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Introduction 

An n-dimensional algebraic Poincar6 complex over a ring 

with involution A is an n-dimensional A-module chain complex C 

together with a self-dual chain equivalence 

C* = HOrnA(C,A) C,-* , 

so that there are induced abstract poincarg duality A-module 

isomorphisms 

H* ( C )  " r H,-, (C) . 
A 0-dimensional alqebraic poincar6 complex over A is the same 

as a non-singular quadratic form over A. If M is a compact 

n-dimensional topological manifold and is a covering of M 

with group of covering translations n the ZInl-module chain 

complex C(%) has the structure of an n-dimensional algebraic 

Poincarg complex over Z[n], on account of the classic poincar6 

duality H*(G) Hn-,(z). The Poincar6-~efschetz duality 

H* (A) g HI\-, (A, G) of a compact n-dimensional manifold with 

boundary (M,3M) motivates the notion of an n-dimensional 

algebraic poincar; pair over A ,  as a pair of chain complexes 

(C,aC) together with a self-dual chain equivalence 

C*-(C/3C)n-,. There is thus an abstract cobordism theory, 

with n-dimensional algebraic poincar; complexes C , C 1  cobordant 

if CB-C' = 3D is the boundary of an (ntl)-dimensional algebraic 

~oincar6 pair (D, 3D). 

In Parts I and I1 of a paper entitled "The algebraic 

theory of surgery" (Ranicki [91,110], henceforth to be 
l 

denoted I.,II.) the cobordism of algebraic Poincar6 complexes 

symmetric 
with a structure was used to define a sequence of 



covariant functors 

and to study their applications to the geometric theory of 

surgery on compact manifolds. In effect, this is Part I11 of 

the sequence, in which there are established various exact 

sequences in the algebraic L-groups, and some further application 

to geometric surgery are developed. 

symmetric E LO(A) The 0-dimensional L-group is the Witt 
quadratic LO (A) 

symmetric 
group of non-singular forms over A. The quadratic 

quadratic 

L-groups are 4-periodic 

and are in fact the surgery obstruction groups of Wall [4]. 

The higher symmetric L-groups L"(A) (n & 0) are the algebraic 

Poincar6 cobordism groups of Mishchenko I l l ;  they are not in 

general 4-periodic, L"(A) # L"+~(A). The lower symmetric 

L-groups L " ( A )  (n 6-1) are defined to be such that 

L"(A) = L,(A) (n Q - 3 )  , 

with an ad hoc definition for L - ~ ( A )  and L-~(A). The symmetric 

L-groups are related to the quadratic L-groups by symmetrization 

maps 

which are isomorphisms modulo 8-torsion for any A, and actually 

isomorphisms if 2 is a unit in A. 



The principal algebraic aim here is to establish exact 

sequences in L-theory substantiating the assertion made in the 

symmetric L" (A) 
introduction to I. that the L-groups (n € Z) 

quadratic L, (A) 

symmetric L' (A) 
are to the Witt group what the algebraic 

quadratic LO (A) 

K-groups K ( A )  (n€ Z) are to the projective class group KO(A). 

It will be recalled that algebraic K-theory has to determine 

whether a finitely generated projective A-module is free, 

and if so in how many ways; similarly, algebraic L-theory 

symmetr ic 
has to determine whether a form is hyperbolic 

quadratic 

( =  admits a maximally isotropic "lagrangian" direct summand), 

and if so in how many ways. The actual L-theory exact sequences 

obtained are listed further below, following a brief discussion 

of their K-theory antecedents. 

The principal geometric aim is to extend the applications 

of algebraic surgery to topology made in 11. beyond the general 

surgery obstruction theory for manifolds of Part 1 of Wall 141 

to the theory of Part 2 arising in the classification of 

topological (sub)manifold structures on geometric poincar; 

(sub)complexes, that is codimension q surgery obstruction theor! 

Exact sequences play an important role in this classification, 

notably the fundamental "surgery exact sequence" of the 

Browder-Novikov-Sullivan-Wall theory 

for the set 5T0P(~) of topoloqical manifold structures on an 



n-dimensional geometric poincar; complex X (n g 5 )  with a 

topological reduction %:X--+BTOP of the Spivak normal fibration 

v X : X r B G .  It will be recalled that an n-dimensional geometric 

Poincar; complex X is a finite CW complex with the Poincar; 

duality H*(X) = H,-,(X) of a compact n-dimensional topological 

manifold, but which is not required to be locally homeomorphic 

to Euclidean n-space R". Surgery theory has to determine whether 

a geometric poincar; complex is homotopy equivalent to a manifold, 

and if so in how many ways. The theory was first developed for 

smooth (=  differentiable) manifolds, but it has since turned out 

to work just as well for topological manifolds. Moreover, the 

topological cateqory has better algebraic properties, such as 

the homotopy-theoretic 4-periodicity of the classifying space 

The total surgery obstruction theory of Ranicki 171 was a 

tentative first step towards a purely algebraic account of the 

homotopy theory of compact n-dimensional topological manifolds, 

at least for n h  5, including an algebraic expression for the 

surgery exact sequence 

In an effort at making this book self-contained S1 

recapitulates the main definitions and results of I. and II., 

I symmetric particularly the definition of the L-groups 
quadratic 

I symmetric o*(X) G I.~(zI~~(x) l )  
and of the siqnature of an 

quadratic 0. (f,b) Ln(Zfnl(X) l )  

geometric poincar; complex X 
n-dimensional , along with the 

normal map (f .b) :M -----+ X 



vii 

identification of the quadratic signature with the Wall 

surgery obstruction. The algebraic L-theory exact sequences 

are developed in SS2-6, and the algebraic theory of codimension q 

surgery is developed in S7. It should be noted that while the 

material of SS2-6 is in its definitive form, S7 is only a 

preliminary account of the applications to topology, on the 

level of exposition of the total surgery obstruction theory 

of Ranicki 171 which it extends. The full account will be spread 

out over the next two instalments of the series, Ranicki 1111.1121. 

In dealing with the algebraic K-theory motivating the 

algebraic L-theory it will be assumed that the reader is 

familiar with the definitions and basic properties of the 

classical algebraic K-groups KO(A) and K1(A), and their 

appearance in topology via the Wall finiteness obstruction and 

the Whitehead torsion. The algebraic K-groups Kn(A) defined 

for n G - l  by Bass, for n = 2 by Milnor, and for n 3 3  by Quillen 

are invoked only for the way in which they extend (or fail to 

extend) the exact sequences of classical algebraic K-theory. 

In particular, the algebraic K-groups 

Kn(A) = Kn(exact category of f .g. projective A-modules) (n€ a) 

are such that for a ring morphism f:A-B there are defined 

relative K-groups K (f) (n€Z!)with a change of rings exact 

sequence 
f . . .----+ Kn(A) ---+ Kn(B) ---+Kn(€)---+ Kn-l(A) --+ . . . (n € Z?) . 

Given a multiplicqtive subset S C A  of non-zero-divisors there 

is defined a ring S-IA invertinq S, and there are defined 

algebraic K-groups 



Kn(A,S) = Kn-l(exact cateqory of S-torsion A-modules 

of homological dimension 1) (n € ZZ) 

such that the relative K-groups K,(€ 

€:A+ S - 1 ~  can be identified with 

K (€:A-+S-~A) = 

The consequent expression for the change of rings exact sequenc, 

is the "localization exact sequence of algebraic K-theory". 

For a Dedekind rinq R with quotient field F = (R-[o))-'R 

a devissage argument identifies 

Kn(RtR-(0)) = Kn-l(R/~) (nf ZZ) 

with? ranging over all the maximal ideals of R, so that the 

localization exact sequence for R-F can be written as 

. . .- Kn(R)-----+Kn(F) - ~K"-~(R&)--+ Kn-l(R)- . . . ( I  

An application of the localization exact sequence to the 

k multiplicative subset X = [X I k > 01 cA[xl proves the 

"fundamental theorem of algebraic K-theory", relating the 

K-qroups of the polynomial extension rinqs A[x], A[x,x-'] 

in a central indeterminate X over A (ax = xa, a € A )  by naturall! 

split exact sequences 

O - K ~ ( A ) - - - - - + K ~ ( A [ X I ! ~ K ~ ( A [ ~ - ~ I  )-K~(A[~,~-'I) 

---P Kn-l (A) + 0 (n 8 

This can be generalized to the algebraic K-groups of twisted 

- 1 
polynomial extensions A,[xl, Aa[x,x 1 (ax = xa(a) for some 

automorphism a:A-----+A), since the exact sequence for the 

localization A, [XI ----+ x-lAa 1x1 = Aa [x,x-ll can he expressed a: 



N 

with the Nil-groups such that 

K (A [X]) = K (exact category of € . g .  projective A-modules n a 

with an a-twisted nilpotent map v:P---+P) 
TV 

= Kn(A)@Niln(A,a-l) (n € E) . 
Given a cartesian square of rings 

a Mayer-Vietoris exact sequence of 

K-groups 

K1 (A) - K1 (B) @K1 (B') - K1 (A 
such that B -------+ A' (or B' -+A') is onto there is defined 

the classical algebraic 

which extends on the right to the lower K-groups, but which 

does not in general extend to the higher K-groups on the left. 

However, if S C A  is a multiplicative subset of non-zero-diviso 

and 

is the S-adic completion of A then there is defined a cartesia 

square of rings 



for which there is defined a Mayer-Vietoris exact sequence in 

all the K-groups 
..-l- . . . ----+ (A) - (~)B)K, (s-~A) - ( S  A) - (A) - . . . 

It is these exact sequences of algebraic K-theory which serve 

as models for L-theory. The individual introductions to S S 2 -  6 

and 5 7 . 6  contain some further background material concerning 

algebraic K-theory, such as references. 

In summarizing below the algebraic L-theory exact sequences 

obtained in 5 5 2 -  6  the terminology will be simplified by 

i L* (A) symmetric 
writing for all the L-groups, even though 

L, (A) quadratic 

the groups that actually occur are the "intermediate 

E-symmetr ic L; (A, E )  

L-groups" with XSK,(A) (m = 0 or 1) 
c-quadratic L: (A, E )  

some subgroup which is invariant under the involution of K,,,(A) 

determined by the involution :A----+A;a*a of the ring A, 

and E E A a central unit such that E = E-' € A. 

symmetric 
Following the discussion in S1 of the absolute 

quadratic 

I L" (A) L-groups ( n € Z )  of a ring with involution A there will 
L, (A) 

i symmetric i ~"(f) be defined in g 2  the relative kgroups (ne Z )  
quadratic L,(€) 

of a morphism of r inqs with involution €:A---+B, with a 

change of rinqs exact sequence 



symmetric I L*(f) In S 3  the relative L-groups of the 
quadratic L,(f) 

localization map f : A  ----+S-~A inverting a multiplicative 

subset S c A  of non-zero-divisors invariant under the involution 

will be identified with the cobordism groups It:::::: Of 

symmetric 
~oincar6 complexes over A which become acycl 

quadratic 
ic over 

the localization S-'A 

symmetric 
thus obtaining the "localization exact sequence of 

quadratic 

L- theory " 

(nf Z )  . 

i L'(A,S) In particular, is the Witt group of non-singular 
LO(ArS) 

symmetric 
~-~A/A-valued lirlkinq forms on h.d. 1 S-torsion 

quadratic 

A-modules. (See Ranicki [6] for a preliminary account of 

localization in quadratic L-theory). In 5 4  it is shown that 

for a rinq with involution A which is an alqebra over a 

Dedekind ring R (e.q.  a qroup rinq A = ; Z [ n l  with R = Z)  



xii 

the relative terms in the localization exact sequence for 

S = R-{OICA have natural direct sum decompositions 

with? ranging over all the maximal ideals of R invariant 

L' (A ,F'-) 
under the involution, and defined in the same way 

L, iA.Prn) 

L' (A,S) 
but using only A-module chain complexes with 

L, (A,S) 

?-primary S-torsion homology A-modules. Furthermore, in the 

case A = R a symmetric L-theory devissage argument identifies 

In general, there is no devissage in quadratic L-theory, and 

an example is constructed for which 

L ~ ( R , ~ )  # @L~(R&) . 
T 

In S5 the localization exact sequence of S 3  is applied to 

obtain splitting th~orems for the L-groups of the a-twisted 

- 1 
polynomial extensions Aa[xl, A,lx,x 1 of a ring with 

involution A, rith a:A-----+A a ring automorphism such that 

m = a-'(~) G A (a€ A) and X an indeterminate over A such thal 

symmetric 
It will be shown that the L-theory exact sequence 

quadratic 

k 
for the localization inverting X = [X I k )  O)C A,[x] 

- 1 
~ ~ 1 x 1  -------+X AaIxl = ~ ~ [ x , x - l l  

consists of naturally split short exact sequences of the type 



xiii 

0- L"(A,[x]) ---+ L~(A,Ix,x-~])----* Ln(Aa[x1 ,X) 

0- Ln(Aalxl)----+ ~~(A,lx,x-~l) Ln(Aalxl,X) 

(nf z )  , 
and hence that there are defined naturally split exact sequenc 

of the type 

~ - L " ( A ) ~ I . " ( A ~ [ x ] ) @ L " ( A ~ [ x - ~ ~  )---+L~(A,~X,X-~I) 

where A' is the ring A with involution a ~ a ( a ) .  

symmetric 
This "fundamental theorem of L-theory" is surprisir 

quadratic 

in the twisted case a # id., since the corresponding 

localization exact sequence in algebraic K-theory 

need not break up into short exact sequences if a # id., that 

is 2 # 0 in general. (In 57.6 the fundamental theorem of quad 

I.-theory for a group ring A = ZInl will be given a geometric 

interpretation in terms of the Browder-Livesay-Wall obstructic 

theory for surgery on one-sided codimension 1 submanifolds.) 

In S6 it will be shown that for a cartesian square of rings 

with involution 
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with B - A '  (or B' -----+ A ' )  onto there is defined a 

Mayer-Vietoris exact sequence of quadratic L-groups 

In general, there is no such exact sequence in the symmetric 

L-groups, and an example is constructed to illustrate this 

failure of excision. For a localization-completion cartesian 

square 

there will be obtained a Mayer-Vietoris exact sequence in 

and if 2 is a unit in i-li there will also be obtained such 

a sequence in symmetric L-theory 

In particular, for any group n there is a Mayer-Vietoris 

exact sequence in both the symmetric and the quadratic 

L-groups of the classical localization-completion "arithmetic 

square" of group rings 



the study of which plays such an important role in the 

computation of the surgery obstruction groups L,(n) : L,(Z[nl) 

of finite groups n and allied trades. 

Codimension q surgery theory deals with the problem of 

doing surgery on a codimension q submanifold N"-'cM" inside M, 

that is "ambient surgery" as opposed to "abstract surgery" on N 

without regard to M. For q 3 3  the ambient and abstract surgery 

obstructions coincide. Besides the abstract surgery obstruction 

groups L,(n) Wall [4,Sll] also introduced the codimension q 

surgery obstruction groups LS,(@) (q = 1 or 21, by formalizing 

the idea due to Browder of first doing abstract surgery on the 

submanifold N ard then fitting the result back into the 

supermanifold M. Given an n-dimensional geometric ~oincar6 

complex X, a codimension q Poincarc subcomplex YC X with 

normal fibration 5 = v Y C X  : Y -BG(q) (q = l or 2), 

and a homotopy equivalence f:M-X from an n-dimensional 

manifold M there is defined an obstruction 

l 

to deforming f by a homotopy to a map transverse at Y c X  with 

both the restrictions fl :N= f-l(~) -----+Y, f(:M- N =  €-I(X- Y) ---+X- Y 

homotopy equivalences, i.e. to "splittinq f along YCX". 



The LS-groups are defined geometrically to fit into the 

exact sequence 

.. - - L n + n l X -  Y X I L S  (0) n-q 

the map LS ( 4 )  4 L n - ¶ ( n l  (Y) ) sending the ambient surgery 
n-q 

obstruction s(f,Y) to the abstract surgery obstruction o,(fl: 

The expression in I. of the surgery obstruction groups 

L,(n) in terms of quadratic ~oincat-6 complexes and the CL& 

homotopy invariant expression in 11. of the surgery obstructit 

are extended in $7 to the LS-groups LS,(4) and the codimensio 

splitting obstruction. Many authors have used geometric 

techniques to prove splitting theorems for manifolds, which 

are equivalent to vanishing theorems for the LS-groups and 

hence to the existence of Mayer-Vietoris exact sequences in 

the surgery obstruction groups. For example, the codimension 

splitting theorem of Cappell implies that there exists such a 

sequence for many free products with amalgamation n 0 n 
l P 2  

I P * Ln(nl)@Ln(n2) -Ln(fl*pAZ) - Ln-l(P)- 
and for many HNN extensions n *  {t) P 

... L - L n  L n ( ~ * P { t l )  L n l P  - . . 
The next instalment of the series (Ranicki (111) will be devo 

to carrying out the programme put forward in S7.5 for an 

alqehraic derivation of codimension q splitting theorems, 

using an alqehraic theory of codimension q transversality. 

This should also apply to the symmetric L-groups I,*(n), even 1 

the example of Proposition 7.6.8 shows that they are not in 

general qc,ornetrically rpalizablc. 
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51. Absolute L-theory 

In 51 we reiterate all the concepts of I. and 11. which 

we shall be using here, particularly the definition of the 

C E-symmetr ic L"(A,E) 
n-dimensional I.-groups (nfZ) of a ring 

€-quadratic Ln ( A ,  E) 

with involution A as the cobordism groups of n-dimensional 

c-symmetric 
Poincar6 complexes over A. Also, the geometric 

€-quadratic 

background of the L-groups is recalled: this is important even 

in a purely algebraic context, since algebraic PoincarC cobordism 

has all the formal properties of the cobordism of manifolds 

(as indeed does geometric Poincar6 cobordism). For example, 

there are cobordism exact sequences both in the geometry and 

in the algebra, and the relative L-groups will be defined in 

S2 as relative algebraic PoincarC cobordism groups 

51 also contains some new material, specifically the triad 

Q-groups of S1.3, the glueing of forms and formations of 51.7 

and the L-categories of 51.8. 



Let A be a ring with involution, that is an associative ring 

with 1, together with a function 
- - 

: A-A ; a-a 

such that 

(X) = S + 6 , (S) = I;.% , = a , 1 = ~ C A  ( a , b € ~ ) .  

Given a left A-module M let M~ be the right A-module 

defined by additive group of M with A acting by 
- 

M ~ X A - - - - - - + M ~ ;  (x,a)-ax. 

Except where a right A-module structure is specified "A-module" 

refers to a left A-module structure. 

Given A-modules M,N let HomA(M,N) be the abelian group of 

A-module morphisms 

F :  M-N. 

The 9 of an A-module M is the A-module 

M* = HornA (M,A) 

with A acting by 

AXM*-M* ; (a,f)~(x+---+f(x).~) (X€ M). 

The 9 of an A-module morphism f€HomA(M,N) is the A-module 

morphism f* E HomA(N*,M*) defined by 

f* : N*-M* ; g-(x+-+g(f(x))) . 
If M is a €.g.( = finitely generated) projective A-module then 

so is M*, and there is defined a natural A-module isomorphism 

M-M** ; xt--+(h-ho) (hf M*) 

which we shall use to identify M** = M. 



An A-module chain c o m a  C is a sequence of A-modules 

and A-module morphisms 

d C : . . .--+Cr+l- Cr d C'. . . (r f Z )  

such that 

homology 
A-modules of C are defined (as usual) by 

cohomology 

H (C) = ker (d:Cr+Cr-l/im(d:Cr+ld Cr) 
(rez, cr = c;) 

(C) = ker (d*:cr+ ~~+l)/im(d*:~~-'--+~ ) 

A chain map of A-module chain complexes 

f : C -----+D 

is a collection of A-module morphisms {f f HomA(Cr ,Dr) ( c  €Z) 

such that 

dDf = fd f HomA(Cr ,Dr-l) (r fZ) . C 

A chain homotopy of chain maps 

g : f"f' : C-----+D 

is a collection of A-module morphisms {gf HomA(Cr,Drtl) ( r  fZ) 

such that 

F '  - f = d g + gdC f HomA (C,, D Dr) (rfz) . 
A chain equivalence is a chain map f:C---+D which admits a 

chain homotopy inverse, i.e. a chain map f1:D---+C for which 

there exist chain homotopies q:E'f"l:C---+C, 9':ff'zl:D-D. 

A chain complex C is chain contractible if it is chain equivalent 

to 0; a chain homotopy l':1=0:C-C is a chain contraction of C 



An A-module chain map €:C-D induces A-module morphisms 

homology 
in { 

cohomology 

which depend only on the chain homotopy class of f, and are 

isomorphisms if f is a chain equivalence.Thealqebraic mapping 

cone C(f)of f is the A-module chain complex defined by 

homology 
The relative A-modules of f are defined by 

cohomology 

and are such that there are defined exact sequences of A-module! 

In A-module chain complex is n-dimensional if it is a 

finite complex of £.g. projective A-modules which is chain 

equivalent to a E.g. projective complex of the type 

d d 
C : . . . - 0  -PCn-Cn-l-J.. .+C1--'C ---&d.. . . 0 

For n<-1 n-dimensional=chain contractible, by convention. 

A finite-dimensional chain complex C is n-dimensional if and 

only if H (C) = 0 for r (0 and H'(c) = 0 for r >n. A chain map 

€:CAD of finite-dimensional chain complexes is a chain 

equivalerlce if and only if H,(f) = O, or equivalently if C(f) 

is chain contractible. 



t Given A-module chain complexes C,D let C %D, HomA(C,D) 

be theZ-module chain complexes defined by 

dCtBAD : I C ~ ~ D )  = j c~&D~- (ctaA~) ; 
p+q=n 

d ~ o m A  (C, D) : H o ~ ~ ( C , D ) ~  = q-p=,, 1 Hom A (C p ,D q )-HO~~(C,D),-~ ; 

Let C* be the A-module chain complex defined by 

and let C"-* (n€ZZ) be the A-module chain complex defined by 

The sign conventions are such that an element f €Hn(HomA(C*,D)) 

is the same as a chain homotopy class of chain maps 

f : C"-*- D .  

Let c €  A be a central unit such that 

E = €-l€ A 

(e.g. E = flf A). Given a finite-dimensional A-module chain 

complex C let the qenerator TfZ2 act on HomA(C1,C) by the 

€-duality involution 

T : HornA (cP,cq) P HornA (cq, Cp) ; f. ~ f *  

(E~*(Y) (X) = E.~(Y) (X) e A, x e  cP , yf cq) . 
€-quadratic QM(C,E) 

Q*(c,c) to be the 

E-hyperquadratic ;*(C,€) 



Z 2 - h y p e r c o h o r n o l o g y  

Z 2 - h y p e r h o r n o l o q y  g r o u p s  

T a t e  Z 2 - h y p e r c o h o m o l o g y  

1 
Q " ( c . € )  = H n ( H o m z r z 2 1  (W.HomA(C*.C))) 

Q n ( C I E )  = Hn(W@ZIz21 HornA(C*,C) ) ( n c  Z )  

"n 
Q ( C , € )  = H ( ~ o m  I Z Z 2 1  (W,HomA(C*,C) 1 1  

w i t h  W t h e  s t a n d a r d  f r e e  i Z [ Z  ] - r e s o l u t i o n  o f  i2 
2  

l - T  1 +T 
W : ...--+z[z21 --+Z[z21--z[z21 

- 2 2 1 ~ ~ 1 - 0  ,. 
a n d  W t h e  s t a n d a r d  c o m p l e t e  f r e e  ~ [ ~ 2 j - r e s o l u t i o n  o f  22 

G : ... - + Z [ Z 2 1 & i Z l z 2 1  + 2 2 [ Z 2 1  

l - T  1 + T  
---*zrZ21---+zlZ21+ .. 

I o E Q ~ ( C , E )  

An e l e m e n t  $ E Q , ( C , € )  is a n  e q u i v a l e n c e  c l a s s  o f  c o l l e c t i o n s  o f  



A chain map of finite-dimensional A-module chain  complex^ 

f : C A D  

induces a 7Z[ZZ2]-module chain map 

HomA(f*,f) : HomA(C*,C) --HomA(D*,D) ; Ot----+ f*Qf , 

and hence also morphisms in the Q-groups 

An A-module chain homotopy q:f"-ft:C+D does not in genera 

determine a Z[ZZ21-module chain homotopy 

HomA(f*,f)=HomA(f'*,f') : HomA(C*,C)-HomA(D*,D) . 
Nevertheless the Q-qroup morphisms induced by an A-module c h a i ~  

map f depend only o n  the chain homotopy class of f (cf. Propos 

1.1.1 below). In order to account for the chain homotopy invar 

of the Q-groups we define (as in SI.1) the " Z 2  -isovariant 

category" with objects ZZ[ZZ21-module chain complexes, as follo! 



l 

i t i o n  

i a n c e  

A i Z 2 - i s o v a r i a n t  c h a i n  map o f  Z I Z Z 1 - m o d u l e  c h a i n  complt 

f  : C-D 

is a  c o l l e c t i o n  o f  Z - m o d u l e  morphisms 

f  = I f s €  ~ o m ~ ( C ~ , D ~ + ~ ) ~ r € Z , s ~ 0 ]  

s u c h  t h a t  

dDfs + ( - F f s d c  + ( - ) S - l ( f s - l  + ( - ) S ~ D f s - l T C )  = 0 

: Cr - Dr+s- l  ( S  b o ~ f - ~  ' 

Thus  fO:C-D is a  Z-module  c h a i n  map, fl:fo--TDfoTC:C- 

is a Z - m o d u l e  c h a i n  homotopy,  a n d  f 2 , f 3 ,  ... a r e  h i g h e r  

Z - m o d u l e  c h a i n  h o m o t o p i e s .  A g 2 - i s o v a r i a n t  c h a i n  homotopy 

o f  Z 2 - i s o v a r  i a n t  c h a i n  maps 

g : f  f  ' : C ------+ D 

is a  c o l l e c t i o n  o f  Z  -module morphisms 

g  = { g s €  HornZ (Cr,Dr+s+l)  I r e Z , s  ?O) 

s u c h  t h a t  

f; - fs  = dDgs + (- lSgsdc + ( - )S(9s -1  + (-)S-1~D9s-1TC) = 

I n  p a r t i c u l a r ,  a Z 2 - i s o v a r i a n t  c h a i n  map f:C-D w i t h  

f s  = 0 ( S *  1) is t h e  same a s  a Z [ Z 2 ] - m o d u l e  c h a i n  map 

fo:C-D, a n d  a  Z - i s o v a r i a n t  c h a i n  homotopy 2 

g:f=fl:C-D o f  s u c h  c h a i n  maps w i t h  gs  = 0 (ski) is 

t h e  same a s  a  Z[7L2] -module  c h a i n  homotopy go: f o  Z f 6 : C  - 
The g 2 - i s o v a r i a n t  c a t e g o r y  is t h e  c a t e g o r y  w i t h  o b j e c t s  

Z[ iZ2] -module  c h a i n  c o m p l e x e s  and  morph isms  t h e  Z 2 - i s o v a r i a  

c h a i n  homotopy c l a s s e s  o f  i Z 2 - i s o v a r i a n t  c h a i n  maps. 



A morphism is thus an element f€ Ho(Homz,Z21 (W,Homz(C,D))) , 

with T E Z 2  acting on Homz(C,D) by the involution 

The composite of the 22 -isovariant morphisms f:C--+D, 
2 

g:D-E is the Z2-isovariant morphism gf:C----+E defined by 

defined by the composite of the product induced by the diagonal 

Z.[Z2]-module chain map A:W-WO W given by Z 
S 

A : ws-(w@22w)s = r 2 2 s r  ; 1 l K r  ( ~ 2 0 )  
r=O r=O 

and the composition pairing induced by 

c : HomZ(C,D)BZHomz(D,E) -Homz(C,E) ; hQ3k +--+kh . 
A z2-isovariant morphism €:C----+D induces morphisms in the 

Z2-hyperhomoloqy groups 

Tate 222-hypercohomology 



f ,  : Hn(W@z[z21C)'Hn(w@z[Z21D) ; 

m 

I s ? o ~ I - - + ~ , $ J = (  1 ( - 1  C ( S - r )  JI = I $ S ~ C n - S  ( ~ ~ f ~ - ~ ) l ~ f  D n - s l  ~ ' 0 1  
r = O  

?' : H n ( H o m z I z l l  ( ~ , C ) ) - - - - - + H ~ ( H O ~ ~ ~ ~ ~ ~  (;.D) ; 

0) 

e = {esecntsl S)ol-i% = 1 ( - )  r ( s - r b  ( ~ ~ f ~ - ~ ) e ~ f ~ ~ ~ ~ l  S E  22.1 V 

c=-m 

w h i c h  a r e  t h e  e v a l u a t i o n s  o n  f f H o ( H o r n  
z l n 2 1  

( W , H o r n z  ( C . D )  ) ) of 

t h e  n a t u r a l  p a i r i n g s  

H. ( H o r n  
1 z 2 1  

( W , H o m Z  ( C , D )  ) ) @ H  ( H o r n  zz n  Z I Z ~ I  

H n ( H o m z [ Z 2 1  ( W . D )  ) 

H. ( H o r n  
Z [ Z 2 1  ( W , H o r n z ( C . D ) )  @ z H n ( W @ z l Z 2 1  C  

- H n ( W * ~ [ ~ 2 ~  D )  



Proposition 1.1.1 The Q-group morphisms induced by a chain map 

f:C-D of finite-dimensional A-module chain complexes 

I: f':~* (C, E)-Q*(D,~) 

f8:~,(C,r)---+Q*(D,c) depend only on the chain homotopy clas 

~%:~*!c,c)----+~*(D,E) 

of E .  In particular, they are isomorphisms if f is a chain 

equivalence. 

Proof: An A-module chain homotopy - 
g : f = f ' : C -------+ D 

determines the Z -isovariant chain homotopy 2 

HomA(q*,g) : liomA(f*,f) "HomA(f'*,f') : 



The various Q-groups of a finite-dimensional A-module 

chain complex C are related to each other by the abelian group 

morphisms 

Proposition 1.1.2 The Q-group sequence 

H 1+T, ... - - - , B n + l ( ~ , ~ ) - ~ n ( ~ , c ) - ~ n ( ~ . ~ )  

H 
&i)n(~,~)-~n-l(C,E)-... 

is exact. 

Proof: See Proposition 1.1.2. 

l 1  

suspension SC 
The \ o f  an A-module chain complex C is 

desuspension RC 



Given a finite-dimensional A-module chain complex C 

E-symmetr ic 
define the suspension maps in the Q-groups 

E-quadratic 

(r€iz,s,O, @-l=O) . 
For each p),O define the Z[Z2]-module chain complex 

W[O.pl to be the subcomplex of W with 

Ws (=Z[ZL21) if O,ts<p 

0 otherwise 

Define the unstable E-quadratic Q-groups QLO'~' [C,€) of a 

finite-dimensional A-module chain complex C by 

In particular, passing to the limit as p we have 

In the applications of the Q-groups to the algebraic 

theory of surgery it is useful to have available the following 

unstable analogue of the exact sequence of Proposition 1.1.2. 

For example, the unstable E-quadratic Q-groups 

Q!~'~~ ( C ,  E) = H, (HomA(C*,C) ) appear in the algebraic theory 

of codimension 2 surgery outlined in S 7 . 8  below. 



Proposition 1.1.3 Given a finite-dimensional A-module chain 

complex C there is defined an exact sequence of Q-groups 

. . .- Q"+P+~(sPc, E ) - ~ ~ ~ ~ - l l  (c, € 1  

P 
+ Q ~ ( c , ~ ) S Q ~ + ~  (S'C,EI- . . .  ( n e ~ ~  

for any pal. If C is n-dimensional and pyn+l then 

ro'p-ll (C,€) = Q!0fmJ (C,€) = Q, (C,€) , Q * t P ( ~ F ~ , ~ )  = G*(c,E) Q* 

and the sequence coincides with the exact sequence of 

Proposition 1.1.2 

~ n t l  H 1+T, ... &Q ( C , E ) d Q n ( C , € ) - - - - - - - + ~ n ( ~ , E ) & 6 n ( ~ , E ) -  ... 
Proof: See Proposition 1.1.3. 

[ 1 

re-quadratic 

i Q* ( f , ~ )  Define the relative E-symmetric Q-groups Q, ( f . C )  

),hyperquadrat& 6*(f,~) 

of a chain map f:C-D of finite-dimensional A-module chain 

complexes by 

where C(HomA(ff,f)) is the algebraic mapping cone of the induced 

ZfZ21-module chain map 

~om~(f*,k) : HomA(C*,C)--------SHomA(D*,Dl : r b ~ f * @ f  . 





depend only on the chain homotopy 

exact sequences 

$+I E' Qn+l ( . . .W (C,EJ---+ (D,€ 

Proposition 1.1.4 The relative Q-groups o f  a chain map f:C--- 

class o f  f ,  and fit inta the 



Let A,€ be as in S1.l above. 

E-symmetric (C,$) 
An n-dimensional complex over A is an 

€-quadratic (C,*) 

n-dimensional A-module chain complex C together with an element 

o GQ"(C,E) . such a complex is ~oincarE if 
Jl eQn(C,€) 

OOcHn(HomA(C*.C)) 
is a chain homotopy class of chain 

(ltT,) go f Xn (HomA(Ct,C) ) 

equivalences 

-c 

(ltTE : cn-*-c . 
The E-symmetrization of an n-dimensional €-quadratic complex 

over A (C,$) is the n-dimensional €-symmetric complex over A 

A m (resp. homotopy equivalence) of n-dimensional 
€-symmetric 

complexes over A 
€-quadratic 

is an A-module chain map (resp. chain equivalence) f:C--+C1 



c-symmetr ic 
pair over A 

E-quadratic 

is a chain map f:C-D from an n-dimensional 
(f :C-D, (6$,$)) 

A-module chain complex C to an (nt1)-dimensional A-module 

C (64.4) c ontl(f , c )  
chain complex D together with an element 

( 6 J I , J l )  f Qntl(f,c) 

Such a pair is poincar; if the A-module chain map 

Dntl-* -C(f) defined (up to chain homotopy) by 

is a chain equivalence, in which case the boundary n-dimensional 

E-symmetr ic (C.$€ Q"(c,E)) 
complex is poincar; 

c-quadratic ( C , $ €  @,K,E)) 

c-symmetric 
A cobordism of n-dimensional Poincare 

€-quadratic 

(C,$) r (C',$') 
complexes over A is an (ntl) -dimensional 

(C,*) P (C1,*') 

E-symmetric 
poincar; pair over A 

€-quadratic 

((f f') : C@C1+D, (6$,$@-$')E ~""((f f')),~)) 

((f f') :C@C'-D,(&$,$@-$')€ Qntl((f fl)).c)) 

(cec' ,Q@-$ ) 
with boundary 

(C@Ct ,+U+-*') 



Proposition 1.2.1 Cobordism is an equivalence relation on the 

c-symmetric 
set of n-dimensional Poincare complexes over A, 

c-auadratic 

such that homotopy equivalent Poincare complexes are cobordant. 

The cobordism classes define an abelian group, the n-dimensiona 

E-symmetric L"(A,E) 
I,-qroup of A (nbO), with addition and 

€-quadratic Ln(A,c) 

inverses by 

i (C.$) + (c'.$') = (ctsc1.$wt) , -(c,$) = (c,-$) e L"(A,~) 

(c,$) + (c',$') = (C@C',$@$') , -(C,$) = ( C , - + )  € Ln(A,c) . 
m: See Proposition 1.3.2. 

f 1  

For E = 1 € A  the terminology is abbreviated: 

The E-symmetrization maps 

l+TE : Ln(A,c) --Ln(?+,€) ; (C,$) -(C. (l+TcI$) (n>O) 

are isomorphisms modulo 8-torsion Eor any ring with involution 

(Proposition I.8,2), and are actually isomorphisms if 1/2€A (I 

Define the intersection pairinq of an n-dimensional 

c-symmetric complex over A (C,$ € Q " ( c , E ) )  



We shall now recall from 11. some of the ways in which 

algebraic ~oincar6 complexes arise in topology. (See 11. for 

further details) . 
Let n be a group. 

A n-space X isapointed topological space with a 

basepoint-preserving action n X X----+X. The reduced singular 

chain complex C(X) = C(X,pt.) is then a Zlnl-module chain 

complex. Let T € Z 2  act on C(X)OzC(X) by the transposition 

involution 

T : ;(X) o ;(x)~-;(x) e C ~ X ) ~ ;  xeyr-r(-)pqyex . 
P z ¶ 72 

Acyclic model theory equips C(X) with a canonical chain 

homotopy class of functorialZ[n]-module chain maps 

("diagonal approximations") 

with Zln] acting on C(X)gZC(X) by 

g(x@y) = gxegy (x,yf C(X), g €  n) . 
We shall only be concerned with n-spaces X which are C 

complexes with the basepoint a 0-cell, such that n acts free 

by permutation on the cells of X-(pt.) with the quotient 

11)-space X/n a finitely dominated CW complex - X is a 
"finitely dominated CWn-complex" in the terminology of 511.1 

For such X the chain complex C(X) can be replaced by a chair 

equivalent finite-dimensionalZ?[n]-module chain complex, al! 

to be denoted C(X). (If X/n is a finite CW complex C(X) can 

be taken to be the reduced cellular chain complex of X ,  

which is a finite f . g .  free T[nJ-module chain complex.) 



