 (S TR ) L (A,S,€) — L) (A, e} ...

(neEzZ) .
ii) The localization exact sequence of €-quadratic L-groups is
12-periodic, all the groups involved being 4-periodic in n,
and it is naturally isomorphic to the localization exact sequence
of te-quadratic Witt groups

...~—+i_€(A,S)——-+M€(A)—~*~éM§(S-1A)—~A—%ﬁ€(A,S)
S Ay —— L (5T Ay — I B (A, 5) - M_ (A ...

iii) In the range n¢ 2 the localization exact sequence of
e-symmetric L-groups is naturally isomorphic to the localization
exact sequence of Witt groups
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oo 2,5, 00— () ——mg 57— v > (a,8)

—— LS (B) ——Lg (s”tay %L(v()) €(A,8) —— My > (A)
-€,.~1 il -g ~€,.-1
MV D T (STTA) - M (A, S) —— Llv> T (A) —> (v (S

—n__(A,5)——M_(A)——> M (57T~ _(a,S)——>L_(A)

— LT ot a8 — e m__ (A i (s”ta)
—;L+ﬁ_€(A,S)—f*+... .

becoming the 12-periodic e-quadratic sequence on the right.

iv) If ﬁo(zz;A,E)—~—»QO(12;S_1A,E)is an isomorphism the

skew-suspension maps

5 : 1L"(A,s,¢) ™ 2a,8,-¢) (nez)
are isomorphisms.

v} If (A,S) is O~dimensional

L% @,s, (-1 %) = 15,5 (k1)

R s, (-1Ke) = M, (A,S) = My (A,8) = MT(A,5) =0 (k2-1

If (A,S) is l-dimensional

L% s, (-1 %) = mS@a,8) (kp D)

If ker(S:ﬁl(Zz;S—lA/A,g) — %z A, 0)) = 0
L?(A,S,-€) = L(A,S)

13 (a,s,-¢) = M5 (a,5)

{1

{Note that Proposition 3.6.1 iv) is an S-acyclic analogue of

the result of Proposition 1.8.1 that if ﬁo(zz;A,s) = 0 then
= +

the skew-suspension maps S:Ln(A,€)~f—?Ln Z(A,-el {(n€ Z) are

isomorphisms) .
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As promised in §3.1 we shall now apply the localization
exact sequence to obtain excision isomorphisms and Mayer-Vietori
] exact sequences for the L-groups of the rings with involution

appearing in the cartesian square

A 535 1a

1

B———1T B
associated to a cartesian morphism
£ : (A,S)—>*(B,T)
of rings with involution and multiplicative subsets.
In the first instance we consider the Witt groups of linking
forms
{formations )

Proposition 3.6.2 A cartesian morphism

) f : (A,5)—(B,T)
induces isomorphisms of Witt groups

£ : 1.5, 5)—-L(B,T) £: L (AS)—>L_(8,1)
£ : ME(A,5)—ME (B, T)

f : ME(A,S)-—“~+M€(B,T)

If §=0: ﬁo(zz;T'IB,e)——~ﬁﬁ1(zz;A,s)there are also induced

isomorphisms

€ €
if : LAvgd" (A, 8) —— Ldv > (B, T)

£ o M<VO>‘:(A,S)——-»M(vo>E (B, T)

f o L__(A,S)—L__(B,T)

£ : M__(A,S)——M__(B,T)

N
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Proof: The cartesian morphism f:(A,8)——>(B,T} induces an

isomorphism of exact categories

£ : {(A,8)~modules}~—— {(B,T}-modules} ; Mt——-+BGAM

(Proposition 3.1.3 1)), so that it also induces an isomorphism

of categories

forms
f : {e-symmetric linking over (A,S)}
formations

forms
——— {e~-symmetric linking over (B,T)1,
formations
and hence also isomorphisms of the corresponding Witt groups.

Although the functor

forms
f : {split e-gquadratic linking over (A,S)}
formations
forms
——=*{split e-quadratic linking over (B,T)}
formations

need not be an isomorphism of cateqories in the linking formation
case it does induce isomorphisms in the corresponding Witt groups,
since it induces isomorphisms

£ Q(c,6) ——— 0} (BE,C,€)
for any finite-dimensional (A,S)-module chain complex C
{Proposition 3.1.3 ii)). It follows from the exact sequences

0 ———0°(a,5) —L> 0% (B, T) im(3) o

0———in(d) ———— &__(A,5) —E—T__(8,1) ——0

(with the O-groups as defined in the proof of Proposition 3.4.2 ii))
that if § = 0: ﬁ()(mz;T'lB,cj——9ﬁ1(ﬂ,2;l\ﬁ.) then £:(A,S)——(B,T)

induces isomorphisms of cateqgories
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forms
f : {even c-symmetric linking over (A,S)1}
formations

forms
——3{even e~symmetric linking over (B8,T}} ,
formations

forms
f : {(-e)-quadratic linking over (A,S)}
formations

forms
—2_ 3 {(~¢)-quadratic linking over (B,T}}
formations

(as well as an isomorphism

forms
f : {split g-quadratic linking over {A,S)}
formations
forms
—2_5{split e~-quadratic linking over (B,T}hH,

formations
and hence also isomorphisms of the corresponding Witt groups,
8]
Next, we consider the excision properties of the L-groups:

Proposition 3.6.3 i} A cartesian morphism

’ £ : (A,8)——(B,T)
induces excision isomorphisms in the e-quadratic L-groups

£: L (A,S,€)~——>1L (B,T,e) (n€2Z),

and there is defined a Mayer-Vietoris exact sequence

cee L (A'E)——-*LS(S~1A,£)®L (B,e}——>L (TAIB,e)
n n n n
3 —_— "
‘—4Ln_1(A.6) »... (n€Z) .
ii}] A cartesian morphism
i)} {
£ : (A,8)—-—>(B, T}

(A,S) is O-dimensional
such that { . ~0 1 ~1 induces excision
G=O:|{(ZfT R,U*“ﬂ!(ﬁzﬂ,ﬂ



isomorphisms in the ¢-symmetric L-groups
nzl

£ 1"a,8,6)—— L7 (B,T,e) )
neEz

and there is defined a Mayer-Vietoris exact sequence

JU— Ln(A,E)—~»LrS](S-lA,s)$Ln(B,e) —*L;(T—lB,e)
n-1
— ") ——. ..

2k+1 - [2k+1

nyl, with L {(A,S,€) (B,T,e) = 0O (k;O) and
for ,
n€Ez

1

iS: 0 : r,f,k*l(T‘ B, e)— 12X, e)  (kp0)

Proof: Immediate from Propositions 3.2.1,3.6.1 and 3.6.2.

[

In particular, for a central multiplicative subset S<A
there is defined a cartesian morphism
(A,8) ———> (&, 5)

with A = Lim A/sA the S-adic completion of A, giving rise to
s€S

the cartesian square of rings with involution

-1

A——— >S5 "A
A—— 8 .
ii)
Proposition 3.6.3 shows that

1}

if § =0 1%z,:87 R, 00—l (Zyia,0) (e.g. if 1/2€371R)
for all A,S,¢
e-symmetric

there are defined excision isomorphisms in the )
e-quadratic

t N
e
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L-groups

L"(a,s,e) —L"(A,8,¢)
(ne z)

L (A,S,e)——L (R,8,e)

and a Mayer-Vietoris exact sequence

lA,E)QLn(ﬁ,E)—ﬂLg(g—lﬁ,e)

] n-1

- L (A,e)—>...

...———+Ln(A,e)———>Lg(S_

1

...———)Ln(A,e)———yLﬁ(s' A,e)an(K,e) 3714, 6)

— Ln-l(A,c)——7...
(ne z) .

A ring with involution A is m-torsion-free for some
integer m» 2 if ml€A is a non-zero-divisor of A, in which
case

_ k
S ={m|k»0}CA
is a central multiplicative subset of A. The localization

of A away from m is the localization

AI%] = s 1a .

The m-adic completion of A is the S~adic completion of A

~

A
m

il

Lim A/m*A .
k

The completion Xm is an m-torsion-free ring with involution
which is a module over the ring of m-adic integers
im= Lim z/mkz, and the localization of the completion

[3

o _a-ly Ao
Am{ 1 =8 Am = ngZmAm

E N

is a vector space over the field of m-adic numbers 6m = &m[%].
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A ring with involution A is torsion-free if it is
m-torsion-free for each integer m »2, in which case
s = Z-{0}ca
is a central multiplicative subset of A. The localization
of A at O is the localization
Aoy = S7'n = oapa

which is a vector space over the field of rational numbers Q.

The profinite completion of A is the S-adic completion

A = Lim a/mA ,
m

which is a module over % = Lim Z/mZ. Furthermore, A is a
m

torsion-free ring with involution, and the localization of

the completion

o PSS PO
Ao = § ﬂ-mzﬁ
is a module over the ring of finite adéles § = 8 1% 0f z.

As in Ranicki [6,§4] define for each integer m3 2 the
number

@(m) = the exponent of Lo(im)

2 if m is a product of odd primes p= 1(mod 4)

4 if m is a product of odd primes at least

#

one of which is pz 3(mod 4)

8 if m is even ,
and note that Lo(ﬁ) has exponent 8. (In fact, LO(&m) and
O,
L°AZ) arc given by
r k, k k
v .05 . 1 72 r .
L (Z = L (Z = “en
(Z_) iil ( pi) if m=p;"P, p, is the

factorization of m into prime powers,



2@ - T P@
p prime
with
zewzz if p=2
0.5 . _ . -
LHZy) = (2,02, if p : 1(mod 4)
z, if p = 3(mod 4) ).

Proposition 3.6.4 Let A be a ring with involution which is

m-torsion-free (resp. torsion-free}, and let
s = (mkllk)O}CA (resp. S = Z-{0}CQA) ,

so that the cartesian square of rings with involution
A— s ta
A

is given by

1
A ————————»A[E] A

A —— A f
m m

¥ e >

A
(resp. J
A

1
w (0) .

i} There is defined a Mayer-Vietoris exact sequence of

e-symmetric
L-groups
e-quadratic

1

v LM, ) — Ll (s” A,e)an(K,e)ﬁ*l,g(g-lﬁ,e)—*Ln_l(A,E)—*...

-1 Ao ln
& lA,e).~>1,n_1(/\,e) —..

I

S
...—~+Ln(A,e)—~+Ln(S
|

A,c)m,n(?\,z)—-»r.

(n€E Z) .
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ii) The localization maps

" a,e) ———» Lg(s‘lA,e)
s -1 (ne z)
L“(A,e)———bLn(S A,€)
are isomorphisms modulo @(m)— (resp. 8-) torsion, and the

L (Roe) (LE(37IAe)

L-groups (n € Z) have exponents

~

an,e)' LE(é’lix,e)
dividing @(m) {resp. 8).
Proof: i} The Mayer-Vietoris exact sequence in the e-quadratic
case is just that given by Proposition 3.6.3 i) for the
cartesian morphism

(A,S)——(A,5)
defined by the inclusion. In the €-symmetric case it is the
sequence given by Proposition 3.6.3 ii) - this applies here

lﬁ, so that

§ = o : ﬁo(Zz;g_l

since 1/2€§”

Rie) = 0o—— Al(z,in,0) .

iil) The maps
a5, e)— L"(A,8,¢)
o (n€ 2Z)
Ln(A,S,E)H*———*Ln(A,S,E)

are isomorphisms (by Proposition 3.6.3 again). Now the

localization map

A 8714
is a morphism of inf (resp. 7~ ) modules, so that by

Proposition 2.2.6 the localization exact sequence

a -1~ A A _l ~
1R — 1857 R ) "R, 8,e) —— " R o L
~ § a-la A A a
cev oL (Rye) (8 1A, 0) — L (A,S,e) =L, _,(A,e) —> ..
(n€ 2Z2)
. (O3 o -
158 a sequence of I. (Em)- (resp. L7(Z)- ) modules.



In particular, for any group = the group ring Z|[=] is
torsion-free, so that by Proposition 3.6.4 ii) the
localization maps

§L"(ZZ[1!])———+L2(QI11])
(n€ Z)

L, (Z (1)) ——> LS (ln])

are isomorphisms modulo 8-torsion, with
s = z-foyczlnl , stz = @ln)
For each prime p define the multiplicative subset

5, = {p*1|k 01z [n)

In §4.1 below the L-groups of (Z[n),S) will be expressed as
direct sums
L zin,8) = @ Mzinl, sy = Dtz a8
P P (ne z)
Gp)Ln(zzp[nl,sp)

[

L (zZ[n],s) = (Ei)a Ln(z[n],sp)

in which the p-components are Lo(ip)-modules, and hence of

exponent dividing G(P).

Returning to general rings with involution, we have the
following result (which is needed for §4.1):

Proposition 3.6.5 If S,TCA are multiplicative subsets such

that

(in the sense that there exists an isomorphism of rings with

1

involution s YaA—»77!a which is the identity on A) there

are defined natural identifications

L"(a,8,e) = L"(a,T,e)
{n€E Z)
L, (A/S,€) = L (A, T,e)



Proof: Immediate from the definitions and the identification
of exact categories
{(A,S)-modules} = {(A,T)-modules) .
[

Given central multiplicative subsets S,TCA in a ring

with involution A define a central multiplicative subset
ST = {st}jses,teT}CA ,

such that

(st) 7 ta = st la) = s ia) .

The central multiplicative subsets S,T CA are coprime if for
all s€5,t€T the ideals sA,tA of A are coprime, that is if
there exist a,b€A such that
as + bt =1 €A .
It follows that the inclusion defines a cartesian morphism
(a,s) ——(r"ta,5) ,

giving rise to the cartesian square of rings with involution

A
-1 1

T A~ (ST) “A .

571y

Prcposition 3.6.6 Let S,TCA be coprime central multiplicative

subsets in a ring with involution A.
i) For all A,S,7T,c there is defined a Mayer-Vietoris exact
sequence of e-~quadratic L-groups

1 1

...———)Ln(A.e)—~——>Li(S— A,c)mnz(T‘lA,e)-—vaLiT((sT)‘ A,e)

——3—+ Ln~1(A,e)~——+... (nezZ) .



ii) 1£8 =0 : ﬁo(zz;(ST)“lA,e)m»ﬁl(yzz;A,e) {e.qg. if the

involution on A restricts to the identity on S and T) there
is defined a Mayer-Vietoris exact sequence of e-symmetric

L-groups

1

1A,e)eL,’l‘,(1"1A,e)———»LgT((ST)' A.€)

...——»L"(A,e)-—»Lg(s“

— " ba,e)— ... (nez) .

ii)
Proof: By Proposition 3.6.3 there are defined excision
i)
e-symmetric

isomorphisms of L~groups
e-~quadratic

t"a,s,e) —— .1 1,8, €)

-1 (n€ 2z)
Ln(A,S,e)——VA———~* Ln(T A,S,¢)
It follows from the exact sequence
— & ((s7) " tA) — R _(A) ——K_(s"Ia)eR (17 1a)
o 1 ] o} 0

——— R ({ST) Ay — K_j(A)—— ...
that the natural map
RO(T_lA) /T ——>S/ST

is an isomorphism, where S,T,ST are the *-invariant subgroups

5 = im(Ry (T la)——R, ((s1) 1Ay < Ry (15 T Ta)

R o o -1 = ~1
T = lm(KO(A) —'KO(T A))QKO(T A)
. . -1 . -1
ST = 1m(KO(A)—~~>~KO((ST) A))gKO((ST) A)
Proposition 2.5.1 shows that the natural maps

noply = (D -1 -1
(T "A,S,¢) = LS,RO(T—IA)(T A-—— (ST} "A,€)

—_— —1A———>(ST)_1A,E)

no,
st,s{T
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S.Ky (M) -1
L (A,S,€) = L (A—>S "A,€)
n n
—-—>L§T'S(T'1A———>(ST)“1A,£}
(n€ 2)
are isomorphisms, so that the natural maps
" (a,s,e) = LD o (A———5 1A, €)
1907 S,K (A) ’
a
N (T'lAv———a(ST)-lA €)
ST,S ’
S,iO(A) N (ne z)
Ln(A,S,C) = Ln (A—>S "A,€)

—_— LiT'S (17 Ia——s(sT) 1A, €)

are excision isomorphisms and give rise to the Mayer-Vietoris

exact sequences claimed in the statement.

Given disjoint collections of primes in N
p = (pl,pz,...} , Q= {ql'q2""}
(one of which may be empty) such that
PuQ = {all primes in N}
there are defined coprime multiplicative subsets

kl k2 kr
tp P, .0, |kl,k2,..,kr>0.r)0}CA

w
)

j1 j2 js - .
T = {a) aq,"...q.° 1335043 2 0,52 01CA

for any torsion-free ring with involution A. The localization o

away from P, or equivalently the localization of A at Q,

is defined to be the ring with involution
-loCoardy -
s °A = Al3] Ay -
The localizations at and away from P are related by a cartesian

square

/* .

N
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A——«»I\(P)

1

’
for which Proposition 3.6.6 gives a Mayer-Vietoris exact seque

,_.—«»Ln(A,E)———*LE(A[%]IE)QL;(A ,e)———#LgT(AIO),e)

(P)

NN L S WS P

S —>
L (Ae) LD (ALR] €L (A ) ) La" (A o) 1)

(P)
~—2—an_1(A,e)—'*...
(nez) .
In particular, there is defined such a Mayer-Vietoris exact
e-symmetric
sequence of the L-groups of the rings with involu
€-quadratic

appearing in the cartesian square

Z[n]—————»z(p) (L8]

Z[‘—];](ﬂ]—-—?()[n]

with A = Z{n] a group ring and P = {p} for some prime p.

1>



3.7 Change of K-theory

The localization exact sequence of §3.6 will now be
extended to the intermediate L-groups of §1.10. In fact there
are two such extensions, one indexed by the *-invariant
subgroups XS’Kl(A,S) and one which is indexed by the *~invariant
subgroups Xﬁzﬁm(A) (m = 0,1). The generalizations may be proved
in the same way as the original sequence, or else may be deduced
from it using the comparison exact sequences of §1.10.

In the first instance it is necessary to consider the
action of the duality involutions ® on the localization exact
sequence of algebraic K-theory

~ i N 3 j ig
Kl(A)~—l——v R, (5 lh)—»xl(A,S)———»?O(A)——»———yKO(S 1)

for a localization A ———o5 1

A of rings with involution.
The duality involution

P K m) = K (B(A))——K (a) = K _(B(A)) (m=0,1)

is induced by the duality involution on the exact category P(A)
of f.g. projective A-modules
2. P(A) ——>P(A) ; P~—>P* = HomA(P.A) ’

1

and similarly for *:km(s" A)———*Em(sulA). The morphisms

im:Fm(A)~——~6Em(S_1A) are induced by a functor of categories

with involution

1 1 1

B(A)———>R(S "A) ; Pr——S P = STUAR,P ,

so that the diagqrams
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= m
K {A) —— R_(A)
commute. The duality involution
P K (A,5) = K (B(A,8)) —>K (A,S) = K,(E(A,5])
is induced by the S-duality involution on the exact category
P(A,5) of (A,S)-modules

* i B(A,S) ——P(A,S) ; MM = Hom, (M,S"'A/A) .

If an (A,S)-module M has f.g. projective A-module resolution

la]
Q— Pl————~—* PO-—————% M— 0

the 5-dual M" has resolution

di
0 —-—+ P} P} M > 0

It follows that the morphisms
y Rl(s'lm———-» Ky (A,5) ;

s Yeis e a5 py 5 [P/E(P) ] ~ [P/S(P)]

(with f,s€ HomA(P,P) S-automorphisms of a f.g. projective
A-module P} and

j o Kl(A,s)———»kO(A) : (M]»——_»[r’l] - Iry)

(with Py:P the f.g. projective A-modules appearing in a

1
resolution O—>P|—*P,—M——0 of an (A,S)-module M)

are well-defined and such that the diagram
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commutes.

Define the S-projective class of an (A,S)-module M to be

the element
[M] € Kl(A'S) = KO(E(A,S)) .
More generally, the S-projective class of an n-dimensional

(A,S)-module chain complex C is defined to be

[c] =
r

(=) IC 1 €K (A,S)

I ~13

Q
and is such that
(€71 = () N(cIrex (A,8) .

A short exact sequence of (A,S)-~modules

O—*M——>+ M ——M'"———0
is an acyclic 2-dimensional (A,S)-module chain complex with
S-projective class

fM] - [M'] + [M"] =0 € Kl(A,S) .
Given a E[Ezl-module G let G  denote the Z[zzl—module

with the same additive group, but with TE€ zz acting by

TG— : G——>G ; xw»f‘»—TG(x) .

The Tate zz—cohomnloqy groups are such that

fx(w q ) = A*liz_ .G
H*(7Z 56 ) H (ZZIC) .



Given a *-invariant subgroup X€§K1(A,S) let

n
Ly(A,s,¢€)
(n€ Z) be the L-groups defined in the same way a:

X
Ln(A,S,e)

L"(a,s,¢€)
{the special case X = Kl(A,S)) but using only
Ln(A,S,E)

(A,S)-module chain complexes C with S-projective class
[Cl € nglmlﬂ .

Define x-invariant subgroups

"

iX = imGl:x——K (A < K @),

XB

]

3_1(x)<;l?1(s'1A) /
so that there is defined a short exact sequence of
Z[Zz]—modules
0 ——>x3/ker (3:; (sT1A) —>k, (A,5)) 2> x —I w3 ——o0
inducing a long exact sequence of Tate Zz-cohomology groups
.*»ﬂ"(zz;xa/ker(a))—i’—-»ﬁ"(zz;x) ——j—»ﬁ"'l(zzz;jm

———»ﬁ"‘l(zz;xa/ker(a))——»...

The exact sequences of Proposition 2.5.1, 3.6.1
€-symmetric

generalize to the intermediate L-groups

c-guadratic

L;(A,S,c)
X (X ¢ Kl(A,S)) as follows:
Ly(A,S,¢)
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Proposition 3.7.1 Given *-invariant subgroups XE’YSTKl(A,S)
there is defined a commutative diagram of abelian groups
with exact rows and columns

T

e LT R N a, e —2s1lia,s, 0 —-———>ij (A,e) —> ...
l - |

Y(A,E)—“-»L (s IA,E)'*—S-’Lg(A,S,e)—*—’L?;lf\,e)—>

oAz 550 =8 (2,50 /X0 2 ANz v /0 Bz, 3150 —

e..—>L ( ,e)————»L 3 (S 1A,e)iL>L (A S,e)—> L]x {a,e) ——>.

(nez) .
Similarly for the e¢-quadratic L-groups Ln'

[

Given a *-invariant subgroup XS;RO(A) define *-invariant

subgroups

-1 A . -1 . -1
$TUx = im(igl:ix——K (s A SR (sTTA)

o
j o_ o.-1
X7 =3 (X)SZKllA.S) '
so that there is defined a short exact sequence of Zl[Ezl—modules
j % -3 i -1
0 —»(X /ker(j:Kl(A,S)—~+KO(A)) —> X ——+ S X ——>0

inducing a long exact sequence of Tate Zz—cohomoloqy groups
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an+l 3j i an iO on -1
A ¢ (22;X /ker{(j))—H (ZZ:X)-*“—*H (Zz;S X)

——»ﬁ“(zz;x"/ker(j))—»... .

Proposition 3.7.2 Given *-invariant subgroups X¢ Y& RO(A) there

is defined a commutative diagram of abelian groups with exact

rows and columns

A

e LA, ) — 1" (S_lA,E)—J—>L S A, S, €)— LY
X s'lxl l
n l n -1 n-
.—> LY(A,e)———+ L -1 (s A.c)-+b (A s, e)————»LY (A,€) —> ...
sy

| l R

1
l
X 2(1\,6)—'»...

...—oﬁ”(zz;y/x)—»ﬁ"(zz;s"Y/s )—9H (z,
2 A

1 —1
1

(A, €) —>...

|
l

R NS R L N S I

2

RIS Ll PSS § (s A,e)—>I. Lia,s,e)—> 1,

n- n-
5 ‘X

Similarly for the e-quadratic L-qroups Ln.

The localization exact seguence of Proposition 3.7.1

for X = im(s:il(s'lA)——-)xl(A,S)) = ker(jle(A,S)—aﬁo(A))QKI(A,S)

n n —1 l
-*»ij(!\,r)—»hxa(s ,t)—“’[»x(!\ 5 t)i-f»r, (A,v) —> ...

coincides with the localization exact sequence of Proposition 3.7.2

for Y = {O}gko(m



387

c LY A ) s 1 (s“lA,c)—Qlannj(A,s,e)—-—aL;"l(A,e)-—a

S 7Y Y
This sequence can be written as

1

eV (A, ) —— v s TIA, ) — 25y (AL s, &) — o v AL ) —

with V*(A,€) (resp. V*(S_lA,c)) the V-groups of §1.10, i.e. th

analogues of the [-groups L*(A,ej defined using only f.g. free
A- (resp. S_lA‘) modules, and V*(A,S,e) the analogues of the
L-groups L*(A,S, ¢} defined using only (A,S)—moduies with a

f.g. free A-module resolution of length 1.

An (A,S)-module M is S-based is there is given a f.qg. fr
A-module resolution of length 1

0 —— P, -4 . Py ————> M ——— 0

with PO and Pl based. The S-torsion of M is then defined to be

1 -1 1

o) = s T le —5sThe ) € K s iay .

o) 1

The S-dual (A,S)-module M” is also S-based (using the dually

based A-modules P6,Pi), with S-torsion

1 1 1

- - ° -
P6———»S p*) TS(M) € Kl(b

i A)

rg(m”) = t(s lax:s”

More generally, the S-torsion of an n-dimensional S-based

(A,5)-module chain complex C is defined to be

° r = -1
(0 = ) (=) Fra(Cc) e Ro(sT ) .

£ S r 1
r=0
I1f D is an (n+l)-dimensional S-acyclic based A-module chain
complex resolving C (with the S-bases of the (A,S)-modules Cr
determined bv the bases of the A-modules Dr) then S_1D is an

1I\—module chain complex

(n+l)-dimensional acyclic based S~
such that

(s”1ay .

(0

TS(C) = 1(D) € K1



It follows from the definitions that

n-=~ -1 n+l-»

1.c™™y = ris™ip ) = 1) Mglorr € El(s‘lA) .

S(
The torsion of an n-dimensional acyclic $-based (A,S)-m

chain complex C is defined to be
T(C) = T(D) € RI(A)

with D an (n+l)-dimensional acyclic based A-module chain comp
resolving C. It follows from the definitions that

n-" n+l-»

(e ) = (o y = ()"rcre € K (a)

The torsion of a homology equivalence

f:C—C'
of n-dimensional S~based (A,S)-module chain complexes is
defined to be

T(f) = T(C(f)) € El(A) ,

and is such that

n-" n+

TUf -

oM™y = ()™l e e &, (A)

sTr(e) = to(0) - 1g(c) €K -1

S (s

187

The torsion of an n-dimensional S-based e-symmetric Poi

complex over (A,S) (C,¢€?Qg(c,c)) is defined to be

TIC,8) = (T(og:C" T =0y, g (0))
(1+(—)”T 0 ) - -1 - -
€ ker{ : Ko (M®K, (S "A)— K, (A) @K, |
P S 1 1 1 1

with Tikl———’kl;TP——*T* the duality involutions. The torsion
an n-dimensional S-based e-quadratic Poincaré complex over (?

(c,ve Oi(C,C)) is defined to be the torsion of the e-symmetr!

\\ "/ ’A



TUC,H) = T(C, (14T ) ¥ € Qg(Cye))

Given a *~invariant subgroup XS;Rl(A) define a *-invariant
subgroup

1

STNX = im(i :x—»il<s‘lm)gilts'lA) .

1,
Given *-invariant subgroups X< RI(A),YESRI(S_IA) such that

slxcy gEl(s'lA)

n
LX Y(A,S,E)
let ! (n€ Z) be the L-groups defined in the same

L:'Y(A,S,e)

17 (A, S, €)
way as (n€ Z) but using only S-based algebraic
Ln(A,S,E)

. - . . s
Poincare complexes over (A,S5) with torsion in

{(x,y) €x0Y|x* = ()%, s x = y+ ()" yny

1+(-) "7 o

L -1 = -1
gker(( -1 n').xl(A)ekl(s A)—K (A)@R, (577A))
-8 1-(-)'T
- . vl(a,s,¢)
For X = Kl(A)' Y = Kl(S A) these are the free L-groups .
vV, (A.S5.¢€]

As in §2.5 define the relative Tate Ez-cohomology qgroups
of a morphism of Z[Zzl—modules
f : G—>H
by
.= n-1 _ n-1_,
{(x,y) €GBH]x* = (=) "x,fx=y+ (=) "y*)

f) = {n{mod 2))

iz
{(u+ (—)n_lu*,fu +v+ (=)"w*) | (u,v) € GoH}

,2;

and note that there is defined a long exact sequence

..—oﬁ”(zz;c)—fﬂ“”

(i) —— iz, ) — A" Lz 0 — L

2

’
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The exact sequences of Propositions 1.10.1,2.5.1 and
3.6.1 generalize to the intermediate torsion L-groups as follows:

Proposition 3.7.3 Given *-invariant subgroups X SX'Q’?l(A),

Yey's il(s'lA) such that s 1x <y, sTIX'C Y' there is defined

a commutative diagram of abelian oroups with exact rows and

columns

|

.-—-—»LQ(A,e)——)L?(s

4
1 L
l

l

I\e)-———)L (A,S,E)————)L (A,e)—> ...

|
|

cee > Ly, (A, e)—)Ly,(S A,c)—-’l.x Ly (BS ) > LETH (A E) > L
.. "z, (X' /x)—B" (zz,y'/y)-»ﬂ (z, x'/x—*y'/Y)—’ﬁ“‘I(zz;x'/X)—a.
.. L; (A, s)—)LY Lis7la, c)—)Lx Y(1\ s, c)-——»L; A e)— ...

R

(nez) .
Similarly for the e€-quadratic L-groups Ln

[]

The generalizations to the intermediate L-groups of the
excision isomorphisms and Mayer-Vietoris exact sequences of §3.6

will be dealt with in §6.3 below,
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§4. Arithmetic L-theory

Localization has long been a key tool in the unstable
classification of quadratic forms over rings of arithmetic
type - cf. the work of Gauss, Minkowski, Hasse et. al.

The classification over a global ring such as an algebraic
number field (e.g. Q) is reduced to the classifications over
local rings such as the completions at the various valuations
(e.qg. the p-adic fields 6p and the reals R for Q). This
reduction can also be used for the classification over an
order such as the ring of algebraic integers (e.g. Z in Q).
See 0'Meara [1l]), Milnor and Husemoller (1] and Cassels [1])
for modern accounts of the arithmetic theory of quadratic
forms.

Many authors have used the localization techniques of
algebraic number theory to obtain localization exact
sequences for the Witt groups of quadratic forms over rings
of arithmetic type and more general Dedekind rings, notably
Kneser, Milnor, Wall [6], Frohlich [11, Knebusch and
Scharlau [1], Durfee [1} and Barge, Lannes, Latour and Vogel [1]
The ariéﬂetic approach has been extended to more general
orders in semi-simple algebras (e.g. Z[7] in Q[m] for a finite
group m) by Wall [8], Bak and Scharlau [1], and Bak [2].

We shall now apply the localization exact sequence of §3
to the L-theory of rings with involution which are algebras
over a Dedekind ring. As usual, we start with some K-theory.

Let R be a Dedekind ring, and let A be a ring which is
an algebra over R. Then S = R-{0}CA is a multiplicative
subset of A such that the localization S IA = FRLA is the

induced algebra over the quotient field F = S "R.
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An (A,S)~-module M is "P-primary" if the annihilator of M is
{r€R|tM=0} = :pka R

for some maximal ideal P4R, with k z1. Every (A,S)-module M
has a canonical decomposition as a direct sum of P-primary .
(A,S)-modules

M- S,
with P ranging over all the maximal ideals of R. The resulting
identification of exact categories

{(A,S)-modules} = ??(P—primary (A,S)-modules}

gives rise to an identification of algebraic K-groups

K (a8 = Px a5 ez

so that the algebraic K-theory localization exact sequence car

be written as
-1 CJ
vee—>K (A)—>K (5" A)—> DK _(A,P)—3K__.(A)—> ... .
n n P n n-1

In the case A = R a devissage arqument (due to Bass [2] for n:
and to Quillen [1) for n 3 2) identifies

K, (R,227) = K _ (R/P) (nezm)

so that the sequence can also be written as

.. K (R)—>K (F) —> éjDan_lm/?) —>K (R —>... .

In §4.1 we shall deal with with the algebraic L-theory
localization exact sequence for a ring with involution A whict
is an algebra over a Dedekind ring R, with S = R-{0}CA. The
decomposition of (A,S)-modules into P-primary components will

be used to obtain natural direct sum decompositions of L-groug

t"(a,5,¢) = DL (A, 7, )
? (nez)

L (A,S,¢) G;LH(A,? ,€)

with P ranging over all the maximal ideals of R which are

\‘.‘/ "j&\ !
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invariant under the involution, P = P4R. For A = R, 1/2€A

such decompositions have been previously obtained by Karoubi {3}.
In §4.2 the results of §4.1 are specialized to the

L-theory of a Dedekind ring, with A = R, In particular, an

L-theoretic devissage argument will be used to identify

v, 7%, 0 = 1°(r/Pe)
thus recovering the localization exact sequence of Milnor and
Husemoller (1,1V.3.3) relating the symmetric Witt groups of a

Dedekind ring R and its quotient field F
o] ¢} (o] ~1
0 —>L (R} —>L (F) —>@®L (R/P) (——>L ~(R)—>0) ,
P
extending it to the right by the map onto .

In §4.3 the results of §4.2 are applied to obtain the

L-theory of Z and Q.
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4.1 Dedekind algebra
We refer to Zariski and Samuel [1,§V.6] for the basic

properties of Dedekind rings.

A Dedekind algebra with involution (A,S) is a ring with

involution A together with a central multiplicative subset SCA
such that R = Su {0} is a Dedekind ring with respect to the
ring operations inherited from A. The localization away from S

-1, _
S "A = FBRA

is the induced algebra over the guotient field F = S—IR.
For example, a torsion-free ring with involution A is the
same as a Dedekind algebra (A,Z-{0}), and a Dedekind ring
with involution R is the same as a Dedekind algebra (R,R-{0}).

Let (A,S) be a Dedekind algebra with involution, and
let max(R) be the spectrum of maximal ideals of the Dedekind
ring R = SuU({0}, that is the set of maximal ideals (= non-zero
prime ideals) of R.

The annihilator of an A-module M is the ideal of R
defined by

ann{M) = {r€R|rx=0€M for all xEM} 4R .

By the classical ideal theory of Dedekind rings this has a
unique factorization as a product of powers of maximal ideals
?&,?3,...,7% € max(R)

kl k2 k
ann(M) = ?3 ?3 ...?aq (ki? 1) .

A non-zero A—Todule M is S-torsion if and only if ann(M) is a

proper ideal of R. If M is an (A,S)-module then

ann(M”) = ann(M) 4R

(since ann(M) ¢ann(M”) for any A-module M and M~ = M for an

(A,S)-module M).
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An S-torsicn A-module M is P-primary if
ann (M) = ?k
for some P€ max(K), k>»1l. An (A,?m)—module is an (A,S)-module
which is P-primary, that is a P-primary S-torsion A-module of

homological dimension 1. An n-dimensional (A,?m)—module chain

complex C is an n-dimensional (A,S)-module chain complex

c : ...~——>o~—>cn—‘—j-+cn_l ——>,,.——»c1——‘1—>c0—~>0—»

such that each Cr (0<r<€n) is an (A,?m)—module. An A-module
chain complex D is ?w—acxclig if it is S-acyclic and the
homology S-torsion A-modules H, (D) are FP—acyclic‘

Proposition 4.1.1 There are natural identifications of sets

of homology equivalence classes

{n-dimensional {(A,?")-module chain complexes}
= (Pw-acyclic (n+l)-dimensional A-module chain complex

(n€ 2,7 € max{R))

Proof: Immediate from Proposition 3.1.2.

f

Let P€ max{R). The localization of A at P is the ring

obtained from A by inverting R-PCA

A, = (R-7) 1A .

If P = ® then R-PCA is a multiplicative subset in the sense

of §3.1, and A, is a ring with involution

T Ay —— Ay i (a€A,r€R-D) .

x
1
al kY
l(
1
ARTT

(If P # P then Apx Az is a ring with involution
A 4

]

- ab
: A?xA? ———)A?xA? A



If M is an (A,S)-module the localization of M at ? is the

(a,?”) ~module
My = AJB.M (= RB.M)
that is
My = Fe sluixemrer-Pcsicsiu

k
If ann(M) = ?11?22...qu (as above) there are natural

identifications

k., k k. k. k
1p72 p i-lg i+l q : _ .
" ?l ?2 P ?i+1 "'?q M if P = ?i for some i,
.
. P 2 e}
0 lf?e{-l,vz,...,vq)
q
M= ®M‘D ’
i=1 7i
and if M' is another (A,S)-module
HomA(M,M‘) = S¥ HomA(M?,M§)
PE max (R)

There is thus an identification of exact categories

{(A,S)-modules} = S { (A, ") -modules}
P€ max (R)

The S-duality involution
{(A,S)-modules} —>{(A,S)-modules} ; M+——>M"
sends the ?-primary component M, of an (A,S)-module M to the

P-primary component (M")g of the S-dual M", that is
M5 = M3)”
Define max(R) to be the subset of max(R) consisting of

the maximal ideals of R which are invariant under the involl

max(R) = {Pemax(R)|{P = PaRr} .



— E£-symmetric
For each® € max(R) define the n-dimensional L-group

e-guadratic

L™ (A, P%, ¢)

of (A,?’) (n€ Z) in exactly the same way as

L (3,77 )

n
L (A,S,€) oo
(n€ Z) but using only (A,P )-module chain complexes,

Ln(A,S, €)
or equivalently FF—acyclic A-module chain complexes.

Proposition 4.1.2 The L-gqroups of a Dedekind algebra (A,S) have

natural direct sum decompositions

1"(a,s, € " (aP, €

® Pemax(R)
(ne z)

L, (RS, €) L, (a,%% €

= Pemax(R)
Proof: In the first instance recall from Proposition I.1.4
that for any finite-dimensional A-module chain complexes C,D

there are natural direct sum decompositions
n n n
Q (C@#D,e) = Q (C,€)®Q (D'C)QHN(HONA(C*,D))
Q(Vo>n(CQD,E) = Q(V0>n(C,E)QQ<VO)n(D,E)QHn(HomA(C*,D))
= *
Qn(CQD,E) On(C,E)QQn(DIE)QHn(HomA(C /D))
(ne zZ)
By Proposition 4.1.1 an S-acyclic (n+l)-dimensional A-module
chain complex C is chain equivalent to the direct sum
5% o . . . .
pe max(R)C(P) of P -acyclic (n+l)-dimensional A-module chain
complexes C(?P). IfT’I,?2 € max{(R) are such that’?1 f’?z then
HONA(C(?l)*,C(?Z)) is an acyclic Z-module chain complex, so that
in particular
P = .
Hn+1(H0mA(C(?l)',C(!2))) =0 ;

if § € max(R) is such that ¢y # ; then Hom, (C()*,C(4)) is an
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acyclic Zlizzl-module chain complex, so that in particular

SQ(VO>
Q41 (C(P), =€) =0 .

nHlicp),-e) = 0

Choose a decomposition of max (R} - max(R) as a disjoint union
max (R) - max(R) = {9}y (Q)
Applying the above sum formula there is thus a direct sum

decomposition

(e hie,me) = Do ™ hicE) e, (Hom, (G %)
)

VQpyy (Crme) = %Qnirl(c(?)'_E’Ogﬂn+l(HomA(C(Q)"C(u)))

with © ranging over max(R). An S-acyclic (n+l)-dimensional

even (-g)-symmetric .

i Poincare complex over A
(-€)-quadratic
(c,0€ 0w e, -en

is thus homotopy equivalent to a
(c,ve Qn+l(C,'€))
QXC(?),¢(?))$$9(C(Q)0C(5),¢(Q,6))

direct sum{ ® _ _
Gg(C(T) SV(P) )Qg)(C(Q)QC Q) Vi, Q)

, with each

€, 0 €ov" e -
a ¥ -acyclic (n+l)-dimensional

(C(P),4(P) €0, 1 (C(P),-¢))

even (-€)-symmetric .
Poincare complex over A and

(-€)-quadratic

— +1 — —
3@(@&) € 0vy> T (CIQIBC Q) me) = H, (Hom, (C(Q)*,C(@Q)))
VQQ) €0, (CQOBCQ ,-€) = H_ | (Hom, (C(Q*,C(RP))

AN
a chain homotopy class of chain equivalences

. n+1_*———*C(Q)

[ ¢R) = Cl@
zwa,i;) : Q)

n+l-» c@)



‘even (-€)-symmetric
The (n+2)-dimensional S-acyclic Poincaré
(-€)~quadratic
pair over A
(1 0):C(@)8C (@) ~—=>C (), (0,6, ) € Q™2 ((1 0),-¢))
((1 0):C(QIEC A ———+C (), (0,¥(Q,)) €Q ,»((1 0),-¢))

shows that for each @

[

(C(Q)8C(Q),6(Q,@) = 0 € L"(A,S,e)

(C(QBCQ),¥(Q,Q) =0 €L (ASe),

and so
(C,01 = h(Cc@), o2 € L"a,s,6) = DL (AT ,e)
! e
(C¥) = BCE) b)) € L (A,S5,6) = L (A5 e)
4 T

(PE€max(K), n3»0)

Similarly for the lower L-groups.

A multiplicative subset PCA is characteristic for
P€max(R) if there is an identity of categories
{(A,?”)-modules} = {(A,P)-modules}
For example, if some power 9k (k >1) of ¥ is a principal ideal

of R, with generator m€R

#K = qrRar ,
then T = mu € R for some unit u€ R such that uu = 1 and the

multiplicative subset

s, = {n"u"Imy0,nez} <A

is characteristic for % .
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Proposition 4.1.3 If ¥ € max(R) has a characteristic

multiplicative subset PS A there are natural identifications

of L-groups

L™ (a,p,€)
(ne z)
L (a,P,€) )

§ L"(a,?%,¢)

L (A% e}

Proof: Immediate from the definitions and Proposition 3.6.5.

[

Let P € max(R). The localization of (A,S) at ® is the

Dedekind algebra with involution (Ag,Sp) defined by

Sp = {-§|r€R—?,s€S)CA? = r-7)7 1A,

with
-1 -1

S "A_ =S "A

SPU(O} = Rf" s Po

Now R? is a local ring, with unique maximal ideal

Tp = TR, € max(Ry)

and S,CA is a characteristic multiplicative subset for ?}

P

so that by Proposition 4.1.3 there are natural identifications

- (n€ Z)
Ln(A?:}},rE’ = Ln(ApISPlc) .

{Ln(l\?,P;,e) = L (Ap,Sp.6)
The functor
{(n,?")~modules} —— {(A;,Sp) ~modules) = {(Ap,%p)-modules} ;

M———— M, (= M as an A-module)

is an isomorphism of categories.

i/
Proposition 4.1.4 i) For every P € max(R) there are natural

identifications

@

Ln(A,? ,€) = Ln(AP,SP,E) (nez) .
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ii) If P € max(R) is such that
either the map ﬁl(ﬂz;A,s)————»ﬁl(mz;hy,s) is one-one
or there exists a characteristic multiplicative
subset PCA for ® and the map

ﬁl(ZZ;A,E)——vﬁl(ZZ;AP,C)Qﬁl (RZ;P-IA,E)

is one-one
(e.g. if some power Pk (k » 1) is principal
and 1%z ;7€) = 0)

then there are natural identifications

L7 = La,,8,0) (nez) .
Proof: Consider first the case n}O.

Let C be a P”-acyclic (n+l)-dimensional A-module chain
complex, so that APEAC is an S?‘acyclic (n+l)-dimensional
A?—module chain complex. Working as in the proof of
Proposition 3.1.4 we can identify

"*lc,-e)

"

n+l

Q (5?GAC,-E)
Q41 (CrmE) = Qn+1(APﬂAC,-€) .

Also, there is defined an exact seguence

00— 0", o)~ otvy " (A8, C )

n+l ~l . sl .
———>Hom, (H (C) ker (H (Z,;A,e)—H (ZZ'A?'E)))

so that if ker(ﬁl(EZ;A,E)———»ﬁl(Zz:A?,E)) = 0 we can also

identify
n+l, . . _ n+l _
IO G I ICAAR LN NeTEL B

As for the Q-groups, so for the L-groups.



For the case n€ -1 we need only consider n = -1,-2.
In the first instance, we show that if the map
ﬁl(ZZ;A,C)—~—+ﬁl(zz;A9,e)is one-one there are identifications
of categories
{(~¢g)-quadratic linking forms (resp. formations) over (A,?w)}

= {(-€)~-quadratic linking forms (resp. formations) over (APISP)}

where a linking form (resp. formation) over (A,?F) is defined
to be a linking form (resp. formation) over (A,S) involving
only (A{?m)—modules. By the above identifications of Q-groups
there are identifications of categories
{{-¢)-symmetric (resp. split (-¢)-quadratic)

linking forms over (A,?n))
= {(-e)~symmetric (resp. split (-¢)-quadratic)

linking forms over (Ap,Sp)} .
By Proposition 3.4.2 i) every (-¢)=-quadratic linking form
over (A?'SP)

(M, :Mx M—g1

A /A, utM—> Q_E(AP,Sy))
can be lifted to a split (-€)-quadratic linking form over (A;,Sp),
and hence to a (-t£)-quadratic linking form over (A,2%)

M Mx M —sTIa/Au M —— 0 _(a,5))

1
with Al uniquely determined by A . If (M,Xl,uz) is another

such lifting of (M,A,u) then for each x€M

wy(x) ~u,(x) € {a€Ala=b-cb for some b€Ag}/lc-cclceanl

i

ker (A1 (z2,:8,6) —fil(z,iap,€))

< ker (Q_ (A,S)-——>0__(Ap,Sp))
Thus if ker(ﬁl(ZZ;A,E)———+ﬁ1(22;AP,€)) = O there are identifications
of categories as claimed above and LM(A,? ,¢) = Ln(AP,S?,f)

for n = -2 (resp. n = -1}.
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If there exists a characteristic multiplicative subset
Pc A for? € max(R) there is defined a cartesian morphism
(A, P) ———> (A5, P) .
There is an identity of categories
((AP,P)—modules) = {(Ap,Sp) ~-modules} (= {(A,?”)-modules}),
so that by Proposition 3.6.5 there are identifications
1M Ay, P e) = LM (Ap,Sp6) (n€Z) .
If ﬁl(zz;A,c)———%ﬁl(zz;Ay,c)mﬁl(zz;P_lA,e) is one-one then
by Proposition 3.6.3 ii) there are also identifications
L"(a,p,e) = L"(A;,P,€) (n€Z) ,
and by Proposition 4.1.3
L"a,?,e) = LNA,P,e) (n€EZ) .

[]

Given ? € max(R) define the P-adic completion of A to be

the ring
A k
A? = El@ A/P°A
k
. . s . 7~ . k
which is also the q,~ad1c completion (AP)fP = &;m Az/P AP of

the localization Ag of A at P. If P€max(R) < max(R) the

completion RP is a ring with involution, and
5, = R-(0} Ay

is a multiplicative subset such that (R?,gf) is a Dedekind

algebra with involution. The quotient field of ﬁy

A _ a-1la
Fe = Sp'Re

is the P-adic field of R, and is such that

S’, AS’ = Fy@ﬁy‘AP

The S-adic completion A= Lim A/sh is the unrestricted product

. ( X
!

€

(42}
v



of the P-adic completions

LU P
PEmax (R)

and the localization of the completion is the restricted

product

. S W T
PEmax (R)

consisting of collections (xyeé;ll‘\yls’e max{(R)} such that
Xp€ 'A?Qé;lay for all but a finite number of P € max(R).
Thus the cartesian square of rings with involution associated

to (A,S)

can be written as

|

—-—»]I(SP AP A? .

A
1A
P

If PCA is a characteristic multiplicative subset for ¥ € max(R)

the ®-adic completion of A is just the P-adic completion of A

A = *éy A/pA .

=

o
o)

For example, the ring of p-adic integers ip= M E/pkz is the
k

(p)-adic completion of Z, with (p) = pZ € max(Z) (p prime),

A_l ~ A R . .
d s = th 1d of p-ad umbers.
an (p)zp Op is e fie of p-adic n
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Given P € max(R) let
~ T —— A
Pp = FPRp€ max (Ry)
be the unique maximal ideal of the complete loacl ring ﬁ?'
The multiplicative subset
Sf’ = RP—{O} CA]‘:
is characteristic for 5} =4 max(ﬁp), and there are natural

identifications of exact cateqories

{(A,?m)—modu]es) = ((AP,?m)—modules}

W

{(Rp,8) -modules} = {(Ap,8;)-modules) .

Proposition 4.1.5 i) There are natural identifications of

e-quadratic L-groups
@ A 4
Ln(A,P €)= Ln(AP.SP.E) (nez)y ,
giving rise to a Mayer-Vieloris exact sequence

i L (A 1357, )0 L (hp.€)
n P n

wr >

=3

— Tl (L
P

with?® ranging over max(R).

j=1

(é;lﬁ?,E),Ln(?\?,e)) ———-»Ln_l(A,e)_, ... (nez),

ii) 1f Pemax(R) is such that

either the maps ﬁl(EZ;A,E)———+ﬁl(E2;KP,e)and

itz AL, €) ——>H (A ,E)Qﬁl(z ;§_13 ,€) are one-one
2'7y 2'7°® 2'7p TP

or there exists a characteristic multiplicative subset
PCA for ® and the map
ﬁl(zzm,e)—»—»ﬁl(22;89,e)0ﬁ1(22;p'1A,e)
is one-one

(e.g. if some power’?k (k2> 1) is principal and

ﬁo(ﬂz;?§,c) = 0)
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there are natural identifications of c¢-symmetric L-groups
n w noA A
L'(A,® ,e) = L (Ap,Sp.e) (n€2)

1f one of these conditions is satisfied for each ¥ € max(R)
there is defined a Mayer-Vietoris exact sequence

1

coi LA e) LG (ST Ae)@flL" Ry, )

—1 g e MRy e A —.. ez,

. ii) L*(A,57,€) = L* (A, Sp.¢)
iii) For A,Y,e as in the groups - A A
i) Ly(A,P ,€) = L,(As,Sp,c)

are Lo(ﬁ?)-modules.

Proof: i),ii) Immediate from Propositions 3.6.3,3.6.5 and 4.1.4
using the cartesian morphisms (AF,SP)———o(R?,S?),(A,P)———ﬁ(ﬁy,P).
(The restricted product gg(G?,Hy) of a collection of abelian

group morphisms HP———*Gy indexed by a set {®} is the direct limit

I (6pHp) = Lip ( (16, x (1 np)
?Gyp -I_mG’GIPTQIP

taken over all the finite subsets I of {P}).
iii) Immediate from i),ii) and Proposition 2.2 6.
[l

The hypotheses of Propositions 4.1.4 ii), 4.1.5 ii) are
satisfied if the Dedekind ringRis of characteristic # 2 and
has finite reduced projective class group RO(R) (= the ideal
class group), such as is the case for the ring of integers R
in an algebraic number field F. In particular, the hypotheses
are satisfiedxi[ (A,S) is the Dedekind algebra with involution
defined by a torsion-free ring with involution A, with

§ = Zz-{0}Cc A, R=3s5svuf{0o} =2 ,

for which Proposition 4.1.5 gives identifications
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it

DL AL, (D)%, e)
1Y

14

EELn(Ap.(p) ce)

L"a,s,e) =PL @, (p)=.e)
p

[}

L (A,S,¢€) =E§Ln(i\,(p)“’.€)

(nez, p prime, (p) = pZ4d2&)

and a Mayer-Vietoris exact sequence

et a ) —— 15T, e 0 TL A L e)
P
—Tlug GIA L) MR L)) —L A, —> ..
PP P
p P
\ s,.-1 A
coo—2L (A, e)—>L7(S "A,e)ef L (A _,¢€)
n n n''p
. P
Sp A_.lA ~
—»E{(Ln (sp Ap,c),Ln(Ap,E))——«)Ln_l(A,C)—?..‘
where S YA = o8_A, A = LimaA/pFa = 2 a_a, §T1A =0 a_a
Z p “ pz' "p'p pz
L* (A, (p) ", €)

are LO(&p)—modules,and

Moreover, the L-groups ©
L,(A, (p) ,¢€)

hence of exponent @(p). (See §3.6 for the definition of @(P))-
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4.2 Dedekind rings

We shall now specialize the results of §4.1 to the cas:
of a Dedekind algebra with involution (A,S) with A = R = Su
i.e. A is itself the underlying Dedekind ring with involutio

Let then R be a Dedekind with involution, and let

S = R-{O}CR ,
so that the quotient field of R is given by
F=s1g .
Recall from §3.1 the definition of the maximal S-torsion
submodule of an R-module M
TM = {x€EM|sx=0€M for some s€S}CM ,

S

torsion
An R-module M is if
torsion-free

iTSM =M
T M = {o} .
an (R,S)-module

An R-module is { if and only if it
a f.g. projective R-module

torsion
is f.g. and .
torsion-free
Given a finite-dimensional R-module chain complex C let
T, (C) = TgH (C) oy = TH' (C)
(resp. r r r ) (rez
F () = H[(C)/Ter(C) F™(C) H™ (C) /TgH™ (C)

It

maximal torsion submodule
be the of H[(C) (resp.
minimal torsion-free quotient module

an (R,S)-module
which is . The universal coefficie
a f.g. projective R-module

theorem gives natural R-module isomorphisms
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1 (@) =1 @) = Homg (T ) r/Ry 5 v (£ (E2Y)

1

_ r+
(x€C,_,y€C, ,,,s€S,5x=dy€C ,f€C )

Fr(C)——)Fr(C)* = HomR(Fr(C),R) P X (s (X))
(xGC[,fGCr) .

Proposition 4.2.1 The L-groups of a Dedekind ring with involution
1

R and of the quotient field F = $ "R are such that

i) The skew-suspension maps in the te-symmetric L-groups

5 : "R, ) — L2 (R, -¢) (n70)

5 : L"R,5, )~ 1" (R,5,-¢) (n21)

are isomorphisms.
c-symmetric
ii) The Witt group of even c¢-symmetric formations over F
e-quadratic

vanishes
ME(F) = LY(F,e) = 0
€ _ .1
Mlv,?"(F) = L "(F,-€} =0
MC(F) = Ll(F,e) =0,
e-symmetric
as does the Witt group of even e-symmetric linking formations

e-quadratic

over (R,S)

ME(R,S) = L2(R,S,-€) = O

M»E(R,S) = LNR,S,6) = 0

M (R,5) = LTN(R,S,-¢) = 0 .



iii} There are defined localization exact sequences of
Witt groups
3 -
0 —> LE(R) —> L& (F) —> LE(R,5) —> M (R} —> 0
€ € 3 € -€ .
QO —-L (R) ——>L (F)——%L(v()) (R,S)——*M(v()) (R) >0

0—> Lévy) € (R) ——> Ly S (F)—> L_(R,S) —> M__(R) —> 0

0—> M_(R,S)—> L_(R)—>L_(F)—2>L_(R,5) —>M__(R) —> 0 .

In particular, there are natural identifications of Witt groups

of formations over R with quotients of Witt groups of linking

forms over (R,S)
(non-singular (-c)-symmetric linking forms over (R,S))

M®(R) =
(boundaries of S-non-singular + (hyperbolics)
(—€)-symmetric forms over R }

€ =
M{vg? T (R) =
(non-singular even (-€£)-symmetric linking forms over (R,S))
(boundaries of S-non-singular (-€)-symmetric forms over R)
M_(R) =
(non-singular (-€)-quadratic linking forms over (R,S))
(boundaries of S-non-singular even
(-€)-symmetric forms over R)
(non-singular split (-¢)-quadratic linking forms over (R,S))
(boundaries of S-non-singular (-¢€)-quadratic forms over R)
even (-€)-symmetric
{Note that a stably hyperbolic (-£)-guadratic linking

split (-€)-quadratic
form over (R,?) is isomorphic to the boundary of an S-non-singular
(~¢)-symmetric
by Proposition 3.4.6 ii)).

even (-¢)-~symmetric form over R,

(-e)-quadratic



iv) For n = 2i (resp. n = 2i+l) the isomorphism
571 "R, e) ——— 172 (R, () Te)
—_i i (i)O)
S : Ln(R,C)““—**—* Ln_2i(R,(~) €)

e-symmetric
sends the cobordism class of an n-dimensional
e~-quadratic

) (c.oeQ(c,e))
Poincaré complex over R to the class in
(C,¥ € Qn(C,C)) !

H
=}

(R) L (R, (<) fe) =
(resp.

12 (R, () Ye)

[l
=

f
ad
=
t
=
z

i i
Lo (R, (=) fe) L) (R, (-) "€)

(—)1E—symmetric
of the non-singular i form over R
(-) "e-quadratic

(Fi(C),®O: Fi(C)x Fi(c)ﬁv__*R)

i i i ) (resp. of the
(F7ACY, (14T ) v (¥} :F (C)——+Q(_)1€(R))
(-)i+1e—symmetric

i+1 linking form over (R,S)

non-singular +
e-quadratic

-)
(ri*er 08w o) x ot e) ——E/R)

i+l S i i+l .
(T (C).(1+TE)WO.PVS(¢)=T (C)—>Q 1+l€(R,S))

(-)
v) There are natural direct sum decompositions of Witt

groups

WirR,s) = P wwr?
Pe max (R)

for W = LE,L<vO>€,LE,iE,ﬁ€. (The Witt groups W(R,P®) are defi
in the same way as W(R,S) but using only (R,?")-modules) .
vi) There are natural identifications
L°(R,P®) = L (R/p) (PEmax(R)) ,

and the localization exact sequence of Witt groups can be
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expressed as

0-—>L5(R) — L5(F)——> B 1%rp) — > M S (R) —
Pe max (R)

Proof: i) ~v) Immediate from Propositions 1.2.3,3.6.1 and 4
since a Dedekind ring is l-dimensional and the quotient fie
is O-dimensional.
vi) Define an (R,PX)-module M (k >1) to be a P-primary
(R,S)-module with annihilator

ann(M) = Plar
for some j¢ k. Let LC(R,?k) (k 2 1) be the Witt group of
non-singular e-symmetric linking forms over (R,?k), that is
non-sinqular e-symmetric linking forms over (R,S) (M,}) wit
M an (R,?k)—module. The natural maps

LE (R, ?%) — > L5 (r,PK*])

P (M) ——M,0) (k3 1)
are isomorphisms, for if (M,X) is a non-singular e-symmetr]
linking form over (R,?k+l) then

L =3P*Mcu
is a sublagrangian of (M,X) such that L is an (R,Tk+l)—m0dl
and (L:/L,X%/)X) is a non-singular e-symmetric linking form

over (R,Pk), so that there are defined inverses

€ K+1 € k

L (R,? )——L (R, P") ; (MA)——>(L/L,AL/X) (k> 1)
We can thus identify

LFR,P°) = Lim 1SR, PK) = LE(R,P) .
k
There is a natural identification of categories
{ (R,?)-modules}

= {finite~-dimensional vector spaces over the

residue class field R/2} .

o~
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Choose an element ne?—?z

+ SO that 1€ Rp is a generator of
the unique maximal ideal 3} = TRy € max(Ry) of the local ring Ry,
and note that for any (R,?)-module M there is defined an

R-module isomorphism

M* = Homg o (M,R/P)-——>M" = HomR?(M,F/R?) d

fr—s (X +—

£ (x)
o

Moreover, the e-duality involution TE on HomR (M, M%)

/
corresponds under this isomorphism to the e-duality involution
T, on HomR?(M,MA). (We are assuming here that % = n€P).

The natural R-module morphism

Hom, (M, F/R) ——> Hom (M,F/R?) s f—a (x——>f(x))
R Ry
is an isomorphism, so that we have identifications of categories

{e-symmetric linking forms over R/pl
= {e-symmetric linking forms over (Ry,Pp)}

= {e-symmetric linking forms over (R,P)}

and hence also of e-symmetric Witt groups

LF(R/9) = LS (Rg, %) = LY (RP) = L5 (RS
{with only the identification LC(R/?) = LE(RT,??) depending
on the choice of uniformizer m).
{1

The I,-theoretic devissage argument used to identify
LY (R,P7) = LY(R,?) in the proof of Proposition 4.2.1 vi) above
breaks down in the e¢-quadratic case. Given a non-singular
e-quadratic linking form over (R,S) (M,A,u) such that

ann{M) = pk+l

(k »1)
for some € max (R) it need not be the case that L = PM CM

is a sublagrangian of (M,X,u) as well as of (M,}).



For example, consider the non-singular quadratic linking form
over (Z.z-{0}) (M,A,u) defined by

M=z, (so that ann(M) = (Z)ZQZ)

A: MxXM——Q/Z ; (m,n)b——s%mn

b o M-——)QH(ZZ,Z-{O}) = Q/22% ; mr-—Ae%mz .

Then L = 2MCM is a lagrangian of the symmetrization (M,}) but
not of (M,A,u), since

u(2) =1 ¥ 0 € ©/22 .
In fact, the kernel of the symmetrization map of Witt groups

4T : L, (Z,(2)) = zeezzzh—»r,“l(z,(zf”) = L+1(Z2) =z,

(a,b)r—>b
is generated by (M,x,u} = (1,0) € ker {1+T) = ZB' and the non-singular
quadratic linking form over (Z,Z-{0}) (M',Xx',u') defined by

M=z

2
At s MU XM — s /7 ; (m.n)’——~—>%mn
WUE M 5 0/2Z 5 mb—— In°

represents (M',A',u') = (0,1) €L+l(z,(2)m). Furthermore,
L+1(22) = Z, (generated by the non-sinqular quadratic form over Z

/1 1
(Z 02,
2 2 ko

1) €Q+l(z2$22)) of Arf invariant 1), so that

L+l(zz,(2) ) # L+1(Zz)

In Proposition 4.3.3 below we shall relate this failure of
|
devissage in quadratic L-theory to a failure of reduction

modulo a complete ideal (= Hensel's lemma) in symmetric L-theory.



The e-symmetric Witt group localization exact seqguence

of Proposition 4.2.1 vi)

0 ——> LR —>L5(F) — D LErsp)
e max (R}

was first obtained by Milnor (cf. Corollary IV.3.3 of Milnor
and Husemoller [1]1) in the case ¢ = +1 € R, with R a Dedekind
ring of characteristic # 2. The identifications of

Proposition 4.2.1 iii),vi)
M S(R) = coker (o:L%(F)—>LE(R,5)) ,
L°(R,5) = %LC(R@)

were first obtained by Karoubi [3], in the case 1/2€R.
Example IV.3.5 of Milnor and Husemoller [l] can be interpreted

as stating that for the coordinate ring of the circle
2
R = Rix,yl/(x2+y?-1)

the Witt group of non-singular skew-symmetric formations over I

is given by

generated by the formation

(o] 1 X
(R®R*, < sR,im( ( ) :R——>RBR*) ) ,
-1 o y

corresponding to the symplectic automorphism

X -y o 1
€ SLZ(R) = Aut (R@R*, ) .
y X -1 [o]

Given a Dedekind ring with involution R and P € max(R)
together with a choice of uniformizer n€ 7P -Pz such that T = 7

there is defined a non-singular skew-symmetric S-formation ove



[¢) 1 i
(RQR*,< ;R,im(( ):'S’*—)RQR*))
-1 o]

i
with 1 € HoleP,R) the inclusion, corresponding by Proposition

to the non-singular symmetric linking form over (R,P)
(R/P A:Rfe X RE —F/R (x,y) 3L .

The inclusion of the lagrangian("i>:P-——»R9R* extends by
Proposition 1.6.2 to an R-module isomorphism

P ®P* — » ROR*
Thus if R has the identity involution (r = r for all r €R)
the duality involution on the reduced projective class group

(= the ideal class group of R) is given by

x + KgR)—— K (R) ; [P] —— [P1* = -[P]
and
R - ker (2:K (R)—>K_ (R)) mZ O(mod 2)
™z, () = o o i
coker (2:K, (R} ——>K, (R} ) m = 1(mod 2)
Now vO(R,—l) = O (by Corollary 1.3.5 of Milnor and Husemoller

so that a portion of the relevant exact sequence of

Proposition 1.10.1 can be written as
2 ~2 = 1
veoe—3 U (R,~1) —> H (ZZ;KO(R))———*V (R,-1)
»—»ul(R,—l)—»ﬁl(zz;io(k))'—-»o .
The map
2 _ 0 a2 =
U°(R,-1) = U (R)—>H (ZZ:KO(R)): (M, ) ——» [M]

is onto: if I is an ideal of R such that 12 = rR is a princig
ideal, with generator r € 12, then

(I,$:IxI ——>R; (x,y)'——+¥L_X)



is a non-singular symmetric form over R with projective class
(11 €K (R). Thus the map ﬁl(zz;iom))w_,vl(a,-l) is 0, and

there is defined a short exact sequence
0~ vi(R,-1) — > Ul(R,—l)mﬁﬁl(Zz;Ro(R)) — 0.

If R is the ring of integers in an algebraic number field F then

by Milnor [4,Cor.16.3]
1
V7 (R,-1) = SKl(R) =0,
so that there are identifications
vtr,-n = w ) = Az, R (D)

The consequent identification

coker (z: LT (r)— B L*l(R/?))=ﬁl(zzfio(R))
P € max(R)
appears as Example IV.3.4 of Milnor and Husemoller [l1] - in this

connection see also Knebusch and Scharlau [1].

See Pardon [6],[7] for an extension of the localization
exact sequence of L-groups of Dedekind rings to more general
reqular rings, and for an application of the algebraic theory
of surgery to the conjecture that for a reqular local ring R

1

with quotient field F = (R-{0}) "R the natural map of symmetric

Witt groups LO(R)————)LO(F) is injective.
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4.3 Inteqgral and rational L-theory

The results of §4.2 will now be applied to obtain the
L-groups of the Dedekind ring R = Z and of its quotient field
S_lR = @ (with S=2Z-{0}cZ), in the sense of reducing the
computation to the well-known stable classifications of forms
over Z and Q. In the first instance we recall the classical
invariants of forms over Z.

A symmetric form over Z (M,¢) induces a symmetric form

over R which can be expressed as

RrA, (M. ¢) = 8(1R,l)08(1R,-1)$?(R,0) (p/q,r>0)

up to isomorphism. The signature of (M,¢) is defined by
o*(M,$) = p-g€Z

If (M,¢) is even (¢(x)(x) =0(mod 2) for each x €M) then
o*(M,6) = O(mod 8)

The deRham invariant of a non-singular skew-symmetric

linking form over (Z,S) (M,1) is defined by

g*(M,x) = M| ~ 1€ Z, .
or equivalently the mod 2 reduction of the number of summands

in the decomposition of M as a direct sum of cyclic groups of

type Z K (p prime,k »1). If (M,x) is even (Xx(x){(x) =0€ Q'l(o/z)=zz
P
for each x€M, e.g. if M is of odd order) then

ag*{M,}) = 0 ¢€ Ez.
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A non-singular skew-quadratic form over Z (M,¥) induces

a form over 22 which can be expressed as

e <O l) @ (l 1
Z.,8,, (M, ) = (Z B2, e Dz o2z, )
27z b 2 2 0 o c 2 2 o 1

(b 20,c=0 or 1)
up to isomorphism. The Arf invariant of (M,Y) is defined by
0,(M¥) =ceZ

2

Proposition 4.3.1 The symmetric and quadratic L-groups of Z

are given by

Z /A (o]
n Zz (o] 1
L' (Z) = B Ln(Z) = if n= (mod 4)
(o] Z 2
2
o 0 3

L(Z) = L 4 (Z) (ng-1, ntdk > 0)

O n=-1,-2
tNz) = if

Ln(Z) ng -3

1l

The invariants are given by

L @ ——z; c.oe ™ er——signature of (F¥*(0),0,)

L‘“”l(z)—’zzz ;

(C,¢€qu+l T2k+1

(C) ) ——>deRham invariant of ( (C),Qg)

L4k(z)—~“>z:
(C,¥ € 0y, (C) )——— F(signature of (FZ*(C), (14T)¥y))
Lake2 (B) =2,

(C,¥€0Q,,,,(C)——>Arf invariant of (p2k+1

(), ¥)

( 1



The hyperquadratic L-groups ﬁ*(z) (as defined in §2.3) are

given by
8 o
ZZ 1
. if n= (mod 4) (n2~2)
"z = o) 2
z, 3
0 if ng-3

Proof: Proposition 4.2.1 reduces the computation of the

even-
dimensional L-groups of Z to the stable classification
odd-
forms over Z
of non-singular ., for which we
linking forms over (Z,2-{0})

Arf [1], Milnor and Husemoller [1]
refer to
deRham (1], wWall [1]
symmetric LO(Z) =
The generator of the L-qroup
quadratic LO(Z) =22
symmetric
is represented by the non-singular form over Z
quadratic
(z,1e0"t(z)) lez
8 of signature . The generator of
(Z ,EBGQ”_(E)) 8ez

ttz) = L2z, z-10h) = 12z, (27) - z
o is represented by
L,(2) = L3(%,R'{O}) = L3(Z,(2) ) = Z,
symmetric formation deRham
the non-singular over Z of
skew-quadratic form Arf

invariant 1€ zz



o 1 +1 1
(Z®ZZ, €Q " (ZdZ); im(( : Z —>ZeZ2) ,
1 1 ¢}

1
im(( ):Z—)ZQE))
-2

[o]

— N

11
(zez, €Q_, (z82)) ,
1

skew-symmetric linking form
corresponding to the non-singular
split skew~quadratic linking

over (Z,(2)")
formation

(Zyi \: %y x Zy——> Q/Z; (m,n) —> %mn)

(2 0)
(Z g ( ,0)Z.®Z.), with
4 © 2) 2%%,
2

L e:zzmzz——>0+l(z,z-{o})=o/2z; (m,n})——m +n2

1

Of course, the computation of the simply-connected surgery
obstruction groups L, (Z) is well-known, going back to Kervaire
and Milnor [1].

Proposition 4.3.2 The L-groups of @ are given by

n zzmz';@z:’ if n=0(mod 4)
L (Q) = Ln(Q) =
o] if nZ0O(mod 4) .

L-theory localization exact sequence
quadratic

‘symmetric
The i
o 0 0 3 0 o
— > L (Z) —> 1L, (O)——%gl‘ (Z,(p) ) —>0

3 ® (p prime)
O——>Ly(Z) = > Ly(Q) — gLO(Z:(P) ) — 0



“splits
2 with
does not split
Z,92z p = 1(mod 4)
Lz, (") = 1z, ™) = Oz =L F 2 e
P Z, p 2 3{mod 4)
Q 3 _ (o]
%L (Z,(2)") = L (z,) = z,
Lo(Z,(2)7) = Z 82, .

1
The computation of L*(Q) is also well-known, cf. §IV.2 of

Milnor and Husemoller [1]).

1e’(z, (2°) = z,
The element is the image
(1,0),(0,1) GLO(Z,(2)°°) = Zgez,

i @ — 1%z, (™)
under of the Witt class of the non-~singular

3 Ly(@ =Ly (Z,(2))

symmetric (Q,2€Q+1(O))
form over @ '
quadratic (0,2€Q, (@), (0, 1€e0,,(®)

symmetric

corresponding to the non-singular linking form
quadratic

L]

(22.X )

(Zg A1) (Zy 0,0

over (Z,(2)m) defined in §4.2 above.

By contrast with Proposition 4.3.2 both the symmetric and
quadratic localization exact sequences for the Witt group of

the 2-adic field 62

0o—— 1%z, ,1,0(62) —>1%2,,(3)7) —— 0

~ 3 ~ A
0— LO(ZZ) /LO(QZ) rLO(Zz,(Z) )—>0

split, with



L2(2,. (3 = 1%z, 2)7)

1
)
@]
N
[ 3%
[
N
8]
[
N

Lo(Z,, (2)°) = Ly(Z, (27) = 28z, 4 Ly

(1,0),(0,1) eLO(&Z) = z oz

The element { is represented by

1€ LO(Zz) =2z,

symmetric .
the non-singular form over the 2-adic ring 22
quadratic

2 1

~ +1 , -~ rS A
(Z,,1€0Q " (zZ;)) . (Z,8Z.,, <1 )

)e o*l(2,02,))

1

1
(zzmzz, < >€ Q+1(zz®zz))
0] 1

In identifying Lo(ﬁz) = Lo(zz) we are dealing with a special
case of the result of Wall [7} concerning reduction modulo a
complete ideal in quadratic L-theory: if R is a ring with
involution which is complete in the I-adic topology, i.e. such
that the canonical map

R—— R = Lim R/I®
k

is an isomorphism, for some 2-sided ideal 1 in R such that 1=
then the projection R ———»R/I induces isomorphisms in the
quadratic L-groups

Ly(R)—— 1L, (R/1)
- an L-theoretic version of Hensel's lemma. In particular,
z

2 is complete in the (2)-adic topology, with (ﬁ) = Zﬁzd ﬁz

and E2/(2)= 22.



Proposition 4.3.3 i) Reduction modulo a complete ideal fails

for the symmetric L-groups, since

O, 2 _ 8} -
L (Zz) = 280222 # L (22) = 2.2 .

ii) Devissage fails for the quadratic L-groups, since
Lo (2, (27) = 207, # Ly(Z,y) =2,
{

The result of Proposition 4.3.3 i) is a direct conseque:
of the well-known failure of Hensel's lemma for symmetric for:
at the prime 2, which is remedied by reducing modulo (2)3 =
instead of (2) - cf. Weyl {1,§111.5). In particular, the
natural map LO(Z,) —>10(Z,/ (1)) = 1L2(Zy) = zg02Z, is an

isomorphism.

See Proposition 4.2.1 vi) for devissage in the symmetri

L-groups of Dedekind rings.
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§5. Polynomial extensions (x = x)

We shall now study the L-theory of the polynomial extensions

Aa[x]' Au[x,x_ll of a ring with involution A, with
ax = xafa) (a€Ahn)

for some ring automorphism a:A ——>A such that a(a) = G-l(g) €A

for all a€A (e.g.a=id. : A——A), with the involution extended by
X = x .

(See Ranicki {21,(3) and §7.6 below for the L-theory of polynomial

extensions Aa[z,z_l] with z = z*l). As usual, we start with a

discussion of the relevant algebraic K-theory.

Given a central indeterminate x over a ring A let A(x])

]

@
be the ring of polynomials [ ajx in x with coefficients

j=0
aje A, only a finite number of which are to be non-zero.

The central multiplicative subset
_ k
X = {x |kp0}cA(x)
is then such that the localization

xtarx) = arx,x71

]

@<
is the ring of polynomials X ajx in an invertible central

j:—- @
indeterminate x with coefficients aje A, only a finite number
of which are to be non-zero. Bass, Heller and Swan [l1] (for n=1),
Bass [2,XII) (for ng0O) and Quillen (for n» 2, cf. Grayson [1]}
used the linearization trick of Higman (1] and the isomorphism

of exact categories



Nil({a) = (f.g. projective A-modules P with a nilpotent A-module
morphism v € HomA(P,P) {i.e. vk = O for some k >0))
—————— ((A[X},X)-modules) ; (P,v)+——>(P,x=y: P—»P)
to identify
; [y
Kn(A[x],X) = Kn-l”-q—"“l——l(A” = Kn_llA)ONllnlA)
7 ez
Kn(A[x]) = Kn(A)ONlln(A) (n )
7 o~ ~ .
with Niln(A) = Kn—l(géé(A’) and Nil(A) the fibre of the forgetful
functor of exact categories

Ni} (A) ——P(A} = (f.q. projective A-modules) ; (P,v}jt—— P .
The algebraic K-theory localization exact sequence
- 3
e K A D > K (Al x T ) =Dk (ALK X) > Ky (ATx])——>
was shown to be made up of naturally split short exact sequences
(e Kn(A)QNlln(A)————»Kn(A)&)Kn_l(A)QNlln(A)QNlln(A)
3 7
—~4~—>Kn_1(A)0N11n(A)~‘~A>o .
and the "fundamental theorem of algebraic K-theory" was proved,
the naturally split exact sequences
0——>K_(A)———>K (Alx])OK_(Alx 1) —>k (Alx,x ')
—— Kn_l(A) —> 0 .

These results were extended for n=1 to the a-twisted polynomial
extensions AQ[x],AQ[x,x-l] of a ring A by Farrell and Hsiang [1],(
and Siebenmann [1], with x no longer a central indeterminate
over A bué such that

ax = xa{a) (aé€A)
for some automorphism a:A——>A, (These results were obtained

in connection with the obstruction theory of Farrell (1] for
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the problem of fibring a manifold over Sl, and the codimensio
splitting obstruction theory of Farrell and Hsiang (1] (resp.
for homotopy equivalences of finite CW complexes {(resp. compac
manifolds) with fundamental group wx Z the a-twisted extensio
of a group m by Z for some automorphism a:n—-—7n - cf. the
discussion of codimension 1 splitting in §7.6 below).

The multiplicative subset

is such that

and the functor

Nil(A,a} = (pairs (P,v) consisting of a f.g. projective
A-module P and a function v:P———P such that

viy+z) = viy) + v(z), viay) = a La)viy) €P (y,z€

and vk =0 : P-——P for some k1)

«——-——?((Aa[x],x)—modules) : (P,V)—>»(P,x=V: P ——P)

is an isomorphism of categories, so that the algebraic K-theo

eccentric localization exact sequence of Grayson (2]
-1 3
s> K (A X)) ——>K (A [x,%x 7)) ——>K (A [x],X)
e Kn_l(AulXJ)-——>... (n€ zZ)

is naturally isomorphic to the exact sequence



nl

(31

P,a€A)

ry

B8 O
0] [¢]
. o] 1

T -1 o e
<. K (A)ON11 (A,0 )-———+Kn(A,a)aNun(A,a)emln(A,

(o 1 o) (o o)

A)eNil i -1

_'___’___’Kn~l( )ONlln(A’“)—‘__4__“’Kn~l(A)QN11n—l(A’Q )
—~ D N

with Niln(A,a) = Kn_l(Nil(A,a)) (n€ zZ) the algebraic K-grou

of the fibre ﬁi;(A,u) of the forgetful functor of exact cat
Nil(A,a) ——B(A) ; (P,V)—m>P ,

and K, (A,a),B,y the abelian groups and morphisms appearing

the exact sequence

1-a B8 1-a
oo K (A) =K (A) ——K_(A,a) —‘L»Kn_l(m—mn_l(m -

In §5.1 we shall study the algebraic L-groups of the
a-twisted polynomial extensions Au[x], Aa[x,x_ll of a ring
with involution A, with q:A~——A a ring automorphism sucth

that 3(a) = o Y(3) €A (a€A) and X = x € A Ix], so that
k
X = {x ]k)O}cAa[x]
is a multiplicative susbset in the sense of §3.1 and
-1 R -1
X Aulx] = Aa{x,x ]

e-symmet
as a ring with involution. We shall show that the

e-quadre
L-theory localization exact sequence given for (Au[x],x)

by §3.6
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L SN € Y S LA S P IS B A S IS

n-1
———»LK (Aa[x],e)—-*...

bkl e o gt o L (X, 0

K
L (A Ix).E)—
(K = im(Ry () — Ry (B < Ry (B), B = a_Ix],A lx,x "], nez)
is made up of naturally split short exact sequences

O LR (A (%], €) — LR (A [x,x 11, e) ~2> L™ (A_[x],X,€)—0 e

o1k txl, o~ L8 (a xx ", 02 L (A Ix] X, €0
(by contrast with the corresponding localization exact
sequence in algebraic K-theory, which need not split if a # id.).
Furthermore, we shall show that each of these short exact

sequences is naturally isomorphic to

;

/

0]

O © O ~

)
0
1
0——L"(a, e)elNi1" (A0 L, 6)— —— >

N -
LV (A, e)eL” (A%, e)@LNi1" (A, ¢, e)BLNTI" (A, 07T, €)

<O 1 O O>
oo 1 0/ ~n
————————3 L (A, €)®LNil (A,a,e) —>0O
(the e-quadratic analogue) ,
/\-)
. LNil*(A,a,¢€)
with the L-groupsi{ cobordism groups of chain
LNil, (A, a,€)
e-symmetric .
complexes in Nil(A,a) with an o-twisted Poincare,
e-quadratic

duality, and A% the ring with involution defined by giving the



ring underlying A the involution

s A 3 A% : ap— afa)

In §5.2 the results of §5.1 will be extended to more

genfal intermediate L-groups of the a-twisted polynomial

extensions Aa[x], Aa{x,x—ll of a ring with involution A,

(In §7.6 we shall outline a geometric interpretation of an

appropriately intermediate version of the decomposition

K -1 a, T o~
Ly(Ay[x,x 71) = L, (A)OL, (A )®LNil, (A,a)@LNil, (A,

el (e =1

for a group ring A = Z[n]). In particular, in the untwisted

case a = id. : A——>A there will be obtained the "fundamental

€-symmetric

theorenm of L-theory", the naturally
e-quadratic

sequence

0 —> ¥ (A, e) ——> V" (Alx] 1oy (A lx M) e)

— v, x 1 e) — U

0 — V (A,¢) ——yvn(A(x],s)evn(A[x'll,e)

——> V_(Afx,x 1) e) ——> U

e-symmetric V*(A,€)

relating the free g L—qroupsg

e-quadratic vV, (A,€)

e-symmetric U*(A,¢)
to the projective L-groups
e-quadratic U, (7€)
The e-quadratic L-theory fundamental theorem was
A TN
Karoubi ([2],(3}] for 1/2€ A (when LMil,(A) = O by

using localization, and by Ranicki [4) using the

split exact

(A,e) ——> O

(A,e) —> 0O

(nE 2Z)

(as defined in §1

L*(A,c)

L, (Ae)

"t

obtained by
Karoubi (1]}

techniques

developed by Novikov {1] and Ranicki (2} in the proof of the

splitting theorem Vn(A(z,z_ll) =V (A)8U _ (A) (n€Z,z =z

Ly,
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5.1 L-theory of polynomial extensions

Let A be a ring with involution, and let
a: A———A

be a ring automorphism such that

ala) =a l(a) €A (aea) .

The a-twisted polynomial extension of A Aa[x] is the ring

of finite polynomials X ajxj in an indeterminate X over A
=0

such that
ax = xaf(a) (a€ny ,
with the involution on A extended to Aa[x] by
X = x .

Thus addition and multiplication in Au[x] are given by

©

E a.xj + z b.xj =
j=0 ) j=o 3
(1

3=0

| 38

+b.)xJ
(aJ ])x

o o« @ N

4 k - +k
ax)(Ibx) =] ] aa )'(bk)xJ

] k=0 j=0 k=0 3 .
and the involution is given by

(‘X a.xj) =

5 oz’J(Ej)xJ (aj,b.GA) .
j=o0 j )

W3 g

(e}
Define the multiplicative subset
k
X = {x |k>,O)CAa[x] .
The localization away from X
-1 _ -1
X Aa[x] = Aa[x,x )

is the a-twisted Laurent polynomial extension of A, the ring

of finite polynomials z ajxJ (aje A) with involution by x = x,

R

containing Aa[x] as a subring with involution.

2z

(D



Given an A-module M and j € Z let xIM be the A-module

J

with elements x°y (y€M), addition by

3 3

xjy + x'y' = xj(y+y') € XM (y,y'€M
and A acting by
atxdy) = Wiy e xIn (yew .
{The automorphism of the projective class group KO(A) inducecd

by the ring automorphism ad:A—A is given by
’

ol 1 KR —— K (B) ; M) ——1x"M] ).
An A-module morphism f € HomA(xJM,ka) (for some A-modules M,N
and j,k€ 2Z) is a function

f: M——N

such that
i) fy+y') = £(y) + f(y') € N
i) flay) = ¥ T@f(y) en
(a€A, vy, Y'EM
with
£ooxIM——x*N ; XjY"*b*ka(Yl .

In particular, there is defined an A-module isomorphism

(I * = Hom, (xIM,8) ——x"T (%) = xTHom, (M,A) ;

(E:xIM— A —— x T (yra T (E(xTy)))  (yeEMm)

with inverse

X T2y —> (x5 x g (xIy 0l (g(y)))  (gemt,ye
We shall write x M as ij,

x IM = Mx) (3em) .

With this terminology there is a natural identification of

A-modules

xImye = uxxd ez .



For any A-module M the induced Aa[x]—module

M [x) = Aa[x]ﬂAM

3

consists of finite polynomials nyj (yje M). As an A-module
j=0

it can be expressed as a direct sum
Molx) = T xIM .

For any A-modules M,N there is a natural identification of

abelian groups
-3

- J
HomAa{x](Ma[x],Na[x]) = jZOHomA(M,x N) .

Similarly, the induced Aa[x,x‘ll—module

-1 -1
Q1%ex 7Y = ALIx,x TiR,M

" A

consists of finite polynomials 2 nyj (yje M}, it can be
jEow

expressed as a direct sum of A-modules

Ma[x,x—ll = ¥ XM,

i=—o
and there is a natural identification
©

-1 -1 j
HomAa[x’x—l](Mu[x,x FiNgIx,x 7]) = ) X HomA(M,xJN) .

=—m

An A-module morphism v € HomA(M,Mx) is nilpotent if
the composite A-module morphism

k 2 k-1

v MY Mx —Y s Mx —_— . ..——>Mx -——Y—»Mxk

is O, vk =0 € HomA(M,Mxk), for some k> 1. (An A-module
morphism f€ HomA(M,N) induces A-module morphisms

fe HomA(xJM,xJN) (j€ z) by



f : x]M—)xJN : ny —— x]f(y) (YyEM) ).
Equivalently, v:M--——>M is a function such that
i) vy+y') = viy) + v(y")

o Lay viy)

#

ii) v(ay)

O for some k1

iii) vy
(a€ea, y,y'e€M) .

An a-twisted nilmodule over A is a pair

(f.g. projective A-module M, nilpotent morphism V€ HomA(M,Mx)) .
A morphism of a-twisted nilmodules over A
f: (Mv) —(M',v')

is an A-module morphism f € Hom_ {M,M'} such that there is defined

A

a commutative diagram

f
M M
v v'

£
MX“_“")M'X .

Define the duality involution on the category of a-twisted
nilmodules over A

e : gé;(A,u) = (a-twisted nilmodules over A)—————»g;;(A,u) H
Myv)—— M, v * = ((Mx)* = x(M*) ,u*: (MX}* —Mx)*x=M) .

An n-dimensional a-twisted nilcomplex over A (C,v} 1is an

n-dimensional chain complex of a-twisted nilmodules over A

d d
(Civ) = (Cn,v)"‘——*(cn_lrv)“‘**---—44>(C1,v)—-~%(colv) .

Equivalently, we have that C is an n-dimensional A-module chain

complex such that Cr = O for r <O and r > n together with a



nilpotent A-module chain map
v : C———>Cx .
Note that (C"*,v*) is also an n-dimensional a-twisted nilcomp
over A.
Proposition 5.1.1 i) There is a natural isomorphism of exact
categories
((Aa[x],X)—modules)————~+§éé(A,u) H
Mb——s (M, V:M—3Mx = x_lM P yr— x"l'(xy)) (y,xy €
under which the X-duality involution

((Aa[x],X)—modules)—~———+((Aa[x],x)~modules) H

. -1
M———3yM” = HomAa[x](M,Aalx,X 1/A,x])

corresponds to the duality involution on the category of
a-twisted nilmodules over A

»: Nil(A,0) —>Nil(A,a) ;5 (Mu)—— (Mu)* = (xM*,v*)
with a natural Aa[x]—module isomorphism

_ s oMt - -1 .
xM* = Hom, {Mx,A)—— M = HomAa[x](M,Aa(X'x 1/A,[x1)
-1 Sl
g—> (yr—— ¥ xJa@®v I yx)) (yem .
j=-w
ii) For each n 0 there is a natural identification of exact
categories
(nh—-dimensional (Aa[x],x)—module chain complexes)
= {(n-dimensional a-twisted nilcomplexes over A)
Proof: i) This isomorphism was first established by Bass [2,X1I
in the untwisted case o = id. : A———> A, (See also

Proposition 3.10 of Karoubi [2]). The extension to the a-twiste

case is due to Farrell and Hsiang [1].
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In particular, an a-twisted nilmodule over A (M,v)

determines an (Aa[x],x)—module M by

®© . @ .
A Ix] xM———M ; ( Vaxd,yy—s T a.v(y) .

j=o0 J j=0 J

with a canonical f.g. projective Aulx]—module resolution

-1 X=-V -1 h
o] ——-—)(xM)Q[x,x ]——-—*)Ma[x,x ]—M—0
where

X~V : (xM)u[x,x_l]————ﬁ-Mu[x,x_ll ;
§xdxyg—— T 63y - xIviyan
550 3 ito ! j

o . ® .
h : Mu[x,x_l]————»M : 2 xjy.k~——9 X vJ(y.)
§=0 ] j=0 ]
. EM
(YJ )

ii) Immediate from i).

{]

We shall now use the identifications of Proposition 5.1

e~symmetric L* (A [x}.X,€)
to express the relative L-groups

e~quadratic Ly (A [x],X, €}
appearing in the localization exact sequence of

Proposition 3.6.1
..:———)Ln(Aa[x],e)———*L;(Aa(x,x—l],E)—fl—)Ln(Au[x],x,e)

—— " A k1)

e L (A [X], e)-——?L:(Aa[x,X_ll,c) -3—+Ln(Aa(x1 X, €)

————)Ln_l(Aa[x],e)———}...

(n€Z)

LNil*(A,q,€)
as the L-groups of finite-dimensional a-twisted
LNil, (A, q,€)

- -~



€~symmetric .
nilcomplexes over A with an Poincare duality
e-quadratic
structure, and to prove that the maps 3 are split surjections.
e-symmetric
In dealing with complexes over the a~twisted
e-quadratic
polynomial extensions Au[x],AQ[x,x_l] we shall assume that

a{e) = € € A .

This is automatically the case if € = +1 € A, for example.

e~symmetric Q*(C,a,c)
Define the a-twisted Q-groups
e-quadratic Q,(C,a,€)

of a finite-dimensional A-module chain complex C to be

"

o"(C,a,€) H_(Hom {W, Hom, (C*,xC}))

Z[ZZ]
(n€ zZ)
Qn(C,a,e) = Hn(WEZ[ZZIHomA(C*,xC)) ,

with T€ Z., acting on HomA(C*,xC) by the a-twisted e-duality

2

involution

. p * = q .
Ta,c : HomA(C ,qu)———+HomA((qu) ,Cp) HomA(C ,xCp) F

o (~) Pleg*

e-symmetric (C,¢)
An n-dimensional a-twisted complex over A
g-quadratic (C,¥)

is an n-dimensional A-module chain complex C together with an

¢e"(C,a,¢)
elenment . Such a complex is Poincaré if the
Ve Qn(C,G,E)

A-module chain map



is a chain equivalence, inducing A-module isomorphisms

H"% (C)—= > H, (xC) = xH,(C) .

e-symmetric
The n-dimensional a-twisted L-group of A
e-quadratic

1" (A,q,¢€)
(n30) is the cobordism group of n-dimensional
L (A,a,€e)
n
e-symmetric .
a-twisted Poincare complexes over A. Note that
e-quadratic
there are defined isomorphisms

L (A0 =1 (A he) 50— e, Th B en

1

~ - n-+* -1
Ly (Bra,e) =L (A,a” " e) 5 (C)—— ("7, (24T, 107 ()

€
(n»0) .
In the untwisted case a = 1 : A——» A the canonical
isomorphism of A-module chain complexes
XC———>»C ; xy r—> Yy
can be used to identify

HomA(C*,xC) = HomA(C*,C)

Q*(C,1,e} = Q*(C,¢c)

Q*(Crlre) = Q,(C,e) ,

L*(A,1,e) = L*(A,c)

i

Ly(A, 1,6} = L,(A,e) .

Let A% denote the ring with involution with the ring

structure of A, but with the involution

- a -
: A > % ;o ar ya(a) .

Given an A-module M let M* denote M regarded as an a%-module,

so that MQt is the right Aa—module with the additive group
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of M and A% acting by

t

et A —— M (y,a)——a @)y

M

and M®* is the A®-module with additive group Hom, (M,A) and

A% acting by
A% X MOY s MOY (3, f) b (y— E(y) a(a)) -
Proposition 5.1.2 There are natural identifications of L-groups

"%, e

Ln(A,a,e)
a (n20)
L (A%} .

Ln(A,u,E)

Proof: For any finite-dimensional A-module chain complexes C,D

there is defined an isomorphism of Z-module chain complexes
Ct@AD = Cc@,D/{yBaz -~ ayBz|a€ A,y € C,2z € D} ——>Hom, (C*,D) ;
uv ——> (f ——>f (u} v}

which can be used to identify
t

= *
C EAD HomA(C D) .

In particular, for D = Cx there are identifications of Z-module

chain complexes

Hom, (C*,Cx) = CGZC/{y@a—l(a)z -ay®zlaen, y,z€C}

H

ca,,C/{yBaz - ala)yBzla€A, y,z€C)
= HomAa(c“*,ca) .

Furthermore, the og-twisted g¢-duality involution Ta,e on

HomA(C*,Cx) can be identified with the e-duality involution 'I‘e

on HomAu(co‘*,C“), so that

0" (c%,e)
a

Q,(C . e)

Q" (c,a,¢)
(n20)

n

Qn(C,u.e)

and similarly for the L-groups.

{1

S0



Given a finite-dimensional a-twisted nilcomplex over A

(C,v:C—>Cx) define a Z[zzl-module chain map

T, & Hom, (C*,xC}—— Hom, (C*,C) ; ¢ r——>vd - ¢v* ,

with T€ Z_ acting on Hom, (C*,xC) by T (as above) and Hom, (
2 A a,€ A

the z[zzl—module chain complex defined by the Z-module chain
complex Hom, (C*,C) with T€ z, acting by the (-€)-duality
e-symmetric

involution T—c' Define the QONil-groups of (C,v)
e-quadratic

ONil*(C,v,€)
to be the relative groups appearing in the
ONil, (C,v,€)

long exact sequence of abelian groups

...-———)Qn+1(c,—s)——~6 QNiln(C,v,e) ———»Qn(c,a,e)

r
_ Q"(C,-c)~—-+...
(n
-————*Qn+l(C,‘€) — QNiln(C,VIE)'—""*Qn(C,G.E)
rv
———-—«)Qn(c,-{)———»...
6¢,9) € oNil1"(C,v ,e)
An element is an equivalence class of
(8¢ ,¢y) € QNiln(C,v.e)
collections of A-module morphisms
- -r+
1 (66 .0 ) € Hom, (c"7T*5* ¢ )eHom, (€"7F*S,xc )| € Z,550
n-r-s+l n-r-s
{(Gws,ws)e HomA(C ,Cr)QHomA(C ,xCr)|r€ %Z,s20

such that



ap + ()0 ar e (™S w903, e ) =0

s-1 s+l -
(v + (-) T ¢s+1) =0

r n-
QU+ (-) b dr+ (o) s+l a, e

Cn-r-s+1 xcr

s+1

r n-s
A(8b ) + ()T (8p )% + (-) T (S g+ (F)T T 8, g)
n _ . ph-r-s
' + (=) v - b v¥) =0 C —C,
{\ {s20)

i
\ : Cn_r+s—l~——~+xcr
ase ) + ()T e dar+ (1) se _ + (5T 80 )
z + (1Mo - %) =0 c"‘”s-——acr
(s0, ¢_y =0, 60_ =0)
/ g
7

e-symmetric
An n-dimensional a-twisted nilcomplex over A
e-quadratic
(C,v,84,¢)
(n>0) is an n-dimensional a-twisted nilcomplex
(C,v,80,¥)

over A (C,v) together with an element {

3 (c,¢ €Q"(C,a,¢€))
Such a complex is Poincare if is an
(C,v€ Qn(C.a,e))

e-symmetric

n-dimensional a-twisted Poincaré complex ove
e-quadratic

e-symmetric

(69,6) € QNil" (C,v/€)
(6%,%) € QNI (C,v,e)

r A.

The n-dimensional a-twisted LNil-group of A
e-quadratic
LNil"(A,a,€) -symmetric
is the cobordism group of n-dimensional
LNiln(A,a,e) e-quadratic

Poincare nilcomplexes over A (n3 0).



Proposition 5.1.3 i) For each n >0 there is a natural
identification of categories
(even) e-symmetric

{n-dimensional {(Poincaré) complexes
e-guadratic

over (A [x1,X))
€e-symmetric .
= {n-dimensional a-twisted (Poincare)
e-quadratic

nilcomplexes over A) .

ii) There are natural identifications of L-groups

Ln(Aa[x],X,e) LNil" (A, a,€)
{n >0)

LNiln(A,a,E) .

L, (A, [x].X,€)

e-symmetric

iii) The L-theory localization exact sequence of
e~-quadratic

(AQ[x],X) in the range n 20 is made up of naturally split

short exact sequences
n n -1 3 . N
O—>L (A Ix],€) —L (A [x,x "],e) ——>LNil (A,0,e) —>0
o“»Ln(AQ[xl,e)—»Lz(Aa(x,x'I),e)~3—>LNi1n(A,u,e)—-o .

Proof: i) This follows from Proposition 5.1.1 i), provided we
can show that if D is an X-acyclic (n+l)-dimensional
A, [x]-module chain complex resolving an n-dimensional
(Aa[x],x)—module chain complex (= a-twisted nilcomplex over A)
(C,v) that
Qn+l(D,—€)
lo

0w Hp, o) = QN1 (c, v,
(n30)
ONil (C,v,¢) .

n+1 (D€
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The exact sequence of E[Zzl—modules

-1
0 —> Aa[x]-~—» Aa[x,x ]

&Aa[x,x_l]/AaIx] — 0

splits, with TE€ Z_ acting in each case by

2
T : Jaxd——oe(Tax)) = Jea (@)’
e %) : %3 : 3
3 j 3
LEA
(aJ )

It follows that every X-acyclic (n+l)-dimensional (-¢)-symmetr:

complex over Aa[x] (D,¢ € Qn+l(D,—e)) is even, since

X
() _
Gy (0) pntlp) —0° 7 A%(z,:A_[x.x l]/AQ[x],s)

§=0
———— iz ixl e

and

0wt m,-e) = 0" hip,-e)

An n-dimensional a-twisted nilcomplex over A (C,v) can
be regarded as an n-dimensicnal (Au[x],x)—module chain complex
by Proposition 5.1.1 iij, and as such has a canonical resolutic
(D,h:D——>C) with D the X-acyclic (n+l)-dimensional

Aa[x]—module chain complex defined by

(dc (—)"Hx—v))
dD =
0 d

c

D, = (Cp)g [X1@(xC 1) Ix]

———>D,_; = (C__,Ix]®(xC,

-1 r )

Vg lx]

a
and h:D———>C the homology equivalence of Aa[x]—module chain

complexes defined by
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h:D = (Cr)(x[)(]‘l?(xcl__l)m(x]———)Cr :
@ ] o j o .
():xy.,zx(xz.))b—-——%i\)](y.) (y.€C_,z.€C
j=0 ~3'j%0 3 j<0 3 PR A I
The Z-module chain map
h : HomAu[x](D*,D)—-»HomAa[x](D*,C) : g—>hg

is also a homology equivalence (working as in the proof of

Proposition 3.1.3 ii)). Now

P
HomAa[x] (D*,C)r HomAa[x] (D 'Cq)

!
p+q=r

)

) HomA(CptDCp_lx,C )
p+q=r g

Hom * *
HomA(C ,C)IQHOmA(C ,xC)r~1 (rez) ,

allowing Hom ](D*,C) to be identified with the algebraic

Au[x

mapping cone C(I‘v) of the Z[Zzl—module chain map

I‘\J : HomA(C*,C)———*—-)HomA(C*,xC)
used to define the QNil-groups. Thus

h ](D",D)-——)Hom ](D*,C) = C(Fv)

HomA [x A [x
a a

is a Z(Zzl-module chain map inducing isomorphisms in homoloc
Zz—hypercohomology

and hence also in the groups
Ez—hyperhomology

$ , ,ntl _ =
h” : Q (D,-¢} Hn+l(Homz[zzl(W,H0mA0[x](D*,D)))
‘*‘———**Hn+1(HomZ:“Z2,(w.C(rv))) = oNil"(C, v, €)
hy ¢ Q41 (Dr-€) = Hn+1(WEz[z2]HomAu[x’(D*,D))
T (W8 g ) CT)) = QNEL (Chvse)



Ln(Aa[x],X,e) = Ni1l™ (A, a,€)

ii) The identifications { (n»0)

L (A [x],X,e) = LNiln(A,a.E)
are immediate from 1i).
iii} The abelian group morphisms

s LNil“(A,a,e)—~—>L;‘((Au[x,x_1],e) ;

(C,v, 86, 00— (Co[x, % 11, v, 86,01)

L LNiln(A,a,s)__.,L:(AG[x’x‘ll’E) (n >0)
(Covs 6%, W (Co [x X T, vy 64, 9])
defined by
[vesg,dlg = (x-v)o_~T 8¢
@) kT —— (e Ixox7h)
(v, 80,91 = (x-Viyp_+T_ &% .,
(Cn_t-s)a[X,X_ll—-—-i(Cr)a[x,x_l]
( (rez, s»0, 5o_l=o)
are right inverses (3A = 1) for the morphisms
K] L;(Aa[x,x_ll,e) — Ln(Aa[x],X,c) = LNil" (A, q, )
(n3 0)

X -1 _ X
y o Ln(Aa[x,x ],€)— Ln(Aa[x],X,e) = LNlln(A,u,e)
appearing in the localization exact sequence, since

el x ML Ty, 66, 01) (C,v,66,0)

is homotopy equivalent to .
(C,v,89,¥)

e mox L v, 69,90
(The underlying (n+l)-dimensional X-acyclic Aa[x]—module chain
CUX=v) 052 (C77¥) o [x] ———> Cq [x])

complex nex is chain
COx=v) (14T I (€7 ") g Ix] ———> Cy{x])

equivalent to the canonical resolution D = C(x—V:(xC)a[x]——+Cu[x))



6.:CNT T ——xC
of C, since -t is a chain equivalence of
(1+Ta,€)wO:C ———a>xC

A-module chain complexes).
[

e-symmetric .,
Define the n-dimensional a-twisted LNil-group

e-quadratic
/\')n
LNil (A,a,€)
— (ny O) to be the group appearing in the natural
LNiln(A,u,e)

direct sum decomposition

n SN
L (A,0,€)®LNil (A,a,¢€

Nil™ (A, a,€)

It

; e
LN11n(A,a,c) Ln(A,u,e)OLN1ln(A,a,e)

obtained from the natural injection

n o L"(A,a,€) —— LNi1" (A, a,€) ; (C,$)——>(C,0,0,d)

31

: LnlA,u,e)—-—aLNiln(A,u,s) (C,¥)——(C,0,0,¥%)

and the natural projection
no: LNil"(A,0,e) ——— LM (A,a,€) 5 (C,v,80,8)—>(C,¢)
N LNil (A,a,e) ———>L (A,a,e) ; (C,v, 8%, 4)——>(C,¥)
(which are such that nn = 1).

Let Aa[x_ll be the ring with involution defined in the

same way as A_[x] but with a1, x71in place of a,x so that

ax ! - x_la_l(a) € Aa[x_ll {a €A)
x 1 =xlea xh .
a
The function

! ao . @ R

Au—l[x]—-~+A0[x—1) s ¥ aaxd—— ¥ axd
2o J i J
j=0 3j=0

is an isomorphism of rings with involution. The mnltiplicative
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subset

is such that

- -1
(X_}) "A [x 7] = Aa{x,x 1 = (X} "A_[x] ,

where X = X = {xkjk >0)<:Aalxj is the multiplicative subset

dealt with above. The inclusions

+
e, : A-~~~>Aa[x'l] j ar——>a

are split by the projections

+ by +4
e, : A (x‘ll—«—+A i Jaxle—sa ,
b4 a . J 8]
j=0
with e e, = 1. The inclusions
- £1 -1
E, o A IX 7] ——A [x,x ")

. j

w +5 L +
Lag e ] agx
it

j=o
do not split.
Let KCK (A [xtl]) (resp K (A [x x-l])) be the #*-invariant
=70 a M O R R
; : +] -1
subgroup of the projective classes lPa[x 1} (resp. [Pa{x,x IBB
of the modules induced from f.g. projective A-modules P by

e, A Aa[xil] {resp. E,e, = E e_ : A ———~«>A0[x,x_l]).

Proposition 5.1.4 For each n3» 0 there is defined a commutative

g-symmetric
braid of naturally split exact sequences of
e-quadratic

L-groups
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S g

T T ///’“’—_“"\\\s ’///-_h\\\\s

o L; (A_[x],€) LNil" o}
LU (A, ) L:(A 1,¢)
e_

/ F
o LR (A (x" e LNil" (A, a,¢€) )

\\_/—/‘] \\3‘4:5_ i -

— /;_E\*
0 _~\\\>L§(Aa[x],€) *omnil (aeTh e //ﬂo

- E I_ n.
\\\\\x 5)7/)w \\\Jzig = \\\\\\ e
K -1
Ln(AIEL Ln(Au[x,x 1,¢€) Ln(A,u,s)
NG B N T N
Ny
K -1 )
(¢ L (A [x 7),¢) LNil (A,a,€) o]
n'a _ n
\\\\\\,-//;7 3+E_ \\\_wfy,/;1

and there are defined natural direct sum decompositions
TN -
LR (A Ix),€) = L"(A,e)8INi1"(a,a b, ¢)
L:(Aalx_ll,e) = L"(A,e)®LNTI (A, €)

| LR (A, (x,x 11,e) = L"(a,c)®LNI1" (A, 0, ) OINTI" (A, 0"}, ) 0L (A, 0,

; E(A [x],e) = Ln(A,e)efN\i’ln(A,a'l,c)

| K ~

! n(A [x~ ]:E) = Ln(A,e)eLN1ln(A,a,s)

'i LK ~ o~ -1

i n(A ],e) = Ln(A,e)QLNlln(A,c,e)@LNlln(A,a ,e)@Ln(A,u'f

(n20)
Proof: In the first instance note that the sequence of e-symmetric
L-groups

E )
00— LR (A tx), ) —> LI A _[x,x 711, e)—F>Nil" (A, 0, 6) — ¢

and its €-quadratic counterpart are both naturally split exact:



449

this may be deduced from Proposition 5.1.3 iii) using the
appropriate comparison exact sequences of Proposition 1.10.1,

noting that
E, : Ka(AyIx])/im(e, :Ky(A)—— K (A [x]))
R =~ -1 P — > = -1
T AM(E KGR IX]) 3 Ko (A %, x 1) /7im(E e Ky (A)—K (A [x,x 71))
is an isomorphism, or else may be obtained directly from the
corresponding intermediate L-theory localization exact sequence
of Proposition 3.7.2 by constructing a splitting map s, for 3,

as in the proof of Proposition 5.1.3 iii). Let

B, ¢ Lp([x,x 1), ) —— LR (A (x],e)  (n30)
be the split surjections associated to the split injections

8, : WiIl"(A,a,0) —— 12 x,x 1,6 (ny0)

and similarly in the e¢-quadratic case. By Lemma 1.l of Ranicki [4]

it now suffices to prove that the diagrams of ¢-symmetric L-qroups

n
INi1"(A,a,e) ——— > LM (A, q,¢)

A+ n_

3
L:(Au[x,x-ll,e) — i1, e

n e+ n
LK(Aa[x] ,€)——————— L (A,¢e)

E* e_

E
n -1 - n _
Lg Aglxox 1ty e ——— LB Ay (x71) ,e)
and their ¢-quadratic analogues are commutative in order to
establish the split exactness of the other sequences in the

braids, and hence to obtain the direct sum decompositions.
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The relation ﬁ_n+ = a~A+ is easy to verify directly. The relation

E_E, = e_e, was verified explicitly in Ranicki [4,§4] in the

+
e-quadratic case for a« =1 : A———A (taking into account
that the splitting maps E,_ defined there are slghtly different

from those defined here, being geared to the splitting maps of
t1

rings A[x!l]-«——>A for E+:A--+A(x!l] given by x* " r——1

+ = — .
rather than e+:x‘l»4—o0). The verification of E.E = e e, in

the general case requires a symmetric L-theory Higman linearization
trick, and is deferred to Ranicki [1l1].

[]

We shall now identify linking forms (resp. formations)
over (An[x],x) with a-twisted forms (resp. formations) over A
together with a nilpotent structure. This will allow us to
tNil™ (A, 0, €)

express the LNil-groups for n = O (resp. n = 1)
LNiln(A,a,c)

as the Witt groups of such objects, and also to define lower
LNil"(A,a,e)
LNil-groups (n< -1), which appear in the extensions
LNil (A,a,€)
n
to the lower L-groups of the results of Propositions 5.1.2,
5.1.3 and 5.1.4.
Given a f.g. projective A-module M define the a-twisted
€-duality involution
T : HomA(M,xM*)v——*HomA(M,xM*) 5 dr—>ed* .

a,€

An element ¢€Ukmm(M,xM') is the same as a pairing
P MxM——A ; (y,2)—>¢ly,2z) = dly) (2x)

(identifying xM* = (Mx)*) such that



i) ¢(Y+Y'IZ) = ¢(y,z) + ¢(Y'lz)

ii) ¢(y,z+z') = ¢(y,2z) + o(y,z")
iii) ¢(ay,bz) = a(b)d(y,z)a € A
{(y,v'.z,2'€M, a,bea).

The a-twisted e-dual Ta E¢€ HomA(M,M*x) is the pairing defined by
r

Tu,s“’(y'z’ = ca(dlz,y)) €A (y,z€M)} |

(Working as in the proof of Proposition 5.1.2 it is possible

to identify

o a
(Hom, (M, xM*) , T ) = (Homya((Mx)", (Mx)""),T.) ).
Pefine the a-twisted Q-groups of M
€ - - . S *
0" (M,a) = ker (1l Tule.llomA(M,xM*) aHomA(M,xM ))

€ = i . *y) s * €
Q<v0> M, a) 1m(1+Tq’e.HomA(M,xM ) HomA(M,xM ))CQ (M,a
- - . 3 p—
k QE(M,Q) coker (1 Tu,e'HomA(M'XM ) -#HomA(M,xM*)) .

(even) e-symmetric (M, )
An oa-twisted form over A is a
e-guadratic (M, ¥)

f.g. projective A-module M together with an element

s€Q° (M, ) (o€ QvE M)
. Such a form is non-sinqular if

Ve QE(M,G)
¢ € HOmA(M,xM*)
is an isomorphism. There are evident
(1+Ta E)wG HomA(M,xM*)
’

notions of morphism, (sub)lagrangian, hyperbolic, Witt group

for a-twisted forms. The Witt group of non-singular a-twisted

ﬂ(even) c-symmetric
forms over A is denoted by

e-quadratic

LE(A,0) (Lov>E (A,u))
There are identifications of

LE(A,G)
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cateqgories
(even) e-symmetric
(O-dimensional a-twisted
e-quadratic
(Poincaré) complexes over A)
(even) e-symmetric
= ((non-singular) a-twisted forms over A)
e-quadratic

and hence also identifications of groups

1%(a,a,¢) = LE(A,0)

LO(A,a,E) L (A,a)

Given an a-twisted nilmodule over A (M,v € HomA(M,Mx))

define the QNil-groups of (M,v) by

oNil® (M,v) =
{9 € Hom, (M, xM*) [€4* = ¢ € Hom, (M, xM*) ,v*¢ = pv € Hom, (M,M*) }
QNil<v0>E(M,\J) =
{¢ € Hom, (M, xM*) |¢ =y +ey* for some y € Hom, (M, xM*)
such that vw*p - ypv = §¢ + gcsq;*(:‘uomA(M,M*)
some 6y € Hom, (M,M*)} CONi1® (M,v)
ONil_(M,V) =

{(sy,p) € Hom, (M, M*) @Hom, (M, xM*) Ju*p - pu =8y + eSy* € Hom, (M, M

{8 - edx* + v¥y - xv,x =~ ex*) | (8x.x) € Hom, (M, M*)@Hom, (M, xM*) }

{even) e-symmetric (M,v,0)
An a-twisted nilform over A
e-quadratic (M,v, 84,4

is an a-twisted nilmodule over A (M,v) together with an element

¢ €ONI1® (M,v) (0 € QNiIl(vy ) (M,v))
Such a nilform is
(8¢ ,¢p) € QNils(M,v)

M.p€0%(M,a)) (M,p€ Q(vo>C M,a))
non-sinqular if is a
- T (M, €0 (M,a))
€



(even) e-symmetric

non-singular a-twisted form over A.
e-quadratic

There are evident notions of morphism, (sub)lagrangian,

hyperbolic, Witt group for nilforms. The Witt group of

(even) e€-symmetric
non-singular a-twisted nilforms over A
e-quadratic

INi1S (A, ) (LNil{v>© (a,a))
is denoted by .
LNile(A,u)
Proposition 5.1.5 i) There are natural identifications of
categories
e-symmetric .
(0O-dimensional a-twisted (Poincare)
e-quadratic

nilcomplexes over A)

e-symmetric
({non-singular) a-twisted nilforms over A)

n

e-quadratic

e-symmetric
((non-singular) { linking forms

n

split e-quadratic
over (Aa[x],x))
({non-singular) a-twisted even e-symmetric nilforms over A)
= ((non-singular) even g-symmetric linking forms
over (Aa[x]rx)) .

ii) There are natural identifications of L-groups

Nil%(a,a,e) = LNil1S(A,q) = LS (A, [x],%)

L (A 1x], %) = L0 [x],X,€)

#t

LNily(A,a,e) = LNil (A,a) = L (A [x],X) = Lo(A_ [x],X,¢€)

NIl (Ae) = L_(A [x],%) = L“Z(Aa[xl,x,-e) )



Proof: i) Given an a-twisted nilmodule over A (M,v€ HomA(M,Mx))
define a O-dimensional a-twisted nilcomplex over A
(C,v*:C ——>Cx) by
M* ifr =0
c =
0] if r # 0 ,

and note that

oni1®(c,vr.e) = oNil€ (M, )

QNilo(C,v*,e) QNile(M,v) .

This gives the identification of O-dimensional a-twisted

€-symmetric
nilcomplexes over A with a-twisted

e-quadratic

e-symmetric
e-quadratic

nilforms over A. The correspondence between nilforms and
linking forms now follows from Propositions 3.4.1, 5.1.3 i}.

e-symmetric
In particular, an a-twisted nilform over A
e~-quadratic

(M, v, 0) e~symmetric
determines the linking form

(M, v, 8¢, ¢) split e-quadratic

((M,v),£)
over (Aa[x],x) defined by
((M,v},E,27)

. E:MxM—— Aa[x,x‘l]/Au[X] 7
-1 . .
(yoz)— § o (v 1Y)(z)xJ

j=-o

- — ‘1 H
E: M xM ——)Aa[x,x ]/Aa[x] :

-1 . .
(yoz)——> T (wrevt) (v 7Ly (2l

j=-



C My Qg(x_lAa(xf/Aan])

= Ho(zz;l\ulx,x-l}/!\a[x},s) ;
Y (Y] (y)x T+ LU ) (y) () x S+ ...

c-symmetric

and every linking form over (Aa[x].x) can
split e-quadratic

be expressed in this way.

By definition, an e-quadratic linking form over (Aa[x],x)
((M,v),£,p) is an e-symmetric linking form over (Au[x],x)
((M,v),%) together with a function

pt M———>0 (A [x],X)
£ a

= -1 -1
{bteb€A [x,x ]|b€Aa[x,x 1}

{ctec|c € A [x]}

(d+cd € AQ[x,x-ll/Aa[x] laen [x]}

(with bc as in the proof of Proposition 3.4.2 ii)) satisfying,

among others,
(o] -1
ply) = E(Y,Y} EH (ZZ;AO‘[X,X ]/AQIXI,C) (y €M)
The natural map
G, (A Ix1,X) ——>HC(Zy5A [x, % T1/A [x],€) ; G+ed —>d+ed

is injective, so that p (if it exists) is determined by .

By Proposition 2.4.1 i) every e~quadratic linking form admits
a split e-quadratic refinement. Thus we can also identify
a-twisted even e-symmetric nilforms over A with e-quadratic
linking forms over (Aa[x},X).

ii) Immediate from i) and Propositions 3.4.7 i), 5.1.3 ii).

(
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{even) e-symmetric

An a-twisted formation over A
€-quadratic
(M, ¢;F,G) (even) e-symmetric
is an a-twisted form over A
(M, ¥;F,G) e-quadratic

{(MIQ’QQC(M,G)) ((M,¢€Q(VO>€(M,&)))
together with a

(M, ¥ € QE(M,G))
lagrangian F and a sublagrangian G. Such a formation is
non-singular if G is a lagrangian. There are evident notions

of (stable) isomorphism and Witt group for a-twisted formatio

(even) e-symmetric
The Witt group of non-singular a-twisted
e-quadratic

ME (R, @) (MCv>E (A, a))
formations over A is denoted by . There
ME(A,Q)

are identifications of groups

tra,a,e) = MS(a,a)

LI(A,a,e)

ME(A,u)

(even) e-symmetric
An a-twisted nilformation over A
e-quadratic

(even) e-symmetric
is an a-twisted nilform

(M:v,¢;F,G)
€-quadratic

(M, v, 89, 4;F,G)
(M, V€ Hom, (M,Mx) ;¢ € ONi1%(M,v)) ((M,v,0€ ONil{y > (M,

over A
(M,ve HomA(M,Mx) Ve QNilc(M,v))

together with a lagrangian F and a sublagrangian G, and such

that in the e-quadratic case

w E(Atecd*) 0 e} o 1
(M, v,80,¢) = (FexF*, ) ’ ( ' )
o} w* [¢] A o] (o}

for some nilpotent map w€ HomA(F,Fx) and some e-quadratic fori



over A (xF*,X€Q_(xF*)), with ‘G’vlr’w’c) an a-twisted even
(~¢)-symmetric nilform over A, Such a nilformation is
non-singular if G is a lagrangian. There are evident notions

of (stable) isomorphism and Witt group for a-twisted

nilformations. The Witt group of non-sinqular a-twisted
(even) e-symmetric
nilformations over A is denoted by
e-quadratic
MNi1E (A, @) (MNil<v > (A, a))
MN11€(A,0)
e-symmetric
A l-dimensional a-twisted nilcomplex over A
e-quadratic
(C,v:iC—>Cx, (8¢, 6) € QNill(C,V,E))
is connected if
(C,v:iC—Cx, (6%, V) GQNill(C,v,e)}

:C ———3xC) = 0O

1-% =
HO((1+TG,€)WO.C —xC) =0 .

Proposition 5.1.6 i) There are natural identifications of sets

of equivalence classes

€e-symmetric
(connected l-dimensional a-twisted
e-quadratic

complexes over A)

€-symmetric
(a-twisted nilformations over A}
€-quadratic

3

(even) e-symmetric
linking formations over (A, {x1.Xx)) ,

split e-quadratic

(a-twisted even t£-symmetric nilformations over A)

= (e-quadratic linking formations over (AQ(XJ’X)) .



Poincaré nilcomplexes correspond to non-singular nilformations,
which in turn correspond to non-singular linking formations.

ii) There are natural identifications of L-groups
s 1 _ i 1€ _ m€
LNil (A,a,e) = MNil  (A,a) = M (Aa[X],X)

MCvgd® (AL (x1,%) = LhA_[x],X,€)

it

LNil,(A,a,e} = MNil (A,a) = M_(A [x],X) = Ly(A [x],X.c)
MNi1CugdT (A,a) = ME(A_(x1,%) = LTHA_[x],%,-0)

Proof: By analogy with Proposition 5.1.5.
In particular, given a connected l-dimensional a-twisted
{(C,v,8¢:¢)

nilcomplex over A { there is defined an

e-symmetric
; (C,v,80,¥)

e-quadratic
€-symmetric
a-twisted nilformation over A, as follows.
€-quadratic
The nilcomplex (C,v:C——>Cx} is defined by a morphism
of a-twisted nilmodules over A
d : (Cer) ——*——~**(C0,v)
(86, 0) €Qnill(c, v, e)
The class is represented by a collection

(¥, 4) € QNil, (C, v, E)

of A-module morphisms

. o Py - l - 1
¢O : C ———+xCl P ¢O : C ———-»xC0 B ol : C ——4>xC1 ,
1
86y : C —C;
O ~
by C ——-—-)xCl N C —xCq . ¥y Cr—xCq ,

1 .

éwo : C +~—>Cl , 6¢l : C ——~>c1 , Gwl : C —>CO B
0

6w2 : C —*cho

satisfying



v, - & vk - 6¢O + €6¢6 = 0

av, + ’ulod* L SR e R e O ms@i

v - @ ur ddwo + 651 + ede =0,
LIS ML LI wld* - 80, + e8dy =0

e-symmetric
The a-twisted nilformation over A associated to
e-quadratic

(C,v.,8¢,9)

is defined by
(C,v .80 ,0)

v o -ebd o 1 €
(xc,ec?, oy, ixc im0 ):c®—s xc mch)
o] i € ¢1 1 a* 1

v -e (8P +e6w*)> 0 o) o 1
1 o o
(xC.@C", , ‘ ;
1 (o u* (o "”‘o) (o o)

€ +ePx)
xCl,im(< oo :co—»xclecl))
dﬁ

‘ecsymmetric
Define the n-dimensional a-twisted

€-quadratic
LM (A, a,€) LNil™(a,a,€)
{res

L- (resp, LNil~) groups
LNiln(A,a,e)

Ln(A,QIE)
for n (-1 by
Mv Y " (A
Vo (A,a)
LMa,0,0) = § vy (ha)

Ln(A,G.C)
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MNil<v0>_C(A,u) n=-1
{resp. LNil"(A,a,e) = -L LNil<vp> ™ “(a,a)) if n=-2

LNiln(A,u,C) n<-3

L (Ava,e) = L, (B,a, (=) )

n+2i

(resp. LNiln(A,a,c) = LNil (A,a, (-) E)) (n <-1,n+

n+2i
/\.dn
LNil "(A,a,€)

Let { —~_ (n€-1) be the groups appearing in the natu
LNiln(A,u,e)

direct sum decompositions

—~—
{LNil”(A,a,e) L"(A,a,e)0LNI1" (A, q, €)

LNiln(A,a,e)

/\'J
Ln(A,u,e)OLNlln(A,u,e)

as in the case n 3 0 dealt with above.

Proposition 5.1.7 For each n€ Z there is defined a commutativ

braid of naturally split exact sequences of c-symmetric L-grc

3_E

— //////~_~\\\\\\5
L (A [x].,¢€) LN11 (A,a —,
\\\\\‘ ///{ﬂ \\\\‘ {///” \\\\\‘ //////’
" (A, €) LK(AQ[x,x 1.8) L" (A,a,€)
e_ B A
L (A (x~ ],e) Nil” (A,a,€) 0

and there are defined natural direct sum decompositions
~ _
LR(A [x),6) = L"(A, ) @LNI1"(A, a7} )

- N
LE(AQIX l].z) = L"(a,e)eLNi1" (A, a,€)

( L;(Aalx,x'll.e) = LM (A, 6)®LNI1" (A, 0, e)@INI 1" (A, 0" L, ey @l



461

as well as natural identifications
t"(a,0.e) = L"(a,0te) = LAY, e) .

Similarly for the €-quadratic L-groups.
Proof: By analogy with the case n >0 (Propositions 5.1.2,5.1.3
and 5.1.4).
(1
In the untwisted case @ = 1 : A——3A the terminology
involving a is contracted, for example

LNil*(A,1,e) = LNil*(A,e) .

We shall now reiterate the example given in Ranicki [6,8§6]

of a pair (A,S) for which the natural projection of Witt groups
L (A,S) ——> L (A,S) i (M,},v)——>(M,},pv)

is not injective, showing that in general split e€-quadratic
linking forms over (A,S) carry more information than e-quadratic
linking forms over (A,S). Namely, let

€ =-1€ea=2z[x]
and note that the non-singular skew-quadratic nilform over Z
1

1
c = (ZGZ,OI(OI(
o

)) € QNile (Ze22))
1

represents the element

c = (1,0) € L _(z{x},x) = LNil_(Z)

]
L (Z)®LNil () ,

is the Arf

1 1
where 1 = (Z62Z, €EQ (ZBZ))EL (Z) = Z
i € € 2

Q

invariant 1 element, and that the natural map



= > TN €
LS(Z[X],X) ————’LC(Z[X],X) = L<VO> (Z)@LNIl(V()) (Z2)

sends this element to O, since L<VO>E(Z) = O (Proposition 4.3.1).
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5.2 Change of K~theory

The results of §5.1 will now be extended to the
intermediate L-groups of the a-twisted polynomial extensions
A lx], Au[x,x_l] of a ring with involution A, using the
intermediate L-theory localization exact seguences of §3.7.

As in §3.7 we start by considering the action of the
duality involutions # on the algebraic K-theory locglization

exact sequence, which in this case is

~ E B R 3
Ky (Ag [x]) ———> K| (Aq [x,x" 1)) ——— K, (Ag [x],X)
i E, -1
>R (A [X]) ——— K (Ay [x,x 7])

for a ring with involution A and a ring automorphism a:A —3 A

such that a(a) = o 1(3a) € A (a€ A). The action is such that

*E+ = E+t , %3 = 3 . *j = =%

By the results of Farrell and Hsiang [1],[2) and Siebenmann [1]

this sequence can be expressed as

i, o
E,=; 0 ©
g v -1 o 1 =~ ~ onil '
K, (A)@Nil (A, o 7) »K, (A, 0)@Nil, (A, 0)BNil) (A, &
) o o l-a ©
) = j =
0 1 0 —~ 0 o - —~ ]
>K_ (A)®BNil, (A, @) ————————> K_(A)®Nil, (A, o
0 1 o} 1
io ¢}
E, = o 0
0 1 PR PR

e KO(A, a) QNilo (A, a)QNllO(A, [}

with
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T~
K (B [x],X) = K ) (Nil(A,a)) = K ,(A)ONil (A,a)} (m=0,1)

and fm(A,a) (m=0,1) the relative K-groups appearing in the
exact seguence

il - 3y l-a
...————»Kl(A) E— Kl(A,a) vKO(A) 47-KO(A)

i
—O——»EO(A,u)—->. ..

The duality involution on the exact category Nil(A,a) of
a-twisted nilmodules over A
* ¢ Nil(A,a)—>Nil(A,a) ;
(P,v:P —— Px)——>(xP*, vk xP* —, p*)

induces the duality involution

*a O

* =
o =
Lyt
Km(Aa[x],x) = Km_l(A)Olem(A,u)
e
> K (A [x]),X) = K _,(A)@Nil (A,a) (m=0,

with *a the composite of the automorphism of the K-group

a Km_l(A) = Km_l(g(A))——‘———’Km_l(A)
induced by the automorphism of the exact category P(A)

a : P(A) = (f.g. projective A-modules) ——>P(A) ;
Pr—— Px
and the duality involution
» Km_l(A)-———~v—»Km_l(A)
induced by

* ¢ P(A)—>EB(A) ; Pr——>P* = Hom, (P,A)
Note that +*a: Km_l(A)-———ekm_l(A) is just the duality involutio

*:Km_l(Au)—-4~+Km_1(Aa) associated to the ring with inveolution
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defined in §5.1 above, with the ring structure of A and involution
AY ———a% ; ar——0a(3)
The duality involution

° : Em(A,a)———>Em(A,u)

which Em(A,u) inherits from lzl(Aa[x,x~1

}} is such that in the
diagram

- il - 3 1~a i
K (A) —=> Kl(A,a)————‘)KO(Aa) > K (A)

* * * * *

i 9 l-a i

Ky (A)-——— K, (A, q) -1, Ko (A%~ fio(A) ——()—>§O(A,u)

we have the relations

ﬂim = im' (m=0,1) , *31 = 31* , *(l-a) = -(1l-a)x*

The duality involutions on the remaining groups of the algebraic

K-theory localization exact sequence are given by

()

K (A _[x]) = K_(a)eNil (A, a”ly—— & (a)eNil_(a,a"})
ma m m- m m'’
+ 0 o
x = o] * [}
o] (0] *
K (A 1x,x 1)) = R (A, 0)8NI1 (A, q)@Nil (A, a 1)
m ot m' m' m
= 7 ~— -1
——> K_(A,a)®Nil_(A,a)@®Nil _(A,a )
m m m
(m=0,1) .
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Given a *-invariant subgroup Y gKl(Aa[x],X) define the

e-symmetric LNilQ(A,a,e)
intermediate LNil-groups Ly (n€ z)
e-quadratic LN11n(A,a,e)

LNil*(A,a,€)

in the same way as the groups of §5.1 (the
LNil, (A, q,€)

special case Y = Kl(Au[x]'x)) but using only a-twisted

nilcomplexes over A with X-projective class in Yg;Kl(Aa[x],x).

The proof of Proposition 5.1.3 ii) gives natural identifications

L]

L;(Aa[x],x,e) LNil;(A,a,s)

wNil¥(a,a,e)

Lz (Au(x] X, E)

the groups on the left hand side being defined as in §3.7. If

= - a, .

Y = yoavlg Ky (A [x],X) = K, (AT)@Nil, (A, 0)
for some *-invariant subgroups YOS'KO(AG), Ylg.Nill(A,a) there
are natural direct sum decompositions
T~
LNil*(A,a,e) = LX* (A,a,c)®LNil* (A, a,¢€)
Y YO Yl

Yo ~_.Y)
L,0(A,a, c)@LNIT, (A,a,€)

"

Y
LNil, (A, a,€)

with QOQ'RO(AG) the image of YO under the natural projection

a = a
KO(A )————)KO(A ).
Given a *-invariant subgroup YC KO(AQ) define x-invariant

subgroups

-1 -1

YU o= (Y SR (A a) S Ky (A [x,x

1 n

o e (Y) SR, (M) S K (A 1x])

The natural map

1 Y — EO(A)/(I-G)(Y) ; [Pl (1-a) (Y) + [P]



is a Z[Zzl—module morphism, with T€ ZZ acting on Y by the
a-twisted duality involution it inherits from EO(A) (i.e. the
duality involution on RO(AQ) with respect to which Y is
invariant) and by the duality involution inherited from RO(A)

on ﬁO(A)/(l-a)(Y). Let L . (A,a,e) (n€Z) be the relative
Y

e-symmetric L-groups appearing in the exact sequence

n B . =~n Y n, .a
v _——»L(l_a)Y(A,c) ———»LY;(A,G,E)————%LY(A (€)
§ n-1 B _=n-1
ﬁ”—A’L(l—a)Y(A'E)‘*"*’Lya (A, Q,€) —>» ...,

with § the composite

. n a gn . 1 q° -N -
[ Ly(A7,e) —>H (Z,;Y) — —H (Z,iKy(A) /(1-0)Y)

n-1

Lil-a)y

(A,e) .

Define similarly relative €-quadratic L-groups iz (A,a,€) .

, . R . = a

Proposition 5.2.1 Given *-invariant subgroups Y SR, (A |
[t 1 . . s .

z,c lel(A,a } there is a natural identification of the

intermediate e-symmetric L-theory localization exact sequence

n n -1
e..——1L (A _[x]),e) ——>L". (A [x,x 71,€)
(1-a)y8z_"a v'ez, 0z
— 3 s (A [x],X,€) ——> 1071 (Ag[x],€) —>
oz, (Palxl % (1-a)vez (Palxl: e
(n€ 2Z)

with the exact sequence
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(A,s)efﬁflg (a,a”1

e ——> /€)

n
Loy
B8 o0
0o o

o 1 —
——M—#Lna(A,u,e)QLNiln
v z

(Y X O>

o 1 o —~

—————-~———>L3(A“,e)0LNil" (A,a,€)
zZ,

(6 0)

o o

———————> L

“~in -1
(A,a,e)QLlez (A,a ",¢€)
+ -

n-1

Coen-1 -1
' € 1 Q + € v
(l-(!)Y(A }BLN lZ_ (A ) —>

1f ¥ = {0})CE (A% or if a =1 : A——A then & = O and the
exact sequence is naturally split.

Similarly for the e-quadratic L-groups L,.

Proof: By analogy with Propositions 3.7.1, 5.1.4.

If Y = {0} or a = 1 define splitting maps

(g Ix], X, 6) —>L", A lxox" 1 e)
v 0z, 07_

s, : LD
+ Y@Z+

exactly as in the proof of Proposition 5.1.3 iii).

[

Given a *-invariant subgroup Yqzim(A) (m = 0 or 1) defir
*-jnvariant subgroups

(1-0) 7ty = (weR (%) ] (1-a) () e Y} €K (A%

i5(1) SRy (Aglx,x 1) if m = 0
"ty = Zil(y) +(‘r(xk:Aa[x,x-I]——aAa[x,x_ll)|k20}

SR (A lx,x M) if mo= 1
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The natural map

1 (l—a)—lY-——~>Rm(A)/Y ;s WY +w

is a ZZ[ZZ]-module morphism. Let En_l (A,a,e) be the relative
X7y

e-symmetric L-groups appearing in the exact sequence

N Y
Lo (A, ) —>T" | (A,a,e) —>L" o1 A%e)
XY {l-a) Y

8 n-1

4~—*LY (A,e) —> ... ,
with 8§ the composite

-~ - l A~ ~
s 1" % e —— "z, (- Tl —— Mz, _(a) /Y
(1-a) 1y n

07 e .

- . oy t1 -
Proposition 5.2.2 Let YS;Km(A), Z+§'N11m(A,u } (m =0 or 1)

be *-invariant subgroups, with Z, = 0 if m = O. There is a
natural identification of the intermediate e-symmetric

L-theory localization exact sequence

n n -1
oo —>L (A_[x],e})—>L _ (A_[x,x "],¢€)
¥8z_"a x"'vez oz_ °
3
n n-1
—>L _ (A [x],X,e) —> L (A [x],e) —>...
(1-a) lYQZ a Y®Z_ " a

+
(n€ Z)

with the exact sequence



T -
L Ly (A,€)BLNil) (A,a Loy
B (o]
o} (o}
0 1 ~n 7. n n -1
~——L -1 (A,a,c)QLNilZ (A,a,c)OLNllz (A,a " ,€)
XY + -
<Y . o)
o] 1 (o] n a /"\/n
—_—L -1 (A%, e)@LNil, (A,a,€)
(l-a) Y +
(6 o)
o] [¢] PV _
-“—»L;'l(A,s)eLNil'z‘ Yoo t,ep— .,
T~ +1 N t1 . =
where LNil% (A,a”7,€g) = LNil*(A,a"",€) if m = O. If Y = K_(A)
Z+ m

or if a = 1 : A————3A then § = 0 and the exact sequence is
naturally split.

Similarly for the e-quadratic L-groups L,.

Proof: As for Proposition 5.2.1, but using 3.7.2 and 3.7.3

instead of 3.7.1.

In the special case a =1 : A——A, Y = {0} € EO(A)
€-symmetric

Proposition 5.2.2 gives the "fundamental theorem of
e-quadratic

L-theory"”, the naturally split exact seguences

0—v (A, ) —> v (alx], )@V (A[x 1, ) —> v (alx,x 1], €)
—su"(a,e) —>0
! -1 -1 (n€ z;
00—V, (A, €) —>V (Alx] ,E)Ovn(A(x ]1.€) -*—»vn(A[x,x 1.€)

~—->Un(A, €) —>0

(The e€-quadratic case was previously obtained in Ranicki [4]).



§6. Mayer-vVietoris sequences

We shall now investigate the existence or otherwise of a

e-symmetric
Mayer-Vietoris exact sequence of intermediate
e-quadratic

L-groups
f
n £ n n (g ‘9') n
cev=Ly (A, e} ——>L (B, €)@L,, (B', ) ————> L, (A", €)
—;WA»L;_]’(A,C)——)LS-I(B,C)QLSTl(B',e)“—'*‘
£ (n€ Z)
X £y v (g -9')
...—-*Ln(A,e)~—»Ln(B,E)®Ln {B',¢) —— L (a',¢)
3 X Y y!' .
L (AE) »Lo_(BE)BL (B, e)—>,

for a commutative square of rings with involution

f
—_—

B
f' [ [¢]
' g' >A'

o e—— >

and a commutative square of *-invariant subgroups

X ———————> Y Km(A)——*——*Em(B)

[l ' v v v ]
Y'———>»X Km(B )———-—»Km(A )
for m = O or 1. As usual, we start with a review of the

relevant algebraic K-theory.



A Mayer-Vietoris exact sequence of classical algebraic

£
<f. (g -9')

Kl(A)—————ﬂ Kl(B)OKl(B')————-———*Kl(A')

K-groups

£
3 (f. , (g -g') .
Ko (A) > Ko (B)®K, (B') —————K, (A

has been obtained for three types of commutative square of ri

¢ (as above):
I) ¢ is cartesian, i.e.

(¢

0———>A ——— B#B'

the sequence of additive groups

(g -g')
— > A

> 0

is exact, and g:B——A"' (or g':B'——> A') is onto,

I1I) ¢ is the cartesian localization-completion square

-1
N 13

JENEEE———-

_———.._)S

A

P> ——

associated to a multiplicative subset SCA, with A = Lim A/sA

s€S
or some abstraction thereof (e.g the cartesian square
A— s ta
l l associated to a cartesian morphism (A,S)——(B,

B— 7 1p

I111) ¢ is a pushout square with

¢ = v
A B*AB

the free product of B and B' amalgamated along A, with the

morphisms f:A—--»B, f':A-——B' injective, and satisfying

some extra conditions,



The first such exact sequence was obtained by Milnor [4,§4],
who showed that for a cartesian square of rings ¢ of type 1
there is indeed a Mayer-Vietoris exact sequence of the type
Kl(A)——»Kl(B)QKl(B')——*Kl(A')—2+KO(A)——*KO(B)$KO(B')——*KO(A') .
Bass [2,XII}] defined the lower algebraic K-groups Kn(A) (ng -1)
inductively by
Y

K (B) = coker (K, (Alx1)®K_ . (Alx" )——»KMI(A[x,x'l]))

and extended this sequence to the right by
...—#KO(B)QKO(B')——»KO(A')—Q&K_l(A)——+K_1(B)$K~1(B')-—>K_1(A')~*... .

Swan [l1} showed that there does not exist a Kz-functor

extending the sequence to the left for all squares ¢ of type I.

However, Milnor [4,§§5,6] defined KZ(A) using Steinberg relations
such that for the squares ¢ of type I with both g:B——A' and

g':B'—A' onto there is an extension of the sequence to the
left by
KZ(A)—~*K2(B)$K2(B')—~*K2(A‘)—E*KI(A)——*Kl(B)QKl(B')‘**... .

Quillen {11,[2] defined the higher K-groups Kn(A) (n > 3)
of a ring A to be the homotopy groups of a space BGL(A)+, with

K (B) = 7 (BGL(A)T) (n31) .

Gersten [2) extended this definition to the lower K-groups,
constructing a spectrum K(A) such that
Kn(A) = "n(K(A)) (ne 7Z)
The triad K-qroups K, (%) of a commutative square of rings
A—A—g—#ﬁ

f-l g l

A SO



can thus be defined by

st

(A »K (B)
Kn(¢) = n J g (n€ 2Z)
K(B')—T > K(A")
and are such that there is defined a commutative diagram of

abelian groups with exact rows and columns

f f
.——>Kn(A) ——’Kn(B) ~——’Kn(f) h—>Kn_1 (l\)-‘*“’Kn_1 (B)—™>...

~ + [

. lg (E'aq) £ 0

1 g L) ) L) '
-K (B') =K (A')—— K (g')—>K__ (B')——K _ (A)—...

(£,9') l 4 3

( )
K ) — K (g) > K (&) —> Kpap (E)—>K _(g)—>...

. |

S KL G (A) K (B K (£)-K o (A)——>K o (B)—>. ..

b

The triad K-groups vanish

(n€ Z) .

K,(¢) = O
if and only if the natural maps
(£'/g9) @ K (f)——K,(9"')
(or equivalently (f,9'):K, (f£')—>K,(q)) are isomorphisms,
in which case they are called "excision isomorphisms”. If in fact
K,(®) = O the above diagram collapses to a commutative braid

of exact sequences
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s T T

1(f ) K, (B) (f) Kn_l(B')
\ / \ /r( x a'n /
(A\)\x L (A)\‘ Kn_l(l\\)

Kn+l(f) (B ) (f') . K _1(B)

\\\\\\_,,,///ﬂ \\\\\¥w QK (9)) A
and there is defined a Mayer-Vietoris exact sequence

£
(f.> (g -9}

.—»Kn(A)———)Kn(B)QKn(B')——————*Kn(h')

; (c)

—fs K (A) > K (BI@K (B> ...

with the connecting maps 3 given by

' -1
] (£',9)
I K (A') ——— K (g') —— > K_(f)——>K __, (A)
(or equivalently
(F,g0 7t
9 (A ) ——> K (£')——F—> K (g} —— K l(A) IR

In particular, for a cartesian square ¢ of type II
(localization-completion) it is the case that K,(®) = O, since
the identification of exact categories

({a,S)-modules) = {(A,8)-modules)
of Karoubi [2,App.5} (cf. Proposition 3.1.3 i) above) gives tha
K, (A——s 1a) = K, _; ({A,S)-modules)

= K*_l((ﬁ,g)-modules) =k, (A—>38714),
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so that there is defined a Mayer-Vietoris exact sequence
c—K_(A)—> K (s ta)ek_ (A)—> k_(§T1A) 2k (A) —
- n n n n n-1 v
(ne Z)
We shall only consider the K- and L-theory Mayer-Vietor
sequences for squares of type I and II in §6, leaving
type 111 (pushout) to §7, on account of the close connections
with topology.
e-symmetric
In §6.1 we shall define the triad L-groups
e-quadratic
LM (¢, ¢€)

(n€ 22) of a commutative square of rings with involu
L (%,¢)
n

The necessary and sufficient condition

L*(d,¢€) o]

o]

L,(%,€)

e-symn
for there to be excision isomorphisms in the relative
e-quad
L-groups
(£'/9) : L*{f,e)—=—L*(g"',€)
(f',9) = L*(flc)"\’—"[“(qlle)
e-symmet
and a Mayer-Vietoris exact sequence in the absolute

€-quadre

L-groups
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£
(f. (g -9')

o— LA, e —L S "B, )8 (B e) — 1@, e)
N

ity )

— 2 i, e B r g el

£
£ (g -9')

<o.—>L (A, €) ———) L (B,€)8L_(B',¢) L (A',E)

: (£)

—_—> Ln_l(A,e)—~v~7~9 n_l(B,c)QLn_l(B',e)-+ ‘e

l(B‘,s)—-+...

(n€ z)
will be interpreted in §6.1 in terms of Mayer-Vietoris splittings
of algebraic Poincaré complexes over A' with respect to ¢ ,
using the algebraic glueing operations of §1.7. In §6.2 the
theory will be extended to the intermediate L-groups of §1.10,
since in practice there are only such excision isomorphisms
and Mayer-Vietoris exact sequences for the intermediate

L-groups associated to a commutative square of #-invariant

subgroups
X ey Y K_(A) —> K_(B)
m m
K = l l < l (m = 0 or 1)
Yo Ko (B') —>K_ (")

such that

f ~ ~ ~ ~
i 1= ker(( ): K (R)—>K_(B)®K_(B')) C XSK_(A)

£
ii) the sequence

(e)
£ (g -9')

0——>»X/I —> ¥8Y' — — ————> X' ——>0

is exact.



Moreover, if ¢ is such that there is defined a Mayer-Vietoris
exact sequence in the reduced classical algebraic K-groups

f
£ (g -2")

il(A) — > K (B)#K, (B') ——————> K (A"

f
£ (g -g')

- . o , - ,
KO(A)————*—ﬁ KO(B)GKO(B ) ———> KO(A )
and there is defined a Mayer-vietoris exact sequence of
e-symmetric
intermediate L-groups
e-quadratic

n n n n . 3_.n-1
...——#LX(A,E)——%LY(B,E)QLy.(B’,€)——*LX.(A ,C)——*Lx (A,e)—> ...
X
n-

X s Y, X'
...——9Ln(A,€)~—*Ln(B,E)0Ln (B ,E)——"Ln 1(A,E)—-» e
(n€ Z)

for one such square ¢ then there is defined such a sequence
for all squares x satisfying i) and ii). At any rate, for any

commutative squares ¢,x there are defined intermediate

€e~symmetric L:‘°'€)
triad L-groups X (n € Z) such that if
e~qguadratic Ln(¢,c)
L¥(¢,e) = O
K
L,(¢,e) =0

then there is defined a Mayer-Vietoris exact sequence in the
e-symmetric
corresponding intermediate L~groups.
e~quadratic
(The generalities of §§6.1,6.2 apply equally well to L-theory
Mayer-Vietoris sequences for squares of type III) as to those
of type I) énd I1)). In §6.3 we shall show that for squares K

satisfying i) and ii) it is indeed the case that L:(O,c) =0

if ¢ is either a cartesian square of type 1) (g:B——A' or



g':B'——A"' is onto) or a cartesian square of type II
(localization-completion), thus obtaining a Mayer-Vietoris
exact sequence in the corresponding intermediate e-quadratic
L-groups. Furthermore, we shall show that L;(@,e) = 0 for «
satisfying i) and ii) with ¢ of type II satisfying the extra

condition

~

§ =0 : ﬁo(zz;é"lfx,e)——»ﬁl(zzm,s) ,

thus obtaining a Mayer-Vietoris exact sequence in the
corresponding intermediate e-symmetric L-groups.

(Special cases of the localization-completion Mayer-Vietoris
sequences have already been obtained in §3.6 above).

In §6.4 we shall consider the excision properties of the
L-groups of cartesian squares of type I associated to ideals.
In particular, an example will be constructed for which

L;(@,e) # 0

with ¢ of type I (with both g:B—>A' and g':B'—>»A"' onto)
and k satisfying i) and ii). Thus the e-symmetric L-groups
do not have as good excision as the e-guadratic L~groups.
Quadratic L-theory Mayer-~Vietoris exact sequences for
cartesian squares of types I and II have also been obtained
by Bass (3}, Wall (8], Karoubi (2} and Bak [2], in various

special cases.



6.1 Triad L-groups

e-symmetric
We shall now define the triad L-groups
e-quadratic

L*(%,¢€)

of a commutative square of rings with involution
L,(%,¢€)

B'———>A"

using the algebraic Poincaré triads of §1.3. The condition

L*(d,¢€) (o}
for excision will be interpreted in terms of
L,(¢,€) =0

algebraic Poincaré splittings with respect to ¢ of algebraic
Poincaré complexes over A'. (The connections with geometric
Poincaré splittings will be explored in §7.5 below). In orde
to do this it is convenient to use the unified L-theory of §
to adopt the following terminology for algebraic Poincaré
complexes, pairs and triads, which is a straightforward
adaptation of the familiar terminology for geometric Poincar
caomplexes, pairs and triads. A more detailed account of this

terminology will appear in Ranicki {1l1].

e-symmetric

An n-dimensional Poincaré complex over A
e-quadratic
Jae
(n€ Z) is a closed object x of . For n»0 this is
Lo (Br€)

exactly the same as an algebraic Poincaré complex of tnis

type in the sense of §l.1.



e-symmetric

An n-dimensional { Poincaré pair over A (x,y)

g-quadratic

LML e)
(n€ Z) is defined by an object x of and an object y of
L (A, ¢€)
n
SHae
together with a homotopy equivalence
L1 (A e)

f:ix -2y,

which will be used to identify y = ax.

€-symmetric

An n-dimensional 5 Poincaré triad over A

e-quadratic

LMAe)
(x:3,%x,9_x;33,x) (n€2Z) is defined by an object x of
L (A, €)
n
Ola,e
and objects 3,%,3_x of together with homotopy
L (A, e)
n-1
equivalences
£ 30, x-"25 33 x , gq: 3,XUg-3_x ~adx

which will be used as identifications.
The algebraic glueing operation of §1.7 is readily
generalized to define the union of adjoining n-dimensional

e-symmetric
Poincaré triads over A (X;y,¥"12) ,(x';y',y"s12)
e-quadratic
e-symmetric .
as an n-dimensional Poincare triad over A
€-quadratic

(x;y,y'52) U(x';y',y";2) = (xuy.X';y,y";z) .
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Given a morphism of rings with involution
£ :A-——>B
let e €A be a central unit such that e = c‘le A (as usual)

and such that f(¢) €B is a central unit, also to be denoted €.

e-symmetric

An n-dimensional Poincaré pair over f (y,x) (n€ )

e-quadratic

consists of

e~symmetric .
i) an (n-l)-dimensional Poincare complex
e-quadratic

over A x

e-symmetric
ii) an n-dimensional Poincare pair over B
e~quadratic

(y,B@Ax).

e~symmetric L (f,¢€)
The relative L-group {n€ Z) defined in
e-quadratic Ln(f,e)

{ e-symmetric

§2.2 is the cobordism group of n-dimensional
e-quadartic

Poincare pairs over f.

Let ¢ be a commutative square of rings with involution

£
e

B
£ [ g
' g A ,

o

and let €€A be a central unit such that ¢ = ¢ €A, and such
that the elements f(e) €B,f' (€} €B',gf () =g'f'(€) EA' are also

central units, all to be denoted by €.
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e-symmetric

An n-dimensional Poincaré triad over ¢

e-quadratic

(x';y,y'ix) (n€ Z) consists of

e-symmetric
i) an (n-2)-dimensional Poincare complex
e-quadratic

over A x

c-symmetric .
ii) an (n-l}-dimensional Poincare pair
e-quadratic

over B (y,BEAX)

e-symmetric .
iii) an (n-1)-dimensional Poincare pair
e-quadratic

1 v Rt
over B' (y',B EAx)

ce-symmetric
: . . ; . R
iv) an n-dimensional Poincare pair
e~quadratic

over A' (x',A @ByuA'EA(—X)A B, (-y')) .

In particular, (x';A'EBy,A'@B,y‘;A'@Ax) is an n-dimensional

€-symmetric
. . .
Poincaré triad over A'.
e-quadratic

e-symmetric
pefine the n-dimensional triad L-group c
e-quadratic

L" (¢, e)
(n€ Z) to be the cobordism group of n-dimensional
L (%,¢)
n
e-symmetric
Poincaré triads over ¢.
e-quadratic
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Proposition 6.1.1 i) The e-symmetric triad L-groups L*(¢,¢

into a commutative diagram of abelian groups with exact ro

and columns

et —f B, o) 1" (f,e) — 1"

£

et B e — 3 "t e)— LM (g ey LD

(f,g")

7
...-—+Ln(f',e)--———+Ln(g,€)—‘*~——>Ln(0.€)>4———’Ln_

n-1 £

LA, e) 22— 1T

Similarly for the e-quadra

ii) If ¢,e are such that

excision isomorphisms of r

g(f',q) : L*(

g9
v

|

1B,e)—L

n-

4

~

|

-1
(f',9)

1

v
1

(f,e) —>L"2

tic triad L-groups L,(%,€).

0

L*(¢,€)

Ly(®,¢) 0

e-symmetric
elative

(A,c

£

(B',

(f'l

(A,¢€

then there are defir

e~quadratic

f,e) - L*(g',€)}

(£',9) : Ly(f,e)—>—L,(g",¢€)}

L-groups
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e-symmetric
and a Mayer-Vietoris exact sequence of absolute .
e-quadratic

L-groups

( (f

£ (g =-g9'}
\ cee— (A, €) ~ "B, e)eL" (8", ) —————>L" (A", €)
(e

/ 3 n-1 £ n-1 n-1

& — L (A,e) —— L, (B, e)®L (B',e)—>...
|

i

(v
£! (g -9")

e Ln(A',c)

...*'—+Ln(A.€) —_——> Ln(B,E)QLn(B',C)

: ()

~——L _(Ae) ———— L (B,e)OL (B’ e)—> ...

(n€ Z)
with the connecting maps 3 given by
N n n (f"g)_l n n-"
% 3 : L'(A'",e)—>L (g',€) ———=— L (f,e)—>3L  (A,¢c)
(£',9) 7t
[ ' [ ~ -
( i ¢ LA',e)—>L (g'ie) ——— L (f,e)-—>L _ (Ae) .

{1

We shall now interpret the excision condition
L*($,e) = O

o}

Ly(®,€)

in terms of algebraic Poincaré splittings with respect to ¢

of algebraic Poincaré complexes over A'.
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A Poincaré splitting (with respect to ¢) (y,y',x) of an

e-symmetric .
n-dimensional Poincare complex over A' x' (n€ 2)
e-quadratic
consists of:
e-symmetric .
i) an (n-1l)-dimensional Poincare complex
e-quadratic
over A x

e-symmetric .
ii) an n~dimensional Poincare pair over B
e-quadratic

(y,B@,x)
e-symmetric .
iii) an n-dimensional Poincare pair over B'
e~quadratic
(y'/,B'®,x)
iv) a homotopy equivalence
L}

A'ﬂBytJA.EA(_x)A'EB.(-y')—Lﬁ—»x

which will be used as an identification.

x'

There is also a relative version of Poincaré splitting,

as follows.
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A Poincaré splitting (with respect to ¢)

e-symmetric
(y, 3,y (y' o, vy"), (x,7x)) of an n-dimensional
e~quadratic
Poincaré pair over A' (x',0x'}) (n€ Z) consists of:
e-symmetric .
i) an (n-1)-dimensional Poincare pair over A
e-quadratic

{x,3x)
e~symmetric

ii}) an n-dimensional § Poincaré triad over B
LE—quadratic

(y:4+y,B@A(-X);BﬂA(—3X))
e-symmetric .
iii} an n-dimensional Poincare triad over B'
e-quadratic
‘., v ' - B! -
(y'ie,y',B QA( x) ;B @A( ax) )
iv) a homotopy equivalence of pairs

{(A'8py U A'By, (-y'),A'BRA, Yy Uy o o AR, (=0, y"))
A

A'ﬂA(—x)

— S (x',0x")

Ix'
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Note that (3,y,d,y',-)x) is a Poincaré splitting of the
e-symmetric .
boundary {(n-1)-~dimensional Poincare complex
e-quadratic
over A' 9x'.
e~symmetric .
An n-dimensional Poincare triad over ¢
e-quadratic
e-symmetric .
(x';y,y':x)} is thus an n-dimensional Poincare
e-quadratic
pair over A' ([x',3x') together with a Poincaré splitting
€~symmetric
(y,y',x}) of the boundary (n-1)-dimensional
e~quadratic

Poincaré complex over A' sx', so that
] * ' —ul!
Ix = A EBY UA'EA(‘X)A GB'( y'y .
A cobordism of such triads (xi;yi,yi;xi) (i = 1,2) is an

e~-symmetric .
{n+l)-dimensional Poincare triad over A'
e~quadratic

(6x':3+6x',xi@—xé;lxi@—&xé)

e-symmetric .
such that the n-dimensional Poincare pair
e-quadratic

over A' {3 .8x',3Ix'®-ix}) has a Poincaré splitting
+ 1 2

_ ' _ut —
{8y, y,@-y,), {8y ',y 8-y, (6x,x,8-x,))
extending the given Poincaré splitting lyle—yz,yie—yé,xlw—x2)
e~symmetric
of the boundary (n-1)-dimensional { Poincaré

e~quadratic

complex over A' Uxi@-Sxé.



489

; n
e-symmetric L (¢,€)

The n-dimensional triad L~group (n€E Z)
e-quadratic Ln(¢,e)

e-symmetric
is thus the cobordism group of n-dimensional
e~guadratic

Poincaré pairs over A' with a Poincaré split boundary.

e-symmetric
Proposition 6.1.2 The L-theory excision condition
e-gquadratic

L*(0,¢) o] e-symmetric
is satisfied if and only if every

o] e~quadratic

i

L,(®,¢)

It

Poincaré pair over A' with a Poincaré split boundary is
cobordant to a Poincaré split pair.
In particular, if the excision condition is satisfied
e~symmetric

then every { Poincaré complex over A' x
e~-quadratic

is cobordant

to a Poincaré split complex A'Boy U &y, (-y') and the

A
t -
A @A( x)
e-symmetric
connecting maps in the L-theory Mayer-Vietoris
e-quadratic

exact sequence of ¢

LN, e) ——— 1", e
(n€ Z)
oo Ln(A ,e)——-«———*Ln_l(A,€)

are given by

J(x') = ,(A'RBy\JA,@A(_x)A'GB.(—y')) = x .

[

While the Poincaré splitting condition for excision of
Proposition 6.1.2 has a pleasantly geometric flavour (to which
we shall return in §7 below) the following criterion for

excision will be found to be of greater use in §6.3 below.
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Proposition 6.1.3 The induced map of relative e-symmetric

L-groups for some n€ Z

(£',9) : LN(f,e)—— L"(g', )
f

A
(for a commutative square of rings with involution f'l
B9,
is an isomorphism if and only if there exist abelian group
morphisms
s : LA, e)——— " (£, )
£ g e ——1" a0
fitting into a commutative diagram

L (£,€)

e N

(g -9")

L 6,e)eL" ', e) ———>LM(a"e) (.9 " La,e) — " m,e 0™

a

§

q’ /0
L6 (3.)

involving the change of rings exact sequences

¥

n Ye n af n-1 f n-1
L' (B,e)y—>L (f,€}) —>L (Ah,e) —>L (B,€)

q' Y 3 _, ~
LMY e) — LAt e) —Iis (g, e) —T > 1" B e

_—
¢

> e

1)

Yoy

If such morphisms 6,8 exist there is defined an exact sequence

(g -g')
LM (B,e)oL"(B',e)——— L (A" ,€)

(£)

3
by e M 10 gLy LB 6
with
R A T A L



and if (f',g):Ln+1(f,c)AA—f+Ln+l(g',c) is onto there is an
extension of this sequence to the left by an exact sequence
(f )
' (9 -g')
LA, e)—E L "B, e)eL" (B', ) ———— LM (A, e) .
Similarly for the e-quadratic L-groups L,.
Proof: If (f',g):Ln(f,e)——-—OLn(g',e) is an isomorphism define
§ = (£,9) hy_, s LM, e — LM (F, )
8 =56t g o —— 1" e
Conversely, given 6,8 we shall verify that (f',g) is an
isomorphism by diagram chasing, as follows.
Let x€ ker ((£',9):L"(f,e)——>L"(g',€)), so that
30 = 8e,9 0 = 0 e LM e
and x€ker (3 :L(f,6) ——> L HiA,e)) = im(y LM (B ) —> L (£, ¢
Let y€ L"(B,e) be such that
n
Yely) = x € L (f,e) ,
so that
Ygi9(y) = (£,9)¥ely) = (£',9)(x) = 0 € L(g",e)
n ] n ] N i n ' n
and g(y} € ker(Yg.:L (A',e)—>L (g',€)) =im{g':L (B',e)—=L (1
Let ze L"(B',e) be such that

gly) = g9'(z) € L"(a',e) ,
so that

x = Yely) = 38g(y) = 69'(z) =0€ L, )

Thus (f',q):Ln(f,e)—~—~»Ln(g',€) is one-one.