Given a map w:n-Z2 = {?l] (i.e. a group morphism) let 

z[nl have the W-twisted involution 

Let ZW denote the additive group Z with the right Z[nl-module 

structure defined by 

Given a n-space X define the reduced homology groups of X/n 

with W-twisted coefficients 

A,(x/n,W) = H*(Z~~~[,,~C(X)) . 
We shall write these groups as H,(X/n), the contribution of 

W being understood. (For W - 1 these are just the usual 
reduced homology groups of X/n, anyway). A s  C(X) is a 

finite-dimensionalZ[n]-module chain complex the slant product 

chain map 

- 
---+HO~,~,~(C(X)*,C(X)) ; xC3yk-+(f++f(x)y) 

is an isomorphism of Z[Z2]-module chain complexes, with T f Z 2  

acting on c (X) t@Zrnlc(~) by the transposition involution 
and on Hom (C(X)*,C(X)) by the duality involution ( c  = 1). 

Zlnl 

Using this isomorphism as an identification and applying 

z~@~[,~- to the functorialZ[nJ-module chain map A X  there is 

obtained a functorialZ-module chain map 



The induced morphisms in the homology groups 

6, : in (X/") -Qn (C (X) ) (n 2 0) 

are the symmetric construction on X of SII.l. 

If X is a finitely dominated CW complex and 2 is a (regular) 

covering of X with group of covering translations n then the 
- 

disjoint union X+ = XU{pt.) is a finitely dominated CWn-complex. 

The symmetric construction on E+ is written as 
= : H (X) = ;,(X+) --+Q~(c(K)) = Q~(E(R+)) 

+ 
with C(%) 5 C(%+) the cellular chain complex of E (up to chain 

equivalence), a finite-dimensional Z(n]-module chaln complex. 

The homology Z[nJ -modules H,(c(~)) are the usual homology 

groups H,(X) with the induced Z[n]-action; the cohomology 

72 [a] -modules H* (C(%)) will be written as H* ( g ) ,  even though 

for infinite n the underlying abelian groups need not be the 

singular cohomology of R (e.g. for S' = R). Aqain, we have 

suppressed the choice of orientation map w:n--+Z 2' 

An n-dimensional geometric ~oincat; complex X (in the 

sense of Wall 1 3 1 )  is a finitely dominated CW complex X with 

an orientation w(X) : nl(X)----+Z2 and a fundamental class 

[XI EHn(X) (defined using w(X)-twisted coefficients) such that 

the Zlnl(X)]-module chain map dpfined by the evaluation of the 

cap product on any cycle representative of [X] 

1x1 n - : c(ji)"-*--. cfi) 

is a chain equivalence, with 2 the universal cover of X. 

The symmetric, complex of X 

o*(X) = (~(i) ,$ji([Xl) f Qn(c(E))) 



is an n-dimensional symmetric Poincarg complex over Z[n (X)]) 
1 

such that OX( [XI = [XI - : C(%)"-*-- C(X). More generally, 

the construction applies to any oriented covering f of X, 

that is one for which the group of covering translations n is 

equipped with a map w:n-Z2 such that w(X) factors as 

so that there is induced a morphism of rings with involution 

Z l n l ( X ) ] ~ Z [ n ] .  The corresponding n-dimensional symmetric 

poincar6 complex over Z[nl is given by iZ[nlB 
i~ Inl (X) I '* 

and is also denoted by o*(X). The corresponding chain 

equivalence [XI n - : c(R)"-*-------t ~ ( f )  induces ~oincar6 

duality ZInl-module isomorphisms 

1x1 n - : H"-* (X) - ---H* (X) 

An n-dimensional symmetric complex over A (C,+) is 

finite if C is a finite chain complex of f.g. free A-modules. 

A symmetric complex (C,@) is homotopy equivalent to a finite 

one if and only if has vanishing reduced projective class, 

that is 
m 

Similarly for quadratic compl.exes. 

An n-dimensional symmetric ~oincar6 complex over A (C,+) 

is simple if C is a finite chain complex of based f.g. free 

A-modules and 

either T (Q~:C"-*, C) = 0 8 El ( A )  

Similarly for quadratic Poincar; complexes. In dealing with the 

algebraic Paincar6 complexrs arisinq in topoloqy the Whitehead 



group variant is understood. 

A geometric ~oincar6 complex X is finite if X is a finit 

CW complex; X is simple if it is finite and 

~ ( [ X l n  - : c(%)~-*-c(~)) = O€Wh(nl(X)) . 
A geometric ~oincar6 complex X is homotopy equivalent to a fir 

one if and only if o*(X) is homotopy equivalent to a finite - - 
symmetric Poincar6 complex (since IC(X) I f Ko(Z[nl (X) l )  is the 

Wall finiteness obstruction); a finite geometric Poincar6 

complex X is simple if and only if ot(X) is a simple symmetric 

poincarg complex over Z[nl(X)I, by definition. 

A compact n-dimensional topological manifold M has the 

structure of a simple n-dimensional geometric ~oincarg 

complex. The intersection pairing of a*(M) 

+h( [M] )0 : H"-* (E) X H* (E)- z[nl (M) 1 

agrees via the poincarg duality isomorphisms 

[M] n - : H"-* (M)  2 H, (h) with the pairing 

H, (M) X H,-* ( G )  -iZ fnl (M) l 

defined by the geometric intersection numbers of homoloqy clas 

In dealing with the L-theoretic invariants of 

finitely-dominated (resp. finite, simple) geometric Poincar6 

complexes it is natural to consider the version of L-theory 

defined using f.g. projective (resp. finite, simple) algebraic 

~oincar; complexes. The projective theory is of greatest inter 

in algebra, being the most qeneral. On the other hand, the sim 

L-theory is of greatest interest in topology, being the one 

closest to the classification theory of compact manifolds. 



We continue working with the projective L-theory. We shall not 

spell out the analoqous properties of the free and simple 

ktheories, except that in 91.10 the three types of L-groups 

are compared to each other. 

An (n+l)-dimensional geom~tric Poincar6 pair (Y,X) is 

finitely dominated CW pair (Y,X) with an orientation map 

w(Y) :nl (Y)-Z2 and a fundamental class [Yl € Hn+l (Y,X) 

such that 

i) the Z[n (Y) ]-module chain map 1 - - - 
I Y I ~  - : C(Y,X) n+l-*-~ (Y) 

is a chain equivalence, inducinv poincar6-~efschetz duality 
- 

isomorphisms [Yln - : H~+'-* (v,;) &H,(Y), with Y the 

universal cover of Y and X the induced cover of X 
ii) X is an n-dimensional geometric ~oincar; complex 

(the boundary of (Y,X)) with orientation map 

and fundamental class 

1x1 = a IYI c H,(x) . 

For example, a compact (n+l)-dimensional manifold with boundary 

( M , 2 M )  has the structure of such a pair. 

The symmetric pair of an (n+l)-dimensional geometric 

~oincarg pair (Y,X) with resp~ct to an oriented coverinq ( y , ? )  

with group of covering translations n and orientation map 

w:n-Z ir, the (n+l)-dimensional symmetric Poincarg pair 2 

over Zln] with the W-twisted involution 

o*(Y,x) = ( ~ : C ( Z ) - - - + C ( " Y , , ~ ~ , ~ ( I Y I ) ~ Q ~ + ~ ( C ( E ) )  



defined using the relative symmetric construction of 511.6. 

with f:c(X)----+~(y) the inclusion chain map. The boundary of 

o* (Y,X) is the symmetric complex o* (X) of X. 

The symmetric signature of an n-dimensional geometric 

poincar; complex X with respect to an oriented covering 

with group of covering translations n is the cobordism class 

of the symmetric complex of X with respect to 2 

o*(x) = (c(XI,+~([XI)) e L"(z[~I) . 
This invariant was introduced by Mishchenko [l]. If X is the 

boundary of an (n+l)-dimensional geometric ~oincar6 pair (Y,X) 

and extends to an oriented covering of Y then 

o*(~) = o e L"(ZI~I) . 
A degree 1 map of n-dimensional geometric ~oincar6 complexes 

f : M-X 

is a continuous map such that 

ii) €,([M]) = [X] € Hn(X) . 
The symmetric k e w  of a degree 1 map f : M d X  of 

n-dimensional geometric ~oincar6 complexes with respect to av 

oriented cover R of X with group of covering translations n 

is the n-dimensional symmetric poincar6 complex over Zlnl 

a*(€) = (~(f!l,e~$~(l~l) eoncc(f!))) 

! with C(f ) the algebraic mapping cone of the Zlnl-module 

Umkehr chain map 

- - 
with M the induced oriented cover of M, ~:M+X a a-equivar iant 



lift of f and ~:c(M)--+c(~!) the inclusion. The chain equivalnc 

defines a homotopy equivalence of symme tr ic ~oincar; complexes 

over Zlnl 

homology 
The [ ! 

modules of C(f ) 
cohomology 

with 

(UP to 

geometr 

simple) 

) = ker 

) = ker 

are the kernels ol 

isomorphism). If M and X are finite (resp. simple) 

ic ~oincarg complexes then o * ( f )  is a finite (resp. 

symmetric Poincar6 complex. On the L-group level 

o*(f) = o*(M) - o*(X) € I.~(z[~]) . 

The suspension of a n-space X is the n-space 

1 
EX = X A S  , 

with n acting by 

n X ZX -EX ; (g,xAs)b-gx/\S . 
A -3 of r-spaces X,Y 

f : X--------tY 

is a n-equivariant basepoint-preservinq map. A n-homotopy of 

n-maps f,fl:X-Y 



is a n-equivariant map 

Let [X,Yl denote the set of n-homotopy classes of P-maps f:1 

and let {X,Yl, denote the abelian group of stable n-homotopy 

classes of stable n-maps 

I X , Y J  = Lim . 
n Pm 

For a = {l) the terminology is contracted in the usual mannel 

The quadratic construction $F of SII.1 associates to a 

stable n-map F: bPx ----+,Ypy (p 2 0) natural maps 

such that 

with f : :(X) = nP;(,YPx) Q ~ ~ ( E ~ Y )  = &(Y) the Z[n]-mod, 

chain map induced by F (up to chain homotopy). The homology 

groups H,(X/n) are defined using W-twisted coefficients for 

some map w:n-Z2, and~lrr] is given the W-twisted involutit 

exactly as for the symmetric construction There are two 

(equivalent) ways of obtaining +F,  as follows 

Firstly, note that the symmetric construction @EX on t 

suspension XX of a n-space X is the algebraic suspension SOX 

(in the sense of Sl.1) of the symmetric construction OX on X 



S 
-------t Q* ( S C ( X )  I = Q* (C(EX) , 

i d e n t i f y i n g  C ( Z X )  = S C ( X ) .  I n  f a c t ,  a c y c l i c  mode l  t h e o r y  g i v e s  

a  f u n c t o r i a l 2 1 - m o d u l e  c h a i n  homotopy  

by t h e  n a t u r a l i t y  o f  t h e  s y m m e t r i c  c o n s t r u c t i o n .  T h e  c o m p o s i t e  

f u n c t o r i a l Z - m o d u l e  c h a i n  map 

is t h u s  e q u i p p e d  w i t h  a  f u n c t o r i a l Z - m o d u l e  c h a i n  homotopy  

SF : - f O i X )  0. T h e  c h a i n  l e v e l  a r g u m e n t  u n d e r l y i n g  t h e  

e x a c t  s e q u e n c e  o f  P r o p o s i t i o n  1 . 1 . 3  i n t e r p r e t s  t h i s  a s  a  

f u n c t o r i a l  22-module c h a i n  map 

i n d u c i n g  t h e  u n s t a b l e  q u a d r a t i c  c o n s t r u c a  i n  homology  

$F : ( x / n )  - - - - - + Q : ~ ' ~ - "  (;(Y) ) . 



Composition with the natural maps Q!O'~-~' (C ( Y )  )-----*Q, ( C  (Y) ) 
(which are isomorphisms for p > dimension of C(Y)) gives the 

stable quadratic construction 

JI, : H, (x/n) -Q, (c(Y) . 
(Incidentally, the definition of bF in Proposition 11.1.5 

contains a technical error in that it made use of a mythical 

functorial chain homotopy inverse L;' : C(LY)-----tSC (Y) of 

the suspension chain map Ey :SC(Y)-C(ZY) in the reduced 

singular chain complexes of a n-space Y and its suspension XY. 

We shall give now a new definition of which avoids this 

embarrassment. The suspension is defined to be the 

compositeZ[n]-module chain map 

E .  i .  1 -~(s~x~)/C(s~xpt.*~t. X Y) -+C(S~~Y/S xPt.upt.xY) 

= C(ZY) , 

with i : SZ-;(S~) any Z-module chain equivalence, 

E a functorial Z[nkmodule chain equivalence given by the 

relative Eilenberg-Zilber theorem, and j theZ(n1-module chain 

1 map induced by the projection S xY-----+LY. In qeneral j is not 

aZ[r]-module chain equivalence, and even if it were there 

might not exist a functorialZ[n)-module chain homotopy 

inverse; a fortiori for Ly. Let now C(X) be the algebraic 

mapping cone of theZ[nl-module chain map 



The base point of Y is non-degenerate (by hypothesis), so that 

the p-fold suspension chain map zc : S'C (Y)-+c (zPY) induces 

isomorphisms in homology, and hence so does 

Z~@L; : SP~(Y)@~SP~ (Y) ---+&(ZPY)@~~(Z~Y). It follows that 

the projection C(X)---tC(X) is also a homology equivalence, 

and that L: : C(Y)--~RPC(EPY) induces isomorphisms in the Q-grc 

Using the terminology of p.204 of 11. define aZ-module chain n 

The chain map qF induces the quadratic construction 

, : X = H Z ~ X  Y = Q*(~IYI I 

on passing to the homoloqy groups.) 

Alternatively, for connected Y the quadratic constructior 

$, on a stable n-map F:Z-X +xmY (i.e. F : E ~ x - - + ~ ~ Y  for some [ 

may be obtained from the adjoint n-map adj(F) : x+nmImY 

by appealing to the approximation theorem underlying infinite 

loop space theory 



with Ek the permutation qroup on k letters, and setting 

For disconnected n-spaces Y of type Y = Z +  (for some space Z W 

n-action, with the added point as base) Q"E"Y is approximated 

the group completion of a topological monoid 

and the quadratic construction $F is given by 

Similarly for the unstable quadratic construction, using the 

unstable approximation theorems. 

The stable (resp. unstable) quadratic construction *F 

on a n-map F:L~x----+E~Y depends only on the stable (resp. 

unstable) n-homotopy class of F, and QF = 0 if this class 

contains zPFO for some n-map FO: X -----+Y. 

The quadratic construction on a stable n-map 

F:~~x+----+c~Y+ (for some spaces with n-action X,Y) is writter 

$, = $, : H+(X/n) = H+(X+h) -----+Q+(C(Yl l = Q+(C(Y+) 1 . 



Given a spherical fibration v : X d B G ( k )  over a space X 

(D~,S~-')---+(E(V) ,S(v)) 'X 

and a covering g of X with group of covering translations n 

define the Thom n-space of v Tn(v) to be the Thom space of the 

pullback v:% - X *BG(~) with the induced n-action 

Tn(v) = T(<) ( =  E(<)/s(<)) . 
The quotient (1)-space Tn(v)/n = T(v) is just the usual Thom 

space of v. If X is a finitely dominated (resp. finite) 

CW complex then Tn(v) is a finitely dominated (resp. finite) 

CWn-complex. A map of spherical fibrations b:v-v' induces 

a n-map of Thom n-spaces 

Tn(b) : Tn(v)-Tn(vt) . 
An n-dimensional geometric Poincar6 complex X has a 

Spivak normal structure 

(VX:X- BG(k) ,PX:Sntk- T(vX)) 

which is unique up to stable equivalence, with vX the Spivak 

normal fibration, such that w(X) = wl(vX) : n1(X)-----+Z2 

the Hurewicz map and Uv f Ak(T(vX)) the w(X)-twisted Thom 
X 

class of vX. For finite X a Spivak normal structure (vX.pX) 

may be obtained from a closed reqular neiqhbourhood E(vX) of 

an embedding XcSntk (k large), with S(vX) = aE(vX) and 

collapse p t k  ,Sn+k 
Ox : /Sntk - E(vX) = E(vX)/S(vX) = T(vX) . 

(Similarly for finitely dominated X, using the fact that X x  S1 

has the homotopy type of a finite complex). We shall consider 

qeometric Poincars complexes X to be equipped with a particular 

choice of Spivak normal structure (vX,pX). Given a covering 



3 4  

X of X (which need not be oriented) with group of cover ing 
translations n use the diagonal (1)-map 

A : T(vX) = (E(;~!/S(<~))/~ 

-----+ K, A ,,Tn(vX) = ( (E (GX) X E ( % )  )/(E(<~) X S (GX) 

[X]+-[x,xl (xf 

to define the fundamental Sn-duality map of X 

P Sn+k X , A 
a .  X '  T(vX) z+ A ,,Tn (GX) , 

which determines an Sn-duality between the n-spaces %+,Tn(vX) 

in the sense of the equivariant S-duality theory of $11.3. 

(For n = [l] this is the classical Spanier-Whitehead S-duality 

theory for [l)-spaces). The Sn-duality is characterized by the 

property that for any n-spectrum M = ( M . , L M ~ - + M ~ + ~ ~ ~ )  3 0 )  of 

n-spaces and n-maps the slant products 

are isomorphisms of abelian groups. 

A normal map of n-dimensional qeometric ~oincar; complexes 

(f,b) : M ------3 X 

is a deqree 1 map f:M+X together with a map of the Spivak 

normal fibrations b:vM--+vx covering f such that 

T(b), (pM) = pX f nntk (T(vx) . 
Given an orienied coverinq % of X with group of covering 

translations n let M be the induced oriented covering of M 



- - 
and let f:M--+X be a n-equivariant lift of f. A geometric 

Umkehr map F of (f,b) is a stable n-map F:E~+- E%+ in 

the stable n-homotopy class F €  {R+,fi+In such that 

(LT+)€ = 1 € t?+,z+ln to which the composite isomorphism 

sends Tn(b) € tTn(vM),T~(vX) In. A qeometric Umkehr map F induct 

the Umkehr chain map f ! :c(R) S C (R) "-*F C (E) n-*c C (fi) . 
The quadratic kernel of (f,b) is the n-dimensional quadratic 

~oincar; complex over Z[nl 

defined using the quadratic construction $F:Hn(X)---rQn(~(R)) 

with e = inclusion : C(fi)-C(f'). The symmetrization of the 

quadratic kernel is the symmetric kernel 

!l+T)o,(f,b) = ot(f) = (~(f!),e%@~([M]) f Q"(C(E'))) . 
The quadratic signature of (f,b) is the cobordism class 

o,(f,b) e Ln(Z1nl) 

with symmetrization 

(l+~jo,(f,b) = a*(f) = of (M) - o*(x) e L"(ZL[~I) . 
A topological normal structure on an n-dimensional 

qeometric Poincari? complex X is a pair 

such that (J3x:X -+ BG(k) ,p ) is the prescribed Spivak normal 
X 

structure, i.e. it is a reduction of the Spivak normal 

fibration vx to a topological block bundle GX. A compact 

n-dimensional topoloqical manifold M has a canonical 

topological normal structure (vM,oM) (unique up to stable 

equivalence) with vM:M ---+BT%(~) the normal bundle of an 



embedding M c sntk with 

pM : sntk -sntk/sntk - E(V M ) = E(v~)/s (vM) = T(vM) 

the collapsing map. 

An n-dimensional topoloqical normal map 

(f,b) : M ----+X 

is a degree 1 map f : M A X  from a compact n-dimensional 

topological manifold M to an n-dimensional geometric Poincat 

complex X with a topological normal structure (3X,PX). togel 

with a map of bundles b:vM-CX covering f such that 

This is a normal map in the sense of Browder l61 and Wall 1 1  

In fact, (vX,pX) determines (f,b) up to normal bordism by 

the Browder-Novikov construction: make P ~ : s ~ ~ ~ ~ T ( ~ ~ )  

topologically transverse at the zero section X T(vX) with 

respect to vX and set 

(See Ranicki I71 and S7.1 below for an algebraic trratment 1 

topological normal maps). The surgery obstruction of a 

topoloqical normal map (f,b) is defined to be the quadratic 

signature of the underlying normal map (f,Jb):M----+X of 

geometric ~oincarg complexes 

o,(f.b) = o,(f,Jh) c L,(zlnl) . 
Proposition 1.2.2 The quadratic L-qroups L,(Z[nJ) aqree wit 

the surgery obstruction groups L , ( " )  of Wall 141, and the 

surqery obstruction U, (f,b) C L ( 2 Z [ n ] )  of a topological norm 

map (f,b):M-X agrees with the surgery obstruction 9(f,b 

Proof: See 11.  (Some of the details are recalled in 51.10 b 

I 



(For a topological normal map (f,b):M-X with X 

finite it is possible to obtain the geometric Umkehr map - 
F : z ~ + -  Z M, used to define the quadratic kernel 

directly, without appealing to the equivariant S-duality 

theory of SII.3, as follows. For p > O  sufficiently large 

there exists a compact (ntp)-dimensional manifold with 

boundary (W.;W) homotopy equivalent to (X x D ~ , X  x sP-') 

such that (f.b) is approximated by a codimension 0 embedding 

Pass to the covers and define F using the Pontrjagin-Thom 

construction by 

E-symmetric 
The skew-suspension of an n-dimensional 

E-quadratic 

(-E) -symmetric 
(nt2) -dimensional (~oincar;) complex over A 

(-c)-quadratic 

defined using the Q-group isomorphism 



induced by the isomorphism oE Z [Z2] -module chain complexes 

with T € Z 2  acting on HomA(C*,C) by the c-duality involution T 

and on HomA(SC*,SC) by the (-€)-duality involution T-c. 

symmetr ic 
For example, the kernel of an (i-l)-connected 

quadratic 

degree 1 f:M-X 
n-dimensional 

[normal. map 1 (i.e. one such 
(f,b) :M---+X 

that KC (M) = 0 for r i-l, with 2i 6 n) is the i-fold skew-suspension 

( - )  '-symmetric 
of an (n-2i) -dimensional ~oincar; complex 

The ring A is m-dimensional if every f.g. A-module M has 

a f .g. projective A-module resolution of length m 

Equivalently, A is noetherian of global dimension m. 

^l I f  H (Z2;A,c)E {a€AIa+ca = o)/[b-~i;(ba) = 0 
Proposition 1.2.3 i) 

For all A,€ 

E-symmetr ic 
the skew-suspension maps in the L-groups 

€-quadratic 

are isomorphisms. 



ii) If A is m-dimensional the skew-suspension map 

is an isomorphism for n) max(2m-2,0), and a monomorphism for 

n = 2m-3 (if m 2). 

iii) If A is 0-dimensional (i.e. if A is semisimple) 

Proof: See Propositions I.4.3,1.4.5. (The proofs use the 

algebraic surgery technique summarized in 51.5 below). 

l1 

In particular, Proposition 1.2.3 i )  shows that there are 

natural identifications 

I.,(A,E) = Ln+2(A,-~) = Ln+,(A,c) (na0) . 

The periodicity of the €-quadratic L-groups 

L, (A,€) = L,+4(A,~) 

is a generalization of the periodicity in the surgery obstructio 

groups of Wall [4,S91 

L,(n) = L,+q(n) . 
The F-symmetric L-groups are not in general periodic, 

L*(A,c) f L*+~(A,E) , 

and in SI.10 some non-periodic examples were constructed. 

Carlsson [ l ]  has given an algebraic analys 

of periodicity in the E-symmetric L-groups 

invariants generalizing the E-symmetric Wu 

(which are recalled in S1.4 below). 

is of the failure 

in terms of 

classes of 51.1 



1.3 Triad Q-groups 

Triads are needed for the relative L-theory of S 2 . 2 .  

A r of A-module chain complexes 

consists of A-module chain maps 

f : C-D , f '  : C'VD' , g : C-----C' , h : D---+Du 

and an A-module chain homotopy 

k : hf=f'g : C-D' . 
The homoloqy A-modules H,(r) of r are defined by 

H = H n  (nfZ) 

where C(r) is the A-module chain complex given by 

d.... = I d~ 



Propositi~n l* The triad homology modules H,(r) fit into a 

commutative diagram with exact rows and columns 

Let r be a triad o f  finite-dimensional A-module chain 

complexes 

The Z2-isovariant chain map of Z[2Z21-module chain complexes 

(g,k;k) : C ( H o m A ( f * , f ) : H o m A ( C * . C ) + H o m A ( D * , D ) )  

-C(HomA(f'*,fl) :HomA(Ct*,C')----+HomA(D'*,D')) 

defined by 



gives rise to a Z-module chain map 

c-symmetr ic 
inducing morphisms in the relative Q-groups 

c-quadratic 



~csyrnmetric Q*(r,c) 
Define the t r i a d  / Q - u p s  { of a 

E-quadratic -. Q * ( ~ , E )  

triad r of finite-dimensional A-module chain complexes to 

be the relative homology groups 

such that 



Proposition 1.3.2 The triad c-symmetric Q-groups Q*(r,c) fit 

into a commutative diagram with exact rows and columns 



Similarly for the €-quadratic groups O * ( ~ , E ) .  

Proof: This is a special case of Proposition 1.3.1. 

[ 1 

E-symmetr ic 
A homotopy equivalence of (nt1)-dimensional 

€-quadratic 

is a chain complex triad of the type 

such that the'chain maps q : C A C 1  and h : D - D '  are chain 

equivalences and 

E-symmetc ic 7 (c,+€Q~(c,E)) An n-dimensional complex over A 
€-quadratic (c,WQn(Cr~) 1 

is connected (resp. contractible) if 

A complex is contractible if and only if i t  is homotopy equivalent 

to 0 .  



The algebraic Thom complex of an n-dimensional 

E-symmetric ( f : C 4 D ,  (64,0) Q"(€,E)) 
~oincar; pair over A 

€-quadratic ff:C----+D, (66,JI) f Qn(f.€)) 

E-symmetr ic 
is the connected n-dimensional complex over A 

€-quadratic 

defined by 

K 

For example, if v :  X ----tBG(k) is a (k-l) -spherical f ibratlon 

over an (n-k)-dimensional qeometric Poincare complex X, and 
- 
X is a covering of X with group of covering translations n, 

the algebraic Thom complex of the n-dimensional symmetric 

~oincarg pair over Z [ n l  associated to ( E ( " )  , S ( \ ) ) )  

o * ( E ( v ) ~ S ( V ) )  = ( ~ : C ( S I Y ) ) - C ( E ( V ) ) , ( ~ @ , @ )  c on(i)) 

(i = inclusion) 

is the connectkd n-dim~nsional symmetric complex over Z l n l  

associated to t h e  Thom n-s!>ncc T n ( v )  = E ( C ; ) / S ( < )  



up to homotopy equivalence. 

The alqebraic ~ o i n c a r g  thickening of a connected 

E-symmetric ( C t $ €  Qn(c,c)) 
n-dimensional complex over A 

c-quadratic ( C , + €  Qn(C8c)) 

c-symmetr ic 
is the n-dimensional Poincare pair over A 

€-quadratic 

defined by 



E-symmetr ic 
The (n-l) -d imensional quadratic poincar; complex 

€-quadratic 

over A 

~(c.0) = (~C,S+EQ"-~(K,~)) 

a(c,$) = (x,a$eQn-l (X,€)) 

(C,+) 
is the boundary of . For example, if (X,aX) is an 

(C,+) - - 
n-dimensional geometric poincar; pair, and (X,aX) is a coveri 

of (X,ax) with group of covering translations a ,  the n-dimens 

symmetric poincar; pair over 2Z [ n ]  associated to (X, 3X) 

a*(X,aX) = ( i  = inclusion : c(jlx)-~(Z), (4.34) € Qn(i)) 

is the algebraic poincar; thickening of the connected 

n-dimensional symmetric complex over Z [ n ]  associated to X/3X 
. - X  . 
cccx/ax) .rniIz( j* 1x1 1 C on ( b c j i / ~ i )  ) )  

up to homotopy equivalence, with 



Proposition 1.3.3 i) The algebraic Thom complex and algebraic 

~oincar; thickening operations are inverse to each other 

up to homotopy equivalence, defining a natural one-one 

correspondence between the homotopy equivalence classes of 

€-symmetric 
n-dimensional Poincare pairs over A and the 

e-quadrat ic 

homotopy equivalence classes of connected n-dimensional 

E-symmetric 
complexes over A.  The correspondence preserves 

€-quadratic 

boundaries; algebraic ~oincar; pairs with contractible 

boundary correspond to algebraic ~oincar; complexes. 

E-symmetr ic 
i i) A connected n-dimensional complex is Poincar6 

c-quadratic 

if and only if its boundary is a contractible (n-l)-dimensional 

€-symmetric 
Poincare complex. 

c-quadra tic 

f E-symmetr iii) An n-dimensional 
E-quadrat 

ic 
Poincare complex is 

ic 

null-cobordant if and only if it is homotopy equivalent to the 

boundary of a connected (n+l)-dimensional complex. 

Proof: See Proposition 1.3.4. 



1.4 Algebraic Wu classes 

The Wu classes of an algebraic ~oincar; complex over A 

( C , @ )  are functions 

v(@) : H* (C) - (subquotient groups of A) 
which are homotopy invariants of ( C , $ ) ,  whose definition we 

shall now recall. We refer to SSII.1,5,9 for the relations 

between the algebraic Wu classes and the Wu classes arising 

in topology. 

Given A,E as in S1.l let T € Z 2  act on A by the involution 
- 

TE : A -A ; a-&a , 

I Z -cohomol= -2- i 
H*(Z2:A,c) 

and define the g2-homology groups of (A,E) Ht(Z2;A,~) 

Tate z2-cohomo~ogy ii*(z2;~,E) 

by 

ker (l-TE:A - A )  r = O  

r * l  

r <  -1 

coker (l-T :A---+ A) r = O  

H (Z2;A,c) = ir+l (Z2;A,c) r > l  io r <  -1 

ir(Z2;A,c) = ker ( 1 - ( - ) r ~ , : ~ - - 4 ~ ) / i m ( l + ( - ) r ~ , : ~ + ~ )  reZ . 

For m e Z  let S ~ A  be the A-module chain complex defined by 

l 

The cohomology classes f €  H~(c) = H ~ ( ! ~ O ~ ~ ( C , S ~ A ) )  of an A-module 

chain complex C are the chain homotopy classes of chain maps 

€:C-S~A. 



Let C be a finite-dimensional A-module chain complex. 

c-symmetric 

Wu class of an element 

c-hyperquadratic B€$' (C, E 

is the function 

vr ( $ 1  : (C)----+Q"(S"-~A,E) = H ~ - ~ ~  (z~;A, ( - 1  "-'E) ; ft-+f+n-2rf 

n-r vr (6) : H"-~ (C) -Q,(s"-~A,~) = H ~ ~ - ~ ( z ~ ; A ,  ( - 1  E) ; f++ f+2r-nf 

v̂ r ( 8 )  : H " - ~  (C)+G"(S"-~A,E) = iir(z2;~,t) ; f++fen-2r fa 

The Wu classes v are quadratic functions, in the sense that 

v(af) = a.v(f).a (aeA,f €H*(C)) . 
Proposition 1.4.1 i) The various Wu classes are related to each 

other by 



ii) The Wu classes satisfy the sum Formulae 

The middle-dimensional intersection pairing of a 

2r-dimensional E-symmetric complex over A (c,,$E()*~ (C, E) ) 

A = $, : H~(c) X H~(c) -A ; ( f ,q) -g$  f* 
0 

is such that 

A(f,g1+g2) = X(frgl) + X(f,q2) 

A(f,ag) = aX(f,q) 

X(q.f) = (-)rc.~(f,q) e A 
(f,g,g1,g2~~r (C) ,acA) 

with the rth E-symmetric Wu class given by 

V,($) : H~(C)-H~(Z~;A, ; E -x(E,~) . 
The rth Wu class of a 2r-dimensional E-quadratic complex 

over A (C,$EQ~~(C,E)) is a function 

N = vr ( $ 1  : Hr (C) HO(Z2;A, (-)'E ) 

such that 

u(af) = ap(f)a 

u(f+sl - P(E) - u(g) = A ( E , ~ )  ~ H ~ ( z ~ ; A ,  (-)rc 

A(f,f) = ~ ( f )  + cll(f)€ HO(Z,;A, (-)r~ ) 

( ~ , q f  (C) ,a€ A) 



where X = (1+T 1 J,O : Hr (C) X Hr (C) --+A is the intersection 

2r 
pairing of the E-symmetrization (C, (l+TE) a €  Q (C, €1). 

In particular, if (f,b):M+X is an (r-l)-connected 

2r-dimensional normal map the quadratic kernel 

o , ( f , b )  = ( ~ ( f ! )  , @ e  ~ ~ ~ ( ~ ( f l ) ) )  

is a 2r-dimensional quadratic Poincare complex over Z[nl(X)l 

with 

Hr(c(fi)) = Hr(C 

(up to isomorphism), 

(Kr (M). X = (l+T) \I 

and in this case the triple 

: K~ (M) X K~ (M) - z [nl (X) I ,  
is the (-)r-quadratic form (Kr (M) ,X,p) used by Wall 14,551 

to define the surgery obstruction a, (f,b) E LZr (Z[al(X)]) , 

with A (resp. U )  the geometrically defined intersection 

(resp. self-intersection) form, cf. Proposition 11.5.4. 

We shall recall the precise relationship between 

l E-symme tr ic E-symmetr ic 
complexes and forms in S1.6 below. 

c-quadrat ic E-quadra t ic 

Define the even E-symmetric Q-groups Q(~ )*(C, E )  Of a 
0 

finite-dimensional A-module chain complex C by 

Q(V~)~(C, E) = ker ( ~ O : ~ n ( ~ , c ) d ~ ~ m A ( ~ n ( ~ )  ,k0(222;~,~ ) ) )  (n> 0) . 

An n-dimensional E-symmetric complex over A (C, 6 € Q" (C, E) ) is 

even if 

'$'€Q(v~)~(C.E) CQ~(C,E) . 
For example, the E-symmetrization (C, (l+TE! g €  Q"(C, E)) of an 

E-quadratic complex (C, 6f Qn(C, E )  ) is even. The relative even 



E-symmetric Q-groups ~<v~)*(f,c) of a chain map f:C----+D of 

finite-dimensional A-module chain complexes 

n+l -0 ,Q(V~)~+'(~,E) = ker(Gg:Qn+'(f,c)-~omA(H (f) ,H (Z2:A,c))) (n3 0: 

where the relative Wu class Go of (6g,g) €Qntl(f,~) is given by 

io(6$,$) : H"+'(~I ---+ ~O(ZZ~;A,E) ; 

(9th) - g(6$n+1)g* + (-)"h($,,)h* 

( E HornA ( D ~ + ~ , D ~ + ~ ) @ H O ~ ~ ( C ~ , C ~ )  , (g, h) c D"+'@c") . 
An (n+l)-dimensional E-symmetric pair (£:C--9D,(6$,$)) is even 
if 

(6$,$) EQ(V~)~+~(€,E) CQ~+'(€,E) . 

The n-dimensional even E-symmetric L-group of A L(v~>~(A,E) 

(n 50) is the cobordism group of n-dimensional even E-symmetric 

Poincare complexes over A, where the cobordism are the 

(nil)-dimensional even E-symmetric Poincare pairs over A. 

By analogy with Proposition 1.2.3 i),ii) we have: 

Proposition 1.4.2 The skew-suspension maps 

are isomorphisms. 

Proof: See Proposition 1.4.4. 

l l 

The E-symmetrization map in the L-groups factors through 

the even €-symmetric L-groups 

1 + ~ ~  : L (A, E) ----+ l,<vO>" ( A ,  c )  -- tn (A, E) (n 0) . P 



In S1.8 below we shall recall from SI.6 the way in which the 

even E-symmetric L-groups L<V~)"(A, E) for n = 0.1 bridge the 

gap between the E-quadratic and the E-symmetric L-groups, 

defining a unified L-theory containing all three types of L-grc 

Proposition 1.2.2 iii) also extends to the even E-symmetl 

L-groups, with L(v~)~(A,E) = 0 for a 0-dimensional ring with 

involution A (cf. the proof of Proposition 1.4.5). 

Proposition 1.4.3 If A , E  at? such that H*(Z2;A,c) = 0 the 

natural maps 

 it^^ : L~(A,c)---+L<v~>~(A,E) , L(V~Y"'A,E)---+L"(A,E) 

are isomorphisms. In particular, this is the case if there 

exists a central element a € A  such that a + a  = 162 A (e.g. a = l  6 2 

Proof: See Proposition 1.3.3. 

I l 

Indeed, if G*(z~;A,E) = 0 there are natural identificat 

of categories 

[E-quadratic complexes over A I  

= (even E-symmetric complexes over A) 

= [E-symmetric complexes over A) 

with 

Q* (C, E )  = Q(vO)* ( C ,  E) = Q* ( C ,  E )  

for any finite-dimensional A-module chain complex C. 



1.5 Algebraic surgery 

coup. 

tric 

t ions 

c-symmetr ic 
An (n+l) -dimensional pair over A 

c-quadratic 

I E-symme Define as follows the connected n-dimensional 
c-quadr 

( c ~ , ~ ~ E ' Q ~ ( c * . E ) )  
complex over A obtained from a connected 

(C1,+' fQn(C',c)1 

E-symmetric (c,$~Q"(c,E)) 
n-dimensional complex over A t 

E-quadratic (C,+€ Qn(C,E)) 

c-symmetr ic 
surgery on a connected (n+l)-dimensional pair 

€-quadratic 

(€:C----D, I & @ , + )  €Q"+'(~,E)) . (This is an algebraic surge 
(f:C---+D, (66,JI) f Qn+l(f,c)) 

"killing im(f*:H*(D)-H*(C))"). 



In the E-symmetric case let 

(-lr€ dD ( - ) V o  

- c; = Cr@Dr+l@D n-rtl 

In the E-quadratic case let 

n+l dC 0 - 
(-)r(l+~c)6$o 

0 

*;=(; ; i )  
. ',"-K = Cn-r@Dn-r+l 

@ D r + l F C ;  = Cr@Dr+l@D n-rtl 



In SII.7 it was shown that for a 
normal 

€:M-X 
from an n-dimensional manifold M to an 

(f,b):M-X 

n-dimensional geometric ~oincar; complex X the effect on the 

symmetric U*(€) = (c,$) oriented 
kernel surgery on 

quadratic o,(f,b) = (C,*) framed 

f 
a framed embedding S'C M" with a null-homotopy of S r 4  M ---t X 

f : M d  X f1:M'---+X 
(replacing with 

(f,b) :M----+X (f8,b') :M'-X 

M e  = M, Sr ) is that of algebraic surgery 

determined by the commutative diagram of maps 

with g* (1) € (C) = H (C) = K (M) = Hr+l(Z) the Hurewicz image 
... 

of F f  F nrtl(f). 



Proposition 1.5.1 i) Algebraic surgery preserves the homotopy 

type of the boundary. In particular, surgery on an algebraic 

Poincar; complex results in an algebraic Poincar6 complex. 

ii) Algebraic Poincar6 complexes x,y are cobordant if and only 

if X is homotopy equivalent to a complex obtained from y by 

surgery. 

Proof: See Proposition 1 . 4 . 1 .  

Proposition 1.5.2 The skew-suspension map 

: L"(A, E )  -L"+~(A,-C) 
(for some n )O) is onto (resp. 

S : L, (An E)-Lnt2 (At-c) 

one-one) if for every connected (nt2) - (resp. (nt3) - )  dimensio 

(-E) -symmetric 
complex over A X with a boundary ax which is 

(-€)-quadratic 

contractible (resp. a skew-suspension) it is possible to do 

(-E)-symmetric 
surgery on X to obtain a skew-suspension. 

(-c) -quadratic 

Proof: See Proposition 1 . 4 . 2 .  

The criterion of Proposition 1.5.2 for the skew-suspension map 

to be an isomorphism is always satisfied in the €-quadratic ca 

cf. Proposition 1.2.2 i ) .  It is not in general satisfied in th 

E-symmetric case, cf. Proposition 1.2.2 ii) and the examples o 

non-periodic c-symmetric L-groups of SI.lO. 



nal 

1.6 Forms and formations 

Next, we recall the correspondence between n-dimensior 

algebraic ~oincar6 complexes for n = 0 (resp. 1) and quadrat 

forms (resp. formations), and the correspondence between the 

L-groups and the Witt groups 

Given a f . g .  projective A-module M define the c-dualit 

involution 

This is just the ,-duality involution T on HomA(C*,C) with 

the 0-dimensional A-module chain complex defined by 

r c-symmetric ( Q, (M) 

i even E-symmetric Q(V~>€ (W 
Define the Q-group of M by 

c-quadrat ic Q, (M) 

split c-quadratic c?c (M) 
0 Q'(M) = Q (C,,) = ker ( l -T,:HomA(M,M*)-HomA(M,M*) ) 

The various Q-groups are related by a sequence of forgetful 

- 
with QC (M) -Q, (M) and l+TC:QC (M)-QE (M) onto, and 

Q(v0) E (M) +Q€ (M) one-one. 



E-symmetr ic (M, 4;  
form over A is a €.g. projective 

€-quadratic (M. '4) 

A-module M together with an element . Such a form is 
$ €  HomA(M,M*) 

non-singular if is an isomorphism. A morphism 
f HomA(M,Mt) 

E-symmetric 
(resp. jsomorphism) of forms over A 

E-quadra tic 

f : (M,$)-IM',@') 

f : (M,$)-(M*,$') 

is an A-module morphism (resp. isomorphism) f € HomA(M,M') such 

that 

i 
€ 

f*$'f = $ f Q (M) 

f*$'f = $ E  QE(M) . 
An even E-symmetric form over A (M,@) is an €-symmetric form 

such that 

4 f Q<v,)~(M)CQ~(M) . 
A split €-quadratic form over A (M,$) is a f.g. projective 

A-module M together with an element $€5,(~). A morphism 

(resp. isomorphism) of split E-quadratic forms over A 

( f , ~ )  : (M,$)-(M1,$') 

is an A-module morphism (resp. isomorphism) fEHomA(M,M1) 

together with a (-€)-quadratic form over A (M,x€Q-,(M)), 

the hessian of (€,X), such that 

f*$'f - = X - EX* f ;€(M). 



An F-symmetric form over A (M,+ € Q' (M) ) is the same as a 

f.g. projective A-module M together with a pairinq 

X : M M-A ; (x,~)-A(x,Y) 5 +(x)(y) 

such that 

A (x,ay) = aA (x,y) 

X(X,Y+Y') = A(X,Y) + A(x,Y') 

~ ( y , x )  = ET(X,Y) e A (x,y,yl f M.a f A) . 
The form (M,@) is even if for every x € M  there exits a f A  such 

that 

A(x,x) = a + ~ a  € A . 
An ,-quadratic form over A (M,$ € Q, (M)) is the same (up to 

isomorphism) as a triple (M,x,u) consisting of a f.g. prolective 

A-module M, an F-symmetric pairing A :  M x M - - - + A  as above 

and a function 

11 : M-+ Q,(A) 5 ~/(a-ca(a f A) 

such that 

U (ax) = av (X); 

U(X+Y) - ~ ( x )  - v ( ~ )  = X (x,Y) c Q=(A) 

A(x.x) = ~ ( x )  + c l l ( X ) €  A (x,y,yl f M.afA). 

i.e. an c-quadratic form in the sense of Wall [ 4 , S 5 1 ,  the 

correspondence (M, $1 +-+ (M,A,u) being given by 

X(~,Y) = ($+E$* )  (X) (Y) 6 A 

P(x) = +(X) (X) f Q,(A) (XtYC M) 

The F-symmetrization functor 

1+T, : {,-quadratic forms over A)-----+(E-symmetric forms over A) ; 

(M,$) 7 (M, (1+T,)6) 

is an isomorphism of categories if 1/2€A, in which case the 



c-symmetric pairing A:M x M -----t A; (x,y)-(l+T,) $(X) (y) determi 

the €-quadratic function u:M --+Q, (A) ;X-$(X) (X) by 

If A is a commutative ring with the identity involution 5 = a € A  

( a  f A) a quadratic form over A (M,$ € Q+l(M)) ( E  = +l f A) is thus 

essentially the same as a f.9. projective A-module M together 

with a function 

p : M -Q+1 (A) = A 

such that 

i) V is quadratic 

2 
~ ( a x )  = a u(x)€A (a€A,xfM) 

ii) the function 

X : M X M -A ; (x,Y)r-----*(p(x+y) - D(X) - ~(y)) 
is bilineac, 

which is the classical definition of a quadratic form over a 

commutative ring. For any ring with involution A the forgetful 

f unc tor 

{split ,-quadratic forms over AI 

------t {E-quadratic forms over A) ; 

(M,$€ Q,(M))-(M. IJ l l  f Q,(Y) 

defines a one-one correspondence of isomorphism classes; 

the hessian forms appearing in the morphisms of split €-quadratic 

forms are necessary for the definition of th even-dimensional 

relative ,-quadratic L-groups (in S2 below). 



ines (C,@) (even) c-symmetr ic 
is a 0-dimensional complex 

(c,$) c-quadratic 

over A there are natural identifications 

0 1 Q~(c,E) = Q~(HO(C)) (~<v~>O(c.c) Q(U~)'(H (C))) 

even) E-symmetr ic 
so that is an r form over A such 

c-quadratic 

E-symmetric (C,@) 
that the 0th Wu class of is given by 

c-quadratic (C, $) 

Proposition 1.6.1 There is a natural one-one correspondence 

between the homotopy equivalence classes of 0-dimensional 

(even) E-symmetric 
complexes over A and the isomorphism 

€-quadratic 

(even) E-symmetric 
classes of forms over A .  ~oincarg complexe 

€-quadratic 

correspond to non-singular forms. 

Proof: See Proposition 1.5.1. 

1 1  

E-symmetric ( M ,  4 )  
A sublagrangian of an form over A 

c-quadratic ( M ,  JI) 

is a direct summand L of M such that the inclusion jfHomA(L,E. 

c-symmetric 
defines a morphism of forms 

c-quadratic 



I *@€ HomA(M,L*) 
such that is onto. The annihilator of L 

j* ($+E$* )  € HomA(M,Lf) 

ker (j*@:M+L*) 

is a direct summand of M containing L as a direct summand 

A laqrangian is a sub1 agrangian which is its own annihilator 

i.e. such that there is defined an exact sequence 

j I*@ 
0-L -M-L*-0 

j j* ($+E$* )  
O d L - M  *L*-0. 

A (sub) laqranqian (L,X) of a split €-quadratic form over A 
- 

(M,$€ Qc(M)) is a (sub) lagrangian L of the associated 

€-quadratic form (M,[$] €6€(~)), together with a hessian 

i.e. such that there is defined a morphism of split €-quadratic 

forms over A 

(even) E-symmetric 
A non-singular form is hyperbolic 

(split) c-quadratic 

if it admits a laqranqian. 



( an c-symmetric form over A ( L * , @ €  Q€(L*)) 

i a f .g. projective A-module L, 
Given 

- - 
_ 8, _ 

I even c-symmetric 
standard hyperbolic form over A 

c-quadratic 

[ split c-quadratic 

define the 

The various hyperbolic forms are related to each other by 

(~+T~)H,(L) = H€(L) = H€(L*,o) , 

with AE(L) a split €-quadratic refinement of H,(L). 

If (L* ,O  € Q<v,) E (L*) ) is an even E-symmetr ic form then - 
O = JI+c$*€Q(~,)~(L*) for some split E-quadratic form (M,$€Qc(L*)) 

and there is defined an isomorphism of (even) €-symmetric forms 



Proposition 1.6.2 The morphism of forms 

defined by the inclusion jfHomA(L,M) of a sublagrangian L in 

f E-symmetric ( (M, f (M) 

even c-symmetric (M, $ e Q(V~>' (M) ) 
form over A extends 

E-quadratic (M, J) e Q, (M) ) 
[ split c-quadratic w.6 f 6, (W 

to an isomorphism of forms 

Proof: See Proposition 1 . 2 . 2 .  

I l 

In particular, Proposition 1.6.2 shows that the form 

(LI/L,$l/+) is non-singular if and only if (M,@) is non-sinqul' 

and similarly in the other cases 



E-symmetric l (M,O;F,G) formation over A is a 
€-quadratic (M,$;F,G) 

E-symmetric (M,+ € Q' (M) 
non-singular form over A together 

€-quadratic (M,$ € Q, (M) ) 

with a lagrangian F and a sublagrangian G. Such a formation 

is non-singular if G is a lagrangian. An isomorphism of 

formations 

is an isomorphism of forms 

i f : (M,@)&(M*,@~ 

f : (M,*)&(M',JI') 

such that 

f (F) = F' , f (G) = G' . 
A stable isomorphism of formations 

i [ E ]  : (M,+:F,G) -(M1,+' 

[ f ]  : (M,Q;F,G) )(M',$' 

is an isomorphism of the type 

(f : (M,@;F,G)@(H~ (P) ;P,P*) ---(M' t + '  

for some f.9. projective A-modules P,P'. 

An even E-symmetric formation (M,@;F,G) is an C-symme' 

form such that (M,@) is an even E-symmetric form. 

ar, 



A split c-quadratic formation over A 

(F,G) = (F, ((Z).~)G) 

is an E-quadratic formation over A (H€(F);F,G) (with 

(:):G-F@F* the inclusion) , together with a hessian 

(-c)-quadratic form over A (G,BI?Q-~(G)) such that 

yfP = B - CB* € HomA(G,G*) , 

so that there is defined a morphism of split C-quadratic forms 

over A 

and (G,0) is a sublagrangian of H€(F). The formation (F,G) is 

non-singular if the sequence 

is exact, i.e. if the underlying €-quadratic formation (H,(F);F,G) 

is non-singular. An isomorphism of split €-quadratic formations 

(a,B,$) : (F,G) +(F',G') 

is a triple consisting of A-module isomorphisms a€Hom IF,F1), 
A 

B € ~ o m  (G,G') and a (-€)-quadratic form (F*,$€Q-,(F*)) such that A 

i) ay + a($- = y'B e HomA(G,F1) 

ii) a*-lp = p'B € HomA(G,F1*) 

iii) B + V*$P = B*B'B € @-,(G) 

Such an isomorphism determines a commutative diagram 



with 

a a($-€$*)* 

f = (  : FBF* V *Ft@F'* 
0 a*-1 

and hence there is defined an isomorphism of the underlying 

€-quadratic formations 

'V f : (HE(F) ;F,G) -(HE (F') ;Ft ,G') . 
A stable isomorphism of split €-quadratic formations 

la,B,JII : (F,G)--r(F',G') 

is an isomorphism of the type 

fu ,B,$)  : /F,G)@/P,P*) ~(F',G')@(P',P'*) 

for some f.g. projective A-modules P,P', with 

Proposition 1.6.3 i) Every €-quadratic formation is isomorphic 

to one of the type (HE(F);F,G). 

ii) Every €-quadratic formation of the type ( H ,  (F) ;F,G) admits 

a (non-unique) split €-quadratic refinement (F,G). 

iii) Every isomorphism of €-quadratic formations of the type 

f : (H,(F) ;F,G).(HE(F1) :F1,G') 

can be refined to a (non-unique) isomorphism of split €-quadratic 

formations 

(a.6,IL) : (F,G) ---(F1,G') . 
I 

Similarly Lnr s t a I ) I e  isomorphisms. 

Proof: See Proposition 1 . 2 . 4 .  



An €-quadratic 
homotopy equivalence of l-dimensional 

A 2ysplit €-quadratic 

€-quadratic complexes over A 

is a chain equivalence €:C-C' such that 

for some Tate Z2-hypercohomology class 0 f2 e2(c',c) with vanishing 

1st Wu class 

(A split €-quadratic homotopy equivalence is the same as a 

homotopy equivalence). 

Let C be a l-dimensional A-module chain complex of the 

Z2-hypercohomology + € Q~(c,E) 
class is represented by 

Z2-hyperhomoloqy 6 E Q1(C,c) 

A-module morphisms 

such that 

(d+O + i o d *  = o : CO-cot d+l - io + ~ $ 6  - o : cl-c0, 



E-symmetr ic (c.$€Q'(c,E)) 
A connected l-dimensional complex 

€-quadratic !Ct6eQ1(C,~)) 

I E-symmetr ic determines the formation 
split c-quadratic 

Proposition 1.6.4 There is a natural one-one correspondence 

- 
between the homotopy equivalence classes 

(split) E-quadratic 

(even) E-symmetr ic 
of connected l-dimensional complexes over , 

(split) c-quadratic 

(even) E-symmetric 
and the stable isomorphism classes of 

(split) E-quadratic 

formations over A .  ~oincar; complexes correspond to non-singula 

formations. 

Proof: See Propositions 1.2.3,1.2.5. 

a(M,-$;F.G) (even) E-symmetric 
The boundary focmat 

a(M,S;F,G) E-quadratic 

(M,$;F.C;) (even) E-symmetr ic 
over A is the non-sinqular form 

(M,+;F,G) €-quadratic 

over A 



Proposition 1.6.2 shows that the boundary form is stably 

hyperbolic, with an isomorphism 

i ~ ( M , + ; F , G ) @ H ~ ( G * , < ) - H € ( F * , u )  

a(Mr6;F,G)@HE ( G ) A H E  (F) 

for some E-symmetric forms (F*,<),(G*,u) (with 5 = O , u = O  if 

(M,@;F,G) is even). 

The boundary a(F,G) of a split €-quadratic formation (F,G) 

is the boundary d(HE(F);F,G) of the underlying E-quadratic 

formation (HE (F) ;F,G) . 
E-symmetric 

The boundary a(M,$) of an even c-symmetric form over A i::::: i €-quadratic 
i 

(M, 9 f (M) I even (-E) -symmetric 

(M,@ € Q < V ~ ) ~  (M)) is the non-singular (-E) -quadratic 

(M. Q€ (M) ) split (-€)-quadratic 

formation over A 

is the graph lagrangian of (M,+) in H-'(M) (in H-~(M) if (M,@) 

is even). 



1 
c-symmetr ic I L€(A) The Witt qroup of even c-symmetric x m s  over A L(V~)'(A) 

c-quadratic LE(A) 

is the abelian group of equivalence classes of non-singular 

1 
E-symmetr ic 

even c-symmetric forms over A subject to the relation 

e-quadrat ic 

(M.6) - (M' , $ l )  if there exists an isomorphism 

(Mr$)@(H,e) ------tIM',@')@(H',B') 

for some hyperbolic forms (H,B),(H',B'). 

Addition and inverses are by 

(M,$) + (M1,@') = (M@M',$@$') , -(M,$) = (M,-+) . 

E-symmetric 

The Witt group of even €-symmetric formations over A 

( €-quadratic 
ME ( A )  

M(vO)€(A) is the abelian group of equivalence classes of 

non-singular even E-symmetric formations over A subject to < 
[ €-quadratic 

the relation 

(M,$;F,G)- (M',@';Ft,G') if there exists a stable isomorphism 

of the type 

Addition and inverses are by 

(M,$;F,G) + (M',+':F',Gq) = (M@M',@@@';F@F',G@G') 

-(M,$:F,G) = (M,Q;G,F) (=  (M,-@;F,G)) 



Proposition 1.6.5 i) For n = 0.1 the n-dimensional L-groups 

have natural expressions as Witt groups of forms and formations 

i 
€-symmetric 

ii) An even E-symmetric form is non-singular if and only if it! 

c-quadrat ic 

boundary formation is stably isomorphic to 0 ,  in which case the 

l LE (AI 

form represents 0 in the Witt group L(v~)'(A) if and only if 

LE (A) 

it is isomorphic to the boundary of a formation. 

i 
€-symmetric 

iii) An even c-symmetric formation is non-singular if and only 

c-quadrat ic 

l 
even €-symmetric 

its boundary form is 0. A non-singular c-quadratic 

split €-quadratic 

I ME (A) formation represents 0 in the Witt group M(V~)' (A) if and only 

ME (A) 

if it is stably isomorphic to the boundary of a form. 

W: See Propositions 1.5.1:1.5.2,1.5.4. 



The periodicity L (A) = Ln+2(A,-1) = L,+~(A) (n 30) of 

Proposition 1.2.3 i) combined with the expressions of 

Proposition 1.6.5 i )  identifies the quadratic L-groups 

L, (A) (n ) 0) defined using quadratic poincar; complexes with 

the quadratic L-groups Ln(A) (n(mod 4) ) defined by Wall 141 

using forms and formations. 

€-symmetric I (C.+ f Q"(c.E)) An n-dimensional complex i S 
€-quadratic (C1+ On (C,€)) 

highly-connected if 

for n = 2i : Hr(C) = H'(c) = 0 (r # i) 

for n = 2i+l : Hr (C) = H~ (C) = 0 (r # i,i+l) and 

Hi (90:C 2i+l-*.C) = 

2i+l-• 
Hi( (l+TE)60:C -C) = 0 .  

A highly-connected complex is connected; the boundary of a 

highly-connected complex is a highly-connected poincar; comple 

Proposition 1.6.6 For n = 2i (resp. n = 2i+l) the homotopy 

equivalence classes of highly-connected n-dimensional 

€-symmetric 
complexes over A are in a natural one-one 

E-quadratic 

correspondence with the isomorphism (resp. stable isomorphism) 

( - )  l~-symmetric ( - )  'c-symmetric 
classes of forms (resp. 

I-) '€-quadratic I split ( - )  '~-~uadrati 

formations) over A. Poincar6 complexes correspond to non-singu 

forms (resp. formations). The boundary operation on 

highly-connected complexes corresponds to the boundary 

operation on forms (resp. formations). 

Proof: See Proposition 1.5.3. 



1.7 Algebraic glueinq 

Geometric ~oincar; cobordisms (Y;X,Xg), (Y1;X' ,X") can be 

glued together to define a geometric ~oincar; cobordism 

(Y":X,XW) with 

We sha 

operat 

11 now recall from 51.3 the analogue of this glueing 

ion for algebraic Poincar6 cobordisms. 

E-symmetric 
The union of adjoining (n+l) -dimensional 

€-quadratic 

Poincar6 cobordisms 

€-symmetric 
is the (n+l) -dimensional ~oincar; cobordism 

€-quadratic 

[ c u ~ '  = ((E" f",,):C@C"AD", (6$ILIL,$@-$66) €Qn+l((f ft,,) , E ) ) )  
C C 



defined by 



We shall write 

The union operation for algebraic poincar; cobordisms ha 

a particularly simple expression (up to homotopy equivalence) 

in the special case when all the chain maps involved are defir 

by inclusions of direct summands, as follows. 

E-symmetric (€:C----+D, (6$,0)) 
pair is direct if 

€-quadratic (f : c ~ D ,  (64~,$)) 

each f HomA(Cr,Dr) ( r  € Z) is a split monomorphism, i.e. the 

inclusion of a direct summand. 

The direct union of adjoining direct (n+l)-dimensional 

c-symmetr ic 
poincarg cobordisms 

.-quadratic 



defined by 

- 
d6, = [dD@dD, 1 : D; = coker 

I E-symmetr ic Every ~oincar; cobordism 
c-quadrat ic 

c = ((f E') :C@C'-D, (6+,@@-0')) 
is homotopy equivalent 

c = ((f f') :C@C'-D, (66,$+$')) 

with 6 = M(f f') the algebraic mapping cylinder of the chai 

(f f') : C@C1-D 

(The algebraic mapping cylinder M(€) of an A-module chain m 

f : c-D 

is the A-module chain complex defined by 

The A-module chain maps 

defined by 



g = ( a 1 : Dr- M(f) a Drwr-lecr 

are such that each T €  HomA(Cr,M(f),) (r € Z) is the inclusion of 

a direct summand, and g:D--.--sM(f) is a chain equivalence, with 

a chain homotopy commutative diagram 

f C-D 

Furthermore, if c,c' are adjoining algebraic Poincare cobordisms 

there is defined a homotopy equivalence 
- 

C U C '  A c u c '  

from the union defined previously to the direct union. 

The direct union is more obviously related to the glueing 

operation on geometric Poincare cobordisms. For example, 

if (Y:X,X1), (Y' ;X' ,X") are adjoininq geometric ~oincar; cobordisms 

then 

o*(Yux,Y';x,X") = o*(~;x,x')U~*(~,)o*(Y';x',x") 

(= 0*(Y;X,Xt) uo*(x,)o*(Y';X',X") 

up to homotopy equivalence) . 
Similar considerations apply to the quadratic kernels of 

adjoininq bordisms of normal maps. 



The correspondence of Proposition 1.3.3 i) shows that up 

to homotopy equivalence the cobordisms of n-dimensional 

E-symmetr ic 
~oincar; complexes over A may be considered as 

€-quadratic 

E-symmetric 
consisting of a connected (nt1)-dimensional 

€-quadratic 

1 E-symmetr ic 
, n-dimensional Poincare complexes 

1 E-quadratic 

which we shall also called cobordisms. The union operation 

(c,c')-c uc' defined above can be written in the €-symmetric 

case as 

((D.s),(c.o). (c*,oI),(E f o ) )  "((D*,s*), (c*,~*).(c",+*).(f* fu)) 

and similarly in the €-quadratic case. In particular, given 

connected (nt1)-dimensional E-symmetric complexes (D,<), (D' , C ' )  

and a homotopy &pivalence of the boundary n-dimensional 

E-symmetric Polncare complexes 



and s i m i l a r l y  in t h e  E-quadratic case. 



The formulation of the union operation entirely in terr 

E-symmetric 
complexes (i.e. dispensing with pairs) has tl 

€-quadratic 

advantage that in the low-dimensional cases n = 0,l it trans 

directly into the language of forms and formations, using thc 

correspondences of Propositions 1.6.1,1.6.4,1.6.6. 

We shall now give an explicit description of the union opera1 

E-symmetric 
for forms and formations. In the applications 

€-quadratic 

(in S 2  below) it is only necessary to glue along all the 

boundary, so that only this case will be considered. 

See Ranicki I S ]  for further details concerning the glueing 

of forms and formations, at least in the E-quadratic case. 

I E-symmetric Given formations 
€-quadratic 

and an isomorphism of boundary non-singular form 
-quadratic 

E-symmetric 
define the union non-singular format ion 

c-quadratic 

with j € HomA(GA/G,M), j' f Hom lC,''/G',M1) the A-module morph 
A 

.A .-% 



€-symmetric 
appearing in any o f  the isomorphisms of forms extending 

€-quadratic 

the inclusions of the sublagrangians given by Proposition 1.6.2 

C even ( - c )  -symmetric 
stable isomorphism of boundary non-singular 

split (-€)-quadratic 

€-symmetric 
is the non-singular form 

€-quadratic 

(Mu,$") = (M,$) U r FJ (M',@') 

defined further below. The union operation is characterized 



(M',$') 
(up to isomorphism) by the property that 

(M'#*') 

(M",$") 
are included in the union as maximally orthogonal 

(M",*") 

subforms, that is there are defined morphisms of forms 

with j €HomA(M,Mn), j'€HomA(M',MW) split monomorphisms, such 

that the A-module sequence 

is exact, and such that the stable isomorphism of formations 

naturally associated to such inclusions is equivalent to 

~:;m1 
under the relation on stable isomorphisms corresponding 

(via Proposition 1.6.4) to the chain homotopy of homotopy 

equivalences of l-dimens 

complexes. In particular 

even (-E) -symmetric 
iona l ~oincar; 

(-E) -quadratic 

with j and j' the canonical inclusions. 



The union operation for forms is defined as follows. 

be the stable isomorphism of even (-€)-symmetric formations 

given by the isomorphism 

f : (H-' (M) ;M, r (M,O) )@(H-€ (P) :P,P*) 

for some E.g .  projective A-modules P,Pt. Write the restricti~ 

of f to the lagrangians as 

and let 

Let (M*@P*, 1'2 Q€(M*@P*)) be the unique esymmetric form such 

that there is defined a commutative square 

B 
MBP * -------- ---------+M1@P'* 



and let 

The union E-symmetric form is given by 

with the canonical inclusions defined by 

In the €-quadratic case 

split E-quadratic formations 

(M1,$') -(M1',$") . 

let [ a , B , o ]  by the isomorphis 

for some f.g. projective A-modules P,P1. Let 

= ( 1;) : M1*@P1* - M u w e *  



The union E-quadratic form is given by 

with the canonical inclusions defined by 

See Ranicki [1,4.31,[5] and Wall [8],[12] for some 

applications of the union of forms. Here is another: 

(even) E-symmetric 
The f forms over A 

(M1,*') LE-quadratic 

are a-equivalent if there 

i E : (M,$)@(N,e f : (M,+)@(N,X 

exists an isomorphism 

I (even) E-symmetric for some non-singular 
E-quadr a t ic 

in which case there is induced a stable isomorphism of the 

I even (-E)-symmetric ((-€)-quadratic) 
boundary formations 

split (-€)-quadratic 

I (even) E-symmetric In particular, if L C M  is a suhlagranqian of an 
E-quadratic 



Proposition 1.7.1 The boundary operations 3:(forms)---+(formations) 

define natural one-~ne correspondences 

I E-symmetric a : {a-equivalence classes of even E-symmetric forms over A) 

€-quadratic 

---(stable isomorphism classes of null-cobordant 

i 
even (-E) -symmetr ic 

( - E )  -quadratic formations over A) 

split (-E) -quadratic 

Proof: It is sufficient to consider the E-symmetric case, the 

others being entirely similar. 

By Proposition 1.6.5 iii) every null-cobordant even 

(-E)-symmetric formation is stably isomorphic to the boundary 

a(M,$) of an E-symmetric form (M,$). Thus it remains to show 

that if (M,$), (M',$') are E-symmetric forms which are related 

by a stable isomorphism of the boundaries 

If1 : a(M.$) " + J(Mt,$') 

then they are 3-equivalent. Write the union non-singular 

E-symmetric form as 

(N'r8') = (M,$)urf1(M',-$') r 

and let 

j' : (M1,-$')-(N',el) 

be the canonical inclusion. Then the submodule 

L = ((x,j'(x)) &M'@N'(x€M']CM'@N' 

defines a subl7grangian of (M',$')@(N'.B') such that 

(L1/L, (9tee1)r/($1w3*) = (M,$) . 
Applying Proposition 1.6.2 there is obtained an isomorphism 



f : (M,$)@(N,O) *(M',$')@(N',8') 

with (N,8) = H'(M',$') non-singular. Thus (M,$) and (M1,$') 

are a-equivalent. 

l 1  

Proposition 1.7.1 is a generalization of the familiar 

result (cf. Kneser and Puppe Ill, Wall I101 and Durfee [l]) 

that if (M,$),(M1,$') are quadratic forms over Z which 

become non-singular over Q then they are ;-equivalent if and 

only if the boundaries a(M,$), a(M1,+') are isomorphic as 

"non-singular quadratic linking forms over (Z,iZ-IOI)" - 
see S 3 . 4  below for the expression of a(M,$) for such (M,$) as 

a non-singular quadratic linking form 

I (M / M , x : M # / M ~ M ' / M - - ~ Q / z , ~ : M ' / M - ~ 1 2 ~ )  , 
with 

M' = ( X  e QB,MI ( J I + J ~ * )  ( X )  (M) EZZZCQI 

the "dual lattice", A a non-singular symmetric linking pairing 

on the finite abelian group M'/M, and U a quadratic refinement 

of X .  The proof of Proposition 1.7.1 is a generalization of 

the standard proof of the Novikov additivity property for the 

signature: if ( M ,  Q), (M', $ ' )  are symmetric forms over Z and 

[f]:a(M,Q)- a:M',-6') is a stable isomorphism of boundary 

skew-symmetric formations over Zthen the signature of the 

union non-singular symmetric form over Z (M,$) U , f l  (M8,$') 

is given by the sum of the sionatures of (M,@) and (M',$') 

o*((M,Q) ulf1 ( M 1 , $ ' ) )  = o*(M,4) + o*(Mt,Q') 8 Z ,  

which we shall qeneralize in Proposition 7.3.6. Proposition 1. 

is generaliz~d to complexes in Proposition 1 .8 .3  below. 



1.8 Unified L-theory 

In 51.6 there were 
E-symmetr ic 

defined lower L-groups 
c-quadrat ic 

now recall. We shall also give a un 

I E-symmetric construction of the unified L-gr oups 
c-quadratic 

E-symmetr ic 
Define the [ L-groups of A 

€-quad rat ic 

I L" (A, c) = L<V~>"+* (A,-E) 
extending the semi-periodicity (n : 

Ln(A, E) = Ln+2(At-c) 

1.4.2 
of Proposition 

1.2.3 i) 

Define the skew-suspension maps 

to be the skew-suspension previously defined for n)rO and n 

and to be the appropriate ?E-symmetrization maps for -3 5 n S  

0 Proposition 1.8.1 If fi (Z2;A,c) = 0 the skew-suspension map: 

are isomorphisms. 

Proof: See Proposition 1.6.1 -- 



In particular, if there exists a central element a € A  such that 

a + a s  I f  A (e.g. a = 1/2 € A) then H**(2Z2;A,E) = 0 and up to 

isomorphism 

n+2 Ln(A,€) = L"(A,E) = L (A,-E) (n€ Z) 

cf. Proposition 1.4.3. 

E-symmetric L"(A,E) 
Define the L-categor ies (nfi2) to 

€-quadratic Ln(Atc) 

be the additive categories given by 

[connected n-dimensional E-symmetric complexes over A, 

homotopy equivalences} (n? 1) 

(E-symmetric forms over A, isomorphisms) (n = 0) 

(even (-€)-symmetric formations over A, 

stable isomorphisms] (n = -l) 

{even (-E)-symmetric forms over A, isomorphisms) (n= -2) 

{(-€)-quadratic formations, stable isomorphisms) (n = -3) 

&,(A,€) (as defined below) (n 6 - 4 )  

(connected n-dimensional €-quadratic complexes over A, 

homotopy equivalences) (n 31) 

i { c - )  E-quadratic forms over A, isomorphisms) (n = 2i6 0 )  

(split (-)l~-quadratic formations over A, 

stable isomorphisms) (n= 2i+l,<-1). 

Note that by Proposition 1.6.4 

(A,€) = {c-symmetric formations over A, stable isomorphisms) , 

$(Arc) = L-j(~, E )  . 



Define the orientation-reversing involutions 

and use the boundary operations of §§1.3,1.6 to define the 

For any object X 

up to natural equivalence. The morphisms of the L-categories 

will all be called kmotopy equivalences; objects x,y of the 

same L-category are homotopy equivalent x = y  if there exists a 

homo topy equivalence 

in which case there are also defined homotopy equivalences 

f-l : y+x , F : - x ~ - y  , I €  : ax--=+ay. 

An object X is closed if 3x = 0 ,  and it is a boundary if X Sy 

for some object y. In particular, boundary objects are closed, 

and if X is closed (resp. a boundary) then so is -X. For n > O  

the closed objects are precisely the algebraic ~oincar; complexes, 

and for n g l  they are precisely the non-singular forms and 

formations. 

Given objects x,y in the same L-category and a homotopy 

equivalence of the boundaries of X and -y 

define the xlufy to be the closed object of the same 

ccategory constructed as in 51.7. For closed objects x , y  



A cobordism (z;f,g) of objects x,y in the same 

n-dimensional ;-category is a triple consisting of an 

object z of the corresponding (n+l)-dimensional L-category, 

and homotopy equivalences 

f : ;X --4 3y , g : x u  -y 4 a z  . 
f 

For closed objects x,y this is just the cobordism of S§1.1,1.7. 

A surgery on an object X of an n-dimensional L-category 

is an operation 

X + -*X' 

sending X to an object X' of the same L-category; for n 3 0  

this is to be surgery on complexes as defined in S1.5, and 

for n a  l it is the translation of this surgery from the 

language of complexes to that of forms and formations. 

For example, if (M,$) is an E-symmetric form over A and L C M  

is a sublagrangian the operation 

is a surgery on (M,$). 

Proposition 1.8.2 i) Cobordism is the equivalence relation on - 

in(?i,~) 
the set of objects of (n € Z) generated by surgery 

in(A,~) 

and homotopy equivalence. The cobordism classes of closed 

objects form an abelian group with respect to the direct sum $, 

namely (n € Z)  . 
L " ( A , E )  

ii) If x,y,2 are obj~cts of and f :3x a ~ y , q :  ly-32 
hn(A,F) i . 

are homotopy equivalences then 



Proof: i) Immediate from Propositions 1.3.3,1.5.1 and 1.6.5. 

ii) It is possible to obtain X ugf-z from (X uf-y)B(y U - 2 )  
'3 

by surgery (as in the proof of Proposition 1.8.3 below). 