'yE) ).

Given an element u€ Ln(g',e) we have

~

£8(w) =o€ t" LB, 0 ,

so that

§(u) eker (£:L" L(a, &) —L" 1 (B, &)

= im(af:Ln(f,e)—"Ln_l(A,e))
Let vE€ L"(f,¢) be such that

Su) = af(v)eL“'l(A,e) ,
so that

(u- (£',9) (v)) € ker (8:L"(g", e) —— " L(a, &))

< ker(ag,:L"(g',e)—»L“'l(B',e))

imug.:L"(A',e)——w“(q'.en .
Let w€ L"(A', €} be such that

u- (£',9) (v) = vg.(w)eL“(g'.c) .

so that
U= (£',9) (v+ §(w)) € im((£',q) :L(f, &) ——>L"(g', €))
Thus (f',g):Ln(f,e)————*Ln(g',e) is onto.

Suppose now that §.8 exist.

£ _ -
Given x€ ker(( ) eyt s, ey Lar e,
fl
we have that

x€ker (£:1" " 1A, e)—L" 1 (B, €))

= im(z)f:L"(f,e)—->L"‘1(A,e))
Let yeL"(f,¢) be such that

x =2 e tae)
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so that

ug.(f'.g)(y) = flagly) = f'(x) =0 € L"'l(B',e)

and there exists z € Ln(A',e) such that

(£,9) (y) = vg, (2) € L"(g",¢)
Thus

x = 2p(y) = ap(e9) Ny (2 = 2@ et a0

and we have verified the exactness of

: (¢

are) — 1" la,ey N il et

(B',€e)
Given x € ker(a:Ln(A',e)————»Ln_l(A,e)) we have that
Y80 =0 € LM a,e)

Let y€ Ln(B,e) be such that

§(x)

Tely) e (£,e)

so that

Ygr (x-a(y)) (f',q)(G(x)—Yf(y))=oeL"(g',e) ,
and there exists y'é€ Lt"(B',e) such that
¥ = gly)-g'(y")eLta,e)

This verifies the exactness of
(g -g") 3 -
e, 8@ ey — A ey — 1" L, ey .

Assume now that (f',g):Ln+l(f,€)————+Ln+l(g',6) is onto.

Given (y,y') €Eker{lqg ~g"):L"(B,e)8L" (B',e) —>L™ (A", ¢€))
we have

Yely) = Sgly) = oeL(f,e) ,
so that there exists z€ L"(A,e) such that

y = f(z) € 1."(B,e).



Now
g'(y'-f'(z)) = gly) -gf(z) =0 ¢€ L"(a',e) ,

n+l(g',e) such that

so that there exists w€ L
yloE(z) = o (W) € L"(B',¢€)
As (f',g) is onto there exists vE€ Ln+l(f,s) such that

w= (£,9)(v) € L (g1, )

The element

x
I

= z+ Bf(v) € Ln(A,e)
is such that
(y,y') = (£(x),£'(x}) € L7(B,e)@L"(B",€) ,
verifying the exactness of
f

£ (g -g')
", e) ———— L (B, )8L" (B, ) — > L™ (A", €)
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6.2 Change of K-theory

We shall now develop the theory of intermediate triad
L-groups, that is the analogues of the triad L-qroups of §6.1
for the intermediate L-groups of §1.10. The terminology and
and results of §6.1 have obvious intermediate L-theory analogues
In §6.3 the intermediate triad L-groups will be used to obtain
excision isomorphisms and Mayer-Vietoris exact sequences in
L-theory.

Given a commutative square of rings

f
A —————>B

let
— > Y % (A) ——> K _(B)
m m

Y ——— X! K (B')——>K _(A")
m m
(m = O or 1)
be a commutative square of *-invariant subgroups, that is a

collection of *-invariant subgroups
% - @ (e ] 1 W '
X QKm(A) ’ Y(:Km(B) , Y'E Km(B ) .+ X'CK (A')
such that

BGAXgY , B'® XcCY' A‘EBY_CX' ' A'BB.Y'QX' .
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The Tate Z,-cohomology groups of « ﬁ*(zz;r) are defined by

ker(dn:G--+G)

i (z,i6) = ——D———  (n(mod 2))
1m(dn+1:G———+G) ’
with
-1 ()% -()%' o
o 4" o (-)"¢
% o 0 1+ ()"
o ) 0 1-(-)"r
G = X'OY®Y'8X ——> G = X'@Y®Y'®X (dd ., =0 .,

and are such that there is defined a commutative diagram of
abelian groups with exact rows and columns

.

e Bz ) —— AR (25 ¥) —— ﬁ"(zz;x—w)——»ﬁ"'l(zz;m—

l |

...—»ﬁ"(zz;y')————»ﬁ"(zz;x')———»ﬁ“(zz;y'—ax')—aﬁ””l(zz;v')

| ! ! |

ANz, kY ) A (k) —— BNz k) ——»ﬁ“'l(zz;x—»y'

! J l

(ZyiX)—> ﬁ"‘l(z?_;y)—vﬁ“’l (Zyix—Y)—> gn-2 (Z,3X) -

N

.

.— a0l



Given two squares x such as k, with Klg Ky (i.e. such that

1'%2

X, < Xz,ch YZ,YiG Y., X< Xé), there are also defined relative

1

Tate Ez—cohomology groups ﬁ*(EZ;K2/Kl), which fit into an

exact sequence
£n An an an-1
... H (Zyiky})—>H (Zyixy))—>H (ZZ,KZ/Kl)—-»H (ZZ,Kl)——*...
(n(mod 2)).

Given commutative squares %,k as above define the

e-symmetric L:(O,e)
intermediate triad L-groups (n€e zZ)
lntermedlate . d_L-groups K
e-quadratic Ln(O,e)
L*(d,€)
in exactly the same way as the triad L-groups of §6.1
L,(%,¢)

RO(A)——»KO(B)
(which are the special case x = ),
173 ' 173 .
KO(B )—~——>KO(A )
€e-symmetric .
but using only the Poincare triads over ¢ with
e-quadratic

K-theory in x. There are then intermediate versions of

Propositions 6.1.1,6.1.2,6.1.3.

Proposition 6.2.1 Given commutative squares O,Kl,xz such that
Klé K, there is defined an exact sequence of intermediate
e-symmetric
triad L-groups
€-quadratic
e L (0, 0) =LY (0, 6)— AN (Z, ik e ) — L T (0, 6)—> . ..
<1 Ko 272771 31
“1 <2 an “1 (ne )
ce L T e, e) L TG e) —PH (25K, /K ) TL T (0, e) L

Proof: By analogy with Proposition 1.10.1.
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In §6.3 below we shall prove that for certain ¢,k

L (%, €)
L (6, ¢€)

I

]
, thus obtaining a Mayer-Vietoris exact sequence
o

[

e-symmetric
of intermediate L-groups
e-quadratic

n
ce LY (A, €) —> Ly (B, €)BLY, (B’ €) —Ly, (A", €) ==Ly (A,e)—>.
X Y y' X', 3. X
...——»Ln(A,c)———>Ln(B,c)eLn (B',e)—>L (A ,6)———*Ln_l(A,e)—+ .o
(nez) .

In every such case kK will satisfy the following condition.
The commutative square of *-invariant subgroups

X—— Y Rm(m ~—~»T(m(a)
K = J g; (m = O or 1)
Y s X K (B') ———>K _(A")
m m
is cartesian if

i) X contains the #*-invariant subgroup

f
Im = ker ( (f') :Km(A)—?Km(B)QKm(B'))gKm(A)

ii) the Z[Zzl—module sequence

(t)
£! (g -g9')

0 X/1 > YQY' > X! o

is exact.

The Tate Zz—cohomologygroups of such k are given by

= B2z
Br(zyix) = R" %zt ) o

[
In Proposition 6.2.2 below it will be shown that if ¢
is such that there is excision in the associated classical
€-symmetric

algebraic K-groups then the intermediate triad
€-quadratic
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L*(®,e)
L-groups E of cartesian squares k are in fact independer
L,(%,¢€)
L:(¢,€) =0
of x. In particular, if it can be shown that < for
Ly(¢,e) =0

one such k then this is also the case for all other cartesian «

Define *-invariant subgroups
= i V. R ® ' 174 L] ' =
I, = im((g g'):K (B)@®K (B')——K (A ))gkm(a ) (m = O or
Define abelian group morphisms
. qn . AN+l .
A : H (ZZ,IO)"W-*H (Zz,Kl(A’)/Jl) (n(mod 2))

A0
[Pl €H(Z,:1)

as follows. An element is represented by a

al
{P]€H (Z2,IO)
f.g. projective A-module P such that for some q >0 there exist
h:p —» p*
i) an A-module isomorphism 2
h:p@p* —< a9

ii) a B-module isomorphism k:BEAP-ﬂi—"Bq

iii} a B'-module isomorphism k':B'@,P —=»p'9

A
acten) el (z,ik A /3))
Let 0 - be the element represented by
A([P]) EH (Z,;K,(A")/J,)
2801 1
_1 -
18,k 18,h 18, k'
card—~ A'®,P ———A'®,P* o >a'd) e K (an)

e« Hea ,k'*) 18.h
B B A )
~ A'®, (PoP*) —=—»a' %)

1(a'29= p19a9
€ Kl(A ) .
Let ﬁ*(ZZ;A) be the relative groups appearing in the exact
sequence
an-1 A n o . n .
v TNz, 1) RNz K (M) /3)) R (Z,00)

n-2
—fl (ZyiTg) —> .. .
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The commutative square of rings with involution ¢ is
E:—cartesian if

i) the commutative squares of *-invariant subgroups

K (A)——K (B) Km(A)-———>Km(B)

m
In = 1 l < 1 1 {m = 0,1)
im(s')——»Jm Rm(a')%imm')
are cartesian
ii) Ax(z,:8) =o0 .
(See §6.3 below for examples of H*-cartesian squares ¢,

In particular, if ¢ is such that there is defined an algebraic

K-theory Mayer-Vietoris exact sequence
. - ~ - 3 . . . , -
K) (A)—>K, (B) @K, (B')—>K, (') —>K, (A} —> K, (B)@K (B')—>K
then ¢ is ﬁ'—cartesian).

Proposition 6.2.2 For an fi*-cartesian square ¢ the intermediat

triad L-groups are such that there are natural

€e-symmetric
€e-quadratic

identifications

L* (¢,e) = L* (¢,¢)
K1 2
K K
LY, e = 1,2(0,¢)
for any two cartesian squares Kl,Kz.

Proof: For a fixed ¢ and a fixed m (= O or 1) the set of

Em(A)—~E (B)

m
cartesian squares x C l l is partially ordered
Km(B )——+Km(A )
t

by inclusion, with minimal elemen

iy — .



K (A) Km(B)

0———0 K (B") —>K (A"

and maximal element Dm' The Tate Zz—cohomology groups of any
cartesian square k are such that

1% . - p*-2 . = fi* .
B (Zyix) = H “(Z,1) = B*(Z2,: %)

so that ﬁ*(ZZ;K/Im) = O and by the exact sequence of

Proposition 6.2.1 there are natural identifications

L;(@,e) = L; (¢,€)
m
T
Li(é,e) = L,"0,e) .

Thus for fixed ¢,m the intermediate triad L-groups are
independent of «x.

In order to identify the intermediate triad L-groups for

m 0 with those for m 1 consider the commutative diagram of

abelian groups with exact rows and columns

l

o=V (A—3B, £) —y

l
N

n

o

l |

(A—+B,€)——+ﬁ"‘l(zzz;lo)%v"'lm-—»s,e)——». ..

.:»@ (B'—A', e)—»y" (B'—A',e) i (7

2

b l

EI(A')/Jl)—»vg‘l(B'—+A',e)—,...
1

n ~ _
Ty ) s g (08 ——> Mz ———> LN 6, 6) —s.
l ’ )
n-1 n-1 an-2 l n-2 g
A A% (A‘**B,C)**UI (A—>B,e)—>H (ZZ;IOY‘———*V (A—>B,€)—> ..

l

0]




in which ﬁ*(ZZ;A) = 0 (by the hypothesis on ¢). It follows that

L*

(®,€)
r0

h

LY (6,¢)
9

b T
L,1(®,e) = L,O(®,c) .

The commutative square of rings with involution ¢
L*_‘
is cartesian if
L,-
i) ¢ is H*-cartesian

» {L;(¢,€) =0
ii)

K for some cartesian square k of x-~invariant
L,(®,€)

H

subgroups.

L*_
(See §6.3 below for examples of cartesian squares ¢).

Proposition 6.2.3 Let

be an L*-cartesian square of rings with involution.

i) For any cartesian square of *-invariant subgroups

X ———>Y T(m(A)———+?<m(B)
K = 1 l < 1 l (m = 0 or 1)
Y'——>Xx' Kp(B')—K (&%)

there are defined excision isomorphisms of relative intermediate

e-symmetric I,-groups



n

(£,9) ¢ Ly W(f:A —»B,e) ~>Ly, ., (9':B'—>A'e) (n€Z)

and a Mayer-Vietoris exact sequence of the absolute intermediate

e~symmetric L-groups

(%)
£ (g —g')

...—%L;(A,C)~-————>L3(B,€)$L3‘(B',E)~—~~———-——,L;,(A',e)
3
! 1 £ 1
—> L; (A,€) ———> Ly~ (B,e)@LQTl(B',e)-—-,... (ne€

in which the connecting maps 4 are given by the composites

It Ly (At )= Ly, 4 (g7 :B'—>A",E)

-1
n-

1
X {A,e) .

f:A——>B,e) ——>L

ii) For cartesian squares of *-~invariant subgroups K ¥

2
such that
/ Xl-*A->Y1 XZ-A——?Y2 Km(A)-———>Km(B)
a1 e )
Yy —— X} Y, —X; K (B —>K _(A")

(m = O or 1)
there is defined a commutative diagram of abelian groups with

exact rows and columns



A

——7L; (A,e)~———+L ey e)OL

v 1® (a,€) ——— L} (B,)8L], (B’ ,€) -———+ L] (A',e)%n L e) —
X ¥ v X!
1 l 1 l 1 11 1l
Sy (A, €) ———— L] (B,e)u;,(e',s)——»L;,(A',e) 2, Ly (A, €) —

2 2 l 2 2 2

!

..—f" (Z,1%,/%, y— 8" (Zyi¥, /Y, yoi" (Z,55/Y, y—Aa" z, xé/xi)—a—»ﬁ"‘l(zz;xz/)

! o

(B e —— L ',e)——anz'zm,e)-—
1 L 1 l 1 11 ll

. .

iii) The Mayer-Vietoris exact sequences associated to the
cartesian squares of s-invariant subgroups IO and 31 intertwine

in a commutative braid of exact sequences

/// ~ 7 N /\

v(a,€) v (B, e)ev" (B’ ¢) v, e (Z,;

Similarly for L,-cartesian squares 9.



Proof: i) It is immediate from Proposition 6.2.1 that

L;(@,s) =0,
which is precisely the condition for there to be excision
isomorphisms and a Mayer-Vietoris exact sequence in the
intermediate e-symmetric L-groups associated to k, by the
intermediate version of Proposition 6.1.1 ii).
ii) The only parts of the diagram where commutativity is perhaps
not guite obvious are those involving the connecting maps 3.

For those parts consider the more obviously commutative diagram

| | |

(£',9)

- o——— v

L;,(A',e)———» L;, gi (97B! A e} e L; X (f:A-—-oB,e)————«»L;_ (a,€)
1 111 L 1M1 l 11
n l n (£':9) n n-1
' R t.pr_ ' ~ .
Ly (a',e) —»in'y.(q B'—A' £) e Ly X (f:A—>B,&} —L, " (A,€)

2 2 l 2'"2 2
l (£',9) 1

ﬁn(”z;"'/"i""anmz”é/"i SV Ml i (zz;xz/xl—wz/yl)—vﬁ"'

2
l (f',q9) l

n-1_, n-1 n-1 . n-
LXi (A ,e)AA—«»in'Y, Y., X (£:A ~>B,€)~—L, “(A,€)

" = :

(ZZ;XZ/Xl)

—
N e

(@':B'— A" g)e—"——1L

ot f—

in which the composites of the horizontal maps (inverting the
excision isomorphisms (f',q)) are the connecting maps 3.
iii) By analogy with ii).
[
Madsen {2,4.11] makes use of a particular case of the
natvrality property of Proposition 6.2.3 ii), indicating a

proof specific to that case.



6.3 Cartesian L-theory

A commutative square of rings

f
A ———>B
£ ¢ g
gl
B'————>A"'

is cartesian if the sequence of abelian groups

()
£ (9 -9")

0O——> A ————> B®B' ———>A' —0

is exact.

The cartesian squares of rings with involution ¢ for which
we shall obtain excision in L-theory will be such that there
is excision in the classical algebraic K-theory of the underlying
cartesian square of rings, in the following sense.

A cartesian square of rings ¢ is K,-cartesian if

i) ¢ is cartesian

ii) the natural map of relative K-groups
(£',9) : Kl(f:A—>B)~—«>Kl(g':B'~4’A')

is an isomorphism

iii) the sequences of reduced algebraic K-groups

£
£ (g9 -g")
Rm(A)———>Rm(B)$Rm(B') —_— Rm(A') (m = 0,1)

are exact. (For m = O this follows from ii})).
In particular, for a K ,-cartesian square ¢ there is defined a

Mayer-Vietoris exact sequence of reduced algebraic K-groups
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® ® 13 t ® ' 3 1 \: '
K, (A)— K, (B) 8K, (B ) =K, (A )_—’RO(A)—JO(B)QKO(B )—,RO(A

with the connecting map 3 given by

. -1
- (£',9)
3 Kl(A')———-Kl(q')*l—lma Kl(f)——»RO(A) .

A cartesian square of rings ¢ with g:B——A' (or g':B’

onto is K,-cartesian, by Milnor [4,§4]. The cartesian square

A———>B

A-———7 1B

S—l
associated to a cartesian morphism of rings and multiplicativ
subsets

(A,S) ——>(B,T)

{e.9. (A,8)—>{A,S) with A = Lim A/sA) is K, -cartesian, by
s€S

Karoubi [2,App.5] (cf. Proposition 3.1.3 i)).

Let then ¢ be a K,-cartesian square of rings as above.
Given
i) a f.g. projective B-module P
ii) a f.g. projective B'-module P’
iii) an isomorphism of the induced f.g. projective A'-mod

h @ A'@P ——>A'E, P

there are defined
i) the pullback f.g. projective A-module
(P,h,P') = {(x,x') € P@P"h(lEBx)= lﬂB,x'G A'@B,P‘}
Ax (P,h,P') --=- »(P,h,P") ;

{a, {x,x"))e—- —=(E(a)x,f'(a)x")



—>A')
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ii) an isomorphism of f.g. projective B-modules
i BGA(P,h,P')——-+P ; b&(x,x")——>bx
iii) an isomorphism of f.g. projective B'-modules
i’ B'EA(P,h,P')—*——»P' : b'@(x,x*')—>b'x"'
such that there is defined a commutative diagram of

f.g. projective A'-modules and isomorphisms

lﬂBi
L A'QB(BBA(P,h,P‘))——~—~3L——~arA‘GBP
A'@A(P,h,P') th
1
\ :
lﬂB,l'
A'@y, (B'®, (P,h,P'))——"—>A'&y P’

The isomorphisms i,i' will be used to identify

B@A(P,h,P') =P , B'QA(P,h,P') = p'

The connecting map in the algebraic K-theory Mayer-Vietoris
exact sequence of ¢ can be expressed in terms of the pullba¢

construction by
o+ Ky (A) —K (A) th:a' T a5 (89,n,8'Y}

The pullback construction for modules extends to morphisms:
if (P,h,P'), (Q,k,Q"') are pullback f.g. projective A-modules
there is defined a Mayer-Vietoris exact sequence of abelian
groups

O‘——*+HOmA((Prh:P').(Q,k.Q'))—_‘*’HomB(P,Q)QHOmB.(P',Q')

——=--—>Hom, , (A'@,P,A'®;,Q"})~——>0 ,

B

so that there is a natural identification



HomA((P,h,P')y(Q.k,Q'H
= {(e,e') € Homy (P, Q) ®Hom,, (P',Q")
] (185,e')h = k (18 e) € Hom, , (A'8,P,A'8,,0") ]}

Let now ¢ be a K,~-cartesian square of rings with involution.
I1f (P,h,P') is a pullback f.g. projective A-module there is
defined an isomorphism of f.g. projective A-modules

(px, b+t

,P %) —2 5 (P, h,P')* ;
(e,e')— ((x,x"}—> (e(x),e'(x"))

€ ker{{g -g'):B@B'—>A') = A)

which we shall use to identify

(P,h,P)* = (P*,h*" 1 prx
It follows that the square
K, (A") 3 R (A)
1l o]
* *

~ , -
KI(A )———*———+KO(A)
is skew-commutative, that is
*) = ~J% ,

and hence that the abelian group isomorphisms

) s Ry /3,1y

induces isomorphisms in the Tate Z.,-cohomology groups

2
Ny . 4N % . ~_, fn-1 .
3 : H(Zy K (A")/J)—H (Z,:14) (n(mod 2})

inverse to the natural maps

A ﬁ“'l(zz;to)——»ﬁ"(zz;ilm')/Jl) {n(mod 2))
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defined in §6.2 above. Thus ﬁ*(ZZ;A) = 0, and ¢ is fi*-cartesian
in the sense of §6.2.

The first step in proving that a K,-cartesian square of

L*_
rings with involution ¢ is g cartesian in the sense of §6.2
Ly-
would be to extend the pullback construction of f.g. projective
€e-symmetric
A-modules to g forms and formations over A,
ks—quadratic

Unfortunately, such an extension is not always possible. We shall
now investigate the extent to which such an extension is in fact
possible, in the first instance by considering the behaviour
under pullback of the various Q-groups used to define forms
in §1.6 above.

Let ¢ be a K,-cartesian square of rings with involution,
and let (P,h,P') be a pullback f.g. projective A-module.
The split €-quadratic Q-group

Q. ((P/h,P')) = Hom, ((P,h, P}, (P,h,P')*)
fits into an exact sequence
0 —>0, ((P,h,P"})—>D_(P)®D_(P')—>C_(A'BP)-—>0 ,

which is in fact an exact sequence of Z[Zzl—modules with TG:ZZ
acting by the e-duality involution Tsth-—»Ew‘ on each Q-group.
Thus the pullback construction of modules generalizes to split

e~quadratic forms, as detailed further below. The e-symmetric

and e-quadratic Q-groups

€ _ - e - A
Q" (P) = ker(1-T_:3_(P) ~>Q€(P))

"

Q. (P) coker(l—TC:OE(P)——v OE(P))

are such that there is defined an exact sequence



0 ——>0°((P,h,P')) ——> 0 (P)8Q" (P')—>0Q" (A'®,P)
3
*‘-%OE((P,h:P'))**'*QE(P)@QE(P')“-’—% Q. (A8, P) ——>
with the connecting map 3 given by
3 OE(A'EBP)*——‘>Q€((P,h,P')) i 0T (b~ ed8, bge ~ EOLL)
expressing ¢' as

' = 18, - h*(185.05,)h € Q% (A'@P)

for some oBG 65(P)' ¢B,e GE(P'). The even e-symmetric Q-group

€ o o= =
Qlvy> (P) = 1m(1+T€-Q€(P)““——*QE(P))

is such that there is defined an exact sequence

1

0—{6€ Q% ((p,h, P 110 0x) (x) € im(8:i1 (At 6) — 8%z yia,00)

for all x€ (P,h,P')}

——Qev© (P)@Q<vo>E (P')-—+Q<v0>€ (A'@ P)~—>0

Thus the pullback construction generalizes to e-symmetric forms,
as detailed further below, but not necessarily to even
e-symmetric and e€-quadratic forms. However, if

§=0: ﬁo(zz;A',c)—~+ﬁl(2zz;A,s) then
Y =0 : Q°(A'BgP)——>Q ((P,h,P"))
and there are defined short exact seqguences
0—>Q°((P,h,P'))—>0° (P)8O° (P')—>Q" (A'®yP) —>0
0— Qc((P,h,P'))—~*+Q€(P)OQ€(P') I QE(A'QBP)-“’O
0—>Q¢v? " (P h, P ) 0wy TC(P)BOCV > (pY)
- 0> (AR P >0,

so that the pullback construction generalizes to e-quadratic



and even (-€)-symmetric forms. In particular, this is the case
for the K,-cartesian "arithmetic" square associated to a

ring with involution A

A —————— PR _A

ZEZZA e Qﬂz}\

since ﬁ*(zz;i)@zzA,e) = 0 {on account of 1/2€ ®) - the L-theory
of such cartesian squares was first studied by Wall [8],[9] as
part of his programme for computing the quadratic L-groups
Ly(Z[n}) of finite groups m. (For torsion-free A, such as
A = Z][n] for any group 7w, this is a localization-completion
square as in §3.1, with S = Z~{0}<A). On the other hand, the
K,-cartesian square of rings with involution
€4
Z[Z2]*_,z
e p

P
z-——~——>22

defined by T = T € z[Z,] and

e, : R[EZ]

+ —> Z ; a+bT +—» atb

p = projection : Z ———» z,

is such that there is no pullback construction for skew-quadr:

forms, since the connecting map

3 :Q (E2ﬂz[zzl(ﬂll.ﬂ)) =Z,— 0 ,((z,1,2)) = Z,

((Z,1,2) = 22[22]

is non-trivial. (For this example I am indebted to W.Pardon}.



Given

{an e-symmetric (M, €05 (M)
i)

form over B {

a split e-quadratic (M, b€ GE(M))

{an e-symmetric (M', ¢' €Q%(M"))
ii)

form over B'
a split e-~quadratic

M' p' €0 _(M'))
g-symmetric

iii} an isomorphism of the induced
split e-quadratic

forms over A’
h : A'ﬂB(M,¢)——$L—~+A'ﬂB.(M‘,¢')
(h,x) = A'EB(M,W)——Z——+A'EB.(M',¢W
e-symmetric

there is defined a pullback form over A
split e-quadratic

(e ,m, o)
= (M h,M'), (6,0 (M, h,M') —s (M*,h* "1 Mi*) = (M,h,M") %)
(L), (hx), (M, %))

= (M b, M), (bbxg=exE, ¥ +Xp —EXE)

S (M, B, M) ——s (MX R M%) = (M0, M) %)
with XBQHomB(M,M*). XB-GHomB,(M',M'*) such that

X = 1EXB - h*(lEXB,)h € Q_C(A'EBM) .
There are natural identifications

B@, ((M,6),h, (M",0")) = (M,¢)

BE, ((M, V), (h,X), (M',¥")) = (M, ¥) ,

%B'ﬂA((M,M By (M7, 80)) = (M',4)

B'@, (M, 4), (hyx), (M' 7)) = (M', ")



Given

formation over B

an e-symmetric (M,$:F,G)
i)
§a split e-quadratic (F,((:),G)G)

{an e~symmetric (M',9°';F",G")
ii)

formation over B' {

)
a split e-quadratic (F',((:,),O')G')

e-symmetric
iii) an isomorphism of the induced
split e-quadratic
formations over A'
h : A'ﬂB(M,¢;F,G)—v$i\»A'@B.(M‘,¢‘;F',G')
(arB,) @ A'BL(F,G) —==—>A'® ,(F',G")
e-symmetric

there is defined a pullback formation over A
split e-quadratic

({M, $:F,G),h, (M',¢';F"',G"))

= ((M,h,M"), (6, ¢');(F,h],F'}, (G hl,G')

({(F/G), (a,B,¥), (F',G'))
(y+(¢B-€Wg)*u,Y'+(¢B.-EW§.)'u'))

= ((FIGIF'),((
(wou')

(e+u*wBu+xB.6'+u"xB.u'+xB.)(G,B,G‘))
with \pBGHomB(F*,F), \I:B. GHomB,(F'*,F‘) such that
v =180 - a tdmy. )0l € 0 (a'a FY)
B '@ - B
and xBG HomB(G,G*), XB'e HomB.(G',G'*) such that
B*(lﬂBue')B - 18,6 - (1ﬂBu*)W(l@Bu)€ Q_E(A‘EBG)

There are natural identifications



{ B@A((M,¢;F:G),h,(M',¢':F'.G')) = (M,4;F,G)

B@A((F,G),(G,B,w),(F',G')) = (F,G) '

{ B'QA((M1¢;F;G),h,(M',®':F':G')) = (M',0';F,G")

B'®, ({(F,G), (a,B, ), (F',G")) = (F*,G') .

Proposition 6.3.1 Given a cartesian square of rings with invol

A——>B
f‘J ¢ g
B'——--~g—l—>A'
let ¥ be a cartesian square of *-invariant subgroups
/ . { K,(A) ————K_(B)

K = L g {m =
X .

Y' —+ X' Km(B')——~———+Km(A')

If either i), g:B———A' is onto

or ii), ¢ is the cartesian square

A————>8B

sla sl

associated to a cartesian morphism of rings with involution ar
multiplicative subsets

(A,S) ——>(B,T)
then ¢ is L,-cartesian

K
L,(%,e) =0,
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and there is defined a Mayer-Vietoris exact sequence of
intermediate e-guadratic L-groups
(e
-q"
R L B S AT NP IASN TR _(g_g*)””‘ﬁ. (A, e

———ja—+L§_1(A,e)—~—s...

Define also the conditions
i}* = the maps g:B——>A"', g':B' ——>A' and
9:8%(2,:8,6) ——i%(z,:a" 6), 9180 (z,8" o) — 0 (zy;a
are all onto

ii)* = ii), and also

§=0: ﬁo(zz;'r'ls,e) ——»ﬂl(zz;A,e)

i)*
Then if holds ¢ is
ii)*

{such that L:(O,e) =0 (n¢l)

L*-cartesian, with L;(@,e) =0

ngl
and for { there is defined a Mayer-Vietoris exact seque
n€z

of intermediate €-symmetric L-groups

Ly (B,€)OLY, (B',€) \ N (@ -9
——...——>Lgy(B,€)8Ly, (B',€) ————> L.
£
J n-1 £ -1 n-1
— Ly (A,E)——————#L; (B,€)®LY, " (B',e) —>...
N



Proof: i) Consider first the special case

X' [ 1y———>0 RO(A) —>RO(B)
= C
Y'—————> X' 0——0 R‘O(B')—-—>R‘O(A') .
i)*
Assuming condition we shall now define morphisms of
i),

- g~symmetric
L~-groups
e-quadratic

s : vl(at,e) f«w;(f,e)

O

sV A e —— Uk (e e,

3 vig', e)—— ™ A, o)

n
n-
X
X
1

V(9 e)————2U, | (A,£)

Oy

ng1l
for %/ satisfying the hypotheses of the appropriate
nez

intermediate version of Proposition 6.1.3, thus obtaining the

e-symmetric
intermediate g L-theory Mayer-Vietoris exact sequence
e-quadratic

in the special case k = TO.
e

Every element of is represented by a non-singular
VO(A',E)

a0t et (ard)
form over A' of the type (q20).

€-symmetric
a9 v eo )

e-quadratic

ana g:A%z,;8, ) ——R%(z,;a", ) is onto

As g:B——A' is onto i

e-symmetric (89,4 € 0f (8%))

there exists an g form over B ;

e-quadratic

®%,yeq_3%)
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such that
9,91y = A'@B(Bq,m
aT ey = aap e

In the ¢-guadratic case define

X' = (wrer )t @reer ) Tteo

and let ((Bq)*,xe Qe((Bq)*)) be an €-quadratic form over B such
that
(e xy = arey(8hH0
even (-€)-symmetric
Use the isomorphism of non-singular

split (-€)-quadratic

formations over A’

1 -t
h =
o 1

o} 1
ae 33,4 = (a9, ;a0 9,
B -€ (o]

1
im(< ) AT —— a9 ardy )
$',

—=—arey, 18N8, (BN

1
= aJenar ), ( >;A'q.(A'q)*)

- (6]

(a,8,0) = (1,¥'+ed'*, -€x*)

1
aa 9,9 = (A'q,(/ nard)
waew'*

0]
——s e, 8%, @0y - (A'q,(< >,0) (e
1

Ceven (-€)-symmetric
to define a pullback non-singular
split {-¢€)-quadratic

formation over A



(N,v;F,G) = (38, 0),h, n T (B9 ;8'9, (B'F) %))

(F,6) = (3(8%,¥),(a,8,0),(8'9, (B9 *))

"

(89,1,8'Y ,

{1- (x+ex*) (Y+ey*) ,0)
(V+eu*, 1) )'
Y= (prep*) x (b+ed*) ) (B, +ep*, B
(89,1,8'% = a9
with projective class
(61 - (r*] = ((8%,¢',8'Y) - (a9

= st(e:at T —— arhy

= = ] ;K ¢ K K
€ X Iy 1m(a.Kl(A )——#KO(A))E KO(A)
(where ¢' = ¢' + ey'* in the e-quadratic case). The isomorphi
even (-g)-symmetric
of non-singular formations over B
split (-€)-quadratic

1 : B&, (N,v;F, G) —2 3(89, )
(1,1,ex) : BEA(F,G)—Hii_4 389,y

can now be used to define an abelian group morphism

ga : VO(A',C)-—~+Ug(f,c) : (A'q,¢')»4——*((N,v;F,G),(Bq.¢).1

8§ 2 Vo, ey —us(f,e) 5 vy ——r,6, 89,0, (1,1

The construction of § in the (-€)~quadratic case also gives
abelian group morphism
-2 .. [e]
§ vt e) = vivy (A -e)——»u 2(f,e) = Vo> g (Ee-k)
a9 - eprre oy TS ard))
> (i (a%) 89,6y, (BY, y-evr € 0@y T (BT, 1)

where (H (Aq);Aq,G) is the non-singular e-quadratic formatior
over A underlying the pullback split e-quadratic formation

(F,G) = (i(BL,9), (a,8,0), (89, (B Dyx)).



X))

viar,e)
Every element of is represented by a non-si
VI(A',E)

formation over A' of the type

e-symmetric
e-quadratic

EE(A DoAY am 9y isomorphism

(q» 0) for some
automorphism

H v At amd)
a s HE (@ N ey ——n Y,
(a,x) : H (AN ———it_ar9)

standard hyperbolic over A,
a split e-quadratic form

- e-symmetric forms

of g
by Proposition 1.6.2. In the e-symmetric case we have that
maps g:B——A"', g:ﬁo(zz;B,e)~——+ﬁo(z2;A',e) are onto, so
there exists an e-symmetric form over B ((Bq)*,ie QE((Bq)*
such that

(ard e = aag (N5
furthermore, the maps g':B'-4A',g‘:ﬁO(ZZ;B‘,e)———*ﬁO(Z2
are onto, so that there also exists an e-symmetric form ov
(8'D*, e ((B'Y)*)) such that

(ad*gry = aag, (89 *,0)

€e~symmetric

The pullback non-singular form over A
split e-quadratic

™M,¢) = (BN *,5),0, 0B N, 0))
M9 = (H_BY), (a0, f ('Y
has proiective class

Ml = sr(a:atdear ) r—— a9y e x = 16K,

N



e~symmetric
Use the isomorphism of non-singular forms over B
e-quadratic

% 1: B@A(M,¢)~:—»a(H‘((Bq)*,g);Bq,o) = N+,

. _~, 3(p9 - q
1 : B&, (M, ¥) 3(B,0) —HS(B )
to define an abelian group morphism
8 vl o——sulig, 0 ;
WA D e arda@ )y —— im0y, (8% %, £);8%,0),1)

~ , X .
/ [ Vl(A ,6)—*—7U1(f,€) ;

K H AN Y oY) ) ——m, 0, (8%,0),1)

The construction of &§ in the (-€)-quadratic case also gives
an abelian group morphism

§ivtana = vt ma——utie o = vwplie,-o

WA AT ey y e M, p-e9t), (187 (8% ;8,00 ,1)

e(A'q) an automorphism of a standard

with o S (A ) Ly~
hyperbolic even (-€)-symmetric form over A' and

849

M, b-epry = (HE(BY ,a,u”
the pullback non-singular even (-¢)-symmetric form over A.
Vo(q',e)
An element of is represented by a non-singular
Vo(g',e)

even (-€)-symmetric
formation over B' of the type
split (-¢)-quadratic

w8 %Y ;89,6
(with 6 = B'T as a B'-module) together with

(8'9,6)
e-symmetric (29,4 e 0%
an form over A' of the type
e-quadratic (9,4 e QE(A'q))



even (-€)-symmetric
and an isomorphism of formations over A’
split (-€)-qguadratic

(neamden —~—rae, @ @989

1h caa gy —~—aa,, %6 .

form over B such that

(8%, 6 €0 (89 e-symmetr ic
Let be a

B89, ve oe<Bq)) e-quadratic

(9,0 = aey9)
(a9 = aey %0
(even (-€)-symmetric
Use the pullback construction of
split (-e€)-quadratic
formations over A to define an abelian group morphism

5 vVig e —oultae) = vcwol@a,-e)
. ’ x t 0 x 1 *

(e e e, a % . n— e, @ e 98 %6
8 vylgt e ——v* ae) = uY(a-e)

L (896, a%) me—eedy,n e e,

and define similarly
§ 2 vlgte) = vivgyliatime)——up  (ave) = vl ase)
(3 N8 d6), AT pr-eny,
heaatd, ey ) = are,, (1 (889, 60)
s (2 (8%, y-evry n, u 809809, 6))
using the pullback construction for e-quadratic formations over A.

vitar,e)
An element of is represented by a non-singular
vyla'.e)
e-symmetric 3'9, 60" (8%
g form over R' of the type

split e-quadratic B 9ve GE(B'q))



e-symmetric

together with an isomorphism of forms
split €-guadratic

over A'

h: v (P ey~ sam , 3 e e (artyx, o)

e |

(2p =
By e _(ah)

(h,x) : HE(A'p)———%——»A'aB
In the ¢-symmetric case let ((Bp)*,EG QE((BP)*)) be an
e-symmetric form over B such that

(aByx ey = e 00
and let ((B't)*,ce Qs((B‘[)*)) be an ¢-symmetric form over B'

such that
(arf)y*gt) =A@y (BT % 1)

e~symmetric
Use the pullback construction of forms
split e-quadratic

over A to define an abelian group morphism
§ - Vl(g‘,e)-—4ﬁug(A,e) B
(8'9,¢) ,hy——m((BP)*,8) .h, (B' Y, g)@u ((B'T)*, 1))
g - Vl(q',s)~~v—»Ué(A,€) i
(@ Y01, (0 )—— (i _(8®), (o), 8' T, wyel 81Ty
and define similarly
3 : V_l(g‘,e) = v<v(;1(g',—e)——~»u)’(2(A,s) = U<vo>§(A,—e) :
((8'9,y-eypx) ,hii (AP) > ara, (B'T, p-eyx) @ HT (]
——— (1" (8%) ,h, (8'Y, p-epr)on (8 7))
using the pullback construction of even (—e)—symmet;ic forms

over A.
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Having defined maps

1

n (A, €)

§ : V(A ) ——UR(E,€) §: v'(g', &) —U

n-—

X

§ v a,e)—— ¥t e) T [ 5 v (g, —ut (Ae)
Y 'n ! n'"’ *'n ! n-1'""

satisfying the hypotheses of the appropriate intermediate ver
of Proposition 6.1.3 we have from its conclusion that the nat

e-symmetric
maps of relative intermediate L-groups
e-quadratic

(f',q) :U;(f,e)-q.»v“(g',e) (ng 1)
(£',9) : UN(E,€)——>V (9',e) (n€Z)

are excision isomorphisms. Thus

L]
m
—
|

=0 (ngo0)

©
[y
il

=0 (n€ Z2)

for x = 10, and hence by Proposition 6.2.2 also for any othe
cartesian square of #-invariant subgroups k, giving rise to

e-symmetr
the Mayer-Vietoris exact sequence of intermediate

e-quadrat
L-groups
0 0 o -1 -1 -1
LY(B,E)QLy,(B‘,e)-——9Lx.(A',c)-——*LX (A, €) ——»LY (B,E)QLy,
1] 1]
X e) Y B e)oLY (B, e)—1X (ar, )
n n n n
Ak Ay —— {ne
Lo,

In order to extend the e-symmetric sequence to the left by a
exact sequence

1 3 o]
Ly (B,€)OLY, (B',€)——>Ly, (A',€)——L (A, €)

E— Lg(B,E)QLg.(B',E)——-+L3.(A',€)



it suffices by Proposition 6.1.3 to prove that the map

. 1 1 .
(f',qg) : Ly,x(f'e”*_’Lx',y‘(g ¢ €)

is an isomorphism for any cartesian square K., For x = IO this
has already been done above, and the construction of the maps
6,8 used to do this extends to the case x = Il’ so that
(f',g) is an isomorphism for x = L, also. Any other cartesian
square € is such that KzIm (m = 0 or 1}, and applying the

5-lemma to the morphism of exact sequences

1 ~1 o]
(f'E)—)I‘Y,X(f'E)__,H (ZZ2.X/Im—’Y) “"Lo 1 (f,€)

A2 1
: SY)— L
H (erX/Im Y) 0.1

m m
(fhg)i (£'.9)§ (£',9) (f',9}§ (qu)i
itz v —oxy—1 (g, -1 (q' c)—~>ﬁl(z 'Y'——>x‘)~—+LO (g',€)
2’ 0,07 ' X', Y' ! 2" 0,07 '

it is clear that the middle (f',g) is also an isomorphism.
ii) Excision isomorphisms and a Mayer-Vietoris exact
e-symmetric
sequence for the intermediate L-groups associated

g-quadratic

to a cartesian square of rings with involution

A— 3B

1

sla Lol

ii)*

satisfying condition 3 have already been obtained in
ii),

Proposition 3.6.3 i), in the special case of the cartesian

square of #-invariant subgroups
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KO(A) *KO(B)
K =
im(K. (A)—K (s tA)) ——>im (K (B)—>K_(T7'B))
(o] o} o} (o]
KO(A) -—> KO(B)
<
K (s™1a)—— K (17 1B)
(¢] 0 :
L!_
Thus ¢ is cartesian in the sense of §6.2, and there are
L,~

defined excision isomorphisms and a Mayer-Vietoris exact
sequence for any cartesian square of #*-invariant subgroups x,

by Proposition 6.2.3.

It is possible to give an alternative proof of the
L-theory Mayer-vVietoris exact sequence of Proposition 6.3.1 ii)
(the localization-completion case) which avoids the localization
exact sequence of §3, and is closer in spirit to the proof
of the Mayer-Vietoris sequences of Proposition 6.3.1 i)

(the case of a cartesian square ¢ with g:B—>A"' onto)

involving the explicit construction of the maps 6,8 for x = TO.

The main idea here is that even though neither B—~——+T-lB nor

-1 1 1

S "A——»T "B is onto for every x€ T "B there exists t€T

such that tx€ im(B—w~+T_1B), so that every

c-symmetric
ge—quadratic

1 1

1 S e, 0t e 0t (1B
form over T "B of the type -1 -1 is isomorphic
L7t e e r7 )
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-1 e-symmetric
to the form induced over T "B from an form over
{e—quadratic
(8%, 0 € 0% (8Y))
of the type via an isomorphism
8%, veq_(8%)

t : T'lauB(Bq,o) = (r7%89,Te t) ——— (1 2B, 47)

e« v Bay 8%,y = (171 Ty o) —— (17 1B, 0

for some T-isomorphism t€ HomB(Bq,Bq) (e.g. multiplication or

the right by an element t€ T), and similarly for higher-dimer

{c—symmettic -1 o
complexes over T "B. Indeed, such was the origi

e~quadratic

approach adopted by Wall [8] in his work on the quadratic L-t

of arithmetic squares.

We refer to Madsen [1,p.249] for an application of the
Mayer-Vietoris exact sequence of Proposition 6.3.1 i), to a
proof of Theorem 13A.4 iii) of Wall [4], that for a finite
group m the transfer map il:LO(Z(n])—————+LO(Z) induced by

the inclusion i:Z—— Z[n] is onto. For another application

see Cappell and Shaneson [4].
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6.4 Ideal L-theory

Given a ring A and a two-sided ideal I JA define the

double of A along I D(A,I) to be the ring consisting of ord

pairs (a,b) of elements a,b€A such that
a-~ber«a,
with addition and multiplication by
(a,b) + (a',b') = (a+a',b+b') € D(A,I)

(a,b)(a',b') = (aa’',bb'} € D(A,I)

ional
((a,b),(a',b’) €ED(A,I), aa' - bb' = (a-b)a'+b(a'-b') € I
al exactly as in Milnor [4,84]). There is defined a cartesian s
of rings
pory
f

with

f : D(A,I)

A ; (a,b)r— a
f* : D(A,I)————>A"' ; (a,b)—>b
g = g' = projection : A————A/1
The diagonal map
A : A——>D(A,I) ; at———>(a,a)
is a ring morphism such that
fa=1: A—-A

Thus the relative K-groups of (A,I) Km(A,I) (m = 0,1) defin

Km(A,I) = ker(f:Km(D(A,I))-—*Km(A))

are such that there are natural identifications
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Km(D(A.I)) = Km(A)@Km(A,I)
{m = 0,1)
Km(A,I) = Km+1(A-—-->A/I)
by the excision property of Milnor [4,§4], with an exact sequence
K2(A)———>K2(A/I)-——)K1(A,I) —> K, (A) —K, (A/1)

—-—+KO(A,I)———->KO(A)—»KO(A/I)

There is also defined a cartesian square of rings

R F
I — 2
+
F' OI G
G’
A — — 3 A/I

where 1t = Z®1 is the ring with addition and multiplication by
(n,i) + (n',i") = (n+n',i+i") e 1*
(n,i}Y{(n',i'}) = (nn',ni"+n'i+ii') € it
(n,n'€Z ,i,i'€1l)
and
F : I+———~—>Z 3 (n,i)+——*n
F' o: I+~%%A : (n,i)\——-‘snlA+i
G : Z—>A/1 ; n»—-—~+nlA/I
G' = projection : A———3 A/I
The inclusion
d:zZz——>1" i ne— 4,0
is such that
Fd = 1 : Z ——Z

Thus the algebraic K-groups of I Km(I) {m = O0,1) defined by

_ T +, _ .t
Km(I) = Km(I ) = Km+1(F.I —> ZZ)

are such that
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K (IT) = K (DeK_(2) .

The natural map

(F',G) : Kl(F) = KO(I)——+K1(G') = KO(A,I)
is an isomorphism by the excision property of classical
algebraic K-theory, cf. Bass {2,IX.1.2]. Swan {1] has
constructed examples of pairs (A,I) for which the natural
map

(F',G) : KZ(F) = Kl(I)—-——>K2(G') = Kl(A,I)
is not an isomorphism, so that excision fails in higher
algebraic K-theory.

We shall now investigate analogous results in algebraic
L-theory. Roughly speaking, the 4-periodicity of the e-quadratic
L-groups L,(A,g) = L*+4(A,e) of a ring with involution A keeps
them sufficiently close to being the L-theory analogues of
the classical algebraic K-groups KO(A)’KI(A) for there to be
excision with respect to the involution-invariant ideals I of A,
as will be shown in Proposition 6.4.1 below. The e-symmetric
L~groups L*{A,c) are closer in spirit to the higher algebraic
K4 (A), and in Proposition 6.4.2 we shall give an example of
the failure of excision in e-symmetric L-theory.

Let then A be a ring with involution. A two-sided ideal
I4A is invariant if

1=14A,
that is 1€ 1 for each i € I. The double D(A,I) is then a ring
with involution
: D(A,1) —>D{A,I) ; {a,b)r—~——">(a,b) ,

+ . . : . ;
and I is a ring with involution



+ + . -
I .o I ; (n,i)r—>(n,i) ,
so that the cartesian squares ¢I and ¢; defined above are in

fact cartesian squares of rings with involution. Define the

e-symmetric
L-groups of (a,I)
e-quadratic

" L"MA,I,6) = ker(f:L )(D(A,I),E)~——>Ln(A,e))
(ne z)

(D(A,T),€)——L (A,€))

A
(A)

H
=
m
~
(=S
=

L, (A, 1,¢€)

The diagonal map A:A ——D(A,I);ar—>(a,a) is a morphism of
rings with involution such that fA=1:A-——>A, so that there

are natural identifications

y (DA, I) €) L" (A, e)eL" (A, 1,¢)

n

L»,
Foun
K. (A)

Lo (DA, T),e)

(n€ 2)
Ln(A,E)QLn(A,I,E) .

H

t-symmetric
For € = t1 define the L~groups of I
€-quadratic

LI,e) = ker (F:L™(1, e ——1™(Z,¢))
+ (n€ 2Z)
L, (L,e) = ker(F:Ln(I €))L (Z,€)) '

so that there are natural identifications

W rte) = Y1)t (z,e)
(n€ Z)
Ln(I,s)QLn(Z,e) .

L (1*,e)

Proposition 6.4.1 Given a ring with involution A and an

invariant ideal I14A let

K = im(‘RO(A)HK‘O(A/I))QKO(A/I) .

there are natural

1f ﬁO(ZZ;A,e)—-—*ﬁO(ﬂz;A/I,E) is onto
For all A,I,¢

identifications
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YA, T, ) n+l(A—»A/I,€) (n€0)

L (A, I,¢) (A——>A/I,e) (n€2Z) ,

n+l
€-symmetric

and there is defined an exact sequence of L-gr
(€-quadratic

thae — it a0 —>12m, 1,0 — 10 ;. e —>18 (a/1, ¢

K
> Ln(A,I,e)———)Ln(A,E)-“—>Ln(A/I,C)———*Ln_l(A,I,E)—
(
Furthermore, in the €e-quadratic case for € = t1 there are ¢
natural identifications
L (A I,e) =L (I,e) (n€2z)

and the exact sequence can be written as

X
.———?Ln(I,s)—-»Ln(A,e)——+Ln(A/I,e)—-*Ln_1(I,cr——+.

Proof: Immediate from Proposition 6.3.1 i) applied to ¢I ar

In particular, for the ideal (2) = 2ZJ4Z there are

defined isomorphisms of rings with involution
D(Z,(2)) —>Z[Z,] : (a,b——3(a+b) + J(a-b)T
(2" ———— Z(Z,) ; (n,2i)r—> n+i(1-T)

(the involution being the identity in each case), so that

+ . ces ;
[ may be identified with the ca

cartesian squares ¢(2), (2)

square

zlz, 1———-«———* Z

T



533

previously defined in §6.3. It follows that for € = #1 there

e-symmetric
are natural identifications of L-groups
e-guadratic

n+l

LNz, (2),6) = LT((2),6) = " (e, I 127, €)

]

(ne.z)
Ln(Z,(Z)'E)

Ln((2) ,€) = Ln+1(e+:zz[z2]—+zz,e)

skew-symmetric
Let us write the L-groups of a ring with
skew-quadratic
involution A as
n —
L (A,-1) = L (A)

Ln(A,-l)

H
[l
E

Proposition 6.4.2 Excision fails for the e-symmetric L-theory

z[izzl———% Z
of the cartesian square l ) l with € = -1, since
Zz

7 ———

2

Eo(z[z21—>m =0

Eo(z——»EZ) = fo(fb) = Z

2

There is no Mayer-Vietoris exact sequence of e-symmetric L-groups
Eo(meio(m———»io(zz)-—3—>E'1(zlzzl) .

since
%z =0, %=y = z,, THziz,) =0

Proof: As HO(ZZ;ZZIZZI,~1) = O Proposition 1.8.1 identifies

1 _
L (z(Z2,]) = Ly (Z[Z,])

The Mayer-vietoris exact sequence of quadratic L-groups given

by Proposition 6.3.1 i),



(11) F)
LZ(Z)QLZ(Z)—*—**—?LZ(. 'ZZZ )—“—’Ll(Z[zzl)*—’Ll(Z)QLl(ﬂ)

shows that LI(ZMZZI) = 0, since Lz(z) = L2<z7,2) = 22 ,

LI(Z) = O by Proposition 4.3.1.

Anticipating the splitting theorem

Viatz.z 1,e) = V@, e)eu™ La,e) mez,z=2"1

conjectured in §I1.10 and mentioned in the introduction to §7 below
it is possible to extend the failure of excision given by
Proposition 6.4.2 to the higher-dimensional e-symmetric L-groups,
as follows. PFor each k >0 let @k be the cartesian square of

rings with involution

e
zlz, z%) — 22"

Then

FATTLS

n
3
Q
——
de X
~—
(o}
(S
s
.
®
@]



§7. The algebraic theory of codimension g surgery

The Browder-Novikov-Sullivan-Wall surgery theory of
topological manifold structures on geometric Poincaré complexes
was reformulated in Ranicki [7] in terms of the algebraic
Poincaré complex theory of I.,I1. and the algebraic theory
of surgery classifying spaces. This reformulation is recalled
in §7.1, and in §7.2 it is extended to the BrowderTWall
surgery theory of topological (manifold, codimensién q
submanifold) structures on geometric Poincare (complex,
codimension q subcomplex) pairs, with q31. In §7.3 the
quadratic construction wF on a stable map F:r X—>:Y of §I.1
is refined to a "spectral quadratic construction" wF on a
"semi-stable” map F:27X~—Y (i.e. a map of spectra with
domain a suspension spectrum), for use in §7.4 and beyond.

In §7.4 we recall and expand the expression due to Quinn

of geometric codimension q surgery obstruction theory in
terms of geometric Poincaré splittings. The theory is then
expressed in terms of algebraic Poincaré splittings in §7.5.
The algebraic theory of codimension 1 surgery is developed
in §7.6. In §7.7 our methods are extended to surgery with
coefficients, such as the Cappell-Shaneson homology surgery
obstruction theory. This extension is needed for the algebraic
theory of codimension 2 surgery developed in §7.8. Finally,
in §7.9 we outline the algebraic theory of knot cobordism
(the origin of codimension 2 surgery), giving various
algebraic characterizations of the high-dimensional knot

cobordism groups C,.



As noted in the Introduction §7 is only a preliminary
account of the algebraic theory of codimension g surgery,
just as Ranicki [7] is only a preliminary account of the
total surgery obstruction theory, the full account of both
to appear as Ranicki [11],{12). In particular, Ranicki [11}
will carry out the programme set out in §7.5 for the algebraic
derivation of codimension q splitting theorems for manifolds,
such as those of Cappell [i] (1£i<9) for g = 1, by proving
codimension g splitting theorems for quadratic Poincaré comple
The algebraic methods should also apply to the symmetric
L-groups. For example, the splitting theorem for the quadratic

1 -1

L-groups of the Laurent extension A(z,z "] (z = z ~) of

Shaneson [1], Novikov [1] and Ranicki ([2]
-1 _
vV (Alz,z 7]1) =V _(R8G__,(A) (n€2Z)

should be extended to the splitting theorem for the symmetric
L-groups conjectured in §I.10

viiatz,z” ') = vMeu™ L) mez)
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7.1 The total surgery obstruction

We shall now recall the total surgery obstruction theory
of Ranicki [7), at the same time extending it to geometric
pPoincaré complexes which may be disconnected and/or
nonorientable. Such complexes arise naturally in codimension q
surgery obstruction theory, particularly for q = 1. In the
first instance, we develop some terminology with whHich to
handle such complexes.

Given a topological space X with a finite number of

path-components X, ,X,,.... X define the fundamental groupoid

of X nl(x) to be the disjoint union of the fundamental groups

of the path-components

nl(X) = nl(Xl)Uﬂl(Xz)u e unl(Xm).
(In dealing with fundamental groups and groupoids we can
afford to neglect the effects of the choice of basepoints,
since all the algebraic L-functors of groups are such that

inner automorphisms induce the identity, cf. Taylor {2] for

the quadratic L-groups). An algebraic Poincaré complex

over Z[n, (X)] x is defined to be a collection (Xi|1$ i< m}

of algebraic Poincaré complexes over Z[nl(xi)] X

symmetric L*(z[n (X))
The L-groups of E[nl(X)] are the
quadratic Ly(z[m (X)])

symmetric
cobordism groups of Poincaré complexes over Z[nl(x)],
quadratic

and are such that



L*(z[m, (X) ]} L*(E(nl(xl)])$L*(Z[n1(X2)])®

. @L*(Z[nl(xm)l)

Ly(Z([n (X} ]) L*(Zlnl(xl)])OL*(ZI"I(XZ)])Q

( cee BL(ZIn (X)) ])

X geometric Poincare complex
If is an n~dimensional

{f,b) :M—>X Lnormal map

symmetric
the signature

guadratic
{ot(x) € L“(z[nl(X) h

0. (£,b) € L (Z{m, (X)])

is defined exactly as in §1.2, with components
forxp et @y (XN fisigm
-1 .
(O*((fi'bi)= (f,b)|: Mi= f (xi)——-»xi)e Ln(Z[nl(Xi)])[lé~1S m} .

(The inverse images Mi = f_l(xi)s M of the path components xi

of X need not be connected, cf. Ranicki [8]).

In order to deal with nonorientable geometric Poincaré
complexes we define generalized homology groups with twisted
coefficients in the following manner.

Let (X,w) be a pair consisting of a topological space X
and an orientation double covering

w o X —_— X,
which is classified by a map

[ w o ﬂl(X)—r»—HZZZ: {+1}

Let M be a spectrum

M= (MM — [k >0}

M
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which is equipped with an orientation-reversing involution

T : M-—-— M,
cohomology
The w-twisted M-coefficient groups of X are define«
homology

n : k=

HU (X, w;iM) L;m [z X,L,Mmkl22

' _ (n€ z)
H, (Xowit) = E%m Tk K P zsz)

In particular, for the Eilenberg-MacLane spectrum of Z
K = {K(Z,k),ZK(Z,k)—K(Z,k+1) |k 3 0}

with the orientation-reversing involution T:K——K induced by

T : Z-—>Z ; Z+——>~-2

cohomology
the w-twisted K-coefficient groups of X are the
homology
cohomology
w-twisted integral groups of X
homology
n . - v -
HO(X,w;K) = H (X,w) Hn(HomZ[ZZ](C(X).E b}
_ _ (n€ Z)
Hn(X.W;E) = Hn(le) = Hn(z @ZZ[EZ)C(X’> '

where Z  denotes the E[Rzl—module with additive group Z

and Z., acting by T.

2
An n-dimensional geometric Poincar® complex X has a
.| ; ; .
fundamental class [X] € Hn(X,w) (=2Z"), with orientation map
5+ Let -X denote the geometric Poincaré

complex with the same underlying CW complex, but with

w=w(X) :nl(x)~—f~4>z

fundamental class
[-X] = -[X] € Hn(X,w) .
Homotopy equivalences of geometric Poincaré complexes

f @ X~ o X!



by

are required to be orientation-preserving, with
f . ([X}) = [X'] € Hn(x',w') .

Every compact n-dimensional topological manifold M is to be
equipped with a fundamental class [M] € Hn(M,w(M)), so that
it has the structure of a simple n-dimensional geometric
Poincareé complex.

Given a pair (X,w:X———>X) let QiTop(x,w) denote the
bordism group of maps f:M——>X from compact n-dimensional
topological manifolds M for which the orientation map

factors as

fa w
w{M) : nl(M)~——~»n1(X)—~‘*22

Then if the spectrum
MSTOP = {MSTOP (k) ,IMSTOP (k)——> MSTOP (k+1) |k » O}
of the Thom spaces T(lk) = MSTOP(k) of the universal oriented
topological k-disc bundles lk:BSTOP(k)——~—+BSTOP(k) is given
the orientation~reversing involution
T : MSTOP ~———» MSTOP

induced by the oppositely oriented bundles -1, :BSTOP{k}—>BST

k
there are natural identifications
QrS)TOP(X,w) = Hn(X,w;MS'I‘OP) (n # 4) .
These follow from the identification
x+/\zzMSTOP(k) = T(n)
with T(nk) the Thom space of the topological bundle Ny

classified by the map M appearing in the homotopy-theoretic

pullback diagram
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n
k
xxK(EZIl)BTOP(k)~~ » BTOP (k)
Y1
w
X —— > K(Z,,1)

and topological transversality in dimensions # 4.
The pair (X,w:X — X} is untwisted if X = Xu ¥ is the
trivial double covering of X, that is w{(g) = +1 for each
ge€my (X}, in which case the w-twisted M-coefficient
cohomology
groups of X are just the usual M-coefficient
homology
cohomology
groups of X

homology

W = LD (5K, M0 = Lip 25%,m L 1 = Hh M)
k k

Ho (Kol = Lip g (R g ) = LiD n (KA MO =B 0G0

icohomoloqy
and the w-twisted integral groups are just the

( homology

cohomo logy
qroups

ey

usual integral
( homology

HY (X, w) = H_ (Hom (CX),z")) = H (Hom, (C(X),Z)) = 1" (x)

2[22]

Hn(X,w) H (Z

n NE[ZZIC(X)) = Hn(C(X)) = Hn(x) .
The topological bordism groups of (X,w) are just the usual
oriented topological bordism groups of X

STOP
giTOP(x,w) = a2 % x)

= Hn(X;MSTOP) for n # 4) .



From now on we shall suppress the explicit reference

cohomology
to w in dealing with w-twisted groups, writing
homology
H* (X, w; M) H* (X; M)
as , the contributions of the orientation
H, (X, w;M) H, (X;M)

covering w:X~———X and the orientation-reversing involution

T:M——> M being understood.

An s-trianqulation of a simple n-dimensional geometric
Poincaré complex X is a simple homotopy eguivalence
£ :M—xX

from a compact n-dimensional topological manifold M.
A concordance of s-triangulations f:M —2 »X,f':M'——»X
is a simple homotopy equivalence of triads

(9:;f,£') = (N;M,M')——>(XxI;Xxx0,Xx1) (I = (0,1])
from a compact (n+l)-dimensional topological manifold triad

(N;M,M'). The topological manifold structure set 5TOP(X) of

a simple n-dimensional geometric Poincaré complex X is the
set (possibly empty} of concordance classes of s-triangulations
f:M———X. For n25 the concordance of s-triangulations is
also the equivalence relation defined by
(£:M—2 X) ~ (f':M'—"> X)
if there exist a homeomorphism h:M—— M'
and a homotopy g: f*f'h : M——> X
by the topological s-~cobordism theorem, so that EFOP(X) is
the topological manifold structure set of X in the sense of

Sullivan [1] and Wall {4,§10].
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An h-triangulation of a finite n-dimensional geometric

Poincaré complex X is a homotopy equivalence

f: M—2—X
from a compact n-dimensional topological manifold M. Concordance
of h-triangulations is defined as for s-triangulations, but
using a homotopy equivalence of triads instead of a simple
homotopy equivalence.

For the sake of the above application of the\s—cobordism
theorem we shall be primarily concerned with the s-triangulatiot
theory of simple qgeometric Poincaré complexes. Accordingly,
we shall be dealing with the simple quadratic L-groups of
group rings

s {n)eK (Z 7))
Ly{m,w) = Vv, (Z([n])

originally defined by Wall {4] using based Z([n]-modules,
simple isomorphisms (with t = O € Wh(n) = Rl(zln])/{n)) and
the w-twisted involution on Z([n] for some orientation map
win——— 7Z,. From now on Ly{Z[n}) will stand for the simple
L-groups Lf(n,w) rather than the projective L-groups

Lg(n,w) = U,(Z[n)) as heretofore, which will be denoted by
L?(Z[n]). The free L-groups L?(n,w) = V,(Z[n]) are denoted by
thzis.

The s-triangulation theory developed here has of course
its counterpart in a parallel theory for the h~triangulation
of finite geometric Poincaré complexes, involving Lé(Z[n]).
(Define a p-triangulation of a finitely dominated n-dimensional
geometric Poincaré complex X to be an h-triangulation of the

. . . 1
finite (n+l)-dimensional geometric Poincaré complex X xS™.
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Following Pedersen and Ranicki {1] there is also a parallel
theory for the p-triangulation of finitely dominated geometric
Poincaré complexes, involving LE(Z[H])).

From now on geometric Poincare complexes are to be taker
as simple (unless specified otherwise), and manifolds are to
be taken as compact, topological and triangulable. Similarly

for geometric Poincaré pairs and manifolds with boundary.

E0
As in Ranicki [7] let gx) denote the spectrum of
&O
symmetric
quadratic Poincaré n-ads over Z with homotopy
(symmetric,quadratic)
groups
n
o L(z)  nzo
a7, (L7) = if
n 0] ng -1
(o) an) " nyl1l
n = 1
n' =0 0 ng 0
" (z) nyl
n (1% = {1%z) if n=o0
o} ng-1 ,

and such that there is defined a fibration sequence

1+7 J H 1+T

Y S 70 > >
I, > IL o > Ik, > P —> ...

(There are defined algebraic IL-spectra for any ring with
involution A, using algebraic Poincaré n-ads over A, but only
the case A 3 Z need concern us here. The general theory will

be developed in Ranicki [12}}.



For any space X equipped with an orientation double

covering w:X ———»X there are defined assembly maps
o* B (GED) —— LN (Z 0 () ])
Oy ¢ Hn(X;Eb)—*"—+Ln(Z[nl(X)]) (n>0)
Sx . .50 rn
o* Hn(X.§1)-~*‘>L (E[nl(X)H

where the homology groups are defined using w-twisted coefficients
and the L-groups are defined using the w-twisted involution
on the group ring Z[nl(x)]. The assembly maps fit together
to define a natural transformation of exact sequences
1+T o 7 .o H
CH GG > HORGILT) > H (X)) ——>H (XL > ..
T o* g* Ta
14T J . H
...—~>Ln(Z[n])—~——>Ln(Z[n])——-—>Ln(z[n))——§Ln_l(Z[n”—""---

with ¢ = nl(X). {The hyperquadratic L-groups f*(A) were defined in §2.:

The n-ad version of the Browder-Novikov transversality
construction of topological normal maps combined with the
n-ad version of the quadratic kernel construction of II. and
the computation

wn(G/TOP) = Lntz) {n31)

give a canonical homotopy equivalence

G/ToP —L5 L

with M, the Oth space of the f-spectrum L, = {IL_,= QL fkyo0}.

-k-1
In fact, the quadratic IL-spectrum gb is homotopy equivalent

to the O-connective cover of the Quinn [l1] spectrum of

simply-connected surgery problems (= topological normal maps
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of n-ads (f,b):M——> X with n_(X) = {1}), corresponding to

1
the infinite loop space structure of G/TOP given by the
Sullivan characteristic variety addition. The quadratic
assembly map 0*‘H*(X7EO) —> L*(Z[nl(x)]) is the algebraic
version of the geometric assembly map of Quinn {2].

Given a (k-1)-spherical fibration {:X——*BG(k) over a
space X let X ——+ X be the orientation double covering
classified by wl(g)e Hl(x;zz), so that £ lifts to a Ez-equivariant
map £:X —— BSG(k) classifying an oriented (k-1)-spherical
fibration over X. We shall consider spherical fibrations §
to be equipped with a choice of 1lift E, letting ~f denote
the same fibration with the other choice of lift. The base
space X will always be taken to be a finitely dominated CW complex.

Let R = (Rj,ZR.———»R. |33 0} be a ring spectrum,

] j+1
as defined by structure maps

N:RjARk—’RjH( ’

1 s —— Ry (J.k>0) ,
with an orientation-reversing involution T:R ——R inducing
the additive inverse T:m,(R) —n (R} ;x— -x.

An R-orientation of a (k-1)-spherical fibration g:X —>BG(k)

is a wl(g)—twisted R-coefficient Thom class, i.e. an element

.k . o I F
Ug € TR = Lip 0OTR) Ry,

such that for each map i:{pt.}—X 1i*U_€ ﬁk(T(i*F);B) =nO(R)
is a unit. R-orientations are required to be compatible with
the choice of  lift £:X—> BSG(k)}, so that

- - LI
U_g= U € (TR

If M is an R-module spectrum there are defined Thom isomorphisms
. cohomology
in M-coefficient

homoloay
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U,u=~ : H*(X,w' ;M) == B*HK (T (£) ,w" ;M)

£

Upn= ¢ H(T(E) ,w"iM) —Z>H L (X3w' M)

for any orientation maps w',w”:nl(X)‘-»E2 such that w'w" = Wy
topological bundles
The Whitney sum of oriented
spherical fibrations
® : BSTOP(j) x BSTOP (k) ——> BSTOP (j+k)
(3,k>»0)
® : BSG(j) x BSG(k) —————> BSG(j+k)
induces products in the Thom spaces
& : MSTOP(3) A MSTOP (k) ——> MSTOP {j+k)
(i, k3 0)
& : MSG(j) A MSG(K) ~——————> MSG(j+k)
MSTOP = {MSTOP (j),IMSTOP (j)—>MSTOP (j+1) | » 0}
making into
MSG = {MSG(j)},EMSG{3}—MSG(j+1)]|] » 0O} :
topological bundle £:X ——» BTOP (k)

a ring spectrum. A has
spherical fibration §:X—-——>BG(k)

MSTOP-
a canonical orientation
MSG-
Uy € R(T(£) ;MSTOP) = Lip (£IT(E),MSTOP (3+k) ],
X 3 2
-k i i :
U, € B(T(E) 1MSG) = Lig (207 (E) s (34115 ,

the element represented by the Zz—map of Thom spaces

ug T{E} ——> MSTOP (k)

ug : T(E) ———>MSG (k)

£ :X ——> BSTOP (k)
induced by the classifying map

™y

:X —> BSG (k)

rﬂv \ L4
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The tensor product of algebraic Poincaré n-ads over Z

gives rise to pairings of spectra

8 : n0aml— > a0
8 : .05 00— &°
@: noaAm, ——— L

P2 M2 =0

making Eo and io into ring spectra, and EO into an go—modul

symmetric .
spectrum. The Poincaré n-ads over Z
(symmetric, quadratic)

manifold
of oriented n-ads define a map of ring spectr
normal space
o* : Mstop ——> .0
-~ ~0
o* : MSG ——— IL

such that there is defined a commutative square of ring spe
o* o
MSTOP ————> IL

J J

5*
MSG —————f—»lLo .

topological bundle E:X ——— BTOP (k)

It follows that a has
spherical fibration £:X ——— BG (k)
: n°- vg € 8 (20 ;%)
canonical § orientation { _ X .o + the image und
on-- U e (T(g):mL)

g
o":l:lk(’l'(g)-MSTOP)-——»I:ik(T({,),ILO)

N .o ©of the canonical
5% 05 (T(£) iMsG) ———— K (1 () ; £.O)

MSTOP with g = : X —>»BG{k) such that
-orientation,

MSG

LA 20,
Jup =0, € i eree) ;10 .

]
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We refer to Rourke and Sanderson (1l],{2] for the definition
and basic properties of topological block bundles.

A t-trianqulation E of a spherical fibration £:X——>BG(k)
is a reduction of [ to a topological block bundle, as defined
by a classifying map E:X—~—-va8§(k) together with a homotopy
b:JE: §:X —> BG (k). A concordance of t-triangulations EO'EI

. TN —~

is a t-trianqgulation (§ x I):X x I ——>»BTOP (k) of

projection E
ExI ¢ XxI —————3 X —— BG (k)

such that

S~ ~ P
(£ x I)|xX {0} = Egr (EX I)lxx () - €, ¢ X —— BTOP (k)

(and similarly for the homotopies bo'bl)' i.e. an isomorphism

g0—4¥» El over 1:X —— 53X of the TOP reductions. Define the

'I‘OP(E

topological structure set of £ 7T ) to be the set of

concordance classes of t-triangulations of . For k = 1,2
P TOP : .
BTOP (k) = BG(k) so that 7T (£) consists of a single element,

and for k 33 G(k)/TOP(k) = G/TOP so that T OF

(§) is the set of
stable equivalence classes of stable reductions of { to a
genuine topological bundle E:X‘-—+BTOP(k') (k' large) which
is either empty or in unnatural one-one correpondence with

[X,G/TOP]. In particular, note that a topological block bundle

E:X—~—$B§6§(k) has a canonical gP-orientationUZG ﬁk(T(E);gP)

such that

~ .k A0
J = .
UF, UE € H (T(g);0L7)

is the canonical ﬁfl-orientation of the underlying spherical
fibration £ = JF:X-»BG(k), namely the canonical gp-orientation

of any stably equivalent genuine topological bundle.



Proposition 7.1.1 Let g:X——> BG(k} be a (k-1)-spherical

fibration over a space X.

i) The t-triangulability obstruction of §

to) =l e i iy

is such that t(g) = O if and only if § admits a t-triangulation,
. T~ N ~ fa
i.e. a TOP reduction £:X ——>BTOP (k).
ii) Given a subspace Y<X and a t-triangulation n:Y —» Bfﬁﬁ(k)
of the restriction f| : Y —>BG(k) there is defined a

reld t-triangulability obstruction

(C,n) e uk (T(E) T(n):Ly)
such that ta(g,n) = 0 if and only if £ admits a t-triangulation
E:X—~—~7B§B§(k) such that £|=n:Y—— BTOP(k). The obstruction
has images

i*t (L,n) = t(E) € i (T(El,ﬂ»)
(L+T)t (E,n) = GUn e u¥ (T(C) T(n).E )

with i=inclusion : (T(f),pt.) —=>(T(f),T(m)), U, €A (T(n); L")
the canonical gp—orientation of n and § the connecting map.
iii) If k »3 and ¢ admits a t-triangulation the topological

TTop(g) carries a natural affine structure with

structure set
translation group ﬁk(T(g);;go), the difference of two

t-triangulations EO,lex —— BTOP (k) being the element
(B By = t (6 x T, By U=E ) (X x T,X x {0,1}) —>(BG (k) ,BFOP (k)))

k+1 .
€ H (TLE x 1), TlEqu-§1) s ILy) = ik (r'r({),_o) = Hk(T(E:):lL )

with image (

F = - —_ - ‘k . O
(1+m) t(h,8q) = Up Up € HO(T(E) ;LT



A particular choice of t-triangulation F:X-- ->BT8ﬁ(k)

determines an isomorphism of abelian groups

(o™ BT i) — e w0 (ximg) = (X,6/70P)
; ok 0 . o] :
with UE€ H™(T(f):L") the canonical IL -orientation.

Proof: See Ranicki [7], where it was shown that f:X —— BG(k)
admits a t-triangulation f:X —>BTOPD (k) if and only if there

exists an Eo—orientation UE(Sﬂk(T(g);gP) such that

Jup = GE € ﬁk(T(g);?EO)
is the canonical §§O~orientation.
(]
Let X be an n-dimensional ageometric Poincaré complex wit
Spivak normal structure (vx:XA——a BG(k),pX:Sn+kh »»T(VX)) and

let w:X ——X be any double covering of X, so that there is

defined an SEz—duality map

p A
. ohtk "X 7 =
ay S T (V) —— X A zz’I‘(vx) .

Thus for any coefficient spectrum M there are defined Szz-dua

isomorphisms

oyt HE(T(v,) M) = Lip [zjfr(Gx),Mjﬂ.lzz
T H ey (M) = E%m "n+j+k(i+ﬁ‘z2Mj+r)’
(h:z"T(Gx)——er)
»—»(s”*j*kfluﬁa2+Azzijfo) lA-E—) )_(+Az2Mj+r)
using w-twisted M-coefficients and an involution T:M-———> M.



(r € 2)

An R-orientation of X is an R-orientation of vx:x —— BG (k) ,
or equivalently a w{X)-twisted R-coefficient fundamental clas

(X1 € H_(X;R)
such that U, = agl((xl) € ﬂk(T(vx);g) is an R-orientation of
X

For any R-module spectrum M = [Mj,ZMj‘—#Mj+1,RjAMk—‘%Mj+kIjﬂ

there are then defined R-coefficient Poincaré duality

isomorphisms

U\’X\J“
X]n- o HY (KM ——2 s 5 ) i)
“x
~ ",
e WL (W)

for any orientation maps w‘,w":nl(x)—-* 22 such that w'w" =1

In particular, the canonical io—orientation ﬁv € ﬁk(T(vX);ﬁ
X
of vy determines the canonical ﬁp—grientation of X
(X1 = a, (0 ) € 1_(x;1°)
X vy n'"r= -

Proposition 7.1.2 An n-dimensional manifold M has a canonica

g&o—orientation

. . 1O
M} = oy (U, ) € H,4L)

n+k

with (vM = v Sn+k : M —> BTOP(k),pM:S —— T(vM)) the

MC
canonical topological normal structure, such that

N ~ ~ 0, . . ~0 .

i) J([M]}}) = [M] € Hn(M;E:) is the canonical L -orienta

ii) o*([M]) = g*(M) € Ln(Z[nl(M)]) , with g* the symmet
assembly map and g*(M) the symmetric signature of M.

Proof: See Ranicki [7].
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A t-triangulation of an n-dimensional geometric Poincaré
complex X is a topological normal map
(fE,b) : M——> X
in the sense of §1.2. A concordance of t-triangulations
(fo,bo):Mo————>x, (fl,bl):M1-~A»x is a topological normal
map of triads

({gs€) i (Fy by s (£1,b1)) = (NiM,M)) ——>X x (1;0,1) .

(0]

The topological normal structure set of X UTOP(X) is the set

of concordance classes of t-trianqulations (f,b):M —-—X.

(Of course, TTOP(X) may be empty). In dealing with t-triangulations
(f,b):M—>X we shall sometimes omit to mention b, writing
f:M——— X in conformity with the terminology for s-triangqulations,
even though f does not in general determine b.

Proposition 7.1.3 Let X be an n-dimensional geometric Poincaré

complex with Spivak normal structure

(Vg X ———>BG (k) ,pX:Sn+k—5T(\)x)) (k»3) .

i) The Browder-Novikov transversality construction of
topological normal maps defines a natural bijection

T P

. .TOP o L TO .
ay =T (V) —==>7 (X) ;

(Gx:x——>B’I?))P(k))r——*+((f,b):M————+X)

sending the t-triangulation ;X of vy to the t-triangulation

(f,b) of X obtained by making o :Sn*kv———»T(v } topologically
X X

transverse at the zero section Xc T(vx) with respect to Gx
and setting

£ =yl + M= D;I(X)‘*‘—"X .

(For n = 4 M is allowed one singularity, cf. Scharlemann [1]).
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ii) The Szvz—duality isomorphism

-k+1 N .
ay 2 BTV S I) S H ) (X5 TLg)

X
sends the t-triangulability obstruction t(vx) of vy to the

t-triangulability obstruction of X

B0 = ay(E(vy)) € H (i)

such that t(X) = O if and only if X is t-triangulable.

The image of t(X) under the quadratic assembly map is

(C([XIn - —— (X)),

0, (t{X}))

0O€eL (Zn (X)])

with X the universal cover of X. (See Proposition 7.4.3 iii)
for a generalization of this to normal spaces).

iii) A t-triangulation (f,b):M—— X of X determines an
go-orientation of X

(X1 = £,(M]) € H_(x;1°)

such that J([X]) = (%1 €Hn(x;@0) is the canonical @O—orientation
of X, and such that the surgery obstruction o,(f,b} GLH(Z[WI(X)])
has symmetrization

(1+T) g, (f,b) = o*(M) - o*(X)

1t

o*([X]) ~ o*(X) € Ln(Z[nl(X)}) .

iv) If X is t-triangulable the set 'ITOP(X) carries a
natural affine structure with translation group Hn(X;LI_,O).
the difference of two t-triangulations (fo'bo):MO_—_—) X,
(fl,bl):MI——>X being the element

| = o N .
t(foyfl) = "x(t”"x)o'("x)l” € Hn(X,EO) '
with t((5,) 0, () ,) €8 (T(v,) ;ILy) the difference of the

corresponding t-triangulations (\)X)O,(\)X)1 of Ve
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The difference has images
(L+T) E(FQL €)= £, (IMT) = £, (M 1) € H_(x;2°)
0*(t(fo'f1)) = 0, (fy,by) - 0,(f1,bl) € Ln(ﬂ[ﬂl(x)]) .
Proof: See Ranicki [7}, where it was shown that X admits an
E&O-orientation [X] € Hn(X:EfH such that
0 JxD = (K e w (x: 10
1) o (1x]) = o*(x) € L (Z(n; ()]
iii) the relations i) and ii) are compatible on the
L-spectrum level
if (and for n 35 only if) X admits an s-triangulation.
(1
As they stand the conditions i),ii),iii) listed above
are just a restatement in algebraic terms of the Browder-
Novikov-Sullivan-Wall two-stage obstruction theory for the
s-triangulability of an n-dimensional geometric Poincaré
complex X, with i) giving a t-triangulation (f,b):M —— X
and ii) giving a vanishing of the surgery obstruction
o,(f,b) € Ln(ztﬂl(x)]) up to the (8-torsion) difference between
the quadratic and symmetric L-groups which is taken care of
by iii}). However, the three conditions were united and
expressed as the vanishing of a single invariant, as follows.

Given a space X with an orientation double covering

w:X—-——> X define the quadratic 3-groups 4,(X) to be the

abelian groups appearing in the exact segquence
[N 3
...**“’Hn(X;EO) o ’Ln(ﬂlﬂl(x)])"ﬁ’ n(X)
— . s
> H_y (XiILy) R

in which the homology groups are defined using w-twisted

N
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ILy-coefficients and the L-groups are defined using the w-twiste
involution on E[ﬂl(x)]. An orientation-preserving map f: X ——X
induces abelian group morphisms

£, 0 B, (X) —> 8, (X")

which are isomorphisms if f is a homotopy equivalence.

The total surgery (or s-trianqulability) obstruction of

an n-dimensional geometric Poincaré complex X is an element

s(X) € JSn(x)

with the following properties.

Proposition 7.1.4 i) s(X) = 0 € 4 _(X) if (and for n} 5 only if)
n

X is s-triangulable, i.e. hag the simple homotopy type of a
manifold.
ii) The image of s(X) in ”n-1‘x’§xﬂ is the t-triangulability
obstruction of X
(s{x)) = t(x) € B _ (X:Ly) .
If
s(X) € ker(§ (X)——=H__,(X;IL,))

= im0, L (ZImy (X)) ——> 3 (X)) S A (x)
(i.e. if X is t-triangulable) the inverse image of s(X) in
Ln(mlﬂl(x)]) is the coset of the subgroup
ker (L, (Z[n) (X)})——=> % (X))

= im(0,:H_(X;Ly) —

— L (Zn (X)) S L (Z[ny 0
consisting of the surgery obstructions o, (f,b) € Ln(E(nl(X)V

of all the t-triangulations (f,b}):M-—>X,

iii) If n»5 and X is s-triangulable the topological manifold

P
%TO

structure set (X) carries a natural affine structure with

translation group 8n+1(X), the difference of two s-triangulation
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fo:MO——f% X, fl:M1~A~—*X being an element
s(fq ) €3 (%)
with image
[s(f

orf)] = tlf, £1) € H O (Xiy) .

(See Proposition 7.1.4 (rel?) iv) below for the algebraic

5TOP(X), and for an expression

surgery exact sequence involving
of the difference s(fo,fl) as a reld s-triangulability obstruction).
Proof: See Ranicki [7].
[]
(If 7 is a group equipped with an orientation map w:m— z,
the Sullivan-Wall homomorphism

oimpm(n,l) x G/TOP,K(n,1) x 4) ———>L_(Z[1])

(cf. Wall (4,Thm.13.B.3)) factors through the quadratic assembly
map as

8 : QiTop(K(n,l) x G/TOP,K(m,1) x *) = ﬁn(K(ﬂ,l);MSTOP A G/TOP)

> H_(K(1,1) i) —A—> L (Z[1]) ,

using the composite map of spectra

g* Al ®
MSTOP A G/TOP = MSTOP ALy ——> L A Ly ——> Ly .

Thus if 7 is finitely presented and n3} 5 the subgroup
1m(0*:Hn(K(n,1);g@)-—“—+Ln(Zl"])) < Ln(E["])

consists of the surgery obstructions o, (f,b) of t-triangulations

(f,b) :M——*X of closed n-dimensional manifolds X equipped with

a reference map X—> K(w,1)).



There are relative and rel) versions of total surgery

obstruction theory, which we shall now summarize.

Let (X,Y) be an n-dimensional geometric Poincaré pair

with Spivak normal structure
such that Y is a manifold

Dn+k

’

({Vyr vy & (X, Y) =BG (K) | (pysy) 2 ( s"ETh — (rov v
((VyrVy) 2 (X, ¥) ——> (BG (k) ,BIOP (k) ),
0y o)t (", 8"y — s r v v ).

t_
A triangulation of (X,Y)

ta-

is a topological normal map of pairs

((f£,b),(g,c)) : (M,N) —> (X,Y)

t-
. The triangulation

t .-

such that g:N———>Y is a homeomorphism 3

obstruction of (X,Y)

E{XY) = o (E(V)) € H (X, Y5 IL)

to(X,Y) = a (v, v)) € H ) (X;Ls)

t- v
triangulability obstruction of X
t -
3

is the image of the
(VyrVy)
under the Szz—duality isomorphism

- .k+1 - g .
FH T ly) i) SIS (X, Y

ax
AL (T (v, ) T (V) ) — R (X IL)
ax x' 1y iR n-1'""=0’ -
S~ t-
An triangulation of (X,Y) is a triangulation
5.- ta-
3 3 3
((£,b),(g,c)) : (M,N} ——>(X,Y)
(f,q): (M,N) —>(X,Y) )
such that is a simple homotopy equivalence.

frM— %
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P
3TOP (%, y)
Let be the set of concordance classes of

3TOP (x,v)

-
§ triangulations of (X,Y).

The rel) total surgery (or sa-triangulability) obstruction
of an n-dimensional geometric Poincaré pair (X,Y) with manifold
boundary Y is an element

s, (x,Y) €3 (x)
with the following properties.
Proposition 7.1.4 (reld) i) SD(X,Y) =0 € &n(x) if (and for
ny 5 only if) (X,Y) is 53—triangulable.

ii) The image of sa(X,Y) in H (X;go)is the ta*trianqulability

n-1

obstruction of (X,Y)
fsj(X'Y)l = ta(X,Y) € Hn_lix;gyo).

iii) If ny 5 and (X,Y) is sB-triangulable the structure set
5TOP(X,Y) carries a natural affine structure with translation
group A (0.

iv) For n 35 an s-triangulation f:M-—""—> X of an n-dimensional
geometric Poincaré complex X determines an isomorphism between

the Sullivan-Wall surgery exact sequence of the manifold M

1 1

8T M x 5% —— mx ol,mx s%;6/T0P, *]

—8ar i 1) —— 8" ) — m,6/70) -0 Lz 1w m)))

and the exact sequence
0*
coem > S ) e H L OGIL) Ty L (Z () (X))

. (7*
— 3 (X) ==>H (X;L) -~ L (Z[m, (X)]

n+l
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In particular, f determines a bijection

£ )‘STOP

' (X) == 3 %)

(f':M'— X} ——> s (f',f) = s3 (W'UX—W,M'\J -M)
sending f to O, with W (resp. W') the mapping cylinder of f

(resp. £') and using the homotopy invariance of the S—groups

to identify &n+l(w'L)x—W) = %n+l(x). Similarly, f induces
bijections
. TOP K K ~
£y 13y (MxDU,a(MxD)) —— & L (0 {x >0)

which are isomorphisms of abelian groups for k 2 1.
Proof: See Ranicki [7).
{1

The relative g-qroups 5,(X,Y) of a pair of spaces (X,Y)

(equipped with an orientation double covering w) are defined
to fit into a commutative diagram of abelian groups with exact

rows and columns

Lo L

c H (YR —— L(Zin (M) ———— 8 (v) —>H__ (Vi

L l l l

*
cm P H (X)) > L (Z 1 (X)) ——— §_(X)—>H__| (X:L]

Lo, ! | l

-—*Hn(X,Y:LEO)—~—*Ln(Z(ﬂl(Y)]‘*E[ﬂl(x)1)"3n(X,Y)-+Hn_l(X,YL2

. l |

*
S G (GR) ——— L (Z[7 ) (V) D) S () H (YT

.i l S

C



The total surgery (or s-triangulability) obstruction

of an n-dimensional geometric Poincaré pair (X,Y) is an element

s(X,¥) € 8 (X,Y)
with the following properties.
Proposition 7.1.4 (rel) i) s(x,Y) = 0 € 8 (x,¥) if (and for
ny6 only if} (X,Y) is s-triangulable.
ii) The image of s(X,Y) in Hn—l(x'Y’ZEO) is the t-triangulability
obstruction of (X,Y)

[s(X,¥Y)] = t(X,Y) € Hn_l(X,Y;EO) .

The image of s(X,Y) in 3n_l(Y) is the total surgery obstruction
s{Y) of Y. If Y is a manifold s(X,Y) is the image of the reld
total surgery obstruction s, (X,Y) € 8n(x).
iii) If ny 6 and (X,Y) is s-triangulable the structure set
5TOP(X,Y) carries a natural affine structure with translation
group 8n+1(X,Y). An s-triangulation f:(M,N)—=2=(X,Y)
determines a bijection
i/STOP

f

' (M, N) == £ (X, ¥)

sending f to O.
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7.2 The geometric theory of codimension g surgery

We shall now extend the total surgery obstruction theory
of §7.1 to the problem of simultaneously s-triangulating a
geometric Poincaré complex X and a codimension q Poincaré
subcomplex Y< X, that is finding an s~triangulation of X
f:M———>x
such that
i) f is topologically transverse at YCX with respect to
a t-triangulation E:Y-——~—>Bf€§(q) of the normal fibration
£=vycy: Y—BG(q), so that in particular N= f_l(Y)c M
is a codimension q submanifold
ii) the restriction of f defines an s-triangulation of Y
g =f}] : N——Y
iii) the restriction of f to the complements defines a
simple homotopy equivalence
h=f] : M-N—""+Xx-Y .,
(For q=2 there is also a theory for the weaker problem in

which f is only required to satisfy i) and ii), so that h

need only be a Zlnl(X)]—homology equivalence - see §§7.7,7.8).

This problem is closely related to the obstruction theory for

5—
deciding whether a particular ;t_triangulation f:M —-2>X of X
is concordant to such a simultaneous s-triangulation of X and Y,
i.e. can be "split along YC X". Following the solution by
Browder [1],[3] of the splitting problem in the simply-connected
case Wall [4,811] developed an obstruction theory for the

codimension g splitting problem in the non-simply-connected case.



563

LS, (®)

The obstruction groups were defined geometrically, but
LP, (9)

shown to depend only on the fundamental group data of the

pushout square

nl(S(\)YCXHA——»nl(X-Y)
1 ¢
"1(Y) —— ﬂl(X) ’

LS, (®) = L (zlr (Y2 1)
with for g2 3. In §7.2
LP, (®) LHq(Zlﬂl(X)])wL*m[ﬂl(Y)])

shall be only concerned with the geometrically defined
LS~
{Lp_groups. In §7.5 we shall give an algebraic definition
in the non-trivial cases q = 1,2 using quadratic Poincaré
complexes. In §7.6 (gq=1) and §7.8 (gq=2) we shall deal
individually with the two cases of the algebraic theory of
codimension q surgery
In the first instance, we recall the geometric
LS-
definition of the {Lp_qroups, for any q 3 1.

A codimension g CW pair (X,Y) is a CW complex X with

a decomposition

X = E(E)LJS(E)Z

for some (g-1)-spherical fibration §:Y—>BG(q) over a

subcomplex Y <CX, with ZCX a disjoint subcomplex and
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09,59l — 5 (B(5),5(E)) —> ¥
the associated (Dq,Sq_l)-fibration. In dealing with geometri
defined L-groups it is assumed that X has a finite 2-skeleto
so that wl(x) is finitely presented - no such restriction is
required for the algebraic definitions in §§ 76,78 kelow
Applying the generalized Van Kampen theorem there is obtaine
an expression for the fundamental groupoid nl(x) as a free
product with amalgamation

T (XY = o (ELE) ) T z) .

(S (E))

i.e. there is defined a pushout square in the category of
groupoids

T (8(E)) ——> 7, (2)

ﬂl(E(E))—Ml(X)

(It is not assumed that the maps in ¢ are injective).
Giver an orientation map for X

w(X) = w : nl()()————«xvzz

define orientation maps for S(§),E(£),2 using the restrictic

w(s(E)) = wl : m (S(E)) — 1 (x) —— 7,
WEE)) = wl @ m (E(E)) —> 7, (X) —"—> Z,
w(z) = wl s o (2) T (X) T 2,

and give Y the orientation map

wi¥) = w(E(E)) W (E) 2 Ty (Y) = Ty (E(E)) ——>2,

with wl(E): )2z, the orientation map of £:Y — BG{

- N



Define the transfer maps in quadratic L-theory induced by (X,Y)

! .
pE" : L AZ[n (Y)]) —— 1L

+q(zlnl(z)l——->2[ﬂl(X)]) (n» 0}

to be the composites of the transfer maps induced by §

!
g7 Ln(Z[nl(Y)])———+ Ln+

G(ZIM (8B )=z (1) (E(E)])

and the maps naturally induced by ¢
p Ln+q(zln1(S(C))]~——* Z[nl(E(E))V
——————~>Ln+q(2["1(z)]—*2["1(x)]) '
with E! sending the quadratic signature o,(f,b) of a normal map
of n-dimensional geometric Poincaré complexes
(f,b) : M~——>N
equipped with a reference map g:N——Y to the relative
1
quadratic signature {g,(f,b) = o*((f,b)!) of the induced

normal map of (n+g)-dimensional geometric Poincaré pairs
(f,b)! + (E((gf) *E) ,S((af)*E)) ———> (E(9*E) ,S(9*E))

which is equipped with a reference map of pairs

gl (B(g*r),S(g*E)) — (E(£) ,S(E)) .

127
Following Wall [4,p.§- ] define the gquadratic
252
LS- LSn(®)
groups of (X,Y) (n>0) to be the relative groups
LP~ LPn(¢)

appearing in the exact sequence

> l(z)]———vzlnl(x)])—~—->LSn(¢)—’Ln(EITT1(Y)])

Ln+q+1(1[n
]

pt’ _
e L (U 2V - Z Iy (X))

.~v+lh+q(2[nl(z)])**?LPn(®%‘“?Ln(E[Wl(Y)H

!
—ORh s T (BT () ) s

and satisfying the following properties:



LS-
Proposition 7.2.1 i) The quadratic g groups are 4-periodic
LP~

(LS (¥) = LS ,(9)
iLPnN)) = I.Pn+4(®)
ii) The LS-groups are related to the LP-groups by a commutative

braid of exact sequences

/_\/\

L (Z[n,(2)]) L (zZ(n, <xm\‘ / Snqo1(®)
LPn (@) L, (zmml‘il"lixm
LS, IRCIENESIN Loy (217, (2)])

\_/\\/

iii) The LS-groups are related to the triad L-groups L, (ZI[¢])}

by a commutative braid of exact sequences

PR ,A*‘;\; T - \

Lo fzin (Z)]~»7z[n1(x)]) n”(%{‘ Speg-1 ")
LS 4t L (ZIn (S 1 —2ZIn (F(£))])
f,!./ p
7
LSn-q —qUEm D Lo (ZEn, (2) =22 [m) (X)])
4 . -

~ Sl pt’



20/

with LS, (¥) the LS-groups of the pushout square of groupoids

T (S{E)) ——> 1 (5(E))

Ty (E(E)) ——— 7 (E(E))

associated to the codimension q CW pair (E(&),Y).

(or codimension q} geometric

An (n,n-qj-dimensional

Poincaré pair (X,Y) is a codimension g CW pair such that
i) X is an n-dimensional geometric Poincaré complex

ii) Y is an (n-gq)-dimensional geometric Poincaré complex

iii) (2,S(£)) is an n-dimensional geometric Poincaré pair.

(Actually, iii) implies ii)). Then YC X is a "codimension g

Poincaré embedding™ with complement 2 and normal fibration

=F Y »>BG(q) ,

Yy e x

The prescribed Spivak normal structure of X
n+k

:X———‘?BG(k),DX:S ——»T(\)x))

(VX

determines a Spivak normal structure of Y

(\)Y = £$VX|Y : Y ——> BG(qg+k),

p
n+k X collapse _
Py © S T{vy) 2TV ) /T(vy],) = T(Vy))

A normal map of (n,n-g)-dimensional geometric Poincaré

pairs
({f,b), (g,c)) (M,N) ——— (X, Y)
is a normal map of n-dimensional geometric Poincaré complexes

(f,b) : M—>X

with a decomposition



(£b) = (g,0) U (h,d) : M = Blv) Ug, P——X = E(E) Ug )2

where (g,c):N——>Y is a normal map of (n-gq)-dimensional
geometric Poincaré complexes such that

g

v = \)NCM : N———>Y ———BG (k)

and (h,d):(P,S{v))—>(2,S(f£)) is a normal map of
n-dimensional geometric Poincaré pairs such that
i
(h,a)l = (g,c)7] + S(v)——>5(§)

Proposition 7.2.2 Given a normal map of (n,n-g)-dimensional

geometric Poincaré pairs

((f,b),(g,c)) : (M,N) —>(X,Y)

% such that f:M——— X is a simple homotopy equivalence

there is defined a codimension g quadratic signature

{0,((f,b),(glc))€ LSn_q(0)
o,{(f,b),(g,c)) € LPn_q(¢)

0*((f:b);(grc))eLPn_q(¢) ,

with image i

(04 (£,6),04(3,0)) €L (Zln} (X))OL__ (Z(n) (V)])

such that o,((f,b),(g,c)) = O if ((f,b),(g,c)) is normal bor

to a normal m

%by a geometric Poincaré s-cobordism of (f,b)

of pairs such that the maps f:M——>X, g:N—>Y, h:P—> 2

are all simple homotopy equivalences.

For gy 3 ny(5(g)) m(ELE)), Ty (2) = 7y (X) and

Ox((£,b),(g,0)) = 0,(g,c) € 1S, (8) = L (Zln)(¥)])

0,((f.b):(g,C)) (oi(flb)log(glc))

€ LR (9) = L (Zln (X)1)8L_ (Zln (V)]
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Proof: The normal maps of n-dimensional geometric Poincaré
pairs (£,b): (M,@) ——> (X,8), (g,c) 't (E(v),S(v)) —> (E(E),S(E))
are normal bordant via the normal map
((F,B) = (£,b) x id.; (£,b), (3,c) )
(Mx I,Px1);(M, @) x0,(E(v),S(v)) x1)
———>((Xx I,Z2x1); (X,@) xO,(E(£),S(£)) x1) (I=1[0,1]),

so that in particular the restriction

(F,B)] = (h,d) : (P,S(V)) x1 ———>(2,5(E)) x1
defines a normal null-bordism of (g,c)!l ¢ S(v) ——>S(L).
[} Px1 S{v) x1
Mx O Mx I E(v) x1
!
(f,b) (F,B) (g,c)”
X x Xx1 E(E) x 1
4 Zx1 S(Eg)y x1

This gives a particular reason for
ptlo,(g.c) =0 € L(Zn (2)] —>z[n, (X)])
2pg o, (g,c) = 0 €L (ZIT (2)])

o, {tf,b),{g,c)) € LSn_q(®)

and so determines an elementg
o,((f,b),(g,c)) € LPn_q(¢)

with image o,(g,c) € Ln_q(Z[ﬂl(Y)])<
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An (n,n-q)-dimensicnal t-normal geometric Poincaré pair

(X,Y,E) is an (n,n-q)-dimensional geometric Poincaré pair (X,Y)
together with a choice of t-triangulation E:Y<-—>Bf6b(q) of

the normal fibration & Y —> BG(q). We shall be

=Vyeex
primarily concerned with the cases g = 1,2, for which

~ P
BG(q) = BTOP(q) so that the t-normal structure § is redundant.

An (n,n-g)-dimensional (or codimensicn _q) manifold pair

(M,N) is an n-dimensional manifold M together with a locally
flat codimension g submanifold N< M. The normal block bundle

v = v N —————»BfB?(q)

NCM
is such that

M = E(v) us(\))M\E(v) .

In particular, (M,N)} has an underlying structure of an
(n,n-g)-dimensional t-normal geometric poincaré pair.
Let (X,Y,E) be an (n,n-q)-dimensional t-normal geometric

Poincaré pair. A topological normal map (or a t-triangulation

of (X,Y,£))
((f,b),(g,c)) : (M,N) —>(X,Y)
is a t-triangulation of X (i.e. a topological normal map)
(f,b) : M ——X
which is topologically transverse at Y €X with respect to E,
so that (M,N= f_l(Y)) is an (n,n-g)-dimensional manifold pair

with normal block bundle

£] € e
v : N—-—-—3>Y ——>»BTOP(q) ,
the restriction of (f,b)
(£,b)| = (g,c) : N— ——->Y

is a t-triangulation of Y, the restriction



(£,b) = (h,a}| : (P,S(v)) —-——>(Z,S(E)) (P = MNE(V))
is a t-triangulation of (Z,5(§)} such that
(h,d)] = (@, : s —s@) ,
and

(F,b) = (g.c) U (h,d) : M = E(v) Ugu)P =X = E() Ugp)

In particular, {(f,b),{q,c)) has an underlying structure of
a normal map of codimension g geometric pPoincaré pairs.

TTOP(X,Y,E) be the set of concordance classes’ of

Let
t-triangulations of (X,Y,f).

Proposition 7.2.3 The forgetful map

7P %, v, ) —— 9T (x) 5 ((£,0), (g.c))——>(£,b)
is a bijection. Thus if X is t-trianqulable STOP(X,Y,E) carriec
a natural affine structure with translation group Hn(x;gb).
Proof: Topological transversality.
[
Let (X,Y,E) be an (n,n-g)-dimensional t-normal geometric
Poincaré pair. An s-triangulation of (X,Y,f) is a t-triangulat:
((£,b),(g,c)) : (MN) — (X,Y)
such that each of the constituent t-triangulations
(E,b) : M—— X
(g,c) : N——— ¥

(h,d) : (P,S(v)}—>(Z,5(F))
. . : TOP =~
is an s-triangqulation. Let 5 (X,Y,f) be the set of concordanc
classes of s~triangulations. The forgetful map
~ OP
ATOP v, By~ -—— 8TOP () 5 ((E,b) . (g,€)) ——3(£,b)

is in general neither injective nor surjective.
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i

An s-triangulation f:M—""—» X is split along YC X if f actua

defines an s-triangulation of (X,Y,E)

((E,b).(g,c)) : (M,N) ———>(X,Y)

5~

Given an it‘triangulation (f,b) :M——> X make f topologically
transverse at YC X with respect to E, and use the codimension
quadratic signature of the resulting t-triangulation of (X,Y,

({£,b},(g,C)) : (M,N) —>(X,Y)
(as given by Proposition 7.2.2) to define the codimension g

splitting obstruction of f along YcX

s(f,¥) = g,((f,b),(g,c)) € LSn_q(O)

9, ((£,b),(g,c)) € LR (0)

t(f,Y)

The following is essentially a restatement of the
obstruction theory of Wall {4,§11] for the "smoothing of
codimension q Poincaré embeddings", by a method of proof
going back to Browder {3].

s-

Proposition 7.2.4 The triangulation (f,b):M ——+X is sucl
t..

s(f,Y) o € LSn_ (9)
that g if (and for n-q3 5 only if) (f,b)

t(E,Y) =0 € LP _ (¢)

is concordant to an s-triangulation of X which is split alonc

s(£,Y) €LS__
Proof: The codimension gq splitting obstruction

t(f,Y) €LP__
has image

[s(£,¥)] = 0,(g,c) € L _ (Z[1 (N])

It

[t(£,Y))

Okl9,c) € L (ZIm) (D],

the surgery obstruction of the t-trianaulation (g,¢):N ——



Now ag,{qg,c) = 0 if (and for n-q 35 only if) there exists an
(n-g+l)-dimensional topoloqgical normal map of triads

(G,C) : (L;N,N';@)——>Y x ([1,2}:;1,2;9)
such that

iy (6,0}

{g,c) : N——> ¥ x1
ii) (G,0)| = (g',e') :+ N'———> Y x2 is an s-triangulation.
Given such an extension (G,C) of (g,c) let

G
(Aivev') ¢ (L;N,N'") —¥ x ([1,2};1,2)

projection E —~
— ¥ > BTGP (q)

and define an (n+l)-dimensional topological normal map of triads
1
F',B! = (F,B H ’ :
( ) (F, )L)(q,c) (G,C)
(V;3+V,3_V;83+V)

= (M x IUE(\)) x lE()\);M\E‘(\)) x lUS(\)) xlS()),MxOuE(\)');S(\)'))

(Wi, W,3_W; 30, W)

(X x [0,1]U LE(E) X [L,2152 x Lug (o0 (S(E) x [1,2],

E(E) x
XUE(E) x 2;S(E) x 2)
such that the restriction
(F,BY [, , = (b))’
(3_V,35_V) = (M,@YU(E(v'),S(v"))
——— (0_X,00_X) = (X,®) L4 (E(£),S(E))
t
(F',B')1M+V = (g'c) | 80,V =83V = S(v)—>33,W = S(F)

is an s-triangulation, by glueing together topological normal

maps of triads as in the picture



3 MNE(v) x 1 S(v) x 1 S{X) S(v')

xO M x [0,1} E(v) x 1 E(}) E(v')

[(f,b) (F,B) (a,0)’ J(G,C)’ (g e’
‘l!’ Xx [0,1] E(£) x1 E(£) x [1,2) E(£) x2

] Zx1 5(g) x 1 S(E) x [1,27 S{g) x 2

The surgery obstruction

o,(F',B'}) €L (Z[ny(2)) ——Z{n, (X)])

n+l

0.((F'.B')|3+V) € L (Zln;(2)])

(F',B")
is O if (and for n3» 5 only if) is topologically
(F',B") |
3+V
(F*.B )la_v

normal bordant rel to an s-triangqulation of an

(F"B"'aa+v

{(n+1)- triad
dimensional geometric Poincaré
n- pair

(H,D) : (Q;P,Q_V;93+V)f~'>¥m»(w;i+w,a_w;aj+W)

(J,H,3,D) : (P,33, V)" (3+w,aa*m
by an (n+l)-dimensional topological normal bordism

{H,D} : (P, )+V,P;’ “‘V)*W’*)()i}hlx I;J+Wx (),J+Nx 1;3‘+Nx 1)

Such an (H,D) (if it exists) can be regarded as a concordance

s—
of{ triangulations of X
t-
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(H;f,£') : (Q:M,M') —>X x (I;0,1)
i " M' = E(v' WP ——> X = E(E z
with f M E(v) Ug(yP ("US(g) an
s-triangulation of X which is split along Y<CX.
Thus if o,(g,c) = O € Ln_q(Z[nl(Y)]) there exists an
extension (G,C) of (g,c) satisfying i) and ii), and the
corresponding (n+l)-dimensional topological normal map of triad

(F' B*): (V33 V,d_V;33, V) ———>(W;3 W, W;3) W) is such that
s(f,Y) = [0, (F',B")] € ker(Lsan(¢)—~—+Ln_q(7z‘le(Y)]))
= Am(L (Z (1) (2) 1> Z[1) (X)]) —— 1S, (9))

t(f,Y) = la,((F',B')l3+V))
€ ker(LPn_q(@)%ﬁLn_q(Z[ﬂl(Y)]))
= 1m(Ln(z[nl(Z)])~—-—+LPn_q(®H
If (f,b):M—--->X is an s-triangulation of X which is
split along Yc X then (g,c):N——>Y is an s-triangulation
of Y, so that 0,(g,c) = O € Ln_q(z[nl(v)]). Taking
(G,C) = (g,c) x id. : Nx (1;0,1;@) —— Y x (1;0,1;9)
we have that
. |-
(F',B') = (f,b) x 1d.[0,1] L)(q,c)! N l(g,c) x 1d.[1’2]
(V;D+V,J_V;JJ+V)~ H—#(W;3+W,3_W;BB+W)

g, (F',B') =0
is an s-triangulation of triads, so that
] L) P
o, ((F',B )la+v) =0

C
s(f,Y) = 0
and by the above remark .
t(f,Y) =0
s(f,Y) =0
Conversely, if n-g»5 and then 0,(g,c) = 0
t{f,Y) =0

and there exists an extension (G,C) of (g,c) satisfying i) and

we



Now

o, (F',B') € ker(Ln+l(Z[Wl(Z)]——*E(ﬂl(x)])———¥LSn_q(QH
= im(pE L (Z I (0 D)=L (Z ) (2) 1= Zny (%)
0.((F',B')|a+v) e ker(Ln(E[nl(Z)])*——’LPn_q(¢H
= impg L) (210 (0 D) —> L (Z1n) (2) ]
so that there exists an element a€ Ln_q+1(z[wl(Y))) such that
o (F',B') = pE'(a) € L, (Z(7,(2)]—>zZl1 (X)])
o (B |y ) = et (@) € L@ iny )

By the surgery obstruction realization theorems of Wall (4,§§
there exists an (n-g+l)-dimensional topological normal map
of triads

(G',C') : (L';N'",N";@) ——> ¥ x (1;0,1;¢9)

such that
iyt (6,cnyl = (g'.c') N ——¥x0
ii)' (6',c")] = (g",c") : N*~———Yx 1 is an s-triangula

i)' 0,(6',C") = —a €L (ZI (V)]

Replacing (G,C) by the extension of (g,c) defined by
" " = 1 L}
(G",Cc") (G,C) U(g‘,c‘)(G ,C')
(LU g LN N ) —— ¥ x (150,15
we have that (F',B') is replaced by an (n+l)-dimensional
topological normal map of triads

(F",B") = (F',B') U y 16", e

(g',c
(V839 ,V',3 V'3 V') ———>(W;D W,3_W;H W)
such that

j g, (F",B")

G (F',BY) + a,((G',c})

= pr! Yolay =
= pf (a) + pt (-a) = 0 € Lot (ZIn (2} ] —=2Z[n, (X



OuCETBY ] yu) = o ((FLBY ], )+ op((6' et )

IS(A')

i

we'(a) + iptl(-a) = 0 € Lzl (2)])

so that the coresponding s-triangulation f":M" -2 4 X is split

along YCX.

For g » 3 Proposition 7.2.2 gives
s(f,Y) = o,(g,c) € LSn_q(Q) = Ln_q(Z(ﬂl(Y)])
t(£,Y) = (o,(f,b),0,(g,c))

€ LP (¢) = Ln(zfnl(x)])%n

n-q G(Zlm .

The following is essentially a restatement of Wall {4,Cor.11.3.1]:

Proposition 7.2.5 For q »3 an (n,n-q)-dimensional geometric

Poincaré pair (X,Y) is such that the geometric Poincaré complexes
X and Y are individually s-triangulable if (and for n-g2 5 only if)
(X,Y) admits a t-normal structure E:Y~—--B§6§(q) such that (x,Y,E)
is s-triangulable.
Proof: It is clear that if (X,Y,E) is s-triangulable then so
are X and Y.

Conversely, suppose that n-g > 5 and that there are given

s-triangulations (f,b):M —""sX, (g,c):N "2 Y, Let

(x,Gx:xw-»B?Bi(k) ,px:Sn+k——~—>T(\Jx))
(¥, 31 ¥ ——> BTOP (q+k) , 0, 18" * s r(v))

be corresponding topological normal structures, with

n+k Py projection
Py + 5 T ma T(Uy) —— o TV ) /T | ) = vy

The t-triangulations V, and v, of

X v vX:X —>»BG (k) and

VY:Y-~—->BG(q+k) determine a unique t-triangulation E of
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£ = Vye x ¢ YT>BG(a), since

v = v ]y 1 ¥ ——>BGg+k) .
Making f topologically transverse at Y <X with respect to E
note that the t-triangulation (f,h%) :f-l(Y)—-~»Y corresponds to
the same topological normal structure (;y'pY) as (g,c):N——>Y,
so that

S(f,¥) = 0,(g,c) =0 € LS _ (&) =L (ZIn)(¥)])

and (f,b) is concordant to an s-triangulation of X (also denoted
by (f,b):M—>X)) which is split along Y €X, with the restriction
(£,b) :f 1(Y) ——>Y an s-trianqulation of Y concordant to
{(g,c}):N————Y, (In fact, the proof of Proposition 7.2.4 gives
an embedding NC& M such that (f,b)| = (g,c} : f "(Y) = N——>Y).
[

Moreover, Wall [4,Cor.11.3.4] proved that if (W,3W) is an
n-dimensional manifold with boundary such that W is an
h-triangulable (n-q)-dimensional geometric Poincaré complex
and g >3 then every h-triangulation V—=*>W is homotopic
to an embedding, the non-simply-connected Browder-Casson-Sullivan
theorem.

We shall now extend the total surgery obstruction theory
of §7.1 to codimension g t-normal geometric Poincaré pairs (X,Y,E).
(See Levitt and Ranicki [1l] for an extension to the s-triangulatior
theory of "stratified geometric Poincaré complexes" - the pair
(X,Y) is the case of one stratum). In the first instance we

have to define transfer maps in the 3~qroups

NE . —_——
pt’ : £(Y) >3 iq (X7 (n>0)
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A codimension q t-normal CW pair (X,Y,£) is a codimensic

CW pair (X,Y) together with a t-triangulation E:Y'—***+B§5§(q)
of the normal fibration §:Y —> BG(q). For example, a
codimension q t-normal geometric Poincaré pair is such an obje
The composite of the transfer isomorphisms

E! = (Uzﬂ-)—l

~J
H,(Y.gb)~—V*‘>H,+q(E(€),S(E),Eb)
(with UE € ﬁq(T(C);ggo) the canonical Ego—orientation of E) and
the excision isomorphisms

P (B(E),S(E) shg) — > H,, (X,2;1L;)

Ht+q
define transfer isomorphisms
~ 1

pt :H*(Y;EO)~~-—*H*+Q(X,Z;§O) .
These are compatible via the assembly maps with the transfer
maps in the quadratic L-groups

)

pE o L,(Z["l(Y)])—-*dvIu+q(ﬂiﬂ1(z)l——* E(ﬂl(x)]) .
Thus there are defined transfer maps in the &—groups
=1
pe : A n—— 4,

which are composites

. £ P
et s B, T o S E@)SED s A (x,2)

and fit into a natural transformation of exact sequences

Ox
el Y TRG) e L (I (0 D) D (G T
<! ! ! 1
PE pE pE pE’ |¢
J % v
c T H X 75T L (Z I (2) ]2 () DA (X)) (K2



n g Proposition 7.2.6 Let (X,Y,E) be a codimension q t-normal CW
with pushout square of fundamental groupoids
ﬂl(S(C))-———* "1(2)
ct.
]
Ty (EE)) —— 7, (X)
i) The LS-groups of ¢ are related to the 4-groups by a
commutative braid of exact sequences
/E*_\ /—/—\
n q(Y m ) L, (Z [n (Z))——’Zlﬂltx)ﬂ
(SH_(X,2;0)) / \ /
n_q(zlﬂl(Y)]) Xn(X,Z)
A \\\\\\N
LS (®) Hhog-1'
v ol
\ -
R
ii) There are defined %-groups &, (X,Y,f) which fit intc
commutative braid of exact sequences
)%+.
}—.



iii) The LP~groups of ¢ are related to the S—groups by

a commutative diagram with exact rows and columns

S (25 Lg) —> H (X)X, 25 ) e B (25 IL)
(B (YILG))

v n=q
Oa ~ o
£ G*L *
! v
v dp&
..~4’Ln(Z[n1(Z)])—*)LPnhq(¢)~+Ln_q(Z[nI(Y)])-AV«*Ln_l(Z[nl(Z)]%»..‘

3
> S (2) > 8 (XY ) > Sn-gq¥)

N
U

8 (2 s

CoH U2 I (X)L (X Zi ) —— e (Z5Eg) e L

l } !
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iv) The maps uy,,vy are related to each other by a

3043

commutative braid of exact sequences

Ox
/ ﬁ\\\) / - \ /\
Ho (X5 Eg) +1(zfiiiji;) q'® A (X,Y,E)
q+l(®) 341 ¥ q(®
LS, _qe1(®) ey (XY E) (X3 0) L (Z[nl(X)H

\//\/\/

{1

The total surgery (or s-triangulability) obstruction of

an (n,n-q)-dimensional t-normal codimension g geometric Poincaré
pair (X,Y,E) is an element

s(X,Y,k) € én(x,v,i)
with the following properties.

Proposition 7.2.7 i) s(X,Y,E) = O if (and for n-q »5 only if)

(X,Y,E) is s-triangulable.
ii) The obstruction has images
[s(X.Y,£)] = s(x) € §_(x)

[s(x,¥,0)] = s(y) € 8 _

iii) If fO:MOL——>X, fl:Ml'f—éx are § trianqulations of X with
-

stfg,f) €4 1
difference the splitting obstructions

t(fo, f 1) € H (X:m)



along YC X differ by

s(fq,Y) - s(f,,Y) = ”Z(S(fo'fl)) € LSn_q(¢)

E(Ey,¥) - t(f,,Y) = VE(t(fo'fl)) € LPn_q(¢)

Thus if
TS(X,Y,E) € ker (S (X,Y,£) —> % (X))

= Am(LS,_(0) > 8 (G YE)) € 8 (X, Y08

S(X,Y,£) € ker (§ (X, Y, E)———>H__ | (X;Ly))
= im(Lp (@) (X, v.D)) € 8 (X, v, E)

s—
(i.e. if X is triangulable) the inverse image of s(X,Y,E) in
t_

LS )
d is the coset of the subgroup
LP (¢)
n-q

im(uy

£

im(vE:Hn(X:gqﬂ‘**LPn_q(®))§ Le

consisting of the splitting obstructions along YCX

1

ker (LS, (¢) — B (XY, E)) :£n+l(x)ﬁ”"LSn_q(®)) LS, .

it

ker(LPn_q(¢)‘""gn(X«Y:E)) -

s{f,Y) s-

of all the triangulations f:M—>X of X.
t(f,y) t-

iv) If n-g3 5 and (X,Y) is an (n,n-g)-dimensional manifold pair

there is a natural identification

$TOP(x, 1,8y = 8, (%Y, D)

and the commutative exact braid of Proposition 7.2.6 iv) has

a natural expression as a braid of surgery exact sequences



584

””‘\/\ /\

{}(xDl,XXS ;G/TOP, + "H(QH) LSn (m I}
\‘ TOP /

Pn- q+1(¢) % (X)\‘ (K

LS, _qe1(® Pix,y, D) {X,G/TOP] L (Zi

\J,/'ﬁ ~__ 7 7

with

(x,6/100] <TTOP(x) =TTOP(x,v,E) = n_(x;mp)

[1
(According to Ranicki [7] the topological manifold struct
(®) set BTOP(X) of an n-dimensional geometric Poincaré complex X wi
(%) n 35 is in natural one-one correspondence with the set of
n%-orientations [x] €H_(x;L°) such that

~

i)y J(rx1) = (%) € Hn(X;igo) is the canonical ILO—orientatic

i) o*([x]) = o*(X) € L™ (Z(n (X))

iii) the relations i) and ii) are compatible on the IL-spect
level.
In view of this Proposition 7.2.7 can be interpreted as stating

JTOP(X,Y,F) of an (n,n-q)-dimensional

that the structure set
geometric Poincaré pair (X,Y) for n-g 35 is in natural one-one
correspondence with the set of_go-orientations [X]) € Hn(x;gi)

satisfying 1i),1ii),1ii) and also
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iv) the composite
il ————n (%, 200 ——2 su_ (v;n0)
p X n (X 2: n-q¥ill

sends [X] to an gp—orientation [Y]GHn_q(Y;gP) satisfying
analogous conditions i),ii),iii) determining an s-triangulation
of the (n-q)-dimensional geometric Poincaré complex Y

v) the composite

0 0 (excision):1
Hn(X:Ef) I — Hn(X,E(C);EQ ) —— = Hn(Z,S(C);EE

°)
sends {X]) to an I&O—orientation {z] e Hn(Z,S(E);EEo) satisfying
analogous conditions 1i),ii),1ii) determining an s-triangulation
of the n-dimensional geometric Poincaré pair (2Z,S(£)) which on

the boundary is the s-triangulation of S(f) induced by E from

the s-triangulation of Y given by iv)).

In dealing with the geometric theory of codimension g
surgery we have only considered the simplest case of geometric
Poincaré complexes and closed manifolds. More generally,
suppose given

i) an n-dimensional geometric Poincaré pair (X, 3X)

ii) an (n-g)-dimensional geometric Poincaré pair (Y,nY)
iii) a geometric Poincaré embedding
(Y,dY) C (X,3X)
with normal fibration
(£,58) @ (Y, Y)—————>>BG(q) ,
so that

(X, 1X) = (E{f) vV Z,E(ME) U

S(£) s(og) 242

for some n-dimensional geometric Poincaré triad (Z:0,2,5(£);S(E))
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together with a t~triangulation

(€,5%) = (v,0Y) ——> BTOP(q) ,
s= .
iv) anS2 triangulation of pairs

(£,3€) = (M, 0M) —> (X, 3X)
such that 3f:0M——3X is an s-triangulation which is split
along dYc )X

there is defined a reld codimension g splitting obstruction

along YC X
n-q

tn(f,Y) € LP (9)

{Sa(f’y) € LS (¢)
n-q

with ¢ the pushout square of fundamental groupoids

T (S{E)) ——— 7 (2)

]
T (E(E)) — =y (X) '
s.(£,Y) =0
such that : if (and for n-g»5 only if) f is
t§(f,Y) =0

concordant rel 0f to an s-triangulation of (X,7X) which is



split along (Y,3Y) ¢ (X,3X). By the realization theorem of

LP__ (%)}
Wall {4,§11} every element of n-q is a reld codimension q
LS (®)
-q
sa(f,Y)
splitting obstruction . The total surgery obstruction
t.(£,Y)
u

theory for codimension g geometric Poincaré pairs also has a

reld version.



588

7.3 The spectral quadratic construction

The quadratic construction of §II.1 (recalled in §1.2)
associates to a stable m~map F: I X ——>I°Y of n-spaces X,Y

a natural transformation
bp ¢ Hy(X/1) ——Q (C(Y))

such that
(T by = €%, = by f, ¢ H (/M) ——— 0+ (C(D)

with f :é(x)———?é(Y) a Z[n}-module chain map induced by F
and éx:ﬁ.(x/n)————iQ*(é(x)) the symmetric construction on X.
The quadratic construction is an equivariant chain level
generalization of the functional Steenrod square method used
by Browder {5] to define the quadratic function needed to
define the Arf invariant of a normal map of even-dimensional
geometric Poincaré complexes.

The spectral quadratic construction which we shall now
be considering associates to a semi-stable n-map Fix—>1"Y

of n-spaces X,Y a natural transformation
WF : H*+m(X/W)**'“——-*Q.(C(f))

with f : Qmé(x)——-+é(Y) a Z[n]~module chain map induced by F.
The spectral quadratic construction is an equivariant chain
level generalization of the functional Steenrod square method
used by Browder [4] to define the quadratic function needed t
define the Arf invariant of a Wu-oriented even-dimensional
geometric Poincaré complex. The name derives from the use of
the spectra of stable homotopy theory, which are only implici

in our terminology.

N
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Let n be a group, and let w:nAA—»ZZ = {$1} be an
orientation map.
A semi-stable n-map is a n-map
F @ X——szPY
from a n-space X to the p-fold suspension of a n-space Y,
for some p» 0. In the first instance, we shall only be concerned

with the case when p is large, which is signified by writing

p=o, F:X »27Y .
The chain level method used to define the quadratic
construction in §II.1 (taking into account the correction on p.30)

applies equally well to define the spectral quadratic construction

on a semi-stable m-map FP:X—— 5"y inducing the Z[n]-module chain
map £:07C(X)—— C(Y), as abelian group morphisms
bp s Hn+“(X/ﬂ)—*———*Qn(C(f)) (n» 0)

defined using w-twisted coefficients and the w-twisted involution
on ZI[n].

Proposition 7.3.1 The spectral quadratic construction has the

following properties:
%

1) (14T vy = e 4 f, ¢ H, _(X/T)———30*(C(f))

with e : ¢(Y)———C(f) the inclusion,

1) agbp = Hby : A, (x/m) —— 0, (27 1 (x))

* 4o
with g: C(f)———+9m_lé(x) the projection and

B 0TEm) = 8 ™ e xy) —— 0, (277 1E (%))

as in Proposition 1.1.2,

Hi) b = wp B /M) = B (/M) =3 0, (C ()



if X = I"X_ for some n-space X0

iv) o
b
) . fo ) °s
wF : H*+m(X/W) = H.(XO/") ——> Q(C(Y)) —————> Q,(C{f})}
with WF the spectral quadratic construction of §II.1 on the
o

stable m-map

F X _—> Y
= : =
FO X Xo

v) if there are given n-spaces X,X',Y,Y' and a commutative

diagram of (semi-)stable n-maps

F
o,
> LY

X —
G j H
F' Y
X' ————> Y
inducing the commutative diagram of Z{n])-module chain complexes
and chain maps

f . e
2°C(x) —————> C(Y) ————> C (f)

h (h,q)

- f' . el
Q¥E(X') ———— C(Y") —— C(f")

then

bpiTa = (he@) g + edufy ¢ Bl (X/n) ————> 0, (C(£'))

with YpiH,  (X/1) — Q, (C(F)) (resp. Yp.:H,, (X'/1) ——>0,(CIf')))

the spectrallquadratic construction on F (resp. F') and

WH:Q,(Y)————+Q*(6(Y‘)) the quadratic construction on H.
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By analogy with the unstable guadratic construction of
§I1.1 on an unstable m-map F:2Px —>1Py (p>0)

Ve 1 By (x/m) —— IO PTH (& (v))

we also have:

Proposition 7.3.2 Given n-spaces X,Y and a semi~stable n-map

F: x ———>1Py
for some p3» O there is defined an unstable spectral quadratic

construction
Vet By /M —— 0,0 P e

with £:0P8(X)— C(Y) a Z{n]-module chain map induced by F.
If p = O then bp = 0.
[1
Given a commutative ring R let the group ring R[n] have

the w-twisted involution

Riv]l ——>R[n) ; J rg—> § wiglr g% (r_€R)
gen 9 g€n g 9

Given a n~space X and a ring with involution A equipped with
a morphism
R[1} ——————> A

define the A-coefficient chain complex of X to be the A-module

chain complex

C(X;A) = A C(X;R)

Bain)
with C(X;R) = REZC(X), and similarly for the reduced complex

C(X;A) = ABR[“]é(X:R). Define the A-coefficient symmetric

construction on X to be the natural transformation

byt Hy(X/M3R) ——> Q* (C(X;A))
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obtained from the Z [n]-module chain level symmetric constructi

¢X : C(X)———momzmzl(w,C(meC(xn

(i.e. the underlying diagonal chain approximation) by applying

R@Z[n)— and composing with the R-module chain map induced

by Rin]—>na

C(X/m;R) = Rﬂzé(x/n) = R C(X)

mZ['n]

1m'>x . 3
~—2—> r@,, Hom, (7] W,C(X)8,,C (X))

(C{X;R[n]))*,C(X;R{n])

Z |7

= Hom 2](W,HomR[n]

—w~—~——*HomZ[22](w,HomA(C(X:A)',C(X7A)H

Define similarly the A-coefficient quadratic construction

on a stable g-map F:iI®X—— 1Y
bp @ By (X/M3R) — 0, (C(Y:A))

and the A-coefficient spectral quadratic construction on a

semi-stable nm-map F:X 1%y
Yp @ Hyy  (X/T:R) ——> 0, (C(£;A))
with C(£;A) = C(E:R°C(X:A) —E-wC(Y;R)).

symmetric Ve

v*

Recall from §II.1 that the
quadratic

Wu classes g

symmetric
of the mod 2 P=Ez-coefficient) construction
quadratic

@x:ﬁ*(x;zz)-——*Q*(é(xizz)) {1}-space X
O on a
bpiH (X Z,)) —0, (8 (Y5 Z,)) stable {1}-map F:I"Xx——

have an expression in terms of
2 functional

Steenrod squares



by A

e n, . r CN—-r

HO(X52Z,) ——Q (C(X:Ez))‘~*-~*ﬁomzz(ﬁ (X;ZZ),ZZ);
x ——r (y —> <Sq" (y) ,x>)
(x€H (X:Z,), yeR" T (x;2,))
XxEH (Kidy)v ¥ iy

0 o(x;z )—Lo €Yz )w‘i-—n{ @y my, 20

n(XiZ, n PZy) "z, iZ)) i Zy) i

X —r (Y b <Sq;+l (£21),5%%>)

(x€R (X;Z,), ye R (Y;2,) = (Y,K(Z,,n-1)],

1 = generator e i"°F (K(Z,.n-1);Z,) = Z

27

h

(V)P - 17(fry) € (27X, ER(Z,.n-r)] (= {X,K(Z,,n-1)})

£:C) = 27X —F 0™ (2™ = ()

v_=0 n< 2r
with r for . The intersection pairing of the complex
vi=0 n> 2r

(E(X:Z,) by (1€ Q" (C(X:Z,))) is just the evaluation on x€H_(X;Z,)
of the cup product

bytx) g ﬁr(x;zz) x é”“r(x;zzz) —Z,

(y,2) ———><y uz,x> '
and it follows from the relation
(14T, = £%, = b6, : B (X;2) —— Q" (C(¥:Z,))
that
ViR (0) tytyy) - VIR0 (y) = VT L)) (y,)
} {<f*yluﬁf*y2 - f*(ylLlyz),x> ‘e §n= 2r
¢] n# 2r

; . YEIE) SN
(x€M_(X:Z,), yy,v, €0 (viz2))



594

Proposition 7.3.3 The gquadratic Wu classes v* of the mod2

spectral quadratic construction LIJF:H (X;?Zz) T 0, (C(f:2Z,))

* 400
on a semi-stable {1l}-map F:xh?XmY inducing the Z-module
chain map f:Qmé(X)———‘»é(Y) are such that
i} the rth quadratic Wu class vr(wF) has an expression
in terms of functional Steenrod squares
r
v

¥
5 F n-r
Hn+m(X;W~2)—~—"Qn(C(f;ZZ))’—‘**Homzz(ﬂ (f,Ez).ZZ) H

X ——> (Y ————> <Sqa+1(£m1)  X>)
Ce -r
(x€H (X:Z,), yeH" " (£:2Z,),

h

(z%(e*y))F € (X, I7K(Z,,n-1)],

)

e inclusion : é(Y;ZZ)~—*C(f:22) f

ery € BT (v;Z,) = [Y,K(Zy,n-r)))
with v‘(wF) =0 if n>2r,

i) VI (0) (v 4y,) = VIR 00) (y) = VT () (yy)

if

=§<e’y1u ety £ x> n=2r
0 n#2r

' n-r
(XE€H_, (XiZy), yyy, €H " (£52Z5))

i) v () (%) = <sa’ Tiz)xo €z,

r

. ‘ntow-r-1
(x€Hn+m(X,Zz), zZ€H (X:Z,)

g = projection : C(f;zz)—»n“"lé(x;zz)) .
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ii)
(The identity of Proposition 7.3.3 { is a direct conseguer
iii)
% .
(1+'I‘)\bF = e @Yf, i)
of the identity . of Proposition 7.3.1 ).
Q%WF = H¢X ii)

Recall from §I1.9 the hyperquadratic construction GX on

n~space X, which is the composite natural transformation

. a ¢ ks
6, : W x/m == iy (r/m —2XsoN K&y
2L, MR ey T L RNy = R e Tk

defined using any m-space Y Sn-dual to X and any Sm-duality ma
a:SN—~——+x A“Y (but which is independent of the choice of Y a
with J as in Proposition 1.1.2, There is also an A-coefficient

hyperquadratic construction

o, iR x/m R ——a 07K (@A) ) (k20) .

The hyperquadratic Wu classes G, of the mod 2 hyperquadratic
construction exzﬂk(x;zzl——v~§6_k(C(X;Zz)—*)on a {1}-space X
have an expression in terms of the dual Steenrod squares

9 g,

k X A=k, e -%
(X;%z)—-——§Q (C(X;Zz) ) —— ~—+Hom 2 k+r(X Zz ) Z ),

x+~744+(yk~v—»<x(5qr)(x),y>)
(xGH(XZ),yGH (XZ)) .

Given a spherical fibration £:X ——>BG(k) over a space

we shall say that a covering X of X is oriented with respect t

if the group of covering translations 7 is equipped with a map
w:n»->z2 such that the orientation map of £ factors as

wl(g) H nl(x)—Vﬁ—»ﬂ *7—!——»22 ,
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projection

in which case the composite T : X =A~———+x-4¢£L-+BG(k) is

an oriented spherical fibration over X. The formally n-dimens

hyperquadratic complex of £ is the pair

n-%

8*(g) = (c(X)"7*, 0 ) (Up) € "™

T (g

defined for any n€ =, with U, €iX(T(£)) the w-twisted coeff

3
Thom class of £ and

B (1) BT () — 07 (&) ™Y) = M@ (e tkT

the hyperquadratic construction on the Thom n-space Tn(f), u
the Z([n)]-module chain equivalence
Upa~ : E(Trle)) —stc(X)

to identify

B (Tr () ™Ry = $Me )™

If A is a ring with involution which is equipped with a morg

Z {n)]——>A the A-coefficient Wu classes of ¥ v,(f) are defi

to be the hyperquadratic Wu classes of AR 8*(5), the A-mc

Z[n]
morphisms

= & . N. at »
v ey = ¢ (UE)) i B (X3A)—H (Z,3A) (r30)

r Pra e
The mod 2 Wu classes defined in this way

AT _
vr(E) : Hr(X;EZ)“ﬂH (12;7&2) = Zz (r 2 0)

agree with the usual mod 2 Wu classes v, (f) GH*(X;ZZZ), whicl
characterized by

v (5)u U, = x(sg5) (u,) € W (T (nr iz,

£ £

(raoﬂkeﬁkﬂ(ﬁsﬂy)



Let X be an n-dimensional geometric Poincaré complex
with Spivak normal structure
n+k

:X —> BG(k),p,:S —*—a'P(VX)) v

(vy %

and let X be an oriented covering of X with group of covering
translations n. With A as above there is defined an n-dimensional
symmetric Poincaré complex over A

o*(X) = (C(X;A), dp (X1} € Q™(C(X;iA)))
and as in Proposition I1.9.6 it is possible to use the Sm-duality
between §+ and the Thom n-space Tn(vx) defined by

. Ntk Px 4 ~
oy S _‘_‘)T(\)X)WM—’ X+A11T"(VX)

and the Poincaré duality A-module chain equivalence

*

og (X)) g = [XIn - : c(X:a) " s (K a)

to identify

Jo*(X) = 3*(vx) .

Thus the A-coefficient Wu classes of X defined by

ner o v, (9g(IXD))

v, (x) B TR A) un2r

(Z,:A, (-)")
———Q——»ﬁ'(zz;A)
(with J an isomorphism for n# 2r) can be identified with the
A-coefficient Wu classes of vy

VoK) = v v s HTTER) = H (XA —— AT (Z 58 (rz0) .

In particular, for A = Z, this recovers the usual identification

of the mad2 Wu classes v, (X) € H*(X:zz) characterized by
_ r n
vr(X)U x = Sq (X) € H (X;Zz)
n-r
(ry0, x€H (X;ZZ))
with the mod 2 Wu classes of v,:X ——>BG(k])

X

valX) = v, luy) € HY (X Z,) .



A formally n-dimensional normal space (x,vx,px) (or X for
short) consists of
i) a finitely dominated CW complex X
ii) a spherical fibration vX:X—»——+BG(k) over X

iii) a map px:Sn+k———~»T(vx)

(Normal spaces were introduced by Quinn [3}). The orientation

map of X is the orientation map of Vg
wiX) = wylvy) s m ) —z, .

The fundamental class of X is the w(X}-twisted integral homology
class

(X] = h(p,)nuU, €H (X) |,
X

with h:ﬂn+k(T(VX))—~A—+Hn+k(T(vx)) the Hurewicz map and

u, € ﬁk(T(vx)) the w{X)-twisted integral cohomology Thom class
X

V.
of X
An n-dimensional geometric Poincaré complex X is a
formally n-dimensional normal space such that the Z[nl(x)]—module

chain level cap product with the fundamental class {X]

(XIn- : c(X)"F —2 c(X)
is a chain equivalence, with X the universal cover of X.

A formally n-dimensional degree 1 map

f: M——X
is a map from an n-dimensional geometric Poincaré complex M

to a formally n-dimensional normal space X such that
[

£ 0IM)) = [X) € H (X



A formally n-dimensional normal map

(f,b) : M———>X
is a formally n-dimensional degree 1 map f:M-—— X together
with a map of the normal fibrations b:vM-~v+vx covering f
such that

T(b) 4 (o) = oy € 1 (T(v,)) .

Formally n-dimensional normal maps arise in codimension q

surgery theory - see §7.5 below, particularly Proposition 7.5.4

of geometr

"degree 1 fiM—> X
An n-dimensional m

normal (f,b) :M —> X
. degree 1
Poincare complexes is a formally n-dimensional map
normal

such that X is an n-dimensional geometric Poincaré complex.

We shall now generalize the construction in §1.2 of

symmetric o* (f)
the kernel from an actually to a formally
quadratic o, (f.,b)

gdegree 1 f:M—> X
n-dimensional ma

| normal (£,b) :M—X

Let A be a ring with involution.

symmetric
A formally n-dimensional complex over A
quadratic

(C,¢)
is a finite chain complex C of f.g. projective

(C,¥)

A-modules
C: ...~ »C e > Cr —*'**%Cr TP . (re€e z)

together with an element
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¢ € Q"(C) = H_(Hom (W, Hom, (C*,C))

Z[Ez)

i

V€ on(c) Hn(wa HomA(C*,C)) .

Z HZZ]

If C is an n-dimensional A-module chain complex (i.e. if

(C,4)
H (C) = O for r< 0 and Hr(C) = 0 for r>n) then is
r
(C,¥)
symmetric
the same as an n-dimensional complex over A in

quadratic
the sense of §1l.1. The manipulations of finite-dimensional
symmetric
complexes (such as the algebraic surgery of §1.5)
quadratic
symmetric

carry over to formally finite-dimensional complexes
quadratic

Given a formally n~dimensional degree 1 map
f: M——X
and an oriented covering X of X with group of covering
translations 7 let M be the induced oriented covering of M,
and let f:M——X be a m-equivariant map covering f.

The Umkehr chain map of f is the composite Z{n]-module chain

map

f*x new [M]C -

! ~—> C (M)

£ e — oW

There are natural identifications

He () = B L ()

Hoteh = 8" EH

so that the Z[n)-module chain maps
e = inclusion : C(M) —- ——» C(f!)

g = projection : C{f')—— - -ssc(x)""*



are such that there are defined long exact sequences

- ?* . g9* h-r ! e* -~ E* -
com>H o (M) = H (X)) ——H (f )“_’Hr””*“’”r(x)-*‘”

. £* . € s ~ ~
ct @ =T =S et G — e G — L
identifying H* (M) = Hn_.(ﬁ) by the Poincaré duality of M.

Proposition 7.3.4 Given a formally n-dimensional normal space X

and an oriented covering X of X with group of covering
translations m the following complexes are defined.
i) The symmetric complex of X is a formally n-dimensional
symmetric complex over Z{mj
o*(X) = (C(X),peQM(C(K)))
such that
o ne—% ~
¢O = [XIN - : C(X) —> C(X) .

ii) The quadratjc Poincaré complex of X is a formally

(n-1)-dimensional quadratic Poincaré complex over Z|[m)

0, (%) = (Cc(x]n-:c®" T ——c@)),vee  (CcxIn-)))
such that
(1+T) 0, (X) = 80*(X)
g0, (X) = HE*(v,)
where 20*(X) is the boundary of the symmetric complex 0*(X) and
g = projection : 0C([X}n-) ——C(X)"™* .

iii) The symmetric kernel of a formally n-dimensional

degree 1 map f:M———>X is a formally n-dimensional symmetric
complex over Z{mn}
o*(£) = (c(fy.aeQccely)

such that there are defined homotopy equivalences
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h : Gg*(f) —2— ~yg*(X)
o* (M) —> c*(f)g;ho*(X) .

iv) The quadratic kernel of a formally n-dimensional
normal map (f,b):M-——X is a formally n-dimensional quadratic
complex over Z([n]

o, (f.b) = (£, veo (cirhhy)
such that
(1+T) o, {E,b) = o*{(f) .,

and such that there is defined a homotopy equivalence

h : Jo,(f,b) ———> -0, (X)
F:M1~—*—*M2 degree 1
v) If is a map of n-dimensional
(F,F):Ml~———+M2 normal

fi:Mi—‘4~*X
geometric Poincaré complexes and (i=1,2) are

(fF;,by) M ———>X

degree 1
formally n-dimensional maps such that there is defined
normal
a commutative diagram
F
(F,B)
.
M1 *-———“-+M2

1 ’ 2
(£,,b.) /// f,.b,)
1’71 [/ 272
X
symmetric o* (F)
the i kernel is canonically cobordant to the
quadratic o, (F,B)

symmetric
union formally n-dimensional Poincaré complex over Z[1u]
quadratic
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o'(fl)LJh—lh —c*(fz)
21 obtained by glueing along the
o*(fl,bl)L;h;lhl—o*(fz,bz)

composite homotopy equivalence

hy h£1
-1 ey ~
hy hy & 20%(£)) —=t> = )o% (X) ——=—> 30* (£ )
h hol
-1 L 2
hy"hy = Jo,(f,,b)) —0 4 (X) 20, (£5,b,)

Thus on the L-group level
OF(F) = (£ upely, Sot(fy) € LNz
o, (F,B) = 0,(fl.bl)LJh‘lh -0,(f2;b2) € Ln(Zln])-
2 1

Proof: i) Define o*(X) = (C(X),¢) by
o = og((x]) € Q"(c(X))

ii) See Proposition 7.4.1 iv) below for the definition of
iii) Define o*(f) = (C(£'),4) by

o = e®og(imn) € Q"(c(f))
with e = inclusion : C(M)——>C(£').
iv) Define o, (f,b) = (C(f'),y) as follows.
Let Tn(vx)* be a n-space Sn-dual to the Thom n-space Tn(vx).
The Sn-dual of the induced n-map of Thom n-spaces

Tn(b) : Tn(uM)~—*—~)Tn(vx)

is the geometric Umkehr semi-stable n-map

O
Ly x . * * =
Tn{b)* : Tn(vx) — Tn(vM) L M,
inducing the Umkehr chain map

£ o ()

Evaluating the spectral quadratic construction
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Lok . !
ST”(b)* : BT (vg)) >0 (C(E7))

on the Thom class U € ﬁk(T(v )) set
Vy X

!
b= OpyqnyelUy ) € QEIED)

v) This is a generalization of the sum formula of Propositio
11.2.5 degree 1
for the composition of maps of geometric
I1.4.3 normal

Poincaré complexes, and may be proved similarly.

There are evident A-coefficient versions of the
constructions of Proposition 7.3.4, for any ring with

involution A equipped with a morphism Z[n]—>A.

A formally n-dimensional topological normal map

(€,b) : M—>X

(or a t~trianqulation of X) consists of:

i) an n-dimensional manifold M and an embedding Mmc st

with consequent topological normal structure

~_
(\)M = \JMCSn*k : M—— BTOP (k) ,
n+k collapse _n+k  n+k _ _ L B
py @ SN E02RARSE, g g E(vy) = Blvy)/Stvy) =

ii) a formally n-dimensional normal space X with a

topological normal structure

(G, :X ——>BTOP (k) ,px:SnH(‘——bT(\)x))

iii) a degree 1 map f:M——>X

iv) a map of topological block bundles
b:vM——n)x

covering f, such that

TO)alpy) = oy € my (T
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(The Browder-Novikov transversality construction applies equally

well to formally n-dimensional topological normal maps. Thus the

’]‘OP(X

set J ) of concordance classes of t-triangulations of a

formally n-dimensional normal space X is in natural one-one

correspondence with the set yTOP

(vx) of concordance classes of
t-triangulations CR:X—A——vaB?(k) of a normal fibration
Vx:x-«——»BG(k) (k2 3), in the non-empty case carrying o natural

affine structure with translation group ﬁk(T(v }, exactly as

%) i g
for the t-trianaqulations of a geometric Poincaré complex X
considered in Proposition 7.1.3). The usual notion of a

geometric surgery on an n-dimensional topological normal map

((f,b) :M—>X)
> ((£',b") : M' = MxsT DTyt gl Ly
carries over to a formally n-dimensional topological normal map.
Indeed, the assertion of Milnor {1,p.46] that every compact,
smooth and oriented n-dimensional manifold M is cobordant to

one for which the classifying map of the tangent bundle

TM:M—-~«>BSO(n) induces monomorphisms

T T (M) —— n, (BSO(n)) (lgrg %_ 1)

M*
concerns geometric surgery in the smooth category on the
formally n-dimensional topological normal map

(1M,b) : M—~>BS0O(n)
(replacing BSO(n) by some high-dimensional skeleton).
Proposition 7.3.5 A geometric surgery on a formally n-dimensional
topological normal map (f,b):M—- —X determines an algebraic

surgery on the quadratic kernel o, (f,b).

Proof: By analogy with Proposition 11.7.3.
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If (f,b):M—>»X is a formally 2i-dimensional normal
map then the quadratic kernel over 22
outf,b) = (ClEh)ue 0, (C(E))
determines a guadratic self-intersection form over ZZ
(Hi(f!;Z ) = H
2

i+1 (E1 250

A= (1+T)wo : Hl.+l(f;22) xHi+l(f;Zz)—~*§Zz,
W= Vi) s Hy L (Fiy) > Z2)

such that
i) A(x,y) = <e*xue*y,[M]> € z,
(x,yekﬁ}l(f;zz),e*x,e'y€l”(M;22)= Hi(M;Ez)
ii) plg*z) = Vi+1(“x)(2) €z,
(z€Hi+l(X;%2), g*ZGHi+1(f;7Z2))
This generalizes the functional Steenrod square construction
due to Browder [4] of a gquadratic self-intersection form over ZZ

(ker(f*:Hi(M;Zz)—‘**Hi(X;Zz)),X,u)

; i+ L L
in the case vi+1(vx) =oeHn’ l(X:7Zz). (See Proposition 7.3.7 ii)
below for the connection between the two forms). The latter form
was given a geometric interpretation by Browder [9] in the case

of the formally 2i-dimensional topological normal map

(£,b) :M——»X defined by a framed embedding f:M2lc x?1*K (k3 0)

of a 2i-manifold M in a (2i+k)-manifold X (possibly with
_ i+l
boundary) such that vi+l(X)—»O€ H (X;2Z,) .

In general, the above self-intersection forms over %2
|

(K,A,u) are singular and u:K~4—4572 does not vanish on

ker (A :K——2K*) ¢ K, so that the Arf invariant is not defined

for (K,A,u). We shall now give an interpretation in terms of
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our theory[for the Arf invariant to be defined, in the more
general context of e-quadratic forms over any semisimple ring
with involution A, extending the results of Browder [8,§2)
for A = 22.

Let then A be a ring with involution which is semisimple,
i.e. O-dimensional in the sense of §1.2, so that every A-module
is projective and every submodule of an A-module is a direct
summand. ‘

The radical of an e-symmetric form over A (M,¢ € QE(M))
is the annihilator of M

Mt = ker(¢:M——> M*)CT M ,
The induced e-symmetric form on the gquotient A-module M/M4
(M/ME, 0/04 € QF (M/ML))
is non-singular and such that
M;9) = (M/ML,4/4L)8(ML,0)
(up to non-canonical isomorphism). The Witt class of (M,¢) is
defined by
a*(M,0) = (M/ME,0/94) € LF(A)
If (M,¢) is an even e-symmetric form then so is (M/MY,4¢/¢*),
allowing the definition
OX(M,4) = (M/ME,0/4%) € LLv>E(A) .

An e-quadratic form over A (M, y€ QE(M)) is eradicable if

bly:s = 0 € 0_(M)
with Mt = ker (y+ey*:M ———> M*) the radical of the e-symmetrizati
(M, Y+ey* € o (M), or equivalently if for each x€M!
MXHX)=()€QJA)=A/h—eaaGA}.

There is induced an e¢-quadratic form on the quotient A-module M/}
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(M/ML, /L € OE(M/M*))
which is non-singular and such that
(M, ) = (M/ML /L)@ (ML, 0)
(up to non-canonical isomorphism). The Witt class of an
eradicable e-quadratic form over A (M,y) is defined by
Ou (M, 4) = (M/M,p/¢%) € L _(A)

We have the following algebraic version of the Novikov
additivity property for the signature, involving the glueing
of forms defined in §1.7.

any eg~symmetric

Proposition 7.3.6 Given any even e-symmetric forms over a

eradicable e¢-quadratic
(M, ) M',¢")
semisimple ring with involution A (M, ), (M',$') and a stat
(M, 4) (M%)
even (-€)-symmetric
isomorphism of boundary {-€)-quadratic formations over
split (-€)-quadratic
£ 3(M, ) —"F—>3(M',-¢")
£ : (M, ) ——>3I(M',-¢")
£ J(M ) —=—ri(M",-¥")
e-symmetric
the Witt class of the union non-sinqular even e-symmetric
e-quadratic
(le)k/f(M'.¢')
form over A (M,¢)\Jf(M',®‘) is given by

(M) UM, 07)
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O*((M,0) Ug(M',8')) = 0*(M, ) + o*(M', ") € L°(A)
OF (M) U (M,87)) = 0% (M,0) + o*(M',¢') € Lv>C(A)

O (M) U (M BT = 0, (MaY) + 0, (M',9") €L _(A)

Proof: As in the proof of Proposition 1.7.1 there is defined
e-symmetric
2n isomorphism of even g-symmetric forms over A
e-quadratic
(M,~9)®((M,0) U (M’ $")) —=2-—> (M’ 4" )@ (hyperbolic)
(M, -9)B((M,9) U (M",¢"))——=——>(M",¢")B(hyperbolic)
M, -P)BLM P U (M, ")) (M',y")®(hyperbolic)
Passing to the quotients by the radicals gives rise to the
Witt class sum formula.
I
It follows from the proof of Proposition 7.3.6 that the
eradicability of an e-quadratic form over A (M,{) depends only
on the boundary split (-¢)-quadratic formation over A ) (M,y).
This dependence has a concise expression in terms of the
associated te-quadratic complexes. For any i» 1 let
(C,¢€ QZi(C,(—)ic)) be the 2i-dimensional (—)ig-quadratic
complex over A defined by
i

bg =¥ 1 Cl=M————C =M , C =0 (£Fi),

so that the boundary
HC) = (O E Q1 (C, () Te))
is the (2i-l}-dimensional (—)ls—quadratic Poincaré complex

over A defined by



= * . = My = M*

dac g+ epr aci M - \Ci_l M

1 oaci™l o M- 0C, = M
N = i

0O : )C" = M* ———— 1C, = M*

i-1
p, =9 : et a5 = M*
1 Mi-1 '

with ith (-)le—quadratic Wu class

vi(aw) cuitley = Mt —)ﬁl(zz;A,e) ;x> b(x) (x) .

The e-quadratic form (M,¥) is eradicable if and only if vl( y) = 0.

f:M——>X
Proposition 7.3.7 Let be a formally 2i-dimensional
(f,b):M — X

symmetric
map, with kernel over A

normal quadratic

é degree 1
1 21i 1
§ o*(f) = (C(f ;A), €07 (C(f ;A)))

1
0, (£,b) = (c(f'm),WeQ,, (C(E i)
for some semisimple ring with involution A equipped with a
morphism z[vl(x)]——>1\.

form on

(-) '~symmetric intersection
The i
(-) "—quadratic self-intersection

i, .0 a*(f)
H(f ;A) = Hi g (FiA) determined by
ox(f.b)

(Hy Q(E5R) X = 0g = Hyy (F5A) xH ) (£5A) ——> A)
(Hy p (E5A) (= (14T gt Hy (F5R) xHy y (£5A) ——>A,

W= Vi) s H (3 A) Qi (A))

;
has the following properties.
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i) The natural A-module morphism
k= ) . . .
e J Hi+l(f,A)—4———9Hi(M,A)
defines a morphism of (—)1—symmetric forms over A
* . - .
e* : (Hy (£3R8) A} ———>(H  (M;A),6)
with (Hi(M;A),e = [MINn - Hi(M;A) = HI(M;A)——"‘"—-»Hi(M;A) =H1(M;A)‘
the non-singular (—)1—symmetric intersection form over A of M.
The radical of (Hi+l(f;A),A) is the submodule
SAYY = i —.A)— . .
Hi+l(f’A) 1m(Hi+1([X]n ;A) ‘—*Hi+l(f,A))§ Hi+1(f.A),
and 1s such that
ker(e*:Hi+1(f;A)f~—7Hi(M;A)) = 1m(g*:Hi+1(X;A)‘~“’Hi+l(f;A))
. 1
CH{ER) L,
The quotient A-module
. * . . .
Hi+l(f,A)/ker(e .Hi+1(f,A)v—-»Hi(M,A))

= im(e*:Hi+l(f:A)—‘—*’Hi(M:A))

#

ker (f,:H, (M;A)——>H, (X;A))

supports a (—)l—symmetric form over A induced from (Hi+l(f;A),A)
which is also a subform of (Hi(M;A),B)
(ker (£, :H, (M;A)—>H, (X;A)), [A) = 8])

with annihilator

im(e!eHt (XsR) > (M;A)) = ker (e, :H; (M;A) ——H T (£:8))

GHi(M;A)

and radical

im(f!:Hi(X;A)——*Hi(M;A)) n ker(f*:Hi(M;A)——‘—)Hi(X;A))

C ker (£, :H, (M;A) —H, (X;R))
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ii) The restriction of u:Hi+l(f;A)-——’Q(_)i(A) to the
submodule
im{g*:H

(X;A)——>H; , (f;A)) = ker(e*:H,

l+1(f;!’\)—>Hi(M;l\)

i+l
§Hi+l(f;A)

is given by the (i+l)th A-~coefficient Wu class of vx:x————»BG

* 1 = .
Vign () ¢ By (KGR =T Hy ) (£28) ——Q )1 (A) = Hy(Z,:A,
Thus there is induced a (—)l-quadratic form over A
tker (£, :H, (M;A) —H, (X;A)), (A1, (u])

if and only if v,

1+1(vx) = 0. In particular, if (Hi+1(f;A),X,u)

is eradicable then Vi+1(vx) = 0.

iii) The (—)i-quadratic form over A (Hi+1(f;A),X,u) is
eradicable if and only if the boundary formally (2i-1)-dimensi
quadratic Poincaré complex over A

30, (f,b) = —0.(X)

(qC ([X1n =:C(x;A) 27— c(x3R)) £ €0, @C(IX)

is such that

vIE) =0 ¢ H (X0 A —— B (Z,A, () ] L

In any case, the restriction of vl(E) to the submodule
im(Hi+l(X;A)———+Hi+l(lX]n ~;A))C Hi+1([X]n -;A) is given by

vi)

vi+l(\JX) Hi+1(X;A)———~>Hi+l([X]n -:A)—-—-——»HO(ZZ;A,(—

Proof: i} Consider the commutative braid of exact sequences of

A-modules



By (iM% (=n " hEn)

Hi+1(x;A) Hi+1(f;A) N
\\\\\\N e \\\\\:\N ///////ﬂ \\\\\a
///// e e,
Hi+1(lxlr‘-:A) H%(M:A) Hilixlﬂ -;h)
(= H' (M;A))
N
ni(x;a) H (X;A)
(=H,(X;A)*) .

wfl-/,

identifying HI(X;A)= Hi(X;A)* by the universal coefficient
theorem and HI(M;A)= Hi(M;A) by the Poincaré duality of M,

Note that e, € HomA(Hi(M;A),Hi+l(f;A)*) has a factorization
j*

e, Hi(M;}\) —— im(e*:Hii-l(f;A)—-*Hi (M;A) ) * -—-7Hi+l(f;1\)*

with j* the split injection dual to the natural projection

j o Hi+l(f;A)*‘**lm(e*:Hi+1(f;A)*-*’Hi(M;A))
ii},1i1) These follow from Proposition 7.3.4 ii),iv)

and the commutative diagram

H1+1(X;A)~»7~—A‘~> Hi+l((xlﬂ _;A)v—*—'”i+l(f;A)l = Ker {})

~_

Vi+1(ny\\x vir) wl = v

~i+l . i
H (712,A) gHO(Zz,A.( 1)

i i CeRY — - - .A)
in which the map Hi+1([x} N=;N) ~’Hi+l(F,A) is onto.



Combining the sum formulae of Propositions 7.3.4 v), 7.3.6
with the eradicability condition of Proposition 7.3.7 there is
obtained a sum formula for the quadratic signature over a
semisimple ring with involution A of a normal map of
2i-dimensional geometric Poincaré complexes

(F,B) : Mlnf >M2

which appears in a commutative diagram of formally 2i-dimensional

normal maps

(F,B)
M — M

1 2
AN
(fl,bl\ (£,,b)
X

with the formally 2i-dimensional normal space X such that the

quadratic complex over A of X
0, (X) = (AC(IX]N -:Cx;A) 21T ——C(x;A)) £ €0, (2C(IXIN ~1A)))

satisfies

vie) =0 H X - s i s
namely
04 (F,B) = o*(fl'bl) U-O*(fZ'b2)
= 0, (f)by) = o, (f,, b))
€ 1y, (A) = L _ i(n)
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7.4 Geometric Poincaré splitting

Geometric Poincaré surgery is not logically necessary
for the development of the algebraic theory of codimension g
surgery in §7.5 below., However, it is a convenient halfway
point between manifold and algebraic surgery, just as homotopy
theory is halfway between geometry and algebra. We refer to
Browder [7}, Levitt {1], Jones [1l], Quinn [3], Lannes, Latour
and Morlet {1} and Hodgson [1] for various expositions of
geometric pPoincaré surgery theory. In particular, Quinn
reformulated the codimension g manifold surgery theory in
terms of surgery on geometric Poincaré complexes and normal
spaces. We shall now recall and extend this reformulation,
taking into account the total surgery obstruction theory
of Ranicki {7] and replacing geometric Poincaré surgery
with algebraic Poincaré surgery as far as possible.