[ 1 

The homotopy equivalence classes of the null-cobordant 

L"(A,E) 
objects of (i.e those representing 0 in 

in(A,€) 

are in one-one correspondence with the following equivalence 

in+l 
(A,') 

classes of objects of 
Ln+l(A,c) 

Let >-equivalence be the equivalence relation on the 

objects of (n f Z) generated by the elementary 
(A,') 

operations: 

i )  X-X' if X' is homotopy equivalent to X 

ii) X-X' if X' is obtained from X by surgery 

iii) X-X' if X' = xtDy for some closed object y . 
Note that S x = J x l  in each case, so that the homotopy type 

of ax is an invariant of the ?-equivalence class of an object 

For n + l = O  >-equivalence is just the 3-equivalence relation 

on forms defined in S1.7 above. Proposition 1.7.1 is the 

special case ntl = 0 of: 

Proposition 1.8.3 The boundary operation defines a natural 

one-one correspondence 

7.i +(hornotopy equivalence classes of null-cobordant 



Proof: Given connected (n+l)-dimensional E-symmetric complexes 

over A (C,$). (C'.$') (for some n &O) and a homotopy equivalence 

of the boundary n-dimensional E-symmetric ~oincar; complexes 

over A 

f : 3(c,+)-a(c',+') 

there is defined a union (n+l)-dimensional E-symmetric 

E-symmetric ~oincar; complex over A 

(C",$") = (C uFC',+u-$') . 
Surgery on (C' ,+')@(C" , $ " )  by the connected (n+2) -dimensional 

€-symmetric pair (g:C'$C"*C', (0,+'@$")) with 

g =  (1 0 0 1) 

: (C'@C")r = C;@cr@xr-l@c; -- C; 

results in an (n+l)-dimensional E-symmetric complex homotopy 

equivalent to (C,+), so that (C,+) and (C',+') are 3-equivalent. 

Similarly for the other cases. 

l1 

The matrix identity of Wall [4,p.631 was used to prove 

that :he odd-dimensional surgery obstruction group L2i+l(n) 

defined as the quotient of the stable (-.) '-unitary group of Z [ n ]  

i by the subgroup generated by the elementary ( - )  -unitary matrices 

is in fact abelian. Proposition 1.8.3 is a qeneralization 

of this identity, and also of the related normal forms of 

Sharpe (l1 and Wall (111 for the elementary (-Ii-unitary 

group. The normal forms may in fact be deduced from the 

€-quadratic case for n + l = O  (as has already been done in 

Proposition 1.9.2 iii)). The sum formula of Proposition 1.8.2 ii) 

is an L-theoretic analogue of the Whitehead lemma of algebraic 

K-theory. 



1.9 Products 

The tensor product ABZB of rings with involution A,B 

is a ring with involution 

: AmZB ---+AaZB ; a @ b w a Q h  = . 
If € € A ,  n f B  are central units such that 

- - 
E = E - l e A  , n = n - l € B  

then EC4rlE A@ B is a central unit such that Z 

(K) = (€@Q)-' € AQZB . 
If C is a p-dimensional A-module chain complex and D is a 

¶-dimensional B-module chain complex then CBZD is a 

(p+¶)-dimensional mZB-module chain complex, with AmZB 

acting by 

A%BxC@zD-C@ZD ; (a@b,x@y)-axQby . 
As in S I . 8  there are defined products in the Q-groups 

a : Q ~ ( c , E ~ ~ , Q " ~ D , ~ ~ ~ - - - - - - * Q ~ ~ " ( c ~ D , ~ ~ )  ; 



= 1 H O ~ ~ ( C * , C ) ~ + ~ @ ~ H O ~ ~ ( D * , D )  
r=-m n-s 

which extend to the L-qrol~ps: 

Proposition 1.9.1 Given A,B,c,q as above there are defin~d 

external products in the L-groups 

Lm+n 
@ : L ~ ( A , E ) @ ~ L ~ ( B , ~ )  (AQzB,€Qrl) ; 

Given rinqs with involdtion A,R we shall say that 

A is an R-module if there is given a morphism of rings with 

involution 

R S A - + A ; r @ a H r a  . 
(We are anticipating here the definition in S 2 . 2  below of a 

morphism of rings with involution). 



Proposition 1.9.2 If A is an R-module there are defined inte~ 

products in the L-groups 

0 
for any m,n€ Z. In particular, the symmetric Witt group L (R) 

E-symmetr ic L* (A, E) 
acts on the L-groups of A 

€-quadratic L,(A,E) 

with the element 

0 
(R,~:R---+R*:c-(s-sF)) E L  (R) 

acting by the identity. 

Proof: Compose the external products given by Proposition l.! - 
with the L-group morphisms induced by RaZA----1A, defining 

I 
0 

The symmetric Witt group L (R) of a commutative ring R 

(with any involution) is a commutative ring with respect to t 

internal product LO(R) @z~O(~)-~Of~), with unit (R,l) E L C 

E-symmetr ic L* (A.c) 
and the L-groups of an R-module A are a 

E-quadratic L,(A,E) 

LO(R) -modules. 



The external L-group products appear in the product 

symmetric 
formula ot Proposition 11.8.1 for the signature 

quadratic 

of the cartesian product o f  an m-dimensional 

geometric Poincar; complex X 
and an n-dimensional 

normal map (f,b):M+X 

[geometric Poincar6 complex Y 

{normal map (g,c) :N-Y 

identifyinq nl (X X Y )  = nl(X) X nl(Y) and 



1.10 Change of K-theory 

Given a ring with involution A define the duality involution 

projective class KO(~) = K~(A)/K~(z) 
in the reduced group 

tors ion K1 (A) = K1 (A) /K1 (Z) 

of the underlyinq ring A - 

i - 

: K O ( A ) 4 K O ( A )  
- 

; X = (P] -X* = [P*] 

: K1(A)-K1(A) ; 

X = ~ ( f : M a N ) - x *  = T(~*:N* +.M*) 

P a €.g. projective A-module 
with 

f€HomA(M,N) an isomorphism of based €.g. free A-modules 

A *-invariant subgroup x<<(A) (m = 0,l) is a subgroup X of <,(A) 

such that X*€ X for all X €  X. 

E-symmetr ic 
The projective class of an n-dimensional 

€-quadratic 

(C.+) 
complex over A is the projective Euler class of C 

(C,*) 

which is such that 

[Cl* = (-)"(C] € gO(~) . 
The projective class is a homotopy invariant such that 

(C.@) 
I C ~  = o E XO(~) if and only if is homotopy equivalent to 

(C,*) 

a complex such that each Cr (rf Z )  is a F . q .  free A-module 

(of which all ibut a finite number are 0, by hypothesis). 



E-symmetric (C.@) 
complex over A is based if each 

E-quadratic (C, $1 

Cr 
(r e z?) is a based f .g. free A-module. 

I E-symmetric The torsion of a based n-dimensional ~oincar; 
€-quadratic 

(C,@€ Q"(C,C)) 
complex over A is the torsion of the, ~oincar; 

(C,$ f Q,(C.E) 

duality chain equivalence 

which is such that 

T* = ( - ) n ~  € i(, (A) 

In dealing with the torsion of based complexes we shall assume 

that 

T(E:A------+A) f X 5 R1(~) , 

which is automatically the case if E = ?l f A. 

As in S I . 9 ,  qiven a *-invariant subqroup X cEm(A) (m = 0,l) 

E-symmetric 
define the intermediate L-groups of A (n €Z) 

€-quadratic 

L~(A,E) 
in the same way as but using algebraic ~oincar; complexes 

Ln(A,E) 

with K-theory in X ,  meaning the projective class if m = 0, 

and the torsion if m = 1 (in which case all the complexes are 

to be based). In particular, for X = kO(A) we have 



The Tate Z2-cohomology groups h* (Z2;G) of a ZZ lZ21-module 

G are defined by 

Proposition 1.10.1 Given *-invariant subgroups X S Y  C K,(A) (m = 0 

there is defined an exact sequence of the intermediate 

with T€Z2acting on Y/X by the duality involution, with K the 

map associating to an algebraic ~oincar; complex the Tate 

Z2-cohomology class of its K-theory. 

Proof: See Proposition 1.9.1. 

I I 

A s  in SI.9 we introduce the following terminology for 

the intermediate L-groups 

L; (A, E )  = U; (A, E) - L; (A, C) = V; (A, C) - 
for XGKO(A) , for XSK1(l 

X 
L: (A, E) = U,, (A, E) L~(A, C) = v:(A, € 1  



For E = l f A the notation is contracted in the usual fasliion, 

for example 

L$(A,l) = [,;(A) . 
The original surgery obstruction groups of Wall 141 are 

the simple quadratic L-groups of a group ring Zlnl with a 

W-twisted involution 

~S(n,w) = vLn'(zln1) . 

The Lh-groups of Shaneson [l] are the free quadratic L-groups 

and the Rothenberg exact sequence 

is the special case of the exact sequence of Proposition 1.10.1 

for the intermediate quadratic L-groups associated to 

t simple since Y/X = Wh(n) is the Whitehead group of n. The 
finite 

L:(n,w) 
L-groups are the obstruction groups for surgery to 

L: (n.w) 

simple l - homotopy equivalence on topological normal maps (f,b):~- - + X  

simple 
from compact manifolds M to geometric Poincarg 

finite 

complexes X .  The projective quadratic L-groups originally 

introduced by Novikov 111 

have two distinct geometric interpretations: either as 



the obstruction groups for surgery to proper homotopy equivalence 

on normal maps from paracompact manifolds to infinite locally 

finite CW complexes with the ~oincarE duality of such manifolds, 

as in Maumary [l] and Taylor [l], or else as the obstruction 

groups for surgery to homotopy equivalence on topological 

normal maps from compact manifolds to finitely dominated 

geometric ~oincar6 complexes (i.e. PoincarE complexes in the 

sense of Wall 131) as in Pedersen and Ranicki [l]. See Hambleton [l] 

and Taylot and Williams [3] for applications of projective 

L-theory to the description of the surgery obstructions of 

topological normal maps of closed manifolds with finite 

fundamental groups. 

Proposition 1.10.2 The surgery obstruction of an n-dimensional 

topological normal map (f,b):M+X with X 

i 
simple S o,(f,b) = O f  L:(~~(X) ,w(X)) finite h 

is such that o,(f,b) = O €  Ln(nl(X) ,w(X)) 

finitely dominated o,(f.b) = O f  L:(~~(X) ,w(X)) 

i 
(f,b):M---+X 

if (and for n)5only if) (f,b):M-----+X is normal 

(f,b) X 1:M X sl--+ X X S 
1 

simple 

bordant to a [; homotopy equivalence. 



Given a topological normal map of n-dimensional pairs 

((ftb),(3f,ab)) : (M,3M) B ( X , 3 X )  

such that if: 3M - 3X is a homotopy equivalence there is 
d-fined a relJ surqery obstruction o, (f,b) € Ln(Z[nl(X) 1 )  such 

that the analogue of Proposition 1.10.2 holds for topological 

normal bordism re1 (3f,ab). By the realization theorems of 

Wall [4,§§5,6] every element of Ln(7Z[n]) (n 3 6 )  for a finitely 

presented qroup n is the re13 surgery obstruction o,(f,b) 

of such a topological normal map (f, b )  : (M, aM) -(X, aX) . 



$2.  Relative L-theory 

Bass [l] related the projective class group KO(A) of a 

ring A to the torsion group K1(A) = GL(A)/E(A), associating 

to a morphism of rinqs 

f : A-B 

a change of rings exact sequence 

f f 
K1 (A) - K1 (B) - Kl (f)-KO(A) -Ko(B) 

with the relative K-group Kl(f) defined to be the Grothendiecl 

group of triples (P,Q,h) consisting of €.g. projective 

A-modules P,Q and an isomorphism ~ € H O ~ ~ ( B B ~ P , B @ ~ Q ) .  

The sequence extends on the right to the lower K-groups 

Kn(A) (n ,(-l) of Bass I2,XIIl and on the left to the higher 

K-groups Kn(A) (n 2 2) of Quillen 111, (21 (with KZ(A) the 

KZ-group of Milnor 141) 

. . . K ~ A K ~ B -  K ~ F K ~ A . .  . (n C Z) 
Gersten [2] constructed a spectrum E(A) such that 

Kn(A) = nn(X(A)) (nf Z )  , 

so that the relative K-qroups K,(€) can be defined to be the 

relative homotopy groups of the induced map of spectra 

K,,(€) = nn(f:X(A)-X(B)) (nf Z )  . 

Wall [4] used the geometric interpretation of the surge1 

obstruction groups L,(n) for a finitely presented group n as 

bordism groups of normal maps to geometrically define the 

relative L-groups L,(€) of a morphism f:n-n' of such group: 

as relative bordism groups, fittinq into an exact sequence 



Wall [4,§71 also gave an algebraic definition of the 

odd-dimensional relative I.-groups L2i+l(f), as the Witt groups 

of pairs 

(non-singular ( - 1  i-quadratic form over 22 [n] (M,$) , 

lagranqian L of the induced form over 22 [a ' 1  Z In'] B Z  [nl (M,$) ) . 
Sharpe 121 gave an algebraic definition of the even-dimensional 

relative L-groups L2i(f) (which however only applies to the 

simple L-groups, since it is based on the unitary Steinberg 

group relations of Sharpe [l]). 

Following the definition in S2.1 of algebraic Poincar; 

E-symmetric 
triads we shall define in S2.2 the relative 

€-quadratic 

Ln(f.c) 
L-groups (n€ Z )  of a morphism of rings with involution 

L,(€.€) 

€:A-B, to fit into an exact sequence 

Ln(f.c) 
For n a l  is defined to be the relative cobordism group 

L,(€,€) 

of pairs 

E-symmetric 
( (n-l) -dimensional Poincar; complex over A 

c-quadratic c:: 
E-symmetric 

n-d imens ional Poincar; pair over B 
€-quadratic 

(g:BBAC--+D, (69!%)) 
boundinq 

(g:BIAC+D, ( & + ! % l )  

in evident analogy with the definition of relative geometric 



L"(€,€) 
cobordism groups. For n 6 0  is defined in terms of 

Ln(f,E) 

forms and formations. (In Ranicki [l21 there will be defined 

spectra such that 

(n,(J&O(A,E)) = L*(A,E) 

using algebraic ~oincarg n-ads, allowing the relative L-groups 

to be defined as relative homotopy groups 

0 0 L*(€,€) = n,(f:J& (A,€)-U - (B,€)) 

L,(€,€) = ~*(€:&(A,E)-&(B,E)) . 
See Ranicki (71  for a brief discussion of the algebraic 

L-spectra . The €-quadratic U-spectrum %(A,€) may be defined 

using forms and formations, as was in fact done in Ranicki [ S ] ) .  

In 52.3 the construction is extended to some of the other 

types of relative L-groups arising in topology, such as the 

(n€ Z?) which fit into a long exact 

sequence 

In 52.4 we shall define the F-groups (n> 0) 

E-symmetr ic 
of cobordism classes of n-dimensional complexes 

€-quadratic 

over A which become ~oincar; over B, for some morphism of rings 

with involution €:A--+B. The quadratic t'-qroups r,(f) z !',(f,l) 



will be identified in 42.5 with the homology surgery obstcuctic 

groups originally defined by Cappell and Shaneson 111. (The re1 

homology surgery theory will be discussed in S 7 . 7  below). 

rn(f,~) 
We shall also define lower r-groups (n 6 -l), using 

rn(f,a 

forms and formations. Given a commutative square of rings with 

involution 

to fit into a long exact sequence 

r* (F, € 1  
The relative r-qroups in the special case 1 : A-A' = 

(F. € 1  

c-symmetr ic 
will be expressed as the cobordism groups of the 

E-quadrat ic 

complexes over A which become Poincar; over B and contractible 

over B'. This expression will then be used in S 3  for the 

commutative square 

associat~d to  a local ization map A - S-IA invrrting a 
multiplicative suhsct S C A ,  allowinq the relative L-groups 



n 

ated 

L* (A-S-~A, E )  

(of the appropriate intermediate type) to b~ 
L, ( A - S - ~ A , ~ )  

L* (A,S,c) E-symmetr ic 
identified with the L-groups 

L,(A,S.c) c-quadratic 

~oincar; complexes over A which become contractible over S-'A 



2.1 Algebraic Poincarg triads 

E-symmetric 
An (nt2) -dimensional triad over A (n>o) 

€-quadratic 

is a triad of finite-dimensional A-module chain complexes 

such that C is n-dimensional, D and D '  are (n+l)-dimensional, 

C' is (nt2)-dimensional, together with an element 

€-symmetric 
of the triad Q-group defined in S1.3. Such a triad 

€-quadratic 

i) the (n+l) -dimensional pairs over A 

are ~oincare 

ii) the A-module cha 

defined by 



is a chain equivalence 

Proposition 2.1.1 There is a natural one-one correspondence 

between quadruples 

E-symmetr ic 
(n-dimensional ~oincarg complex over A 

€-quadratic 

E-symmetric 
(n+l)-dimensional poincarc pairs over A 

€-quadratic 

(E:C--*D, (6$,$)) (ft:C-D', (6$',$)) (C.$) 
bounding 

(E:C----+D, (IS$,$)) (fl:C-D', (6$',$)) (C,@) 

E-symmetr ic 
(n+2) -dimensional ~oincar; pair over A 

€-quadratic 



c-symmetric 
and (nt2) -dimensional ~ o i n c a r 6  triads over A 

€-quadratic 

(r. 0) 
, under which 

( r , w  

c-symmetric 
A cobordism of (n+l)-dimensional ~ o i n c a r g  

€-quadratic 

(€:C----+D, (6@,@) ) (f':C0-D', ( 6 $ ' , $ ' ) )  
pairs over A is an 

(f:C-D, (6$,$)) (f':C1--+D', ( 6 4 1 ~ ~ 4 ~ ~ ) )  

E-symmetric (r,@) 
(nt2)-dimensional ~ o i n c a r 6  triad over A 

c-quadratic (T,Y) 

such that r is defined by 

CIC' A DID' 

and 



As it stands this cobordism relation is trivial (i.e. with a 

c-symmetr ic 
single equivalence class), since every ~oincari 

c-quadra tic 

(f:C-D, (60,+)) c-symmetr ic 
pair is cobordant to 0 by the 

(f:C---+D, (64~~6)) E-quadratic 

However, in the applications we shall be considering the coborc 

of algebraic ~oincar6 pairs in which the boundary is restrictec 

in some way. The above null-cobordism will not in general be 

restricted in that sense, so that the restricted cobordism neec 

not be trivial. In verifyinq that such restricted cobordisms 

are in fact equivalence relations we shall make use of the 

following algebraic glueing operation, which is an evident 

generalization of the union of algebraic poincarE cobordisms 

of 51.5. (The glueing is required for the verification 

of transitivity: reflexitivity and symmetry are clear). 



Let 

(€:C----+D, (6$,0)), (€':C1- D', (6$',$')), (€":Cw-D", (&$",$")) 

€-symmetric 
(ntl) -dimensional ~oincarb pairs over A. 

E-quadra tic 

E-symmetric 
The union of adjoining ~oincarb cobordisms of pairs 

€-quadratic 

with 

is the cobordism 

with 
f @ f "  

C(BC " ----------A D8D " 

defined by 







2.2 Change of rings 

Let A,B be rings with involution. 

A morphism 

f : &------+B 

is a function such that 

f(a+aS) = f(a) + f(a') , f(aal) : f(a)f(al), 

f(a) = f(a) , f(1) = l f B (a,a' € A) , 

Regard B as a (B,A)-bimodule by 

B x  Bx A -B ; (b,x,a) -b.x.f(a) . 
An A-module M induces a B-module BaAM, with BEAB - B. If N is 
another A-module there is defined a morphism of abelian groups 

HomA(M,N)-HomB(Be M,BaAN) ; g+---+(laq:bax~bmg(s)~ A 

If M is a f.9. projective A-module then BmAM is a f.g. projecti 

B-module, and there is defined a natural B-module isomorphism 

BaA(M*) -(BaAM) ; 

bag- (cmy -c.f (g(y)) .L)  , 
allowing us to write 

BmAM* = BeA (M*) = (BmAM) . 
If C is zn (n-dimensional) A-module chain complex then BaAC is 

an (n-dimensional) B-module chain complex, and the Z-module 

chain map 

C ---+ BaAC ; X )-----P lmx 

C*-BmAC* ; qr---+(haxc-* b.€ ( q ( x ) ) )  

induces a change of ringsZ-module morphisms in 

homology 

cohomology 



f : H, (C! - H, (BmAC) 
f : H* (C)-H* (BaAC) . 

Let cA€A, E ~ € B  be central units such that 

- 1 
CA = Eil € A , EB = EB f B , f(EA) = E B €  B . 

Given a finite-dimensional A-module chain complex C let T € Z 2  

act on HomA(C*,C) by the €A-duality involution T and on 

HomB(nmAC*,BmAC) by the €g-duality involution T . 
The Z [ZZ2]-module chain map 

f : H o m A ( C t , C ) - H o m B ( B m A C * , B m A C )  ; 

@ -(bmx-(cmy-c.f(m) . E ) )  

(b,cf B, x,y f C*, BaAC = (BmAC*)*) 

induces a natural transformation of the long exact sequence:. of 

Q-groups given by Proposition 1.1.2 

denoting both EA and EB by E. It follows that the various 

algebraic Wu classes of S1.4 are invariant under the change 

of rings. For example, the E-symmetric Wu classes v*($) of 

an element $ f Q" (c,E) are such that there is defined a 

commutative diagram 



c-symmetr ic 
An n-dimensional (~oincar6) complex over A 

E-quadratic 

(C,$) c-symmetric 
induces an n-dimensional (Poincar6) 

(C, $1 E-quadratic 

complex over B 

and similarly for pairs. 

Proposition 2.2.1 A morphism of rings with involution 

f : A-B 

E-symmetric 
induces morphisms in the L-groups 

€-quadratic 

c-symmetric 
Define the (n+l)-dimensional relative L-group 

€-quadratic l - 
( v 2  0 )  of a morphism of rings with involution 

f:A-----B to be t h e  abelian group of equivalence classes of 

pairs 



c-symmetric (C,@ € Q ~ ( c ,  
(n-dimensional poincar; complex over A 

E-quadratic (C,+€ Q n W ,  

c-symmetric 
(n+l) -dimensional ~oincar6 pair over B 

under the relative cobordism equivalence relation 

( ((C,@), (g:BeAC-D, (6$,@)) - ((C',$'). (g':BmAC1-D'. (6@',@') 

if there exists a pair 

E-symmetric 
((ntl) -dimensional ~oincar; pair over A 

E-quadratic 

E-symmetr ic 
(nt2) -dimensional poincar; triad over B 

E-quadratic 

with 



The verification that relative cobordism is an equivalence 

relation proceeds as in the absolute case in S I . 3 ,  with 

transitivity requiring the union operation defined in $2.1 

above. Addition in the relative L-groups is by the direct sum 

and inverses are given by changing signs, as in the absolute 

case. 

P r o ~ s i t i o n  2.2.2 The relative -- --- L-groups 

fit into a change of rings exact sequence 

I 
L"+'(~,E)-----+L~(A,E) : (n>O) 

((C,+), ( ~ : B B ~ c  ----+D, (6$,le$)) -- (c,@) 
L,+, (f, E)-Ln (A, E) ; 

(A, E) 
Proof: Exactness is obvious at In2O) and 

Ln (A. C) 

so that there exists a null-cobord 

12 ker (L"'~ If, E) -L"~A. E) 

€ ker (Lntl (f, c) ----+LnIA, E) 



I E-symmetr ic . Write the union (n+l)-dimensional 
€-quadratic 

~oincar; complex over B as 

€-symmetric 
and define an (n+2)-dimensional ~oincar; triad 

€-quadratic 

over B 

where 



(D' ,6$') € Lnt1(~,E) 
is the image of under the natural map. 

(D',&$') e Lntl(B,') 

[ l  

Define the (nt1)-dimensional relative even E-symmetric 

L-groups L(vd ""(f,~) (n > 0) of a morphism of rings with 

involution f:A---+B to be the relative cobordism groups of 

pairs 

(n-dimensional even c-symmetric Poincar; complex over A (C,.$), 

(nt1)-dimensional even E-symmetric ~oincar6 pair over B 

(g:BmAC-Dr (6@,1@4) 1 )  

where the (nt2)-dimensional E-symmetric Poincar; triads 

appearing in the relative cobordisms are even in the sense 

that all the E-symmetric ~oincari complexes and pairs 

associated to it by Proposition 2.1.1 are even. 

Proposition 2.2.3 i) The relative even E-symmetric L-groups 

L(V~>*(~,E) fit into a change of rings exact sequence 

ii) The skew-suspension maps 

S : ~ ~ ( f , E ) - - r ~ ( v ~ ) " + ~ ( f , - E )  ; 



are isomorphisms. 

Proof: i) By analogy with Proposition 2 . 2 . 2 .  

1 . 4 . 2  
ii) This follows from Proposition by applying the 

1.2.2 i) 

5-lemma to the skew-suspension morphism of the change of 

rings exact sequences. 

----- r €-symmetric Define the lower relative L-qroups 
€-quadratic 

(n,<O) of a morphism of rings with involution 
)Ln(€,€) 

n = 0,-1 

0 
coker ( (ker (l+T-€: LO(B.-E) +L<vO> ( B , - € ) )  

-> Lolf ,-E)) n =  - 2  

L ~ ( £ ,  c )  (as defined below) n (-3 

i 
L,(~,c) = ( - 1  € 1  (n< 0, n + 2 i  21) . 

L 

I E-symmetr ic L"(~,E) 
Proposition 2 . 2 . 4  The relative L-groups 

€-quadratic L,(f,c) 

(nf Z)  fit into a long exact sequence 



.-L"+~(F,E)-L"(A,E)LL"(B,E)-L"(~,E)- ... 
. - T . ~ + ~ ( ~ , E ) - L ~ ( A , E ) ~ L ~ ( B , ~ ) - - - - + L ~ ( ~ , ~ I  -+ . . . 

I I 

In the range -m,tngl the change of rings exact sequenc 

of Proposition 2 . 2 . 4  can be expressed entirely in terms of tn 

Witt groups of forms and formations defined in the absolute 

case in S1.6 

f . . . + E ( ~ ) L ~ E ( ~ ) - ~ E ( f ) - ~ E ( ~ )  -L'(B)-L'(F) 

The relative Witt groups of forms and formations are defined 

as follows. 

The full force of the equivalence relation of 

Proposition 1.3.3 i) (between the homotopy equivalence classe: 

E-symmetr ic 
~oincar; pairs and those of connected 

E-quadratic 

E-symmetr ic i E-symrnetl complexes) allows the higher relative 
€-quadratic c-quadral 

L-groups (n>O) to be expressed as the cobordism 

groups of triples 



E-symmetr ic 
(n-dimensional ~oincar; complex over A 

E-quadratic 

E-symmetr ic 
connected (n+l)-dimensional complex over B 

E-quadratic 

A cobordism between two such triples I 

I E-symmetr ic (connected (n+l) -dimensional complex over A 
E-quadratic 

E-symmetr ic (F,bv) 
connected (nt2)-dimensional complex over B 

€-quadratic I (F,~x) 
homotopy equivalence 

In the low-dimensional cases this formulation translates 

directly into the language of forms and formations: 



Proposition 2.2.5 The 0- (resp. 1-1 dimensional relative 

E-symmetr ic 

even c-symmetric L-group 

€-quadratic 

is naturally isomorphic to the relative Witt group 

'(f) ) of cobordism classes of triples 

even ( - E )  -symmetric 

formation 

split (-E)-quadratic 

I E-symmetr ic (resp. even E-symmetric form) over A X ,  

E-quadratic 

E-symmetr ic 

even E-symmetric form (resp. formation) over B y, 

( €-quadratic 

stable isomorphism of 

(resp. isomorphism of 

' even (-c)-symmetric 

(-E) -quadratic formations 

split ( - E )  -quadratic 

€-symmetric 

even E-symmetric forms) over B 

c-quadratic 

where two such tlriples (x,y,g),(x1,y',g') are cobordant if 

there exists a quadruple 



i 
E-symmetr ic 

( even E-symmetric form (resp. formation) over A z, 

€-quadratic 

stable isomorphism of formations (resp. isomorphism of forms) 

over A 

h : tz-X@-X' , 

I E-symmetr ic even c-symmetric formation (resp. 

split €-quadratic 

1 
connected 2-dimensional €-symmetric 

(-E)-symmetr ic form ) over B W, 

even (-E)-symmetric form 

isomorphism of forms (resp. stable isomorphism of formations) 

over B 

1 
(In the cobordism relation for L ( f , ~ )  = ~'(f) we are using 

Proposition 1.6.4 to identify the boundary of the connected 

2-dimensional c-symmetric complex z, a l-dimensional E-symmetric 

Poincar; complex :jz, with the corresponding non-singular 

E-symmetric formation). 



In 553,4 we shall need the following extension to the 

relative L-groups of the products of 51.9. 

Proposition 2.2.6 Let R be a ring with involution, anfi let 

f : A-*B 

be a morphism of rings with involution which are R-modules, 

with f also an R-module morphism (f(ra) = rf(a)€B for all 

r€R,a€A). There are then defined products 

Proof: Immediate from Proposition 1.9.2 and the definition of 

the relative L-groups. 

l1 

In particular, the symmetric Witt group L'(R) of a 

commutative ring R (with any involution) is a ring with 

0 c-symmetr ic 
1 = (R,l) € L (R), so that the relative L-groups 

c-quadrat ic 

L*(€,€) 
of an R-module morphism of rings with involution 

L*(€,€) 

f :A - B are all LO(R) -modules, and the change of rings 
exact sequence of Proposition 2.2.4 

... ----+L~(A,E)& L ~ ( B , ~ ) - L ~ ( ~ , E ) - L ~ - ~ ( A , E ) - . .  

f . . . d L n ( A ,  E) .Ln@, E) ,Ln(€, E), Ln-l(A, E)+ . . 
(n t: z )  

is an exact sequence of L'(R)-modules. 



2.3 Change of categories 

The unified L-groups of 51.8 were constructed using the 

L-categories and the 3-functors. We shall now define relative 

L-groups for a a-preserving functor of the &-categories, which 

include the change of rings relative L-groups of S 2 . 2  as a 

special case. 

Let A,B be rings with involution, and let EA€A, E B € B  

be central units such that 
- c = c ~ l e ~ ,  c g l e e  . 
A 

As in 52.2 both EA and EB will be denoted by E. 

E-symmetr ic 

chain functor 

E-hyperquadratic 

F : C* (A, E) L*(B, C) 

F : L,(A,E) - L*(B,E) 
F : &(A,€) -------+ L*(B,E) 

{F:L"(A,E) -L"(B,E) Ine Z) 

is a collection of additive Eunctors {F:Ln(A,~)-G(B,c) In€ 23) 

(F:L,,(A,E)-L~(B,E) In€ Z) 

such that aF = F3 , -F = F- (up to natural equivalence). There 

are induced abelian group morphisms in the cobordism groups 

F : Ln (A, E) ------+ L" (B, E) 

(L"(F,c) 

Define the relative L-groups of F L,(F,s) (nFiZ) to be the abelian 

 in(^, c )  



groups of cobordism classes of triples (x,y,f) consisting of a 

closed object X of an object y of 

j ~ " - l  (A.€) 

homotopy equivalence f:F(x)+?y. Two such pairs (x,y,f), 

(x1,y',f') are cobordant if there exists a quadruple (z,g,w,h) 

consisting of an object z of L,(A.c), a homotopy equivalence 

in (A, E )  

rn+'(B, E) 

g:az-----+X@-X', an object W of Lntl (B, E)  , and a homotopy 

L"+'(B, E )  

Addition and inverses are given by 

(x,y,f) + (x1,y',f') = (x@x'.y@y',f@f') , -(x,y,f) = (-X,-Y.-f) 

I L* (F, E) 

Proposition 2.3.1 The relative L-groups L,(€,€) 

2f (€,E) r E-symmetr ic F:i*(A, E)-L*(B, E) 

€-quadratic F:L*(A, E) -------+Lt (B, E) fit 

c-hyperquadratic F:L* (A, E)---+.L*(B, €1 

into the change of categories exact sequence 



( n € Z )  . 
Proof: By analogy with Proposition 2.2.4 (which is a special c' 

I I 

The following examples of relative L-groups arise in 

topology: 

i) A morphism of rings with involution 

f : A--B 

E-symmetr ic 
induces an chain functor 

€-quadratic 

f : L*(&.,€) ------+L*(B,€) ; X +----+BBAX 

f : ;,(A,€)-J,(B,E) ; X- BBAx . 
L*(f,€) 

The relative L-groups for this change of categories 
L*(f,E) 

are just the relative L-groups for the change of rings defined 

in 52.2 above. The methods of 11. associate to an 

geometric ~oincar; pair (X, 3x1 
n-dimensional 

normal map of pairs (g,c) : (M, aM) -(X, 2x1 

---L symmetric 
the relative signature 

uadratic 

(The terminology is contracted in the usual fashion for E = 1) 



The relative quadratic signature is the obstruction for frame' 

surgery to a homotopy equivalence of pairs. The relative quad 

L-groups L,(€) were first defined by Wall 1 4 1  using geometric 

methods; the dimensional relative quadratic L-groups 
even- Iodd- 

Wall I 4 , S 7 ]  
L2*+1(f) were first obtained algebraically by 
L2* ,f) Sharpe 121 

ii) Given an integer m >,l define an f unc to 

m : L*(A,E)-if(A,c) ; X-mx = xOxO...@x (m tim 

m : f,(A,~)------rjt(A,~) ; X-mx = xOxQ...@x (m tim 

E-symmetr ic 
The relative L-groups are the mod m L-groups of 

c-quadrat ic 

and fit into the exact sequence 

A geometric Z -poincar6 complex (resp. Z,,,-manifold) (X, 3 X )  is 

geometric poincar; pair (resp. manifold with boundary) such t 

the boundary is the disjoint union of m copies of the Bockste 

geometric Poincar; complex (resp. manifold) 6X 

ax = ax . 
symmetric 

The mod m signature of an n-dimensional 
uadratic 



qeometric 7Lm-~oincar< complex (X,aX) 

normal map (f,b):(M,?M)-(X,3X) from aZm-manifold (M,aM) 

to a geometric ~ ~ a p o i n c a r 6  complex (X, >X) ((>E, :,b) = % (6f,6b)) 
is an element 

defined using the methods of 11. exactly as in the case m = 1 

The mod m quadratic signature is the obstruction to 

surgery to a homotopy equivalence ofZm-objects. Surgery on 

7L -manifolds plays an important role in the characteristic 
m 

variety theorem of Sullivan IZ], and in the subsequent work of 

Morgan and Sullivan [l], Wall (131, Jones 121  and Taylor and 

Williams [l] on characteristic classes for the surgery 

obstructions of normal maps of closed manifolds. 

iii) The E-symmetrization is an E-hyperquadratic chain 

f unctor 

l+Tc : i,(A,E) ---------+L*(A,E) . 
The relative L-groups of l+Tc are the E-hyperquadratic L-qroups 

of L4(A,c), which fit into the exact sequence 

and are &torsion groups (by Proposition 1.8.2). 
A 

In S 7 . 4  the hyperquadratic L-groups L4(A) (E = 1) will be used 

to define a "hyperquadratic signature" invariant 

G *  (X) E cn (il.[rrl (X) 1 )  for an n-dimensional normal space X in the 

sense of ~ u i n n  (31. In particular, given an (n+l)-dimensional 

degree 1 map of qeometric poincar; pairs 



g : (N.M) -(Y,X) 

such that the restriction f = g1 : M-+ X underlies a normal 

map 

(E,b) : M-X 

there is defined a hyperquadratic signature 

o*(g,f,b) E in+' (il,[nl(y) I )  

such that 

~i*(g,~,b) = o*(~,b) L ~ ( z [ ~ ~ ( Y ) I )  , 
as follows. (This is the hyperquadratic signature 
,. 
~ * ( N u ~ - Y )  of the (n+l)-dimensional normal space obtained from 

(N,M) and (Y ,X) by glueing along f :M ----+X) . 
In the first instance, recall from 5 1 1 . 9  (and see also 57.3 

below) that a stable spherical Eibration p : X d B G  cwer a 

finitely dominated CW complex X has associated to it a Tate 

Z2- hypercohomology class 

e(p)~'6O(c(k)-*) , 

with X the universal cover of X (say). The hyperquadratic Wu 
classes of 0(p) are the equivariant Wu classes of p 

,. 
v,(p) = C,te(p)) : H,(~)-H*(~~;Z[~~(X)I) . 

The equivariant Wu classes are stable fibre hon~otopy invariants 

which are generalizations of the familiar mod 2 Wu classes 

v,(p) € H*(X:Z2). Let (p,q,r) be a triple consisting of two 

stable spherical fibrations p,q:X-BG over X and a stable 

fibre homotopy equivalence r : p l y - - k q l y  of their restrictions 

to a subcomplexlY of X, which is classified by a homotopy 

r :  p J y Y q J y :  Y- ~ B G .  