An n-dimensional normal space X is a formally

n-dimensional normal space (x,vx:x———yBG(k),pxzsn+k——~T(vx))

in the sense of §7.3 such that X is a finite n-dimensional
CW complex. In dealing with normal spaces we shall assume
a certain minimal amount of Poincaré duality (which can be
achieved by surgery on O-cells), namely

i) cap product with the fundamental class [X}] € Hn(x)

defines a Z[wl(x)]«module epimorphism
(xln - : 1"(x) — -—» no(i)

. ~ nex
with X the universal cover of X, so that QC([X]n ~-:C(X) —C

is an (n-1l)-dimensional %[nl(X)]'module chain complex,
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i1) slant product with ay = Apx € nm_k(x+ AIZZT(“X))

defines abelian group isomorphisms

K (v s 10 =k _(x;1.0)

ay ¢ BT, s RO ——n RO

where the homology and cohomology groups are defined using
w(X)-twisted coefficients. It then follows from the commutati

diagram of abelian groups with exact rows

. I ) Ho
AT (0,0 10— B (T (v, 180 ————— 15 vy 5

ax<i axg ay
o J R H

. — . _— .
Hn(X.Eg) —> Hn(x.gg) Hn—l(x'

o,

that the restriction

agl ¢ Am (A (T () 80 —— 8 r ) mo))

: ~0
> im(HH (XGRD) —— H (0GR

is an isomorphism. Thus the t-triangulability obstruction of

+k+1

t(vx) = H(va) € H (T(vx);ggo) is such that t(vx) = 0 if and

only if ux(t(vx)) =0 € Hn—l(X;gb)' The t-triangulability

that t(X) = O if and only if X (i.e. vx) is t-triangulable.

An n-dimensional normal pair (X,Y) consists of

i) a finite CW pair (X,Y) with X n-dimensional and
Y (n-l)-dimensional

) ) ii}) a spherical fibration v, :X——> BG(k)

X

iii) a map of pairs

n+k . n+k-1
(Pyrpy) = (D", ) (T(vy) , T (V)



with v Y —— =>BG(k), such that (Y,vy,oy) is an

v = vxly
(n-1)-dimensional normal space.

The orientation map of (X,Y) is the orientation map of Vy
B N N '
and the fundamental class of (X,Y) is the w(X)-twisted integral
homology class defined by

[x] = h(Dx,DY)n va € H (X,Y)

with h: nn+k(T(vx),T(vY))-——~4»Hn+k(T(vx),T(vY)) the Hurewicz

map and Uv € ﬂk(T(vX)) the w(X)-twisted integral Thom class of v
X

In dealing with normal pairs (X,Y) we shall assume that

X"

i) cap product with [X}] € Hn(x,Y) defines a Z[nl(x))-module
epimorphism
X} o- s B (X) —» H (X, ¥)
with X the universal cover of X and ¥ the induced cover of Y,
so that QC([x) n-:C(X)" *——>C(X,¥)) is an (n-1)-dimensional
zlnl(X)]—module chain complex,

ii) slant product with ay = A(px/py) € un+k(x/v A:ZZT(VX))

defines abelian group isomorphisms

K o o
ay @ BT (T(ug) s 1) — = H (X, Y L)

0]

-k ~0 ~ ~
ay ¢ BT ) D) — B (X, v 1)

The element t(X,Y) = ax(t(vx)) € Hn_l(X,Y;I&O)ls the

t-triangulability obstruction of (X,¥).

A finite n-dimensional geometric Poincaré pair (X,Y)
is an n-dimensional normal pair such that the WJnI(X)]~module
chain map
[X1n-:c)"" wsc(d,v)

is a chain equivalence.



An n-dimensional (normal, geometric Poincaré) pair (X,Y)

is an n-dimensional normal pair such that Y is an
(n-1)-dimensional geometric Poincaré complex.

Given a space K with an orientation double covering
w:kK——k let 2N (K}, 9F(K) (resp. @'P(K)) denote the bordism
group of n-dimensional normal spaces X (resp. geometric Poincaré
complexes X, (normal, geometric Poincaré) pairs (X,Y)) which
are equipped with a map X ——> K such that the orientation map

factors as

w
w({X) : nl(x)ﬁ—»nl(K)ﬁ‘——»?‘zz
There is thus defined an exact sequence
p N N,P P o
...——~9Qn(K)»fg~+Qn(K)4——% Q. (K)‘—A»Qn_l(K) > ... .

We shall only be concerned with the case when K is a CW complex
with a finite 2-skeleton, for which the Levitt-Jones~-Quinn
geometric Poincaré surgery theory identifies

QP =L (2 ()] (n>5).

We shall now use algebraic Poincaré surgery and the spectral

quadratic construction to define quadratic signature maps

P
oy = oK) > L (I ()]) (n3 1)
which the theory implies are isomorphisms for n» 5. (It follows

from the surgery obstruction realization theorems of Wall [4)
that they are split surjections, at any rate).

Proposition 7.4.1 i) Given an n-dimensional (normal, geometric
Poincaré) pai? (X,Y) and an oriented covering (i,?) with group
of covering translations n there is defined in a natural way
an (n-1)-dimensional quadratic Poincaré complex over Z{n],

the guadratic Poincaré complex of (X,Y)
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0, (X,Y) = (C([X)n -:C(X) "N C (X, ¥)),veQ  (0C((X]n -))) .

The quadratic signature of (X,Y) is the cobordism class

0. (X,¥) € L _ (Z[7]) .
ii) The symmetrization of the quadratic complex (1+T)o,(X,Y)
is canonically cobordant to the symmetric Poincareé complex o*(Y),
so that on the L-group level
(1+T)0, (X,¥) = o*(x) € LV Lz (n])
iii) The Z|[®)-module chain map
g = projection : QC([X]n -) —C(X)""*
is such that
940, (X,¥) = HG'(\JX)

where 8*(v,) = (C(X)”"',e,”(vx) (va) ed" X" ")) is the

hyperquadratic complex of v, :X—>BG(k).

X

iv) 1f Y=¢ (i.e. given an n-dimensional normal space X)
the quadratic Poincaré complzx of X is the (n-l)-dimensional
quadratic Poincaré complex over Z[n}

0, (X,@) =g, (X) = (eC (X} N -:C(m“’*-»*cm),weon_l(nC((xln -))) .

The hyperquadratic signature of X is the element

gr(x) et (zn))
defined by o, (X,#) together with the canonical null-cobordism

of the symmetrization (1+T)o,(X,@). The quadratic signature of X

is the quadratic signature of (X,®), i.e. the element
H3*(X) = g,(X) € Loy (Z[s]) .
If X is an n-dimensional geometric Poincare complex then g, (X,d)
is contractible and
G*(x) = Jox(x) € L™zZIn)) . o, (x) =0 €L (ZIn))

with g*(x) € L"(Z[n]) the symmetric signature.

¢ T /
Eall \'
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Proof: Let (C,¢€Qn—1(C)) be the symmetric Poincaré complex
over Z(n] of Y
OX(Y) = (CY),05(1¥Y])) = (C,¢) ,
and define a Z{n]-module chain map
f = inclusion : C = C(¥Y) ——> D = C(X)

The evaluation of the relative symmetric construction of §II.6

[ 1

n
£,§ ¢ Hy (X, Y) ————0"(£)

on the fundamental class [X] GHn(X,Y) gives a connected
n-dimensional symmetric pair over Z[m}
O*(X,¥) = (£:C(X)——C(¥), o5 (Ix]) €Q"(£))
= (£:C———D, (64,9) € 0"(£))

Let (C',¢'€Qn_l(C')) be the (n-l)-dimensional symmetric
Poincaré complex over Z[w) obtained from (C,¢) by surgery on

the pair (f:C—>D,(8¢,4)), so that

C' = C((X]n -:C(X) " (X, ¥))

I

Qc(g: D" —>c(£))

with g:Dn_*'—*C(f) the Z[n]-module chain map defined by

(_)IM’O n~r
g=( = (Xxla-: D" ————c(f)_ = DoeC

() o f*
Proposition 1.5.1 ii) (or rather its proof in Proposition I.4.1)
gives a canonical symmetric Poincaré cobordism between (C,¢)
and (C',¢'). Let

(D',86') = (CLE),86/0€Q (C(F)))
be the n-dimensional symmetric complex over Z{n} obtained from

the pair (f:C——D, (8¢,¢)) by the algebraic Thom complex
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construction of §1.4. Equivalently, (D',84') is the complex
defined by the evaluation on [X] € Hn(x,y) = ﬁn(x/v) of the
absolute symmetric construction on X/Y
0% ¢ Hy (/0 ———"(C &/,

identifying

(- - Y vy = Y /v [

D' = C({f) = C(X,Y) = C(X/Y) , 6&¢ ¢X/Y([X])

The inclusion C(f) — > C(g:D" " *— > C(f)) defines a Z({n)-module

chain map

e : D' = C{f)~———> C(g) = SC'
such that
et(se) = s e,
where S : Qn-l(C')—~——aQn(SC') is the algebraic suspension map

of §1.1. lLet Tn(vx)* be a w-space Sn-dual to the Thom n-space
Tw(vx), so that the Sn-duality theory of §II.3 applied to
the composite {1}-map

ox/oY

n+k n+k/sn+k—1 Ry T (V) /T (V)

a ;S =D
‘~——é**—*Tn(vx)A "i/?
gives a semi-stable n-map
G : Tn(vx)*~——~»Em(§/§)
inducing the Z[n)-module chain map
g=(xln-: 0" =@M >c(f) = c(X,¥) .
Evaluating the spectral guadratic construction

- K
be :}{(T(vXH»WWA%Qn(C(QH

on the w-twisted coefficient Thom class Uv € ﬁk(T(vx)) there
X
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is obtained an element
b= ¢G(va) € On(C(q))
such that
(1+T)§* = e(86') € Q"(sc') = Q"(C(q))

by Proposition 7.3.1 i). Considering the exact sequence
1+7
(S ~(1+T))
S n-1 n
1 ;——h*—# L) ] ————»——\.————) 1}
0, _, (" Q" iceg (g o"(sc*)

(or rather the underlying short exact sequence of chain complexes,

cf. Proposition I.1.3) there is obtained an element V€Q _,(C")

such that
(1emy e = o0 € 0" e
Sy = ' € Qn(SC') ’
with o, (X,Y}) = (C',¥) an (n-l)-dimensional quadratic Poincaré

complex over Z([n].

If (f,b):M—>X is a normal map of n-dimensional
geometric Poincaré complexes and W is the mapping cylinder
of f:M~——X then (W,Mu-X) is an (n+l)-dimensional
(normal, geometric Poincaré) pair (cf. Quinn [3)) with
quadratic signature

O, (W,MuU-X) = 0,(f,b) €L (Z["]),

that is the quadratic signature of (f,b) in the sense of §1.2.



623

Proposition 7.4.2 The various signature maps fit together to

define a natural transformation of long exact sequences

N N,P p . N
...——*“’Qn+l(K)"ﬁ-*9n+l(K)“~—*>Qn(K) *4~>9an)‘_'*?.”
a* Oa o ¥ G*
B 1+7T J

o iz —oL zinh —— Mz - 2L @) .
with m=m,(K), n> 0.
[]
As noted above, it follows from the Levitt-Jones-Quinn
geometric Poincaré surgery theory that the guadratic signature map

N,P

n+l (K)——> L (Z[ny (K)1) (n3d)

Te @ 0
are isomorphisms. In general, neither the symmetric signature maps
P n
ag* : Qn(K)~—-—+L (Z[nl(K)H
nor the hyperquadratic signature maps
~n N an
G* Qn(K)——~——+L (Z[Wl(K)H
are isomorphisms. See Ranicki [7,p.306} for an example in
which 6* is not onto, and see Proposition 7.6.% below for

an example in which o* is not onto.

An [n,n-g)-dimensional (or codimension g} normal pair (X,Y)

consists of:
i} an n-dimensional normal space

n+k
(X,vx:x 4——»*BG(k),DX‘S — T(vx))

ii) an (n-g)-dimensional subcomplex YC X
iii) a (g-1)-spherical fibration over Y

v =f : Y ——>BG(q)



and a subcomplex Z< X disjoint from Y such that

X = E(E) US(C)Z

and such that Y is an (n-g)-dimensional normal space with

(vy = €Oy |y ¢ Y——>BG(q+k),

_ P
g(n-a)+la+k) s“*"—x»T(vx)——»T(ux)/T(vx

Py Ip) = Tvy)
In particular, (X,Y) is a codimension q CW pair in the sense

of §7.2. A codimension g geometric Poincaré pair (X,Y) is a
codimension g normal pair with X and Y geometric Poincaré

complexes and (Z,S(f)) a geometric Poincaré pair.

Let (X,Y) be a codimension q CW pair with

X = E(g)‘)s(g)z » E : Y——BG(q) .

normal space
A map f:M——>X from an n-dimensional .
geometric Poincarée comple

normal Y
M is , transverse at YS X if (M,N=f “(Y)CM) is an
Poincare
normal
(n,n-q)-dimensional . pair with
geometric Poincare
g=f| £
\JNCM=\) it N—-— —— Y ——BG(q) , M-E(E)US(E)P , P=
!
= : M =F P — = F .
f g wh M F(v)\JS(v) — X F(C)\‘S(E)z

According to the normal transversality theory of Quinn [3]
every map f:M———>X from a normal space M is normal transverse
Y< X, for any codimension q CW pair (X,Y), so that in particulat
there is an analogue for the normal bordism groups QT(K) of the
Pontrjagin-Thom isomorphisms QETOPIK) & H, (K;MSTOP) (% #4) for

topological bordism, as follows.
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Given an n-dimensional normal space

n+k

(M, vy 1M ——>BG (k) ,0),:S > T(vy))

use the canonical MSG-orientation v, € ﬁk(T(vM);MSG) to define
M

the canonical MSG-fundamental class

M) = ay (U ) € H (M;M5G)
M

using w(M)-twisted coefficients. (The cap products
[MIn~ : H*(M;MS5G)—H__, (M;MSG)
are not in general isomorphisms).
The normal space Pontrjagin-Thom isomorphisms are defined

by noting that K+ A 5 MSG(k) = T(n ) is the Thom space of the

Z,

{k-1)-spherical fibration classified by the map n appeaing

in the homotopy-theoretic pullback square

n
k
K x sz'l)ec(k) X% ,BG(K)
v1
w
K~ K (Z 5, 1)

and setting

L = N )
H (KiMSG) = Lim (K A, MSG(k)) ——> % (K) ;

= Zy
(Fvs"”ﬁ———»i A MSG (k) = T(n ))
: +"z, B k
-1 F|
———3(f : M= F (K BG(k)) —> K x BG (k) —>K) ,

X
K(Z,,1) K(Z,.1}

using normal transversality. The inverse isomorphisms are defined by
. Q) (K)——>B_(KiMSG) 5 (F:M—— K}y £, ([M]) ,

with [M] € Hn(M;MSG) the canonical MSG-fundamental class.



Proposition 7.4.3 An n-dimensional normal space X has a

canonical_@o-fundamental class

1X] € u_(x; 10
plti
such that
i) the map H:Hn(x;ﬁP)——-» H _; (X:L,) sends [X] to the

t-trianqulability obstruction of X
H([X}) = t(x) € Mo XGg)

ii) the hyperquadratic assembly map 6*:Hn(x;ﬁf5—~4»ﬁn(2lnl(X)])

sends [¥] to the hyperquadratic signature of X

§*(IX]) = 8*(x) € E"m[nl(x)l) '

iii) the quadratic assembly map 0,:H_ _, (X;Lj}—> L, _1(Zlﬂl(x)ﬂ

sends H([i]) = t(X) to the quadratic signature of X

O, (HUIRD) = 0, (E(X)) = 0,(X) € L (Z[1,(X)])

Proof: Use the canonical io-orientation Gv € Hk(T(vx);ﬁp)
X
to define

[X] = a (0 ) € H, (X )
X Vy -

with (v, :X— BG(K), 0, :S" ™ ——T(v,)) the normal structure and ay = Aoy

Alternatively, regard MSG as the spectrum of oriented normal
space n-ads and use the n-ad version of the (symmetric, quadratic)
Poincaré complex construction of Proposition 7.4.1 i) to
define a morphism of ring spectra

~ 50

§* = msg — fi.
and use the canonical MSG-fundamental class [X] € Hn(X;MSG)

i
to define

[R1 = 6+(x) e n_(x; &%)
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The hyperquadratic signature map on the normal bordism

groups factorizes through the hyperquadratic assembly maps

[¢]

~ N A
* . = . ——— .

a* : Qn(K) Hn(K,MSG) Hn(K,ﬂ

*

°)
G*
————tNz KD (ny
by Proposition 7.4.3 i).
A t-triangulable n-dimensional normal space X has
quadratic signature

0, (X) = 0, (t(X)) =0 €L, _(Z[T (X)) ,

by Proposition 7.4.3 iii). The vanishing of tne quadratic
signature for t-triangulable normal spaces has a simple geomet

interpretation: given a t-triangulation

{(f,b) : M > X

(i.e. a formally n-dimensional topological normal map) note th

the mapping cylinder W of f:M »X defines a normal space
cobordism (W;M,X) between the manifold M and the normal space
with a reference map

(g;f,1) : (WiM,X)———>X,
so that

0,(X) = 0,(M) = HIJo*(M) = 0 € L__,(ZIn (X)])

by Proposition 7.4.2. In fact, the gquadratic kernel o, (f,b)
is a connected n-dimensional quadratic complex over Z[nl(x))
such that the quadratic Poincaré complex 0,(X) used to define
the quadratic signature is homotopy equivalent to the

boundary 3(-o,(f,b)), by Proposition 7.3.4 iv}.



Given a codimension g CW pair (X,Y) with

X = E(£)V ¢ & ¢ Y——>BGI(q)

2z
S(g)
normal space
there are defined transfer maps in the
geometric Poincaré

bordism groups
!

3
e Q:(Y) — N

P
nq(E(E) /S (E)) —————a)l _(X,¥)

£ P
Pt s 9D (1) s @7 (E(£),S(6)) ———> Q] (X,Y)

+
with
El(f:M ——>Y) = ((E(f*£),S(f*)) —>(E(L),S(E)))
and p the natural maps induced by the inclusion
(E(E),S(E)) — (X, 2)
The normal space bordism transfer maps pC! are isomorphisms,
with g'aa(v) 24 n+q(E(£) ,S(£)) the inverses of the

MSG-coefficient Thom isomorphisms

Ugn - n+q(E(£) /S(E)) = H  (E(E),S(L);MSG) = H ., (T(E);]
—_—— Hn(x;ﬂ§§) = Qﬁ(x)
(with u, € B9(T(£);MSG) the canonical MSG-orientation of &) ai

£
P n+q‘E‘€’ 'S(E)) = H, (E(E),5(£) iMSG)

~

—=—>q thq(x 12) = B (X, Z3MSG)
the MSG-coefficient homology excision isomorphisms.

Q normal space
Let (n3 0) be the relative bor:

(3pg h

N
n
P : . -
n geometric Poincare

groups appearing in the exact sequence



I
opE’
N P N, . N, N
.*-?Qn_qﬂ(Y) —> Q (2) —>Q_(Ipg )——»Qn_q(y)——*...

g !
Jpk p

—>aP —— 9l (2 —> i opr!) >l (0=,

n-q+l(y)
the bordism groups of pairs of maps
(g: N———>Y, h: (P,S{f*f)) —>(2,S5(E)))

normal space
such that N is an (n-q)-dimensional
geometric Poincarée complex

normal
and (P,S{f*f)) is an n-dimensional . pair,
geometric Poincare

with
hl = g'| : S(E%€) —> S(E)

There are defined maps

N apety —> N0 (gh) ——> €

N N
n n
P ! P (n>0)
of (3pg!) 0P (X) 5 (g £

with

£=9'0Uh : M= E(f*0) U ——>X = E(£) U

P

S(£*E) s()?
normal space

A map f:M———>X from an n-dimensional
geometric Poincaré complex

normal
M is bordant to one which is _ transverse at YCX if
Poincare
and only if
. N ! N N
(f:M ———> X} € 1m(Qn(QPE )————>9n(X))s Qn(X)
. P ! P P
(£:M——>X) € im(Q pL’) —>Q (X)) S a (X)

The maps Qf(apgl)——4~’ﬂf(x) are isomorphisms, by normal
transversality. Recall from §7.2 that the analogously defined

, ! : ;
relative quadratic L-groups L,(spf’) appearing in the exact
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sequence

1
ipE”
- Ln_q+1(z[nl(Y) )) > L (Zin (2) ])

1
—_ Ny ——> — >
L, OpE’) Ln_q(z[wl(Y)])
the codimension q surgery obstructions LP,($) of Wall [4]

N
L (PET) = LB _ (8} .

such that the analogously defined maps LPn_q(o)-A4>Ln(Z[n1(X)l)

into the exact sequence

SIS, (0) LR () L (Z I (X)) T LS, ()

Proposition 7.4.4 Given a codimension g CW pair (X,Y) with

the

fundamental groupoid pushout square

nl(E(E))"*‘~—+ nl(Z)

Ty (S(E)) ———» 1 (X)

there is defined a commutative braid of exact sequences for n-q2 5

////////—“\\\\\\\\5\ ///////4"_—‘“‘\\\\\\>

P ! N
Q,6pL") n X L l(ﬂlﬂl(X)H

P !
L (ZIn ()] LS oy (®) Q,_GpE )

NN
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LS, g1 (®)
Thus d (n-g » 5) is the bordism group of maps

LP o1 (®)
(f,3fF) : (M,3M) —> X
geometric Poincaré
from n-dimensional pairs (M, M)
(normal, geometric Poincaré)

such that 7f:5M——3 X is Poincaré transverse at YCX.

Again, let (X,Y} be a codimension q CW pair.

geometric Poincaré complex
A map f:M—>X from an n-dimensional
normal space

Poincaré

M is Poincaré split along YCX if f is bordant to a
normal

map f':M'— X from an n-dimensional geometric Poincaré complex

M' which is Poincaré transverse at Y CX. The Poincaré splitting

obstruction of f along Y <X is the element

- p B ]
s (f,Y} = ug(f.M-*—~*x) € Lsn—q"1(¢)
P - M
tT(f,Y) = vE(f.M —3>» X} € LPn—q~l(®)
u, sPe,y)
with > as in Proposition 7.4.4. (For n-q< 4 define p
v £t (f,Y)
£
using periodicity, by
p 2 K projection f
s (f,Y) =lﬁ(Mx(@P ) — — M + X)
€ IS L gxoqgo1 (B} = IS o 1 ()
P 2 projection f
t (f,Y) = VE (Mx (@p”) " ————————> M - ——X)
€ Lpn+4k—q—l(®) = LPnﬂq_1(¢)

for any k 2 1 such that n+4k-gq 3 5).

The Poincaré splitting obstruction sP(e, v e LSn~q—1(®) was first

obtained by Quinn [3].
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For gy 3 the two Poincaré splitting obstructions along Y< X for
a map f:M——>X from an n-dimensional geometric Poincaré comple
M coincide, with

P

s (f,Y) € LSn_q_l(®) = Ln_q_l(Z[ﬂl(Y)])

P _ P -

t (f,Y) = (s (f,Y),0)€ LPn_q_1(¢)-Ln_q_l(Z[ﬂl(Y)])QLn_l(Elul()
Proposition 7.4.5 The Poincare splitting obstruction along Y < X

geometric Poincaré complex

map f:M —->X from an n-dimensional

normal space

s(e,v) =oens (9
q if (and for n-q» 5 only if)

W

such that i

t(f,Y) =0 € LP

n-qe1(®)
f is Poincaré split along Y < X.

{]

It is reasonable to expect an expression for the Poincaré

sPeev) eLs, (9
splitting obstruction along YC X p a of a map
EUEY) € LR ()

geometric Paincaré complex
f:M——X from an n-dimensional M
normal space

g+l

in terms of the t-triangulability obstruction t{f) € i} (T(£) ;0
5-

of £:Y ——BG(q) and the trianqulability obstruction of M
t_

, for if £ is t-triangulable and M is

Ef(M)egn(M)
t(M) €H | (M; L)
S- Poincaré
triangulable then f:M——>X is bordant to a map
[ normal
f':M'——X from a manifold M' which is topologically (and

a fortiori geometric Poincaré) transverse at YC X. we shall obt

such an expression in Proposition 7.4.6 below.

. N
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The product of spherical fibrations a:X —— BG(3),

B:Y ——— BG(k) is the spherical fibration ax8:Xx ¥ —>» BG(j+k)

defined by
(0 x p¥,pIx sk Lugi-Ly Dk)—»(n(a) x E(B) ,E(a) x S(B) UuS(a) x E(B))
(= (pI*k,gItk-1), (= (E(axB) .S (axB)))

—>XxY ,

with Thom space

T(axB) = E(axB)/S(axB)

(E{a) x E(8))/(E(a) x S(B)U S(a) x S(8))

= (E(a)/S(a)) ~ (F(B)})/S(B)) = T(a) AT(B) .
The canonical @O—orientation of axB is the product of the
canonical io-'orientations of o and B

~

i) = Gauﬁé e 17 (r(ay A T(B);QR_JO)

axB
defined using the multiplicative structure of the ring spectrum B-.O.
The Whitney sum of spherical fibrations a:X ———BG(j),

B:X ——>BG (k) over the same base space X is the fibration

afB:X —— BG(j+k) obtained from the product axf by pullback

along the diagonal map A:X — X X X;x+— (X, X)

a®8 : X Xxx —2B spoge) .

]

The canonical i -orientation of o®8 is the product of the

canonical fLO—orientations of a and B

O3 = 8*0, o =0 80 ¢ 1Y% (7 (mp) ; 10)

defined using the multiplicative structure of the ring spectrum io

and the induced map of Thom spaces A:T(a®R)———T(axB) = T(a) A T(R).

The t-triangulability obstruction of a®B is thus given by

~

) = II(U(’@UB)

c ﬁ]+k+1

t(a®g) = ”(Ummﬁ

(T(a®R) ;11,)



In particular, if B:X ———>BG(k) admits a t-trianqulation
Lt «k 0, . .
B:X ———>BTOP (k) and UEG H (T({R);IL") is the canonical

Eo—orientation then GB = Jug € ﬁk(T(B);ng and the

t-triangulability obstruction of a®#B is the product
t(ee8) = t(o) muy € AIH L (r(a08) ;)
defined using the structure of IL,as an EP—module spectrum,

Proposition 7.4.6 Let (X,Y) be a codimension q CW pair, and let

geometric Poincaré complex

f:M——> X be a map from an n-dimensional
normal space

M which is normal transverse at Y CX. Let
g=f] : N= f-l(M)—*——»Y , i = inclusion : N———M

and let v, :M——*BG(k) be the normal fibration of M.

M
i) The image of the Poincaré splitting obstruction of f

sT(£,v) €Ls 3]

n-g-1

in L (ZI[%,(Y)])) is given by
tP(E, ) €L (0) n-q-1 !

along YCX {

sP (e, 11

= g, 0,(N) = g,0,(t(N)) €L (Z[ry () 1)

(tF (e, vy 1 n-a-1

with o,(N) € Ln—q~l(z["1(N)]) the quadratic signature of the
(n-g)-dimensional normal space N and t(N) € Hn_q_l(N;gb) the
t-triangulability obstruction of N, and hence also of
= g*r@it* . —
k2 g*réi Yy ¢ N — BG (g+k)
In particular, for g3

P _ P -
Py = s e s @) =0 @i oD
I)
t"e,v) = (£ (e 1,0
€ LR g (P) = L (@I (B DEL ) (Z (0]
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5-
ii} If gq =1 or 2 and M is ; triangulable then
t_

P =
s(E,Y) =0€rLs . (2
0 € Lp (%)

P
t7(E,¥) n-q-1

(since BTOP(g) = BG(q)).
is a manifold with normal bundle _ —
If gq»3 and M \)M:M ——>BTOP"
admits a t-triangulation
the Poincaré splitting obstruction of f:M—>X along YC X is
given by

sT(£,Y) = 9,0, (t(N)) = 9,0, (g%t (5)@i*Uy )
M

€ LS ($) = L (E[nl(Y)])

n-g-1 n-g-1
(EF(6,Y)) = 9,0, (E(N)) = 9,0, (3*t(£)@I* Uy )
M
€ Ly (ZIn ()
with 76,9y = (1tP(£,9)1,0) as in 1) and vy € i*(r (v ;0
M

the canonical gp-orientation of V.

iii) If £:Y —>BG(g) admits a t-triangulation £:Y ——BTC
Yr
the maps > appearing in the braid of Proposition 7.4.4
v
£

factor as
P uy
up s R (X) e S X) ——s LS _g-1(®)
(n><C

v
. oNixy — , 4
vt Q) > H ) (X5ILg) = LR, (9)

Fadl}

u
with E the maps appearing in the natural transformation of
Vs
13

exact sequences given by Proposition 7.2.6 iv)



P(q)

Cx
coe L AZIT D) —— A () ——H _ (XLg) —>L_(Zn (X

cee L (Z[m (X)] )—»Lsn_q_l(o) '%LPn_q_IW)-———) Loy (ZIn (X

Thus the Poincare splitting obstruction along YC X of f:M—
is given by

n-g-1®

P
EE,Y) = vplfe) € LR o, (9)

i

isp(fﬂ) = ug(f,s (M) € LS

s(M) € Sn(M) s-
with the triangulability obstruction of
t(M) €H ) (ML) t-

{]

In fact, the t-triangulations E:Y ‘———~)B55$(q) of a
spherical fibration §:Y ——>BG(q) over a space Y are in a
natural one-one correspondence with the geometric Poincaré
transversality structures along the zero section Y CT(f) for
maps f:M——T(f) from manifolds M, i.e. ways of making them
Poincaré transverse at YCX - see Levitt and Morgan [1],
Brumfiel and Morgan (1] for the simply-connected case, Levitt
and Ranicki [1}] for the non-simply-connected case. Dually, th
manifold structures on an n-dimensional geometric Poincaré
complex M are in a natural one-one correspondence {(at least
for n 3»5) with certain geometric Poincareé transversality
structures for maps f:M ——>T(f) to the Thom spaces of
topological block bundles E:Y-——<—*B§5§(q) - see Levitt and
Ranicki [1]. From the point of view of Ranicki [7]

such a geometric Poincaré transversality structure on
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a (g-1)-spherical fibration £:Y —>BG(q)
. is an
an n-dimensional geometric Poincare complex M

up €97 () ;0°)

Qp—orientationg with image the canonical

24
(M) € u_m;0°)
v ender) et (-

QN—orientation Nt p '
[M] € Hn(M;Q ) with 0*([M]) = (1:M-—>M) € Qn(M)

where QP is the spectrum of oriented geometric Poincaré n-ads
and QN = MSG is the spectrum of oriented normal space n-ads

P P N N
(so that m, (27) = 2,(pt.), 7, (R") = n,(MSG) = Q,(pt.) and there

is defined a cofibration sequence of spectra

L,—> o’ Nl )
The geometric Poincaré assembly maps
. . P P
o* + H (X;0 )———Hln(x) (n>0)

are defined for any space X, and fit into a commutative braid of

exact sequences

SN TN

P N
Be1 (X /ﬁnn(x,g ) ap (%)
/ N
P ok (=H_(x:2"))
/
HO(XGIL.) of (x
n'"'=0 n
/ \\\ ///////ﬂ \\\\\\\
yd \QQ;
N, (x) L (Z [, (X)] 3 (x)
n+l n 1 n
N\ A
L S i
S ,,,‘h/ et
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There are evident relative and rel? versions of the
geometric Poincaré splitting obstruction theory. In particular,
given a codimension g CW pair (X,Y) and a map

(£,0f) + (M, IM)——>X
geometric Poincare
from an n-dimensiocnal , pair (M,3M)
(normal, geometric Poincare)

such that 3f:3M——>X is Poincaré transverse at YCX there is

defined a rel3d Poincaré splitting obstruction of f along Y CX

P
s;(E, Yy eLs o ()

P
th(E,Y) €LP _ ,(e)

such that the following reld version of Proposition 7.4.5 holds.

Proposition 7.4.7 The reld Poincaré splitting obstruction is

sP(f,v) =o0euwLs __ (%)
such that ; q if (and for n-g>5 only if)

P
t(E,Y)

n
o]
m
ct
o

-
s

geometric Poincaré
there exists a relative bordism
{normal,geometric Poincaré)

(gifUf',0,g;3fUAE") @ (WM U-M', 3 W;5MU-IM') ——> X
between (f,3f):(M,5M)——>X and a map (f',0f'):(M',M') —— X
from an n-dimensional geometric Poincaré pair (M',OM') which
is Poincaré transverse at Y CX, and such that the
(n-1)~dimensional geometric Poincaré& bordism

(3+q;uf,3f') : (.‘+W; ‘M, ‘M') — - -—> X

is Poincaré tpansverse at YC X.
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The manifold codimension g splitting obstruction theory
described in §7.2 has a natural expression in terms of reld
geometric Poincaré splitting obstruction theory, as follows.
Proposition 7.4.8 Let (X,Y,£) be an (n,n-q)-dimensional t-nor

- S-

geometric Poincare pair, and let f:M—>X be an {t triangulat
of X which is topologically transverse at YCX with respect t
The manifold codimension g splitting obstructioﬁ along YCX o
is the rel’ Poincaré splitting obstruction along Y< X of the
evident map

(g, ful) @ (W,MuU-X)—X

geometric Poincaré

from the (n+l)~-dimensional pair

(normal, geometric Poincaré)

(W,MU -X) defined by the mapping cylinder W of f:M—>X

s(f,Y) = s_(qg,Y) € LSn_q(¢)

we g

E(E,Y) = t(a,Y) € LP_ (9) .



wal

(2 e 0

640

7.5 Algebraic Poincaré splitting

From now on we shall only be dealing with codimension
surgery theory for g=1,2, since for q »3 the obstruction gr
are just the quadratic L-groups already dealt with in §I.

Let (X,Y) be a codimension q CW pair with

X = E(E)US(E)Z , £ : Y—>BG(q) = BTOP(q) (g=1,:

and let ¢ be the corresponding pushout square of fundamental
groupoids

TUS(E)) ——— 1 (2)

T (EE)) —— 7, (X)

We wish to give an algebraic account of the codimension gq

LS, (¢)
surgery obstruction groups { defined geometrically in
LP, (®)

to fit into the exact sequence
t

pt
L g (B () ) = L (Z (1 (2) |2 (X) 1)
T LS, (@) L (Zn (1))
apt !

T2 Ly qel (Bl (D ) S L (2 Ay (2) )
T LR ) L (I (]

In §7.6 (g=1) and §7.8 (g=2) we shall construct algebraic
transfer functots

! . . . . -
pt® : (n-dimensional quadratic (Poincare) complexes over !

——*({n+g) -dimensional quadratic (Poincaré) pair

over VZ[nl(Z)]——>7Z["l(X)])
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LS, (¢)
allowing * to be identified with the relative quadratic
LP, (®)
1
L (pt")
L-groups { *+q+l , defined in the style of §2.3 using
L*+q(3p€')

appropriately relative quadratic Poincaré cobordism. We shall
now assume the existence of such algebraic transfers, leaving
the details of the construction to §§7.6,7.8. Instead, we go

LS, (4)
beyond such a direct algebraic definition of to a

LP, ($)
formulation in terms of algebraic Poincaré splittings with
respect to ¢ of quadratic Poincaré complexes over E[wl(x)],
making use of an algebraic analogue of codimension g topological
transversality, which we shall need in §§7.6,7.8 to recover
the existing algebraic interpretations of the LS-groups in
particular cases and also to obtain some new ones. However,
the proof of this algebraic formulation will still involve
some geometry. A purely algebraic proof will be obtained in
Ranicki [11] - this will also apply to rings other than group
rings, and also to symmetric L-theory.

In the first instance we extend to pushout squares such
as ¢ the notion of algebraic Poincaré splitting already
developed in §6.1, We continue with the terminology that
for n€ Z an n-dimensional guadratic Poincaré complex x over
a ring with involution A is a closed object x of the category
Ln(A) of §1.8. In particular, given an n-dimensional quadratic
Poincaré complex y over z[nl(Y)] there is defined an
(n+q)-dimensional quadratic Poincaré pair (pE!y,apE!y) over

Z(n)(z))—>Z (1) (X)].



642

An n-dimensional quadratic Poincaré splitting over ¢ (y,z)

consists of
i) an (n-g)-dimensional quadratic Poincaré complex y

over Z[nl(Y)]

ii) an n-dimensional quadratic Poincaré pair (z,SpC!y)
over Z(nl(z)l.
In keeping with the convention that we are considering simple
geometric pPoincaré complexes (unless specified otherwise) y
and (z,3p£ly) are to be taken as simple - as usual, there are
also free and projective versions of the theory, which are
compared to each other in Proposition 7.5.2 below.

It follows from the above that the union

E[nl(x)]ﬂ

!
PEY Y zx, 018 zin,(2)1°

'
zin (21 P Y

is a (simple) n-dimensional gquadratic Poincaré complex over
z[nl(x)] which we shall abbreviate to pg!y\Jz. The splitting
is contractible if the union is contractible.

A Poincaré splitting (with respect to ®) (y,z) of an

n-dimensional quadratic Poincare complex x over Z[ﬂl(X)l
is an n-dimensional quadratic Poincaré splitting over ¢
together with a simple homotopy equivalence

pE.!yu z —— x .



643

For example, if (X,Y) is an (n,n-gj~dimensional geometric
Poincaré pair and (f,b):M —— X is a normal map from an
n-dimensional geometric Poincaré complex M which is Poincaré
transverse at YC X so that

(f,b) = (g,c)!u (h,d) : M = E(\))US(V)P~~—+X = E(g)us(g)i
then the quadratic kernel o, (f,b) over %(nl(x)] admit; a Poinca
splitting, since

o, (F,b) = 0,(g,c) Lo, (h,d) .

The splitting is contractible if and only if £ is a simple
Z[nl(x)]—homoloqy equivalence.

An n-dimensional relative quadratic Poincaré splitting

over ¢ ((y,1y),(z,a+z)) consists of
i) an (n-g)-dimensional quadratic Poincaré pair (y,dy)
over Zlnl(Y)]
ii) an n-dimensional quadratic Poincare triad
to !
(z;»+z,3+pﬁ y:pL ly) over Z[nl(Z)].

It follows that the union

1
(pg yu - ', 2T, (X) 18 z,
Z[ﬂl(X)]@Z[nl(Z),’+P€ Y 1 Z[m,(2)]

t
pt iyu sorta, 20T (X) 18 3,2)
ZUn (X))8 y (g)) PR YL Zn (2)]1°+

is an n-dimensional quadratic Poincaré pair over z{nl(x)]
. ! .
which we shall abbreviate to (pg yLJz,pe'?yu 3+z).

A Poincaré splitting (with respect to @) {({y,Jdy),(z,J,2))

of an n-dimensional quadratic Poincaré pair (x,%x) is an
n-dimensional relative quadratic Poincaré splitting over ¢
together with a simple homotopy equivalence of pairs

[} 1
(pE'yuz,pLly v z) —== > (x,3x).
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A normal splitting (with respect to ¢) ((y,ay),(z,a+z))
of an n-dimensional quadratic Poincaré complex x over Z[nl(x)
is a Poincaré splitting of the n-dimensional quadratic Poinca
pair (x,3x) over zlﬂl(x)]. Note that (3y,3+z) is then a

contractible Poincaré splitting (of Jx).

Proposition 7.5.1 Let (X,Y) be a codimension q CW pair, and 1l

¢ be the associated pushout square of fundamental groupoids.
i) Every quadratic Poincaré complex x over z[nl(x)l s
cobordant to one which admits a normal splitting ((y,3y),(z,3
Ls _ (¢

ii) The codimension g surgery obstruction group q
LP, o (¢!

contractible
is the cobordism group of n-dimensional

quadratic Poincaré splittings over ¢. The maps appearing in ti

exact sequence

CeeTOLS(O)TTILR (9) T L (Z0n) (X)) LS, o (@)

are given by



LSn_q(@) > LPn_q(Q) i fy,2)yr———(y,2)

!
LPn_q(fb) > LAZIN (X)) 5 (y.2) ———pEyuz

J— . [ 1
Ln(z[nl(x)]) ~—>L5n_q_l(¢) 7 X——> (Jy, +2)
(if ((y,oy),(z,9,2)) is a normal splitting of x)
In particular, the image of an element x € Ln(z{ﬂl(x)])in
LSn_q_l(¢) is the obstruction to x having a Poincaré splitting.
iii) If f:M—>3X is map from an n-dimensional

M which is normal transverse at YcC X

geometric Poincaré complex
normal space

with

f=g!uh:M=E(v)u P—X = E(£) u

S (v s(e)?

”-'f*ml—> Y ~€———«)BG(Q) ’

v : N = f—l(Y) _9
h=fFf:p= £ 7y —— 2

then the codimension q Poincaré splitting obstruction of f along YC< X

n—q—l(o) contractible

gsp(f,y) €Ls
P
to(f,Y) € Lpn _1(¢)

is represented by the {

-q

(n-1)-dimensional quadratic Poincaré splitting over ¢
!

oa M) = g, (N) Lo, (P,S(v))

of the (n-1l)-dimensional guadratic Poincaré@ complex over Z[nl(x)]

of M

ge (M) = (2C(IM] 0 —:C (M) " s (M), ¥)
with
ox () = (QCCINT A = C (@) T s ey, 4
the (n-g-1)-dimensional quadratic Poincaré complex over Z[HI(Y)]

of the (n-g)-dimensional normal space N and



A, (P,5(V)) = (SC(IS(V 1 n-:c(s (i) — cs(v)))
> QC([P] N —:C(P, S (v)) "R C(B)), (69,2051 )
the (n-1)-dimensional quadratic Poincaré pair over Zl"l(z)] of the
n-dimensional normal pair (P,S(v)).
iv) If (X,Y) is an (n,n-g)-dimensional geometric Poincaré pair
I
and {f,b):M—> X is an triangulation of X which is
-

topologically transverse at YC X, with

(£,0) = (9,00 U h,d) : M = E(V) Ug  P——X = E(D)Ug ;2

-1 9 = f| £ P
e ly) ———> v — 5 BG(q) = BTOP(q) (g=1 or 2)

<
4
n

h=f] :p=ft@)—0z,

then the codimension g manifold splitting obstruction of f

s(f,Y) €LS _ (9) contractible

q

t(f,Y) € LPn_q(¢)

n-dimensional quadratic Poincaré splitting over ¢

is represented by the{

along YC X {

o.{E.,b) = c*(q,c)'LJo,(h,d)

of the n-dimensional quadratic kernel of (f,b) over E[nl(x)],
with o,(g,c) the (n-q)-dimensional guadratic kernel of
(g,c):N—>Y over Z[nl(Y)] and o,{h,d) the n-dimensional

quadratic kernel of (h,d}:(P,S({Vv))-—>(Z,5(£)) over Z[nl(Z)].

Proof: In the first instance note that ii),iii) and iv) are
immediate consequences of i) and its relative version.

To proye i} use the realization theorem of Wall {4] to
identify x€ Ln(ZInl(x)]) with the rel " surgery obstruction
o4 (f,b) of a t-triangulation of an n-dimensional manifold

with boundary (Xl,JX (n% 5)

) (n3
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((f.0), (of,ab)) (M, uM) —- *(Xl;ﬂxl)
such that (of,db}:3M >.iX, is an s-triangulation of X,
with respect to a reference map (r,hr):(xl,Jxl)*WN» X.

Make (r,3r) topologically transverse at YCX, so that

(Xlrixl) = (E(El) US(El)leE(aﬁl) US(3€1)3+21)
with
-1 -1 (c,ar)|
(B B) (Y, 0Yy) = (T (Y),or T(Y)) ——> Y

. —
———"—=>BG(q) = BTOP{g) (q=1 o

(2 (e Yzy o0 Yz

1942
Also, make (f, f)} tapoiogically transverse at (Yl,SYl)(T(Xl,aX
so that

((£.b), (F£,3b)) = ((g,¢). (7g,9¢)) " U ((h,Q), (3,h,5,))

(MOM) = (EOV) U g ()P EOV) Ug o )3 ,P)———>(X},2X))

with

({g,c) . (¥g,ic)) = ((£,b), (if,ab))]
oy = T ST ey ) o v Y

(g, q) (Elwgl) _
(v, v) : (N,:N)AA-ﬂfgwg—a(Yl.éYl)-~fﬂ —~~=—-»BG(q) = BTOP(q)

((h,d), (3 b, . d)) = ((£,b), (if, b)) ]
Py = (£ 2 e 0,z = (2,0
This decomposition of ({f,b}),( f,ib)} determines an n-dimensio
relative quadratic Poincaré splitting over ¢

la,((g,c), (hg,ic)) o, ((h,d), (4 h,5,d)})
of the n-dimensional quadratic Poincaré pair (g,(f,b),d0,(f,b)
over Z[nl(x)], i.e. a normal splitting of x = o,(f,b).
Note that in general the s-triangulation af:aM~4¥->axl is not

split along ]ch RIE in fact, the splitting obstruction



2)

s(IF,0Y;) € LSn_q_l(¢) is the image of x = o (f,b) € L (Z{n,
under the canonical map.

Alternatively, it is possible to prove i) using the
normal space transversality of Quinn {3]., Consider x€ Ln(Z[n
as the quadratic signature o, (W,3W) of an (n+l)-dimensional
(normal, geometric Poincaré) pair (W,)W) equipped with a
reference map (r,’r):(W,3W)——>X. Making (r,9r) normal
transverse at YC X note that the constructions of Proposition
translate the consequent normal splitting of (W,dW) into a
normal splitting of x = o,(W,3W). In general, 5r:3W ——> X is
not Poincaré split along YC X; in fact, the splitting obstruc

s¥(sr,Y) €18 is the image of x=0,(W,3W) € L (Z[n (X

n—q—l(w)
under the canonical map.
(The two methods of proof of i) are related to each oth

by the mapping cylinder construction, cf. Proposition 7.4.8).

{

An algebraic proof of Proposition 7.5.1 i) requires an
L~theoretic version of the linearization trick of Higman [1]
- see the introduction to §7.6 below for a brief survey of th
corresponding algebraic K-theory for g = 1.

There are evident analogues of Proposition 7.5.1 for th

LS, (¢) = LS} (6)

versions of the groups s appropriate to the
LP,(¢) = LP, ()

free and projective quadratic L-theory, which we denote by

Ls? (¢) Ls® (9)
and .
Leh (a) PP ()
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Proposition 7.5.2 Let (X,Y) be a codimension q CW pair, and let

¢ be the associated pushout square of fundamental groupoids.

1S, (¢)
The simple groups are related to the free groups
LP, (®)
Ls" (¢)
h by a commutative diagram with exact rows and columns
LP,(9)

i

YL g (ZIn (X)) —> LP q(¢)~—>Ls

! l

h h
..*AéLn+l(Z[ﬂl(X)])A/—iLPn_ (®)—> LS

(O)QLH(Z[nl(X)])-—’...

l

(@) —~ LY (Z 1 () ])——>. ..

q

-Q

A"z ;0h (1) (X)) —Whe | (9)->Whs

g (o)ﬁn"(zz;wmnl(x)))»...

q

.—7Ln(2(“1(X)])—vLP {(d)—1LS

n-g-1 n-

L

L =L (2 () —> ..

|

Whs, (4)
with the relative groups appearing in the exact sequence
WhP, (¢)

%
i
[
|
]

AN+l

< T HETN(Z,3Wh (ny (2))—>Wh (n) (X)) ———>WhS (%)

—»ﬁ”‘q(zz;wh(nlm))ig—a A"z, Wh (1) (2))—>Wh (1) (X)))—> ...

--——»ﬁ"(zz:wh(wl(z) )) > WhP () —— A"z, Wh (1 (1))
1

-pE
#ﬁ'——'H (Ez;wh(nl(Z)))-——*
st (o)
Similarly for the relation between the free groups h
LP (%)

Lsh (4)
and the projective groups , with the Whitehead groups

PR (9)
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Wh(m) replaced by the reduced projective class groups io(zlﬂi).
[

Furthermore, the splitting theorems for the quadratic

L-groups of Shaneson [1}, Novikov [1} and Ranicki {2}

L (ZinxZ]) = L (ZIn))eL)  (z(n])

(ne z)
L ZinxzZ1) = Lz in)) et (z(n))
LS-
extend to the groups
LP-
- h
gLsn(oxz) = LS, (P)OLS__, (¢)
h
LP (¢ x Z) = LP_($)8LP__.(9)
n n n-1 (n€ z)
h _ h p
gLsn(oxm = LS (e)8LS] _, (o)
h = h P
LP (¢ x Z) = LP_($)8LP  , (%)

with ¢ the fundamental groupoid pushout square of a codimension g
CW pair (X,Y) and ¢ x Z the pushout square of (X x Sl,Yx Sl).

The codimension q splitting obstruction theory for
t-triangulations (the LP-theory) was developed as a tool for
understanding the obstruction theory for s-trianqulations
{(the LS-theory) - from now on we shall be mainly concerned
with the latter.

Let (M,N) be an (n,n-g)-dimensional manifold pair (q»1).

Ambient surgery on N inside M is the operation

(M,N) ———> (M,N")

determined by an embedding

1
e : (0L, sT) x "I s (M, W)

such that e 1(N) = s¥x D" 97, witn



N' = N \.e(Sr N Dn—q—r) UDr+1 x Sn—q—r—l oM

obtained from N by an ordinary surgery. The trace of the surger:
on N embeds in Mx 1 as a codimension g submanifold, defining
an ambient cobordism inside Mx I between N<€ Mx {0} and

N'C Mx {1}

M x {0} Nx1up i, pn At Mx {

Mx I

Conversely, every ambient cobordism inside Mx I can be broken ug

into a finite sequence of ambient surgeries.

A formally (n,n-g)-dimensional normal pair (X,Y) is a

codimension q CW pair such that
i) X is a formally n-dimensional normal space (in the
sense of §7.3) with normal structure
(vy:X ———> BG (K}, 0y 18" K — 5 T(u,))
ii}) Y is a formally (n-q)-dimensional normal space with
normal structure
vy = ngxly : Y — BG(q+k),

p, €n+k~~~ox‘> T(v,) ——3T(v, ) /T(v, |,) = T(v,))
y ©° X X X'z Yo

Such a pair is t-normal if there is given a t-triangulation
F:Y ———> BTOP(q) of f:Y ——>BG(q). In particular, a formally
{n,n-g)-dimensional (t~normal) geometric Poincaré pair (X,Y)

is a formally (n,n-g}-dimensional (t-normal) normal pair.



Let (X,Y) be a formally (n,n-q)-dimensional t-normal

pair. A formally (n,n-g)-dimensional topological normal map

(f,b) : (M,N}) ——> (X,Y)
is a formally n-dimensional topological normal map (f,b):M-—>
(in the sense of §7.3) which is topologically transverse at YC
so that the restriction
(£.6)] = (9.c) : N= £ (¥)—— ¥
is a formally (n-q)-dimensional topological normal map and
the restriction
(£,b}] = (h,d) : (P,S(V)) = f_l(ZIS(E))—————*(Z:S(E))
is a formally n-dimensional topological normal map of pairs
such that

(£,b) = (g,0)' U (h,q)

M=E(v)us P——>X = E(E) U

(v) s ®

with
g g

Pt
v = N —> M > BTOP(q) .

YNe M

The notion of ambient surgery on codimension q
submanifolds carries over in the obvious way to such topologic
normal maps. Given a formally (n,n-q)-dimensional topological
normal map

(£,b) : (M,N)—(X,Y)
with restriction
(£,b)] = {9,¢) : N—m—> Y

define an ambient surgery on (g,c) inside (f,b) to be a

surgery on (g,c) such that the trace normal bordism

(G,c) : (Nx Tuptt!

x DTN NY) ——> ¥ x (1;0,1)
is a restriction of the normal map of (n+l)-dimensional triads

(f,b) x1 : Mx (I;0,1)—>Xx (T;0,1)

- \ __/



There is a corresponding algebraic notion of ambient surgery

on a pair of the type
{a formally {(n-g)-dimensional quadratic complex over Z[nl(Y)]
(C,¥), a formally n-dimensional guadratic pair over m[nl(z)]
(3pE'C—>D, (§¢,pt'¢)) with boundary 3pE’(C,¥))

which preserves the (homotopy type of) the union formally

n-dimensional quadratic complex over Z[nl(x)]

pe!(C v Uz (x) 18 (pt'c —0, (69, 2pE )

Z[ﬂl(Z)]
Algebraic ambient surgery will be developed further in Ranicki [11].
By analogy with Proposition 7.3.5 (the case Y = @) it is

possible to describe the algebraic effect of geometric ambient
surgery on the quadratic kernels defined using the spectral
quadratic construction:

Proposition 7.5.3 Given a formally (n,n-q)-dimensional

topological normal map
(f£,b) : (M,N} ————> (X,Y)

there is defined a quadratic kernel pair

gyl(lg,c), (h,d)) = (the formally (n-q)-dimensional quadratic

kernel complex over Z(m (Y)] 0,(g,c} = (C(q!).w) of
the restriction (g,c) = (f,b)l : N —Y,
the formally n-dimensional quadratic kernel pair
over Zin (2)) o,(h,& = (pg'cighy—cn'y, sy, op5' )
of the restriction (h,d) = (£,b)| : (P,S(v)) ——>(2Z,S(&))
with boundary ‘pi!(C,W))

with union
pElo, (q.c) Lo, (h,d) = (C(FYY,pEly usy) = o, (F,b)

the formally n-dimensional quadratic kernel complex over Z[nl(X)]
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of (f,b):M —>X.

Geometric ambient surgery on (g,c) inside (f,b) has the
algebraic effect of ambient surgery on the guadratic kernel
ag,((g,c),(h,d})), i.e. of algebraic surgery on ¢,{(g,c) inside
o, (E,b).

[}

In particular, if (X,Y) is an (n,n-q)-dimensional t-normal
geometric Poincaré pair and (f,b):(M,N} ——> (X,Y) is an
(n,n-g)-dimensional normal map such that f:M ——> X is an
s-triangulation of X then the gquadratic kernel ¢,{(g,c), (h,d))
is a contractible n-dimensional quadratic Poincaré splitting
over the associated pushout square of fundamental groupoids 6.
By Proposition 7.5.1 iv) the splitting obstruction of f along YCX
is the cobordism class of this kernel

s(f,Y) = g,((g,c),(h,d)) € LSn_q(¢)

(with s(f,Y) = o,(g,c) € LSndq(O) = Ln_q(zinl(Y)]) for g »3),
which is thus the obstruction to making f concordant to an
s-triangulation of (X,Y) by a finite sequence of ambient
surgeries on (g,c) inside (f,b).
For q = 1,2 ambient surgery on a codimension g submanifold
can be related to ambient surgery on a normal map, as follows.
Let (M,JM) be an n-dimensional with boundary (which may
be empty), and let NCM be a codimension q submanifold such that
NniM = @ with

vNC’M = v : N-——>BTOP(gq) = BG{q) , M = E(V)k)s(v)p B
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Let g:N ——» M be the inclusion, and assume given a
factorization of the orientation map of N through "I(M)
I w(N)
w(N} 2 W (N} g (M) > 2,
(which is automatic for g=1) so that v:N-—>BG(g) has orientat

9y w(M)w(N)
wl(v) : nl(N) y nl(M) > Ez

The Poincaré dual of g,[N] € Hn_q(M,w(N)) is an element
£e HY (M, M, w (M) w () ) classifying a (g-1l)-spherical fibration
over M
£ ¢ M——-——>BG(q)
with a section of EESM such that

i) t:lN € v : N-——BG(q)

vl -
vE q = 1
ii) ¢l *f i P ——» BG(q) if
P 1

L e q =2
with w:P ——» BG(l) the SD—fibration (= line bundle) over P
classified by

w (M) w(N)
w o My (P) > 1y (M) —————> 2,

The inclusion of the zero section MCE(E) of £ can be perturbe

to define a formally n-dimeneional topological normal map of p
(£,b) : (M, M) ————3(E(E)},S({£))

such that f:M~——»E(f) is a simple homotopy equivalence, which

is topologically transverse at M «E(f} with fﬂl(M) = Nc M.

The restrictions of (f,b) define a formally (n-q)-dimensional

topological normal map

(£,0)} = (g,c} + N-———>¥



with c:vN~——~—)vM®E and a formally n-dimensional normal map
of triads
(£,b)| = (h,d) : (P;S(v),3M)—>S(£) x (I;0,1)

Proposition 7.5.4 Ambient surgery on N inside M corresponds

on map ambient surgery on (g,c):N-——>M inside (f,b):(M,M) ? (E(

The algebraic effect is an ambient surgery on the quadratic

kernel pair
(the formally (n-q)-dimensional quadratic complex over 2
o, (g,c) =(C(gl),W), the formally n-dimensional quadrati
triad over Zlﬂl(S(C))] o,(h,d) with boundary component
atlo, (q,c) and o, (3F,0b))

preserving the union formally n-dimensional quadratic pair

over Z[nl(M)]

glo,(g,c)uzin (I8 o, (h,d)

Zn,(5(6)))

= 0,(f,b) = (0,Z[n,(M}]@ «(3£,3b))

z(n, (5(£)))°
0

A codimension g spine of an n-dimensional manifold wit

boundary (M,3M) is a codimension g submanifold N<M such tha
. the inclusion defines an s-triangulation
irs g i N
The problem of finding a codimension q spine is a typical
application of ambient surgery obstruction theory. As alread
noted in the remark following Proposition 7.2.5 for q >3 an
n-dimensional manifold with boundary (M,2M) admits a

codimension g spine if and only if M is an s-triangulable

(n-q)-dimensional geometric Poincaré complex, at least if n-
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If (M,0M) is an n-dimensional manifold with boundary
such that M is an (n-g)-dimensional geometric Poincaré complex
(g = 1 or 2) then the fundamental class [M] € Hn_q(M,w) is
represented by a codimension g submanifold Nc M with
normal bundle vi:N —— BG(q). The corresponding n-dimensional
topological normal map

(f,b) : (M, 9M) —>(E(£),S5(8))
homotopy
is a simple equivalence of pairs (assuming
z[nl(M)]—homology
wl(gM)g'nl(S(E))) such that the restriction
(£,0)1 = (9,c) : N — > M
is an (n-g)-dimensional topological normal map. The quadratic
kernel pair (o,(g,c),0,(h,d)/o,(3f,3b)) consists of an
(n-q)-dimensional quadratic Poincaré complex over Z[ﬂl(M)]
&Poincaré
o,(g,c) and the n-dimensional quadratic .
z[nl(M)]—Poincare
pair over Z[m (S(£))] 0,(h,d) /o, (3€,3b) with boundary a!:'o,,(q.c)
obtained from o,(h,d) by collapsing o, (3f,3b). The union

o gicruzing (m)]e (h,d) /o, (3£,b))

zn (s(£))) {7+

= 0, (£,b)/Z(n (M) 1@ 04 (3E,3b)

ZZ{“I(S(E))i
is a contractible n-dimensional quadratic Poincaré complex
over %[ﬂl(M)]. Let ¢ be the pushout square of fundamental

groups associated to the codimension g CW pair (E(f),M)

my (S(E)) ——> 7 (S(E))

nl(M)-———~———~+ nl(M)
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For g = 1 Proposition 7.5.1 iv) gives the splitting obstruction
rel aM of f along MCE(f) to be the element

s{f,Y) = (0,(g,c),0,(h,d)/0,(3f,%b)) E LS__, (%) ,
so that by Propositions 7.2.4, 7.5.4 s(f,Y) = O if (and for
ny6 only if) (M,3M} admits a codimension 1 spine NC M,
The map LSn_1(®)——-+ 6n_l(M) appearing in the exact sequence

of Proposition 7.2.6 i)
]

ce LS () =4 (M) L» S (E(E),S(E)) —> LS _,(¢)—>
sends s(f,Y) to s{(M) € An_l(M). For q = 2 it is necessary to
use the algebraic theory of codimension 2 surgery developed
in §7.8 below {(generalizing the original theory of Cappell and
Shaneson [1]) in which only the homology type of the complement
of the codimension 2 submanifold is taken into account, not
the homotopy type. In terms of that theory Proposition 7.8.6
gives for g = 2 the weak splitting obstruction rel M of f
along Mc E(f) to be the element

ws(f,Y) = (0,(g,c},0,(h,d) /o, (if,3b)) € FSn_2(¢) ,

so that by Propositions 7.8.2 i), 7.5.4 ws{f,Y) = O if (and for
n>7 only if) (M,9M) admits a codimension 2 spine NTM.
The map FSn_2(®)———~+ 5n_2(M) appearing in the exact sequence

of Proposition 7.8.3 i)
1
(!
SIS (9 —>8 (M) ——— £ (E(E),S(E):ZImy (M) ])

> TS, _3(0) =,

sends ws(f,Y) Fo the total surgery obstruction s(M} € Sn_z(M).



Following Wall [4,p.138] denote the LS-groups of a
codimension g CW pair (X,Y) (g = 1 or 2) such that

(X)) o= oY) = ow o, T (Z) = m,(8(8)) = n°

w(iX) = w : nl(x) = ——y ZZ

by

LS, (9) LN (n'——>7,w} .
In §7.8 the terminology will be extended to the T'S-groups, with
PS,(8) = TN, (1'——> m,w) . ‘
wall [4,§12C] 1
expressed the codimension ambient
Matsumoto (1} 2
LN, (7' —> 71,w)
surgery obstruction groups as the rel?
IN (T'— 1n,w)
1

obstruction groups for the existence of codimension spines,
2

and obtained an algebraic formulation as a variant of the

ordinary surgery obstruction groups L,(Z([n]) by a development

1
of codimension ambient surgery analogous to that of
2
§7.6
ordinary surgery in §§5,6 of Wall [4]. In we shall show
§7.8

how the language of algebraic Poincaré splittings can be used
to obtain this formulation algebraically, subject only to the
(provisional) use of topological transversality in the proof

of Proposition 7.5.1 i).
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7.6 The algebraic theory of codimension 1 surgery

We start with a brief account of codimension 1 CW surger:
and the related algebraic K-theory.

A codimension q CW pair (X,Y) is finite if X is a finite
CW complex.

A homotopy equivalence of finite CW complexes f:M-—"*—> X
has a Whitehead torsion 1(f) € Wh(nl(x)). Two such homotopy
equivalences f:M—=>X, f':M'-—2>X are concordant if

gl

f:M—="3 M' is a simple homotopy equivalence, that is if
T(f) = 1(f') € Wh(ﬂl(X))
Let (X,Y) be a finite codimension q CW pair, so that

X = E(E)\)S(E)Z

with £:Y——> BG(q). A homotopy equivalence f:M ——> X from a
finite CW complex M is split along Yc X if f is concordant to

a homotopy equivalence (also denoted by f) with a decomposition

f=q'uh:M=EM U P— X = E(£) U

S(v) s()®

such that the restrictions

£l N = £ vy —— sy

g
h=7f] : p= f'l(Z)—*—»z
are both homotopy equivalences, where

£
viN—2 v % ipgig)

and such that (M,N) is a finite codimension q CW pair.

A codimension g CW pair (X,Y) is connected if X and Y
(but not necessarily 2) are connected CW complexes. We shall
be mainly concerned with splitting obstruction theory for

connected pairs.
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The splitting obstruction theory for finite connected
codimension 1 CW pairs (X,Y) divides into three cases:
A) Y is 2-sided in X (i.e. £ is trivial) and the
complement Z is disconnected, with components 2y.2, say,
so that
1

X = Y¥YxD UYxSO(ZluZZ)

1LJYZ2 adding collars to 21,22) .

The fundamental group of X is the free product with
amalgamation

= EP M)

determined by the maps ipam (Y)——m (29), iyemy (Y)—->m, (2,)

induced by the inclusions Y‘-—*Zl, Y‘—-*ZZ.

B) Y is 2-sided in X and the complement Z is connected,
so that

X =YxD UYxSoZ'



The fundamental group of X is the HNN extension

T = @)y ()

determined by the maps il,iz:nl(Y)-——+n1(Z) induced by the

inclusions Y x {+1}®—>2Z, ¥ x {-1}—2.

C) Y is 1-sided in X (i.e. £ is non-trivial).

Actually, the codimension 1 CW splitting obstruction
theory has only been worked out in the two-sided cases A) and B),
under the additional hypothesis that the maps il,i2 are injective.
Following thg results in special cases of Higman (1], Bass,
Heller and S;an [1], Stallings {[2], Gersten [1], Farrell and

Hsiang (2], Casson [l], Waldhausen [2],[3] obtained a very
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general splitting theorem in the algebraic K-theory of such
cases, as follows. There are defined higher/lower Whitehead
groups Wh, (X) for any space X, to fit into an exact sequence
of abellian groups

e HGK) — K (Z (0 (X)) > Wh (X)—>H ) (XGK) ...

with K the spectrum of the algebraic K-theory of Z, such that
n,(K) = K,{Z). (Note the analogy with the exact sequence used
to define the 4-groups £,(X) in §7.1). The higher/lower
Whitehead groups of a group n are the higher/lower Whitehead
groups of the Eilenberg~MacLane space K(n,1)
Wh, (1) = Wh, (K(n,1)) ,
with who(n) = io(z[n]) the reduced projective class group of the
group ring Z{n] and whl(n) = Wh(g) = Rl(Z[ﬂ])/{in) the usual
Whitehead group of m. For a finite connected codimension 1
A)
CW pair (X,Y) of type {B) with the maps il,i2 one-one there
—~
are defined exotic K-groups Nil, (¢) of nilpotent objects
depending on the pushout square of groupoids

ilui2
m (s(g)) = "l(Y)U"l(Y) -Af«»nl(z)

Ty (E(E)) nl(Y) XV ey Trl(X)

with V the connected groupoid with two vertices and trivial

vertex groups (which is such that Wh,(n x V) = Wh (n) for any
~_/
group 1). There are defined split surjections Wh, (n}- - »Nil, (¢}

which fit into an exact sequence of abelian groups CK"“(X))
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il O>
12 0]
—~ N
i whn(ﬂl(Y))$N11n+l(0) Whn(nl(Zl))QWh(n](Zz)

———9Whn(n1(X))———*Whn_llnl(Y))mNiln(@)-“) e

— {i,-i, 0)
e Whn("l(y))QNlln+l(®)‘_74—‘_—v—_-’Whn("l(z”

[

——>Wh (1) (X)) ——>Wh__) (7, (Y))@NIl (0) —>...
The two main ingredients of the proof of this splitting theore
were:

i) the translation into a generalized Higman linearizati
trick of the geometric transversality argument in the CW catec
by which every homotopy equivalence of finite CW complexes
f:M—>— X can be made concordant to a map of codimension 1
CW pairs

f : (M,Nj — (X,Y} .,
i.e. such that (M,N= f—l(Y)) is a codimension 1 CW pair with

f = g!U h : M=E((MVu

s P > X = E@)ug,y?

involving the restrictions

g = f| N-——— Y
h=gl b=t — sy
and the pullback
g £
v : N —> Y ————BG (1) (£ =¢)

ii) an analysis in terms of nilpotent objects of the
obstruction to further deforming the map f: (M,N)-——>(X,Y)
to one for which g and h are homotopy equivalences, i.e.
to splitting f:M—""3X along Y<X, by a finite sequence of

"cell exchange" CW surgeries on N inside M,



A homotopy equivalence of finite CW complexes f:M-—""—X
(with £ trivial and il,iz injective) can be split along YC X
if and only if

~ -
T(f) € ke:(Wh(nl(X))———»Ko(z(ul(Yll)eNill(tﬂ)
= im(Wh(ﬂl(Z))-v~>Wh(ﬂl(X))); Wh(nl(x)) .

If £ = g!u h is split along Y<X then 71(f) is the image of
1(h) € Wh(nl(Z)). In fact, ﬁ?i*(®) = 0 in many cases, and

Wh, (1) = O for any infinite torsion-free group v built up

out of the trivial group {1} by successive free products with
amalgamation and/or HNN extensions (e.q. m = Z). In particular,
the fundamental groups of irreducible sufficiently large
3-manifolds (the "Haken manifolds”) are of this type - it will
be recalled from the introduction to Waldhausen [3] that the
original motivation for this splitting theorem was the absence
of Whitehead torsion in the earlier result of Waldhausen [1)
that every homotopy equivalence of such 3-manifolds is

homotopic to a homeomorphism.



We now turn to the codimension 1 manifold splitting
obstruction theory.

Let (X,Y) be a connected (n,n-l)-dimensional geometric
Poincaré pair. The obstruction theory for splitting
s-triangulations f:M— X along YC X divides into the same
three cases as the codimension 1 CW splitting obstruction
theory:

A) Y is 2-sided in X and the complement Z is disconnected,
so that

Z = Zlu22 , X = Zlu Z2 ' nl(X) = nl(Zl)*ﬂl(Y)nl(Zz)

Codimension 1 splitting obstruction theory for A} was

first studied by Browder [l1} in the simply-connected case

wl(X) = nl(Y) =m0 (2y) = ny(2,) = {1} ,
for which every s-triangulation f:M —=—>X can be split along YCX,
at least if ny 6. Lee [l] obtained such a splitting theorem
in some further special cases. The expression for the splitting
obstruction with arbitrary (X,Y) of type A) as an element

S(£,Y) € LS _;(¢)

of a geometrically defined LS-group is due to Wall (4,§11]}.
Cappell [i] (1£1i<9) has made an extensive study of the
obstruction theory for A) in the case when the maps

L

:ﬂl(Y)———er(Zl). izznl(Y)-~—> m,(2,) are injective,
introducing exotic algebraic L-groups UNil,(¢) of nilpotent
objects such that

an .
LSn_l(@) = H (ZZ;I)QUN11n+l(®)

with



t2
and defining split surjections Ln+1(2[nl(X)])———a»UNil

i
I = ker( ( 1) (Wh (1) (¥)) —=—> Wh (1} (Z)))@Wh (1, (Z,))) € Wh (n, (¥)

n+l(¢)

(geometrically) to fit into an exact sequence

e — Ln+l(zlwl(x)])-—~4+ Li(ﬂ[nl(Y)l)QUNiln+l(®)
< il 0
i, 0
e L (Z (M (2)) 8L (Z(1,(2,)]) —> L (Z[1 (X))

There is a parallel splitting obstruction theory for

h-triangulations, with

h _nn .¢h .,h
LSn_l(¢) = H (ZZ,I )QUN11n+1(®) f
h SR . -
" = ker(<_ >: Ko (Z 1 (Y) 1) —> Ko (zZ 1) (2)) 1) @Ky (=, (2,)])
)3
2

CKy(ZIm (V)])
and the corresponding exact sequence involving Lh—qroups.
{There is also a parallel splitting obstruction theory for
p-trianqulations, as usual)}. In fact, Cappell showed that in
LS,_j(¢) =0

many cases h by geometrically proving codimension 1
LS,-1(®) (0]

splitting theorems, in which case the above sequences are
guadratic L-theory Mayer-Vietoris sequences of the general
type considered in §6.2. We shall now use the algebraic
characterization of the LS-groups given in §7.5 to provide
an algebraic connection between such splitting theorems,

Mayer-Vietoris sequences, and the decompositions

%LS*_l(cb) = A*(z 1) euNil, | (¢)
-h _ 5 h .. h :
LS, (0) = fix(Z,; 1) @UNIL, | (9)
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Proposition 7.6.1A Let (X,Y) be a connected codimension 1
CW pair of type A), with associated pushout square of
fundamental groupoids
ipvi,
—
nl(Y)uwl(Y) ﬂl(zl)unl(zz)

nl(Y)xV—‘——»—" nl(X) ’
and let O be the pushout square of rings with involution

iy
Z {1 (¥) ) ——————> Z[7, ()]

i €]
Z[ﬂl(zz)]——-—'A—*'Z["l(x)]

i) The LS-groups of ¢ are naturally isomorphic to the
triad L-groups of Z{¢]

LS, 1 (®) = L, (Z[?]) (n€Z) .

ii) The LS-groups of ¢ are also naturally isomorphic to
the triad L-groups of ©

LS, 1(%) =L ,1(0) (n€Z) .

Proof: i) This identification (which was first observed by
Wall [4,Cor.12.4.1]) is immediate from the definition of the
LS-groups on noting that the transfer maps are given by

PEL L (ZIT (DX V) = L (2 ()])

L (Z (1 (2 o (2, [ — Z (1 (X))
y b (0, (i1y,-i,y))  (n€Z) .

Alternatively, it may be deduced from the braid of

Proposition 7.2.1 1ii), since LN {numn-——>nxV,w) = O (7 = "1‘
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ii) This identification (which is also originally due
to Wall [4,p.138]}) follows from a comparison of the notion of
algebraic Poincaré splitting used to define the triad L-groups
in §6 with the algebraic Poincaré splitting used to give an
algebraic characterization of the LS~groups in §7.5, as follows.
To conform with the terminology of §6 write the square 0 as
b
A ———— B1

0

B, ——————>A' .

The triad L-group Ln+l(0) was defined in §6.1 to be the
cobordism group of (n+l)-dimensional quadratic Poincaré triads
(x;zl,zz;y) over @, consisting of an (n+l)-~dimensional quadratic
Poincaré pair (x,3x) over A' = Z[nl(X)] such that the boundary
3x is Poincaré split with respect to 0

Dx =28, z,0,,4 AR, (-2.)
B, 21Yare,y " BB, %2

for some n-dimensional quadratic Poincaré pairs (zk,y) (k=1,2)
over i, :A= Z!nllY)}—4~—’Bk= Zfny (2,)]. By the relative version
of the algebraic normal transversality of Proposition 7.5.1 i)
it can be shown that every such triad is cobordant to one with
the pair (x,9x) contractible, in which case (y,zlu)-zz) is a
contractible n~dimensional quadratic Poincaré splitting over ¢
in the sense of §7.1. Now LSn_l(w) was characterized in
Proposition 7.5.1 ii) as the cobordism group of such splittings,

so that the natural identification is given by
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LSn_l(¢)——~—*L (0) ; (y,zltJ—zZ)F~**(O,zl,22,y) .

n+l
01
In particular, Proposition 7.6.1A i1) identifies the
condition LS*_1(®) = O for there to be type A) codimension 1
splitting with the condition L*+1(O) = O of Proposition 6.1.1 1i1)
for there to be a Mayer-Vietoris exact sequence of quadratic L-groups

i1
i2
...*—*Ln(A) ——>Ln(Bl)$Ln(82)—->Ln(A ) — Ln_l(A)~>¥ ... (n€eRr)

Proposition 7.5.1 ii) characterizes the type A)

5-
codimension 1 splitting obstruction group for { triangulations
h_
LS (9}
h as the cobordism group of triples
LS _1(®)

simple , .
(a (n-1)-dimensional quadratic Poincare complex over A
finite

(c,veQ. _ (),

"sinple .
a n-dimensional quadratic Poincare pair over Bl
finite
(lealﬂAC~—~'ﬁ-Dl,(éwl,l@AW)e On()l)) '
simple
a n-dimensional quadratic Poincaré pair over B,
finite

(3,:B,8,C—>D,, (6y,,18,0) €Q_(j,)) )

such that the A'-module chain map

IRB jl
1 : A'QR,C—>A'R_D.@A'R_D
. A B, 1 B, 2
R, I 1 2
H2 2

simple 5
is a chain equivalence, and similarly for LSE_1(¢).



Proposition 7.5.1 iii) shows that if M is an (n+l)-dimensional
geometric Poincaré complex the Poincaré splitting obstruction
along YC X = Zluyz2 of a map f:M—>X normal transverse at YcCX

is given by

sPLey) = (o T o, 7 iz Lo, (57 2, 0)) € Ls @)

Proposition 7.5.1 iv) shows that if (X,Y) is an {(n,n-1l)-dimension
geometric Poincaré pair (of type A)) the manifold splitting
obstruction along YC X of an s-triangulation f:M‘Aﬁ;LX topologica
transverse at YC X is given by

S(E,¥) = (0,((E,b)[:£7 T () —v) 0, ((£,b) [ 672z, ) —— (2, ¥

-1
O ((E,b) e f T (2,,¥) ——>(25.¥))) € LS _;(9)

We shall now interpret in terms of our theory Cappell's
decompositions

. _ an . ;
LSn_](®) = H (EZ,I)QUN11n+1(®)

h
LSn_1

_an .<h .,h
(d) = H (ZZ,I )$0N11n+1(¢)
for a codimension 1 CW pair (X,Y) of type A) with the maps

ilznl(Y)——~+n1(Zl), 12:n1(Y)—-a-n1(22) injective. As before, let

A = %[ﬂl(Y)] ' Bk = Z[nl(Zk)] (k=1,2) , A' = Z[nl(X)].