The relative version of the above construction associates to 

(p,q,r) a Tate Z2-hypercohomology class 

e(p,q,r) e ijo(c(x,Y")-*) 

with image 0 (p) - 8 (q) € GO(c(%)-*) under the map induced by the 

projection c(?)---+c(X,Y). If r extends to a stable fibre 

homotopy equivalence p A q  then 0(p,q,r) = 0. The relative 

equivariant Wu classes of (p,q,r) v, (p,q,r) are the 

hyperquadratic Wu classes of e(p,q,r) 

v,(p.q,r) = G ,  (e(p,q,r)) : H,(R,P)-~*(z~;zI 

and are such that 

A stable fibre homotopy self equivalence 

C : V--?V 

of a stable spherical fibration V :  X-DG over X 

is classified by a map c : X ->G = RBG . 
The equivariant suspended Wu classes of c uv,(c) are defined by 

ov, (C) = v*(p.q,r) z ;*(evrC) f H*(X I,R {o,~]) = H*-~(X") 

-Ht(Z2;Zlnl(X) l )  , 
with R V t c  € a01clx X I , X  X {o.l),-*) defined bv 

= 8(p=adjoint of c :  XxI-BG, q :  XxI-+*-BG, 
m 

r = id. : {o,~) = E --*qlX 10,1) = E=) 

The equivariant suspended Wu classes were defined in SII.9 in 

connection with a formula for the change in the quadratic kernel 

a ,  (f, b) of a normal map (f, b) :M ---+X caused by a change in 

the bundle map b:vM-vX, which we shall generalize in 

Proposition 2.3.2 below to the quadratic signature 

Q,(f,b) f Ln(ZInl(X)l). 



Given a chain map €:C-D of finite-dimensional A-modu 

chain complexes define the &qroups 6"'' (f, ~ )  (n f Z) to be the 

relative groups appearing in the exact sequence 

For example, if f = 1 : C-D = C then G*(€,€) = Q*(C,E). 

An element (@,$) E ij"+l(f, E) is an equivalence class of 

collections of chains 

n+l-r+s e H O ~ ~ ( D  ,D,) @ H O ~ ~  ( c ~ - ~ - ~  ,cr) l r e z, S 01 

The E-hyperquadratic L-groups in+' (A, E) (n b 0) can be viewed as 
-n+l the cobordism groups of objects (f:C--+D,(@,Jl)fQ (€,E)) 

such that (f :CAD, (O, (l+TE)C) f 6n+1(f,~)) is an 

(n+l)-dimensional E-symmetric ~oincars pair over A. 

Let now g: (N,M)---+(Y,X) be a degree 1 map of 

(n+l)-dimensional geometric ~oincar; pairs such that q l =  f:M- 

is part of an n-dimensional normal map (f,b) : M ----+X. - - -  
Let Y be the universal cover of Y, and let M,N,X be the 

induced covers of M,N,X. There is then defined a commutative 

diagram ofZlnl(Y)l-module chain complexes and chain maps 



Now b:vM-vx defines a stable fibre homotopy equivalence 

of the restrictions to M C N  of VN:N----+BG and gfvy:N----+BG 

so that by the above construction there is defined an element 

~ ( V ~ , ~ * V , , ~ ) € ~ ~ ( C ( E , B ) - * )  =~n+l(~(~,ii)"+l-* = Q  -"+l CCCF~)) 

with image 

e (V,) - (g, €1 18e (v,) E GO(c(i)-*) = 6"+l(c(~)"+l-* 1 

= ?'tl(~(G,~)) . 
Let F: C%+----+ lm%+ be the geometric Umkehr map associated 

to (f.b), so that $J~(IXI) E Qn(c("M) ( 'bp = quadratic construction) 

is such that 

Now 6"+l(i) fits into a commutative braid of exact sequences 



have the same image in Qn(C(g!)), and in fact there is defined 

*a with images eaJIF(IXl), h 9(vN,g*vy,b). The hyperquadratic 

siqnature of (g: (N,M)+(Y,X), (f ,b) :M---+X) is defined 

and has image o,(f,b) € Ln(Zl.[nl(Y) I ) .  If b:vM--+vX extends to 

c:vN---+vy then 9(vN,g*vy,b) = 0 and Gc(~,f,b) = 0 .  

(I should like to thank Jean Lannes for his suggestion that I 

apply the algebraic theory of surgery to normal maps which 

bound as d e g r ~ e  1 maps). 



Let (f,b) :M-----*X, (f,bl) :M-X be n-dimensional normal 

maps with the same underlying degree 1 map f:M-----+X, so that 

b' = bc : V M v v X  for some stable fibre self homotopy 

equivalence c : vM-vM. In Proposition 11.9.10 the 

difference of the Z2-hyperhomology classes $,+ '  appearing 

Proposition 2.3.2 The difference of quadratic signatures is 

given by 

o,(F,b) - o,(f,b') = Ho^*(g,f uf,b~J-b') € Ln(Zlnl(X)l) , 

with 

g = f X 1 : (M X 1.M X {0,1)) -----+(X X 1.X X (0.11) 

f u f  = g1 : M X (0.11 X X (0,l) . 
The hyperquadratic siqnature ;*(g,f u f ,bu-b') € in+l(~[nl(~) 1 )  

is represented by 

o^*(g,fvf',bu-b') 
l l ! I 

= (i = (l l) : C(f')@C(f')-C(q I = C ( € ' ) ,  
% 

~ ( g , f v f , b u - b l )  = ($,C ( 0  I ,o) ~"o+'(i) VM'C 



Let f:A-B be a morphism of rings with involution, 

as before 

E-symmetric (C,@) 
An n-dimensional complex over A { is 

E-quadratic (C,$) 

RmA(C,@) c-symmetric 
B-Poincari if is an n-dimensional 

BmA(c,JI) c-quadratic 

~oincar6 complex over B. Similarly for pairs and triads. 

i 
c-symmetr ic 

The n-dimensional even E-symmetric r-group of f 

E-quadra tic 

i I'(V~)~(~,E) (n 30) is the B-~oincar; cobordism qroup of 

n-dimensional even c-symmetric B-Poincar6 complexes over A. i 
In particular 

i 
r*(l:A-A,€) = Lt(A,c) 

T<vo)*(l:A---+A,E) = L<vO>*(A,€) 

r, (1:A --+A, C) = L,(A, C) 

The quadratic r-groups r,(f) r r,(f,l) are projective 

analogues of the original r-groups of Cappell and Shaneson 111 

The morphism f:A---iR is locally epic if for every fini 

subset B C B there exists a unit u f R  such that 
0 - 

U B ~  i m ( f : ~ -  + B ) C B  . 
(This definition is due to C a p p e l l  and Shaneson 111). 



For example, if €:A-B is onto it is locally epic; also, 

a localization map €:A----+ S-'A is locally epic - see S 3  

below for the application of the l'-groups to the L-theory of 

localization. In dealing with l'-groups we shall always 

assume that f:A-B is locally epic. (It is in fact 

possible to develop I'-theory for more general morphisms - 
see Vogel 131 and the discussion in S3.2 below). 

An A-module morphism g€HomA(M,N) is a B-isomorphism 

if l@g€HomB(BBAM,BBAN) is a B-module isomorphism. 

Proposition 2.4.1 Let f : A - - - + B  be a locally epic morphism, 

and let M,N be €.g. free A-modules. A morphism g€HomA(M,N) 

is such that I B ~ € H O ~ ~ ( B @ ~ M , B @ ~ N )  is onto if and only if 

there exists an A-module morphism h€HomA(N,M) such that 

gh € Hom (N,N) is a B-isomorphism. A 

Proof: Assume that l@g€Hom (BB M,BB N) is onto, so that B A  A 

there exists ~ € H o ~ ~ ( B @ ~ N , B @ ~ M )  right inverse to lB9, with 

( m 9  

and 

AS f 

entr 

b = lfHomB(BBAN,BBAN). Choose bases for M and N, 

et (b..) (b..€ B) be the corresponding matrix of b. 
13 1 1  

is locally epic there exist a matrix (a..) with 
1 l 

es a . . f A  and a unit u € B  such that 
13 

f(a..) = b..u € B . 
13 1 l 

Let h € HomA(N,M) be the A-module morphism with matrix (a. . )  . 
1 l 

Then l@qh= U € H O ~ ~ ( B @ ~ N , B % ~ N )  is a B-module isomorphism, 

so that qh€ HomA(N,N) is a B-isomorphism. 

The converse is obvious 



An A-module chain map q:C-D is a B-equivalence if 

1@g : BIAC - BIAD 
is a B-module chain equivalence. 

If (C,#) is an n-dimensional E-symmetric B-~oincar6 

complex over A and g:C-D is a B-equivalence with D an 

n-dimensional A-module chain complex then (~,g%($)) is also 

an n-dimensional E-symmetric B-Poincar; complex. Furthermore, 

E-symmetric B-Poincar; pair over A, so that 

(C.@) = (~,g%($) e rn(f.E) . 
Similarly for the €-quadratic and even c-symmetric cases. 

The semi-periodicities of the L-groups given by 

Propositions 1.2.3 i), 1.4.2 extend to the r-groups: 

Proposition 2.4.2 If f:A+B is locally epic the 

skew-suspension maps 

are isomorphisms. 

E-symmetr ic 
m: Given an n-dimensional B-Poincar; complex 

€-quadratic 

even ( - E )  -symmetric 
B-Poincar; pair over A 

(-E) -quadratic 

nt3 (9:s~----+D, ( 6 b , ~ # )  G Q(v~) (9,-E)) 
we shall define an 

(q:SC-D, (66,Sb) F Qn+)(4,-E)) 



E -symmetr ic 
(ntl) -dimensional B-PO 

€-quadratic 
incar; pair over A 

as follows. 

Without loss o f  generality it may be assumed that 

and that in the symmetric case 

even ( - C )  -symmetric 
Define an (n+3)-dimensional B-poincar; 

( - E )  -quadratic 



i 
0 

(&: ( 4 + 3 J  : 

D M ~  = D ~ D ~ + ~ +  D;+~ = D,,+~@D"+ 

6 @ " 0  = 

---+ Djl = Dl@Dnt3 

Now l@dD,,fHomB(B@AD~,BBAD;;) is onto. Stabilizing if necessa 

it may be assumed that Djl and D; are E.g. free A-modules, 

so that by Proposition 2.4.1 there exists an A-module morphi 

e €  HomA(D;;,Djl) such that dD,,e € HomA(D;,D;) is a B-isomorphis 

Define an (n+l)-dimensional A-module chain complex D' and a 

B-equivalence 

h : D" ------+ SD' 

by 

dD, = dD" : D; = D;+l-D;-l = D; (r # 0.1.2.3) 

h = 1 : D;FD;-~ = D; ir # 0,1,2) 

Then 



E-symmetric 
define an (nt1)-dimensional ~-poincarG pair over A 

€-quadratic 

The above construction shows that the skew-suspension map 

(C,@) = 0 
also onto set in the construction, which now associates 

(C,*) = 0 

even ( - E )  -symmetric 
to an Ln+3) -dimensional B-~oincar6 complex 

(-E) -quadratic 

(D,6@) 
over A (n > -l) a ~-~oincar; cobordant skew-suspension 

(D, B*) 

E-symmetric rn(f,E) 
Define the { r-groups (n,< -1) by 

€-quadratic rn(f,€) 

r(vo>n+2(~,-E) 
rn(f,E) = 

r,(f .E) (as defined below) if rn n ,( = -3 -l'-. 

rn(f,c) = r<vo>n+2(f,-e) 
thus extending the semi-periodicity (n> 0) 

rn(f,~) = rn+2(f,-~) 

of Proposition 2.4.2. 



We shall justify the above definitions of the unified 

P ( € , € )  
r-groups (n€ Z )  by extending the definition of the 

l',,(f.E) 

relative L-groups in 52.2 to relative l'-groups. First, however, 

we shall express the l'-groups for n < l  in terms of forms and 

formations, extending the expressions of the L-qroups for n <  1 

as Witt groups in 51.6. 

€-symmetric (M,$ € Q ' ( M )  ) 
form over A is B-non-singular 

€-quadratic (M. J, QC (M) ) 

€-symmetric 
is a non-singular form over B. 

€-quadratic 

€-symmetric 
A B-lagrangian of a B-non-singular form 

€-quadratic 

(M,@) E-symmetr ic 
over A is a morphism of forms over A 

(M.6) c-quadratic 

which becomes the inclusion of a lagrangian over B, i.e. such 

that the sequence of A-modules 

induces an exact sequence of B-modules. A B-non-singular 
l 

€-symmetric 
form over A is B-hyperbolk if it admits a B-lagrangian. 

E-quadrat ic 



c-symmetr ic 

€-quadratic 

epic morphism £:A----TB is the abelian group of equivalence 

classes of B-non-singular even c-symmetric forms over A i 
subject to the relation 

(M,@) - (M',@') if there exists an isomorphism of forms 

for some B-hyperbolic forms (H,B),(H1,B' 

Proposition 2.4.3 i) There is a natural one-one correspondence 

between the homotopy equivalence classes of 0-dimensional 

(even) E-symmetric 
B-~oincar; complexes over A and the 

E-quadratic 

(even) c-symmetr ic 
isomorphism classes of B-non-singular 

€-quadratic 

forms over A. 

ii) There is a natural identification of the 0-dimensional 

F-groups of €:A-B with the Witt groups of B-non-singular 

forms over A 

( rO,f,E, = FC(f) 

Proof: i) Immediate from Proposition 1.6.1. 



(even) c-symmetr ic 
ii) Given a l-dimensional B-~oincar; pair 

c-quadratic 

1 )  
such that 

there 

l 
(even) E-symmetric 

E-quadratic 

rc(f) ( r(~~)~(f)) 
form over A ,  representing 0 in . Conversely, 

rE (f) 
stably B-hyperbolic forms correspond to the boundaries of 

l-dimensional B-~oincar; pairs under the correspondence of i). 

I I 

(even) E-symmetric 
A B-non-singular formation over A 

E-quadratic 

(M,@;F,G) (even) c-symmetr ic 
is a non-singular form over A 

(M,JI;F,G) c-quadratic 

(M,@) 
together with a lagrangian F and a B-lagrangian 

(M,$) 



(even) €-symmetric 
formation over B. There are evident notions 

€-quadratic 

of isomorphism and stable isomorphism for B-non-singular 

formations, generalizing the case f = 1 : A-B = A 

(already treated in S1.6). 

Proposition 2.4.4 i) There is a natural one-one correspondence 

l 
- 

between the homotopy equivalence classes of 
€-quadratic 

(even) c-symmetric 
l-dimensional B-~oincar6 complexes over A 

€-quadratic 

and the stable isomorphism classes of B-non-singular 

(even) E-symmetr ic 
formations over A. 

€-quadratic 

natural expressions as Witt groups of B-non-singular 

(even) E-symmetr ic 
formations over A 

€-quadratic 

iii) The forgetful map 

is one-one, where 

X = im(K0(~)-i?,(~)) c zO(~) 

Proof: i) A straightforward qeneralization of Proposition 1.6.4. 

ii) Immediate from i ) .  



even E-symmetric 
iii) Let be a l-dimensional 

E-quadratic 

B-~oincar; complex over A such that Cr = 0 (c # 0,1), 

Cl is f .g. free and 

1 
~B@,(c,@) = o e L(V~>~(B,E) 

By Proposition 1.6.5 iii) there exists a 2-dimensional 

even E-symmetr ic 
~oincar; pair over B 

€-quadratic 

and [D1] € X c G O ( ~ ) .  Stabilizing if necessary it may be assumed 

that D1 = BBADi for some E.g. projective A-module D;. Let D! 

be a f.g. projective A-module such that Di@Di is a f.9. free 

A-module, and let (: ) : BIACl--r BBA (DjlD;) have matrix 

representation (b..) ( b . . € B )  with respect to the B-module 
11 11 

bases induced from A-module bases of Cl and Di8Di. 

As f:A+B is locally epic there exists a unit u € B  such 

that ub.. = €(a. . )  B for some matrix (a . )  with entries 
11 1 1  i I 

a . . € A .  Define an A-module morphism g'€HomA(C1,Di) by 
1 l  

even E-symmetric 
R-Poincar; pair over A (with D' = 0 for r#l), 

€-quadratic 



Let F be a commutative square of rings with involution 

with f:A---+B and f l : A ' d B '  locally epic morphisms. 

(even) E-symmetr ic 

€-quadratic 

cobordiam group of pairs 

(even) €-symmetric 
(n-dimensional ~-poincar& complex 

€-quadratic 

(even) €-symmetric 
over A X, (n+l)-dimensional 

€-quadratic 

B'-PoincarG pair over A' with boundary AIPAx) . 
As usual, the skew-suspension maps 

n+2 
: rn(~, E )  r<v0> (F,-€) 

(n > l) 
s : Tn(F,E)--- rn+, (Fr-c) 

are isomorphisms. The lower relative r-groups are defined by 



+r0(~,-€) 1 (n = -2) 

E) (as defined below) (n,< - 3 )  

generalizing the definition of the lower relative L-groups 

r4 (F, E )  
Proposition 2.4.5 The relative r-groups f i t  into a 

(F, E) 

Given a morphism of rings with involution f:A--+B we 

shall say that an A-module chain complex is B-acyclic if 

A finite-dimensional A-module chain complex C is B-acyclic 

if and only if BBAC is a chain contractible B-module chain 

complex. 

E-symmetr ic (C,$) 

An l complex (resp. pair) over A 
F-quadratic (C.$) 

are B-acyclic A-module chain complexes. 



In Propositions 2 . 4 . 6 , 2 . 4 . 7  below we shall express the 

r* (F, E) 
relative r-groups for a commutative square of the type 

r, (F, E) 

as the cobordism groups of algebraic B-~oincarg B'-acyclic 

complexes over A. In 53 this expression will be used in the 

special case 

to obtain the localization exact sequence in algebraic L-theory. 

We shall give a geometric interpretation of this expression 

in Proposition 7 . 7 . 2 .  

Proposition 2 . 4 . 6  Let F be a commutative square of rings with 

involution of the type 

with f:A-B and f' :A -B' locally epic. 

E-symmetric rn(F,€) 
i) The relative r-group (n) l) is naturally 

€-quadratic rn (F, E )  

isomorphic to the cobordism qroup of connected (n+l)-dimensional 

even (-E)-symmetric 
~-~oincar; B'-acyclic complexes over A .  

(-€)-quadratic 



The maps appearing in the r-group change of r 

are given by 
- 

r n ( f ' , € ) ~ r n ( ~ , E )  ; ( C , @ ) y S : l ( C  

ings exact sequence 

is naturally isomorphic to the cobordism group of 

even ( - E )  -symmetric 
l-dimensional B-Poincar6 B'-acyclic complexes 

( - E )  -quadratic 

over A. 

iii) rn(F,c) (n)2) is naturally isomorphic to the cobordism 

group of (n-l)-dimensional €-quadratic B-poincar; B'-acyclic 

complexes over A .  

I rn (F, € 1  
Proof: i) An element of (n ) l) is the cobordism class 

rn(F,c) 

of a pair 

€-symmetric 
( (n-l) -dimensional B-poincar; complex 

€-quadratic 

(C.$) €-symmetric 
over A , n-dimensional B'-Poincar; 

(C,'+) €-quadratic 

(C1,$') 
by definition. Let be the connected (nt1)-dimensional 

(CQ,*') 



even (-€)-symmetric 
B-Poincar6 B'-acyclic complex over A 

(-E) -quadratic 

S(C, 0) 
obtained from the skew-suspension by surgery 

S (C, *) 

even ( - E )  -symmetric 
on the connected (nt2) -dimensional 

( - c )  -quadratic 

(C'. 0') 
determines an element of the cobordism group of 

(C', 6') 

even (-E)-symmetr ic 
connected (ntl) -dimensional B-poincar; 

(-c) -quadratic 

B'-acyclic complexes over A.  

(C', 0') 
Conversely, let be a connected (n+l)-dimensional 

(C',*') 

even (-E) -symmetr ic 
~-PoincarG B'-acyclic complex over A 

(-E)-quadratic 

such that C; = 0 (r <O,r> ntl), as is the case up to homotopy 

equivalence. Surgery on the connected (n+2)-dimensional 

even (-E)-symmetr ic (g':C------+D', (Or$') 
pair over A 

(-E) -quadratic (gl:C-----4 D', (C',$') 1 

defined by 

g' = 1 : CAt1---+ DAtl = CAt1 , D; = 0 (r f ntl) 

S (C, 6) 
results in the skew-suspension - of an (n-l) -dimensional 

S(C,$) - 

E-symmetr ic 
B-poincar; complex over A 

E-quadratic 



E-symmetric (g:C---+D, (c),$)) 
The n-dimensional pair over A 

€-quadratic (g:C-D, (c),$)) 

defined by 

(C',@') 
is B'-Poincare. Thus determines an element 

(C't31') 

row, E) 
ii) An element of is the cobordism class of a pair 

ro (F ,  E) 

even (-E)-symmetric 
(l-dimensional B-~oincar6 complex 

(-E) -quadratic 

(C,@) even (-E)-symmetric 
over A , 2-dimensional 

(C,$) (-E) -quadratic 

by definition. As in the proof of Proposition 2.4.4 iii) it 

may be assumed that 

even (-E)-symmetric 
is a l-dimensional B-Poincar6 B'-acyclic 

(-E) -quadratic 



C even (-€)-symmetric Conversely, given a l-dimensional 
( - E )  -quadratic 

(C',$') 
B-Poincare B'-acyclic complex over A there is defined 

( c o t e v )  

iii) Given a connected (n+l)-dimensional (-c)-quadratic 

B-Poincare B'-acyclic complex over A (C,$) we shall define 

an (n-l)-dimensional €-quadratic B-Poincarc B'-acyclic complex 

over A (C1,$') such that 

(c,+) = S(ca.$') c rntl(~,-~) 

and (C',$') = (Cv,$") if (C,$) = Z(C",$"), as follows. 

Without loss of generality it may be assumed that 

Cr = 0 (r< O,r>n+l) and that Cn,Cn+l are f.g. free A-modules. 

By Proposition 2.4.2 there exists an A-module morphism 

~ € H o ~ ~ ( C ~ , C ~ + ~ )  such that hdfHomA(Cn,Cn) is a B'-isomorphism. 

Define an A-module chain complex D and an A-module chain map 

The complex obtained from (C,$) by surgery on the connected 

(-€)-quadratic B'-acyclic pair over A (g:C-D, (0,$)) is the 

skew-suspension E(c,$) of an (n-l)-dimensional €-quadratic 

B-Poincace B'-acyclic complex over A (C' ,Q') . 
[ 1 



rn(F,€) 
The low-dimensional relative r-groups (n< 1) of 

r n  (F,€ 

a commutative square of rings with involution of the type 

can be expressed in terms of forms and formations, as follows. 

(even) E-symmetric (M,+) 
is a B-non-singular form over A 

€-quadratic (Mn+) 

I (even) E-symmetr ic A B-non-singular B'-formation over A 
€-quadratic 

(Mt+;F,G) (even) E-symmetr ic 
is a non-singular form over A 

(M,*;F,G) €-quadratic 

together with a lagrangian F and a B-lagrangian 

A B-non-singular split E-quadratic B'-formation over A 

(F,G) is a morphism of split E-quadratic forms over A 

defining a B-lagrangian of iiE ( F )  , and such that U € Hornn ( G , F * )  



(even) E-symrnetr ic 
The boundary of a B'-non-singular 

€-quadratic 

(M,$;F,G) 
format ion over A is the B-non-singular 

(M,6;F,G) 

(even) €-symmetric 
B'-form over A 

€-quadratic 

The boundary of a B'-non-singular even €-symmetric 1 

form over A (M,@ € Q(v~)~(M) ) is the B-non-singular i 
(M. * f Q, (M) 

r even ( - E )  -symmetric 

(-€)-quadratic B'-formation over A 

split (-€)-quadratic 



Proposition 2.4.7 Let F be a commutative square of rings with 

involution of the type 

with f and F' locally epic. 

i 
row, E )  

i) 1'-2(~,-~) is naturally isomorphic to the Witt group 

ro(F, €1  

even ( - E )  -symmetric 

of B-non-singular B'-formations over A ,  

split (-c) -quadratic 

I r1 ( F ,  E) 

ii) ~-I(F,-E) is naturally isomorphic to the Witt grou 

T1(F"C1 

i 
E-symmetric 

of B-non-singular even c-symmetric B'-forms over A ,  with 

€-quadratic 

(,E.I'~(F,E) ; (M,@;F,G)c---t ;(M.+;F,G) 

r-'(f*,-c) -r-l(~,-E) ; (M,Q;F,G)- a (M,+;F,G) 

f c F ,  ; M -  a(M,$;F,G) . 



Proof: The expression of the low-dimensional relative r-groups 

in terms of forms and formations follows from Proposition 2.4.6 

and the following generalizations of the correspondences of 

Propositions 1.6.1,1.6.4: 

i) the homotopy equivalence classes of l-dimensional 

(even) E-symmetr ic 
~ - ~ o i n c a r G  B'-acyclic complexes over A 

€-quadratic 

are in a natural one-one correspondence with equivalence classes 

(even) E-symmetric 
of B-non-singular B'-formations over A ,  

split €-quadratic 

ii) the homotopy equivalence classes of connected 

(even) E-symmetric 
2-dimensional B-~oincari B'-acyclic 

€-quadratic 

complexes over A are in a natural one-one correspondence with 

I (even) ( -E )  -symmetric 
equivalence classes of B-non-singular 

( - c l  -quadratic 

B'-forms over A .  

(We shall give a more detailed account of these correspondences 

in g 3  below, in the special case 



2 . 5  C h a n g e  o f  K - t h e o r y  

T h e r e  a r e  e v i d e n t  e x t e n s i o n s  o f  a l l  t h e  r e s u l t s  o f  

5 5 2 . 1 -  2 .4  to  t h e  i n t e r m e d i a t e  L - g r o u p s  o f  5 1 . 1 0  a n d  t h e i r  

i n t e r m e d i a t e  r - g r o u p  a n a l o g u e s .  H e r e ,  we s h a l l  o n l y  s t a t e  

t h e  e x t e n s i o n s  f o r  w h i c h  we s h a l l  n e e d  a  r e f e r e n c e .  

G i v e n  a m o r p h i s m  o f  r i n g s  w i t h  i n v o l u t i o n  

f  : A-B 

a n d  * - i n v a r i a n t  s u b g r o u p s  X G ~  ( A ) ,  Y S ;,,,(B) ( m  = 0 , l )  s u c h  

t h a t  

B ~ ~ X C Y  s K ~ ~ B )  

-------- i E-symmetr  ic 
d e f i n e  t h e  r e l a t i v e  i n t e r m e d i a t e  L - g r o u p s  

€ - q u a d r a t i c  

( n f  Z) i n  t h e  s a m e  way a s  t h e  r e l a t i v e  L - g r o u p s  

L * ( f , € )  
( w h i c h  a r e  t h e  s p e c i a l  c a s e  X = EO(a),  Y = E O ( B ) )  

L * ( £ , € )  

b u t  u s i n g  o n l y  a l g e b r a i c  ~ o i n c a r c  c o m p l e x e s  o v e r  h w i t h  

K - t h e o r y  i n  X a n d  a l g e b r a i c  ~ o i n c a r c  c o b o r d i s m s  o v e r  B w i t h  

G i v e n  a  morph i sm o f  Z [ i Z 2 ] - m o d u l e s  

d e f i n e  t h e  r e l a t i v e  T a t e  Z 2 - c o h o m o l o q y  g r o u p s  H* ( Z 2 ;  f )  by 

t o  f i t  i n t o  t h e  l o n g  e x a c t  s e q u e n c e  

^ n + l  ... -H ( z ~ ; H ) - f i n + l ( z 2 ; f )  - f in (z2 ;~)  - f - t i ln (z2 ;~) - j . .  . . 



Proposition 2.5.1 Given a morphism of rings with involution 

f : A-B 

and *-invariant subgroups X c_x'c K (A), Y g Y t c  K,(B) (m = 0,l) 

such that 

there is defined a commutative diagram of abelian groups with 

exact rows and columns 

Similarly for the E-quadratic L-groups L,. 

Proof: Immediate from Propositions 1.10.1,2.2.4. -- 

1 1  

Given a locally epic morphism of rings with involution 

f : A ---"B 

and a *-invariant subgroup X 5  Z,(B) (m = 0,l) define the 

E-symmetric 
intermediate - r-aroups (n f Z) in the 

€-quadrat ic 



r 
same way as 

'rn 

(Ere) - 
(the special case X = Ko(B)) but using 

(£,E) 

algebraic B-Poincar6 complexes over A (based if m = 1) such 

that the induced algebraic Poincar; complexes over B have 

K-theory in X. 

Proposition 2 . 5 . 2  The intermediate r-groups associated to 

*-invariant subgroups X S Y C  Em(B) (m = 0'1) are such that 

there is defined an exact sequence 

Proof: As for Proposition 1.10.1 (the special case 

f = 1 : A--JB =A). 

I I 

It follows from the intermediate analogues of 

Propositions 2 . 4 . 3 , 2 . 4 . 4  that the original r-groups of Cappell 

and Shaneson [l] are the intermediate quadratic r-groups 

r,(f) = rif(n)'(f:~~a~--+~) ( E  = 1) 

of a locally epic morphism f :z[n]-E, with (f (n) ) C _  K1(B) . 
Similarly, the P-groups of Matsumoto Ill are the intermediate 

t-quadratic r-groups 

'f(n)l(f:~[nl-~ln'l , t )  P,(&) = r, 
associated to a group extension 

P 
& : {l] -c n -no -(l] 

with C a cyclic group and t e n  the image of a generator of C. 

See S7 .8  for a discussion of the geometric significance as 

codimension 2 surgery obstruction groups of the r -  and P-groups. 



53. Localization 

Let A be a ring with involution, and let S c  A be a 

multiplicative subset of non-zero-divisors such that the ring 

with involution S-lA inverting S is defined - this is the 
"localization of A away from S". We shall now apply the theory 

E-symmetric 
of SS1,2 to express the relative L-groups 

c-quadratic 

L*(A- s-'A,E) 
of the inclusion A-S-~A as the 

L, (A-s-~A,E) 

cobordism groups of algebraic ~oincarg complexes over A 

which become contractible over s - ~ A .  

Our role model here is the localization exact sequence 

of algebraic K-theory, which identifies the relative K-groups 

K, (A-s-'A) appearing in the change of rings exact sequence 

(where Kn(A) = Kn(exact category of f.g. projective A-modules)) 

with the K-groups 

Kn(A,S) = Kn-l(exact category of S-torsion A-modules of 

homological dimension 1) (nf Z), 

that is 

K~(A-------+s-~A) = K~(A,s) ( n e ~ )  . 
This identification was first obtained for central S (as = sa 

for all a f A , s € S )  hy Bass [2,IX1 for n =  l, and then extended 

to n ) 2 by Quillen (Grayson Ill 1 ,  and to n 6 0 by Carter 11 1 .  

The extension to eccentric localizations A - - - - - - + S - ~ A  

(i.e. those in which S is not necessarily central in A) is due 

to Grayson ( 2 1 .  



The "S-adic completion of A "  is the invrrse limit 

which fits into the cartesian square of rings 

The functor 

{had. 1 S-torsion A-modules)----r{h.d. 1 S-torsion A-modules]; 

M - AmAM 
is an isomorphism of exact categories (an observation due to 

Karoubi [ 2 1 ) ,  so that it induces excision isomorphisms in the 

relative K-groups 

K*(A,S) AK* (i,;) 

and there is defined a Mayer-Vietoris exact sequence 

In particular, this applies to the "arithmetic square" 

associated to a group ring A  = Z l n l  with S = z . - [ O ) c ~ ,  

the profinite completion of 22, and 

the ring of finite adGles of 22. 



Following some generalities in 53.1 on the localization 

of rinqs with involution we shall define in S3.2 the 

c-symmetric L"(A,S,E) 
L-groups (n € Z) of ~ - ~ A - a c ~ c l i c  

€-quadratic Ln(AtS,E) 

algebraic ~oincar; complexes over A. In 53.3 the algebraic Wu 

classes of 51.4 will be generalized to linking Wu classes, 

the analogues of the Wu classes appropriate to S-'A-acyclic 

complexes over A .  In SS3.4,3.5,3.6 we shall show that there 

are natural identifications 

L:(A+S-'A,E) = L*(A,s,E) 

L:(A--+S-'A.~) = L+(A,s,~) , 

the groups on the left being the relative intermediate 

c-symmetr ic 
L-qroups of the localization map 

c-quadra tic 

associated to the +-invariant subgroup 

1 1 S = i m ( z O ( A ) d k O ( ~ -  A)) C EO(S- A) , 

so that there is obtained a localization exact sequence in 

algebraic L-theory 

(Special cases of these sequences have been obtained by many 

previous authors, listed below;. In 553.4,3.5 the low-dimensional 

E-sy~nmetric L"(A,s,E) 
L-groups (n<l) will be interpreted as 

c-quadratic Ln(A,S.E) 

Witt groups of non-singular ~-~A/A-valued linking forms and 



linking formations involving S-torsion A-modules of homological 

dimension 1. It will thus be possible to express the lower- 

dimensional €-symmetric L-theory localization exact sequence 

as a localization exact sequence of Witt groups 

which extends to the left as the localization exact sequence 

in the higher-dimensional €-symmetric L-qroups (non-periodic 

in general) and to the right as the 12-periodic localization 

exact sequence in the fc-quadratic Witt groups. Here, 

the Witt group of non-singular even c-symmetric forms i 
€-quadratic 

i 
L ~ ( s - ~ A )  = L;(S-~A,€) 

(resp. formations) over A, and L(v~)E(s-~A) = I,S*(S-~A,-~) 

L: (s-~A) = L;(S-~A,€) 

M;(S-~A) = L;(S-~A,€) 

M(v~)E(s-~A) = L:~(S-~A.-E)) is the Witt group of 

M:(S-'A) = L;(S-~A,~) 



non-singular even €-symmetric forms (resp. formations) over 1 €-quadratic 
S-IA involving only the f.g. projective ~-~A-modules induced 

from f.g. projective A-modules. The relative L-group 

i - 
L(V~)'(A,S) = L'(A,s,€) 

i 
1 M<V~>'(A,S) = L (A,s,E) 

L€(A,s) = L-*(A,s,-E) (resp. M~(A,s) = L-~(A,s,-~) ) 

LE(A,S) = LO(A,S,€) ~€(A,s) = L1(A,S,c) 

i 
even E-symmetric 

is the Witt group of non-singular €-quadratic 

split €-quadratic 

linking forms (resp. formations) over (A,S) . 
A localization exact sequence for Witt groups of the type 

. . - M ~ ( A ) + M E ( s - ~ A ) - M ~ ( A , s ) - L ~ ( A ) - L E ( s - ~ A )  

-L'(A,s) -M-'(A) -MS'(S-~A)--~. . . 
for arbitrary rings with involution A was first obtained by 

Karoubi [2],[31 in the case 1/2€A (when the various categories 

of linking forms over (A,S) coincide), following on from the 

work of earlier authors for Dedekind rings A - see 54 below 

for a discussion of the L-theory of Dedekind rings. 

A localization exact sequence for the surgery obstruction 

groups of the type 

S ...- Ln(Z[nl)-?I,n(Qrnl)---t L,,(Z[nJ,S) +Ln-l(z[n])- ... 
(n(mod 4), S = Z-(O)C!?Z[n]) 

was first obtained by Pardon [11,[21,[3] for finite groups n, 

following on from the earlier work on linking forms in 



odd-dimensional surgery obstruction theory of Wall 121. Passman 

and Petr ie [l], and Connolly [l]. The algebraic methods of 

Pardon [2] apply to the quadratic L-groups of more general 

localizations, provided that 1/2 f S - 1 ~  (e.g. if 2 f S) . 
The localization exact sequence of Witt groups 

has also been obtained by Carlsson and Milgram 131. 

In S3.6 we shall apply the localization exact sequence 

E-symmetric 
in the L-groups to prove that 

€-quadratic 

if i m ( ~ 0 ( ~ 2 ; ~ - 1 ~ / ~ , E ) - ~ 1 ( ~ 2 ; ~ , E ) )  = 0 
there are defined 

for all A,S,E 

excision isomorphisms in the relative L-groups 

giving rise to a Mayer-Vietoris exact sequence in the absolute 

Such a Mayer-Vietoris exact sequence was first obtained by 

Wall [E] for the quadratic L-groups of a finitely generated 

ring A with S = Z-[O)CA, using arithmetic methods such as 

the strong approximation theorem for algebraic groups over Q. 
l 

Karoubi I21 obtained such a sequence for more qenral localizations 

A---+s-~A, but with the restriction 1/2f A. Bak 121 has 



obtained a similar sequence in the context of the unitary 

algebraic K-theory of Bass ( 3 1 .  

In 53.6 we shall also use the localization exact sequen 

for S = 'Z-{O]CA and the natural action of the symmetric Witt 

ring ~'(2) (which is of exponent 8) on the relative L-groups 

L*(A,S,E) = L* (A,s,E) 
to prove that the natural maps 

L, (A,S,E) = L,!A,S,t) 

are isomorphisms modulo 8-torsion for any torsion-free ring 

with involution A (e.g. a group ring A = iZ[n], in which case 

S-'A = Q[,]). Results of this type were first obtained for 

the surgery obstruction groups L,(ZL(n]) of finite groups . 
Taking for granted the result that the natural maps 

are isomorphisms modulo 2-primary torsion it is possible to 

interpret Theorems 13A.3, 13A.4 i) of Wall 141 as stating 

that the natural maps 

~~~(iZ[rr])-L;~(~[n]) (i(mod 2), nfinite) 

are isomorphisms modulo 2-primary torsion. Passman and Petrie 

and Connolly [l] showed that the natural maps 

L2i+l(~[nl)-~~i+l(Q[n]) (i(mod 2 1 ,  nfinite) 

are isomorphisms modulo 2'-torsion, j ,( 3. (Actually, they wer, 

working with the simple quadratic L-groups). Karoubi (21 obta 

similar results for the L-groups of arbitrary torsion-free ri 

with involution such that 1/2 f A. 



The localization exact sequence and the Mayer-Vietoris 

exact sequence associated to a localization-completion squar 

are key tools in the computations oE the surgery obstructior 

groups L,(Z[nJ) of finite groups n due to Wall [ g ] ,  Bak 121, 

Pardon 151, Carlsson and Milgram [ll,[2], Kolster [l], Bak ; 

Kolster [l), Hambleton and Milgram 121. 

The localization exact sequence for the quadratic L-gr 

L,(R[n]) of group rings R[n] (R=s-~zsQ, S c Z Z - ( O ) )  has a g6 

interpretation involving homotopy-theoretic localization, 

which is discussed in 57.7. below. 



3.1 Localization and completion 

We refer to Chapter I1 of StenstrBm [l] for the general 

theory of localization in noncommutative rings. 

Let A be a ring with involution. 

A subset S C A  is multiplicative if 

i) s t € S  for a l l s , t € S  
I 

j ii) if s a = O € A  for some s € S , a € A  then a = O € A  

iii) s €  S for all s €  S 

iv) for all a € A,s € S there exist b,bl € A, t, t' € S 

such that at = sb, t'a = b l s  € A 

("the two-sided Ore condition") 

v) 1 8 s .  

he localization of A away from S S - ~ A  is the ring with involution 

efined by the equivalence classes of pairs 

[a,s) € A x  S 

nder the relation 

(a,s) - (b, t) if there exist c,d € A such that 

ca = d b €  A ,  cs = dt € S C A  , 

(a,s) + (a',sl) = ( b t a +  bal,t) if b,b'€A are such that 

t = b's = bs' € S C A ,  

(a,s).(a',sl) = (baf,ts) if b € A ,  t € S  are such that 

ta = bs' € A, 

(G) = (b,t) if b €  A, t € S are such that 

t a =  b - E € A .  

he equivalence class of (a,s) = (1,s) . (a,l) will be denoted by 
a € S-'A 

I 



as usual. The injection 

- 1 A-S A ; a+----+$ 

is a locally epic morphism of rings with involution. 

An A-module chain complex C is S-acyclic if H*(s-'AB~c) = 

that is if it is ~ - ~ ~ - a c ~ c l i c  in the sense of 5 2 . 4 .  

Here are some important examples of localization: 

i) if A is an algebra over an integral domain R, then 

s = R-{O)C R C A  

is a multiplicative subset of both R and A. The localization 

S - ~ R  = F is the quotient field of R and S - 1 ~  = FgRA is the 

induced algebra over F. 

ii) if A is an algebra over a commutative ring R, and 

? is a prime ideal of R, then 

S = R - ?  C R Z A  

is a multiplicative subset of both R and A. The localization 

S-IR = R p  is the "localization of A at ? ' I ,  and S - ~ A  = Ap is 

the "localization of A at 7". 

(The L-theory of localizations of type i) and ii) will be 

studied in 5 4  in the case when R is a Dedekind ring). 

iii) if A is a rinq with involution and a : A-A is 
- -1 - a ring automorphism such that a(a) = a (a) € A for all a € A  

(e.g. a = 1) let x be an indeterminate over A such that 

ax = xa(a) (a € A) . 
The "a-twisted polynomial extension of A" AJx] is then defined, 

a ring with involution 
- m m .  

: aa [ x i  -+ ~ ~ 1 x 1  ; a . x  1 XI;, 
j=o J j=o J ' 

The multiplicative subset 



X = {xk(k>,01 C AQ[xl 

is such that the localization 

X - ~ A  [X] = A [x,x-ll 

is the "Q-twisted Laurent polynomial extension of A " .  

The L-theory of such polynomial extensions will be dealt with 

in S5 below. 

iv) if A = Z[nl is the group ring of a group n which is an 

extension of a finitely generated torsion-free nilpotent group 

by a finite extension P of a polycyclic group then 

S = (l+ili€ker(Z[n]----+z[~])]CA 

is a multiplicative subset, such that a finite-dimensional 

A-module chain complex i ~ Z [ ~ ] - a c y c l i c  if and only if it is 

S-acyclic. This example is due to Smith [11,[2]. 

We shall consider a particular case of this type of localizatio~ 

in S7.9 below, for n = 24, p = {l), in connection with the 

algebraic theory of knot cobordisn. 

A multiplicative subset S C A  is central if 

as = sa € A for all a € A , s € S  . 
For central S C A  it is possible to express the localization 

S-IA in the familiar way as the set of equivalence classes 

of pairs (a,s)fAxS under the relation 

(a,s) -(b,t) if at = bs € A , 

with 

(a.s) + (al,s') = (as' +a'sVsso) 



We shall now develop some general properties of modules 

and chain complexes over a ring with involution A and the 

localization S - ~ A  of A away from a multiplicative subset SCA 

(which in general will not be assumed to be central). 

An A-module M induces an  module 
S-IM = S - ~ A B ~ M  . 

The elements of S-'# can be regarded as the equivalence class6 

E of pairs (x,s)€MxS under the relation 

(x,s) - (y,t) if there exist c , d € A  such that 
cx = dy e M, CS = dt e SCA 

with 

(x,s) + (x',~') = (b'x+ bxl,t) if b,b' € A  are 

such that t = b's = bs' € SCA 

(a,s)(y,t) = (by,us) if b € A , u € S  are such that 

u a = b t € A .  

(Again, if S C A  is central this can be simplified to 

(x,s) -(y, t) if tx = sy € M 

(x,s) + (xQ,s') = (SIX+ sxl,ss') 

(a.s) (y,t) = (ay,st) 1 .  

If M is a f.g. projective A-module then S - 1 ~  is a €.g. projec 

 modu module, and there is defined a natural S-l~-module 
isomorphism 

s-~(M*) = S - l ~ o m ~  (M,A) - (s-~M) = Hom -1 (s-'M,s-~A) 
S A 

L ,-, (; f-b W.? 
S t S) 

allowing us to write 

= S-l(M*) = (S-lM) * 



An A-module morphism f f  HomA(M,N) induces an S-IA-module 

morphism 

f (X) . S-lf : S-lM S-lN ; l! S 

An S-isomorphism is an A-module morphism f€HomA(M,N) such that 

S - ~ ~ € H O ~ ~ - ~ ~ ( S - ~ M , S - ~ N )  is an s-l~-module isomorphism, i.e. f is an 

S-l~-isomorphism in the sense of 5 2 . 4 .  

An A-module M is S-torsion if 

s-ln = 0 , 

that is if for every x € M  there exists s € S  such that 

s x = O  € M .  

An (A,S)-module M is an S-torsion A-module of homological 

dimension 1, that is an A-module which admits a f.g. projective 

A-module resolution of length 1 

with d f  HomA(P1,Po) an S-isomorphism. 

The S-dual MA of an (A,S)-module M is the (A,S)-module 

with A acting by 

A * M "  -M~ ; (a,f)- (x~--+Lf(x).Z) . 
The S-dual has f.g. projective A-module resolution 

d*  Th 
0- P; -P; AM" -0 

with 

Th : Pi ----+ M" ; f H ( [ X ]  t---+w) 

The natural A-module isomorphism 



will be used to identify 

M"" = M . 
If M,N are (A,S)-modules there is defined an S-duality 

isomorphism of abelian groups 

HomA(M,N)-HomA(~",MA) ; f-(fA:g-(X-gf(x))) . 
For example, a (Z,Z-{O))-module M is the same as a finite 

abelian group and the (Z-(0))-dual 

= HomZ(M,Q/Z) 

is the character group. 

An n-dimensional (A,S)-module chain complex is an A-module 

chain complex 

d d d d 
c : o - C  Cn-l- . . . - Cl-CO -0 

such that each Cr (0 < r ,< n) is an (A,S) -module. The S-dual 

A-module chain complex 

is also an n-dimensional (A,S)-module chain complex. The homology 

A-modules H,(C) are S-torsion (but not in general (A,S)-modules), 

since localization is exact 

s-~H,(c) = H, (s-~c) = 0 . 
The S-dual cohomolcgy H$(C) are the S-torsion A-modules defined by 

H: (C) = Hn-r = ker ( d A : C " - C ; + l ) / i m ( d " : C ; - l - C " )  (0s c,< n) 

If € € A  is a central unit such that 

- -1 
€ = E  € A  

then € S-'A is a central unit (also to be denoted by c )  such that 
- - 1 



Further below we shall define the even €-symmetric 1 
c-quadratic 

c) of a f ini te-dimensional (A,S) -module 

chain complex C, generalizing the Q-groups of a finite- 

dimensional A-module chain complex defined in S1.l. (Indeed, 

the Q -groups of C will be defined to be the Q-groups of a 
S 

finite-dimensional A-module chain complex D such that 

H,(D) = H,(C), H*(D) = H;-~(C) 1 .  The localization exact sequenc 

€-symmetric 
of S3.2 will identify the relative L-group 

€-quadratic 

L: (A-S-IA, E) 
(n>,O) with the cobordism group of 

L;(A----~S-~A,E) 

l even E-symmetric "n-dimensional ~oincar; complexes over (A,S)" 
€-quadratic 

(c,$~Q(v,~:(c,E)) 
with C an n-dimensional (A,S)-module chain 

(c,Q~Q:(c,E)) 

complex and such that there are defined poincar; duality i : 
isomorphisms of S-torsion A-modules 

In S3.4 (resp. S3.5) we shall identify the n-dimensional 

(even) c-symmetric 
poincar; complexes over (A,S) for 

€-quadratic 



(even) E-symmetri 
n = 0 (resp. n = 1) with the "non-singular 

split c-quadratic 

linking forms (resp. formations) over (A,S)", going on in S 3 .  

L:(A---+S-~A,E) ( -m <n 5 1) 
to identify the relative L-groups 

L: (A- S-IA, c )  (n e Z) 

with the Witt groups of such objects by analogy with the 

identifications of S1.6 of the absolute L-groups 

L" (A, E) ( - m  < n 6 1) 
with the Witt groups of forms and format 

Ln (A, E )  (n 8 Z) 

over A. A "linking form over (A,S) " is an (A,S)-module M 

together with a pairing 

M M S-~A/A , 
and a "linking formation over (A,S)" is a linking form over ( 

together with a lagrangian and a sublagrangian. The familiar 

equivalence of categories 

[S-acyclic l-dimensional A-module chain complexes) 

will be generalized to equivalences 

{S-acyclic algebraic ~oincar; complexes over A I  

Y *{algebraic ~oincar; complexes over (A,S) 

The maximal S-torsion submodule T M of an A-module M S 

is the submodule 

T M = [ X € M ~ S X = O € M  for some s € S l  S 

= ker (M ---+ S-IM; X M E) C M . 
The A-module M is S-torsion if and only if 

TSM = M . 



S The linking pairing e0 of an n-dimensional E-symmetric 
complex over A (C,@ € Q~(c,E)) is defined by 

S eO : T ~ H ~  ( C )  X T~H"-~+' ( c )  - S-'A/A ; 

1 
(X,Y) -$,(X) (2) 

(xecr, y ~ ~ n - r + l  , z e s e  S ,  a * ~  = sy e c"-~+I) , 
and satisfies 

S S S 
i )  ~,(X.Y+Y') = $o(x,~) + $ o ( ~ ' Y ' )  

S 
ii) ~E(x.ay) = aQo(x,y) 

S iii) $O(Y,X) = do(x,Y) S 

(X e T~H' (C) , y r y t  e T,H"-~+~ (C), a e A )  . 
The name arises as follows. 

Let M be a compact n-dimensional manifold, and let be 

a covering of M with group of covering translations n  such 

that the orientation map of M factors as 

W(M) : rl (M) - - + m  L p z 2  

for some group morphism W ,  so that there is defined a symmetric 

~oincar6 complex over Z [ n ]  with the W-twisted involution 

D* (M) = (C (M) ,+ e Q" (C (M) 
(as recalled from 11. in 51.2 above). Define a multiplicative 

subset 

S = Z - { O ) C z [ n ]  . 
The linking pairing of o*(M) 

agrees via the Poincar6 duality H*($ g H,-* (i) with the pairing 



defined by the geometric linking numbers of torsion homology 

classes, as originally studied by deRham I11 and Seifert 111 

(for n = (1)) and more recently by Kervaire and Milnor Ill, 

Wall 121 and Pardon 131 (for n finite) in connection with 

odd-dimensional surgery obstruction theory. 

In 54.2 below we shall identify the cobordism class 

(c,+) e L*'(A,~) 
of a 1 2i -dimensional €-symmetric 

(C,+) e L~~-'(A,E) 2i-1 

{(C,+€ Q~~(c,E)) 
~oincar; complex over a Dedekind ring A 

[(c.+e Q~~-'(c,E)) 

with a cobordism class of the non-singular (-)'E-symmetric 

intersection 
pairing 

linking 

where 

The expression in 53.2 below of the relative L-groups 

of a localization map A-S-~A as the cobordism groups of 

S-acyclic algebraic ~oincar; complexes over A will be based 

on the following results: 

Proposition 3.1.1 i) An n-dimensional ~ - ~ A - m o d u l e  chain complex D .-p 

with projective class 

IQ] E im(i?O(~)-kO(~-l~~ ) c_~?~(s-~A) 

has the chain homotopy type of S-IC = s - ~ A @ ~ c  for some 

n-dimensional A-module chain complex C. 



ii) An S-acyclic finite-dimensional A-module chain complex C i: 

chain equivalent to a complex C' for which there exist A-modulc 

morphisms e € H ~ m ~ ( c ' , C ; + ~ )  ( r € Z )  such that the A-module morph. 

S = de + ed : C; -------+ C; (r G Z) 

are S-isomorphisms. (If S C A  is central can take C' =C,sfS). 

Proof: Clear denominators. 

I l 

Localization is exact, so that for any A-module chain 

complex C there are natural identifications of ~-l~-modules 

Thus C is S-acyclic if and only if the homology A-modules 

H, (C) are S-torsion; similarly for C*,H* (C). 

A chain map of A-module chain complexes 

f : c-C' 

is a homology equivalence if it induces isomorphisms in the 

homology A-modules 

f * :  H*(C) - 5H*(C1) . 
In particular, a chain equivalence is a homology equivalence. 

A homology equivalence of finite-dimensional chain complexes 

is a chain equivalence, but in general homology equivalences 

are not chain equivalences. 

A resolution (D,g) of an n-dimensianal (A,S)-module 

chain complex C consists of an (n+l)-dimensional A-module 

chain complex D together with a homology equivalence 

g : D-C . 



S 

e 

isms 

The S-dual chain complex admits a dual resolution 

(Dn+l-* ,Tg) inducing the A-module isomorphisms 

H = (D) -Hr ) = (C) ; m *  : S 

fc---t (g(x)+-y% 

(f f D ~ ~ ~ - ~  , xfDn-,, Y~D,+~-,, s e S ,  ~ x = d y e D ~ - ~ )  . 
For example, a resolution (D,g) of a 0-dimensional (A,S)-mod1 

chain complex C is a f.g. projective A-module resolution of I 

(A,S)-module CO 

with d € HomA(D1,Do) an S-isomorphism, and (D'-*,T~) is the dl 

resolution of C; 

o-DO&D~ Tg ,co-- 

defined above. 

A resolution (h,k) of a chain map of n-dimensional 

(A,S)-module chain complexes 

f : C - C '  

is a triad of A-module chain complexes 

(i.e. a chain map h:D-Dt together with a chain homotopy 

k:fg'g'h:D---+C') such that (D,g) is a resolution of C and 

(D1,g') is a resolution of C'. Note that f is a homology 

equivalence if and only if h is a chain equivalence. 



Proposition 3.1.2 i) Every n-dimensional (A,S)-module chain - 

complex C admits a resolution (D,g), and every chain map 

f :C--+C1 of n-dimensional (A,S) -module chain complexes 

admits a resolution (h,k) . 
ii) There are natural identifications of sets of homology 

equivalence classes 

(n-dimensional (A,S)-module chain complexes) 

= (S-acyclic (n+l)-dimensional A-module chain complexes) 

(n)O). 

Proof: i) Given an n-dimensional (A,S)-module chain complex C 

write a E.g. projective A-module resolution of Cr (05 r.S n) as 

and resolve d f HomA(Cc ,Cr-l) (1 6 r n) by 

f 
0 -Pr --+ 

(fi = jf,hj = dh) 

As d2 = 0 there exist chain homotopies k €  H O ~ ~ ( Q , , P ~ _ ~ )  (24 r Sn) 

such that 

i2 = k f  € H o ~ ~ ( P ~ , P ~ - ~ )  , j2 = fk € HO~~(Q,,Q,-~) . 
Define a resolution (D,g) of C by 

Similarly for chain maps. 



ii) Given an S-acyclic (nt1)-dimensional A-module chain complex 

D define an n-dimensional (A,S)-module chain complex C with 

resolution (D,g), as follows. Since S-'D is a chain contractible 

 module chain complex there exist A-module morphisms 
e E  Hom (D ,Drt1) (06 r S n) such that the A-module morphisms 

A r 

are S-isomorphisms, by Proposition 3.1.1 ii). Define a 

collection of E.g. projective A-modules and A-module morphisms 

I_ : m )  
: PO = D an @D @...-+Qo = D @D @D e... 

1 3 5  0 2 4  



9 = projection : Q,- C = coker ( f  :Pr-Q,) (r + 0 )  . 
The n-dimensional (A,S)-module chain complex C has a resolutic 

( D ' , q l )  with 

D; = Pr-l@Yr (r 3 0 )  

(as in i)) such that D' is chain equivalent to D. Thus (D,g) 1 

also a resolution of C. 

1 1  



Given a f inite-dimensional (A,S) -module chain complex 

i 
E-symmetric I Q;(C,c) S define the even €-symmetric R -qroups Q<vo>;(C,~) by 

€-quadratic QS(C,C) 

for any resolution (D,g) of C. The QS-groups are independent 

of the choice of resolution, on account of the chain homoto~ 

invariance of the Q-groups. As already noted above the 

relative L-groups of a localization map A---+s-~A will be 

expressed in SS3.2- 3.6 as the cobordism groups of algebraic 

S 
~oincar; complexes over (A,S) defined using the Q -groups. 

(It does not in general seem to possible to express th 

S Q -groups of a finite-dimensional (A,S)-module chain complex 

directly in terms of C, although there are natural candidate 

for such expressions: let HomA(CA,C) be the Z[Z2]-module 

chain complex defined by 

d : HO~~(C-,C) = 1 HO~~(C;,C~) - tiomA(cA,c) r-l 
p+q=r 



Vogel [2,2.41 has shown that for any finite (A,S)-module chain 

complex C there is defined a long exact sequence of Q-groups 

-S S -S . . .-Qn(c, c ) ~ Q ~ ( C , C ) - + Q ~ + ~ ( C , - ~ ) - Q ~ - ~ ( C ,  E)-. . . 

in which the groups Q,(C,c) are defined by 

with 

exac 

T f  Z2 acting on ctlAc by the E-transposition involution 

T E  : C'@ C -----+ ct@ C ~@y-(-)~~~f4~x 
p A q  ~ A P ;  

tly as in the original definition of the Q-groups in SI.l.1. 

The maps Q: (C, E )  = (D,-c) -----+ (C,-€) are the ones 

naturally induced by gt@g : c~@~c----+D~@~D for any resolution 

g:D---+C of C by a finite f.q. projective A-module chain 

complex D, using the isomorphism of Z[Z2J-module chain 

complexes 

: DtmAD -~orn~(D*.D) ; xmy-(fuf0.y) 

to identify 

Q. (D, E) = H . I w ~ ~ , ~ ~ ~  : D ~ W ~ D I  I . 

A chain map of finite (A,S)-module chain complexes 

f : C - C ' 

induces a natural transformation of exact sequences 

However, a homology equivalence f : C d C '  need not induce 



S isomorphisms F;,E% (although the maps f% are isomorphisms), 

since already the ~ I ~ 2 1 - m o d u l e  chain map inducing fz  

f t w  : cbAc -c1 b A c ~  

need not be a homology equivalence. For example, if 

k S = [2 I k b o I c ~  = z 

and f:C---+C1 is defined by 

1 
C': .. . h 0  - 1' d. I 

z4--0- ... 
with 

f : CO = Z 2 - 4  C;) = Z 4 ;  1-2 

d' : C;) = Z4----? CA1 = Z2 ; 1 l 

it is the case that 

f @ f  E o : c@zc-C'szC' . 
Vogel [2,§31 has also shown that for every "n-dimensional 

S €-quadratic complex over (A,S)" (C,$fQn(C,c)) there exists a 

finite (but not necessarily n-dimensional) (A,S)-module chain 

complex C' with a homology equivalence 

f : c-C' 

such that 

S S 
f%(+) f ~~(Q~(c',E)-Q~(~',E)) , 

and hence that the E-quadratic L-groups Ln(A,S,E) (n&O) 

defined in S3.2 below using n-dimensional E-quadratic 

S ~oincar; complexes over (A,S) (C,$€ Qn (C,€)) with C 

n-dimensional are isomorphic to the E-quadratic L-groups 

Ln (A,S, E) (n >, 0) defined using E-quadratic ~oincar; complexes 



over (A,S) of type (C,$€G;(C,~)) with C finite. For example, 

k with f:C--+C1 as in the special case above (S= I 2  }C A =  Z ,  

CO = Z2 etc.) the map 

S $,(C') = Zq------+QO(C1) = Z4 (E = 1) 

is an isomorphism, whereas the map 

- S Q ~ C C )  = Z 2 F  QoCC) = Z4 

is not an isomorphism. Similar considerations apply in the 

I E-symmetric case, with an exact sequence 
even E-symmetric 

- ...- Q ~ ( C . E ) - Q ~ ( C , E ) - - - , Q " + ~ ( C , - E ) - G ~ - ~ ( C , E ) - - - - - ,  ... 

for any finite (A,S)-module chain complex C). 

The S-adic completion of A is the inverse lim 

of the inverse system of abelian groups {A/sAls€S], with S 

partially ordered by 

s Ss' if there exists t f S  such that S' = st € S , 
the structure maps beinq the projections 

A/S~A -A/SA (S, t G S )  . 
Thus an element is a sequpnce 

G = (as€ A/SA[S€ S) 

such that 

as = last] € A/sA (s,t€S) . 
In dealing with completions we shall always assume that S is 



central in A, so that each A/sA (s€S) inherits a ring structure 

from A, and is a ring with involution 
- ,. .. ,. - 

: A--+A ; a = [aSe~/s~lses)-a = (%CA/SA~SES) 

For example, the ring of m-adic integers 

&, = py 7Z/mk" Ik) 0,m) 2) 

is the {mk)-adic completion of Z . The inclusion 
i : A A A ;  a-{[al€A/sA 

is a morphism of rings with involution such that 

g = i(s)c i; 

is a multiplicative subset. 

A commutative square of rings with involution 

is cartesian if it gives rise to an exact sequence of abelian 

groups with involution 

In particular, the localization-completion square 

is cartesian. As described in the introduction to S 3  such a 

square gives rise to excision isomorphisms in the relative 



(which follows from the isomorphism of exact categories 

and a Mayer-Vietoris exact sequence in the absolute K-groups 

In § § 3 . 2 , 3 . 6  below we shall identify the relative 

E-symmetric L-groups [L;(A-S-'A,S) 
with the cobordism 

€-quadratic L~(A-S-~A,€) 

even €-symmetric 
groups ~oincar6 complexes 

c-quadrat ic 

(A,S)-module chain complexes. The functors 

i : In-dimensional (A,S)-module chain complexes) 
.. ,. 

-In-dimensional (A,S)-module chain complexesf ; 
A A 

C -4 C = ABAC (n 3 0) 

are isomorphisms of categories. Thus if the induced maps 

j i : O(vo>;(C,€) -Q<vo):(C,~) 
S 

are isomorphisms there are defined excision isomorphisms in 

and there is defined a Mayer-Vietoris exact sequence in the 

absolute L-groups 



Use the cartesian property of the localization-completion Squi 

to define the abelian group morphism 

i f & =  0 
In Proposition 3.1.3 ii) we shall show that 

for all A,S,c 
A 

the completion map i:(A,S)-+(A,S) does induce isomorphisms i~ 

Q(v ) 
O S-groups. The conclusions regarding excision isomorphi! 

and Mayer-Vietoris exact sequences in the L-groups will be 

drawn in S3.6. 

The property of the completion map i implying excision 

in the K- and L-groups can be abstracted as follows. 

Let (B,T) be another pair such as (A,S), with B a ring 

with involution and T B a multiplicative subset. A morphism 

of such pairs 

is a morphism of rings with involution 

such that 

f(S)cTCB . 
If C is an n-dimensional (A,S)-module chain complex then 

m A C  is an n-dimensional (B,T)-module chain complex; 

if (D,g) is a resolution of C then (BBAD,lBg) is a resolution 



The morphism F: (A,S)-(B,T) is cartesian if 

i) €1 : SAT is a bijection 

ii) for each s f S  the abelian group morphisrn 

A/sA -B/f (s)B ; [a1 I----+ If (a) l (a G A) 

is an isomorphism . 
Cartesian morphisms were introduced by Karoubi 12). 

In particular, the completion map 
A .. 

i : (ASS) (A,S) 

is a cartesian morphism. 

Define a direct system of abelian groups 

( ~ / s ~ l s e s )  

by giving S the partial ordering 

5 6 s '  if S' = ts € S for some t f S  , 
and defining the structure maps by 

A/sA-A/slA ; lal-[tal . 
Use the abelian group morphisms 

to identify 

L* A/SA = S-'A/A . 
ses 

It follows from this identification that a cartesian morphisrn 

F: (A,S)- (B,T) induces isomorphisms 

f : L,~J A/SA = S-'A/A -Lim n/tn = T-'B/B 
S€ S t a  

and hence that the commutative square of rings with involution 



is cartesian. There is thus defined a short exact sequence of 

Z [ Z  ]-modules 2 

o - A -----+ B ~ S - ~ A  - T-'B -0 

inducing a long exact sequence of TateZ2-cohomology groups 

Proposition 3.1.3 i) A cartesian morphism 

f : (A,?,)-(B,T) 

induces an isomorphism of exact categories 

f : ((A,?,)-modules) ----+( (B,T)-modules) ; M-----+BBAM . 
If M , N  are (A,?,)-modules there are defined Z-module isomorphisms 

M 3 BBAM ; X - 1Bx 
HornA ( M , N ) ~  ~ o m ~  (BBAM,BBAN) ; g* (bBx -bBq (X) ) 

M^ = HornA (M, s-~A/A) 2 (BO~M) A = Hom ( B B ~ M ,  T-~B/B) ; B 

¶c--, (bBx~b.f(g(x))) . 
ii) If f: (A,S)+(B,T) is a cartesian morphism and C is a 

finite-dimensional (A,S)-module chain complex the induced 

abelian group morphisms 

[ f : Q;(C,c)-Q;(BBAC,~) 



( isomorphisms 
are ( monomorphisms. If 

the maps f : Q<vo>; (C,E)- Q(vO>; (BBAC,€) are also isomorph 

Proof: i) See Appendix 5 of Karoubi 121. 

ii) Let (D,g) be a resolution of C, and consider the commutat 

diagram of abelian qroup chain complexes 

HomA(l,q) 
HornA (D*, D) -- + HornA (D*,C) 

HornB (1, lBAq) 

HornB (BmAD*, BBAD) -- 
If  

---* HornB (B61AD*, BsAC) . 
As g:D+C is a homology equivalence (by definition) and D* 

is a f.g. projective A-module chain complex the chain maps 

HomA(l,q), HomB(l,ll g) are also homology equivalences. A 

As f: (A,S)-----t(B,T) is cartesian and D* is a f.g. projective 

A-module chain complex the chain map 

is an isomorphism of abelian group cnain complexes. It now 

follows from the commutativity of the above diagram that 

the ZIZ21-module chain map 

f : HornA (D*,D)----+HornB (BC4 A D*,BWAD) 

is a homology equivalence, so that it induces isomorphisms 

in the qroups 



(cf. the definition in S 3 . 3  below of the "linking Wu class" 

G:(+) : H " + ~ ( D ) - ~ ~ O ( Z ~ ; S - ~ A / A , ~ )  

*..S such that 6v0($) = GO(@)). We can thus identify 

Q(V~)~(C,E) = Q<V~>"+'(D,-E) 

= ker (Go:Qn+l (D,-€) -+HomA(Hn+l (D), im(i0(222;~-1~/~, E) 

-~'(z~;A,E))) . 
It follows from the exact sequence 

-1 
o - ~ ~ ( G " : ~ ~ O ( Z ~ ; T - ~ B , E ) - H  (Z2;A,c)) 

+ i m ( i 0 ( 2 2 2 ; ~ - 1 ~ / ~ , E ) - i 1 ( ~ 2 ; ~ , E ) )  

^l 
-+irn(iO(~~;~-~B/B,c) -H (Z2;B,c)) --+o 

A 

that if 6 = 0 there are also induced isomorphisms 

f : Q<v~>~(c,E) = Q<~~>~+'(D,-E) 

4 Q(~~:(BB~c,E) = Q < ~ ~ > " + ~ ( B ~ ~ D , - E )  

( n € Z )  . 
[ 1 



3.2 The localization exact sequence (n s o )  

Let A,S,c be as in S3.1 above. 

be the *-invariant subqroup of the projective classes [S-'P] 

of the f.g. projective ~-~A-modules S-'P induced from 

f.9. projective A-modules P. 

I< (A- S-'A, E) E-symmetr ic 
Let (n € 27) be the relative 

L: (A+ S-IA, E) €-quadratic 

L-groups appearing in the exact sequence 

(even) E-symmetric 
An n-dimensional complex over (A,S1 

c-quadratic 

(C,+) 
is an n-dimensional (A,S)-module chain complex C 

(C, 6) 

Such a complex is ~oincarg if the A-module morphisms 

are isomorphisms. There is a corresponding notion of pair. 

€-symmetric 
Define the n-dimensional L-group of (A,S) 

€-quadratic 

L"(A,s,E) 
(n? 0 )  to be the cobordism qroup of n-dimensional 

Ln(A.S, c) 



even E-symmetr ic 
~oincar; complexes over (A,S). 

E-quadratic 

Proposition 3.2.1 A cartesian morphism f: (A,S)-(B,T) 

(such that g = 0 : i 0 ( ~ 2 ; ~ - 1 ~ , r ) - i 1 ( ~ 2 ; ~ , r )  
induces 

1 - 
E-symmetric 

isomorphisms in the L-groups 
€-quadratic 

Proof: Immediate from Proposition 3.1.3 ii). 

I l 

In Proposition 3.2.3 below we shall apply the algebraic 

r-theory of S2.4 to identify 

In S3.6 this will be extended to the range n,(-l, and these 

identifications will be used together with Proposition 3.2.1 

to obtain Mayer-Vietoris exact sequences for the L-groups of 

the rings with involution appearing in the cartesian square 

associated to a cartesian morphism (A,S) ----+(B,T) . 



Proposition 3.2.2 i) The homotopy equivalence classes of 

(even) c-symmetr ic 
n-dimensional (poincar6) complexes over ( I  

€-quadratic 

are in a natural one-one correspondence with the homotopy 

equivalence classes of S-acyclic (n+l!-dimensional 

(even) (-€)-symmetric 
(Poincar6) complexes over A. 

( - E )  -quadratic 

Similarly for pairs. 

L"(A,s, E )  
ii) (nbO) is naturally isomorphic to the cobordisn 

LnlA.S,c) 

even (-c) -symmetric 
group of S-acyclic (n+l)-dimensional 

( - E )  -quadratic 

Poincare complexes over A. 

Proof: i) Immediate from Proposition 3.1.2. - 
ii) Immediate from i ) .  

We shall be mainly working with the characterization of 

L* (A.S,E) 
the L-groups as the cobordism groups of S-acyclic 

L,(A,S,€) 

algebraic poincar; complexes (Proposition 3.2.2 ii) ) , because 

all the A-module chain complex manipulations developed in S 1  

L* (A, E )  
in connection with the L-groups specialize to 

L, (A, c) 

manipulations of S-acyclic complexes. In particular, if it is 

insisted that all the A-module chain complexes involved be 

S-acyclic there is obtained from S1.5 an algebraic S-acyclic 

surgery theory with which to analyze S-acyclic algebraic 

~oincar6 cobordism. (Localization in geometric surgery theory 



will be discussed more fully in 57.7 below. For the present 

note that if (f,b):M-X is an n-dimensional normal map 

which is a rational homotopy equivalence (n,(f)@Q = 0) then 

quadratic kernel 

o,(f,b) = (C(€!) ,b) 

is an S-acyclic n-dimensional quadratic Poincate complex ove 

Z Inl ( X )  l , with 

S = z-~o)Cz(nl(x)] . 
The S-acyclic cobordism class of the skew-suspension 

is the obstruction to making (f,b) normal bordant to a homot 

equivalence by a bordism which is also a rational homotopy 

equivalence, i.e. it is the "local surgery obstruction" in t 

sense of Pardon 131. The chain level effect of a "local surc 

on a conglomerate Moore space" in the sense of Pardon 131 i: 

that of an S-acyclic surgery on a connected S-acyclic 

(n+l)-dimensional quadratic pair over ZInl(X)l 

(r,:C(ft)-D, (bJ1,b)) with Dr = 0 (r f k,k+l) for some k, 

0 4  k ( n+l). 

Proposition 3 . 2 . 3  i) There are natural identifications 

under which the 

sequence 

. . .-L"(A,E) 

. . ..Ln(A,E) 

maps appearing in the localization exact 

n-l 
- L ~ ( s - ~ A , ~ ) - - - - . ~ L ~ ( A - s - ~ A , ~ ) - - - + L  (A,( 

- - - - - ~ L ~ ( S - ~ A , ~ ) - - - ~ L ~ ( A - S - ~ A , ~ ) - L ~ - , ( A , I  



ii) The skew-suspension maps in the ?€-quadratic L-groups 

S : Ln(A,S.c) -Ln+2(A,S,-~) : (c,~)+--+(sc,&) (n)O) 

are isomorphisms. 

Proof: i) It follows from Proposition 3.1.1 i) that the maps 

are isomorphisms, so that there are natural identifications 

c-symmetric 
the qroups on the right being the relative F-groups 

c-quadratic 

of the commutative square of rings with involution 

By Proposition 3.2.2 ii) (nbO) is naturally isomorphic 
Ln(A,S,c) 

to the cobordism group of S-acyclic (n+l)-dimensional 



even (-E) -symmetric 
Poincarg complexes over A, which is just 