The induced morphisms of rings with involution il:A-—-——»Bl,
12:A »~4~>Bz are also injective, and A' is the free product of

Bl and 82 amalgamated along A

The (A,A)-bimodules defined by
B = Zr () -{,m (1)) (k=1,2)

are such that

;- [ NG
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so that A' can be expressed as a direct sum of (A,A)-bimodules
L} = Y iy A Y R o1 I 1 n e "
A A@BIQBZQ(BlﬂABZ)Q(BZEABl)Q(Bl@ABzﬂABl)Q(BzaABlQA

Before dealing with the elements of Lsn_l(¢) and Ls:_l(o) let

Bz)@... .

us consider a triple

© = ((C,¥), (31:B18,C—>Dy, (6%, 18,¥)), (§,:B,8,C —>D,, (8¢, 1.,

consisting of a projective (n-1)~dimensional quadratic Poincaré
complex (C,¢y € Qn—l(c)) over A together with projective
null-cobordisms (Jk:Bk@AC-——?Dk,(éwk,lnA ) € Qn(]k)) over Bk of
BkBA(C,W) (k =1,2) such that the A'-module chain map

)
®A QB D

! 2

1a, jl , ,
1 : A EAC —*A ﬂB D 2

&8 3 1
52 2
is a chain equivalence, i.e. a representative of an element
cé€ Lss_l(o) of the projective LS-group. The restriction of the
Bk-action to ACB, allows jk€Hom

as an A-module morphism

Bk(BkﬂAC,Dk) to be reqarded

Sl
1

- !
Wi @ C®(B.®,C) ——— i D,

and to regard (Jk:Bk&AC-——*(ﬁwk,lﬂAw)) as an n-dimensional
quadratic Poincaré "cobordism" over A from (C,¥) to Bk@A(C,—W)

cp = (il :c(B,8,C)—>i D, (i)8¥,,v0(18,)) €0 (iy3,)) (k=1,
The quotation marks refer to the possibility that iknl(Y) may

be a subgroup of infinite index in nl(zk), in which case Ek is
an infinitely generated free (A,A)-bimodule and the projective
A-module chain complexes Ek@AC, ika are not finite-dimensional
in the sense of §1.1 (i.e. not finitely generated). The quadratic
Poincaré "cobordism" category defined using possibly infinitely

generated projective chain complexes enjoys all the formal
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properties of the quadratic Poincaré cobordism category of §1

defined using finite-dimensional chain complexes; in particular,
the glueing of “cobordisms" may be defined as in §1.7. Use this
glueing operation to define two n-dimensional quadratic pPoincaré

"null-cobordisms" over A of (C,¢)

= c, Uy B,® . c, v B.& B.&®c,U...
+ 27 B,R, (C,¥) 27471 BzmAﬁlﬂA(c,w) 2°A717A72

(3,:C——>D, (60,,9) €0Q_(3,))

_=ciuR B ®,c Uy oo B8 B B .ciu...
1 BlﬂA(CyW) 17a72 BIEABZEA(C,W) 1"a727A71

= (J_:C———>D_, (84_,¥) €0, (i)

such that the A-module chain complex

@A @B D2)

j+ 188 I
C( :C—>D,@®D ) = C( 1 :A'®R. C—>A'®R_ D
j + - . A B, 1 2

1@, 3 1
82 2
is chain contractible, restricting the action of A' on the right
hand side to ACA'. It follows that the A-module chain map

3
( i ¢ ———>n,ep_
3

is a chain equivalence, and hence that the A-module chain
complexes D,,D_ have the chain homotopy types of n-dimensicnal
A-module chain complexes. Thus up to homotopy equivalence

c, and c_ are genuine quadratic Poincaré null-cobordisms over A

of (C,y). The union of ¢ and ¢_ can be written as

Cevc, €= T N8 (31 1C Dy (80 1800

\JA‘EA(C,W)A @Bz(Jzic'““’DZ,(5W2,1@A¢)),
and so can be regarded as a contractible n-dimensional quadratic

Poincaré complex over A'. Also, the union can be expressed as
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a union of null-cobordisms over Bl of BlﬂA(C,w)

CeVic,n®- T 1V e, (c,

so that the B,-module chain map

1

Iy
. ): B,®,C ——>D, ®B & D,
lﬂA]+

is a chain equivalence. Similarly, over B,

= C

C+Yc, 0 T “2%Bm, (c, 0%

so that the B,.-module chain map

2
kP
] B@,C—>D,®B.8,D_
18,3_

is also a chain equivalence. Thus in the (reduced) projective

class groups

(€1 = (0,1 + (p_) = (0,1 + ()" 1o, 1+
=)+ ()"t e Ry
(D] = B,®,(D_] € K (B))
(02] = B,R, (D] € RO(Bz)

Define an (n+l)-quadratic Poincaré relative null-cobordism of
the n-dimensional quadratic Poincaré pair over A

((1 1) :CBC — C, (0, VB-¥) € Qn((l nn
(i.e. an (n+l)-dimensional quadratic Poincaré triad over A

in the sense of §1.3) by

j,®3_
cec —>D,8D_
c=(@a1 T (0,0, 89, B8y, 18-9) €0 (1))
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and define also an (n+l)-dimensional gquadratic Poincaré
null-cobordism of the n-dimensional quadratic Poincaré pair

over B

k
(jk:BkEAC-__“)Dk'(6wk'1@A¢)e on(jk)) (k=1,2)
by
18,3 _ K+l
—_—
B,&,C B,8,D _ k+1
b = €y "s, '

-
Dk —> 0

(O,éwk,lﬂAGW k+l,l&Aw)€ On+l(FBk)) .

(=)

The union of the induced cobordisms over A' is an (n+l)-dimensio

quadratic Poincare triad over A' which can be expressed up to

homotopy equivalence as

A'®, b v ., A'®, au,, A'R_ b
B, L” A'®,D." "AT TA'@,D " "B,"2
Q— 0O
= ( l FA' l ,(¥',0,0,0) € Qn+1(FA')) ’
O———>A @ASC

defining an (n+l)-dimensional quadratic Poincaré complex over A'

Cy, = (A‘BASC,w'€ Qn+1(A'ﬂASC)) .
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The construction of <L is the algebraic analogue of the

"unitary nilpotent cobordism construction” of Cappell [7,8II.1]

If [C] = 0 € KO(A) and [Dk] =0 € KO(B
c€ Ls:_l(¢), then

k) (k = 1,2), so that

h [
‘L € I‘n+1(1\ )

Furthermore, the projective class [D ] € RO(A) is such that

(0,1 = ("o, e 1"cRy@a)

+ O(
and the element defined by

_ an .h
CK = [D+] € H (ZZ,I )

is such that the natural map

ﬁ""l(zz;wmwl(x) )} ———» ﬁ“(zz;rh)eﬁ“”(zz;ﬁ]l(@))

sends the element

1EB jl
1(c) = 1l 1 :A'R.C ——>A'®R_D,®A'®, D,) € Wh(m. (X))
. A B, 1 B, 2 1
18, 3 1 2
B,”2
2

(for arbitrary choices of bases for C,Dl,D2 which may be assum
to be free) to the element (CK,1(CL)).

If C is a based f.g. free A-module chain complex and Dk (k=1,
is a based f.g. free Bk-module chain comglex, and all the
chain equivalences appearing in c are simple so that c€ LSn_l(

then

<L € Ln+l(A')

and there is defined an element

cp = TIE,:C———>D, (sy,,4)) € HN(Z,;D) .

K
The map

a A" ;1Y = :
LSn_l(Q)—-vH (22,1 )i cr——c, (g s,h I7=21)
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is a naturally split surjection: the construction of the map
ﬁn(zz;lq)444+Lg_l(A) appearing in the exact sequence of
Proposition 1.10.1

19 19

. — W fh .19y q
L, (A) B (Zy: 1) —— 13 )y —— ) —— ...

readily extends to define a natural right inverse
A" i1y r—— 5159
H (Zz,l ) LSn_l(Q) .

Frem the present point of view it is convenient to define

the UNil-groups of Cappell [4} by

i19 = g9 fn .19 -
UN11n+l(¢) = ker(LSn_1(®)——»H (Z,:;17)) (q=s,h n€2Z)

(In Ranicki [11] the UNil-groups will be expressed as the
cobordism groups of quadratic Poincaré complexes with a nilpotent
structure, generalizing their original formulation in terms of
UNil-forms). The map

i19
UN11n+1(¢ L

. ~ineeRon . )
is a naturally split : the canonical morphism

q ! q 19 q ini
Ln+1(A )»—-—»Lsn_l(¢) maps onto UN11n+1(®)§ LSn_1(¢), defining

)———>L2+1(A') ; Cr—c
1

a left inverse. Thus every element c€ Lsg_l(o) can be expressed as
¢ = (cpicp) € 18] (0) = BNz 1 eunin] (o)
(g=s,h) .
In particular, if c¢= sp(f,Y)G Ls:_1(¢) is the Poincaré splitting
obstruction along Y€ X of a map f:M—=>X from a finite
(n+l)-dimensional geometric Poincaré complex M then

cy € ﬁn(zz;lh) is the image under the natural map
Az wn (| (01) —— ANz, 1)

of the element represented by the Whitehead torsion of M
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) = (Ml e " e ) e wn iy (M)
(or rather its image f,1(M) € wh(nl(x))), with M the universal cover.
If (X,Y} is a finite (n,n-1)-dimensional geometric Poincaré pair
(of type A) with il’i2 injective) and c=s(f,Y) € LS:_1(¢) is the
splitting obstruction along Y ¢ X of an h-triangulation f:M X then
cy € ﬁn(zz:lh) is the image under the natural map of the element
T{c) = 1(f) € ﬁn+l(32;Wh(nl(X))) represented by the Whitehead

h

torsion T (f) € Wh(nl(x)). Furthermore, in this case CKC ﬁn(ZZ;I ).

is the obstruction to modifying ¢ (resp. f) by a finite
sequence of algebraic (resp. geometric) "handle exchanges"”

to a triple ¢' (resp. concordant h-triangulation f') which is
cobordant to O (resp. topologically normal bordant to an
h~triangulation of X which is split along YCX), and if Ck =0
then CLE UNi1:*1(®)€ L:+1(A‘) is the surgery obstruction of
such an algebraic (resp. geometric) cobordism, which in the
geometric case is the Cappell unitary nilpotent cobordism.
The decomposition Ls§_1(¢) = ﬁ“(zz;rq)sunilg+l(®) (q = s,h)
of the LS-groups gives rise to a corresponding decomposition
of the L-groups

14

i
q T W\, 19
Ln+1(A ) = Ln+1(< >.A »Bl@BZ)@Ulen+l(®) (n€ 2Z)

P
il

) the relative L-groups appearing in the exact sequence
i
19 i

2 a q 1?7 /h
...~——>Ln+l(A) — ey Ln+l(Bl)®Ln+l(B2) —v—?Ln+1( )

. 19
with L, |

} 1y

19
- -
d Ln (A) SN
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Propeosition 7.6.2A Let (X,Y) be a finite codimension 1 CW pair

of type A) with i injective. The exact sequence relating t

)
associated free and simple LS-groups

h
...-—+whSn(¢)—‘—fLSn_l(Q)———+LSn_1(®)——~+whsn_1(¢)——‘>... (n

is naturally isomorphic to the direct sum of the exact sequenc

(0 1)

~

an+l h, .~n n o an h
... H (ZZ;I ) BH (ZZ;I)“"~***H (EZ;I)_**‘*H (ZZ;IJ

(l)
o an h
————>H (%2;1

)eﬁ"'l(z2;1)~—»...
and the exact seguence

An+2

s ‘_ . . . h
...~ >H (12,N1]1(®)) > UNil ) ‘*UN11n+l(®)

n+l(®

——*ﬁn+l(7zz;ﬁ’11(®))~—-->...

Similarly for the exact sequence relating the associated proje

and free LS-groups, with K. in place of Wh.

(6]
Proof: Immediate from the decompositions of the LS-groups and
the comparison exact sequence of Proposition 7.5.2.

(1

B) Y is 2-sided in X and the complement Z is connected,

so that
X = YxnlquSoz P (X)) = "l(z“nl(v){t} .

Codimension 1 splitting obstruction theory for B) first
appeared in the work of Stallings [1l], Browder and Levine (1],
Farrell [1}] and Siebenmann [1] on the characterization of
manifolds which fibre over Sl, since a fibre is then a
codimension 1 submanifold of type B). A general result was
first obtained by Browder [2], who showed that if (X,Y) is

an (n,n-1)-dimensional geometric Poincaré pair of type B) with
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Xy = Z o, om(Y) = wy(2) = {1}

then every s-triangulation f:M—=» X can be split along Y<X,
at least if n3» 6. The expression for the splitting obstructio
with arbitrary (X,Y) of type B) as an element

s(f,Y) € LS __, (%)
is due to Wall (4,§11], the general obstruction theory being
the same for B) as for A).

If the maps il,iz:nl(Y)—$L+n1(z) are isomorphisms
(e.g. if Y-———%X-"—«asl is a fibre bundle) the automorphism
i, ﬂl(Y)——iiﬁ*"l(Y)

is such that the group ﬂl(X) is the a-twisted extension of
m(Y) by Z

T Xy = om (Y x 2,
with

gt = ta(qg) (qenl(Y), t=1€ zZ) .

The group ring Z[nl(x)] is the a-twisted Laurent extension
of Z[nl(Y)]

Z(n (X))} = Zn (0] Tt

|
with
at = ta(a) (a€ z[nl(Y)H

and the w(X)-twisted involution

(gtd) = w(x) (at)) (geh) 7!

-1

=w @t et gen (v,

In this case Wall [4,Thm.12.5] used a generalization of the
work of Farrell [1] to identify
- fn .
LSn_l(¢) = H (22,1)
with

1= whn (v))% = ker (1-asWh(my (Y)) ———>Wh (7 (Y))) € Wh(T
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Farrell and Hsiang [1],[3] studied the splitting obstruction
theory for h-trianqulations in this case, in effect identifying

h _an .th
LS _,(®) =H (ZZ,I )

with

= a
1 = KO(Zlnl(Y)])

ker(l—a:fo(zlnl(y)])~———>RO(ZZIWI(Y)])) < Ro(zlnl(y)]) .

In particular, they showed that every s-triangulation f:M-"Y»X is
concordant to one for which fl:f—l(Y)—~——>Y is an h-triangulation,
i.e. regarded as an h-trianaulation f can be split along YCX,

at least if n» 6. Shaneson (1] used the Farrell-Hsiang splitting
theorem in the case a = id. : nl(Y)~——snl(Y)

1

M) = () xZ, Zn (X)) = ZIn (][, e)

(e.qg. if X = Y xSl) to give a geometric proof of the splitting

theorem for the quadratic L-groups of a Laurent extension
- h -
Ly (Zlnx2z]) = Loy (Zin)eL (z(n])  (n =m,(¥))

which was then proved algebraically by Novikov (1] and Ranicki [2].
For arbitrary a the identification Ls _1(®) = ﬁ"(zz;l) is

equivalent to the exact sequence

l-a
L (2 (0 DLz () Lz (0 ])

L (ZI (X)) —> ... (ne zZ)
obtained geometrically by Cappell [1] and algebraically by
Ranicki [3}.

The codimension 1 splitting obstruction theory of
Cappell [i) (1 £1ig9) includes the case B) with the maps
il,i2:ﬂ1(Y)———§n1(Z) injective. As for A) there are defined

exotic algebraic L-groups UNil,(4) of nilpotent objects such that
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- ph . ;
LSn»lN)) = H (7LZ,I)$UN11n+1(¢)
with

I = ker(il— 12 : wh(nl(y))—>wh(n1(z)))§ Wh(nl(Y))

and there are defined split surjections Ln+l(zlwl(x)])—»UNi1n+1(¢>)

(geometrically) to fit into an exact sequence
I .
.—’Ln+l(%hrl(x)])*—*Ln(zlﬂl(Y)})&UNlerl(@)

(il-i2 0)
— Ln(ZInI(Z)])—+Ln(R[ﬂ1(X)])-*———*

Again, there is a parallel theory for h-triangulations, with
h _4an .1h .yh
LSn_1(¢) = H (12,1 )QUN11n+1(¢) ,

h _ Co =
1 = ker(ll 12-Ko(2(ﬂ1(Y)l)—*’KO(Zl"l(Z)]))
QKO(ZMI(Y)])
and similarly for p-triangulations. If the maps il’iz:"l(Y)""l(Z)

are isomorphisms then UNil?(@) =0 for q = s,h,p.

Proposition 7.6.1, Let (X,Y) be a connected codimension 1

CW pair of type B), with associated pushout square of

fundamental groupoids

ilu i2
ﬂl(Y) U nl(Y) Em——4 nl(z)
¢
"1(Y) xV — ul(X)

The LS-groups of ¢ are naturally isomorphic to the triad
L-groups of ZI[o ]

LS, () = L, ,(Zle]) (neZ) .
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Proof: By analogy with Proposition 7.6.1A i). The identificati
(which was also first observed by Wall [4,Cor.12.4.1]) is
immediate from the definition of the LS-groups on noting that

the transfer maps in this case are given by
]
pE" Ln(Z[ﬂl(Y)x v]) = Ln(Z[nl(Y)]

L o (Zn (2} > Zr, (X))
y o (0, 1,y8-i,y)  (n€Z) .
Alternatively, it may be deduced from the braid of
Proposition 7.2.1 iii), since LN, (ruwm—>nx¥V,w) = O (7 = 1.1
[]
There is also a case B) version of the identification
of Proposition 7.6.1A ii), with an analogous algebraic
characterization of the LS-groups, as follows.
Given a codimension 1 CW pair (X,Y) of type B) let
A = Z[nl(Y)] , B = Elnl(z)] + A' = Z[nl(x)] '
so that A' = BaA{t} is the generalized Laurent extension of B
determined by the morphisms of rings with involution
il,iz:A-——;B induced by the group morphisms il,izznl(Y)<——+nlc
with t an indeterminate over B such that

t=tl, ij(a)t = tiy(a) €A (aEA) .

Let B, (k=1,2) be the (B,A)-bimodule with additive group B ar

k

BkaxA ———7Bk

It follows from Proposition 7.6.1B and the algebraic normal

; (b,x,a)lF—> b.x.ik(a) .

transversality of Proposition 7.5.1 ii) that the type B)

G-
codimension 1 splitting obstruction group for g triangulatior
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LS _;(®)
h is the cobordism group of pairs
LS _1(®

simple -
(a {(n-1)-dimensional guadratic Poincare complex o
finite

(C.veeQ, 101,

simple .
a n-dimensional quadratic Poincare pair over B
finite

((fl f2) : BlﬂACQBZEAC ~— D, (GW,lﬂiltp@—lﬂizW EQn(f1 :

such that the A'-module chain map
L} *
A ﬂAC —> A EBD

l@fl - t@f2

simple
is a chain equivalence, regarding A' as an (A',A)-Dbirs

i
via the composite A — 1 g —sar. Similarly for LS§_1(®).

Proposition 7.5.1 iii) shows that if M is an (n+l)-dimension:
geometric Poincaré complex the Poincaré splitting obstructior

1

along YCX = YxD U 0Z of a map f:M ——» X normal

YxS

transverse at Y< X is given by
- -1

Py = o, e i o, (57 hiz Y 59))) € LS _1 ()
Proposition 7.5.1 iv) shows that if (X,Y) is an {(n,n-1)-dimen
geometric Poincaré pair (of type B)) the manifold splitting
obstruction along YCX of an s-triangulation f:M -—>X
topologically transverse at YCX is given by

S(E,Y) = (o, ((£,0)] 7 (v)— ),

o, ((E,b)] £z, s —> v« s ens



Note that Proposition 7.6.1B identifies the condition
LS*_1(¢) = O for there to be type B) codimension 1 splitting
with the condition L*+l(z[¢]) = O for there to be a Mayer-Vietoris

exact sequence of quadratic L-groups

171 .
cos T L(A) L (B) —— L (A') ——sL _(A)}—> ... (nEZ) .

If (X,Y) is a codimension 1 CW pair of type B) such that
the maps il,iz:nl(Y)—-»nl(Z) are injective there are defined

Cappell decompositions

An

LS, 1 (2) = H(Z,;1)8UNIL ., (¢)
h on By g 1B (n€z)
LS _1(0) = HA(Z,; T7)BUNIL_, (¢) '

which may be interpreted in terms of our theory as for the case A)
above. In particular, Proposition 7.6.2A carries over word for

word to its type B) analogue, Proposition 7.6.2B.

A) or B} Y is 2-sided in X (i.e. £=v, _, is trivial)

Cappell [7] has shown that in many cases UNil,(¢) = O
both for A) and B), by obtaining the equivalent codimension 1
splitting theorems (under the hypothesis ﬁ*(ZZ;I) = 0). In effect,
Cappell proved that the assembly maps

0y ¢ Hy(K{n,1);Ly)——> L, (Z{n])

are isomorphisms and hence that gi(K(ﬂ,l)) = O for any infinite
torsion-free group n built up out of the trivial group {1} by
successive free products with amalgamation "1*0"2 and/or
HNN extensions ﬂl*p{t} along subgroups p cmy satisfying the
"square root closed" condition: if g€ L is such that qze()cnk
then g€pc LM (e.g.m = Z). However, it is not known if

8.(K(w,l)) = 0 for the fundamental groups n of irreducible

sufficiently large 3-manifolds (except when the square root
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closed condition is satisfied), although the results of
Waldhausen [1],(2}1,[3] that every homotopy equivalence of such
manifolds is homotopic to a homeomorphism and that Wh, (n) = O
do suggest that such ought to be the case.

Let R be a ring such that ZcR<(Q. The groups

P (ZInl— R[11) = L3(R(n])  (R=S"1z)

are the obstruction groups for surgery on normal maps up to
R-homotopy equivalence (see §7.7 below for further details of
surgery with coefficients). In particular, for R = Z this is
the ordinary surgery theory up to homotopy equivalence dealt
with above, Cappell [4] extended his codimension 1 splitting
obstruction theory to surgery with R-coefficients, introducing
the appropriate UNil-groups UNil, (R{¢])) with all the formal
properties of UNil,(¢) = UNil,(Z(¢]). Furthermore, he proved
that the groups UNil, (R[¢}) are 2-primary for any R, and that
UNil,(R[®)) = O if 1/2€R. Farrell [2]) has shown that the
groups UNil, (¢) are in fact of exponent 4 - as pointed out in
the introduction to that paper it follows from the localization
exact sequence of §3 above that the exponent of UNil, (R[®])
is at most 8 (using the result of Proposition 3.6.4 that the
localization maps L,(Z[n])~44*L§(Rln]) are isomorphisms

modulo 8-torsion).
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C) Y is l-sided in X (i.e. & =v x:Y-—"BG(l) is non-trivi

yc
Codimension 1 splitting obstruction theory for C) was
first studied by Browder and Livesay [l1] for the codimension 1

P 1)y 31y, in

geometric Poincaré pairs (X,Y) = (RP", R
connection with the classification of fixed point free involutio
on manifolds which are homotopy spheres. Lopez de Medrano [1},[2
extended the Browder-Livesay theory to fixed point free
involutions on arbitrary simply-connected manifolds; thus
describing the splitting obstruction theory for codimension 1

geometric Poincaré pairs (X,Y) of type C) with

T ) = m(Y) =z, L m(S(E)) = m(2) = {1} .

The expression for the splitting obstruction along YC X of an
s-triangulation f:M—>X for an arbitrary {(n,n-1)-dimensional
geometric Poincaré pair (X,Y) of type C) as an element

S(f,Y) € LS _,(0)
is due to Wall {4,§11], the general obstruction theory being
the same for C) as for A) and B). Furthermore, in the case
nl(x) = nl(Y) Wall [4,§12C] gave an algebraic expression for
the obstruction groups LS, (¢), by realizing each element of
LS _,(¢) as the rel) obstruction to finding a codimension 1
spine MCc Vv for an n-dimensional manifold with boundary (V,aV)
such that V is an (n-l)-dimensional geometric Poincaré complex,
and developing a non-simply-connected Browder-Livesay theory.
We shall now recover this expression from the general

algebraic formulation of the LS-groups in §7.5 above.
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We start by extending the formulation of the quadratic
L-groups in terms of chain complexes to the guadratic L-groups
of rings with antistructure in the sense of Wall [5].

Let A be an associative ring with 1. An antistructure
on A (a,€) consists of a function

a : A-———>A ; ar—>a(a)
and a unit €€ A such that a(e) = € Y €A and also
i) a(atb) = a(a) + a(b)
ii) a(ab) = a(bja(a)
iii) a(l) =1
iv) a?(a) = ¢ tac
for all a,b€A. (In particular, if ¢€A is a central unit
then a:rar—>a is an involution as in §1.1). Given a f.qg.
projective A-module M let A act on the dual M* = HomA(M,A) by
AxM* —— M* ; (a,f)r— (x ——f(x)a(a)) ,
and use the natural A-module isomorphism
M —— M** ; xr—— (f ——a(f(x)))
to identify M = M**_ Given also a f.q. projective A-module N
define a duality isomorphism
Hom, (M,N) ———>Hom, (N*,M*) ; fr—>(g+—> (x> g(f(x)))

Let T€ Zz act on HomA(M,M*) by the (a,e)-duality involution

. * * .

Tu,e : HomA(M,M )~—+HomA(M,M )
(ep*:xt——> (yr—>ca(d(y) (x))))

Given a finite-dimensional A-module chain complex C let TE€ 22

act on HomA(C",C) by

. p q . -yPa
Ty, e © Homy(CP,c) ——>momy(cT,cy ¢ ¢ > () Pdeor

and define the (a,€)-quadratic Q-groups of C

Qn(C, €) = Hn(Hom

717, (W,Hom, (C*,C))) (n€Z)
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The (a,e)-quadratic L-groups of A Ln(Au,s) (n»0) are defined

be the cobordism groups of n-dimensional (a,c)-quadratic Poincaré

complexes over A (C,¥€ o, (C e, exactly as in the case of

central €. All the results of §§1-6 in the central case have

evident generalizations to rinags with antistructure.

(There are also defined (¢,e)-symmetric L-groups L*(Aa,g) -

we shall be mainly concerned with the (a,e)-guadratic L-groups

here). In particular, the (a,e)-gquadratic L-groups are 4-periodic
Ln(A“,c) = I,n+2(A“,—e\ = Ln+4(Au,€) (ns0)

and LO(AQ,E) is the Witt group of non-singular (a,¢)~quadratic

forms over A (M,¥}), as defined by a f.g. projective A-module M

together with an element

Y € Oa,s(M) = coker(l—TalE:HomA(M,M*) —?HomA(M,M*))
such that ¢ = Y+ep* € HomA(M,M') is an isomorphism. Note that ¢
can be viewed as an (a,e)-sesquilinear pairing
¢ : M x M—— A ; (x,¥)F—>0(x)(y)

such that

i) ¢ (ax,by) = bd(x,y)a(a)

ii) o(y,x) = ea(d(x,y))
for all a,b€A, x,y€EM.
In keeping with our previous convention we shall now assume
that A=2Z[n) is a group ring and that the (a,¢)-quadratic L-groups
L*(Aa,c) H Lf(Aa,e) are the simple L-groups defined using
based A-modules and simple isomorphisms (with 1= O€Wh(m)),
although there are versions of the theory for arbitrary rings

with antistructure and for the free and projective L-groups LE, Le.

As we shall be dealing with various antistructures on the same
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*® for the dual of an

group ring Z(n] we shall write M*
A-module M with respect to an antistructure (a,e), and QI'O‘(C,E)
for the (a,e)-quadratic Q~groups of an A-module chain complex C,
abbreviating to Q:’G(C) if e=1, If a is the w-twisted involution

on Z[n} for some orientation map w:n—»ﬂz = {1}, that is

Yezint (qem ,

alg) = wig)g
the dual A-module M*'% is denoted by M**Y, the O-groups
QI'Q(C,E) are denoted by Q!'W(C,E), and the L-groups L,(Z[n]a,s)

are denoted by L,(zZ[n"],e), with 0J'Y(C), L, (Z[x"]) if € = 1.

Let now (X,Y) be a connected codimension 1 CW pair of
type C) with ﬂl(x) = ﬂl(Y). As £:Y ——BG(1l) is non-trivial

the double covering S(f) of Y is determined by a group extension

wl(E)
(1}—’1!1(5(5))*—4*"1(1{) >Z, {1}
which we shall write as
p £
{1} —— ' ———> n ——Z, —{1} .
Denote the orientation map of X by
wi{X} = w : ﬂl(x) = 7 ——> zz y
so that the other orientation maps are given by
w(Y) = wE : ﬂl(Y) =0 2y,
p w
w(Z) = w(S(g)) = w' : "1(2) = ﬂl(S(F)) = s —— Z, .
As before, denote the LS-groups of (X,Y)
ﬂl(S(E))Lﬂ'l(z)
LS, ¢ by LN, (n'—-—>n,w). By Proposition 7.2.1 ii)}

ﬂl(Y);—)ﬂl(X)
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the LN-groups fit into the exact sequence
w L}
...—“~»Ln+l(ZJw })—~4>LNn_l(n —> 7T, w)
) '
—v»[,n(ng-;mn”@]-—»mn-“’ 1) —>L (zZ[n"}) —>

By Proposition 7.5.1 ii) LNn_l(n'——ﬁ»n,w) (n21) is the
cobordism group of contractible n-dimensional quadratic
Poincaré splittings over ¢, i.e. of pairs

m,wE ' W

(coveanyien, (eagfe - — o, vt el )

consisting of an {n-1)-dimensional quadratic Poincaré complex
(C,¥} over m["wil and an n-dimensional quadratic Poincaré pair
(£:98'C—— D, (8¢,<€'4)) over Z(1'Y'| such that the Z{n]-modul
chain map
! !
(lgf) : ZI"]EZZ[IT'] EC ——> CQZ[H]GE[",]D

is a (simple) chain equivalence, where 1 is the Z[n]l-module
chain map appearing in the n-dimensional quadratic Poincaré
pair over R["w]

Ehen = ziney, Lokt ——e, gt eoe e e o) Vi)
We now have to give an algebraic definition of 5’(c,w).

Choose an element t € n such that £{t) = -1, so that as a

set 7 is the disjoint union

m= nfutn’
Given a = J n_g € Z|n] let
qen
fal = ¥ n_,9' € zZln'lCcz[n] ,
qtent @
su that
-1
a = [a] + [latlt = € Z([w}
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and as an additive group Z([n] has a direct sum decomposition
Z[n}) = Z[n']®tZ(n']) .
Define a ring automorphism

A i ZIn) ——>Zn] ; ar——> [a) - [at]t !

such that Xz = 1. The induced functor
A : P(z[n)) = (f.g. projective Z{n]-modules)———>EB(Z[n])
M )M
sends M€|p(z(n])| to the f.g. projective Z[n]-module XM witl
the same additive group and
Z[n] x AM ———— AM ; (a,x) —— ) (a)x .
The inclusion p:n'—> n induces an inflation functor
Py ¢ P(Z[n' D= P(Z[n]) ;
Nr———m—— p!N = E[w]ﬂz(".]N ’
and there is also defined a restriction functor
pl 1 B(ZIn]) ——P(ZIn]) ; Me—p'u,
sending M€ |p(ZI[n])} to the f.g. projective Z[w']-module p!M
with the same additive group and
Z[n'}x piM — P'M ; (a,x) s ax .
The two functors are related by a short exact sequence

k ] 1
0O —>M ~—>p,pM ———>M—>0

which is split (non-cancnically)}, with
!
it pypM——>M; alx +—>ax

1 -
k : A\ M —» PP M X 18x - t®t lx .

Given M€ |P(Z{n])| use the Z{n')-module isomorphism

i e M) s e (x e E (x) + EE (X))

as an identification, and define a Ztlmzl—module morphism
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[

! *, W ! Ly *ow'
p :Homzln](M,M )*—>Homm".](pM,(pM) )

!
dr > (pdix—— (y——ald (x){y)])) ,
with TE€ Zz acting by the duality involution T:¢»—* on both

sides. Given N€ |P(%[n'1)] use the z[r]-module isomorphism
*,w' *, W —
p, (N ) —>(p,N) ; a®@f —— (b&x +——> bf (x)a)
as an identification, and define a Z[Zzl—module morphism

Py ¢ Homy o (NGNTT) ——sHom (BN, (0 M) Y

B> (p,B8:x > (y —>(189) (x) (v))) .
1
The z[zzl—module morphisms p’,p, can also be defined using
the orientation map wf instead of w. Note that

M e o mteYy

Given a finite-dimensional Z|[n]}-module chain complex C
use the Z[Zzl—module chain map

£

! *,w [ !
p o Homz["](c ,C)————»»Homzl".]((p C) ,pP°C)

to define restriction maps in the Q-groups

pt i ol Wh(c) o T

"'y .

Given a finite-dimensional Z(n']-module chain complex D

use the z[zzl—module chain map
. *,w' *, W
P, : Homz[“,](D ,D)~———+Homzl"]((p!D) ,p!D)

to define inflation maps in the Q-groups

p, + Q4 T (D —— 0" (p,D) .
The short exact sequence of finite-dimensional Z([n]-module

chain complexes
i

!
00— ——>ppC—>C——>0



is split when regarded as an exact sequence of graded Z|[n]-modules.
Thus applying Homzl"] (C"w, - ) there is obtained a short exact

sequence of Z-module chain complexes
t

]
- Hom C*'W,P,D'C)

., w
O*’Homz{“](C AC) 7Z[11](
i

—————> Hom ](C*'W,C)~—~>0

Z(n

Using the natural isomorphisms of Z-module chain complexes

C*’w,)«C) i o (X —— ¢ (X))

Hom *'w:,C)—:%Hom

zin) (€ zn)

[ A ~ * W ! .
Homz[".]((p C) P C)——*Homz["](c PP C) ;

G ——— (X ——> 1®0 (x} + tQB(t_lx))

as identifications there is obtained a sequence
]

O R LI T 1

' !
O——»Homz”](C P C)

i

~——————— Hom "N,C)———>o

Z[ﬂ](C
which is in fact a short exact sequence of Z[ZZz,‘~modu1e chain
complexes inducing a long exact seguence of Q-groups
,wE p! nt,w' ! i n,w m,wE
-~-—>Qn' (C) ——=>Q_'" (pC)—=>0Q ""(C) —>Q "7"(C)—>...
n n n-1
(n€ Z)
Define a z(zzl—module chain map

£ ¢ Hom )(c*'wE,C)

Zin

Y.en

. ! *ow ! *
T——>QC(ig:Homy (PP C) 1Py p C}——>Hom, 4 (C
) r—»(O,p!p!\i’) '

so that there is defined a natural transformation of long

exact sequences of Q-groups

N

| 23
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' ' i
N Qn,wE(C)AﬂEA% Q: wipley - s Q:'W(C)——+ Qgiyi(c)___,'..
it gt
" w(i)___u_*ion,w( !C)_}ﬁ Q"'W(C) On,w i
© T 04 n o (PP 0, — o) i) L

An element Y€ O:'WC(C) is sent by g! to the element
! I
ET(0) = (sv,p,p Y € Qpii) .

Proposition 7.6.3 The transfer maps in quadratic L-theory

associated to a connected codimension 1 CW pair (X,Y) of type C)

with ﬂl(x) = "I(Y) = T are given algebraically by

g @Mt s ez s )

£
S S e

( o
rfp’c,py&e or'¥ipten, tiip,plc —sc et e V(i)

(ry(z) = "1(5(5)) =2 n', wiX) = w, w' = wp).

[]
i ]
(This generalizes the algebraic expression for 3¢ =p° of Thomas

Continuing with the previous terminology define

L

uwo: Zn'] ——>zZ(n']; Y n_,9'+—» ¥ oon .t_l
qlen g'en:

g't ,
an automorphism of the ring Z[n']. The induced functor
o P(z(n']) —> B(Z[n']) ; ¥ b———uN
sends a f.g. projective Z[n']-module N to the f.g. projective
Z[n'l-module uN with the same additive group and
Zn'] x pN—— uN ; (a,x)r—>>u(a)x

ol
Define an antistructure (B,t ) on Z[(n'] by

gzl )l ——— Z[7'] ;
hoglr—— | w'(g')n -t_lq"lt .
g'€nr 9 a'en’ ?
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Then for any N€ |P(Z{n'])| there are defined natural
isomorphisms in P(Z{n'l])
N®uN —QL»p'p,N ; (X,y)— 18x + tRy

N*'B ~ u(N"'w.) i fr——a (X > u_l(f(x)))

which we shall use as identifications. In particular, we
have identifications of Z-modules

t,w')

Wy !
Hom, (0 (PN, (P N)*7™) = Homy, ) (N, PP, (N )

_ LA *,w'
= Homz[n,](N,N @y (N ))

B

t,w' *
= Homz[",](N,N ) ®Hom .](N,N )

2z [n

and hence an identification of Z[Ezl—modules

*, W
Homzln](p,N,(plN) )

= «, B
= Hom Z[ﬂ'](N'N )

L}
,](N,N"w ) ®Hom
with Te 22 acting by the duality involution T:¢r——> ¢* on the

left and by TeT 2 on the right.

wit)t
Given a finite-dimensional Z(n'}-module chain complex D

we thus have an identification of Z[?Zzl—module chain complexes

*,w
Hom,, o ((P\D) +P,D)
= W' *, 8
= Homz[".](D .D)$H0mz(n.]‘0 /D)
so that
0."(pyD) = 0, 'Y (D)eQ B in,wit)e?)

Replacing w by wf we also have

oy ¥Eip,my = o) M mreal B b, —uie)e?)

since f(t) = -1,



Assume now that the underlying codimension 1 CW pair (X,Y)
is a formally (n,n-1)-dimensional normal pair (in the sense of §7.5)
and that there is given a formally (n,n-1)-dimensional topological
normal map
(f,b) : (M,N) ———>(X,Y) ,
denoting the restriction normal maps by
(£.0)] = (g,0) ¢ N = £H(¥) ———>y
(£,b)] = (h,d) : (2,5(v) = £ 1(z,5(6)) ——>(2,5(8)) .
According to Proposition 7.5.4 ambient surgery on (g,c) inside
(f,b) has the algebraic effect of surgery on the quadratic
kernel pair {(o,(g,c),0,(h,d)) preserving the union
E!c*(g,c)k)po,(h,d) = 0,(f,b). We shall now associate to the
pair (o,{g,c),0,(h,d)) a formally (n-1)-dimensional
(B,—W(t)tz)-quadratic complex over Z[n'] oL{(f,b) such that
surgery on the pair determines surgery on the complex,
and such that if f:M ——» X is an s-triangulation algebraic
surgery determines geometric surgery, generalizing the treatment
of type C) codimension 1 surgery due to Wall {4,§12C].
(f,b}:M —— X
The quadratic kernel of (g,c}):N—>Y

(h,d) : (P,S(v}) —> (2,5(F))

n- complex
is the formally {n-1)-dimensional quadratic complex
n- pair
z{n")
over E[nwE]

Z(n'w ]
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au(£.b) = tctehy,ve ol M iceh )
outa.c) = (Clah,veal Vi = (0
ou(h,d) = (e:p'ciahy——cn'), suptw el M en)
= (e:p'c ——p, (50,000
ceeh zZin]-

with C= C(ql) the algebraic mapping cone of the Z[n]-module
{
D=C(h") Z[n']-

Umkehr chain map

F* M)~ -

W s ()

£2 . )"
g* [(N] O -

1- 3 o ne1- .
nl-vwt L e@MiNYE s e®)

g C(Y)

h* [P] A~

- . —~ N - 1] ~
nereW (B, SO =, c(B)

h' : c(z,5(8))
X X

where ¥ is the universal cover of Y and
(Z,5(ET) (2,S1£))

M

<34

is the induced cover of N . It follows from

4]

-~ o~
(P,S(v}) (P,S(v))
the geometric decomposition of the normal map

(£,6) = (g,0) U (h,d) : M= E(v) U —r X = BB Ug ;2

S(v)p

that there is an algebraic decomposition of the quadratic kernel

1
o4 (f,b) = Fio,(g,c)u po,(h,d)

Define the antiquadratic kernel of {(f,b) to be the formally

(n-1)~dimensional (B,—w(t)tz)—quadratic complex over Z{n’]

03 (E.b) = (et e 1B, vt t?))
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The function (0,(g,c),0,(h,d))r——> 0,(f,b) will now be
used to recover the expression of the type C) codimension 1
LN-groups LN, (1'——>7,w) as the L-groups of a ring with
antistructure due to Wall [4,Thm.12.9). The identification of
of an exact sequence characterizing the LN-groups with a
relative L-theory exact sequence was first obtained by
Wall [4,Cor.12.9.2) in the special case 1 = n'x ZE and by
Cappell and Shaneson [3] (implicitly) and Hambleton [1] in ge
Proposition 7.6.4 Given a group extension

{1} N & > 2, > (1)

and an orientation map w:n »22 there is defined a natural

isomorphism of exact sequences of abelian groups

w .
S L () > LN (1, W)

...-i[h*l(2[n]a.W(t)t2)“4*****Ln+l(zlﬂ']B,W(t)tz)

— r,n(p’:z[n“] szt L T e s P—
|

f t |2

2

—— ez oz fu e — L @Yot -

with t€n an element such that g (t) =-1, (a,tz) the antistruct

on Z{n) defined by

a: Zln) ——> ZI[n] ; X n_g-—> z w(g)n t—lg-lt
g€n 9 gemn 9

and (B,t2) the antistructure on Z[n'] defined by

B =al ¢ Zln'] ———>2Z[n'] .
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Proof: Given a f.g. projective Z[n]-module M use the scaling
isomorphism of the dual Z[n]-modules

w

*’ * Q
t: M - M T Er—— (x—— f(x)Y)

to define a scaling isomorphism of Z[Zzl—modules

. *, W ~ *,Q
t : (Hom ,(M,M ),Twll)———»(HomZ["](M,M ). T )

Zn u,w(t)t2
Given a finite~-dimensional Z[n]l-module chain complex C there
is thus defined a scaling isomorphism of Z[Ezl—module chain
complexes
t : (Hom ¥, ) —=~— (Hom
: Z{n] T w1

](c*"’,C).T )

Z(n aow(t) el

inducing scaling isomorphisms of Q-groups

t 2 QY (C) —2 > Q"% (C,w(t) t2)

n n

and hence also of L-groups
t: L (20"~ (Z %W t)) ;) —— (Cu)

Note that the morphisms induced in the Q-groups by the
Z[n]-module chain map
Ak @ C ——)p,p!C ;x> 18x + t@t 1x

are given by

p
( . )= o)
p't

T, w { _m B
—>Q " (p,PC) = Q)

A (plc,witit?)

1 ! bid 1
(p C)@Qn
sending the element

Vo= v et YR TS s mnrez,s ;00 € oY)

to the element



v P
ehe e en = (phy s CT Y X" TS 5 g s 20,
1

e ¥ pt
(P!tWS: clrY xS _ Sy min) — —szn'i))

W

B

eor Y plcred] P iplc,witr et :

defined using the abelian group morphisnms
1
p’: Z(n]——Z[1'] ; at——> {a]
]
p't : Z[n}—>2ZIn']; ab— [at]
and identifying
PN P LayEaw! tayrea ! '
Homzl"](C[,Z[n]) Cc (pC) (p'C) Homz["'](p Cr’E["

as abelian groups.
Next, we shall define the natural isomorphisms
LN (' —— 7, W) —» Ln‘l(zln'ls,—w(t)tz) ; S—> g' (n? 1)
. R 1B 2, _ N 2
(identifying L (Z{n']",-w(t)t") = L (Z["']" ,w(t)t") by the
n-1 n+l
skew-suspension isomorphisms).

Given an element

W
n-1

s = ((C,hEQ e

! 1
(C)), {e:p C——>D, (64, p ¥) € Q]
t
€ LNn_l(n —— T, W)
observe that the composite Z[n}-module chain map

) Ak ' Ap,e
j: ¢—ppC ———>p,D

is a (simple) chain equivalence, since it is given that the

Z[r]-module chain map
i !
| : p!p‘C —> C@#p D
p e :

1
is a (simple) chain equivalence, p,p'C fits into the short

exact sequence of Z[mn]-module chain complexes



k i
!
o] C p,pC ————>A——>0

and the ring morphisms p:2Z{n'}j—> ZI[n], A:Z[1] —> Z[n] are

such that Ap = p. The induced isomorphism of QO-groups

n,wE n',w' , B

T o) s QM e p oy = O] 1 (mrea] 1P (o, et £

Qn—l n-
sends ¢ € QE:YE(C) to the element

; !
Ja(b) = (0,e.p t(¥))

L}
Now (D:e%P!t(W)G Q:_iB(D,—w(t)tz)) is an (n-1)-dimensional
(—w(t)tz)—quadratic Poincaré complex over Z[n'], and the
element corresponding to s is

- ! B 2
s' = (D,e%p t(v)) € Ln_l(E[" ] -wit)t™)
Conversely, suppose given an element
st = ) e _ (@B mwre?)

Define an (n-1)-dimensional quadratic pPoincaré complex (C,¥)

wi

over Z[7n ”) by

m,wt T',w

c=pD ., ¥= (0¥ €0V @ =o' ;Y el ¥, -wit)t?)

Define a Z[n']-module chain map

e = (LO) : p'C = DOUD ———>D

and let
! - '
(v, p ¥ = (0,(1+T_w(t)t2)¢o)
“llwl _ "',w' *, R
€ Qn (e) = Qn—l (D)@Hn_l(HomZ[",] (D ,D)) .

i

A
(The expression for Q: v (e) follows from the identification

of the exact sequence
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w

o Vi) —> ...

-1

m,w

P i
L=l M) oty e ——> ol 1Y ple) —— 0]t

with direct sum of the exact sequence

(o)

o}

mhw! mw! - Thw! LA

S0 (D) O (D) Q1 (D)GQn_l (ub)
(0 1) 1w
> Q _i (D) —>... (*)
and the exact sequence

m',8 2 5 ', B 2

QL TD,w(t)tT) > Qn_i (D, -w(t)t")

—»H__, (Hom .](D*'B,D))—*’QZ_'iB(D,w(t)tz)———»... (**)

Z[m

7',w!

The isomorphisms 1:Q, v

(uD) — Q) (D) appearing in (*)

are those induced by the isomorphism of Zztzzl—module chain

complexes

! -1

W "D Ry

'
1 : Hom suD) —*— Hom h ,

*,
.]((uD) Z [

Z(n

w' R
] of the ring ZI[n']

1
using the automorphism u:z[n‘w ] ——>Zn'
. , . . . . . *, W' *x,w'
with the w'-twisted involution to identify (uD) = u(D ).
The sequence (**) is a special case of the sequence of

Proposition 1.1.3 (p = 1), using the skew-suspension isomorphisms
— 1 L}
5 : Q;_éB(QD,—w(t)tz)—‘M—»Q: Biowin)e?)

as identifications). The element corresponding to s' is defined by

S = ((C,¥), (esp'C——D, (64,0 4))) € LN _ (' —>7,w)



In order to verify that the diagram

nﬂ(mw 1) —————— IN_ ("' ——7,w)

t?
p!

2 — Lz 1B et

LzimY e et

commutes consider an (n+l)-dimensional quadratic Poincare

complex over Z[ﬂw] (C,'J)GQ;;‘I(C)). The composite
]

w t a 2 P’ 8
Loy (&lr ])——‘—’Ln+l(?z("] WEET) ———r L (Z [ ]T, W ()

sends (C,¥) to (p'C.p'tweo”. Bplc,witrt?))). Let

n+l
((g:3D ——> D, (6,38) GQz’wg(q)),

]
! P9
P 3D ————>p'D
( 9.f T £ ,(u.,upe.p900 e’ Y (M)
+ ’ v Ul n+l

3+E——'—>E

be a normal splitting of (C,¥), as given by Proposition 7.5.1 i)

so that up to (simple) homotopy equivalence

(C,¥) = (DU E.£'oup,u)

I
p,p DP1
The composite

Lo (2] >IN s 1) s Lz 0018w e

sends (C,¥) to 5(3+E,3+f%p!t(86) eQE:iB(8+E,-w(t)t2)). Define a
Z[n]-module chain map j:p!C-—-*—>E/bg: =C(g)

37 pC -—PD@PPPDr lwppEr—~—»F =P D{_GBE
(x, a@cj,b®l\—9(ta]q Cel?) (alocinl, xeDr \5CD. a,® €

Surgery on (p C,p ty) by the connected (n+2)-dimensional

(B,w(t)tz)—quadratic pair over Z[g']
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/o 4 ! ' .
(ip'c ———rl0,p tn) e " 1P (5wt t?))

results in the (n+l)-dimensional (B,w(t)tz)—quadratic Poincaré
complex over Z[n') §(»+E,a+f%p!t(ne)), so that the above
diagram does indeed commute. Moreover, if (C,y) is such that

it admits a Poincaré splitting it is possible to set sb = O,

I,E = 0, and the above procedure defines abelian group morphisms

'
W

Lz =z D ez sz 1B e e

1 1
((D,8),(f:p'D—>E, (u,p’0)))
St /
F——> ((C,ty), (3ip'c —E/(0,p' t¥)))
such that there are defined commutative diagrams

!, wE. A o w
Ln+1(P tZ(n 7] —>Z ([ 1) — Ln+l(zin 13

2 t

Lpyp (2112151 v t)) — L (@ n%wt)t?)
' ! wt W'
LN (1" ——> 1, W) ——————> L (P :Z{n "] ——>Z[n'" ])
!
Lop i 18w e?) ——— 1 iz z 1w e?)

It now follows from a 5-lemma argument that these morphisms

are also isomorphisms.



{(The natural isomorphism of exact sequences of
Proposition 7.6.4 extends to a natural isomorphism of

commutative braids of exact sequences, from

ey

wE
n+l(z[n 1) N ) (1 ', w) Loy (Z(n"5))
AN /
7/
s \ /
Lopp (P2 (nt" 1=z (n"]) L ez (") sz )
ya
/ /,/
L (z ") Lz L, (Z "))
-
\\ p' i // \\ P,
to
Py B
T T ////
ey (2110w ity eh) e (2B e?) 1(zrn1 Mwiere?)

\/\.

2z 1B oz 1w e?) Lo, (P ez >z 18 wit)£?)

/\ N

(zn}® ,W(t)t ) p(Zln! 1 a(Zn] ,w(t)t)

N~ N

The isomorphism of exact sequences obtained by Hambleton [1l] is

N
the one involving the sequences //’ ).

/

Ln+2 { p

n+2
-



The LN-groups have been used by Cappell and Shaneson [3],
and Hambleton [l] to detect which elements of the quadratic
L-groups L,(Z(n]) of finite groups 7 are the surgery obstructio
of topological normal maps of closed manifolds (i.e. belong to
im(0,:H, (K(7, 1) Ly) —>L, (Z[%])) ¢ Ly(Z{n]}). In effect, they
were making use of a special case of the natural transformation

of exact sequences given by Proposition 7.4.6 iii)

cea S K 1)) e (K (W, 1) Wi L)
g Ve
LN () s L iz Y sz Y )
(= LS, _,(#) (= LP__,(9))
Oy w
— Lz ]) ———— £ (K(1,1)} ————> ...
*~—--+Ln(z[nw])———A—»[Nn_z(n'—-+n,w)—~—+... ,

which is defined for any group extension

p 3

1} ——— > 0 >z, -+ {1}

{(at least if the groups are finitely presented) and any
orientation map w:m —>Z,, with w' = wp : n'~‘4—>z2 as before
In connection with their work on pseudo-free group actions
Cappell and Shaneson [3] associated to a non-trivial line

bundle §{:M ———»BG(l) over an n-dimensional manifold M a

surgery exact sequence
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-'—>[MxDI,MXSO;G/TOP,*](BLN VT, W)

n+l(ﬂ

TOP

——>Ln+l(mlwwal)——~>5 (F(E),S(E))

-—»[M,G/'rop]an,nn(n'——nr,w)—~»Ln(z[w“'g
with
(nl(M),w(M)) = (m,wg) "1(5(5)) =
From the point of view of §7.2 this is just a part of the
Mayer-Vietoris exact sequence

——> Hn+l(M,wE;EO)0LNn+l(ﬂ'——yn,w)
=L @) —— 8 (E(E),5(6))
; ' wt
——rH (M, WES L) BLN, (1! ——T,w) ——> L_(Z[7

associated to the commutative braid of exact sequences of

abelian groups

Ox

/////’/__—_'_*\\\\\\\_l ///////—-__—\\\\\\x

p Hpe (MwEsILg) Lpea (P Z["'WI]‘*’”[“WI) LN (n'——>m
£
(ZH 5 (E(E),S(E),wiky)) E e
n+1(Z[ﬂ n+2(E(€) S\(E)\)‘
LNn+1(ﬂ‘—A->w,w) +1(M) (M wt ; H

N

which is a special case of Proposition 7.2.6 i).



709

The proof of Proposition 7.6.4 can be used to relate the
type C) codimension 1 splitting obstruction theory of Browder
and Livesay [1) and Lépez de Medrano {l] in the special case
nl(x) = nl(Y) = 22 to the theory of Wall [4,§12C] in the
more general case wl(x) = nl(Y), by expressing both in terms
of our algebraic theory, as follows,

In the first instance, let us recall from II. the
connection between the quadratic construction and the
self-intersections of immersed manifolds. Let f:M"&—sN" (mgn)
be an oriented immersion in general position of an m-manifold M
in an n-manifold N. Let N be an oriented cover of N with group
of covering translations n and orientation map Wil —>2Z,, such
the pullback of N along f is the trivial cover M = nx M of M,
and let f:M~—N be a n-equivariant lift of f. The double point

set of f

S,(f) = [ix,y) eMxMIE(x) = f(y), x#y}/E,

#

(&, y)yefx RIEE =F(H), R#491/1,

is then a (2m-n)-dimensional manifold (which may be empty,
e.g. if 2m<n), with T€ Xz acting by T: (X,y)+——>(y,X).
Let Sz(f)' be the evident double cover of Sz(f), and let
c':Sz(f)'————bEZ be a I

2 2—equivariant map lifting a classifying

map czsz(f)v~4~§BX2, so that Sz(f) is equipped with a map

Y : Sz(f)-~+ B, x £, .
XY e’ (LYY, %, v] .

Let vf:M——~+ Bsfaﬁ(n—m) be the normal block bundle of the

immersion f, so that applying the Pontrjagin-Thom construction

to an embedding f_:Me—— N x R” approximating f there is
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defined a stable m-map

o - o w1 collapse U — —
F: IN, =NxR/NxS ———— N x R®/N x R” - nbhd. of f_(M)

= Zan(\Jf)

inducing the Umkehr Z{[m]-module chain map

f*

') = e Y e @) "N s M) - C(Tn(ve)) .
The quadratic construction on F
o m, W, - AW oh-m
WF Hn(N,W) > Q, (C(Tﬂ(vf))) = On (S C(M))

sends the fundamental class [N] € Hn(N,w) to the image under y of
the fundamental class [S,(f)] €H,  (S,(f)) defined using the
appropriately twisted coefficients

n-m = =
S Z2(Mx"M),w)

by the argument outlined on pp.279 - 282 of 1I1. (The reference

= m,w -~ _
Ve (INT) = v, ([S,(f)]) € Q ""{ CM)) = H, (Bl x

there to the work of Koschorke and Sanderson should be augmented
by a reference to the earlier work of Vogel [1] on the interpretatio

of the approximation theorem 2% = | L EL x (Nx))/~
kr1 K Tk k

for connected spaces X in terms of immersion theory).

In particular, if n = 2m, M™ = s™ then
_ . w _,ym
WF([N]) = u(f) € HO(Rz.Z(" 1.(=)7)
is the self-intersection number defined geometrically by Wall [4,§5]

for an immersion f:Sm“*w—'sz, with p(f) = 0 if (and for m» 3,7 =ﬂ1(i

only if) f is regularly homotopic to an embedding f:SmL———*sz.
In the subsequent applications we shall be concerned with a

| -
double covering p = projection : N' = N/7'—->N defined by

a subgroup n'c 7 of index 2, so that as before there is defined

a group extension



{1} n' > z,— {1}
and there is an element t€n such that £(t) = -1. Furthermore,
the immersion f:M®—-> N will be assumed to lift to an
embedding f':M<——>N"', in which case the double point set
of f can be expressed as

S,(f) = {(x,y) EMx M| £* (x) = TF' (y)}/x2
with T:N'—>N"' the covering translation. The commutative

diagram

inducing the Umkehr Z{n]}-module chain maps

I
- - !
SN () | !
&\\E;\
C{N)
with N' the pullback of N along p:N'——> N and
pl i e —— ity = pplC(N) 5 ox —s18x + Bt Ix .
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The stable n-map P:Zmﬁ+‘~4—+2mﬁ; can be defined in one of two
(equivalent) ways, either in the same way as F using a framed

embedding N'e——» N x R such that

» Projection
p : N'e » N x R —->N ,

lifting to the covers and applying the Pontrjagin-Thom constr

o ~ - w1 collapse _ o = p- —
P:ZN+=N><]R/NXS —————Nx R /Nx IR - nbhd. of N'
=N x RO/ (s = £

(i.e. using the fact that p:N'—3»N is an immersion with
normal bundle vp =0 : N' —>BG(0), although the constructi
of P is valid for any double covering p:N'-—=>N), or using t
Dyer-Lashof map O (cf. Brumfiel and Milgram [1]) with the

adjoint of P given by

adj(p) : §, — (EZZXZZ

N —— El x, (N'xN') ; [X'Jr——(p'(x'),X',TX"]

2P
defined using a Zz—equivariant lift p':N' —> EZZ of a

classifying map p:N——>BI The quadratic construction on P

5
VpiHy (W) —— o1 " (i) = o] Y plc@ned) ® il ®) w
has symmetrization
(1+T) v, = 0.0’ - ' ey
FH W) 0% (CUNY)) = 08, L (RTC())80}, (P CR)

] ~
Let ¢§: Hy (N',w')—+Q*, _ (p'C(N)) be the symmetric construct
r
on N with respect to the restriction of the nm-action on N to
n'c® {noting that ﬁ/n‘ = N'}, so that the symmetric construc

on N' with respect to the n-action is given by
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CHL(N',w') —>Qr  (C(N')) = Qf

[ [ 2
".'w.(P C(N))QQ;.'B(P C(N),w(t)t™)

since p:N'—— N is a trivial double cover. It now follows

from the chain level commutativity of the diagram

¢ﬁ -
H, (N, w) ———> QF (C(N)}}
! !
p P
b5

e wy—N s 0x, Cipledly)
’

that the first component of wp is O

v (3)

P ' ' ! — ' ~
SH (N —— 0l Y )) = o " (plcieo] Bpted) ,witrt?
The second component defines a natural transformation

b s W) 5 0T B ple®) win e,

the antiquadratic construction associated to the double covering

p:N'——>N, such that
]
- M = * ~
(1+Tw(t)t2)wp P t®N

t
Hy (N,w) N 04 (C(N)) — 02 (C(F) ,wit) t?)

! ~
—EB 0, gete i d?)

The quadratic construction on F in this case is given by

] o -
Vp = b = ( O .) : H (N w) =07 Y (5" (n x M)
£y ¥p
= op M s" e xmyyel B s" Mo xmy e €2
and

va (18,0 1) = yo(IN]) = (0,62 %y (INT))
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In particular, if n = 2m the non-trivial component is the

2m'f,:Mm: N,Zm)

equivariant self-intersection of (f:M"a—» N

b (£) = £us(IND) € Q1 BisMcnt w M) w(r)t?)
= Ho(Zyizlnt 1B, () Nty £f)

such that u(f) = uo(f)t-l, measuring the number of pairs of
points in the intersection f'(M)n Tf' (M) €N’, which is a
O-dimensional manifold with a free Zz-action. (If {a,e) is an
antistructure on a ring A then Hy(Z,iA,€) = A/{a- eala) ja€nA} ,
by definition)., Wall [4,8§12C) defined uo(f) geometrically.
In the original work of Browder and Livesay [1] uo(f) was
expressed in the case n' = {1} in terms of a mod2 cohomology
operation, which was expressed as a functional Steenrod square
in Ranicki [8) and which has been extensively studied by
Conner and Miller ([1}.

Let (M,N) be an (n,n-~1l)-dimensional manifold pair of
type C), i.e., such that the normal bundle v = VN M :N ———> BG (1)
is non-trivial. Let Py ¢ N' = S(v) ——> N be the associated
double cover of N, and let P = MNE(v) So that

M = E(v) us(v)P .
The double covering of M
. L
Py = M P+\JN.P_——fv—4—+ M
defined using two copies P P interchanged by the covering

translation T:M'——>3M' is such that

Pyl = Py ¢ Py (M) = N'—N
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A one-sided handle exchange on N inside M is the ambient surg

(MN) > N\ 85 xR TFTL o pT L gnTE2y

determined by an embedding (D' '1,s%) x p" Il (M,N) which 1if

n-r-1

to an embedding (Dr+1,5r)x D C(P+,N') such that

(st xp" Iy qrst x0Tl = gent .

This operation is equivalent to an cguivariant handle exchang

on N' inside M'

(M',N')r4'~»(M‘,N'\(srx Dn—r—lth(srx Dn—r—l)
o (Dr*l N Sn—t-—2 o T(Dr+1 x gh
(cf. Lbépez de Medrano [1,§1.1.21).
\\
Dr+lx s
,/////
o



Proposition 7.6.5 Let (X,Y) be a formally (n,n-1)-dimension

normal pair of type C) with

ﬂl(X) = nl(Y) =, nl(z) = nl(s(i)) =7’ , w(X) = w : n—

i) If (f,b): (M,N) ——>(X,Y) is a formally (n,n-1)-di:
topological normal map a one-sided handle exchange on
(g,c) = (£,b)|:N ———> Y inside (f,b):M————> X has the alge
effect of surgery on the antiquadratic kernel o} (f,b).

ii) If (X,¥) is an (n,n-1)-dimensional geometric Poinc:
pair and (f,b):(M,N) —— (X,Y) is an (n,n-1)~dimensional
topological normal map such that f:M ——>X is an s-triangul
of X the antiquadratic kernel g, (f,b) is an (n-1)-dimension:
(—w(t)tz)—quadratic Poincaré complex over Z[n']8 . The spli
obstruction of f along YCX is given by

S(£,Y) = 0j(£,b) € LN _ | (n'—>n,w) =L (Z[1'18,-u

Proof: i) The antiquadratic kernel o, (f,b) was defined usinc
the quadratic kernel g,(g,c). We shall now obtain it using
the antiquadratic construction associated to the double cove

of N classified by v = N —— BG(l), thus relatinc

YNeM
o4 {f,b) to the equivariant self-intersections which are the
obstructions to individual one-sided handle exchanges.

Let

Py ¢ X' =2, Uy, 2 ——>X

be the double covering of X defined using two copies Z,.2_0

interchanged by the covering translation T:X'—>X', with

Pyl = Py ¢ Pl (¥) = ¥ = S(F) ——o> ¥

the double covering of Y associated to f:Y ——BG(1).
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The formally n-dimensional topological normal map (f,b):M —> X

has a decomposition

(£.0) = (g,0) uh,d) i M= B g P> = E(E) Y g (p)2
with
(g.c) = (F,b)] : N = £ (y)— 5y
(h,d) = (f,b)| : (P,S(v)) = f—l(Z:S(E)) ——>{Z,S (%))
Vv N —2 y — 5% LB

Let Y be the universal cover of Y, and let §:N —— ¥ be a
m-equivariant 1lift of g:N ——Y, so that the Umkehr Z[n]-module
chain map of g is defined by

g* (N]n-
[ 3 1 - C(ﬁ)n-l-*,wg — = c(f)

The quadratic kernel of the formally (n-1)-dimensional topological
normal map (g,c):N—Y is the formally (n-1)-dimensional

]

quadratic complex over Z["wﬁ

w,wE

0,(9.¢) = (clgh v 1y el ¥ cighn) = (c,w)

m,wE
n-1

with wG:Hn_l(Y,wg)———-~Q (C(g!)) the spectral quadratic
construction on the geometric Umkehr semi-stable m-map
G:Tn(vy)*—————a Zmﬁ+ obtained by equivariant S-duality as in §7.3.
The quadratic kernel of the formally (n-1)-dimensional
topological normal induced from (g,c):N —= Y by pY:Y'————»Y
(g',c') : N' ——> Y
is the restriction of the quadratic kernel of (g,c)
Ok flg',c') = plﬁ*(q.c)
with p : n' = Wl(Y') — = Wl(Y) the inclusion.

The quadratic kernel of the formally n-dimensional topological

normal map of pairs



(h,d} : (P,N') ——> (Z,Y")
L]
is a formally n-dimensional quadratic pair over zn'" )

tw!

oy (h,d) = (e:p'C———p, (su,p'¥) €01 ¥ (e))

defined using the relative spectral quadratic construction,
with D = C(h!) the algebraic mapping cone of the Umkehr
Z{n']-module chaipr map

h*

* — o~ [P]f]—
—— > C{(P,N})

! ——— C (P)

AL C(E,?)n_*'w n-+%,w

with Z the universal cover of 2 and h: (P,N) —(Z,¥) a
n'-equivariant 1ift of h:(P,N) ——> (Z,Y). Let Ey:?'-——ﬁ'Y
be the n-equivariant (trivial) double cover of Y obtained from
ﬁy:?'—————>Y by pullback along the covering projection ¥ —-—Y,
inducing the Z[n]l-module chain map
By : C(T") = p!p’C(Y)—»C(i) : aBX % ax

ta€ z(n], xecC(¥)) ,
and similarly for N. The Z([n]-module chain map

! !
i p!p!C(g’) = p!p'C — > C ; a@x r——> ax

fits into a commutative diagram

-]1-% ~ 1
c(yrynriz*owe y C(i") >p,p'C
pN 1
i
~n=1- 9 -
cMITE sl — s C :
The Z[n]-module chain map
| !
pe s p,p'C ———>pD

fits into a commutative diagram
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cEnMITE el ~—>p,p'c
ay pe
!
P
CELz ¥ B uF) ——pD
(= p,(C(z, )" (= p,C(P))

with qN:N—%»P the inclusion. It is thus possible to identify

!e

i \ , Vl
C(( :p,p'C ———cop,D) = £'ca’)up,cih’)
p ! ! !
s cehic®MTIY — s o)) .
The quadratic kernel of the formally n-dimensional topological
normal map (f,b):M——— X is the formally n~dimensional
quadratic complex over Z[ﬂw]
1 1
O, (£,b) = (CE'), ¥ ([X]) €Q " "(C(E')))
'
= £'0,(g,c) vwp,0,(h,d)
with wF:Hn(X,w) —_— Q:'W(C(f!)) the spectral quadratic
construction on a geometric Umkehr semi-stable m-map

F:’I‘n(\)xj*‘—‘—a Zwﬁ+ inducing the Umkehr Z{n)-module chain map

Fr M}~ -

TRW oMY T o (W)

£ o

with X the universal cover of X and f:M -———> X a n-equivariant

lift of £:M----—> X. Define a Z[n})-module chain map
Ak ' p,e
j+¢-—w->ppC ————spDd ,
with
Ak 2 C ey p!p!C ; Xe— 18x + tﬂt—lx
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the Z{n]-module chain map appearing in the short exact sequenc

Ak i
Q—C ~—— p,p!c ————3% AC ——> 0

(Recall that k was defined by

k : AC ———)p|p!C ;o Xb——18x - tBt "x )

It follows that the Z{n}-module chain map

0 M .
( PAK) 1 C() —— C( ) = AC(f")
1 p,e
appearing in the commutative diagram
J .
C yp!D ¥» C(3)

W ()
o)

Ai
p,p C —————Cop D ——-——7C(( j)
! ! p,e

is a simple chain equivalence. The Z[n]-module chain map

]
Ak:C — p,p'C fits into a commutative diagram

c@)nlrwt >cf) ——3 C
]
Py Ak
!
cEnMITE__9' ey — 5 pplc

The double covering of (f,b):M——>X induced from the double
covering px:x'—+x is a formally n-dimensional topological
normal map

(£1,b") = (h,d) U o0 oy (h_,d)

(g'

= _ oo
M' = P+\JN,P_ > X Z+L)Y,Z_



for two copies (h ,d,),(h_,d_) of (h,d). Regarded as a

Z[n']-module chain map j can be written as
AR ' L sl ~
p'i = ( ) cp'c = cplgliptc@PTITNYE) L pled))
! ! !
—_—>p p!D = C(h+)$C(h_)

!
with j,:p'C ——>D a copy of the inclusion p'C{g')——>cC(n})
and j_ = uj+.

The antiquadratic kernel of (f,b):(M,N) ——(X,Y) is
the formally (n-1)-dimensional (B,~w(t)t2)—quadratic complex
over Z[n'}

ol (F.b) = (D,ep'tmeo” B
& (f regp '3 n-1 )y .

In order to relate this to the antiquadratic construction

by, Hy (N, wE) ——> Q:l'B(P!C(ﬁ),-w(t)tz) on the geometric

PN
Umkehr n-map PN:EwN+—-—~—+ZmN; of the double covering pN:N'————+ N

consider the commutative diagram of normal maps

(g',c')
N' —— — Y

(Py by) (Pyrby)

(g9.c)
N ——————— Y

The equivariant S-dual of the induced diagram of maps of Thom
fm-spaces is a commutative diagram of (semi-)stable m-maps
G’
TN e T (v,,)*
+ Yy

P Tn(by)*

G
o T N
I N, & TH(VY) .



By the sum formula for the spectral guadratic construction

of Proposition 7.3.1 v)
] !
bgPy = (Ak)g¥o + (p,p a) ¥, g
: N
m,wWE !
Hn_l(Y,wE)‘v—~4—* Qn—l (C{g"'")

where a = inclusion : C(N) ——> C(q!) = C and

w,w'
1

ﬂrWE - wE = ! n',8 ! . 2
onyhctath = oY mplo) = ol 1" wrore] 1B el it t?)

(¢}
The antiqguadratic construction Wﬁ is such that Wp = < )
N N [
pN
!
! P g . N
and wG.pQ = (since the double covering p,:Y'—Y is
o Y
trivial), so that
pltew) = plevg(v)) = —(p'aigup (N eol B, ~winred)
N
and
]
a,{f,b) = (D,e p t(¥))

 play o "R 2
(D,=3,q(p @) ¥} (1) € op (D, -w(t)£%))

The verification that a one-sided handle exchange on (g,c):N—>Y
inside (f,b):M ——*X determines an algebraic surgery on o} (f,b)
now proceeds as for ordinary surgery in Proposition 11.7.3,

with the equivariant self-intersection Bo playing the role of u.
ii)} The natural isomorphism of Proposition 7.6.4

' ~ B 2
LNn_l(n ——— 1, w) —-ﬁwéLn_l(z(n 1V, -w(t)t

sends the splitting obstruction s(f,Y) = (o,(g,c}),0,(h,d))
to the cobordism class of the antiquadratic kernel o.(f,b}.

I



In the original example of Browder and Livesay [1]
(X,Y) = (]RP",]RPn-l) and the splitting obstruction along Y¢ X
of an s-triangulation f:M —~Z—» X (for n 35} is an element

n-1, _ n
s(f,Y)GIMn_l({l)———?Zz,(-) ) = Ln_l(ﬂ,(—) ) .

Thus the obstruction is O if n=0{(mod 2), and is

the Arf invariant skew-quadratic
1 of a non-singular form
E(the signature) quadratic!
n=1l{mod 4) .
over Z if . Lopez de Medrano [1] studied the
n = 3(mod 4)

splitting obstruction theory for arbitrary type C)
(n,n-1)-dimensional geometric Poincaré pairs (X,Y) with

nl(x) = nl(Y) = 22, for which the splitting obstruction along
Y €X of an s-triangulation f:M ——> X is an element

s(E, V) €N ({1} ——Z, WX} (t)) = L, (Z,c)

with € = w({(X)(t) = +1 if T:X' + X' is orientation-preservin
(i.e. if X is orientable) and € = -1 otherwise.

If (M,JM) is an n-dimensional manifold with boundary
such that M is an (n-1)-dimensional geometric Poincaré complex
the Poincaré-Lefschetz dual of the mod2 fundamental class
M} € Ho_ (M:2Z2,) is an element £ € HI(MVBM;EZ) classifying an
sO-fibration £:M ——» BG(1) such that

i) E,N =V = vy P N> BG) is the non-trivial

normal bundle of a codimension 1 submanifold Nc¢M such that

Nn3M = @ and g, [N] = [M] € Hn_l(M,wi) (w=w({M,3M}), with
g:N ——> M the inclusion
ii) g, = € : P ——>BG(1), with P = MNE() .
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Let (f,b):(M,0M) ——> (E(£),S(£)) be an s-triangulation of
the n-dimensional geometric Poincaré pair (E(£),S(E)) topolc
transverse at the zero section MC E(£) with f—l(M) = NCM,

as in the discussion at the end of §7.5. The rel 3M splittin

obstruction of f along MCE({)

B
1

e (r———mw =L (18w

s,(6,M) = a3(f,0) = (D,4'€q" 1B b, -wie)e?))

is the obstruction to the existence of a codimension 1 spine
Ne& M obtained by Wall [4,§12C]). In particular, if n-1 = 2m

and (f,b)| = (g,c) : N——> M is (m-1)-connected (as can b
achieved by preliminary one-sided handle exchanges bhelow the

middle dimension) it is possible to represent every element

- Nl 5 " o
x€Hm(D) = Hm(h+) = ker(Hm(N)ﬁ%Hm(M))r\ ker(Hm(N)—ﬂHm

by a framed immersion x :SmHsz with a lift to an embedd

1

2m in the double cover N' = S(v) which

L — .m L}
xl—xz.SL——~)N

extends to a framed embedding (x3,x2):(Dm+1

8™y e——(p ,N")

+1

together with a null-homotopy (x4,gx1):(Dm ,Sm) ———3>M of g

The antiquadratic kernel o] (f,b) is given in this case by th

m+1

non-singular (B8, (-) w(t)tz)—quadratic form over Z|[n']

! - ' ! ! '
(H (h ), hg= (1+T(_)m+1w(t)t2)¢o s Ho(h) xH (h]) —— Z[n']

m+lw(t)

o= V"Wt H (h]) —— H(Z:zZ (18, (-)
defined geometrically by Wall [4,§12C], with uo(x) the
equivariant self-intersection of (xl,xi) . An element xGHm(h
is such that uo(x) = 0 if (and for m» 3 only if) it can be k

by a one-sided handle exchange on {g,c):N—>M inside

(E,b): (M, 3M) — > (E(£),5() ).
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1f (X,Y) is a codimension 1 CW pair of type C) with

mX) = nl(Y) =, mn,(2) = nl(S(E)) = 7', w(X) =w: T —2Z

1 2
and f:M-——— X is a map from an n-dimensional geometric Poincaré
complex M the Poincaré splitting obstruction of £ along Y< X

is given by Propositions 7.5.1 iii}, 7.6.4 to be an element
P . - . B 2
s (£,Y) € LN ,(n'——>m,w) = L (ZI7']",w(t)t") .

As it stands the construction of this invariant requires f to

be normal transverse at Y €X. However, in the case n = Z,, 7' = {1},
n = 2m Hambleton and Milgram [1) identified this Poincaré

splitting obstruction with the Arf invariant of the non-singular

quadratic form over Z,

(HT(M'52Z2,) Ao tHT (MY 522,) x HT (M3 Z,) —— Z 5 (x,y) —— <x U Ty, [M']>,

= m ' .oyl ',
Mo = V(up (M) s WM Zy) ——zp)

with pM:M'-———>M the double cover of M induced along f from

the double cover pxzx'= Z,v Z_——> X of X, which is

5(8)
defined without normal transversality. We shall now use the
antiquadratic construction to express the non-simply-connected
Poincaré splitting obstruction in terms of a generalization

of this form, which is also defined intrinsically (i.e. without

appealing to normal transversality).
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Let M be an n-dimensional normal space, and let M be an
oriented covering of M with group of covering translations 7
and orientation map w:n»——ﬁ'zz such that n is equipped with
a subgroup "'c T of index 2, so that

p = projection : M/n' = M' —— M
is a non-trivial double covering of M with a geometric Umkehr
stable n-map
P I M —— 1M, .
As before, write the group extension as

p £
1} ——— 1" ——s 7 > Z, » {1} ,

choose an element t€ n-n' and define an antistructure (8,t2)

on Zn'} by

B : zln')—>z(n'] ; § n_,g'+——> § w'(g'in_,t g "t
gle"l g gle."I g
(w' = wp ' ——> 22) .

Use the antiquadratic construction on P

' B

1] ] P
vp ¢ H M) ——— 0" Biptoddy ity e?)

to define the antiguadratic complex of (M,p), the n-dimensional

(B,W(t)tz)—quadratic complex over Z{n']
o, (M,p) = (R'C(R) by (M]))

with antisymmetrization

(1+T 2)o, (M,p)

wit)t

(el pttog (M) €Ql, ip'cdH),wit)t?))

pleor My .
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Proposition 7.6.6 i) The antiquadratic complex o, (M,p) is

such that
(1+T, ), 2)0, (M,p) = p'tor(m
940, (M,p) = Sp'to, M)
where 0*(M) = (C(M), by ([M]) eo:’w(C(M))) is the symmetric

complex of M, g, (M) = (QC({M]n -) ,¢6021Y(DC([M]n -}}) is the
quadratic Poincaré complex of M and

AAJNEIRPCHT - S

. . [ 1 ~ n-

g = 1inclusion : P C(M}—>Pp C([M]r\--:C(M)n

ii) If M is an n-dimensional geometric Poincaré complex then
o,(M,p) is an n-dimensional (B,w(t)tz)—quadratic Poincaré

complex over Z([n'}. The antiquadratic signature of (M,p)

is the cobordism class

o, M,p) € L (Zfn)® it e?)

iii) The antiquadratic signature vanishes if (M,p) is the
boundary of an (n+l)-dimensional geometric Poincaré pair

(6M,M) equipped with a double cover (dp,p) : (SM' ,M'}) -——> (M, M)
such that‘ﬂ extends to a cover (&M,M) of (8M,M), in which

case the antiquadratic complex o0,(M,p) is the boundary of the
(n+l)-dimensional (B,tz)—quadratic Poincaré pair over Z(n']

n',8

neleEn

0, (8M,8p) = (£:p'C(H) ——p C(EM), b, L(I6M]) €Q
so that

o,M.p) =0 €L (1B wiere?)

iv) The antiquadratic signature vanishes if (M,p) admits a
characteristic geometric Poincaré subcomplex, that is if the
classifying map p:M-—> BG(1) = RP is Poincaré transverse at

-1 ® -1 oo—] . . .
RP ¢ RP , so that (M,N=p " (RP )) is an (n,n-1)-dimensional

geometric Poincaré pair of type C) with M = P uyP_.



More precisely, the antiquadratic signature vanishes
o,(M,p) =0 € Lanht'lB,w(t)tz) '
since the antiquadratic complex o,(M,p) is the boundary of the
(n+l)-dimensional (B,W(t)tz)-quadratic Poincaré pair over Z([m'
04 (M,N) = (j+:p’C(ﬁ)-——oC(ﬁ,E),(o,w;,((Ml))eo:;iﬂu‘,,))

n+k

Proof: i) Let (v :M-\*4>BG(k),pM:S ——%T(VM)) be the normal

M
structure of M. As in the proof of Proposition 7.4.1 i) let

F:Tn(vM)'~*——7Zmﬁ+ be a semi-stable n-map inducing the

Z|[n]-module chain map

W scM) .

Mln-: con"
The projection p:M' ——>M is covered by a map of (k-1)-spheri

fibrations b:p*vM———-»vM, with a commutative diagram
S (b)

——> S(vy)

S{p*vy)

P
MY ——— > M

in which both p and S{(b) are double coverings. The geometric
Umkehr {1}-maps P and S(B)} induced by p and S(b) fit into the
commutative diagram

S (B)

w )
IS (Pruy) , 6 E°S(v,),

L ch
—
£M+ z +

so that there is induced a stable {1l}-map of Thom spaces
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T(B} = P/5(B)
L T(VM) = I M+/E S(vM)+—————>X T(p*vM) = F ML/E S(p*vM)+

Define a normal structure for the double covering M' of M by

(Vys = Pruy®e’ i M' ———3BG(k+=),
o o T(B)
ogr + ST ML T () s BT pryy) = T )

so that the corresponding semi-stable w-map F':Tn(vM,)' ———)Emﬁ'+

fits into the commutative diaqram of (semi-)stable m-maps

F
Tn(vM)* —_— M+
Tn (b)* P
F' ¥
Trlvy ) * ———— I M}

inducing the commutative diagram of Z{n]-module chain maps

Ml n -
e ey
'
p* P
TSI 'S P
cPTTY T s e

By the sum formula for the spectral quadratic construction

of Proposition 7.3.1 v)
Up TbI* = (' %) + (PP ) U (M] 0 -
AT () o) = 10m —— 0T M cimr ) -))

=op et el Bt (min -y, wie) e?)

with



g = inclusion : C(M) ——= C({M]ln -)
p,plg = inclusion : P'p!C(ﬁ) = c(m')

———ppiC(IMln -) = C(IM']n )

(p',p*) = ak : C(IMIn-)
——c(m1n-) = ppiciM n-)

As p:M'—— M is a trivial double covering p!th, = 0, and

! -
p wp = 0, so that

1
p Y., T(b)* g !
WFvT(b)' = ( F ) = ( ! PF ]
o plevg +agbi (M n =)

T, W

n (C([M']1n-))

K (T (vy) sw) —— 0

’B(P!C([Ml n-) ,w(t)tz).