( - C )  -quadratic 

rn(F,c1 
the expression obtained for (np0) in Proposition 2.4.6. 

rn (F, E) 
We can thus identify 

Explicitly, the isomorphism 

sends the element 

( c u , + ' )  e L~(A.s.E) 
to the cobordism class of the S-acyclic 

(ct,e') e Ln(A.S.~l 

even (-c) -symmetr ic 
(n+l) -dimensional ~oincar; complex over A 

(-E)-quadratic 

(C0,$') 
obtained from the skew-suspension - by surgery 

(C1,$'1 

even (-c)-symmetric 
on the connected (n+2)-dimensional 

(-E) -quadratic 

1 S(f : C  -----D, ( & + , I $ ) )  
S- ~-eoincare pair over A . In particular, ! i(f :C-D, ( 6 $ , + ) )  

( c t , + ' )  = J$(D,~+I S-'(,, 60) € r,,"(s-'A,c) 
for C = 0 

(cu,$') = as(~,6$1 S - ~ ( D , ~ + I  € L;(S-~A.C) ' 

iil Immediate from i) and Proposition 2 . 2 . 3  ii). 



The pair (A,S) is m-dimensional if every €.g. S-torsion 

A-module M has a f.9. projective A-module resolution of 

length mtl 

0' Pm+l- Pm'.. .+ P1 &P0 ----+ M ----*0 . 

For example, if A is m-dimensional (in the sense of S1.2) then 

(A,S) is m-dimensional; if n is a finite qroup and p is a prime 

k 
such that p j  then (z[n], {p Ik ) 0)) is 0-dimensional. 

By analogy with Proposition 1.2.2 ii) we have: 

Proposition 3.2.4 If (A,S) is m-dimensional the skew-suspension 

maps in the 'E-symmetric L-groups 

S : L"(A,s,~)-L~+~(A,s,-E) (n ;r 2mtl) 

are isomorphisms, and there are natural identifications 

= the cobordism group of S-acyclic 

-dimensional ( - )  
i-m-l E-symmetric Poincarg 

complexes over A (i)mtl) 

1 
under which L" (A,S, c)----, ( A ,  E) (n 2 2m+l) becomes the 

forgetful map 

In particular, for m = 0 

(A,S, E) 
Proof: In order to identify 2i-1 (i2mtl) with the 

1. (A,S, E) l L2i 
cobordism qroup of S-acyclic -dimensional 



( - )  i-m-l E-symmetric Poincari complexes over A it suffices 

(by the S-acyclic counterpart of Proposition 1.4.2) to show 

that it is possible to perform S-acyclic surgery on a 

connected S-acyclic (n+l)-dimensional even (-E)-symmetric 

~oincar; complex over A (C.6e Q(vJ~+'(c,-c)) (n) 2m+l) 

ao as to obtain a skew-suspension, killing H"+~(C). Working 

exactly as in the proof (in I.) of Proposition 1.2.2 use a 

f.g. projective resolution of the E.g. S-torsion A-module HO(C) 

to define a connected S-acyclic (nt2)-dimensional even 

nt2 (-E)-symmetric pair over A (f:C+D, (0.6) f Q<vo> (€,-E)) 

with which to perform such a surgery. 

In particular, if (A,S) is 0-dimensional we have that 

L2 i-1 (A,S,E) (i) 1) is the cobordism group of S-acyclic 

0-dimensional ( - )  i-lc-symmetric Poincarg complexes over A 

(C,$ E Q'(c, ( - 1  i-l~)). Now HO(C) is an S-torsion f .g. 

projective A-module, and S consists of non-zero-divisors, 

so that HO(C) = 0 and L*~-~(A,S,,) = 0 (i 3 l). 

r 1  

Let 

f : A --------, B 

be a morphism of rings with involution for which there exists 

a multiplicative subset S C A  such that f factors through the 

localization S-IA 

f : A--+S-~A-+B 

with the property 

B a finite-dimensional A-module chain complex C is B-acyclic 

if and only if C is S-acyclic. 



It then follows that 

rn(f:A-B,E) = the cobordism group of n-dimensional 

€-symmetric B-poincar; complexes over A 

= the cobordism group of n-dimensional 

€-symmetric ~ - ~ A - P o i n c a T ~  complexes over A 

and similarly for the €-quadratic case. The connection between 

the r-groups and the L-groups of localizations has been 

investigated in the quadratic case by Smith [l\ (following some 

preliminary work of Cappell and Shaneson in the commutative 

case). In particular, Smith showed that if 

E : A = Z[nl -, B = Z[P] 

is the morphism of rings with involution induced by a surjective 

group morphism f:n-p such that P is a finite extension of 

a polycyclic group and ker(f:n----to) is a finitely generated 

nilpotent group then the multiplicative subset 

S = (l+i(if ker(f:A----rE))CA 

is such that the evident factorization 

f : A-S-~A-B 

does indeed have the property 1, and hence that 

S r,(f:A-----+B) = L,(s-~A) . 
The case of the projection induced by f: n =  Z ---+ p = {l) 

f : A = Z [ Z ]  ------?B = Z 

is of particular interest, since the groups 

r,(f:z[z]+z) = ~ , ( ~ ~ ~ I - s - ~ I L ~ z ~ ~  = LS(S-'Z[ZI) 

are closely related to the high-dimensional knot cobordism 

groups C,, as described in S 7 . 9  below. More recently, Vogel (31 



has obtained natural identifications of the type 

for any locally epic morphism f:A+B with a factorization 

f : A - A -----a B 

satisfying the property 

7 a finite-dimensional A-module chain complex C is B-acyclic 

if and only if C is A-acyclic 

universally, with A + B  onto. 



3.3 Linking Wu classes 

The linking Wu classes are the S-acyclic counterparts 

of the algebraic Wu classes of S1.4. 

Let T f  Z2 act on the additive groups A, s - ~ A ,  S-~A/A 

Z2-cohomology 

by T:x-E~ in each case. Define the 

Tate Z2-cohomology 

Hr (Z2;G, E) 

Hr(Z2;G,c) (r f Z )  for G = s - ~ A ,  S-~A/A by analogy 

with the case G = A considered in S1.4. The short exact 

sequence of Z [a2) -modules 

o A -+ S-'A - S-'A/A - o 
induces a long exact sequence of abelian groups 

( Z ~ ; S - ~ A , E ) - H ~ ( Z ~ : S - ~ A / A , C )  

------+H~+~(z~;A,E) - .. . 
- 1 (z2;s A,E)----*H~ (z~;s-~A/A,E) 

-A Hr-l (Z2;A,~) B.. . 

Let C be an S-acyclic finite-dimensional A-module chain 

complex. The linkinq Wu class 

[ o f d'"(~. E) 

IJJ F Vnt,(C,~) is the function 

0 f $"+l(~,E) 



Motivation: the cohomology classes X €  Hm(c) of an S-acyclic 

A-module chain complex C are in a natural one-one corresponder 

with the chain homotopy classes cf A-module chain maps 

X : C -C,(A,S), 

where Cm(A,S) is the S-acyclic A-module chain complex 

defined by 

Now Cm(A,S) is the direct limit 

Cm(A,S) = L> Cm(A,s) 
s€S 

of the directed system {Cm(A,s)ls€s) of finite-dimensional 

S-acyclic A-module chain complexes defined by 



with s < s '  if there exists t f S  such that s '  = st f S and 

at i =  m-l 
C (A,s). - ---+ Cm(A,sl) : a c---, 

a i = m  

E-symmetric 
The I linking Wu class is the obstruction 

c-quadratic V: ($1 (X) 

to killing x f  (C) ( =  Hr (C) if is ~oincar;) by 

E-symmetric 
S-acyclic surqery on an pair of the type 

€-quadratic 

By analogy with Propositicn 1.4.1 we have: 

Proposition 3.3.1 i) The linking Wu classes are related to 



ii) The linking Wu classes are related to the algebraic Wu 

classes of S1.4 by 

iii) The linking Wu classes satisfy the sum formulae 

( C , @  f Q~~+'(C,E)) 
pairing of ( n  = 2r). Furthermore, 

( C . ~ J ~ Q ~ ~ + ~ ( C , E ) )  



As a first application of the linking Wu classes we have 

the following S-acyclic analogues of Proposition 1.2.2 i) : 

Proposition 3.3.2 i) If A,S,e are such that 

ker ( ~ : i 0 ( ~ 2 ; ~ - 1 ~ / ~ , ~ ) ~ ^ H 1 ( ~ 2 ; ~ , ~ ) )  = 0 

there is a natural identification 

L" (A, S,€ ) = the cobordism group of S-acyclic (n-l) -dimensioni 

€-symmetric ~oincar; complexes over A (n), 2) 

under which Ln(A,S,~)-tn-'(A,~) becomes the forgetful map. 

In particular, this is the case if f i 0 ( ~ 2 ; ~ - 1 ~ , ~ )  = 0 

(e.g. if 1 / 2 ~  s-~A). 

ii) If A,S,c are such that 

A. H (Z~;A,E)--------J;~~(Z~;S-~A,E) 

is an isomorphism then the skew-suspension maps 

S : L"(A,s,~) ----A L"+~(A,s,-c) (n> 01 

are isomorphisms. In particular, this is the case if 1/2€ s-~A, 

Proof: i) By the S-acyclic counterpart of Proposition 1.5.2 it 

suffices to show that it is possible to perform S-acyclic 

surgery on a connected S-acyclic (n+l)-dimensional even 

n+l (-E)-symmetric complex over A (C,$ € ~ ( v d  (C,-C)) (n >, 2) 
so as to obtain a skew-suspension, killing Hntl(c). For any 

element x € Hntl (C) we have 

l 
;vS($) 0 ( X )  = vO(@) ( X )  = 0 € H (Z2;A.E) , 

It follows that X €  Hntl(C) may be represented by an A-module 

chain map 



X : CFC~+~(A,S) 

for some s € S  (with Cn+l(A,s) as defined ebove) such that the 

is defined a connected S-acyclic (n+2)-dimensional even 

(-€)-symmetric pair over A 

(x:C - -Cn+l(A,~), (66,6) € Q(v,>~+~(x,-E)) . 

Surgery on this pair results in a connected S-acyclic 

(n+2)-dimensional even (-€)-symmetric complex over A 

(C1,-$' € Q<V,>~+~(C',-E)) such that 

H"+~(c') = Hn+l(c)/(x) . 
Now H"+~(c) is a f .g. S-torsion A-module, so that it is possi 

to kill H"+'(c) in (C,+) by successively killing off a finite 

set of generators. 

ii) Consider the exact sequence of abelian groups 

0 If fi (z2;A,~)-fi0(~2;~-1~,c) is onto then 

ker($:i0(~2:~-1~/~,c) -fi1(z2;A,€)) 0 

and by i) we can identify 

+ 2 (A,S.c) = the cobordism group of S-acyclic 

(n+l)-dimensional €-symmetric Poincar; 

complexes over A (n)/O) . 
~f f i 0 ( z 2 ; ~ , ~ ) - ~ 0 ( ~ 2 ; ~ - 1 ~ , c )  is one-one then 

i m ( ~ : f i 1 ( ~ 2 ; ~ - 1 ~ / ~ , E ) d ~ 0 ( ~ 2 ; ~ , c ) )  = 0 

and every S-acyclic €-symmetric complex (or pair) over A is 

even. ~ h u s  if fi0(z2:~,~)- ~~O(Z~:S-~A,E) is an 



isomorphism we can identify 

L"+'(A,s,~) = the cobordism group of S-acyclic 

(n+l)-dimensional even c-symmetric ~ o i n c a r 6  

complexes over A 

= I."(A,s,-c) (n > O) . 
I l 



3.4 Linking forms 

In the first instance we define some subquotient groups 

of s - ~ A ,  which are needed to define the various types of linking 

form that arise in the localization exact sequences of Witt 

groups. 

Write QC (s-~A/A) for the Z2-cohomology group 

Q'(s-~A/A) = HO(Z~:S-~A/A,E) = { b e s - l ~ l b -  EI;~A)/A 

and let Q'(A,s) be the subgroup of QE(S-lA/A) defined by 

Q,(A,S) = im(H0(2Z2; s - ~ A , E ) ~  H~(Z~;S-~A/A,~)) 

1 = {bfs- Alb- €6 = a -  ~z,~€A)/AsQ~(s-~A/A) 

Write Q, (s-~A/A) for the Z2-homoloqy group 

1 Q,(s-~A/A) = H0(Z2;S- A/A,€) = S-lA/{a + b - €6la € A,b€ S - ~ A I  , 

and define also the abelian group 

The E-symmetrization map 



An E-symmetric linkinq form over (A,S) (M,A) is an 

(A,S)-module M together with an A-module morphism AC:HomA(M,~^) 

such that 

E A ^  = A € HomA(M.~I) . 
Equivalently, AfHomA(M,M^) can be regarded as a pairing 

A : M X  M ---+ S-~A/A ; (x,y). A(X,Y) 5 A(X) (y) 

such that 

i) A(x,y+yl) = A(x,Y) + A(x,Y1) 

ii) A(x,ay) = aA(x,y) 

iii) A(y,x) = ~A(x,y) 

(x,y,y' C:M,aC:A) . 
For example, an c-symmetric linking form over (z,z-(o)) 

(M,A) is the same as a finite abelian group M together with 

a bilinear E-symmetric pairing 

X : MxM--------+Q/Z . 
If (M,A) is an c-symmetric linkinq form over (A,S) then 

The linking form (M,A) is even if 

An e a d r a t i c  linking form over (A,S] (M,A,p) is an ever 

E-symmetric linking form over (A,S) (M,A) together with a funct 

such that 

i) ~ ( a x )  = a~(x)a C: Oc(A,S) 

ii) ~ ( x t y )  - U(X) - ~ ( y )  = A(xrY) + cA(XrY) C: QE(ArS) 

iii) q ~ ~ ( x )  = A(x,x) € Qc(Ats) 

(x,y f M,a f A )  . 



n 

t ion 

This definition is due to Wall [2] (in the special case 

(A,S) = (Z[nl ,Z-(0)) arisinq in odd-dimensional surgery 

obstruction theory). If A is a commutative ring with the 

identity involution a = a E A (a € A) and 1/2 € S-'A a quadrati' 

linking form over (A,S) (M, ~ , p )  ( E  = l f A) consists of an 

(A,S)-module M toqether with a function 

such that 

2 
i) p(ax) = a  XI s - ~ A / ~ A  (xe M,a€A) 

ii) the function 

is bilinear. 

A split €-quadratic linking form over (A,S) (M,A,p) is 

an even €-symmetric linking form over (A,S) (M,,!) together 

with a function 

v : M-------+ Q~(S-~A/A) 

such that 

i) vlax) = av(x)a € QE(s-'A/A) 

ii) v(x+y) - "(X) - v(y) = X(X,Y) E Q~(s-~A/A) 

iii) qpv(x) = A(x,x) f Q'(A,s) 

(x,y€M.afA) , 

in which case the function 

p : M ------+ QE (A,S) : X t---j pv(x) 

defines an E-quadratic linkinq form (M,A,p). This definitior 

due to Karoubi ( 2 1 .  In Proposition 3.4.2 below we shall shor 

that every E-quadratic linking form (M,A,p) has a split 



c-quadratic refinement (M,A,u) (withp = pv), and that if 

1/2 € S-'A there is no difference between c-quadratic and split 

€-quadratic linking Forms over (A,S) . If A is a commutative 
ring with the identity involution a split quadratic linking 

form over (A,S) (M,X,v) ( c =  l € A )  consists of an (A,S)-module 

M together with a function 

v : M ~-, Q + ~  (s-~A/A) = S-~A/A 

such that 

2 
i )  v(ax) = a v(x) € S-'A/A (x€M,af A) 

ii) the function 

A : M x M - S A A  ; ,y-(v(x+y) - v(x) - v(y)) 
is bilinear. 

The associated quadratic linking form (M,A,u = p v )  is obtained 

by composing v with 

p = 2 : Q + ~  (s-~A/A) = s-~A/A- Q+~(A,s) = S-~A/ZA : 

b-2b 

(which is an isomorphism if 1/2€ S-IA). 

(even) c-symmetric 
link 

(split) c-quadratic 
inq form over (A,S) 

is non-singular if X € Hom (M,M-) is an 
(M,A,u) ((M,x,v)) 

A 

isomorphism. 

(even) €-symmetric 

A morphism (resp. isomorphism) of 

split €-quadratic 

linking forms over (A,S) 



is an A-module morphism (resp. isomorphism) f€HomA(M,M') 

such that 

f x f  A '  
X : M X  M -M# M~-S-'A/A 

and 

In Proposition 3.4.1 below the isomorphism classes of 

(non-singular) linking forms over (A,S) will be identified 

with the homotopy equivalence classes of S-acyclic l-dimensional 

(~oincarg) complexes over A. In Proposition 3.4.7 this will be 

L2(A,s,-E) ((A,S) 0-dimensional) 

extended to an identification of 

even c-symmetric 
with the Witt qroup of non-singular 

€-quadratic 

split E-quadratic 

linkinq forms over (A,S). Thus the even-dimensioanal €-quadratic 

L-groups of (A,S) 

, L~~(A.s,E) = L~(A,s, ( - ) ' c )  

are the Witt groups of the split ( - 1  ic-quadra 

over (A,S), rather then the Witt groups of ( -  

tic linking forms 

) 



linking forms. However, if 1/21? S - ~ A  (e.g. if (A,S) = ( ; (Z [n I  ,z-( 

it will be shown in Proposition 3 . 4 . 2  below that the forgetful 

functor 

{split c-quadratic linking forms over (A,S) 1 

---------+(c-quadratic linking forms over (A,S)) 

is an isomorphism of categories, so that the Witt groups are 

also isomorphic. See Ranicki [6,56] and 55.1 below for an 

example of a pair (A,S) (with 1 / 2  P s - ~ A )  for which the Witt 

groups are not isomorphic. 

r E-symmetric An E-quadratic 9 (resp. homotopy equivalence) 

split E-quadratic 

I E -symmetr ic of S-acyclic l-dimensional c-quadratic complexes over A 

E-quadratic 

1 
f : (C,@)----+(C',@') 

f : (C,$)----*(C',$') 

f : (C,+)-(C',$') 

is an A-module chain map (resp. chain equivalence) 

f : c-C' 

for some Tate z2-cohomology class 0 € b2 (C' ,c) such that 



An €-quadratic homotopy equivalence in this sense is the same 

an €-quadratic homotopy equivalence in the sense of S1.6 

c-quadratic 
map f: (C,$) -----, (C' , + l )  determines an 

split €-quadratic 

c-symmetr ic 
map 

€-quadratic 

since 

( c-symmetr ic 

even €-symmetric 
Proposition 3.4.1 The category of linking 

c-quadratic 

\ split €-quadratic 

forms over (A,S) is naturally equivalent to the opposite of t 

i even (-c) -symmetr ic category of S-acyclic l-dimensional 
( - E )  -quadratic 

(-c) -symmetric 
complexes over A and maps. 

( - E )  -quadratic 

Isomorphisms of linking forms correspond to homotopy equivale 

of complexes. Non-singular linking forms correspond to Poinca 

complexes. 



Proof: The linking pairing of an S-acyclic l-dimensional 

1 
(-E)-symmetric complex over A (C,@€Q (C,-€)) 

1 ~ ~ , ~ ~ c ~ , ~ E c ~ , ~ ~ s , ~ * z = s ~ E c  

defines an E-symmetric linking form over (A,S) 

1 S 
(M.U = (H cc) ,mo) . 

The 0th (-E)-symmetric Wu class of (C,@) factors as 

v:(@) 6 1 
v,(@) : H'(c) -HO(Z~;S-~A/A, c )  --H (z~;A,E) 

and 

ker ( 6 )  = oE(A,S) C HO(Z~;S-~A/A, E) = Q€(s-~A/A) , 

so that the complex (C,@) is even (vo(@) = 0) if and only if the 

linkinq form (M,  A) is even (A ( x , x )  5 v;(@) (X) € Q~ (A,S) (S-~A/A) 

1 for all x € M = H  (C)). 

The 0th (-€)-quadratic linking Wu class of an S-acyclic 

l-dimensional (-E) -quadratic complex over A (C, $62 Q1 (C,-€) ) 

1 C1,zf ~O,s€S,d*z= s y E C  ) 

defines a split E-quadratic linkinq form over (A,S) 

with associated €-quadratic linking form over (A,S) 



A map of S-acyclic l-dimensional (-c)-symmetric complexes 

over A 

induces contravariantly a morphism of the associated E-symmetric 

linking forms over (A,S) 

Conversely, every morphism of the associated E-symmetric linking 

forms is induced by a map of complexes. 

A map of the (-E)-symmetrizations 

f : (C, (ltT-E)$)-(C', (l+T-E)*') 

of the S-acyclic l-dimensional (-€)-quadratic complexe over A 

(C,$),(C1,Q') induces contravariantly a morphism of the 

€-quadratic 
associated linking forms over (A,S) 

split €-quadratic 

(-€)-quadratic 
if and only if E: (C,$)-(C',$') is a 

split ( - E )  -quadratic 

map, since by the exact sequence of Proposition 1.1.3 there 

exists an element 0 € 6*(Cq,-c) such that 

and there is defined a commutative diagram 



1 
(even) c-symmetric 

Conversely, given an €-quadratic linkinq form 

split c-quadratic 

1 
(M,X) 

over (A,S) (M,A,p) we shall construct an S-acyclic l-dimensional 

(M.X.V) r (even) ( - c )  -symmetric 

i 
1 

( C . $  € Q (C,-E)) 

( - c )  -quadratic complex over A (C,$ € Q1 ( C , - € )  ) 

(-€)-quadratic ( C , $ €  Q1(C,-c)) 

such that 



1 S 
(H (C) ,QO) = (M, XI 

1 S S 
(H (C), (l+T-E)$or~~o($)) = (M,X,V) 

1 S S 
(H (C) (l+T-c) 60,V0($) = (M, X, V) , 

as follows. 

Given an E-symmetric linking form over (A,S) (M,X) let 

d 0- Cl--- C~AM^PO 

be a f.q. projective A-module resolution of the S-dual 

(A,S)-module M- of M. The A-module morphism XfHomA(M,~^) can 

be resolved by a chain map 

Q0 : cl-*--+c 

such that there is defined a commutative diagram 

We thus have A-module morphisms 

Q. : cO-cl , To : c l - - +  

such that 

d$o + i0de = 0 : CO-cO 

and 

1 X : M = coker (d* :c0-- C ) --M̂ ; 



The relation TEA = A €2 HomA(M,~I) is resolved by a chain homotopy 

: T-E$o ' bO : -C. 

as defined by an A-module morphism 

o1 : cl---+ 

such that 

$O + = -Qld* : cO- ' 

qO+ c$(; = d$l : c1-c0 . 
NOW 

d(@~~+c+;) = ( 5 0 + ~ ~ t ) ) - ~ ( +  o + E T * ) * =  o o : C'- 

and dfHomA(C1,Co) is a monomorphism, so that 

+ €9; = 0 : c l - - -  
' 

The S-acyclic l-dimensional (-€)-symmetric complex over A 

1 ( C , $ € Q  (C,-€)) is such that 

(H'(C),$;) = (M,A) , 

by construction. The chain map QO:cl-*-C is a chain equivalence 

if and only if it induces an A-module isomorphism 

1 ($,), = A : H (C) = M-HO(C) = M- , 

so that the complex (C,$) is ~oincarg if and only if the linking 

form (M,A) is non-singular. 

Given an €-quadratic linking form over (A,S) (M,A,u) let 

be a f . g .  projective A-module resolution of the S-dual MI 

(as above), stabilized so as to have Cl a f.g. free A-module. 

Write the dual resolution for the double S-dual (M")" = M as 



C h o o s e  a  b a s e  I x i [  l 6  i ,( n  ] f o r  c1 = C i  a n d  l e t  

{ y . . € ~ - ~ A l l \ (  i , j < n )  b e  s u c h  t h a t  
1 1  

i )  y . .  = C c  f S-IA ( l < i , j < n )  
1  l l 1  

i i )  A ( e x i )  ( e x . )  = y . .  f S - ~ A / A  ( 1 6 i  < j b n )  
l 1  l 

i i i )  P ( e x i )  = y i i  E QC ( A , S )  ( l $  i s  n) . 
D e f i n e  a n  A-module  s t r u c t u r e  o n  H ~ ~ ~ ~ ( c ~ , s - ~ A )  by  

A  r H ~ ~ ~ ( c ~ , s - ~ A )  - - - - - + H ~ ~ ~ ~ ( C ~ , S - ~ A )  ; 

( a ,  P) - ( X  - f ( x ) S )  

The  A-module  m o r p h i s m  

a : c ~ - H ~ ~ ~ ~ ( c ~ , s - ~ A )  ; 

NOW 

( d * z )  ( y )  € A S  S - ~ A  

( d * z )  / d * z )  € i m ( l + T C : A  - A:a - a + ~ a ) 5  S-IA 

( y e c l ,  z e c O ,  , 

so t h a t  t h e r e  is a  w e l l - d e f i n e d  A-module  morph i sm 

qO ' CO- (c1)  = Cl : z (Y'- 'ad* ( z )  ( Y )  l 

s u c h  t h a t  f o r  some f H ~ ~ ~ ~ ( C O , C ~ )  1 

d g O  + + E$i  = 0 : CO- . 



(C,$€ Ql(C,-E)) is such that 

1 
(H (C). (l+T-c 

by construction. 

Given a split c-quadrat 

235 

The S-acyclic l-dimensional (-€)-quadratic complex over A 

S 0 
)OOtPVS($)) = (Mtit~) t 

ic linking form over (A,S) (M,A,v) 

let (C,$) be the S-acyclic l-dimensional (-c)-quadratic complex 

over A constructed as above, but with $l€ H ~ ~ ~ ( C O , C ~ )  

determined by v:M -----t Qc(S-lA/A), as follows. 

Let ( Z ~ € S - ~ A I ~  ,( i<n) be such that 

"(exi) = zi € QC (S-'A/A) (l < i b n) , 

and define an A-module morphism 

such that 

The S-acyclic l-dimensi 

(C, $ f Q1 (C, - E )  ) is such 

(H1(c), 

by construction. 



Proposition 3.4.2 i) Every c-quadratic linking form over (A,S) 

(M,A,p) admits a split €-quadratic linking form (M,A,v) with 

v a refinement of p, 

P 
p : M A Q, (s-'A/A) ---+Q, (*,S) . 

ii) If A,S,E are such that 

( i m ( i : i i 0 ( a 2 ; s - 1 ~ / ~ , ~ ) - i i 1 ( ~ 2 ; ~ , c ) )  = o 

i i 0 ( z 2 ; ~ , c ) + i i 0 ( z 2 ; s S 1 ~ , ~ )  is an isomorphism 

(Z2;~-1~,~)--+fi1 (IZ~;S-~A/A,E)) .= 0 

then the forgetful functor 

even c-symmetr ic 

E-quadra t ic linking forms over (A,!?.)) 

split €-quadratic 

€-symmetric 

even €-symmetric linking forms over (A,S)) 

€-quadratic 

is an isomorphism of categories. In particular, this is the 

case if 1/2 € A; if 1/2 f S - ~ A  (e.g. if 2 € S) the forgetful 

f unc tor 

(split €-quadratic linking forms over (A,S)) 

-(€-quadratic linking forms over (A,S)) 

is an isomorphism of categories. 

Proof: i) Immediate from Proposition 3.4.1. 

ii) Let Gc(A.~) be the subgroup of Qc(A,S) defined by 

and define abelian group morphisms 



P = P I  : Q, (s-~A/A) ---+ Q, (A,s) : h- h + EL 

< = ¶ l  : " Q,(A,s)-Q'(A,s) ; X-X . 
By i) we have that for every €-quadratic linking form over (A,S) 

( M , A t ! J )  

!J(x)€~~(A.s)cQ~(A,S) ( % € M )  . 
The isomorphisms of categories of linking forms may now 

be deduced from the correspondences of Proposition 3.4.1 and 

the exact sequences 

-1 O+QE (A,s) ~ Q ~ ( S - ~ A / A ) ~ ~ ~ ( ~ : ~ ~ ( Z ~ ; S - ~ A / A , € ) - - + H  (Z2;A,c)) 

-0 

^O 0-ker (H ( Z 2 ; A , ~ ) - - 4 i 0 ( ~ 2 : ~ - 1 ~ , ~ ) )  ---+ 6 C ( ~ , ~ )  %QE (A,S) 

coker (fi0(~2;~,~)---t~0(~Z;~-1~,~)) --+ 0 

- 1 O-+im(H ( z ~ ; A , E ) - S ~ ( X ~ ; S - ~ A / A , E ) )  

- o, (S-~A/AJ AijE ( A , s )  -0 

(which are valid for any A,S,E). 

I I 

Proposition 3.4.1 related linking forms over (A,S) to 

S-acyclic l-dimensional complexes over A. Proposition 1.6.4 

relates such complexes to formations over A which become 

stably isomorphic to 0 over s-~A. We shall now establish 

the direct connection between linking forms and such 

formations - such a connection was first observed by Wall Ill 

in the case (A,Sl = (Z,z-[O)). 



E-symmetric 
An S-lapranqian L of an form over A 

E-quadratic 

(K,a€ Qc(I0) 
is a f.g. projective A-submodule L of K 

(K, B e QE ( K ) )  
(not necessarily a direct summand) such that the inclusion 

j€HomA(L,K) defines a morphism of forms over A 

j : (L,O) (K,a) 

J : (L,O)---+ ( K t O )  

which becomes the inclusion of a lagranqian over s-~A. 

(An S-lagrangian is an S-lA-lagrangian in the sense of S2.4). 

(even) c-symmetr ic (Q,$;F,G) 
S-formation over A 

E-quadra t ic (0, *;F,G) 

(even) E-symmetric (Q.$) 
is a non-singular form over A 

(Q. * )  

together with a lagrangian F and an S-lagranqian G, such 

l S-l (Q, $) 
that S-lF and S-IG are complementary lagrangians in 

s-l (Q, e, 

It follows that F n G  = (01, and that Q/(F+G) = coker(C-+O/F) 

f (even) (-E) -symmetric 
is an (A,S)-module supportinq an 1 

[(-€)-quadratic 

linking form over (A,S) (as made precise in Proposition 3.4.3 

below). The S-formation is non-sinqular if G is a lagrangian. 

(An S-formation is an S-lA-formation in the sense of 5 2 . 4 1 .  

(even) E-symmetric 
An isohorphi* of S-formations 

over A 



(even) E-symmetr ic 
is an isomorphism of the forms 

E-quadra t ic 

such that 

f (F) = F' , f (G) = G' . 
(even) E-symmetric 

A stable isomorphism of S-formations over A 
E-quadratic 

for some f.9. projective A-modules P , P '  

A split €-quadratic S-formation over A 

(F,G) = (F, ( (Y), e ) ~ )  U 

is an c-quadratic S-formation (H (F) ;F,G), with (Y) :G-F@F* 
U 

the inclusion, together with a hessian (-€)-quadratic form 

over A (G,Of Q-E(G)) such that 

y*U = 0 - € B *  € HomA(G,G*) . 
Then U € Hom (G, F*) is an S-isomorphism, and A 

(F@F*)/(F+G) = coker (u:G+*) 

is an (A,S)-module supporting a split (-€)-quadratic linking 

form over (A,S) (as made precise in Proposition 3.4.3 below). 

The S-formation (F,G) is non-singular if G is a laqrangian, 



that is such that the sequence 

( q *  y*) 
0- G FOF* ' G** 0 

is exact. 

An isomorphism of split E-quadratic S-formations over A 

(a,B,+) : (Fr((;),e)~)-(F1, ((;:),e')~') 

is a triple (a€ HomA(F,F1) ,B€ HomA(G,G1) ,B€ such that 

a and B are isomorphisms, and such that 

A stable isomorphism of split €-quadratic S-formations over A 

la,B,$I : (F,G)----+(F'.G') 

is an isomorphism of the type 

(a,8,b) : (F,G)B)(P,P*)----+ (F1,G')B)(P',P'*) 

for some f . q .  projective A-modules P,P1, with (P,Pf) = (P, (1;: 

i 
(even) E-symme' 

Proposition 3 . 4 . 3  The isomorphism classes of €-quadratic 

spl it c-quadra 

linking forms over (A,S) are in a natural one-one corresponde~ 

r (even) (-E) -symmetri~ with the stable isomorphism classes of (-€)-quadratic 

(.split (-€)-quadratic 

S-formations over A. Non-sinqular linking forms correspond to 

non-singular S-formations. 



proof: proposition 3.4.1 gives a natural one-one correspondence - 
between the isomorphism classes of (non-singular) 

1 
(even) C-symmetr ic 

c-quadratic linking forms over (A,S) and the 

split c-quadratic 

1 (-c) -symmetr ic (-E)-quadratic homotopy equivalence classes of S-acyclic 

split (-c) -quadratic 

1 
(even) ( - E )  -symmetr ic 

l-dimensional (-E)-quadratic (~oincarg) complexes over A. 

( - E )  -quadratic 

A straightforward modification of the proof of Proposition 1.6.4 

shows that the latter are in a natural one-one correspondence 

with the stable isomorphism classes of (non-singular) 

l (even) (-C)-symmetric ( - E )  -quadratic S-formations over A .  Explicitly, a 

split (-€)-quadratic 

(even) (-€)-symmetric 

S-formation over A 

(split (-c)-quadratic 

i 
(Q,@;F,G) 

Q F G  corresponds to the (non-singular) 

( F ,  U;) , 0 ) G )  

i 
(even) €-symmetric 

c-quadra t ic linking form over (A,S) 

split €-quadratic 

defined by 



(x,y€F*,qf G,s€S,sy = p g €  F*) . 
I I 

E- symme t r ic (K. a €  Q€(K 
form over A 

equadratic (K, BB Q,(K 

S-' (K, a) E-symmetr ic 
if 

l3) 
is a non-singular form over s - ~ A ,  

E-quadratic 

U€ HomA(K,Kf) 
that is if is an S-isomorphism. (Thus an 

Et CB*€ HomA(K,Xt) 

S-non-singular form is an S-'A-non-singular form in the sense 

of S 2 . 4 .  S-non-singular forms were called "non-degenerate" in 

Ranicki 161, but an explicit reference to the multiplicative 

subset S C A  now seems preferable). 

We shall now use the correspondence of Proposition 3.4.1 

to characterize 

forms over (A, 

even rsymmetric 
the non-singular linking 

split c-quadratic 

L'(A,s,~) 
) representing 0 in in terms of 

LO(A,S,c) 

E-symmetric 
S-non-singular forms over A .  

E-quadratic 



i 
E-symmetric 

The boundary of an S-non-singular even c-symmetric 

€-quadratic 

i 
( ~ , a  f Q€ (K) 

form over A (K,a € o < v ~ } ~  (K) ) is the non-singular 

(Kt0 f QE(K) 

i 
even c-symmetric 

c-quadratic linking form over (A,S) 

split E-quadratic 

i 
3(K,a) = (;K,A) 

j(K,a) = (SK,X,u) 

J(K,6) = (aK,A,v) 

defined by 

(x,y€K*,z€ K,s€S,sy= a(z)€K*,a= B+EB* in the E-quadrat: 

The boundary linkinq form corresponds (via Proposition 3.4.3) 

even (-c) -symmetric 

to the boundary S-formation over A 

split (-c)-quadratic 



case) 

The boundary operations 

3 : (S-non-sinqular forms) (linking forms) 

are thus seen to be special cases of the boundary operations 

a : (forms)----+(formations) 

defined in 51.6. (The boundary operations on S-non-singular 

forms can also be expressed in terms of the "dual lattice" 

construction familiar in the classical theory of quadratic 

forms over Dedekind rings (particularly in the case 

(A,S) = (Z,Z-(O)) , when S - ~ A  = Q), as follows. 

(even) E-symmetr ic 
A lattice in a non-singular form over S-' 

E-quadratic 

(Q.+) (even) E-symmetr ic 
is an S-non-singular form over A 

(Q.$) c-quadratic 

(K.a) 
with K a f.g. projective A-submodule of Q, such that 

(K.0) 

the inclusion jfHomA(K,Q) extends to an isomorphism of 

forms over S - ~ A  

(even) E-symmetr ic (Q, +) 
A non-singular form over S - ~ A  

E-quadrat ic ( Q , $ )  

admits such lattices if and only if Q is isomorphic to S - ~ K  

for some f.g. projective A-module K. The dual lattice KX of 

I (K. a )  C_ (Q, $1  
a lattice is the A-submodule 

(K, B) C_ (Q, 9) 



The A-module isomorphism 

im(a:K----+ K*) C K* 
sends KSK' to , so there is induced 

im(0+~B*:K- K*) S K *  

an isomorphism of (A,S)-modules 

K'/K 3K = coker [a:K-K*) i K'/K + 2. = coker (B+rB*:K --+ l*) . 

i 
E-symmetr ic I (Q,+) Given a non-singular even E-symmetric form over S - ~ A  (Q,$) 

€-quadratic (Q,*) 

define a non-singular 

( even E-symmetric (K'/K,A) 

€-quadratic linking form over (A,S) (K /K,A,p) by 

split €-quadratic 1 (K'/K,A,v) ' 

(X, y & K',$ = $+c$*  in the €-quadratic case) . 
The isomorphism of (A,S)-modules K'/K - 3 ~  defined above 

( even E-symmetric 

actually defines an isomorphism of 

split €-quadratic 

linking forms over (A,S) 



E-symmetric 
An S-non-singular form over A 

€-quadratic 

S-hyperbolic if it admits an S-lagrangian, or equivalently if 

(K, a) ~-symmetr ic 
is a hyperbolic form over S - ~ A  with a 

S-'(K,~) E-quadratic 

lagrangian isomorphic to S - ~ L  for some f.g. projective 

A-module L. (Thus an S-hyperbolic form is the same as an 

S-IA-hyperbolic form in the sense of S2.4) . 
(c,@€Q<~~'~(c,-E)) 

Proposition 3.4.4 Let be an S-acyclic 
(C,'!'€ Ql(C,-~) 

even (-E) -symmetric 
l-dimensional ~oincar; complex over A ,  

(-€)-quadratic 

even E-symmetric 
with associated non-singular linking form 

split €-quadratic 

i) The S-acyclic cobordism class 

( M J )  
depends only on the isomorphism class of 

(M,X,V) 

3 (K,a) 
isomorphic to the boundary of an S-hyperbolic 

o (K.0) 