AT w _ n'
=Q, (P C([M]n ))QOn
Evaluating the second component on the Thom class

UvMG ﬂk(T(vM),w) and rearranging we thus have

gy (Mn) = plev ) € o Eplcimin o) winre?)

M
and
9404 (M,p) = p!tSc.(M)
(with So, (M) the suspension of the (n-1l)-dimensional quadratic
Poincaré complex over Z{n")
0, (M) = (C({MIn =), pe0r T (ac(IMIn=-)))
defined in Proposition 7.4.1 i)).
ii),iii),iv) are direct consequences of the definitions.
(]

(The definition in Proposition 7.6.6 ii) of the antiquadratic
signature o, (M,p) € Ln(mln']B,w(t)tz) of an n-dimensional
geometric Paincaré complex M with a non-trivial double covering

p:M'—>M corrects the definition of g,(M,p) in Ranicki [8,p.566}).
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In particular, it follows from Proposition 7.6.5 iii}
that for any space X equipped with an orientation map
w nl(X) =7 > 2, and a non-trivial map £ : 97 —> 22 the
antiquadratic signature defines abelian group morphisms
of ¢ ol xow) —— L i1 fwine?)
(f:M—-»x);————-»o,,(M,pM) (n»0)
with n' = ker(ﬁzn4—4~%422), pM = f*r : M ——> BG{l).
If pM:M‘~A—» M is a trivial double covering then o,(M,pM) = 0,
by a special case of Proposition 7.6.6 iv) (with N = ¢).
The antiquadratic signature maps 05 are related to the
symmetric signature maps g* by a commutative diagram

3

8]
P (kW) ——————— 1 (z (1%t t?)
a* 1+Tw(t)t2
i

pt
Mz — - - sz b ey

Proposition 7.6.7 Let (X,Y) be a codimension 1 CW pair of

type C) with

T X) =Yy =T, mo(2) = Ty{S(E)) = mt, wiX) = ow o,

i) The Poincaréd splitting obstruction function
uczf — sp(f,Y) on QE(X,w) coincides with the antiquadratic
signature map

v = 0% s X N s = Lz e )

(£:M——> X)——> 5" (£,Y) = 0, (M,p,) .
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ii) The hyperquadratic signature map 6* on QT(X'W)

is such that

5 !

~ ~ pt
plege = 0 ¢ aNix,w) —— BNz (")) —— LMz 1B w0 )
iii) 1f (£,5f):(M,dM) ———> X is a map from an n-dimens
geometric Poincaré pair (M,3M) which is (normal,Poincaré)
transverse at YCX with (f,af)-l(Y) = (N,)N) € (M,3M) then th

reld Poincaré splitting obstruction of f along YC X is given

sg(f,Y) = 0. (Mipylu -0, (IM,3N)

U*(aMrpqu)
€ LN _,(n' 7w = Ln(zln']s,w(t)tz) )

Proof: i) In the first instance we shall combine Proposition
7.5.1 iii), 7.6.4 to give an explicit description of the

Poincaré splitting obstruction of f along Y< X

P ! - 1B 2

s (f,Y) € LNn—Z(" ———y T, W) = Ln(z[n 17 ,w(t)t") ,
assuming that f:M ——>» X is normal transverse at Y< X. Let

f=qg'uh:M=EMV U

S_(v)P———>X = E(E)us(g)z .
with
g =f€f| : N = el ———5 v
h=fl:p=¢Y2)—>z

Vi N—>Y ———E—»BG(l)
Let M be the covering of M obtained from the universal cover
X of X by pullback along f, so that NCM is the covering of !
obtained from the universal covering Y of Y by pullback alon
and

M = P+U ﬁP_

for two copies 5+,§_ of the covering P of P obtained from the
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universal covering Z of 7 by pullback along h. The construction

of Proposition 7.4.1 i) associates to the (n-1l)-dimensional

normal space N an (n-2)-dimensional quadratic Poincaré complex
wE

over ZI[177]

04, (N) = (C,¥)

= e n—c M ITYE se@yve ol B .
Denote the double covering ﬁ/n‘ = S(v) of N by N', so that

(P,N') is an n-dimensional normal pair. The relative version
of the construction of Proposition 7.4.1 i) associates to (P,N')

L]
an (n-l)-dimensional quadratic Poincaré pair over Z[w'w |

0, (P,N') = (e:p'C——>D, (s¢,p'4))

n-l-tw Ll

(e : QC(IN] n - : p'C(R)

—sc((Pln - C(B, MY L (B)y,

{ T
(89, p'¥) € o 1Y (e)) .
Define a Z[n]-module chain map

i p!p!c ———> C ; g@xr——> 39X (g€ W),

so that

c(mMin=-:cMmm Y (h))

i 1
c( ' }:ppCc—>CapD)
o) " !

is a simple chain contractible (based) Z[n]l-module chain

i

complex and ( ) is a simple chain equivalence. The expression

p,e
for the Poincaré splitting obstruction given by Proposition

7.5.1 iii) is
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sPLE,Y) = (0, (N),0,(P,N'})

((Cod) s (e:pic —> D, (54,p' )

€ LSn_2(¢) = LNn_Z(ﬂ‘———»n,w)
As in the proof of Proposition 7.6.4 we have that the composite
Z[n]-module chain map

. Ak i p,e
j : C ——-—— p!p'C > p!D

is a simple chain equivalence, with

Ak : C ———>p,p'C o xr—18x+ t@t Tx .

The restriction of the Z|n]-action to Z[n']lc Z{n] defines a
simple Z[n']-module chain eguivalence

' L ! ~ !
pJ=] :pC——p'p,D = D,&D_
]

. It now follows from

with D, a copy of D and D_ = uD,

Proposition 7.6.4 that the Poincaré splitting obstruction
of f along YC X is given by
P
s (£,Y) = (D,,¥")
€ LN (1'—>m,w) = L (7z[w']B -W(t)tz)
n-2 ' n-2 !
with ¢' defined by

o = J,ptt € o B, wiyt?)

n,wi
n-2

quadratic construction WF on a semi-stable m-map

As it stands Y€ Q (C) is defined using the spectral
F:Tn(vn)*-——f»zmﬁ+ inducing the Z[n)-module chain map

COINIn - s @M YE Loy

Working as in the proof of Proposition 7.6.6 i) it is possible
] ' 1

to express p t(y) € Q:_és(p‘c,—w(t)tz) and hence also %' in

terms of the antiquadratic construction ¢p . It follows from
N



this expression that surgery on the connected (n+l)-dimensional

(B,w(t)tz)—quadratic pair over Z|[n']
(g, = projection : p!C(M)—vgv—A»C(ﬁ,§+),
' n,B 2
(Orpr(lMl)) € Q41 (9y wit)en))

results in the skew-suspension §(D+,W') of (D+,W‘). Thus the

skew~suspension isomorphism
5z vl —=s i zin 1w )

sends the Poincaré splitting obstruction sp(f,Y) = (D ,¥"') to th
— t ~—
antiquadratic signature S(D ., ¢') = 0,(M,py) = (P'C(M), 45 ([M])).
M
ii) Working as in the proof of Proposition 7.6.4 it may

be verified that the composite
]

PNtz sz ) Nz ) —— Pz )R et
is O. (This does not require any algebraic transversality).
If f:M——> X is a map from an n-dimensional normal space M
which is normal transverse at YC X, with N = f—l(Y), P = f_l(z),
N' = f_l(Y') as in 1), then the hyperquadratic signature
d* (M) e £"(Z(n"]) is the image of (§*(N),G*(p,N')) € (il).
It follows that p'té*(M) = O.

iii) This is a direct generalization of i), and may be

proved similarly.

0

The expression for the rel’ Poincare splitting obstruction

as a union given by Proposition 7.6.7 iii)

P Nag -
. =0 -0, (oM,IN
s (£,Y) » (Mepy) v 04 (M, D) » (IM,ON)

can be combined with the sum formula of Proposition 7.3.6 to
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recover the result of Mann and Miller [1] that for n = O(mod 2)
the Arf invariant of 12@0,(M,pn) is defined (i.e. the middle-
dimensional self-intersection form is eradicable) if and only
if the Arf invariant of Z,®0, (3M,7N} is defined, and that if

such is the case the difference of Arf invariants is the mod2

rel) Poincaré splitting obstruction EZQSS(E,Y).
Proposition 7.6.8 Let k» O, and let

K
x, = 8 @zzi 1,0 - <c,¢>eo;“2,(_,k<cn

k

Kk
M

be the 2k-dimensional symmetric Poincaré complex over Z[:Zé_
(= the group ring Z(Z,] with the involution t = (-1*t) gefine
by the k-fold skew-suspension of the non-singular (—)k~symmetr

k
form (2z[Z,],t) over Z[zé—) }. Then

k

box € im(c*mgkm(zz,l),(—)")—+L2kmm§" 1)

N Kk
1i) I £ im(8e0l (k(z,, 1), (0 —— 1 @zizlT )
Proof: i) Let g : K(Zz,l)——~—*BG(1)( =K(22,1)) be the univers

line bundle, and consider the commutative diagram

£
Kz, 1), () —— Lz, 05 = Lz -z
2k 2’ ! 2k ! 0 -
o* 1+T = 8
K ‘e
_ p
P zizd) ) e 1z, 05 =% =z

The 2k-dimensional (—)k—symmetric Poincaré complex over Z

! - 1o
plt(x,) = 5 (zez, )
o 1

is the k-fold skew-suspension of the non-singular symmetric

/,»f-* P\"/ . 1



!
(K 1 o

! .
form over Z p't(z[z2 1.t} = (ZQTZ.( >) of signature 2.

1

As 2 £ O(med 8) it follows that X, ¢ im(o*).
ii) By i)

%)

p!thk = Jp!txk =2 #06¢€ ﬁZk(E,(—)

so that Jx ¢ im(G*) by Proposition 7.6.6 ii).

In conclusion, we shall use the LN-groups to give a
geometric interpretation of the exact sequence of Proposition 5.2.2
for the simple e-quadratic L-groups L*(Au[x,x—ll,c) (e = 1)
of the a-twisted Laurent polynomial extension Au[x,x‘1] {ax = xa(a))
of a group ring A = Z[n] with the involution extended by x = x

a -1
ces > L (A, €)BL (AT, €) — L (A [x.x "],€)
e an o, o
~A-»LN11n(A,u,e)0H (ZZ;Wh(ﬂ) )QLNlln(A,a,e)
a
————»Ln_l(A,E)QLn_l(A JE)—> ..,

with a:A——> A the ring automorphism induced by a group

automorphism a:m ——» 1 such that a2 = id., Y = (n}giil(A).

o +1 . .
z, = {o} QNlll(A,a ). The key idea here is due to

Tom Farrell and Sylvain Cappell (independently) - I am particularly
indebted to the former for a helpful letter. The idea is to

express the infinite dihedral group

D= [x.yl(xy)2 = y2 = 1}

o

in two different ways:

i) as the free product of two copies of 22

- 2 _ .2 .
- Z,*Z, = {tl,tzftl = t5 =1}

D

with generators tl = Xy, t2 =y
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ii} as an extension of Z by Z,

p E

(1}—> 2z ————> D ——> 7, ——>{1}

2

with p(1) =x € D, £(x) =1, E(y) =-1 € Z, = (¢1},

and to compare the codimension 1 splitting obstruction theory
of type A) associated tc i) with the codimension 1 splitting
obstruction theory of type C) associated to ii). This can be
done using either the manifold splitting theory of §7.2, or the
geometric Poincare splitting theory of §7.4, or the algebraic
Poincaré splitting theory of §7.5 - we shall stick to manifolds.

Let then n be a finitely presented group which is equipped
with an orientation map w:n —Z, and an automorphism a:nm -——>»"n
such that

a” = jd. : W > T , wa = w : T ———> 22.

Give the group ring A = Z{n} the w-twisted involution
:A——>A; ) ngr-—>] wign g_1

(n_€2)
qeE™ 9 geEn 9 9

and note that the automorphism

a : A ———> A ; X n.gr—— Z n_a(g)
gén 9 gen 9

is such that

a@) = aa) = a @) €A (a€A) ,
so that A,a satisfy the hypotheses of §5.1 and the a-twisted
polynomial extensions Au[x], Aa[x,x_l] of A are defined as
rings with involution (ax = xa(a), x = x). For each element

s € Ln(AaIx,X_I),c) {e = t1) write the image of s as
|

fs} = (1511,1512,1513)

A ~n a Sy
€ LNlln(A,Q,e)@H (Zz;wh(n) )@LNlln(A,n,E),
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and if [s] = O denote an inverse image of s by
a

[Is]] = ([[S]ll.[[sllz) € Ln(A.E)QLn(A JE)

We seek a geometric interpretation of these decompositions.
Let nx D, be the extension of % by D defined by
gty = 9 , 9t, = t2a(g) (gem) .

As for D, above (the special case 1 = f1}) there are two
different ways of expressing = qum

i) as the free product with amalgamation

a

D, = (Fx2Z,)% (T X, 222)

with mx oZ the extension of 1 by Z

2 defined by qt2 = tza(g)

2

ii) as an extension of LEN by 22

P £
(l}—%nxuz T x (D > z, —> {1}
with i(g) = g, p(l) = x, £(g9) =1, &(x) =1, £(y) = -1.
Note that x = tlt2 (by definition) so that
gx = qtlt2 = tlgt2 = tltza(q) = xa({g) € nqum
Fix numbers k » 3, n»k+7 and let (Mn-k_2,8Mn_k—3) be an

(n~k-2)-dimensional manifold with boundary such that
m. (M) = nl(JM) =71, w(M) = w : T —> Zz .
[N . k Lk
Let P1#P2 be the connected sum of two copies PI'P2 of the real
projective k-space RPk, and let
- P

(0}, %) s (WL sk sy s PRy

1 .0 k, .,k c s
be the (D",S }-bundle over Plﬁpz classified by

k, K
. » = . = —_ >
£ nl(Plﬂlz) ”2* 2 D ZZ.

Let (Q?A2;1+Q?‘3,3_O?_3) (i=1,2) be (n-2)-dimensional manifolc

triads such that there are defined fibre bundles

N



(M, 1M) ———> (0;,5,0;) —-

with
-1
i

9.0 =g (sk‘l) = Mxsk”

"1(01) = "1(7J+Ql) = TxZ,
T Qy) = T (5,Q,) = T x 7y

k-1

(e.g. (Qy33,0,2.Qy) = (MxN;3MxN,MxS" 7})). The (n-2)-dime

manifold with boundary defined by
n~2 n-3. _ _ . ~
(Q $3Q ) = (QIUMx gk le,d+Ql Yok sk 13+02)
is then such that
T Q) = m, (0Q) = ﬂl(Ql)*nl(M)nl(Oz) = mx. D,
and there is defined a fibre bundle g = gy v g, over
keok _ Sk K _1pk _ Rk
P #P, = Py DusklP2 D

(q,9q) K.k
(M, M) ———> (Q,3Q) ————> PlﬂP2

Define also an (n-l)-dimensional manifold triad (Xn_l;3+xﬂ_2,

by

>
n

{(u,v) €ENxQlp(u) = qlv) ep‘;#p‘;)

3, = {(u,v) €EX]veaQcq}

{tuviexfues®Ixsl = anen ,

@
ke
n

so that (X,3_X) is the total space of a (Dl,SO) bundle £ over

(0},8%) —— (x,0_x) s g
(namely the pullback of p along q, with classifying map the
group morphism £ :nl(Q) =1x D, —— 22 defined above}, and
(J+x,d3+x) is the total space of the restriction of £ to a

(Dl,SO)—bundle :+€ over 5Q



a6 =&l
(o!,s% —— (7,X, 00 ,X) S Y

(namely the pullback of p along ‘q). Define also the manifold

triads and manifolds with boundary

378 X
-1 -1 L1 -1 .
=« hopseteep o et et =12
n-2 ,,n-3, _ . .
(Y , Y } = the zero section of (€,3+E) = (Q,dQ) x O C(x,3+x)
n-2 n-3 n-3
S ER AR IR L
= (XA YiX N Y0 X 00 X0 Y) = (0;33,0;,2_0) X0 (i=1,2)
‘Zn 2;J+Zn-3,ﬁ_zn‘3)
= s T e omes® Yy ot b xosk L))
= (Xll\ Xy5d,Xn3, Xy n J+X2,. X, n 3_X2)
= Mxs® Luapliomxsk lxpl mxsk1lx g0
W, Wy = vz, vaz) = mxskTl amx sk o
such that

H G = ‘_—_ 3
(X2, X.6_X) (xlu7x2,a+xl\ Z uj 7 +x2\ Z, XluJ_ZD-XZ)

(Y,ay) = (Y o Y

20219 e Yp)




For ¢ = (—)k+1 let ES (resp. Di = %E*ZS) denote the
group Z, (resp. D) with the orientation map We(t) =€
(resp. we(ti) = ¢ (i=1,2)), and write LN*(H—#nxuzz,wxwe)

€
(resp. LN*(ﬂva—«_>nanmnwwa)) as LN*(n—/~~7ux022)
€
(resp. LN‘("xu% —-ananm)).
By Wall [4,Thms.11.7,12.9] every element

€
s € LNn—Z(" x Z——>Tx D}

is the reld splitting obstruction along YCX of an s-triangulation
of the (n-l)-dimensional manifold triad (X;9+X,9‘X)

“'l;s“v“'z,“_v“'z) — > (X35, X, _X)

f : (Vv
such that 3 f = £] 3,V —2— 3 X is split along 0Y< 3, X, and

the LN-group may be expressed as an L-group
LN . (1x Z—>7x D) = L (A [x.,x ‘1.€)
n-2 a a’w n‘a !

with t = ty € mx D, here (cf. Proposition 7.6.4), The image of
s=5.(6,¥) € L (A Ix,x '),€) in L _,(Z[1,D “]) is the rel
surgery obstruction o, {g,c) of the (n-2)-dimensional normal
map of pairs

(g,c) = (£,b) & £ 1Y, 0¥) —>(v,3v)
which restricts to an s-triangulation of 3Y. The image of
o,(g,c) € Ln_z(z[nx(lD'el)in the group

-€
T ——nx Z
a2

-€ - . o€
LSn_‘1 l 9 1 UNlln_z( )

-€ -€
Tx Z, —»Tx, Dy

n-3

ntdc oy of the

I
is the splitting obstruction s{.-g, W) along W
s-triangulation

N R



743

It is thus possible to identify

S o~ i o
[s]; = s(%g,iW) € INil (A,o,€) = UNil _,(® ') .

By the unitary nilpotent cobordism construction of Cappell ([7]
it is possible to replace f by a normal bordant s-triangulation
of (X;v X,5_X) with Ug split along "W<c3dY. By the Browder-Wall
n-n theorem it is possible to extend this splitting of Jg to

a splitting of the s-triangulation ) f : a+v-41a 9,X along
4,2¢ 3, X. The obstruction to extending the splitting of

da,f = 08 f : 40 V—"—>4J_X along 3,2 = 33_2<3+_X to a
splitting of the s-triangulation 3_f : 3_V =5 3 _X along

2_Zc X is the element

Mol uTul ~—» T Ul

s

\ _ _ an R a
L0 2) = [s], € LS __4 [ = 0%z Wwh(m) %) .

(nun)xV——anxaz

Applying the unitary nilpotent cobordism construction again,
it is possible to replace f by a normal bordant s-triangulation
of (X;5,X, _X) with _f split along 3_Z C3_X. The obstruction
to extending the splitting of the s-triangulation

Gf = o fusf o V= 5 Voo V0K o= 3 XV X
along iZ = AN CJX to a splitting of f along ZcX is the
element

. =s (F,2) € NIl {(A,a,€) = LS___(9%) = UNil (%)

[sly = s (F,2) il (A0, LS o n .
Applying the unitary nilpotent cobordism construction once more,
it is possible to replace f by a normal bordant s-triangulation
of (X;W+X,-AX) which is split along (Z;‘+Z,1_Z) < (X;u+x,3_x),

so that f restricts to s-triangulations
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_ n-1 . ,n-2 . .n-2. _ -1 o .
£, = £l (ViTa0 VTV s XXy X))
T (X8,X, X)) (o= 1,2)
such that 4 f, = fil t 5,V == 3,X; is split along

éYi = D+Yiuﬂwwc a+xi. Thus if
[s] = ([s]y.[s],,[s]4) =0
I ~n Qa, 2T
€ LNlln(A,a,e)QH (Zz;wh(w) )OLNlln(A,a,s)
the original s-triangulation f of (X;8+X,’)_x) is concordant to
one which is split along (Z;3+Z,'5_Z) < (X;3+X,?¢_X), in which cas
a choice of concordance (which is unique up to Hn+l(zz;wh(n)“)}

determines an inverse image of sGLn(Aqu,x_ll,e)
[[s)] = ([s11,.(s]],) € L (A,e)®L (A%, c) .

The obstruction to extending the splitting of 3+f1 along SYlC 3

to a splitting of f1 along Y, ¢ Xl is
- € -
sy(f,.Yy) = ([s]]1 € LN, ,(m—>nx2Z)) = L (A,€) .

and the obstruction to extending the splitting of 3+f2 along

3Y2C 3+x2 to a splitting of £, along YZC'X2 is
Sy (£5,Y,) = [[s]}, € LN _,(n—>wx 25 = L_(a%¢) .
From the point of view of the algebraic theory of

codimension 1 surgery the above decompositions of the elements

seLn(Aa(x,x_l],e) may be deduced from the following

commutative diagram of exact sequences of abelian groups,

in which the horizontal sequences are of types A) and B),

the vertical sequences are of type C), and L,(7) = L (Z[n])} (as
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! I ]
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ﬂ Zxu +— u) 1 A ‘zxu) 1 Awﬁxflli NT AuprTrv 1
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7.7 Surgery with coefficients

In the original theory of Wall [4] guadratic L-groups
L,(A) were defined for all rings with involution A, but only
the quadratic L-groups L, {Z[7]) = L,{7n) of integral group
rings Z(7} were given a geometric interpretation as surgery
obstruction groups. Since then many authors have developed
analogues of the theory for surgery with various types of
coefficients, giving geometric interpretations of the quadratic
L-groups L,(S~IZIHJ) of the localizations away from appropriate
multiplicative subsets SC Z[n). We shall now list these
analogues, after which we shall develop the algebraic theory
of the Cappell-Shaneson homology surgery which is needed

for the algebraic theory of codimension 2 surgery of §7.8.

I} Q-coefficients

Even prior to the theory of Wall [4] it was clear from
the work of Kervaire and Milnor [1l] and Wall {2] that quadratic
linking forms over (ZI[7],Z-{0}) play an important role in
surgery obstruction theory, in the first instance as a
computational tool for finite groups n. Later, Passman and
Petrie [1] and Connolly [l] obtained special cases of the
localization exact sequence

cemo Lz = LS (@) s L (Z(0),S) s> L (ZIn])—>...
(s = z-{0}cz(nl, n€ Z)

using a mixture of geometry and algebra. Pardon [1],[2],[3]
obtained the sequence in general, purely algebraically (at least
for finite m), and interpreted Ln(m[n],s) as the obstruction

group for the problem of making an (n-1)-dimensional topoloaical



normal map (f,b}):M-—-—~» X which is a rational homotopy equivale
(n, (£)@p = O) normal bordant to a homotopy equivalence
(f',b"):M"——X (1, (f') = O) by a normal bordism

(g,c): (N;M,M') ——>Xx (I;0,1) which is also a rational

homotopy equivalence.

11) Z,-coefficients

Let P € {all primes in Z} be a subset {possibly empty),
so that there is defined a multiplicative subset

i] i2 ik : :
Sp = {a;7q,% .9 Iql,qz,...,qke {all primes in Z} -P,
il,iz,...,ik>0}c /4
and the localization of Z at P
z, = 5;1:1 <0
is defined as usval. Every ring R such that Z¢ RS Q is of the
type R = Zp for some P. A map of finite CW complexes f:M ——>X
such that f*:nl(M)—&) nl(x) is a P~local homotopy equivalence
(n.(f)@?ZP = 0) 1if and only if it is a zp[nl(x)]-—coefficient
homology eguivalence (H*(f;zpln]’(x)]) # 0}, by the P-local
Whitehead theorem. The theory of Wall [4] is the case
P = {all primes in Z} , when Z, = Z; the theory of I) is the
case P = @, when YZP = Q.

Surgery on topological normal maps up to ZZP[n]—coefficien
homology equivalence was first studied by Jones [1}, in
connection with his \_/work on the fixed point sets of
semi~free actions of cyclic groups on manifolds (Smith theory).
In particular, the theory of Wall [4] was extended there to

surgery on formally n-dimensional topological normal maps

(f.b):M —» X to n-dimensionatl EPITT1‘X) l-coefficient geometric
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Poincare complexes X. It was shown that such a map is normal
bordant to a P-local homotopy equivalence if (and for n 35
only if) o,(f,b) = 0 € Lo (Zpfny (X)1). Quinn {4] extended this
theory to surgery on Zp—homoloqy manifolds.

The original application of surgery to the classificatic
of manifolds which are homotopy spheres due to Kervaire and
Milnor [1] was generalized by Barge, Lannes, latour and Vogel
to the classification of manifolds which are Rp—homoloqy sphe

G.A.Anderson [1] developed an analogue of the Browder-N
Sullivan-Wall theory (the special case P = {all primes in 2}
for the classification of spaces with the P-local homotopy
types of manifolds. The theory was reformulated by Taylor and
Williams [2], and applied there to the classification of
embeddings of manifolds in P-local homotopy spheres, the
P-local version of some of the results of Browder [3)}.

This theory deals with P-local Spivak normal structure;
we shall only be concerned with normal spaces

n+k

(X, vy :X ———> BG(k),pX:S ———»T(vx)) with P-local

X
Poincare duality, i.e. such that the Zplnl(x)]-module
chain map
[X1h - : c<>?;zzp)"‘*——~-> CiX;zp)

is a chain equivalence with X the universal cover of X and

C(XiZp) = ZB,C(X) = zp[n1<X)1@E["1(X”c&) .

Pardon [4) used local surgery theory to extend the work
of Madsen, Thomas and Wall on the classification of free acti
of finite groups on spheres ("the topological spherical space

form problem™) to the classification of free actions of finit

groups on manifolds which are Zp—homoloqy spheres.



I11) A-coefficients
Cappell and Shaneson [1] developed an obstruction theory

for the problem of making a topological normal map (f,b):M-—>X

to an n-dimensional A-coefficient geometric Poincaré complex X

normal bordant to a A-coefficient homology equivalence, for any

locally epic morphism of rings with involution z[nl(x)]~4~—+A,

in connection with their work on codimension 2 surgery.

In particular, the theory introduced the I'-groups I', and the

A-coefficient homology surgery obstruction was expressed as

an element o,(f,b) € Fn(&[ﬂl(x)]A~——>A). The homology surgery

theory of I} (resp. II) is essentially the special case

A= Q(nl(x)] (resp. A = ZPIHI(X)]), with F*(z[nl(x)]——» A) =L, (M.

As already noted in §3.2 above Smith [1] expressed the
r-groups T, (Z[r] —>Z[p])) for certain surjective group
morphisms 7 —> p as the L-groups L*(S_lz[ﬂ]) of the localization
of Z[n] away from the multiplicative subset

s = {1+i|i€ker(z[n]—Z[p]}} < Z[n] ,
and that more generally Vogel [l] has expressed the I'-groups
I, (Z[n} ——>A) of any locally epic morphism Z{n]——>A as
the L-grousp L, (A) of an appropriate ring with involution A.
Furthermore, Smith {2] developed an obstruction theory for the
problem of making a topological normal map (f,b):M—> X
which is a A-coefficient homology equivalence normal bordant
to a homotopy equivalence by a normal bordism which is also a
A-coefficient homology equivalence, expressing the obstruction

'H‘f“l(X)}vv’Z(ﬂl(X)l

as an element o, (f,b) € rn+l l I (n=dim X).

%hw(x)]fuﬁfa A
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{(This theory will be described and generalized further below).

1v) @m-coefficients

As already noted in §2.3 above there is an obstruction
theory for surgery on Zm—manifolds (= manifolds with Zm-type
singularities), going back to Sullivan (2], for which the
obstruction groups are the relative L-groups L,(E[ﬂ]:ﬂm)
appearing in the exact sequence

...—éLn(z(n])——ﬂ'-ﬁ L (ZIn) ——L (Z[n];2 )~ L (Z1])—>...

Again, we refer to Morgan and Sullivan [1}, Wall [13], Jones [2],
Taylor and Williams [1} for applications of surgery on

Zm~manifolds to ordinary surgery.

*kKk

An n-dimensional geometric A-Poincare complex X is

an n-dimensional normal space such that the Z[nl(x)]-module
chain level cap product

(%)

(X]n- : c(x)"”
is a A-equivalence for some locally epic morphism of rings
with involution z[nl(x)]—————+A, with X the universal cover.
(For id. : z[nl(x)] e A = z[nl(xn this is just the
usual notion of a geometric pPoincareé complex). If X is a
finite n-dimensional CW complex with a fundamental class
[X] €H (X) such that [X]n -: H™ " (X1 8) ——— H, (X;A) is an
isomorphism for some locally epic morphism Zlnl(x)]~«~—4 A
and there exists a ring morphism A ——Z then X is an
n—dimensiona} geometric A-Poincaré complex. In keeping with
our previous conventions we shall assume that the geometric
A-Poincaré complexes X we are dealing with are finite and such

that [X]n - : C(x;/\)”’*~—~0(x;/\)=/\” C(X) is a simple

fn)x))



A-module chain equivalence. (As usual, there are also versions
for finite and finitely-dominated complexes).
Recall from Proposition 2.4.6 that the relative quadratic
A—>A
I'-group Fn( I 1 > is the cobordism group of (n-1)-dimensional
A— B
B-acyclic quadratic Poincare complexes over A, for any locally
epic morphism A——B. In particular, if X is an n-dimensional
geometric A-Poincare complex the construction of

Proposition 7.4.1 i} associates to X an (n-1l)-dimensional

(simple} A-acyclic quadratic Poincaré complex over E(ﬂl(x)]

0% (X) = HE* (X) = (2C([X] n=:C(X) " C (X)) W EQ_, (FC(IXIN =)

A . ; .
such that (1+T)o_ (X) = 90* (X}, representing the quadratic signature

Z[nl(x)]———+ z[nl(X)]
of(X) er,

Z[m (X)) ——> 1

An (n+lj-dimensional (normal,A-Poincaré) pair (X,Y) is an

{n+l)-dimensional normal pair such that the boundary Y is an
n-dimensional geometric A-Poincaré complex, with respect to a
locally epic morphism ﬁlnl(x)147~f~>A. Proposition 7.4.1 i)
associates to such a pair (X,Y) an n-dimensional quadratic
A-Poincaré complex over Z["l(x)]
oh %) = (aC (1xT 0 () I 0 (R, ) ve o (acixI A - )))
such that (1+T)OQ(X,Y) is symmetric A-Poincaré cobordant to
OT (Y)Y = (Cv) (YD €0 ()
representing the quadratic signature of (X,Y)
ohx,yy er in (0] - s

with X the universal cover of X and Y the induced cover of Y.



Given a space K and a locally epic morphism of rings
with involution Z{nl(K)] — A let QQP(K) denote the bordism

group of maps f:X—>K from n-dimensional geometric

N,AP

A-Poincaré complexes X, and let o

(K) denote the bordism
group of maps f:(X,Y)——>K from n-dimensional
(normal,A-Poincaré) pairs (X,Y), so that there is defined

a long exact seguence

o 2P ol ) —— oV AP ) —s P m— .

It is tacitly assumed that K is equipped with an orientation
map w: nl(K)———*Zz, so that E[nl(K)] is given the w-twisted
involution, and w(X) = wf,. Also, it is assumed that K is a
CW complex with a finite 2-skeleton, so that in particular
nl(K) is finitely presented. In the special case

ia. : Z[n“l()]»——»l\ = Z[nl(K)]

N, AP

ofPiky = oy, of NP

(K) = 0,"" (K) ,

using the geometric Poincaré surgery of Browder [7] to

ensure that f*:ﬂl(x)———ﬁnl(K) is an isomorphism.

Proposition 7.7.1 The various quadratic signature maps fit

together to define a natural transformation of long exact

seguences
T L A T L B S A T .
0, = NG* ot ok 1 I
Zin)l—2Z[n]
,.,—>Ln(ﬂv["])~—»i‘n(%[n]-)[\)~—fr‘n i 1 - Ln—l(zl"”‘”

Zin)]—A

where n = nl(K).



In dealing with geometric A-Poincaré complexes we shall
assume that the A-coefficient analogue of the Levitt-Jones-Quinn

geometric Poincaré surgery sequence
—a¥ (K =Tzl &) )= p) — 2P k) — N (k) —>
te n+l n 1 n n T

is exact (at least for n3 5, which we shall also assume).
It follows that the quadratic signature maps

A N,AP

oh t ol (K =T (ZIn) (K)]—>1)

are isomorphisms. Note that if 1/2€ A the composites

0*
14T 2 T (Zn ) (K) ] —> A) —»Q’r‘,”(x) S NN r™Mzin, ()] ——> 1)

are lisomorphisms, so that there are defined natural direct

sum decompositions

AP - N
a0 = r @in k)] - Men (K) .

An n-dimensional geometric (A,A')-Poincaré pair (X,Y)

ts an n-dimensicnal normal pair such that the z[nl(x)]—module
chain level cap product

XIn-: c(X)" " —>cX, )
is a A-equivalence, and such that Y is an (n-1)-dimensional
geometric A'-Poincaré complex, for some locally epic morphisms

z(nl(x)] —— A', A'-——A. Given a space K and lccally epic

AP,A'P
n

morphisms Z[nl(K)]*/**A', A > let @ (K} denote the

bordism group of maps f:(X,Y) ——> K from n-dimensional
geometric {(A,A')-Poincaré pairs, so that there is defined an
exact sequence

r’:”"‘ Pigy—>gh li(x) .

A'P . AP o
cee T 00 T HR) ——> Q7 (K) - Q n—



Recall from Proposition 2.4.6 that the relative quadratic

A—>>D
I-group Fn( l J) is the cobordism group of (n~1l)-dimensional
B'—»B

B-acyclic quadratic B'-Poincaré complexes over A, for any
locally epic morphisms A —>B', B'-—>B, In particular,
if (X,Y) is an n-dimensional geometric (A, A')-Poincare pair
the construction of Proposition 7.4.1 i) gives an
(n-1)-dimensional A-acyclic guadratic A'-Poincaré complex
over Z[nl(x)]

A < on- S
ol My = @eixIn e ® M e &, B, veQ_ (9C(IXT A1)

representing the quadratic signature

Z[n) (X)) ——> Z 1 (X))
A

Proposition 7.7.2 i) The quadratic signature maps

’ L)
UQ A (X,Y) € Fn 1
A

L)
e

Zn)] —> Z[n]

AL

B A Py ——r1_ J ¢ J P (K)o

n (X,Y)

A
are isomorphisms, where n = nl(K).

ii} There is defined a natural transformation of exact sequences

A

.. al PRy ey Qn (K) ——>T (@)——»Q’\ P(x)- S
*
OX 14T ope

i AL A e S BT -4 L Y R L PPN Lo 37 ') R S R



iii) There is defined a commutative braid of exact sequences

//—\ ///’\ Sy

N

n+1“f’ T AZIn)—> 1) S Tal® A
N ///ﬁ \\\NAP e \\\\‘ Va
Fn(zfﬂ)*—*/\') (K) Po- l(Z[n]*~~)A)
A D E \\ /
\J s \
Lo (® QK] 9 {K)
o "y /1
~
- AN %
~— \\ ~ .

Given a formally n-dimensional normal map
(f,b) : M—> X
from an n-dimensional geometric Poincaré complex M to an
n-dimensional geometric A-Poincaré complex X there is defined

a quadratic kernel as in §7.3

aftf.b) = cehy u (e (et

using the spectral guadratic construction wF (X) >Qn(C(fH
on the geometric Umkehr semi-stable 7m-map
Fo= Ti(h)* o Th(u)* ———>Ti(vy) * = I M (1= (X))
inducing the Umkehr Z[7n])-module chain map
£ C(X)”_*-—;ff’L»C(M)”_*HJM—]I‘ T

The quadratic kernel is an n-dimensional quadratic A-Poincaré

complex over Z[n] representing the gquadratic signature
oR(£,b) € T (Z (1) (X)] ~—N)

such that

(emyal (r,b) = axm) - or(x) € r”(m[n1<xn—~—>/\) .
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The quadratic signature of (f,b) can be interpreted as the
quadratic signature GQ(W,M\)‘X) of the (n+l)-dimensional
(normal,A-Poincaré) pair (W,Mu-X) defined by the mapping
cylinder W of f:M——>X.

The quadratic signature of a formally n-dimensional
topological normal map

(f,b) +: M—>X

from a manifold M to a geometric A-Poincaré complex X is the

A-homology surgery obstruction

ah(E,by €T (211, (X)] ——> )

as originally defined by Cappell and Shaneson {[1] by a direct
generalization of the method of Wall (4], which is the speciec
case A = %[nl(x)l. The obstruction vanishes oc(f,b) =0 if
(and for n» 5 only if) (f,b) is bordant to a simple A-homoloc
equivalence.

More generally, given a formally n-dimensional topologi
normal map of pairs

(f,b) : (M,3M) ——>(X,3X)

such that 4f=f| : 6M——>3X is a simple A-homology equivalenc

there is defined a reld A-homology surgery obstruction

oh(E,b) € T (ZIn, ()] —>N)

such that Uc(f,b) = 0 if (and for n) 5 only if) (f,b) is bord
rel 3f to a simple A-homology equivalence of pairs. In this ¢
the quadratic kernel is an n-dimensional quadratic A-Poincaré
pair over Zlm (X))

ol (£, 0E:b,00) = (1:COE) ——>CEY ), (b (1X1) ¥, (13X])) €Q (

(i=inclusion)
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such that the boundary (n-1)-dimensional quadratic A-Poincaré
complex

oh (3, ap) = (©ehy b (ax1 e ety

is simple A-acyclic. The rell) A-homology surgery obstruction
is the cobordism class of the n-dimensional quadratic A-Poincaré
complex aver z[ﬂl(x)l
Oh(£,b) = (i), 9, (1X]) /b, (13X]) €Q_(C(i)))
obtained from of(f,df;b,kb) by applying the algebraic Thom
complex construction of §1.2 to collapse the boundary cf(af,ab).
Given a commutative square of locally epic morphisms

of rings with involution

Z[n'] ———— Z[n]

AV ee————— 3 A
there are defined relative quadratic I'-groups I, (%) to fit
into the exact sequence

...—)Fn(zln'] HA')—-}Fn(Z[n]——‘)A)

> (9) =T (Z[1')——>A') —> ...
either geometrically as in Cappell and Shaneson {[1] or algebraically
as in §2.4 above. Given an n-dimensional geometric (A,A')-Poincaré
triad (X;X',Y;Y') with ﬂl(X) =, wl(X‘) = n' and a topological
normal map of triads

(£.b) + (M;M',N;N'") —>(X;X',Y;Y")
(with dM' = 3N = N', M = M'\JN,—N) such that the restriction

{g,c) = (£,)] : (N,N') ——> (¥,¥")

is a simple (A,A')-homology equivalence of pairs there is defined
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a relative (A,A')-homology surgery obstruction

ol N E,by e T, (®)

such that 27" (£,b) = 0 if (and for n3» 6 only if) (f,b) is

normal bordant rel (g,c) to a simple (A,A')-homology eguivalence
of triads. The image of of'N (£,b)er _(0) inr _ (z(n'1—>1")
is the rel) A'-homology surgery obstruction of the restriction
(E,b)}:(M' ,N") ——>(X',Y").

In the applications of homology surgery theory to
codimension 2 surgery due to Cappell and Shaneson [1] the
obstruction groups arising are actually the relative I'-groups
F,(OO) of commutative squares of the type

Zin] ————> Z(nl

Z[n] ——> A
(cf. the algebraic theory of codimension 2 surgery of §7.8).
Pardon [1] (for A = Q[n]) and Smith [2] (for arbitrary A) have
interpreted the groups F*(QO) as the obstruction groups for
making a topological normal map (f,b):M-——>X (nl(x) = m)
which is a simple A-homology equivalence normal bordant to an
s-triangulation of X by a normal bordism which is also a
simple A-homology equivalence - we shall generalize this
interpretation in Proposition 7.7.3 below. In particular,

for A = Qln) the I-group exact sequence
e r(l:z{s] ——>2z(n]) f——arn(z[wl———»oln])

——-?Fn(® ~4~)I‘n_l(lzzlw]-w>zln])*4“‘>...

o
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coincides with the quadratic L-theory localization exact
sequence for the multiplicative subset S = Z-{0}CZ (7]
.S B . _
eeem >L(ZIT]) - > LoAQIN]) > Ln(Z[ﬂ],S) Loq(zmly——

obtained by Pardon [1],[2],[3] and in §3 above.

Let
Z[n}) - —> Z(n]
%
L

be a commutative square of locally epic morphisms of rings

with involution. Given an n-dimensional geometric (A,A)-Poincaré

pair (X,0X) with nl(x) = 1 and a topological normal map of pairs
(f,b) : (M,M') ~—> (X,0X)

such that f:M——— X is a simple A-homology equivalence and

afF = f| : M'——UX is a simple A'-homology equivalence, so that

the quadratic kernel o, (f,daf;b,0b) = (i:Cfl)y —>c(ely, (v, a9))

is an n-dimensional A-acyclic quadratic A'-Poincaré pair over Z[n

with a A'-acyclic boundary o, (if,db) = (C(Af'),79). Collapsing

the boundary by the algebraic Thom complex construction

{as before)} there is obtained an n-dimensional A-acyclic

quadratic A'-Poincaré complex over Z|[m] OQ'A (£,b) = (C(1),¥/5¢)

representing the quadratic signature

or' ME by €L )



Proposition 7.7.3 i) The quadratic signature is such that

L]
oM (£,b) =0 € . (4,) if (and for n35 only if) (f,b)

extends to a topological normal map of (n+l)-dimensional triads
(F,B) ¢ (NGN',M;M') ——> (X x I;Xx0,Xx1;3Xx1I) {(I=1{0,61)
such that F:N———> X x I is a simple A-homology equivalence and

P

:N' ———>Xx O is a simple A'-homology equivalence,

ii) Let (F,B): (N;N' ,M;M') — (X xI;Xx0,Xx 1;0Xx1) be a
topological normal map of (n+l)-dimensional triads such that
the restriction (f,b) = (F,B)|: (M,M') ———— (X x 1,3% x I} { =(X,3x%
is a simple (A,A')-homology equivalence of pairs. Then the
relative (A,A')-homology surgery obstruction of (F,B) is the
quadratic signature of (f,b)

AR

oM rmy =M ey e L 00 .

AN

Proof: i) The image of a, (€,b)y€r in T (Z{n)—>A")

n+1(¢0)

is the obstruction to extending (f,b) to a topological normal

map of (n+l)-dimensional triads

(F,B) : (N;N',M;M"} —>» (X x I;Xx0,Xx1;3Xx1I)

such that F|:N'—-—>Xx0 is a simple A'-homology equivalence.
Such an extension (F,B) determines a quadratic A'-Poincaré
null-cobordism of the quadratic kernel o,(f,b), and conversely
every such null-cobordism determines such an extension (F,B).
The null-cobordism is A-acyclic precisely when F:N——>Xx I

is a (simple) A-homology equivalence.

ii) There is a canonical topological normal bordism rel f:M—>}
of topological normal maps of (n+l)-dimensional triads, from
(F,B) : (N;N'";M;M') ——> (X x I;X x0,X x1;3X x I} to

(£,b) x1 : (MxI;MxO,Mx1;M"'xI)——(XxI;Xx0,Xx1;3Xx1I)



761

(essentially given by N XI,'involving a copy of N from N' to
M x 0) so that

AA AA

oM = MM ey x) €T (0

n+l O)

The relative (A,A')-homology surgery obstruction

ol A AR

((£,b) x1) € T 7]

(00) is represented by the pair
(the n-dimensional guadratic A'-Poincaré complex over Z|[7)
o,(f,b), the quadratic A-Poincaré null-cobordism of o, (f,b)
determined by its A-acyclicity) ,
which is just the A-acyclic guadratic A'-Poincaré cobordism
class of'Al(f,b) € rn+l(®o) appearing in i).
[1
The total surgery obstruction theory of §7.1 extends
to homology surgery as follows.
Given a topological space X (equipped with an orientation

map w:nl(x)~——%-22) and a locally epic morphism of rings with

involution z[nl(x)] ——> A define the A-coefficient A-groups

A,(X:A) to fit into the exact sequence

A
g

(XL > T (Z 1, (X) ] —— A) ——> & _(X:A)

————)Hn_l(x;%) — > (..
where GQ is the composite
A O N
Op ¢+ H (XiLy) ———> L (Z{7) (X)]) ——> T _(Z[7, (X)]—>A)

For id. : Z[nl(x)] —> A = Z[nl(x)] these are just the 5-groups
of §7.1

Sexizming (X)) = A% .



Proposition 7.7.4 Given a space X and a commutative square

of locally epic morphisms

Zin) ——> Z (1]
1) (m=m,(X))
AV ————— A

there is defined a commutative braid of exact sequences

A
T
Ho(X:Lg) r(zin) ——>h) T (@,)
\\\i; r4
Ox /
P (ZIn)]——>A") A (Xih)
/ \ P \
T ®0) A, (Xih") Hy_p (XiLLg)
\\\\\\\\ ///ﬁ \\\\‘-__-_“”’,//ﬁ

An sA-triangulation of an n-dimensional geometric

A-Poincaré complex X is a formally n-dimensional topological

normal map

(f,b) : M — > X

such that f:M ——— X is a simple A-homology equivalence.
(If there exists a ring morphism A —— Z every A-homology
equivalence f:M ——— X from a manifold M can be given the
structure of an sA—triangulation (f,b) :M———>X, since

integral homology equivalences induce isomorphisms in

topological K-theory). Let STOP(X;A) denote the set of



concordance classes of sA—triangulations of X.

The total pA-homology surgery f{or sA—triangulabiliqy)

obstruction of an n-dimensional geometric A-Poincaré complex X
is an element

sh(x) €5 xin
with the following properties.
vroposition 7.7.5 i) sA(X) =0 € 5n(X;A) if (and for n» 5 only if
X is sA—triangulable.

Zin)—Z([n}
1

L. . A . - _
ii) The image of s (X} in Hn_l(x;go)e,n ( ) (n=m,0

Z{n]—> A
is given by
isA(x)] = {(the t-triangulability obstruction t({X),
the quadratic signature oc(x))
If

shixy e ker {8 (X;A) ——H__; (X;0y))
= im(F (Z (7 (X) ] —> A) ——> § (X;0))

(i.e. if X is t-triangulable) the inverse image of sA(X) in

Fn(zlul(X)}—«»~»A) is the coset of the subgroup

ker (I (Z[n(X)] —>8) —> 5 (X;4))

= im(oh:H (XiIg) ——>T (Z[1] ()] —> 1))

consisting of the A-homology surgery obstructions

oﬁ(f,b)e rn(z[ul(x)] ————— > A) of all the topological normal maps
(f,b) M~ —X.

Y X TOP |,
iii) If n3»5 and X is s -trianqulable the structure set ) (3% A)

carries a natural affine structure with translation group £n+l(x‘
1f X is an n-dimensional manifold there is a natural

identification



,
$

TOP _
A7 = 4L
and the A-homology surgery exact sequence
ST (T (0] 8y ——> BT (i

—> [(X,G/TOP] ——> P (Zn (x)] —>4)

can be identified with the exact sequence of abelian groups
L T (2 ()] —> ) ——-»/3n+1(x;/\)
A
o
———»Hn(x;gl,_o) —_—, l"n(Z[ﬂl(X)] ~— A)

Fur thermore, if Z[nl(X)]————vA factors through a locally epic
morphism Z(wl(x)]————*A' the canonical map
Z(n (X)] —>2[1,(X)]
ATOP (xsh) = Spep (Xih) — T l LN l
A A

sends an sA~triangulation (f,b}):M ———= X to the obstruction

OQ'A

(f,b) €ET (@0) to making (f,b) concordant (= topological

n+l
normal bordant by an sA—triangulation of triads
((F,B); (£,b), (£f',b')) : (N;M,M') ——>X x (I;0,1}) to an
sA'—triangulation (E',b'):M'—>X.
[]
The total A-homology surgery obstruction defines abelian
group morphisms

M QQP(K)——-)Sn(K;I\) P o(Fix — K)— £,sM(x)

for any space K equipped with a locally epic morphism
Z[nl(K)]-~—+A, which fit into a commutative braid of

exact sequences



TN "\ ™

nap (Ki1) H, (K; n ) <K)\ Py (Zlng (K) T =—=>1)
H (K (K) ”n l(K TL )
N
e () T (ZIn (K)T=>A) 8 (K:A) oy (K325

\«/1 \\\/ o \/

involvina the geometric A-Poincaré assembly maps

a*
—;g:(K) —~——>9£p

P
* . -
of ¢ B (Kig) (K) .
: P : . 2 . P P
with #° the geometric Poincaré bordism spectrum (wn,(2 ) = Q,(pt.)).
Thus an n-dimensional geometric A-Poincaré complex X is
sA—triangulable if (and for n »5 only if) there exists an

QP—orientation [X) € Hn(x;gp) such that

ok (IX]) = (LiX——x) € o’P(x)
If 1/2€ A then F*(R[nl()()] ——>4p) = F*(Z[Nl(x)]—“—*/\) and

(1: X —>X) = ((1:x-—>x),ox(x))

P = alxier(zin, (x)1—> )

Also, in this case the A-coefficient A-qgroups %*(XyA) fit into
the exact sequence
J
o}
S H (X ol ", H(X; L% er” (Z[1) (X)]-—>R) ——>4 (X;h)

— Hn_l(x;go) —_ ..
and sA(X)G Sn(x;A) is the image of ([ﬁ],cx(x)), so that X is

sA—triangulable if (and for n» 5 only if) there exists an



Eo-orientation [X]GHn(X;Q[‘_O) such that
i) J(Ix]) = [X] € Hn(x;io) is the canonical io—orientation of X
ii) oK((X]) = UK(X) € F“(z[n‘l(x)]-———vl\) is the symmetric
signature of X.

Thus if 1/2€ A it is not necessary to consider the delicate

O~spectrum level compatibility condition needed for A = Z[nl(x)].
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7.8 The algebraic theory of codimension 2 surgery

Codimension 2 surgery goes back to knot theory, which i
the classification theory of embeddings k:SlC 53. The applica
of surgery methods to the classification of high-dimensional

n+2 (nz>1) was initiated by Kervaire {1} and

knots k:s"c's
Levine [2],{4]. (We shall discuss high-dimensional knot theor
in §7.9 below). Non-simply-connected codimension:z surgery fi
occurred in the work of Browder [5] on free zp—actions on
homotopy spheres. The general codimension g surgery obstructi
theory of Wall [4,§11] applies equally well for g = 2, provid
it is generalized to take into account “"the general philosoph:
for dealing with surgery problems in codimension 2: do not
insist on obtaining homotopy equivalences when you are doing
surgery on the complement of a submanifold, be happy if you c
obajtin the correct homology conditions" suggested by Ldpez de
Medrano [1], and the homology surgery theory developed for th
purpose by Cappell and Shaneson [1]. Codimensicn 2 surgery ha
also been studied by Matsumoto [1) and Freedman [1], by consi
ambient surgery on the submanifold instead of homology surger:
on the complement. We shall now specialize the algebraic theo
of codimension q surgery of §7.5 to the case q = 2, making us¢
the algebraic homology surgery theory of §7.7. In particular,
enables us to compare the previous approaches to each other.
To start with we shall modify the geometric theory of
codimension q surgery of §7.2 for 9 = 2 so as to only take th

homology type of the complement into account.
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A weak (n,n-2)-dimensional (or codimension 2) geometri

Poincaré pair (X,Y) is a codimension 2 CW pair (X,Y) such th
i) X is an n-dimensional geometric Poincaré complex
ii) Y is an (n~2)-dimensional geometric Poincaré comple
Then nl(z)——~»n1(X) is onto, and (Z,S(§)) is an n-dimensiona
geometric Z[nl(x)]-Poincaré pair, with X = E(E)k)s(g)z,
£:Y ~——>BG(2) = BTOP(2).
A t-triangulation of a weak codimension 2 geometric
Poincaré pair (X,Y)
({(f,b), (g,c}) : (M, N} —>(X,Y)
is a t-triangulation (f,b):M——>X of X (i.e. a topological
normal map) which is topologically transverse at Yc X, so th
(M,N= f_l(Y)) is a codimension 2 manifold pair with normal

block bundle
£l £

——>Y —————>BTOP (2}

v : N
The restrictions of (f,b) define topological normal maps
(f,0)] = (gec) 3+ N— Y
(£,6)] = (h,d) : (P,S(v)) ——>(2,S(£)) (P = MNE(V)

so that

(£.b) = (g.c)lu(h,d) : M= E(v) u X = E(f) vy

swF
As for a strong codimension 2 geometric Poincaré pair (X,Y)
(Proposition 7.2.3) the set of concordance classes‘JTOP(X,YJ
of t-triangulations of (X,Y) is naturally identified with

TOP

T (X), and hence also with JTOP(vx), by topological

transversality.
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A weak s-triangulation of a weak codimension 2 geometric

Poincaré pair (X,Y) is a t-triangulation
((f,b), (g,c)) : (M,N} —>(X,Y)

such that (f,b):M——-—>X is an s-triangulation of X and
{g,c):N——>Y is an s-triangulation of Y, in which case

th,d) = (£,0)] + (P,5(V)) ————(2,5(£))
is an SA—triangulation of (2,S(£)) with A = Z[nl(x)].
Let VMFOP(X,Y,E) denote the set of concordance classes of
weak s-triangulations of (X,Y). An s-triangulation (f,b):M 2> X

of X is weakly split along YCX if f actually defines a weak

s-triangulation of (X,Y).

s-
The weak splitting obstruction theory for % triangulations
t_
LS-
involves the following analogues of the groups appearing
LP~

in the strong splitting obstruction theory of §7.2.
Given a (connected) codimension 2 CW pair (X,Y) let ¢

denote the associated pushout square of fundamental groups

TS (E)) ——> ) (2)

T EE)) —— 7 (X)
and let @7, ¢x denote the commutative squares of group rings
Zl"l(Z)] > Z["I(Z)l Zlﬂl(Z)l ”4*’92["1(X)]
®Z d>X

m[nl(z)]¢4~7~)zln1(x)] e I ()T > 7T (X))
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Define the transfer maps in quadratic T-theory induced by (X,Y)

to be the composites
1

! PE'
pt’ Ln(Elﬂl(ZH) ‘*—*Inmz(zl"l(z)IHZfo'l(XH)
“—“*rrwzmx)
rs- FSn(¢)
Define the quadratic groups of (X,Y) (nz 0) to be
re- FPn(Q)

the relative groups appearing in the exact sequence
[
rt

g e T g (0g) —— T8 (@) —— L (Z{n (D) BT ey .

g

~IT o (ZIn (2))—Z (0 (X)]) ——> TP (9)

/ apt
( -—~+Ln(Z[ﬁl(Y)])———v’*>Tn+l(Elﬂ1(Z)P—?Zfﬂl(x)l)—"---
rs-
Proposition 7.8.1 i) The quadratic groups are 4-periodic
rp-

rs (¢) =T8S (®)
{ n n+4 (n>0)

FPn(¢) = FPn+4(¢)
ii) The I'S-groups are related to the LS-groups by the commutative

braid of exact sequences

T o TS - ™~
rn+1(°’x) Fn(d’z) LSn_3(¢)
\ . s
FSn_2(®) Ln(zlnl(2)1~—»2|n1(X)n

7 PN
SN T

e
LS, () Lo (ZIn () ]) roe)

\‘J A ’



iii) The TP-groups are related to the LP-groups by the

commutative braid of exact sequences

B N

Fo(@zin 2y 1—2z[m ¢ r e LP_3(9)
\ / \ /1
I‘P 2(0) Loy (ZIr (2)])
/ spe ! \
/
LP (%) Lo (ZIn (M I (Zinp () 1—2zI[

\\\\\\ . . \\\‘\ , L ,/”

iv) The TP-groups are related to the T'S-groups by the

commutative braid of exact sequences

ST -
/ \A e N
Tz v (2)) = Z (1) (X)]) (er(xm /an-a“”
I'P 2(Q))
rsn_zm Lo, (ZIn ()] I (2l (2)] 22

N~ T N ~

v) The LS-,IS-,LP-,TP-groups are related to each other by the

commutative braid of eaxct sequences
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N
/,/ \\ / ™~
Yn+l(¢z)‘\\ LPn_2(®) N Ln(Z[ﬂl(X)))
AN ///ﬂ
\\\\ v
LSn_2(®) FPn_2(®)
Ln+l(Z[ﬂ1(X)]) TS _,(®) r ¢,
\ 7 N 7
(X)) o
[}
Given a weak (n,n-2)-dimensional geometric Poincaré pair
5-
{X,Y) and an { triangulation (f,b):M——>X topologically
t-

transverse at Y <X there is defined a weak codimension 2

splitting obstruction along Y< X

{ws(f,Y) €Ts _,(¢)

wt(f,Y) € TP__,(2)

with image the surgery obstruction o,(g9,c) € Ln_z(Z[nl(Y)H
X1 of the (n-2)-dimensional topological normal map
(g.c) = (£,0)] : N = £y ——v ,
by analogy with the strong splitting obstruction of §7.2.

The canonical map FSn_2(¢)—*~—§FPn_2(¢) sends ws(f,Y) to wt{f,Y)
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a-
Proposition 7.8.2 i} The triangulation (f,b):M —-3>X is such
t_

ws(f,Y) = 0 € IS__,(9)
that if (and for n »7 only if) (f,b)

O € TP _, ()

wt(f,Y)
is concordant to an s-triangulation of X which is weakly split
along YC X.

ii) The canonical map FPn_2(¢)—4—r>Fn(¢ ) sends wt{f,Y) to the

7
cobordism class of the (n-1)-dimensional Z[wl(x)]-acyclic
quadratic Poincaré complex over E[nl(z)] obtained from the
quadratic kernel 0*((f,b)|= a(g,c)!: S(v) ——>S(£)) by surgery

on the n-dimensional quadratic ZI[m; (X)]-Poincaré pair over Z[m, (2)]

0, ((£,b)] = (h,d) : (P,S(V)) ——>(2,5(f))), with
g £ —~ -1 -
v:vNC_M:N———*,Y ——> BTOP(2) , P = f {Z) = M\NE(V)

[

The weak codimension 2 splitting obstruction of Cappell
and Shaneson [1,§8] for an s-triangulaticn (f,b):M ——> X
such that o,(g,c) = 0 € Ln_z(z[wl(Y)]) (for some weak
(n,n-2)-dimensional geometric Poincaré pair (X,Y), with
(g,c) = (f,b)| : N = fvl(Y)—-——~>Y) is the preimage of
ws(f,Y) € ker(I‘Sn_z(d))—-)Ln_z(z[ﬂl(Y)]))
im(Fn+l(¢x) —> ]‘Sn_2(®))
in the group
I‘n+1(®x)/ker (Fn+l(¢x)—~—)l‘sn_2(®))
= coker(pE!:Ln_l(Z{nl(Y)})***rn+1(®x)),

as is clear from the exact sequence

iy

;!
S L (ZIn () - s T (9) TS ) (9)

o L S (Z[T (N ) > L



The total codimension q surgery obstruction theory of §7.2
extends to weak codimension 2 geometric Poincaré pairs as follows.

Given a codimension 2 CW pair (X,Y) define the’wﬁ-grougs
WA,(X,Y,E) by analogy with the groups 4, (X,Y,£) of §7.2,

to fit into the commutative braid of exact sequences

ST TS

A t2ih) /5n(X) rs _3(9)
N - AN /
N N
WA (XY, E) X (x,2:h)
/ \ Bt / N
/ % / \N

s, _,(® A<M d,1zim

t
with A = zlnl(x)], pt® the composite

! pE'
pE’ S vy ——— 8 (x,2) —— B (x,z: 0,

A.(X,2;A8) the relative A-coefficient \—groups appear ing

in the exact sequence

ez o A () A Kz e A (2

and 4, (7;A) the A-coefficient 4-qroups appearing in the exact

sequence

A
o

*
Cem S H(ZI) s T (Z 7 (2)]- > )

ST A AT s R (ZEL) - s



Proposition 7.8.3 i} The TS-groups are related to the A-groups

by the commutative braid of exact sequences

PN - TN

/
. /
Ho 5 (Y3Ihy) \\

IS, _5(®)
(=H_(X,2:0Lg))

AN / \ 7

Loz (Y1 1) n (X z A)
/' ™ / )
!
- . P, \\\\\!
v N/
TS _,(®) Ao (1) Ho_3{Y:iILy)

\\\ - \ vl

ii) The WA-groups of (X,Y,f) are related to the &-groups by

the commutative hraid of exact sequences

3 N
ne1(®5) A (x,v,i) A (X
N\ 7 N bl
AN 7 AN /
N .
NS N
LS (%) W (X, ¥, E)
\,
// \
v \
e
Apey (XD 'S, _, (") r ()
N - \ Kd
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The total weak surgery obstruction of a weak

(n,n-2)-dimensional geometric Poincaré pair (X,Y) is an
element

ws(X,Y,t) € “$n(X:Y,€)

with the following properties.

Proposition 7.8.4 i) ws(X,Y,£) = 0 if (and for n» 7 only if)

(X,Y) is weakly s-triangulable.
ii) The obstruction has image
[ws{X,Y,E)] = (the total surgery obstructions (s(X),5(Y))},
the quadratic signature
~

oMz, s(E)) = (AC([2]) 0 -:C(B) " *—> C(Z,$(E)

€ 5n(x)$5n_2(Y)0Pn(¢ ) (A= 2 X)) .

Z
iii) If n» 7 and (X,Y) is an (n,n-2)-dimensional manifold pair

there is a natural identification
OP
waTOP(x, v, 8) = W8 L) (x,¥,0)

[1

The codimension q geometric Poincaré splitting theory
of §7.4 extends to weak codimension 2 geometric Poincaré
splitting, as follows.

Let (X,Y) be a codimension 2 CW pair.

A map f:M——>X from an n-dimensional geometric Poincaré

complex M is weakly Poincaré transverse at Yc X if (M,N= f—l(Y)

is a weak (n,n-2)-dimensional geometric Poincaré pair.

APIP

]
Let Qn (Opt ") (n3» 0) be the relative geometric Poincaré

bordism groups appearing in the exact sequence

1
pb AP 5 ohP P
n

sl = i ofPigy Cprty sl () —

(A= zZ[n (X)1)
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There are defined maps
2P Pepety — Py
((h,g): (P,N) ——> (2,Y))

b (F=g' U h:M=E(g*E) U P> X=E(E) U

Z .
S(g*£) s(£)?)
A map f:M——->X from an n-dimensional geometric Poincaré complex M
is bordant to one which is weakly Poincaré transverse at YC X

if and only if

(F:M—-5X) € im(Qgp'p(Dpt‘;!) —~_—»nr‘:(x))§9:(x> )

Proposition 7.8.5 Given a codimension 2 CW pair (X,Y) there is

defined a commutative braid of exact sequences

,/'// \\l /// \\

AP, P N
o, (pE*°) Qn(x) Ln_l(Z[ﬂl(X)])
E 7 A
\\\ / WVg '//
\\3 p //
QP(X)/ TP (di/)
n n-3
kd
AN 2
v e /!
' s AP P
Ln(zlvl(X)]) FSn_3(¢) Q (dpE” )
\\\\\‘\\—P—////;Y ///jﬂ
N
\\ - N
(n%7)
| FS 3(45)
Thus < is the bordism group of maps (f, f): (M, M) —— X
) TP, _4(8)

(geometric Poincaré
from n-dimensional . pairs such that
{ (normal, geometric Poincare)

JF:UM-——>UX is weakly Poincaré transverse at YC X.



If f:M~——X is a map from an n-dimensional

{geometric Poincaré complex
M the weak Poincaré splitting

normal space

obstruction of along Y<X

P -
ws (f,Y) = wug(f) € FSn_3(¢)
P -
wt (f,Y) = wvg(f) € FPn_j(O)
wsp(f,Y) =0
is therefore such that P if (and for n3 7 only if)
wt (f,Y) = O

Poincaré
f is bordant to a map from an n-dimensional geometric
normal

Poincaré complex which is weakly Poincaré transverse at Yc X.
The codimension g algebraic Poincaré splitting theory
of §7.5 also extends to weak codimension 2 algebraic Poincaré

splitting, as follows.

A weak n-dimensional quadratic Poincaré splitting over ¢

(y,z) consists of
i} an (n-2)-dimensional quadratic Poincaré complex y
over z[nl(Y)]
ii) an n-dimensional quadratic Z[nl(x)]—Poincaré pair
(z,3pt'y) over zin (2)].
The union

E[ﬂl(X)]ﬂ

'
PEYVz(n (x)1e Z(n)(2)1°

z(n (2)] PHY
is an n-dimensional quadratic Poincaré complex over Z[nl(x)],
which we shall abbreviate to pElyL)z. The splitting is

|

contractible if the union is contractible.
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The normal splitting over ¢ of quadratic Poincaré

complexes over Z[ﬂl(x)] given by Proposition 7.5.1 i)

[s, (¢)
provides the following extension to § of the expression
i {TP,(®)
LS, (¢) contractible
for in terms of ( quadratic Poincaré
LP, (%) (-

splittings over ¢ given by Proposition 7.5.1 ii).
Proposition 7.8.6 The weak codimension 2 surgery obstruction

[rsn_z(@)

(re,_,(¢)

contractible
group

(n€ Z) is the cobordism group of g

weak n-dimensional quadratic Poincaré splittings over ¢.

The maps appearing in the exact sequence
...——»)an_2(¢)——~4FPn_2(®)———a Lnlzlnl(X)])—r »IS _J(0)— ...

are given by

an_z(‘»)—-———*FPn_z(M ;7 (y,z) — > (y,2)
PP, (®) = > L (Z(n (X)) : (y,2) —>pE'yuz
Ln(zlﬂl(x)])‘-—’* FSn_3(®) ;X P———»(By,a+z)

{if (ly,3y).(z,3,2)) is a normal splitting of x}.
In particular, the image of an element x € Ln(z[nl(x)]) in
FSn_3(¢) is the obstruction to x having a weak Poincaré splitting.
1
Moreover, the weak codimension 2 geometric Poincare

(us*(f.v)ers (o)

splitting obstruction { P of a map f:M—>X
(wt" (f,Y) € T _4(0)

geometric Poincare complex

from an n-dimensional { M
normal space
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(resp. the weak codimension 2 manifold splitting obstruction

ws(f,Y) € I'S (®) s-
n-2

i of an {
wt(f,Y) € FPn_Z(Q)

triangulation (f,b):M — X if
t.—

(X,Y) is a weak (n,n-2)-dimensional geometric Poincaré pair)

contractible
can be expressed in terms of a weak quadratic

Poincaré splitting over ¢ using normal (resp. topological)
transversality, exactly as was done for the strong case in
Proposition 7.5.1 iii) (resp. iv}).

For a codimension 2 CW pair (X,Y) with

m(X) = np(y) =, nl(Z) = nl(S(il) =q' , wWw(X) = w

the LS-groups are written
LS, (®) = LN, (n'—> 7,w)
as before, and the I'S-groups are written
[S,(®) = TN (P'—>7,w) .

We shall now investigate the algebraic properties of the g
weak

LN (7' —» 7, w)
codimension 2 surgery obstruction groups ’

N (7' —— 7, W)
by analogy with the algebraic investigation in §7.6 of the
type C) codimension 1 surgery obstruction groups LN, (n'—->"7,w).

In the first instance we have to give an algebraic description

of the transfer maps induced in quadratic L-theory
! !
£ ¢ L (Z[n]) ——> L (Z[1']—Z(x]) (nx0)

by the Sl-fibration £:Y—>BG(2) (= BO(2)).



Let (ll,w) be a pair consisting of
i) an exact sequence of groups

i p
n: =z ' > T - {1}

ii) a group morphism

w iM%, = {11
such that

g'tg = 2 I (grent
where t = i(l) € ', and w' = wp : ' ——» Z,.

Wall [4,Prop.11.4] has shown that associated to (f,w) there

is an Sl-fibration

p
st » X X x

with fundamental group exact sequence

P
my : nl(sl)_—»ul(x') —xw'l(x) — {1}
isomorphic to N, X' = K(n',1) and with orientation map
wl(px) = W 3 nl(X) = n——»zz

which has the following universal property: given an Sl—fibration
1 Py
§° ————r ¥ ————— Y

and a map of exact sequences of groups

n, : sy — Y') ¥, Y > {1
vy M ) my m (Y) {1}
f f' f
P

oo z me > 1 > {1}

such that
f w
wl(PY) : "I(Y) —_———> T ——-—>22

there exists a map of Sl—fibrations
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p
st > ¥ Y Y
£ f
p
st > X X X
inducing the morphism
: — = (1 .
f : (ﬂy.wl(py)) (ﬂxlwl(Px)) (M, w)
1., ) 1 , Py
An S -fibration § > Y > Y has data (T,w) if it is

equipped with such a morphism f : (ﬂy,wl(py)) — (L, w) .,
Note that p, is orientable if (and for f:ﬂl(Y)-:i*ﬂ only if)
t€n' is a central element. We shall be only concerned with
Sl—fibrations py over finite CW complexes Y, although the
theory may easily be extended to Sl—fibrations over finitely
dominated CW complexes.

Given an Sl—fibration Sl—-—+ Y‘-——E——+ Y with data
(n:2 —»aw'—)ﬂ-—-—)(l),w:n———»zz) let S1e > X' — > X be
the universal Sl—fibration with data (fl,w). We shall now
introduce the category of "pseudo chain complexes over (Il,w)"
to help explain the relationship between the Z[nl-module
chain complex C(Y) of the cover Y of Y classified by
Y ——> X —> K{(n,1) and the Z[n’]-module chain complex C(Y")
of the cover ¥' of Y' classified by Y' —>X' = K(n',1).
(In the special case of the universal data
My:Z —m (¥ —Psm (¥) —— {1} ,w (P i) (V) —> Z,)
¥ is the universal cover of Y and ¥' is the universal cover of Y').
This relatiohship is considerably more complicated than that
between the universal covers of the total and base space of
an So—fibration (= double cover), for in that case the universal

covers coincide as spaces.
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Given data (ll,w) define ring automorphisms

a: zin) ——>Z[n) ; ) ny9 ey ¥ nqw(g)g

gemn gemn
a' : Z[n']———> 27"} ;
1 n_.g'r—> § n_,g' - ¥ n_,g't
L} |g
g'€n 9 g'én g g'€n 9
w'(g') =+1 w'(g') =-1
(ng,ng,GZ) .

Given a Z[n}-module M let aM denote the Z[n]-module with the
same additive group and ZI[n} acting by
Zn]x aM ———> aM ; (a,x) —-— afa)x .
Similarly, given a Z([n']-module M' let a'M' denote the
Z[n']-module with the same additive group and Z|[n']} acting b
Zfn']lx a'M' ———> a'M' ; (a,X) b———>a'(a)x .
For any such M' there is defined a Z[n']~module morphism
1-t : a'™M' ~———>» M' ; X —3 X - tXx ,
which is natural in the sense that for any Z{n']-module

morphism f' € Hom (M',N') there is defined a commutative

Z{n'}
diagram
1-t
a'M* M*
alfl fl
1-t

a'N’ 3N

with a'f' € Hom .](u'M',a‘N') defined by

Z[m
a'f' : a'M' ——>a'N'" ; xr——>f(x) .

Also, for any such M' there is defined a natural Z[7'l-module

isomorphism

[ u'zM'——-4+ M' ; Xx+——> tx .
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A pseudo chain complex over Z{l) £ = (C',d',e') is a

collection of Z[n']-modules
c' = {c;lrez}

and Z[n'l-module morphisms

t = ) 1 )

d* = {4 euomm“.](cr,cr_l)lrem

e'= {e’€Homy .. (Cp,a Cr_z)lrez)

such that
3 2 = - ", [ [
i) @' = (1-t)e' : CQ —>C  ,
(rez)

ii) (a'd')e' = e'd’ : Cl ———>a'Cy 4 .

The projection of ¥ is the (genuine) Z[7]-module chain compl
C defined by

d.=1ed’ :Cr=Z[Tl]@

c —>C =Z[n)®

z(n' 1% -1 z(n'1%-1

The induction of ¥ is the Z[n']-module chain complex c! defi
a fa-t
d.! =
¢ (-)Te’  a'ar

1 1
La—- ' 1o i = ' 100
Cr Cr00 Cr—lb———‘)cr-l Cr_lQ(! Cr—2

The projection and induction are related by the identity
! 3 .
u[w]az”.]c = C{e:C ——aSC)
with e the Z[n]-module chain map

e = 1Re' : ch = Z[n]® ———?aSC[ = Z[n]’

zZ[n' 141 z(n'1®
The pseudo chain complex ¥ is n-dimensional if C; =0 for r<
and r >n, and each Cl[ (0grgn) is a f.g. free Z{n']-module,
in which case C is an n-dimensional Z([wn])-module chain comple
and Cl is an (n+l)-dimensional Z[n']-module chain complex.

The pseudo chain complex ¥ is contractible if the projection

is chain contractible.

S’ 4



A pseudo chain map of pseudo chain complexes over Z(ii}

¥=r,9 : ¥=o(c'dten) ——— D= (D',d5.ep)

consists of collections of Z[n'}-module morphisms

£' = (f'GHomz[",](C;,D;)IrGZZ}
9' = {g' €Homy v (Cl,a'D) ) |r €z}
such that
iy djpf' - £'d8 = (1-t)g' : C@ —> D!
i) elf' - (a'f'yel = (a'dl)g' + g'dl : C! ——>a'D! _,

(rez) .

The projection of F is the Z[n]-module chain map

f=f'8l : C = Z[n]A C' —>D = Z[n])B

.
zin'] zin P
The induction of F is the Z[n']-module chain map

£ . ¢ —_— D!

defined by
£ s ( g © > : ¢! = c'earc ,———0p' = D'ea'D?
(_)r—lg, Q' f r r r-1 r r r-1 °
The pseudo chain map ® : ¥ —» D is an equivalence if the
projection f:C ———D is a chain equivalence.

A pseudo chain complex ¥ = (C',d',e') is untwisted if

e' = 0, so that C' is a Z[n'}-module chain complex and

cC  =C(1-t:a'C' ———>C") .
Similarly, a pseudo chain map F = (£',9') : & — D is
untwisted if %, are untwisted and g' = 0, so that f':C' ——>D'

is a Z[vn'}-module chain map.



Proposition 7.8,7 i) The induction c of a finite-dimensional
pseudo chain complex ¥ is chain contractible if (and for
untwisted ¥ only if) ¥ is contractible (= C is chain contractible).
ii) The induction il p! of a pseudo chain map ¥: % ——> 2
of finite-dimensional pseudo chain complexes is a chain
equivalence if (and for untwisted ¥ only if) ¥ is an equivalence
= f:C ——D is a chain equivalence).
iii) A finite-dimensional Z[n']-module chain complex C' is
Z[n]-acyclic if and only if I-t:a'C*——>C’ is a chain
equivalence.
Proof: i) If the projection C of ¥ is chain contractible let

A = {A€ Hom (cr,cHl)lre?z}

Z(nl
be a chain contraction, so that
dA + Ad =1}t : C —»C .
r r
As p:Z{n')—>Z (7]} is onto with ker(p) = im(l-t:Z[n']—> Z[n"'])
. ' et ' gt

there exist 4'€ Homzl".](cr,cr+1), E GEHomz[",](Cr,a C[) such
that 18A' = A and

4a'a' + A'@' -1 = (1-t)E' : C; ———-)Cl‘_ (rez) .
The Z[7n'}-module morphisms

At (o]

! 1 )
t oAl N ! R ‘o
’ (-) e u'A'> C S Cp®a'Cl j— Crvl Cran®'cy

are such that for each r€ zZ
1t 1 1 0
d'At + ATa” = .
(=) ((a'@")E'~E'A' + (a'A')e' -e'A") 1

t

t
. = 1 ‘o LI . [Fall
| Cr CrGG Cr— —_— Cr CIQQ Cr—l

1
is a (simple) Z[7']-module automorphism. Thus the automorphism

]
of the induction C° of ¥ defined by
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L (3} ! 3
da’a” + A'd” : C°T—>C
!
is null chain homotopic, and C° is chain contractible.

ii) Define the algebraic mapping cone of the pseudo chain map

¥ = (f',g') : ——> d to be the pseudo chain complex

a9 e fer )l
C(¥) = (p6C;_, : )
¢] d.’, [¢) eé

C
with projection C(f:C ~——»D} and induction C(f)' =c(f':c'—D
Now apply i) to ¥(%).
iii) Apply i) to the untwisted pseudo chain complex (C',d',0).
[
Pseudo chain complexes arise from Sl—fibrations as follo
Proposition 7.8.8 Given an Sl—fibration

P
st > ¥ y ¥

with data (M:Z ——> 7' ——> 7 —>{l),m:w———>%2) over a
finite n-dimensional CW complex Y there is defined in a natura
way an n-dimensional pseudo chain complex over (N,w)
t(Y,p) = (C',d"',e")

such that

i} the projection C = C(Y) is the n-dimensional
Z{n]l-module chain complex of the cover Y of Y classified
by ¥ —> K(n,1)

ii) the induction C' = C(¥') is the (n+l)-dimensional
Z{n']-module chain complex of the cover Y' of Y' classified
by Y' ——> K{(n',1)

iii) the Z{n]-module chain map
v e : 2C = QC(¥) ———> aSC = aSC(Y)

is the chain level cap product e = e(p)n - with the w-twisted
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Euler class e(p) € HZ(Y,w) (which together with the orientatio

map wl(p) :nl(Y)—~—+n —Y , %, classifies p:Y—> BG(2))

2
iv) if p=wBe 1 Y ——>BG(2) (i.e. if e(p) =0€ H (Y,u

then E(;,p) = (C',d',0) is the untwisted pseudo chain complex

defined by the n-dimensional Z[n']l-module chain complex

(C',d') = C(Y) of the covering Y of Y classified by the compo
s

Y e > K(n',1) with s the section of p given

Furthermore, a map of Sl—fibrations with data (MT,w)

Sl S1

determines a pseudo chain map
S~ ~ -
= (£',9") : K(erpl) —————~——————»Z(Y2192)

with projection

and induction

Proof: The construction of @(?,p) is by induction on the numb
of cells in Y, starting with Y = @ for which §(¥,p) = O.
Assume inductively that ?(Y,p) has already been defined for
p:Y ——>BG(2) and let

— . = r
P, = pug Y, Y ueh - BG (2)
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be an extension of p to the complex Yl obtained from Y by

attaching an r-cell. The attaching map f :Sr-l —>Y defines

a map of Sl—fibrations

€ P
v
£
sf 1 — sy ,
: S X r-1 f p
using the trivialization of f*p: S ——3> ¥ —=—3 BG(2)

given by q:Dr-——->BG(2) to identify it with the trivial

Sr—l 1

. . . . - ~1
Sl—flbratlon € = projection x§" —> g~ 1 over s”

sr-1 Sr—l

The covering S of classified by the composite

f'
st le gt lsl sy ki, 1)

1 1

is trivial, so that C(8'7%) = E[n']ﬂEC(Sr_ ). The Z[n']-module
chain map

1 r-1 —r-1 -1
g' = s stz ——c(3"TTY = st 'z 1em(n ")
0

determines an (untwisted) pseudo chain map

§= (9,0 : " zinr1,0,00—— 8ETLe) = (cB"Y),0,0)
Define the pseudo chain complex t(?l,pl) to be the algebraic
mapping cone of the composite pseudo chain map

-

- ~ - jl ~
Fg : (s"lzinry,0,0 _g_’ e rdE.p)

that is

F(¥,.py) = CFG)

* Foc st sut of < (1) 2wl () Zel]
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—> Y with data

Given an Sl—fibration S1 —_— Y’

(MN:Zz —n'—an1 — {1}, 0:1—> 2 there is defined a

2!
transfer map in the Whitehead groups
Pt : WR(T) ——> Wh(n')

T(E:M =~ X}y g(f':M' - X'}
sending the Whitehead torsion 1 (f) of a homotopy equivalence
of finite CW complexes f:M 25X equipped with a reference map
X ——+Y to the Whitehead torsion t(f') of the homotopy
equivalence f':M'-—<> X' of the total spaces of the Sl—fibrations
induced from p. This transfer was first defined geometrically by
D.R.Anderson {1}, and an algebraic description vas first
obtained by Munkholm and Pedersen [1). From the point of view
of Proposition 7.8.8 the transfer map sends the Whitehead
torsion T(C) € Wh(n) of a based acyclic f.g. free Z[n])-module
chain complex C which is the projection of a based
pseudo chain complex ¥ = (C',d',e') over (Nl,w) to the
Whitehead torsion p't(C) = (C') €Wh(n') of the induction C'.
In particular, if C is l-dimensional (Cr =0 for r #¥ 0,1)
then any lift of the Z{nl-module isomorphism d:CI% CO
to a Z[n']J-module morphism d':Ci ——~C(') defines a based
pseudo chain complex '?= (C',d',0) with projection C, and in
this case the induction

1-t
. a'd’ (d' ‘(l't))
c

— o ] | . o Vol Ny ——
ce. >0 «mCl )Ci@JCO «)LO >0 -> ...

is the algebtaic description of p!T(C) = r(C!) due to

Munkholm and Pedersen {1].



Next, we shall construct the Q-groups of pseudo chain
complexes, allowing the definition of "algebraic Poincaré
pseudo complexes"”.

Given data £ = (I1:Z — 1' —P 5 ¢ —-){l),m:n—«)EZ)
and an orientation map Wit —— Z, define orientation maps by

wg = Ww n~——>22

w' = wp : T pﬁ,n wﬁz2

w'5=w£p:n'*—ﬂ—~—>w—wg—>mz .

W

Define the w-twisted dual 4" *'¥ of an n-dimensional

pseudo chain complex ¥ = (C',d',e') to be the n-dimensional

pseudo chain complex fn_"w = (D',d',e') with
D'"D
row' _ o
al = (-)fatarr s D= @ MR st o PRl
D r r-~1
- - Eoe'* - V&
e[’) -t le'* . D; = g VEwW T T oD r+l,w
¢! 4
- [
-~ Ol,2C.n r+l,w'= o u'D;—l
The projection D of ,Cn—*,w is the w-twisted dual of the project
C of ¥
p=ch*ev |

[ -
The induction D° of ’fn *ow may be identified with the wt—twist
1
dual of the induction C’ of ¥

— |€
p' = (chyntl-*.w ,

since the Z[n']-module isomorphisms

(0 t)' AL M
1 0 r

n+l—t,w'g) - C,n—r+l,w'€$u,c,n—r,



ion

792

define a canonical isomorphism of Z[n']-module chain complex:
' ~ ' - g
p! > (C )n+l *, W
Given a finite-dimensional pseudo chain complex

= (C',d"',e') define a Z[Z,]-module chain complex
2

Homn(("w,t) by

a : Hom (¢*'%,¢)

£ W&
= X Homzt“.](u'c'p’w ,Cé)QHom (arctPrV¥ sl

ptq=r Zir']

*‘*Homn(t"w,t)[_l ;
(@', 8" (d'¢' + (~) % (ard"y*+ (-) " (1-ty8’,
(@'ane' + (-39 o (arany e s (-)Fets - (a'p)

. W *, W .
T : Hom (¥ ,’e)r—*“—nlomn(t B

(07,87 ) r——> (T 6", 10") = ((-)PY(arg)#, (-)Pla7L

pseudosymmetric Q4 <&}
Define the w-twisted Q-groups of ¥ Mo
pseudoguadratic 0, (&)
n _ *,W
QW = Hn(HomZ[zzl (W,Hom"(lf B4}
(n€ Z

m,w * , W
Q, " (p) Hn(WEZ5U221H0mH(€ £1)

(6'.8")€on ()

An element
Whx e g

is represented by a collection

chains
£
Y 1ean-rts,w' . s NL+S,W
((¢S,es)€HomZ[",](a oL /Cp)8Hom,, ) (a'C
lrez,s»
£
' . yaaN=r=5,w’' ' VNS, W
{(ws,xs)e Homz[".](a C ,Cr)OHomz[",}(Q C
lrez,s>
N
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- + .
a'or+ ()Toz(rany e ()" el 1+ (5T ey MR a-0 0y
=0 : u'c'“'”s‘l'"'g————», c;
(atd) 8+ (-)F8L(@ayx+ ()" er L+ () 5T0L 1)
+ (1M et - arentTter )
£
: =0 : Q.C.n—r+s—2,w —~—>a'C; (s» 0, ¢:l=0, 6_'_1
!
' -s-1 [ +1 [ - [
R R R N AL R R S R (NI £ e SO I R S S0 P
—_ —_- - IC
=0 : g'Cc'nE"S 1,w Cz'
| 3 ' Lo 13 n-s ' - s+l .
Py et () xiran s (M + )7 )
k )5 ey - @y e e
—_— - lg
=0 aeMITSRVILLarcl (53 0)
The E[Zzl—module chain map
. *, W *, W .
p, : Homn(t LBy ———> Homz["] (c ,C)
’ (4'8") b——> ¢ = 189"

defines the projection maps in the Q-groups

Py ¢ Qp,(E) ———0F (O 5 (§'.0") — o
I L (< BB C'APES) RE—
(If t€n' is of infinite order and e' = O these maps are

isomorphisms). The Z[ZZ]—module chain map

'C
[ *, W Io*,w [
p o Homn(f ) ——— QHomZ[".]((C ) CT)

(4',8') — s o'

with

0)



\ o o'>
o' = i}
(¢ e”l (o)Pg

£ - oF
Clplw' QQ.C.P 1,w —>C'ea'C’
q q-1

defines the induction maps in the Q-groups

Pl ey Ly e g !
P Qg (D) A A B L L

g
t o, ,w mt,w! [N o 1
p Qn (t)—*"——*0n+l (€ 5 (W, x"Ir——
Replacing w by wE there are also defined wg—twisted
Qﬁ wE(?)
Q-groups ! with projection maps
m,w
* (®)
Pyt Qf LE(€) ———>Qf £(C)
£
Pyt 00 ) ——— 0l (o)

and induction maps

P! o B s 0t (e

£
pl . Qg,w

(Both the w-twisted and the wE-twisted Q-groups arise in the
applications).
A pseudo chain map of finite dimensional pseudo chain
complexes over Z|I}
F - (1,99 : ¥-= (C',dlsel) ———> 0= (D',d},e})
induces the ZIHRZ}-module chain map

Homn(y*'”.?) ¢ Hom (2*'Y,p) — s Homy (@*'",D)

defined by j



*,wW A *, W
Homn(T F) o HOmH(t .E)r

C IC
- orPrv! ' 1P W te
p+g=[H°mm“'1 (a'C 1Cg) @Hom,, 1y (a'C Ja Cq_l)

—_— Homn(-b"w,-b)r i
(¢',8") r——nr
(F'¢' (a'f')* (a'f')*B" (a'f") + (—)q—1(9'®'(u'f')* —a'(f'g'g'*)t”
Thus there are induced morphisms in the Q-groups

% n n
00 (g ——0" @)
S Tow Trw (nez)

' ol gy ———— "V (@)

i ¥y
(which are isomorphisms if £: ¥ ——> D is an equivalence)
which are compatible with the projection and induction maps
in the Q-groups.

pseudosymmetric

pseudoquadratic

complex over Rlﬂwj

An n—dimensional{

(¢, (¢',8"))
is an n-dimensional pseudo chain complex over ZI{I)

(G0 x'))

' ' n
(¢'.8")€Q (1)
whx e

n
(c o€ (0))

¥= (C',d',e') together with an element

Such a complex is Poincaré if the projection { oW
(C,¢€Qn' (C}))

symmetric

. w
Poincaré complex over Z[n']),

is an n-dimensional
quadratic

that is if the pseudo chain map
(05,08 ¢
-
(141 (byoxQ) = T

is an equivalence, since it has projection
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o v ~ c

(147) gy NV e,
[ + !
eteo™t Leich
in which case the induction wo £ is an
1 ! n',w' !
(C ¥ €041 (C))
symmetric w,E
(n+l)-dimensional Poincaré complex over Z([n' 1,
quadratic
by Proposition 7.8.7 ii).
pseudosymmetric w LMz %))
Define the L-groups of Z (Il {r
pseudoquadratic Ln(zlnw])

pseudosymmetric
to be the cobordism groups of n-dimensional
pseudquadratic
Poincaré complexes over R[Hw]. Pseudoquadratic surgery below
the middle dimension gives the periodicity
w _ w
Ln(Zlﬂ 1 = Ln+4(E[H ]} (n30) ,

and identifies Ly, (z[1%]) (resp. L (zZ (%)) ) with the Witt

2i+1
group of non-singular (-)i—pseudoquadratic forms (resp. formatior
over z[nw], by analogy with the usual quadratic L-groups L‘(Z[nw
Fvery (—)i—quadratic form (resp. formation) over Z[nw] lifts to
a (—)i—pseudoquadratic form (resp. formation) over Zlﬂw], and

the projection maps in the quadratic L-groups

P, ¢ LZIT") —— L (Z[n"]) 1 (Z, (V' X)) ——(C,¥)  (n30)

are isomorphisms, which we shall use as identifications.

(It is not clear if the projection maps in the symmetric L-groups
py ¢ LMz ———> LT (@[x")) 5 (E,(87,0"))——>(C,4)  (n320)
are also isomorphisms, except in special cases, e.qg. if t€n' is

of infinite order so that 1-t:Z[n']—>Z[n'] is injective, or if

there exists a group morphism s:m—>n' such that ps=1: 71 —->n)
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(pseudo) symmetric
There are defined induction maps in the L-~groups
{pseudo) quadratic

R
pl M@t ) —— 1™z )y e ete s clie Y
(n> 0)

W&
Pl L @I~ @Y ) s @t et

_ w
(=1 (zm"]))

In terms of forms and formations the induction (= transfer) map in

f w w'

P L, (Z[""))—— L. (Z(7"® 1}
. 2itl & (itmod 2))
: ! 1)

quadratic L-theory w
Prilyi (I ==Ly 5 (Z (7

R form
sends a non-sinqular (—)l—quadratic over z(ﬂw]
formation

(M, ¥)
Y W to the non-singular
(H(_)i(F);F,im(( ):G—»F@F ™))
u

(—)1- formation w.{
quadratic over Z[n' i

(—)1+l- form

1-t ,
(H(_)i(M');M',im( ) j a'M' ~——Mrem Y 1)
a' vt~ e pro*
1-t X o o
W& 1
(coker( o'y’ |:a'G'—>c'aa'F'or ™" ), (vl o o |
alu’ Y 1-t o0
! v e ke w!
$' € Homzl",](m M )
with ¢
Y 2 ' [ W' N ' A
(u‘>e“°“‘zh']‘c +FIOF Vo X' €Homy 1 (GY,G )
such that
[ *,w
18" = ¥ € Homy, (M, %)
Y oo (Y *, W
m(u,) (u\ € Homy, (G, FoF*’¥)

Y *la'u) =80+ () t(areny v+ ()1 Iy (1-t) € Hom (a6, Gt

Z[n
W'

L} l*
<for some 0'€ Homzln.](a G',G ) .

w‘g)



(Munkholm and Pedersen have also obtained an algebraic description
of the transfer maps p!:L*(Z[ﬂw])—-—>L**1(Z[ﬂ'w'€]) in terms of
forms and formations, extending their algebraic description of
p!:wh(n)———)Wh(w')). For n'= 1mx2 p!:L*(E[ﬂ])-—>L*+1(Z[1¥ x 21}
is just the splitting map B = c*(Sl)@ - appearing in the
splitting theorem of Novikov [1] and Ranicki (2]. We shall now
relate the algebraic L-theory induction maps p! to geometric
transfer maps.

Let

Sl X' > X

be an Sl—fibration over a finite CW complex X with data
(H:Z—i—yn‘——L)n—-)(l},m:n——»E‘?). Let P(X,p) = (C',d',e")
be the finite-dimensional pseudo chain complex over Z (1]
associated to p:X-—>BG(2) by Proposition 7.8.8, with projection
C = C(X) the chain complex of the cover X of X classified by

X ——>K(m,1) and induction C! = C{X') the chain complex of

the cover X' of X' classified by X' — K{n',1). Let ;'/t be

the quotient of X! by the action of i(Z)cn', which is the

cover of X' classified by X' — K(7n',1) —P k(1.

Define the Umkehr Z{w]-module chain map

o' asc(X) ———— (X' /1)

by

1
{There is also defined a geometric Umkehr stable n-map
m | ~
P: I Tn(m)——~—*£m(x'/t)+ inducing p! on the chain level).

The definition of %(i,p) by the algebraic glueing of the

o - - !
P =< ): &SC(X)r =ﬂCr_1—*_*§C(X /t)r= (&IWIGZ[",]C )r:=Cr$QCr_

1

untwisted pseudo chain complexes of the restrictions of p:X —»BG(2)

to the cells of X extends to the symmetric construction:
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Proposition 7.8.9 There is defined a natural transformation

of abelian groups, the pseudosymmetric construction on (X,p)

0%,p ¢ Hy(Kow) ———> Q) _(E(X,p)) (ny 0)

for any orientation map w:n—f——%-zz, which is related to the

symmetric constructions on X and X' by a commutative diagram

‘1’)2-
4 A n+l T
oy (X' ®) ——> QT E(C(RY))
}
! I
p p
*x
P n o
H (X,W) > QHIW(E(X,P)
% P,
Qp ,(CEn .

[]
Given an n-dimensional geometric Poincaré complex M and

map f:M——>X such that w(M) = f*w the pullback Sl—fibratio

f*p:M -f;4>x *fEAvyBG(Z) over M
1 f*p
S —> M' M

has total space M' an (n+l)-dimensional geometric

Poincaré complex with orientation map w(M') = f‘*w'E and
fundamental class [M') = p'[M]€H__ (M',w'E) ([M]€H_(M,w)).
The n~dimensional pseudosymmetric Poincaré complex over Z[nw

O*(M,p) = (E(M,£2p) 4y cup (M) €07 L (#(M,£4)))

has projection the n-dimensional symmetric Poincaré complex

over Z[nw]
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PyO*(M/p) = o* (M) = (C(M), b5 (IM]) € Q] (C(M)))

and induction the (n+l)-dimensional symmetric Poincaré comp
L}
over E[w'w ]

1 ~ ~
PIO*(M,P) = 0% (M) = (C(M') 0, (IM']) €t E(c(in))

The pseudosymmetric signature map

of ¢ 8 (X,w) ——> LNZ Y1) (F:M s X) s 0% (M, )

fits into a commutative diagram

P £ o* n+l wng
Qn+l(x"wl ) —————>L (Z[n* 1

heR 3

a* P,
~
LMz %))
with
! P P T A

p o Qn(X,w)—————§Qn+1(X W'Y o (FEEM—— X)) p— (' M —

The pullback of a formally n-dimensional normal map
(f,b):M » X along an Sl—fibration p:X ——3> BG(2) is a

formally (n+l)-dimensional normal map (f',b'):M'-—————> X",
The Umkehr Z{n]-module chain map of f

) £x M] -

£ [STE 3 Rl p—LNT T b VN Y

is the projection of the Umkehr pseudo chain map
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T+ b, oM g
e E " mM )TN s B, Erp)

and the Umkehr Z([7n']-module chain map of f'

£ M'la-

ntl-*,w' C(ﬁ')n+l_*'w —~ C (')

£ c®n
1
is the induction of ¥'. The quadratic kernel of (f,b) is the

formally n-dimensional gquadratic complex over z ")
I ]
0, (£,b) = (C(E7) 4 ([X1) €Qp ¥ (C(E)))

]
with wF:Hn(x,w)———a-Qg’w(c(f‘)) the spectral quadratic construction
on a geometric Umkehr semi-stable n-map F:Tﬂ(vx)'———>zwﬁ+
inducing f!. The quadratic kernel of (f',b') is the formally

1

1]
(ntl)-dimensional quadratic complex over Z[n'w

’ vE
o, (£1,b") = (c(e' ),y (X el ¥ (c(er )

v owtE

n+l (ce'h)) the spectral quadratic

with g, H (X' w'f) ——>0
construction on a geometric Umkehr semi-stable r'-map
F':Tn'(vx,)~<___;,z“ﬁ; inducing £}, with Vyr = P*(v,8uw)
(involving the orientation line bundle w = wl(p) : X ——>BG(1)
of p:X ———»BG(2)). The definition of #(X,p) also extends to
the quadratic construction:

Proposition 7.8.10 There is defined a natural transformation

of abelian groups, the spectral pseudoquadratic construction

m,w 1
WF,p Hn(x.w)-———‘v—# Qn (C(F))

with symmetrization

(1+T)“,F’p = g%¢ﬁ',pf!

n !
Hy (Xw) ——— 0 (c'))
(€ = projection : ¥ (M, f*p) —>C (%)) ,

and such that there is defined a commutative diagram



Y

1 IC
B (xtwty — " v

!
n+l n+l (CEr 7))

P
T iewhy)

L

T,w !
Qn (C(£7))

(1

The pseudoquadratic kernel of ((f,b),p) is the formally

n-dimensional pseudoguadratic complex over zm")

oif,b) = @, (xn el ecaEhn

wF,p
with projection the quadratic kernel of (f,b)

p,ob(f,b) = o, (£,b)
and induction the gquadratic kernel of (f',b')

ploP(f,b) = 0, (£',b")
If (f,b):M—— X is a genuine normal map, that is if X is an
n-dimensional geometric Poincaré complex, then oe(f,b) is an
n-dimensional pseudoquadratic Poincaré complex over E[Hw]
with cobordism class

oR(F,b) = o, (£,0) € L@V = L (zx"])
(Moreover, in this case the spectral pseudoquadratic construction
is a composite
bp 3

P 3

v Kew) —e T  , rpy) ——2 s MY e )
F,p’" "n'%' n 2P n *
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Let (X,Y) be a connected codimension 2 CW pair with
nl(X) = nl(Y), and let ¢ be the pushout square of fundamental
groups

nl(s(in—N——nl(Z)

[ ]

"l(E(E))—————éﬂl(X)

Denote the universal data of f:Y—>»BG{2)
(ny(8h) —— 1 (S(E)) ——> 7, (1) ——> (1},
wl(E) :nl(Y)—»&z)

P
by (1:Z —n' —— 71 —> {1} ,w:rn ——»—»ZZ), and write the

orientation map of X as
w(X) = w 1 nl(x) =1 — 22 B

so that the other orientation maps are given by

£

w(Y) = w nl(Y) =7 —> Zz R
wi(zZ) = w(S(£)) = w' : T, (z) = "l(S(C)) =Tl Z,
7.2.1 ii) LS-
By Proposition the groups of (X,Y)
7.8.1 iv) rs-
LS, (¢) = LN, (7' ~———> 7,w)
fit into the exact sequence
IS, (d) = TN (n' ——3 71,w)
Cm L (2 oINS (W)
] '
B L B T R P N C A R P



N e TP (ZIT) > TN (W)

£

AR i ﬂ.[n'w'l

i

—sreets L —| ] ) —> L (Z Y] —>

AR ARM

7.5.1 ii) -

By Proposition the codimension 2 splitting
7.8.6 weak

LN (1" —— m,w)
obstruction group (n3y2) is the cobordism
FNn_z(n'———+ m,w)

group of contractible i n~dimensional quadratic Poincaré
weak

splittings over ¢, i.e. of pairs

n,wg
n-2

W

(el @, (r:agtc ——sp, (54,55 0 € QY ()

consisting of an (n-2)-dimensional quadratic Poincaré complex

3
(C,¥) over z[n” ] and a £ n-dimensional quadratic Poincaré
weak

pair (£:3£'C ——> D, (8¥,3£'0)) over Z[1'¥ | such that the

Z[n]-module chain map

1 o
< ); ZIT)8,, ,9EC ——> COZ @y D

P!f
is a (simple) chain equivalence, where 1 is the Z{n]-module
chain map appearing in the n-dimensional quadratic Poincare

pair over z[nw]

ehie,n = (iizine efe— e, ety ety el i)

Z(u')

We now have to give an algebraic definition of c’(c,w).
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Proposition 7.8.11 The transfer maps in quadratic L-theory
associated to a codimension 2 CW pair (X,Y) with ﬂl(x)= nl(Y) =1 ,
nl(z): nl(S(g)) =7, w(X) =w: n-—+122 are given algebraically by

gLzt ) ——r ez 1 —— 2z

o —ct v, Gaziney, L cl—c 0,1861))  (nzo)

£
with (C, V€ Q:'w (C)) the projection of an n-dimensional

In,w

€
n (¥)) over

pseudoquadratic Poincaré complex (&, (¥’',Xx') €Q

wC : ! ! W,
zZ{n" ] and (i:Z{r]@ C'—>C, (0,18¢") eon;2(1)) the

Z(n')

{n+2) -dimensional quadratic Poincaré pair over z{n"] with

i= (10 : (mw]uaam",]c")r = ¢ @ac, _, ——>C,
Proof: Immediate from the pseudoquadratic kernel construction.
[}
Continuing with the previous terminology define an
antistructure {(8,t) on Z[(n'] by
B :zZn'|]——>Z(n'] ;
1

n_,g'—> [ n_,w'(g'jg'"" - ) n_w'(g')g'”

g'e,ni q q'e"l g glenl g
w'(g')y=+1 w'(g')=-1

so that there is defined a morphism of rings with antistructure
P (ZIn'),8,6) ——> (ZIn],u",1) .
In the oriented case wl(E) = w = +1 the unit t€ Z[n'} is central

and B:Z[n')——> ZIn') is the w'-twisted involution.

L



Assume now that the underlying codimension 2 CW pair
(X,Y) is a formally {(n,n-2)-dimensional normal pair (in the
sense of §7.5) and that there is given a formally
(n,n-2)-dimensional topological normal map
(f,b) : (M,N) ——=> (X,Y}) ,
denoting the restriction normal maps by

(£.b)] = (g,c) : N = ¢ty — 5y

(£,b)} = (h,d) : (P,S(v)) = f_l(Z:S(E))~——~+(Z.S(E)) '
with
g £
v: N———>Y ———— BG(2)

According to Proposition 7.5.4 ambient surgery on (g,c) inside
(f,b) has the algebraic effect of surgery on the (pseudo)quadratic
kernel pair (og(g,c),o*(h,d)) preserving the union
Elog(g,c)LlpO*(h,d) = o,(f,b). We shall now associate to the
pair (of(g,c),o*(h,d)) a formally (n-2)-dimensiopal
(R, t)-quadratic complex over Z[n'] o, {(f,b) such that surgery
on the pair determines surgery on the complex, and such that
if f:M——— X is an s-triangulation algebraic surgery determines
geometric surgery, generalizing the treatment of codimension 2
surgery due to Matsumoto [1] and Freedman {1].

The pair (og(g,c),o,(h,d)) consists of a formally
(n-2)-dimensional pseudoquadratic complex over Z[nwil which
we shall write as

p ! - C o mwk
oxlg,c) = (CIG ),wc'p([YJ)) = (P=(C',d',e"), (V"' x") € Qn_2 ))

and a formally n-dimensional quadratic pair over Elﬂ'w } which
|
we shall write as
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o, (h,d) = (f:C(g ') ——> C(h'), g ((P])
. ! R N R
= (et ——atspt, (st v e Q] Y (e
with
. i _ N R (Y
fo = (a'k a'j) = (CT) = Cl®a’Cl  ——>a'Dl

Define an untwisted pseudo chain complex over Z[T]
D= (o.0 ,
and note that j,k define a pseudo chain map
T =Gk E e D

As D is untwisted the Z[Z module chain complex (Homn(Q*'w

21-
is the algebraic mapping cone of the Z:szl—module chain map
1-t : (Hom

.](a'D"'w',a'D'),T_l)—-——a(nom ,](D'*'B,n'

Z[n Z[n

and J induces a natural transformation of exact sequences of
abelian groups

m',w'

!
TY (a'sD') ———> Q (£p') ———>

571y Ui[

1-t '
(@'n',-1) ——l P, 0 —

L0

mtew!
T On_2

£ ot L
Mmyw 0" ', w ran
ol ) — 25 ™ " (arsDY) — s
Js 571,
1" @) > " 1% (@D, 1)
Qnlz n-3 (@b

Define the antiquadratic kernel of (f,b):(M,N) —>(X,Y) to

the formally (n-2)-dimensional (8,t)-quadratic complex over
T8
g, (f,b) = (D',Jé(Gw',(w’,x'H GQn_2 (D', t))

(D" = a'aC(h'))
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Proposition 7.8.12 Given data

m:z —s n' —L 5 ¢ —_— {1}, —— Z,)

and an orientation map w:m ——> 22 there are defined natur

isomorphisms of abelian groups

.

IN (=)~ L zin1®,n
(o8 (g.c), 0, (h,d)) —— 0} (F,b)

[N, o {n'——n,w) Fn_z(p:z[w']ﬁ-——a z (1" 1.t

o8 (g,¢),0,(h,d)) ———— o} (£,b)

zin  ——z(n¥) z(n')® —s z(n)®

w' ~ B
T I 0 —>—T o lg
Zin"' ) —> z[n") Z(n )Py z Y]

1 ' R '

(crvrer 1" ey —atact, 5 ooy e ol 1B ara
(H*(Z["]ﬂz[“.lc') = 0)

which fit together to define a natural isomorphism of exact

sequences

w' '
4 Tn+1(6 ) ———> LNn—Z(" -7, W) ——>

2

B 118
s> 07, ) L (Zn '], t) -

w')__.w

L3
, _ >
an-z(" —>n,w) rn(o

)

oot -zrn'ls————->z1n”£1 t)——> 71 8 —
n-2'P? ‘ n-2'9"
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Proof: Given an (n-2)-dimensional (B,t)-quadratic

Poincaré a8
complex over Z[n'] (D',¢' GQn_é (D', t))
Z[n}-Poincaré

define an (n-2)-dimensional pseudoquadratic complex over Z[Hw 1

H,wE

{© =(p',0), (¥',0) €Q_ (D)) with projection Z[n]@ .](D',w')= (D, ¥)

AR
Poincaré

and define also an n-dimensional quadratic
Z[n}-Poincaré

. W' ! ' ' ! W' :
pair over Z|[n ] (fo:D —— a'SD', {0, ¢ )GQn (fo)) with
! - '
fo = (01) : (D )r = D;Oa'Dr~l_——>a‘D;’—l '
1 '
- M 1 L} 5

such that <p c : z[n]ﬂzz[".]D —)D@Z[n)ﬂz[n,]u SD' is a

170

simple Z{n]-module chain equivalence (the identity in fact).
The corresponding abelian group morphisms

L (Z[ﬂ']e,t)——§LNn_2(ﬂ'————§ﬂ.w) H

n-2
(D'.w')F——‘~*((®,(W',O)),(fO:D!4~—+a'SD"(0:W!)))
£
Topeizin ) — 2tV 0 s I )
(D', 4') ——> (D, (4',0)), (£,:D' —>a'sD*, (0,4')))
arerthe isomorphisms inverse to the morphisms defined above.

Given a Z[n]-acyclic (n-2)-~dimensional (B8,t)-quadratic

w',8
n-2

the Z[n']-module chain map l-t:a'D'—> D' is a chain equivalence,

Poincaré complex over Z{n'] (D',y'€Q (D', t)) we have that
by Proposition 7.8.7 iii), so that there is induced an isomorphism

IB
2

- . n',w' . N n' '
1-t : Qn_2 (a'D',-1) -—‘—)Qn_ (D', t)

' W

and (a'sn',§(1—t)‘1w'eQ:' "(a'SD')) is a z[nl-acyclic

: : . . w'
n-dimensional quadratic Poincaré complex over Z[='" 1.



The corresponding abelian group morphisms

1

Py 08 ) ———r ") 5 (04 > (asD Bt Thyn
are the isomorphisms inverse to the morphisms defined above.
[]
If (X,Y) is a ) {(n,n-2)-dimensional geometric Poincaré
weak
pair (such that =,(X) = 1Y) = n, m(S(E)) = my(2) = 0t wiX) = W)

and (f,b):(M,N) —>» (X,Y) is an (n,n-2)-dimensional topological
normal map such that (f,b):M ——> X is an s-triangulation of X

the antiquadratic kernel o, (f,b) is an (n-2)-dimensional

. Poincaré
(B>, t)-quadratic . complex over Z[n'].
Z{n}-Poincare
Proposition 7.8.13 The % splitting obstruction of f along YCX
weak

is given by
S(E,Y) = 04(f,b) € IN ,(n'——m,w) =L _(z(r'}f,0)
ws(f,Y) = o,(f,b) € FNn_z(n'————an,w)

(p:Z[n'lB-_-4 E{nwgl,t) .

= rn—2

Proof: Immediate from Proposition 7.8.12.

[

Matsumoto [1] and Freedman [1} (independently) analyzed

ambient surgery on codimension 2 submanifolds in terms of a
geometrically defined t-quadratic form analogous to the
self-intersection form of Wall [4,§5] and the equivariant
self-intersection form needed for codimension 1 surgery (cf. §7.6).
The antiquadratic kernel o} (f,b) is ~vidently a homological

version of this t-quadratic form.



If (M,5M) is an n-dimensional manifold with boundary an
Uc¢ 3M is a codimension 0 submanifold {(which may be empty) of
the boundary such that (M,U) is an (n-2)-dimensional geometr ic
Poincaré pair, and such that there is given a codimension 2
spine K< U, then the obstruction g, (M,K) € Pn_z(n,w) obtained
by Matsumoto [1} (in the oriented case w = w = +1) for the
existence of a codimension 2 spine (N,K) € (M,U) is the rel3
weak splitting obstruction along the zero section MCE(f) of
an sZ["]—triangulation (defined as in Proposition 7.5.4)

(£,b) : (M;U,X;3U) —>(E (L) sE(E) ), S ()8 ey (X = Y

topologically transverse at the zero section (M,U) € (E(£),E(g|

with £ 1) = Kcu
of M, K) = ws_(£,M) = 0,(f,b)
£
€ B _ (W) = PN (n'—sn,w) = Fn_z(p:Z[n']B—)E[nw )
with £:M—>BG(2) an Sl—fibration over M extending
gy ME—BG(2), 1 o= M), mt = m (S(E)), W= WM, M),

The obstruction to the existence of a codimension 2 spine
obtained by Cappell and Shaneson (2] is the relative
(Z[n'],Z[n])-homology surgery obstruction of the n-dimensiona
topological normal map of triads
(h,d) = (£,b)] & (P:S(v),X;3V)
——>(S(£) x I35(E) x 0,5 (£) x 1;S(E] ) x I)

£l

. -1
wlth\):vNCM:N:f (M) ——— M

>»BG(2), P = MNE(V),

which is the image o,(h,d) € Fn(Ow ) under the canonical map

of ws)(f,M)G FNn_Z(n‘-~+n,w). By Proposition 7.7.3 ii) this
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obstruction is the reld quadratic signature of the
sz["]—triangulation

(3,£,0,b) = (£,b)] = (X,30) ——(S(E),S(Ely)
that is

o, (h,d} = o, (3,f,5,b) €T (0% .

We shall now consider the codimension 2 surgery obstru
theor in the case when the normal Sl-fibration admits a sec
e.q. if it is trivial (the situation arising in kpot theory)
We shall develop non-simply-connected analogues of various k
invariants, which will be related to their origins in knot t
in §7.9 below. For example, the above expression for o,(h,d)
a generalization of the expression of the knot cobordism cla
of a (high-dimensional) knot in terms of the Blanchfield
pairing in the homology groups of the knot complement.

Let then (X,Y) be a codimension 2 CW pair such that

E = whe : Y ——> BG(2)
for some line bundle w:Y ——> BG(1l), and such that
nl(x) = wl(Y) =71 ,
in which case nl(z) = nl(S(i)) = 7' is the semidirect produc

of 7 and Z determined by the orientation map w:mn —>Aut (Z)

p
{1} —— z > 7' > T > {1}

with 7' = (gtjlqe m,3€ Z} as a set and

(atd) (ntky = (gnye@ (M I*k

e n' (g,h€mn, j, k€ Z)
plat)) =gen .
(If w is trivial m' = nx Z). Denote the orientation map of X

wiX) =w : 1 ——»-——)Zz ’



so that

w(Y) = wb : 7 —— Z, i g ——>w(g)wlg)

J ——— W{g}

w(Z) = w' : n'«-a-22 ; gt
A mild generalization of the splitting theorem of Shaneson [1]

(the trivial case w = +1) identifies
Lz = Lz e (zin])
n n n-1 !

so that the transfer map in quadratic L-theory associated to (X,Y)

w

£ . £
el L@ ) ez 2] = BACICARE

is just the forgetful map appearing in the Rothenberg exact

sequence. The resulting identification
an+l wC
LNn(n‘——%ﬂ,w) = H (Z,iWh(m) " )

was first obtained by Wall {4,Prop.13A.10] (for w = +1).

It now follows from the exact sequence given by Proposition 7.8.1 i)

- 3
.~—~>H”+1(2zz;wn(n)"’ ) ——> IN_(1"'—> 1,w)

Yy sz

Z(n
—T 0"’ l ——> 8"z m ) — ...
Z(n Y | —— z ("]
that an(n'—~*‘>n,w) can be identified with the cobordism
group of Z[mn}-acyclic (n+l)-dimensional quadratic Poincaré
complexes over Z[n'w'] (C,¥) such that C is based,

n+l-%,w'

T (Z[n]Q = 0 € Wh(mn), T((1+T)|JJO:C —>C) = 0 € Wh(n'),

z(“.]C)
and such that an invariant in the second Whitehead group th(n) is O.
We shall use this expression for I'N, in §7.9 below in the special
case 1 = {1} (when all the Whitehead groups are O) to describe

the high-dimensional knot cobordism groups C, as the cobordism

groups of Z-acyclic algebraic Poincaré complexes over ZI[Z]},
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generalizing Blanchfield duality. In §7.9 there will also be
given a description of C, as the cobordism groups of
"ultraquadratic" Poincaré complexes over Z, generalizing
the Seifert form, which motivates the following expression
for TN (1 x Z —>1,w).

Let A be a ring with involution, and let C be a
finite-dimensional A-module chain complex. The case p = 1 of

Proposition 1.1.3 gives the exact sequence

n+2 LT n 5 n+l
e >Q (SC,e)——)Hn(HomA(C*,C))———-—»Q (C,e) —>Q (SC,e)—>

with €€A a central unit such that € = € €A and

n .
1+Tc : Hn(HomA(C*,C))——'w——*Q (C, e} ;

(+r)¥ s=o0

b o (T = (AT, = )

o] spl
The Z[%zl-module defined by the abelian group Hn(HomA(C*,CH

with T€ Z, acting by the e-duality involution Te:aP”‘*(-)pqe@*

2
(@e HomA(Cp,Cq)) is denoted by 6n(C,€). An element

Ve 0, (C,€) = u_(Hom, (C*,C))

is a chain homotopy class of A-module chain maps

An n~dimensional e-ultraquadratic complex over A (C, V)

is an n-dimensional A-module chain complex C together with an

element @G 6n(C,e). Such a complex is Poincaré if

(I+T)$ : " —— 5 C
|

is a chain homotopy class of chain equivalences. Similarly

for pairs. Define the n-dimensional e-ultraquadratic L-group

of A ﬁn(A,e) (n »0) to be the cobordism group of n~dimensional

M A\

N



e-ultraquadratic Poincaré complexes over A. The f-ultraquadrati
version of the algebraic surgery of §1.5 shows that the
skew-suspension maps

§: L (Ae) —— 1L (A=) ; (C,¥)—>(SC,50) (nzaQ

are isomorphisms, just as for the e-quadratic L-groups L,(A,€).
There are defined forgetful maps

L (A} ——>L_ (A€) ;
(C,beQ (C,e))—(C,¥eQ (C,e)) (n

~

with g = b, 4 =0 (s31).

An e-ultraquadratic form over A (M,@) is a f.g9. projectiv

A-module M together with an element @G HomA(M,M*). Such a form
is non-singular if the A-module morphism
Predr 1 M e M
is an isomorphism. A morphism (resp. isomorphism) of such forms
£ 0 M) ——> 00
is an A-module morphism {(resp. isomorphism) f€ HomA(M,M') such
that
£*9¢ = 0 € Hom, (M,M¥) .
A sublagrangian of an e-ultraquadratic form (M,$) is a direct
summand L of M such that the inclusion jé€ HomA(L,M) defines a
morphism
i i (L,0) ——> (M, )
and such that j*(@+E®*)€ HomA(M,L*) is onto. A lagrangian is a
sublagrangian for which
L = ker (j* (b+eg*) :M —— - > L*)

~

An g-ultraquadratic formation over A (M,V};F,G) is a non-singula

e-ultraquadratic form over A over A (M,Vy) together with a
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lagrangian F and a sublagrangian G. Such a formation is
non-singular if G is a lagrangian. The €-ultraquadratic versic
of the theory ot §1.6 identifies the homotopy equivalence clas
O-dimensional .
of e-ultraquadratic (Poincare) comple
connected l-dimensional
isomorphism
over A with the classes of (non-singular)
stable isomorphism
forms
e-ultraquadratic over A, and also identifies
formations

£0(A,s)
= the Witt group of non-singular e-ultraquadrati

forms
over A .

formations

Ll(A,E)

~ .

LO(A,€)~———»LO(A,E) i ionto
Li(AE)——1L,(A,€)

The forgetful map {
one-one

By analogy with the the intermediate e-quadratic L-groug
Lf(A,e) (X¢ im(A), m= 0,1) of §1.10 there are defined intermed

e-ultraquadratic L-groups ﬁf(A,e), with an exact sequence
.. .—ﬁﬁ“*l(zz;y/x)——» Lra,6) —> LY (a, ) — 1" (2,5 /%)

X
R —
Ln_l(A,c)—A~+ .
for xgvgim(A).
For e=1 € A the terminology is contracted in the usual
fashion
5 = Q i =1
o, (C. ) Q. (C) «» L (A1) L (a)

l-ultraquadratic = ultraquadratic .



In dealing with the ultraquadratic L-groups in the topological

r}E Ky (z (1)
context we shall be working with L, (Z[(n}), and from

now on L, (Z[n]) will denote these f-groups.
Ultraquadratic complexes arise in topology by applying
the unstable spectral quadratic construction of Proposition 7.3.2

to a n-map F:X——> Y, to obtain a natural transformation

~

¥ (0,0] -5
bp ¢ H L 0/m ——0 2% () = Q (c(f)) (n30)

with C(f) the algebraic mapping cone of the induced Z[w}-module
chain map f : Qé(x)-—+~é(¥). We shall call $F the ultraquadratic
construction on F. If X = IX, is the suspension of a mn-space X,
then @F is the composite

. . Yoo, &

be Hn*l(X/ﬂ) = H (Xg/1) ——> Q (C(Y)) ———> Q_(C(f))
with WF the unstable quadratic construction on F:EXy——> 1Y
in the sense of §I1I.1 and e:C(Y)~———>C(f) the inclusion.

For connected Y it is possible to construct wF by means of the

adjoint m-map adj(F) : XO——A—+ IZY and the approximation theorem

QLY = U (Ny)/~

k>1 k
due to James (1], with
adj(F),

bp ot B (Xg/M) ——————> i (RLY/7) = 1?31“"(/;:”")

projection . a .
—> H_ (YA _Y) = Q_(C(Y)) .

Similarly for disconnected Y of the type (Y')+ for some space

with n-action Y', using LY = 9B( U (f1Y')) ana
kyl k

Hn((Q'Y')/"), i.e. the group completion

; - &
B (Q0Y/1) = Z(Z18y D)

version of the James construction,



818

Let X be an n-dimensional geometric Poincaré complex with

(nl(x),w(x)) = (n,w), and let Z[n} have the w-twisted involution.
Given an sz[n]—triangulation
{g,c) : W——>X xS1

topologically transverse at X xpt.< X xsl there is defined an

n-dimensional topological normal map
-1
(f,b) = (g,c)| : M =g (Xxpt.) —>»X .
We shall call normal maps arising in this way ultranormal.

The ultraquadratic kernel of (f,b) is the n-dimensional

ultraquadratic Poincaré complex over Z[m]

G,(6,b) = (c(£h), e cieh))
refining the quadratic kernel o, (f,b) = (C(fl),we Qn(C(f!))),
which is defined as follows. Let X be the universal cover of X,
let W be the pullback of X x st along g, and let g:W ——>X « sl
be a w-equivariant homology equivalence covering g.
The embedding M xDl = g_l(X !Dl)c W lifts to a m-equivariant
embedding ’t»\{x ch%" where X xch X xsl is a normal Dl-bundle
of X xpt,C X xsl. Applying the Pontrjagin-Thom construction

there is obtained a n-map

N 11 e . N N
Hos oW, _COLlaPSe G- Mxpl = Mxpl/f«s® = N,
inducing the Z|[n)-module chain map
h=(0f) : i) = ec(Xxsh) = acRrec(X) —— - >c(i) .

Define a Z[n]-module chain map
e=(01) : C(h) =crec(tly—ceh .

The composite
by . &y . )
Hopg (W) ———> Q (C(h)) ——>Q (C(f")

sends the fundamental class [W] € Hn+l(w) to the element
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“ - ~ !

b= egby (W ed et

appearing in &G, (f,b). The cobordism class
3.(E,b) € L (zZin])

is the ultraguadratic signature of (f,b).

Proposition 7.8.14 Given a (finitely presented) group m there

are defined natural isomorphisms of abelian groups

L (Z(1]) —= N (1xZ ——3m) = [_(ZInxZ)——>Z[n),2) 3
€, ——>(Clz,z2 1,0 (n»0)

with z = (1,1) € nx2Z, Clz,z '] = Zln x 218y, |C and

b = W WS =0 (s>»1),

Proof: By the theory of Matsumoto [l1] every element of

PNn(vx Z —> 1) (at least for n »5) is the obstruction o, (M,K)
to extending a codimension 2 spine KcU to a codimension 2 spin

(N,K) € (M,U}, for some (n+2)~dimensional manifold with boundary

{M,dM) and codimension O submanifold U < 3M, such that (M,U) is

an n-dimensional geometric Poincaré pair with nl(M) = n and
Hn(M,U)»v-—+Hn(M,3M) = H2(M) ; [IM] ———> 0. The associated
sz,"}—triangulation of triads

(g,c) : (M;U,X;DU)»——?(MXDZ;UXD2,M><Sl:stl) (X = 3|

restricts to an n-dimensional ultranormal map of pairs
(£.0) = (g,0)] = (,K) = g F((M,U) x pt.) ——>(M,U)
such that (3f,)h) : K ———>» U is an s~triangulation of U.
The ultraquadratic signature defines the inverse isomorphisms
TN (nxZ —> 1) ———»ﬁn(ZZ["]) ;
0, (M,K) = ws,(g,M) >3, (f,b) .

{1
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Let A[z,z_ll be the ring of finite Laurent polynomials
o« .
X ajz] (aje A) in a central invertible indetermin ate z ove
j:—uo

ring with involution A, extending the involution by 2z = z

The projection
@ @

Alz,z Y ——s A ; ¥ a.zji—————»_)_' a.

j=- je-w 3
is a morphism of rings with involution. Define the covering o
an n-dimensional €-ultraquadratic Poincaré complex over A
c,be an(C,E)) to be the A-acyclic (n+l)~-dimensional e-guadra
Poincaré complex over A[z,z_l]

B(C,¥) = (D,0€Q ,,(D,¢))

given by
r-1 ~
(e T d
dp = o (‘)[Qld*
[
D =cC (2,2 Yjec™ Tt (2,27 ]y
r r
——3D_ _; = Cr_l[z,z_IJQCn—r+2[z,z‘l]
o (-)r(n-r)2>
8 =
I} -
((-)" f 0
Dn—r+1 Cn-r+1[z 2_1]0Cr[z,z—l]
D _ = C [z,2 e 2,27 ]
6, =0 (sy1) ,

where C[z,z_l] = A[z,z-l]ﬂAC. If (C,¥) is projective (resp. f

then B(C,@) is free (resp. simple). If A = Z{n] then

~1

Alz,z "1 = Zlnx2Z].
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Proposition 7.8.15 Given a (finitely presented) group n there

are defined natural isomorphisms of abelian groups
Z[n x Z)——> Z[n x 2Z]

g Llzin) —~>r ) ;

ZAm x BY~—~———> Z (1)

(€, %) ——s 8(C,¥) (ny0) ,
where ﬁZ(Z[n]) is the cobordism group of free n-dimensional
ultraquadratic Poincaré complexes over Z{n]}.

Proof: This follows from Proposition 7.8.14 and a 5-lemma

argument applied to the natural transformation of exact sequences

...*‘——‘)ﬁn+1112;wh(ﬂ)) —_—> ﬁn(Z{n])'——v———"

Z 4

i d LNn(an-——7 m} —-——*I’Nn(ﬂxz———-¥ M) ——

ﬁ:(zm) > A"z, () ————> ...
B 2

P 4@ —————> LN {1 xZ —>7) —> ...
8]
In the full account (Ranicki [11]) we shall be obliged
to obtain the identifications I'N,(nrxZ —>7) = L, (zZI[n]),
F*+2(0) = E?(Z[n]) of Propositions 7.8.14,7.8.15 algebraically,
using an appropriate Higman linearization trick to replace the

codimension 1 transversality.
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7.9 The algebraic thecory of knot cobordism

We shall now illustrate the various approaches of the
algebraic theory of surgery to codimension 2 embeddings by
giving various L-theoretic interpretations of the high-dimensional
knot cobordism groups C,, as well as defining some isotopy
invariants of knots.

We refer to Kervaire and Weber (1] for a survey of

high-dimensional knot theory.

n+2

Given a (locally flat) topological knot k:s"cs (ny 1)

let U = s” xDZC Sn+2 be a closed reqgular neighbourhood of

n+2

k(Sn) =s"xocs The knot complement is the (n+2)-dimensional

manifold with boundary

(x,5%) = (s"*2-y,s" sty ,
with X a deformation retract of the actual complement Sn+2- k(s™.
The generator 1€ "1(Sn+2_ k(Sn))= 2Z is represented by an
(n+2)-dimensional topological normal map of pairs
(g,¢) : (x,3X) —————>p"*1 . 51, 5P« gLy
which is a Z-homology equivalence witt g| = id. : ax ———>s" xsl,
i.e. an sz-triangulation of (Dn+lx S],Sn xsl).

3
The Blanchfield complex of a knot k:S5"¢ Sn+2 is the

Z-acyclic (n+2)-dimensional quadratic Poincaré complex over WJZ,Z_I
o, (k) = 0,(g9,c)

defined by the gquadratic kernel of (g,c}. The chain complex

involved in o,(k) = (C(g!),we Qn*z(C(q!))) is the algebraic

mapping cone C(gl) of the Z[z,z—ll-module Umkehr chain map
i

+1 1 -1
(0" x s )
gt tco™eRr) —— =~ Lo R,s"xR)
g* o 2. (1XI0o) -
ey (X, 0X) —_—— s C(X)

n+l-+%
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with X the infinite cyclic covering of X. The non~trivial home
kernel Ziz,z_ll—modules of g are the knot modules of k
' -
H,o(C{g')) = H(X) (*#£0) .

Proposition 7.9.1 The homotopy equivalence class of the Blanc!
n+2

complex o, (k) Is an isotopy invariant of the knot k:s"cs
[}
Define a multiplicative subset
[e:] . —1 o _1
p=1{ 7 p.2lezlz,2 "] | p,=1emlczlz,z "] .
j=-uoj 2w

Proposition 7.9.Z2 i} The following conditions on a

finite-dimensional Z[z,z—ll—module chain complex C are equiva

a) C is Z-acyclic, i.e. H*(Z@Z[z,z_llc) = 0,

b) C is P-acyclic, i.e. pH,(C) = O for some p€PpP,

c) 1-z: C——>C is a Z[z,z—ll—module chain equivalence,
i.e. 1-z: R, (C)—H_ (C) is an automorphism,
ii) If C is a finite-dimensional Z-acyclic B[z,z_ll~module
chain complex the e-symmetrization maps in the O-groups

4T 2 Qu(Cie) ——=>Q* (C, ¢)

are isomorphisms, for any unit €€ Z(z,z—l].
Proof: i) a)<>c) is immediate from the short exact sequence

of Z-module chain complexes

1-z
QO———>(C ——> C —>ZB -1.¢ —>0 .
Zlz,z 1]
b) = a) by the factorization of the projection

71,]7.,2’1} ——»P“lz[z,z_ll

-»ZZ .
c) = b} The homology H,(C) is a f.g. z[z,z_ll—module such that
1-z:H, (C)——>H,(C) is an automorphism. We now use the arqumen

of Levine [5,Cor.1.3]. lLet xl,xz,...,xme H,(C) be a finite set
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of Z[z,z_ll—module generators, so that X = (l—z)yi for
m
-1 R R
some y; = jzlaijxj € H,(C) (aije Z(z,z "1, 1< igm. Define
. ~1
an mxm matrix over Zlz,z "] B = (bij)lS i,j¢m by
N (z—l)aij if i#73
1) 1+ (z-1)a,; if i=3,
m
so that | bjsx; = O € Hy(C) (lgigm). Now p = det(B) €P an
j=1 '
. : . ; -1 v '
there exists an mx m matrix over Zf{z,z "] B' = (bij)lg i,5¢
A ; -1 _ _-1_, -1 -1
such that B'B = pI (with B = p "B' over P "Z{z,2 "]), s0 t
P oyl
px; = b!.( ¥ b.x ) =0€H(C) (Lgigm)
i 321 1352y k7K

and pH,(C} = O,
(This is the special case n' =%, n={1} of the result of
Smith (1,Prop.2.3] that if n'——3n is a surjection of grou
such that

P={pezr'llp-leker(Z(n'|—z(n])} <zm(n')
is a multiplicative subset then a finite~dimensional Z(w'j}-
chain complex C is Z([n]-acyclic if and only if it is P-acyc

I1f the surjection is part of data

(H:Z—l—»ﬂ'——-—a‘r m —{1},w:m — Z,)
with w = +1 and i{l1) = z € n' then Proposition 7.8.7 iii) s
that a finite-dimensional Z[#n']-module chein complex C is
Z([n]-acyclic if and only if 1-2z:H {(C)——>H,(C) is a Z[n']-
isomorphism. Note however that the result of Smith [1,Cor.3

is false: if ker(n'—>7n) = Z and

Po= (] py2’| ] py=lipjezicrezin’
j=-o j=-w
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it is not in general true that a finite-dimensional Z[n]-acyclic

Z{n']-module chain complex C is P.-acyclic. The error in the

(o]
proof arises in assuming that if M is a f.g. Z[7']-module such

that 1-z:M—>M is an automorphism and M, is the f.g.

0]
Z[z,z-l]-submodule of M generated by a finite set of Z([n'])-module

generators then the restriction 1-z:M ——>M_ is also an

(¢] (0]
automerphism) .
ii) By Proposition 3.2.1 i) an (n+l)-dimensional P-acyclic
E{z,z_ll—module chain complex C is the resolution of an
n-dimensional (z[z,z-I],P)—module chain complex D, with H,(C) =H, (D)

and l-z:D-———D an automorphism by i). By the exact sequence

of vogel {2,2.4) (cf. the discussion in §3.1)

...——>6i(0,e)———)og(n,e)—»o (C,—E)——*(—):_l(D,c)——>... .

n+l
its e-symmetric analogue
— + —n-

oo 3D, e) —> 0p(D,6) ——> 0" e, -e) —> 0 Do) —> ...
and a 5-lemma argument it suffices to show that the
€-symmetrization maps in the Q-groups of D

_P —
14T, : 0,(D,&}) ——> 0} (D,e)
14T : Qf(D,€) ————> Q4 (D,¢)

are isomorphisms. The automorphism

1

u=(l-z) © : D—D
=u¢ +¢u” 4 € Hom -1,(p",D)
is such that for any g Zlz,z 7} ,
¢ = (18u)¢ + (uBl)¢ ¢€Daz[z,z—l]D

1

1 e %[z,z~l,(l—z)— ] is such that U + U = 1.

since U = (1-z)
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Use u:D—— D to define isomorphisms inverse to the

€-symmetrization maps

QE(D,C) = H*(Homﬂlﬂzl(W'HomZ[Z,Z_I](D +D)})

— YD) = H,(wazlzzlnomz[2'2—1](D‘,D)) ;

=g
I

u¢o if s=0
{6,153 0} b ¥ = N'S=§ }
e 0 otherwise

Qf (D) = H*(Homnlzzl(W,Dﬂzlz'z—l]D))
— %, = H*(wazlﬂzl(DﬂZIZ.z_llm) ;

(1Qu)¢0 if s=0
¢ = {o lsy 0t —— v = (¥ = R

o] otherwise .
(The isomorphism 1+T€:Q*(C,€)—4!—§Q*(C,e) is a generalization
of the result of Levine [5,Prop.12.3] that the symmetric
Blanchfield pairing on a knot module admits a quadratic
refinement. The use of the automorphism u =(l—z)_1 was suggested
by Neal Stoltzfus).

)

The Alexander polynomial p€P of a finite-dimensional

Z-acyclic E[z,z—ll—module chain complex C is the generator
(unigue up to unit) of the maximal principal ideal contained

.

in the order ideal (s€ Z[z,z-ll|sH,(C) = 0)4aZ(z,z
Thus if M{X) denotes the cyclic o[z,z_i)—module of order

A€ Ziz,z 1] and 08, H, (C) =EPM(A) is the decomposition of the
induced Q[z,z—l]—module Q@ZH*(C) as a direct sum of irreducible
cyclic modules then p€P is the lowest common multiple (l.c.m.)

of the polynomials )€ Z[z,z-1]
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The Alexander polynomial p€P of a knot k:sMc gh*? (n 1)

is the Alexander polynomial of the (n+2)-dimensional P~acyclic
Z[z,z_l]—module chain complex C(g!). For n = 1 this is just

the polynomial originally defined by Alexander [l]. For n»1

it is the l.c.m. of the knot polynomials defined by Levine {1].
The linking pairing of the Blanchfield complex 0, (k) = (C(q!),w)

n-r+3

(1+m)vd o BT () xH %) —— p 'ziz,27  /z02, 27

(. ¥) b=y (LT U (x) (W)

n-r+3 r+

(r#0,n+3 xec(H)", yec(X) ,weC(H)N 2, vy = py)

n+2-% o

agrees via the Poincaré duality H (X) = H,(X) (*#n,n+2)

with the pairing originally defined by Blanchfield (1]

H (%) xHr_l(i)——»P‘lz[z,z_ll/zlz,z_ll

n+2-r
using geometric linking numbers of homology classes. The knot

module parings have been studied more recently by Levine [5].

n+2

A Seifert surface for a knot k:s"cs (ny1) is a

n+1C Sn+2

codimension 1 framed submanifold M with boundary

n+2

M = k(s™). Given a knot k:s"cs make the s?—trianqulation

n+1x Sl,Sn xsl) topologically transverse

(g,c): (X,dX) ——> (D

n+l . n n+l .n 1 L :
at (D .S ) xpt. < (D .S} x57, thus obtaining a Seifert
surface M = g—l(Dn+1x pt.)c X cs"+2 (with a collar removed)

together with an (n+l)-dimensional ultranormal map

1

(£,b) = (g,c)| = (M,aM) = g L(p"*?

n

,S™) x pt.) — (oML, gM)

such that f| = id. : 3M = k(8") ——>s", Conversely, every

Seifert surface M determines an ultranormal map

(f,b):(M,}M)-—‘f—é(Dn*l,Sn), by the method recalled in the

proof of Proposition 7.9.3 below, In the original work of
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Seifert [Ll M was obtained for k:Slcs3 using the knot project

The Seifert complex §,(k,M) of a pair (k,M) consisting

n+2 n+1c Sn+2

of a knot k:s"cs (n>1l) and a Seifert surface M
for k is the (n+l)-dimensional ultraquadratic Poincaré complex
over Z

G,(k,M) = 8 (£f,b)

defined by the ultraquadratic kernel of the associated

n+l .n
’

ultranormal map (f,b): (M, M) ——>(D S"). The chain complex
appearing in 8,(£,b) = (C(f'),3€d ,, (C(£'))) is the algebraic

!
mapping cone C(f°) of the Z-module Umkehr chain map

1 -1
(") -
f! . C(Dn+l) ~ C(Dn+l,Sn)n+l *
e peioe _ (IMIN )

——> C(M,3IM) C (M)

so that there is an identification
ciely = ¢

n+l-x

Identifying é(M) = é(M) by the Poincaré-Lefschetz duality

n+l

of the (n+2)-dimensional manifold triad (M ;k(Dz),k(D?);k(Sn_

n*Z-M) = é(M) by Alexander duality, note that the

and C(S
A ~ 1 ]

. ! - SN
ultraquadratic structure ¢ € Qn+l(C(f )) Hn+1(HomE(C(f y*,C(f
can be identified with the chain homotopy class of the Z-modul
chain map

. \)+ o
= C(M) ——> C(S
n+2

@ . C(f!)n+l—* _ é(M)"+1_* n+2_M) = &

induced by the map VM — S
2

-M; {x,0) »— (x,1) pushing
M = Mx OCSn+ off itself along the positive normal direction

determined by the framing of the normal bundle v
n+2

M Csn+2, with

E( n+l) = Mx [~1,1]c S In particular, for n = 2i-1

YMcs

the pairing



v Hi(M)/torsionx Hi(M)/torsion'”—~% Z
is the usual Seifert form of (k:s2i7lcg2i*l y2i),
The Blanchfield and Seifert complexes of a knot are
related by the covering operation of §7.8
g8 : {(n+l)-dimensional ultraquadratic Poincaré complexes over Z}
—— {Z-acyclic (n+2)-dimensional quadratic
Poincaré complexes over Z[z,z_ll)
Define (n+l)-dimensicnal ultraquadratic Poincaré complexes
over Z (C,@), (C',@') to be S-equivalent if their coverings
B(C,@), B(C',@') are homotopy equivalent. S-equivalence is an
equivalence relation such that
homotopy equivalence ==——=pS-equivalence =—=3 cobordism .
We shall relate this notion of S-equivalence with the usual
S-equivalence of Seifert matrices further below.

Proposition 7.9.3 Let k:s"c Sn+2

Mn+lCSn+2 be a Seifert surface for k. Then

(n21) be a knot, and let

i) BG,(k,M\ = 0,{k), up to homotopy equivalence

ii) the S-equivalence class of the Seifert complex 8*(k,M)
is an isotopy invariant of k, namely the homotopy equivalence
class of o,(k).
Proof: There is a standard way of constructing the infinite
cyclic covering X of the knot complement X from a Seifert
surface M : cut X along M to obtain an (n+2)-dimensional

manifold triad (Nn+2;M,zM;k(Sn)) involving a copy zM of M,

X = k’)zJN .
Gl

Accordingly, the (n+2)-dimensional topological normal map

and set



(g,c):(x,Dx)-———~—7(Dn+l xSl,Sn xsl) used to define 0, (k) =04(q,c)
may be constructed from the (n+l)-dimensional ultranormal map
n+l

(£,b): (M, 0M) ——> (D" 1,s™) used to define 6,(k,M} = &,(f,b) :

glue together % copies of an (n+2)-dimensional topological
normal map of triads
(G,C) : (NiM,zMik(s™)) ——> 0" L w 1;0™ x0,0"  x 1;5" 1)
and quotient out the free Z-action to obtain {G,C)/Z = (g,c).
Passing to algebra it follows that o,(k) may be constructed
from §,(k,M) in the same way, using the algebraic glueing
operation of §1.7, which in this case gives the covering
operation B:8, (k,M)r———> B3, (k,M) = 0, (k).
1
odd- k:szi—lC g2i+l
An even—dlmenslonal knot k;SZiC 52i+2 (i »1) is simple
ifow (X) = "r(sl) for r<i, that is if the sZ-triangulation
(g.0): (X, 0%) —— (" st 8" x5} is (i-1)-connected.
The Blanchfield complex of a simple knot k is the i-fold
skew-suspension
o, (k) = §i0i(k)
1_

dimensional (-)l—quadratic Poincaré complex

of a P-acyclic g
2_

over zlz,z 1] o (k)
form

The Blanchfield linking of a simple knot
formation

is the non-singular (-)l+l—symmetric linking

k:S21-1C SZ#+1
2i+2

k:s’lcs
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form -1
over (Zlz,z “},P) associated to (1+T(_)i)0.(k) by
formation 1
3.4.1
Proposition . There is no loss of structure in passing
3.5.2

from o, (k) to (1+T(_)i)oi(k), since it follows from
Proposition 7.9.2 ii) that there are natural identifications
of categories

forms

over (Z[z,z-lllp))

(e~quadratic linking
formations

forms -1
= (e-symmetric linking over (Zlz,z "1,P)
formationg
(e = t1) ,
As a special case of Proposition 7.9.1 we have that the
isomorphism form
class of the Blanchfield linking
stable equivalence formati

is an isotopy invariant of a simple knot. (Indeed, the linking

formation is only defined up to stable equivalence).

mlic g2i+l odd-

of an dimensional
even-

A Seifert surface . .
M21+1C S21+2

k:Szl_lC 521+1

knot (i» 1) is simple if M is (i-1)-connected,

k:SziC S21+2
that is n[(M) = 0 for r<i. A knot is simple if and only if
it admits a simple Seifert surface. If M is a simple Seifert
surface the Seifert complex is the i-fold skew-suspension
G, M = 518, (k,m
}O" . i . . )
of a dimensional (-) -ultraquadratic Poincare complex over

1~

ci(k,M).
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form
The Seifert of a simple (knot, Seifert surfac
formation

(k:SZI—lc S21+1'M21)
pair (i 1) is the non-singular

(k:SZIC 321+2,M21+1)

(—)1—u1traquadratic E

form (Q, ¥ € Hom, (0,0%))
over Z
formation

(Q,$:F,G)
Q= "i(M)

associated to Gi(k,M), with a .
G = Ci+1(M)——~—? Q/F = Ci(M)

form Levine [4)
This is the Seifert used by in the
formation Kearton {3]
odd-
isotopy classification of simple dimensional knots (i
even-

The Seifert form was originally defined by Seifert [2] for
classical knots k:SICZsa. An "e-form" (Q,@;F,G;@) in the sens
of Kearton [3) is a non-singular e-ultraquadratic formation

over Z (Q.@;F,G) together with an exact sequence of abelian

groups

g
0 —> (Q/(F+G))AZ, > 7 »F NG > 0

and a bilinear pairing ¢: " x 1 —> Z, such that

2
#(a,gb) = G(ha,b) , ¢(gb,a) = ¥(b,ha) €Z (a,b€Q)

The (-)1—form associated to a simple pair (k:S21C Szl+2,M21+1

consists of the Seifert formation (Q,@;F,G) and the homotopy
theoretic analogue on 71 = “i+1(M) of the Seifert pairing

1 x v,

H M M) —————> M) xn SZi+2
O 5 My (M) Xy (M) Tiep (M) Xy

+1( —M)=ni+l(M)xn

composition i i
> (587) =2, (i>3)

with h: =ni+l(M)-———* FNG = Hi+1(M) the Hurewicz map.

M~
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For a simple odd-dimensional knot k:g2i-lc g2itl (iz1
Proposition 7.9.3 i) reiterates the well-known relationship
between the Blanchfield linking form

(1+T

R IEAT

= (1 (%), 0:H, (%) xB, (%) —>P lzz,2 Y /mIz, 27t
and the Seifert form of a simple Seifert surface MZiC'SZi+l for k
8, (kM) = (Hi(M),xB;Hi(M) xH, (M) —> 2)
with
B (X) = coker (§+(=) "zd¥:n, M) (2,27 ) ——n 0 * (2,271 ])

9 : Hi(i) x Hi(i) — P'lzlz,z_ll/?le,z‘ll ;

(X,¥) >

(,y€H m*iz,z '), wen miz,2711, pep
(b1 1280 0 = py € H 0 *lz, 27t

A Seifert matrix of type € (€= %1) is a square matrix V

with entries in Z such that V+eV' is invertible, where V' is
the transpose of V (Vij = vji)' There is an evident one-one
correspondence between such matrices and non-singular
e-ultraquadratic forms over Z (Q,§) with a choice of base

for the f.qg. free Z-module Q. Trotter [1] and Murasugi (1}
introduced the S-equivalence relation on Seifert matrices

of type € = -1, using congruences and elementary enlargements,
corresponding to elementary ambient surgeries on a Seifert

3 of a knot k:Slc SJ. Levine [4] extended this to

sur face M2 S
€ = +1, and used the results of Kervaire [1]) on the

classification of high-dimensional knots to identify



(isotopy classecs of simple odd-dimensional knots k:SZl_lC-521+l)

= (S-equivalence classes of Seifert matrices of type €= (-}
Trotter (2]),[3]) (algebraically) and Kearton {1]) (geometrically)
then used the Blanchfield linking form to identify
(S-equivalence classes of Seifert matrices of type € = (—)i)
= (isomorphism classes of non-singular (—)i+1—symmetric
linking forms over (Z[z,z_l],P)).
Thus our notion of S-equivalence for O-dimensional €-ultraquadratic
Poincaré complexes over Z is the same as the S-equivalence of
Seifert matrices of type €. Kearton [3) used elementary
operations to define a T-equivalence relation on e-forms (= Seijfert
formations with a homotopy pairing) and used the results of
Kervaire {2] and Levine [4] to identify
(isotopy classes of simple even-dimensional knots k:S2i< 52i+2
such that ni(x) has no 2-torsion)
= (T-equivalence classes of (—)i—forms (Q,@;F,G;¢)
such that Q/(F+G) has no 2-torsion) (i23) .
(See Kearton [4] and Richter [1] for some preliminary results
expressing this set in terms of Blanchfield linking formations
with a homotopy pairing). In the full account of codimension 1
splitting theorems in Ranicki [11] there will also be included
an ultraquadratic version, in particular expressing the
S-equivalence relation on Seifert complexes in terms of elementary
operations, and using the covering operation B to identify
(S—equivale?ce classes of n-dimensional e¢-ultraquadratic
Poincaré complexes over Z)
= (homotopy equivalence classes of Z-acyclic (n+l)-dimensional
e-quadratic Poincaré complexes over Z[z,z-l])

(Ny 0,¢ = #+1)



For n = 1 this will identify the part of the T-equivalence
relation concerning the Seifert formation (Q,@;F,G) with the
S-equivalence relation defined above. Farber [1],[2] has
extended the classification of high-dimensional simple knots
in terms of stable homotopy theory to the metastable range,

n+2

identifying the isotopy classes of knots k:s"e s such that

"r(x) = nr(Sl) (r < %(n+1), nz5) with "R-equivalence" classes
of homotopy Seifert pairings. As for T-equivalenée, the chain
level part of R-equivalence is the S-equivalence of
ultraquadratic Poincaré complexes over Z. In particular, Farb
completed the classification due to Kearton [3] of simple
2142

even-dimensional knots k:S“'c S (i3 3) in terms of stable

algebra, including the case when ni(X) has 2-torsion.

n+2

A knot k:s"cs (nx1) is fibred if the canonical map

q:Sn+2—k(Sn)——~-—->S1 is a fibre bundle, in which case the

n+1c:sn+2 for k.

closure of the fibre is a Seifert surface M
The corresponding Seifert surface d,(k,M) = (M), e 6n+1(é(M)
is such that

LA e N N T 1

@ : é(M)
is a chain homotopy class of Z-module chain equivalences
(the monodromy of k). Simple fibred knots are of interest in
the study of algebraic singularities, cf. Milnor [2].
Odd-dimensional simple fibred knots have heen classified by
Durfee {1} in terms of non-sinqular Seifert matrices.

Kojima [1] has obtained a partial classification of
even-dimensional simple fibred knots in terms of Seifert

formations with a homotopy pairing (the same as the one of

Kearton [3]).



[2]

Following the work of Fox and Milnor [1] on C1 Kervair:

defined the cobordism groups Cn of knots k:SnCSn+2 (n21).

Proposition 7.9.4 The high-dimensional knot cobordism groups

C_ (n2 4) have natural identifications

n
i) Cn = Ln+l(z)
zZlz,2 ) —> z(2,27})
ii) Cn = Fn+3 0 l
Z[z,z—ll~——+ Z
_ -1
iii) Cn = I‘n+1(zz[z,z ] —2Z,2)
iv) Cn = Fn+l(0,z)
v) Cn = FNn+1(Z —>{1})
vi) C_ =1L (Z [z 21 P)
n n+3 4 !
vii) ¢ = 3___(sl;z)
n n+3 ! :
Proof: i) The ultranormal maps (f,b):(M,BM)-*—~—*(Dn+1,sn)
associated to the various Seifert surfaces Mn+1¢sn+2 of a

n+2

knot k:s"c s are ultranormal bordant. More generally, the

ultranormal maps associated to Seifert surfaces of cobordant
knots are ultranormal bordant. Thus the Seifert complexes of
cobordant knots are cobordant, and the ultraquadratic signat

defines abelian group morphisms

n+2

8, + L (@) i (:s"Cs™H——5, (kM) (nx1

Kervaire {1] showed that C =0 (i22). It follows from

2i
Proposition 1.6.5 iii}) that the forgetful maps

L21+1(A,€)~——————+ L2i+1(A'€)

are one-one, for any ring with involution A. In particular,

ﬁ2i+l(Z)QL21+l(2) =0, so that L,; (%) =0 =C,, (i32).
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The odd-dimensional knot cobordism groups C,. , (i3> 3) were

identified by levine [2] with the Witt groups of non-singular
(—)l—ultraquadratic forms over Z (i.e. Seifert forms), so that

C = EO(Z,(—)i) = i2i(Z) and §, is an isomorphism in this

2i-1

case also.

ii) The identification Cn = (0) was first obtained

I‘n+3
geometrically by Cappell and Shaneson [l], as a special case
of their theory of "semi-local knots".

iii) The identification ¢_ = T, (zlz,2 'l — z,2)
was obtained by Matsumoto [1],({2],[3) both geometrically and
algebraically. The cobordism class of a knot k:s"¢& Sn+2 is
identified with the obstruction to extending the inclusion

k(s")c U of k(s™) in a closed regular neighbourhood U = s x D2

. . +
to a codimension 2 spine (M,k(s")) < (" 3

,0).
iv) Immediate from iii) and the exact sequence

e > Ln(le,z—l],z)———+ Fn(Z[Z,Z_l]——-’Z.Z)

T (0,2 —— L (Zlz,2 M), — L,
since L,(Z{z,z-ll,z) = 0.
v) Immediate from iii) and Proposition 7.8.12.

The cobordism class of a knot k:SnCSn+2

is interpreted as
the rels obstruction ws.(h,Y) € FNn+1(Z —{1}) to a weak

codimension 2 splitting of an sz—triangulation of the

(n+3)-dimensional geometric Poincaré triad (Dn+3,U) X(Dz,sl)
h : (Dn”;U,X;’AX) ‘———)(Dn+3xD2:UxDz,Dn+3x51:UxSI)
along (Y,3¥) = (0"*3,0) xpt. c ("3 x 2,0 x DY) .

cgh

2
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vi) The quadratic signature of the Blanchfield complex
defines abelian group morphisms
04 ¢ Cn—-——>Ln+3(E[2,z_1]yP) ;
(k:s"e s >0, (k) (n3l) .
The expression of the odd-dimensional knot-cobordism groups

C > 3) as the Witt groups of non-singular (-)1+l-quadratic

24-1 U
linking forms over (Z(z,z_l],P) (i.e. Blanchfield forms} is

due to Kearton [2]. The actual identification

c (Z[z,z_l],P) is due to Pardon {1] and Smith [2].

n- Ln+3
vii) According to the theory of §7.7 for n2>3

l,Sn 1

x57;7Z)

gOP(Dn+1 xS

1 =
3. 43(5752) = 3
is the set of concordance classes of s?—triangulations of

n+1x

(D st,s"x st), which (by definition) are (n+2)-dimensional

topological normal maps

(g,c) : (X,0%) — (0" gl s"x sl

+ . :
such that g:X ——p" lx Sl is a Z-homology equivalence and

1

gl:SX‘““—)Sn x S7 is a homeomorphism. In particular, the knot

n+2 .
determines such an

complement (X,53X) of a knot k:s"e S
s?—triangulation, so that there are defined abelian group
morphisms

1
c, —— 3 ,36872) 5 k ——— (a.c)
The inverse isomorphisms are defined by associating to an
S?—trianqulation (g,c) with ﬂl(X) = nl(Sl) the cobordism

class of the knot



For any ring with involution A and any multiplicative
subset SCA define J-equivalence to be the equivalence relatio
“1 e-symmetric
on S "A-non-singular forms over A given by
e-quadratic
X ~ X' if there exists an isomorphism X@&Y —2-» X'@Y'
for some non-singular forms Y,Y' .
Combining Proposition 1.7.1 with the results on linking forms
of §3.4 we have that the boundary operation defines a natural
one-one correspondence
3 : {i-equivalence classes of S°1A-non—singular
e-symmetric
forms over A}
e-quadratic
~ even e€-symmett
—==> {isomorphism classes of non-singular
split e~quadre
linking forms over (A,S}) which are null-cobordant
even (~-€)~symmetric
regarded as non-singular
(-e)~-gquadratic

formations over A} .

For linking forms over (E(z,z_l],P)
e-symmetric = even e€-symmetric = e-quadratic = split e-quadrat
- . . i+ .
by Proposition 7.9.2 ii). A non-singular (—)1 1—symmetrlc

linking form over (Z[z,z_I],P) (M,X) is null-cobordant

i+l .
even (-) -symmetric
regarded as a non-singular i+l formation
(-) ~quadratic
1 o*(M,X) =0 o* (M, )
over Zlz,z "] if and only if , where
o.M ) =0 0. (M, 2)

denotes the image of the linking form cobordism class
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mo et®ziz, 2 e, M = e,
M) e (ziz, 27l ,e, (0 Y = ¢ o
’ o 2 1., 2i-1

v lziz, 27y, (0 1Y

Lvyy(z, (- h
under the map

H

Lyziz.2 1, M = Lz, h

appearing in the localization exact sequence

ez, Y —— 5 1%z, 27hy e, )

(=1%ziz, 27 —>z, (- 1)

—— v Nz, -
Lo zlz, 27N, () ) s Lz, R 0 B
sro@iz 2 i —sm, 0 )
—— L (zlz,2
ic If (N,§) is a Seifert form for the Blanchfield linking form
-ic (M,2), that is a non-singular (—)i—ultraquadratic form over 2

. o*(M,x)eL(vc))O(z,(—)l)
such that B(N,¥) = (M,X), then i
o, (M) €Ly (Z, () 1)
is %(the signature) of (N,p+y*) if iz O(mod 2} and is
0
. if iz l(mod 2). Applying the
the Arf invariant of (N,y)

ic, above special case of Proposition 1.7.1 we have:

Proposition 7.9.5 The boundary operation defines a natural

one-one correspondence

) : {s-equivalence classes of Z-non-singular
i+ ;
(—)1 l—symmetrxc .
i+l forms over Z[z,z "]}
(-) -quadratic
~ : . . i+l .
———> {isomorphism classes of non-sinqular (-) ~symmetric
1 a* (M, ) =«
linking forms over (Z{z,z “},P} (M,A) with
XM, X)) = ¢

[



The result that Z-non-singular e-quadratic forms over
z[z,z—ll have isomorphic boundary e-symmetric linking forms
over (Z[z,z'I],P) if and only if they are Jd-equivalent was
first obtained by Stoltzfus [2,Prop.5.5], by a generalization
of the method of Wall [10].

The computation C = 0 {13 2) can be used to express

21
the stable equivalence classes of non-singular (—)i+l—symmetric
(= (—)i+1-quadratic) linking formations over (E[Z,Z_I],P)
in terms of (—)i~symmetric linking forms over (E[z,z-l],P),
relating non-singular Blanchfield linking formations to
singular Blanchfield linking forms as follows,
For any ring with involution A and multiplicative subset
SCA define 3-equivalence to be the equivalence relation on
e~symmetric linking forms over (A,S) (M,\) generated by the
elementary operations:
i) (M, A)r———>(M',2') is (M',X') is isomorphic to (M,})
ii} (M, 2M)r—>(L1/L, 21/} if L is a sublagrangian of (M,))
iii) M, A)——>M, A)}B(M',2"') if (M',X') is non~-singular.
A special case of the S-acyclic analogue of Proposition 1.8.3
shows that the boundary operation defines a natural one-one
correspondence
.t {u-equivalence classes of €-symmetric linking forms
over (A,S)}
—™_y{stable equivalence classes of null-cobordant
non-singular even (-e}-symmetric linking formations
over (A,8)}

(cf. Proposition 3.5.4). Now Cp, = L (Z(z,z '1,p, (-)'*]) = 0,
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so that every non-singular (—)i+1-symmetric linking formation

over (z[z,z_l],P) is null-cobordant, and consequently:
Proposition 7.9.6 The boundary operation defines a natural

one-one correspondence
3 : {3~equivalence classes of (—)i—symmetric
linking forms over (Zlz,2 Y1 ,P)}
—=~— {stable equivalence classes of non-singular

(—)i+l—symmetric linking formations over (le,z_ll,P)).

[

In conclusion, it should perhaps be pointed out that the
various characterizations of the odd-dimensional knot cobordism
groups C2i+1 (i >»2) given by Proposition 7.9.4 have little
computational significance. The actual computations use the

"isometric structures" of Milnor [3] - see Levine [3],

Kervaire (2] and Stoltzfus ([1}.
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