E-symmetr ic (K. a) 
S-non-singular form over A 

E-quadratic (Kt01 i . 
Proof: Dy 

over A i :: 

he S-acycllc counterpart of Proposition 1.3.3 

even ( - c )  -symmetric 
c l-dimensional ~oincar; 

(-€)-quadratic 

iii) 

complex 

it is 

a (D. n) 
homotopy equivalent to the boundary of a connected 

3 (D, 5) 

even ( - E )  -symmetric 
S-acyclic 2-dimensional complex over A 

(-€)-quadratic 

2 
(D,n Q(v,) (D,-€) 

with D a €.g. projective A-module chain 
(D,5€Q2(D,-€)) 

complex of the type 

( C , @ )  = a(o,~) 
be an S-acyclic boundary, as above. 

(C,$) = ~(D.C) 

even c-symmetric 
The associated linking form over (A,S) is 

split €-quadratic 

the boundary 

€-symmetric 
of the S-non-singular form over A 

E-quadratic 



(D, 0 )  
(which is obtained from by a surgery killing (D) ) . 

(D,<) 

E-symmetr ic 
Moreover, the morphism of forms over A 

€-quadratic 

I (K, a) is the inclusion of an S-lagrangian, so that is an 
(K,6) 

S-hyperbolic form. 

(K,a) 
Conversely, let be an S-hyperbolic S-non-singular 

(K,@) 

E-symmetr ic 
form over A ,  and let 

€-quadratic 

be the inclusion of an S-lagrangian. Define a connected 

I even (-E)-symmetric S-acyclic 2-dimensional complex over A 
(-C) -quadratic 



for any 5 € HomA(K,K*) representing 0 f QE (K), and any X € HomA(L,~*) 

such that 

-1 lK,a) even c-symmetric 
The boundary is the non-sinqular 

j (K,B) split E-quadratic 

linkinq form over (A,S) associated by Proposition 3.4.1 to 

even ( -E l -symmetr ic 
the boundary S-acyclic L-dimensional 

(-c)-quadratic 



It remains to show that if are S-acyclic 
(C1,*') 

even (-E)-symrnetr ic 
l-dimensional poincar6 complexes over A 

(-€)-quadratic 

which a r e  r e l a t e d  by an isomorphism of the associated 

I even €-symmetric non-singular linking forms over (A,S) 
split €-quadratic 

Proposition 3.4.1 associates to such an isomorphism a 

( - E )  -symmetric 
homotopy equivalence 

split (-C)-quadratic 

f : (C,@) - +(C1,$') 

f : (C,*) - 
* ( C ' , * ' )  , 

for some 0 E c2 (C' ,-E) such that 

even (-E) -symmetric 
2-dimensional ~oincar; pair over A 

(-c)-quadratic 



We shall prove that 

(C1,+'+H(0)) = (C1,+') € LO(A,S,c) 

using the lanquage of S-formations (Proposition 3.4.31, 

as follows. 

Given non-singular split (-€)-quadratic S-formations 

over A (F,((:),B)G),(F,((;),~')G) such that 

we have to show that the non-sinqular split (-€)-quadratic 

formation over A (F, ( ( Y )  ,0')G)@(F', ((-:l ,-e)G) is stably 
IJ 

isomorphic to the boundary (K,B) = (K, ( (B+:,*),~~~~ of an 

S-hyperbolic S-non-singular €-quadratic form over A (K,R f QC (K) ) . 
By Proposition 1.6.2 the inclusion of the laqrangian 

extends to an isomorphism of hyperbolic (-c)-quadratic forms 

over A 

Define an S-non-s~nqular c-quadratic form over A 



For some S-isomorphism s f  Hom (F,€) there is defined a morphism 
A 

of c-quadratic forms over A 

which is the inclusion of an S-lagrangian, so that (K,B) is an 

S-hyperbolic form. The isomorphism of non-singular split 

(-€)-quadratic formations over A 

defines a stable isomorphism 

It Eollows that the S-acyclic l-dimensional (-E)-quadratic 

Poincar6 complexes over A associated to (F,( 

(F, ((:),B' )G) are S-acyclic cobordant 



i 
E-symmetr ic 

A sublagran- of an €-quadratic linking form 

split €-quadratic 

1 

,v) is a submodule L of M such that 

. v )  

i) L and M/L are (A,S)-modules 

ii) the inclusion jfHomA(L,M) defines a morphism of 

i 
E-symmetric 

c-quadratic linking forms over (A,S) 

split E-quadratic 

is onto. 

The annihilator of a sublagrangian L is the submodule 

L' = ker(jAX:M t I , ^ ; x ~ ( y ~  A(x) (y)))C M 

which contains L 

I, c LI . 
Both L1 and L1/L are (A,S)-modules, where 

Ll/L = ker ( [ A ]  :M/I.--------+L̂ ) . 
A laqrangian is a sublasrangian L such that 

[AI f HomA(M/L,L1) is an isomorphism, that is 

1 . l  = L . 



(even) c-symmetric 
A non-singular linking form is 

(split) c-quadratic 

hyperbolic if it admits a lagranqian. 

Proposition 3.4.5 i) Given a sublagrangian L of a non-singular 

(even) €-symmetric 

€-quadratic linking form over (A,S) 

split c-quadratic 

(even) E-symmetric 

defined a non-singular linking form over (A,S) 

(split €-quadratic 

i 
(LL/LnAJ/A) (M,A)@(IA1/L,-AL/A) 

(L1/L,AL/A,uJ/u) such that (M,A,p)@(LJ/L,-AJ/A,-pJ/u) is 

(LL/L,A'/A,vJjv) (M,A,V)@(L~/L,-A~/A,-V'/~) 

hyperbolic, with laqrangian 

A = {(x,[x]) €M@LL/L~X€L~)~M@L'/L 

(even) E-symmetric 
ii) A non-singular linking form over (A,S) is 

(split) €-quadratic 

(-E) -symmetric 
hyperbolic if and only if the associated 

(split) ( - E )  -quadratic 

homotopy equivalence class of S-acyclic l-dimensional 

(even) (-€1-symmetric 
poincar6 complexes over A contains the 

poincar6 pair over A 



Proof: i) Trivial. 

(even) (-E) -symmetric 
2 ~oincar6 pair over A such that H (D) = 0 

(-c) -quadratic 

(even) c-symmetric 
The non-singular linking form over (A,S) 

split c-quadratic 

is hyperbolic, with lagrangian 

The correspondence of Proposition 3.4.1 associates to a 

hyperbolic (even) E-symmetric linking form over (A,S) ( M , A )  

woth a lagranqian L a map of S-acyclic l-dimensional (even) 

(-E)-symmetric complexes over A 

with f:C------*D a chain map of f.q. projective A-module 

chain complexes 

d 

resolving 

1 
f *  = inclusion : H ~ ( D )  = I,--+H (C) = M . 

From the exact sequence of Proposition 1.1.4 we have 



so that there exists an S-acyclic 2-dimensional (even) 

2 (-€1-symmetric Poincar; pair over A (f:C*D, (66,@) f Q (F,-€] 

2 such that H (D) = 0, with boundary (C,@). Thus a non-sinqular 

(even) €-symmetric linking form over (A,S) (M,A)  is hyperbolic 

if and only if an associated S-acyclic l-dimensional (even) 

(-E)-symmetric ~oincar: complex over A (C,@) is such a boundar) 

The correspondence of Proposition 3.4.1 also associates 

€-quadratic 
to a hyperbolic linking form over (A,S) 

€-quadratic 

(M.A,v) ( - E )  -quadratic 
with lagrangian L a map of 

(M.A,v) ( - E )  -quadratic 

S-acyclic l-dimensional (-€)-quadratic complexes over A 

with f:C--+D exactly as in the E-symmetric case dealt with 

above. It is possible to choose resolutions such that 

i? € HomA(Co,Do) is an isomorphism. (Explicitly, given a f .g 

projective A-module resolution of M* 

write the dual resolution of = M as 

O - - - ~ C ~ ~ ~ C ~ ~ M . - O  . 
Define a €.g. projective A-module 

1 let g f HomA(P,C ) be the inclusion, and let h € H~~~(C',P) be 

the restriction of d* € ~ o r n ~ ( ~ O , c ~ ) ,  so that 



The S-acyclic l-dimensional f.g. projective A-module chain 

complex D defined by - 
d = h* : D1 = P*------,Do = C O ,  or = o  (rfOt1) 

is a resolution of L* 

The A-module chain map f:C-D defined by 

f = g* : C I F D 1  = P* 

- 
f = 1 : C o I D o  = CO 

is a resolution of 

1 f* = inclusion : H (D) = L--+H~(c) = M 
- 

with f E  HomA(Co,Do) an isomorphism). By the definition of a 

E (-c) -quadratic map we have that 
split (-c) -quadratic 

On the chain level the elements Jlf Q1(C,-c), B €  G2 (D,-c) are 
represented by A-module morphisms 

1 eo : CO- c, , Go : c -co , : CO-C 
0 

eo : D~-D , : DO-D-~ , : D ~ - D ~  , 

0 
: D -D 

0 

such that 



The  v a n i s h i n g  of t h e  ( - E ) - h y p e r q u a d r a t i c  Wu c l a s s  
l i n k i n g  1- 

i 
-0 

G l ( e )  = o : H ' ( D ) + H  ( z ~ ; A , E )  ; x-e,cx~ ( X )  

1 j S ( 8 )  = 0 : H (0)- i 1 ( i Z 2 : ~ - 1 ~ / ~ ,  c )  ; 
- 

1 - - 1 
X+- ( S ) .  ( e -2+e - ld* )  (Y) ( Y ) .  (S) 

( x € ~ ~ , y € ~ ~ , s € ~ , s x = d * ~ € D ~ )  

i m p l i e s  t h a t  t h e r e  e x i s t s  a n  A-module m o r p h i s m  X €  H ~ ~ ~ ( D ~ , D ~ )  

s u c h  t h a t  

1 eo = X + E X *  e Q C V ~ > ~ ( D ~ I  c~~ ( D  ) 

- 1 0 f (Ql  + God*) f *  - dXd"* '2 ker (S :QE (D ) - QE (s-'OO) ) . I - 
2 

D e f i n e  0 '  € Q ( C , - E )  by 

eL2 = ?-ldXd*?*-'  - ( ~ l ~ + l ~ d * )  : CO- 

e; = o ( S  + - 2 )  , 



Now (C,$') is an S-acyclic l-dimensional (-€)-quadratic 

Poincar; complex over A which is the boundary of an S-acyclic 

2-dimensional (-€)-quadratic Poincar; pair over A 

(f:C+D, (6$',$') € Q2(f,-E)) and such that there is defined 

(-E) -quadratic 
homotopy equivalence 

split (-€)-quadratic 

with ( C , $ )  a complex associated to the hyperbolic 

I €-quadratic linking form over (A,S) 
split E-quadratic 

l 1  

Next, we shall relate the (sub)lagrangians of the boundary 

linking form over (A,S) of an S-non-singular form over A to 

morphisms of S-non-singular forms over A which become 

isomorphisms over S - l ~ .  This relationship will then be used 

in Proposition 3.4.7 to identify the relative L-group 

L'(A,s, € 1  
with the Witt group of non-singular 

IJO(A,S,c) 

even c-symmetric 
linking forms over (A,S) 

split E-quadratic 

over A 

is an S-isomorphism of A-modules f€HomA(K,K1) such that 



( #  [O), in general) . 

E-symmetric 
is an isomorphism of non-singular fcrms over S - ~ A  

€-quadratic 

Note that if 1/2€ S-'A there is a natural identification of 

sets of S-isomorphism classes 

(S-non-singular €-quadratic forms over A )  

= (S-non-singular even €-symmetric forms over 

(Specifically, if (K,6),(K1,6') are S-non-singular €-quadratic 

forms over A which are related by an S-isomorphism of the 

so that there is also defined an S-isomorphism of €-quadratic 

forms 

An equivalence of S-isomorphisms of S-non-singular 

€-symmetric 
forms over A 

€-quadratic 

is defined by S-isomorphisms of forms 



- - 
g : (K,a)---+(K,a) , g' : (K1,a')--- +(it1,; ')  

g : (K,B)----(i7,E) , g' : (K',6')-+(ii*,E1) 

with g€HomA(K,KJ, g'€HomA(K1,K') isomorphisms, and such that 

the there is defined a commutative diagram 

(even) E-symmetric 
linking fo 

(split) €-quadratic 

stably hyperbolic if there exists an isomorphism of such 

linking forms 

X@Y - by' 

with Y,Y' hyperbolic. 

i 
(K,a€ Q'(K)) 

Proposition 3.4.6 i )  Let ( ~ , a  f Q(V~>' (K)) be an S-non-singular 

(K,B€Q,(K)) 

E-symmetric 

even E-symmetric form over A. The sublagrangians L of the 

E-quadra t ic 

i 
even E-symmetric 

boundary E-quadratic linking form over (A,S) 

split E-quadratic 

i 
J(K,a) = (M,A) 

t(K,a) = (M,A,u) are in a natural one-one correspondence 

i(K.6) = (M,A.v) 

with the equivalence classes of S-isomorphisms of S-non-singular 



E-symmetr ic 

even E-symmetric forms over A 

€-quadratic 

1 
f : (K,a) w ( K ' , a ' )  

f : (K,a)--------+(K1,a') 

f : (K,B)-(K',fj') 8 

under which 

L = coker (£:K -h K') 2 M = coker (a:K-Kt) 

(with a = B+EB* in the €-quadratic case) 

and 

(LA/L, AA/A) = 3(K',a1) 

(LJ/L, AA/A,P/p) = a(K' ,a1) 

(L'/L, A1/A, +/v) = 5(K1, B ' )  . 

I (K',a') Lagcangians L correspond to S-isomorphisms with (K1,n') non-singular. 

(K1.B') 

i 
even c-symmet.r ic 

ii) A non-singular €-quadratic linking form over (A,S) 

split E-quadratic 

(M,A) 

(M,A,p) is stably hyperbolic if and only if it is isomorphic 

(M,A .v) 

/ 
3 (K,a) 

to the boundary ?(K,a) of an S-hyperbolic S-non-singular 

3 (KrB) 

I 
E-symmetr ic 

even €-symmetric form over A 

€-quadratic 



Proof: i) Given an S-isomorphism of S-non-singular 

(even) E-symmetr ic 
forms over A 

c-quadratic 

[even E-symmetric 
define a sublagrangian L of the boundary ( E-quadratj 

L split E-quadratic 
8 (K..) 

linking Form over (A,S) by the resolution 
a (Kt01 

E-quadratic case. An equivalence of S-isomorphisms of 

even E-symmetric (€-quadratic) 
induces an isomorphism of 

split E-quadratic 

such that 

h(L) = E C G  , 

where h f t i o m  ( M , c )  is the isomorphism with resolution A 



E-symmetric 

Conversely, given an S-non-sinqular E-symmetric 

€-quadratic 

i 
(K,a) 

form over A (K,a) and a sublagrangian L of the boundary 

(K, B) 

a (K, a) I 
f: (K,a)-(K1,a') 

>(K, a) define an S-isomorphism f: (K,a)-(K', a ' )  

a(K. 8)  (f: (K,0)-(K1,0') 

as follows. 

In the first instance, define an S-acyclic l-dimension 

i 
even ( - E )  -symmetric 

i 
(C, $ f Q<vO) 

1 

(-€)-quadratic ~oincar; complex over A (C, $f Ql (C, - 

( - E )  -quadratic (C,'bfQ1(C,. 

i 
even €-symmetric 

with associated non-singular €-quadratic linking forn 

split €-quadratic 

( ?(K, a) 
over ( A , S )  3(K,a) by l 2(K, 0) 

: Cl = K-CO = K* , Cc = 0 (r # 0,l) 

R+ E R* 



- - a = O + E B *  8 HomA(K,Kf) 
for any B€HornA(K,K*) such that 

B = ii f QE(K) 

Let e f  HomA(K*,M) be the natural projection 

1 
coker (a:K -K*) 

e : K* AM = coker (a:K---+ K*) 

coker (B+cB*:K ----+K*) , 

define a f.q. projective A-module 

- 1 K' = e (L)C_K* 

and let F€HomA(K,K1), q€HornA(K'.K*) be defined by 

g = inclusion : K'---+K* . 
The A-module chain complex D and the A-module chain map 

h : C A D  

defined by 

(with a = B+cp,* € HomA(K,Kf) in the E-quadratic case) are such that 

h, = (inclusion)" : H O ( C )  = M-WH~(D) = L* . 



l 
even E-symmetr ic 

The morphism of E-quadratic linking forms over (A,S) 

split €-quadratic 

defined by the inclusion 

i 
(L,o) - a (K,Q) 
(L,O,O) - 2 (K,Q) 

(L,O,O) - 3 (K,B) 

i 
E-symmetr ic 

is associated by Proposition 3.4.1 to an €-quadratic 

split c-quadrat ic 

map 

h : (C,$) - (D.0) 
h : (C,*)- (D,O) 

h : (C,*) - (D,O) v 

so that 

for some 0 € 62(D,-~) such that 

Working exactly as in the proof of Proposition 3.4.5 it is 

possible to replace $ F  Q1(C,-E) by $J + H(0') f Q1(C,-E) for 

2 
some € 6 ( c , ~ E )  such that , to ensure that 



i 
1 

h%($) = o E a<v0> (D,-E) 

It follows from h%($) = 0 f Ql(D,-~) that there exists a 

h$($) = 0 f Q1(D,-c) 

even (-E) -symmetric 

connected S-acyclic 2-dimensional pair 

((-E) -quadratic 

(h:C-D. (6$,$) ~ < v ~ ? ~ ( h , - - ~ ) )  

(h:C-D, (6$,$) f Q2(h,-c)) . Define an S-non-singular 
(h:C+D, ( & $ , $ l  f Q2(ht-~)) 

l 
E-symmetr ic 

i' 
(K1,a' f Q€(K')) 

even E-symmetric form over A (K',a8 f Q < V ~ > ~ ( K ' )  ) by 

€-quadratic (K'.B' f QE(K1)) 

i 
a' = -beo 

. a' = -(6JIO+ ~6$6) : DI = K 1  -D1 = K t *  

0' = -6q0 

The S-isomorphism of S-non-singular forms 

I f : (K,a)-(K',al) f : (K,a)-(K1,a') 

f : (K,B)-(K1,O') 

determines the sublagrangian L of 

L = coker(f:K---+K1) etc. 

ii) We need a preliminary result. 



i 
r-symmetr ic 

Lemma An S-isomorphism of S-non-singular even c-symmetric 

.-quadratic 

forms over A 

f : ( ~ , a )  --------+ (K1,a') 
f : (K,a)- (K1,a') 

f : (K.6)------+ (K'tB') 

determines a lagrangian L of the boundary 

( even E-symmetr ic ( a(K@K8,a@-a') 
( .-quadratic linking form over (&,S) 

[ split c-quadratic ( 3 (KIK',BB-B') 

I (even) E-symmetric Proof: The S-isomorphism of S-non-singular 
€-quadratic 

forms over A 

has non-singular range, so that it determines a lagrangian L of 

S(K@K' ,a@-a ' ) 
by i). 

a(K@K' ,B@-6 ' )  

Let now ((K'a) be an S-hyperbolic S-non-singular 

(even) E-symmetric 
form over A, and let j € HomA(L,K 

c -quadratic 

I j*a€ HomA(K,L*) inclusion of an S-lagrangian L. As 
jf(6+cB*) € HomA(K 

be the 

L * )  



becomes onto over S-IA .there exists k € HomA(L*,K) such that 

is an S-isomorphism. Applying the Lemma to the S-isomorphism 

(even) E-symmetric 
of S-non-singular forms over A 

€-quadratic 

?!K,a)Ba(K1,-a') 
we have that is a hyperbolic linking form 

3(K,B)Ba(K',-B ' )  

over (A,S). Furthermore, there is defined an S-isomorphism 

of S-non-singular forms 

?(K1,a ' )  
with non-singular range, so that is hyperbolic by i). 

3(Kt ,B ' )  

I j(K,a) We have just shown that is a stably hyperbolic linking 
a(K,B) 

form. 

It remains to prove the converse, that a stably hyperbolic 

rven c-symmetric 

€-quadratic linking form over (A,S) is isomorphic to 

(split E-quadrat ic 



I E-symmetric the boundary of an S-hyperbolic even E-symmetric form over A. 

(M, A) even E-symmetric 
Let [ be a non-singular linking 

(M,X,u) split E-quadratic 

form over (A,S). By Proposition 3.4.1 there exists an S-acyclic 

even (-E)-symmetric 
l-dimensional Poincar6 complex over A 

(-E) -quadratic 

(c,+) e LO(A,S,E) 
The S-acyclic cobordism class depends only 

(C,*) e LO(A,S,E) 

on the isomorphism class of (M'A) (Proposition 3.4.4 i ) ) ,  

(M.A) 
vanishing if is hyperbolic (Proposition 3.4.5 ii)). 

(MrA,v) 

(M, A) 
It follows that if is stably hyperbolic then 

(M,A,v) 

and hence (by Proposition 3.4.4 ii)) that 

I 

O(K,u) 
isomorphic to the boundary of an S-hyperbolic 

3 ( K , t 7 )  

I E-symmetric (K,a) 
S-non-singular form o v e r  A . It may be 

c-quadratic (K,B) 



verified that if (M,X) is the E-symmetrization of a stably 

hyperbolic €-quadratic linking form over (A,S) (M,A,p) then 

the S-hyperbolic S-non-singular E-symmetric form (K,a) arising 

is even, and that (M,X,p) is isomorphic to the boundary a(K,a) 

1 1  

even E-symmetric 
Define the Witt group of linking 

E-quadratic 

1 split E-quadratic 
( L'(A,s) 

i L(v~>~(A,s) forms over (A,S) to be the abelian group of 
LE(A,S) 

E-symmetr ic 

even E-symmetr ic 
stable isomorphism classes of non-singular 

€-quadratic 

bplit c-quadratic 

linking forms over (A,S), the stability being with respect to 

the hyperbolic linking forms (i.e. a stable isomorphism of 

linking forms X,X' is an isomorphism XBY-X'BY' for some 

hyperbolic linking forms Y,Y1). Addition is by the direct 

sum B, and inverses are given by 

since the diagonal A = ( (x,x) f MBM~ X € M) c MBM is a lagrangian 
of X@-X for any non-sinqular linking form X, by Proposition 3. 



There are evident forgetful maps 

(even) E-symmetric (Q.$) 
A non-singular form over S-'A 

E-quadratic (Q,@) 

with projective class 

S-~(K,Q) 
is stably isomorphic to for some S-non-singular 

s-~(K,B) 

(even) E-symmetr ic (K.Q) 
form over A . It follows from 

€-quadratic (KrB) 

Proposition 3.4.6 ii) that the boundary operations 

3 : (S-non-singular forms over A) 

(linking forms over (A,S)) 

give rise to well-defined abelian group morphisms 

There is also defined a morphism 

namely the composite 

5 i). 



The correspondence of Proposition 3.4.3 associates toa 

(even) c-symmetric (M.A) 
non-singular linking form over (A,S) 

E -quadra t ic (M,A .U) 

(even) ( - E )  -symmetric 
a stable isomorphism class oE non-singular 

(-c ) -quadratic 

(Q.$:F.G) 
focmations over A (i.e. the associated S-formations, 

(Q,IL:F,G) 

regarded as formations), and it follows from Proposition 3.4.6 ii) 

that there are well-defined abelian group morphisms 

from the Witt groups of linkinq forms over (A,S) to the Witt 

groups of formations over A defined in 51.6 above. There is 

also defined an abelian group morphism 

namely the composite 

E-symmetr ic 
Define the lower even-dimensional L-groups 

E-quadratic 



-sition 3.4.7 i) The localization exact sequence of algebraic 

Poincar6 cobordism qroups 

is naturally isomorphic for k = - l  to a localization exact 

sequence of Witt groups 

K2 
j 

1.' (A)--L~(s-~A) ~ 1 2 ( ~ o > E ( ~ , ~ ) - ~ i v 0 > - ' ( ~ )  -M(v0>;' (S-'A) 

L, (A) -L: 1.5-'A) A KC (A,S) --+ M-, (A) --+MSE (S-'A) 

ii) There are defined natural abelian group morphisms 

(A,S) is 0-dimensional 
for all A,S,E. If 

ker ( $ : G ~ ( z ~ ; s - ~ A / A , E ) - - H ^ ~ ( z ~ ; A , ~ ) )  = 0 

then for these are isomorphisms, and (f)2k is naturally 

isomorphic to a localization exact seauencc of :Jitt aroups 

iii) For all A,S,E the forgetful map of Witt qroups 
l 

?;E(~,~)-~E(~,~) ; (M,A,v)-~M,A,PU) 

is onto, and there are natural identifications 



coker ( d :  L: (S-lA) 4 L E  (A, S) ) = coker 

= ker (M-E(A) 

If (A,S) is 0-dimensional 

= coker (LE (A) ---+ L: (S-IA) ) . 

the forgetful maps identify 

In particular, if 1/2 f S-lA 

LE(A,S) = LE(A.S) , 

and if 1 / 2 €  A then 

even (-E) -symmetr ic 
Proof: i) An S-acyclic l-dimensional 

(-E) -quadratic 

( C , + €  ~ < v ~ > l ( c , - E ) )  
~oincar; complex over A r~presents 0 in 

(C,+€ Ql(C,-~)) 

I LO(A.S, E )  

if and only if the associated non-sinqular 
Id0(A,S, E) 

even E-symqetric 
linkinq form over (A,S) 

split €-quadratic 



S 
(H (C) ,Oo) I L<v0>' L4.S) 

S represents 0 in - 
(H1(,) (l+T-,)$O,~S($) \ (A.S) 

by Propositions 3.4.4 ii), 3.4.6 ii). It follows that the 

correspondence of Proposition 3.4.1 gives rise to isomorphisms 

of abelian groups 

j ~ ~ ~ ~ , s . r ) - - - + ~ ( v ~ ~  ~ A , S I  ; (c,@)-(H'(c) ,$E) 
L o s  i s  ; (C,.) -(H'(C). (I+T-~IU:,~~(~I 

The exactness of the Witt group sequences 

can now be deduced from the exactness of (*)0 and (*)-4 (which 

is given by Proposition 3.2.3 i)), or else may be established 

directly using Proposition 3.4.6 ii). The direct method also 

applies to the exactness of (*)-2 

ii) Define abelian group morphisms 

by sending a non-singular E-symmetric linking form over (A,S) 

(M,A) to the k-fold skew-suspension 

sk (C,$) = (skc,sk$, Q < V ~ > * ~ + ~ ( S ~ C ,  ( - )  k+lc)) 

of an S-acyclic l-dimensional (-E)-symmetric ~oincar; complex 

1 over A (C,@€Q (C,-€)) such that 

l 
(H (C) .@:) = (M,A) , 

as given by Proposition 3.4.1. The S-acyclic cobordism class 



k 
gk ( C , $ )  e (A,S, I-) F )  depends only on the isomorphism class 

of (M,A) (which may be proved exactly as was done in 

proposition 3.4.4 i )  iq the even E-symmetric case), and vanishes 

if (M,!,) is stably hyperbolic (Proposition 3.4.5 ii)), so that 

the morphisms are well-defined. If 

(A,s) is 0-dimensional 
then by 

( Z ~ ; S - ~ A / A , € ) - ~ ~ ( Z ~ ; A , C ) )  = 0 

3.2.4 
proposition there are natural identifications for 

3.3.2 i) 

(A,S, ( - )  k ~ )  = the cobordism qroup of S-acyclic l-dimensional 

(-€)-symmetric ~oincat-6 complexes over A , 

so that the morphisms are onto. Moreover, if 

(K,!,) € ker(Lt(A,~)-L2(~,~,-c)) then (C,+) is homotopy 

equivalent to the boundary D I D , o )  of a connected S-acyclic 

( - E )  -symmetr ic complex over A ID,n O (D,  - c )  ) , and the proof 
of Proposition 3.4.6 ii) generalizes to show that (MJ) is 

stably hyperbolic, so that the morphisms are also one-one, 

and hence isomorphisms. 

iii) Immediate from i),ii) and Proposition 3.4.2 ii). 



3.5 Linkinq formations 

A "non-singular linkinq formation ovcr (A,S)" is a 

linking form over (A,S) together with an ordered pair of 

lagrangians. In Proposition 3.5.2 below we shall show that 

the homotopy equivalence classes of S-acyclic 2-dimpnsional 

algebraic Poincar6 complexes ovec A are in one-one correspondence 

with the "stable equivalence" classes of non-singular linking 

formations over ( A , S ) ,  and in Proposition 3.5.5 the cobordism 

groups of such complexes will be identified with Witt groups 

of linking formations. There is an evident analoqy between 

the theory of forms and formations set out in S1.6 and the 

theory of linkinq forms and linkinq formations. 

(even) E-symmetric 
linking formation over (A,S) 

E-quadrat is 

(M, A;F,G) (even) c-symmetr ic 
is a non-singular linking 

(M,A,u;F,G) E-quadratic 

. . .  
form over (A,S) toqether with a laqranqian F and a 

sublaqranqian G. The linkinq formation is non-singular l f  G 

is a laqranqian 

(even) c-symmetr ic 
An isomorphism of linkinq formations 

c-quadrat ic 

over (A,S) 

( F V P ~ )  c-.?).m~n~tr ic 
is an isomorphism OF the l inking forms 

c-qu'adrat i c -  

ovrr ( A , S )  



such that 

f ( F )  = F' , f (G) = G' . 
(even) E-symmetr ic 

A u a g r a n g i a n  H of an linking 
€-quadratic 

(M, A;F,G) 
formation over (A,S) is a sublagranqian H of 

(M, A,u;F.G) 

i) H E G ,  with G/H an (A,S)-module 

ii) f n H  = (0), M =  F +  H1 . 
(even) €-symmetric 

An elementary equivalence of 

linking formations over (A.S) is the transformation 

(M, A;F.G) 
determined by a suhlagranqian H of , with 

(M, A ,  v;F,G) 

(where F n H l  stands for the image of the natural injection 

F n  HI-HL/H;x-[X]). Note that there are natural 

identifications of S-torsion A-modules 

F'n G' = F n G  , M1/(F'+G') = M/(F+G) , G1l/G' = G1/G 

- in general, only G ~ / G  is an (A,S)-module 

Elementary equivalcnces an isomorphisms qenerate an 

(rvrn) c-symmrtr lc 
equlval~nc? rrlat Ion (,n the  .;et of 

F-qua3rat1c 



linking formations over (AS), called stable equivalence. Note 

is stably equivalent to 0 if and only if 
(M,Atu;F,G) 

In Proposition 3.5.2 ii) below the stable equivalence classes 

of (even) c-symmetric linking formations over (A,S) will be 

shown to be in one-one correspondence with the homotopy 

equivalence classes of connected S-acyclic 2-dimensional (even) 

(-E)-symmetric complexes over A ,  with non-singular linking 

formations corresponding to ~oincar6 complexes. 

Given an.(A,S)-module L define the standard hyperbolic 

even E-symmetric 

€-quadratic linking form over (A,S) 

split €-quadratic 

H€(L) = ( L B L ~ , A : L O L ~ ~  LOL~-S-~A/A; 
- 

((x,y), (X',y8))c---+ ~ ( x ' )  + EY'(~)) 

is an €-quadratic linking formation over 

( H E  (F) ;F,G) , with (:) :G-FBF* the inc 

a Function 

0 : C ; d Q _ € ( A  

for which both L and L A  are lagrangians. 

A split €-quadratic linking formation over (A,SI 

[,,G) = (F, ([i )0)~) 

(A,S) of the type 

lusion, together with 

such that ( G , y A P  € HomA(G,C;*) , C l )  is a (-F)-quadratic linking 

Form over ( & , S ) ,  t h ~  hessian of ( F , G ) .  (Such oblfcts were 



first considered by Pardon [ 2 1 ) .  Note that the existence of 

the hessian 9 ensures that G is a sublaqrangian of the hyperbolic 

split €-quadratic linking form fi (F). The linking formation (F,G) 

is non-sing- if G is a lagranqian, that is if the sequence 

(€U^ yA) 
o - G -- F@F^ - G^ --p o 

is exact. 

An isomorphism of 

over (A,S) 

(~,0.@.6 

is a quadruple 

split €-quadratic linking formatiuns 

with a,B isomorphisms and (F&,@.$) a ( 

form over (A, S) , such that 

(FA,F) ,'~:F~---+Q-~ (A'S)) 

-€)-quadratic linking 

ii) ay + a@-U = y'Bf HomA(G.F1) 

The isomorphism of (A,S) -modules 

defines an isomorphism of th? underlying €-quadratic linking 

formations ovpr (A,S) 

f : (HE(F) ;F,G)-(HE(F');F',G1) . 
Conversely, every such isomorphism arises from a triple (a,O,@) 

satisfying i) and ii). 

A sublagrangian H of a split €-quadratic linking 

formation over (A,S) (F,G) is a sublagrangian H of the 



underlying €-quadratic linking formation (Hc(F);F,G) such that 

i) 0j = 0 : H-Q-,(A,S), where jEHomA(H,G) is the 

inclusion, 

ii) yj = 0 € HomA(H,F), i.e. H C  FIG FBF-. 

An elementary equivalence of split €-quadratic linking 

formations over (A,S) is the transformation 

(F,G) +-(F' ,G1) 

determined by a sublagrangian H of (F,G), with 

F' = F n  HI = ker(jAuA:~+~-) 

G' = G/H = coker(j:H----+G) 

y' : G'-F' ; 1x1-y(x) 

p *  : G*--F** ; [XI- (y +-4 u (X) (y) 1 

0 '  : G'-Q_€(A,S) ; [xl.-B(x) ( X €  G,y€ F'). 

(The €-quadratic linking formation (HC(F');Ft,G') underlying 

(F',G1) is then obtained from (Hc(F) ;F,G) by an elementary 

equivalence of €-quadratic linking formations). 

Elementary equivalences and isomorphisms generate an 

equivalence relation on the set of split €-quadratic linking 

formations over (A,S), called stable equivalence. Note that 

(F,G) is stably equivalent to 0 if and only if U €  H O ~ ~ ( G . F ~ )  

is an isomorphism. In Proposition 3.5.2 iii) below the stable 

equivalence classes of split c-quadratic linking formations 

over (A,S) will be shown to be in one-one correspondence with 

the appropriate equivalence classes of connected S-acyclic 

2-dimensional (-E)-quadratic complexes over A, with non-singular 

linking formatibns corresponding to ~oincar; complexes. 



Prior to such an irlcntification we need some preliminary 

results on the homotopy classification of 2-dimensional 

complexes. 

A 2-dimensional A-module chain complexes C is in 

normal form if C r  = 0 (r f 0,1,2) and each C (r = 0,1,2) 
-p-- 

is a f . q .  projective A-module, 

E-symmetr ic 
A connected 2-dimensional complex over A 

€-quadratic 

(C,@) 
is in normal form if C in in normal form and 

(C,*) 

2 
Q f Q  ( C , E )  

has a chain representative 
Q2(C,~) 

1 Ho~,Ic".c~) 
is an isomorphism 

Q O f  ~orn~(C',~~) 

i 
2 

= 0 € llomA(C ,Cl) 

ii) 1 2 cl = 0 f HomA(C ,Co), = 0 € HomA(C ,Co) . 
E-symmetric (C,@) 

complex in normal form is ~oincar; if 
€-quadratic (c,*) 



A stable isomorphism o f  connected 2-dimensional 

E-symmetr ic 
complexes over A in normal form 

€-quadratic 

I C-symmetr ic is an isomorphism of complexes 
E-quadratic 

for some €.g. projective A-modules P.P', with 

E-symmetric 
the contractible 2-dimensional complex over A 

c-quadra t ic 

in normal form defined by 

(-: ) (1 0) 
D : . . .---+g ---4 P F P*@P W------* P* -----$ 0 d.. . 



and similarly for 

Proposition 3.5.1 The homotopy equivalence classes of connected - 

E-symmetr ic 
2-dimensional complexes over A are in a natural 

c-quadratic 

one-one correspondence with t h ~  stable isomorphism classes of 

c-symmetric 
connected 2-dim~nsional complexes over A in 

€-quadratic 

normal form. 

Proof: A stable isomorphism is a homotopy equivalence. Therefore -- 

it is sufficient to prove that every connected 2-dimensional 

E-symni~tr ic 
complex is homotopy eauivalent to one in normal 

E-auadratic 

form, and that homotopy equivalent complexes determine stably 

isomorphic complexes in normal form 

I E-symmetric Every 2-dimensional complex over A 
€-quadratic 

I 
2 

(C,@€O (C,c)) 
is homotopy equival~nt to 

( C , $ €  Q*(C.E)) 

chain complex C is in normal form, and for 

is represent4 by A-module morphisms 

one in which the 

such C the class 



such that 

dJIO - q0d* - JI1 + cTf = 0 : cO---tcl , 

+ 'God* - + E $ i  = 0 : c1+c0 , 

dJI1 + + $2 + E*; = 0 : CO--+CO . 

Such a complex 1s connected i E  and only if the A-module 

morphism 

is onto, i n  which case we shall construct a homotopy equivalent 

complex in nnrval form, as follows. 



Define a connected 2-dimensional 6-svmmetric complcx 

over A (Cq,@' f Q~(C',E)) in normal form by 

The chain equivalence 

f : C ' -------* C 

qiven by 

defines a homotopv equivalence of 2-dimensional €-symmetric 

complexes over A 

F : (c',+')-(c,@) . 
Given (C.$) as above we define first an auxiliary 

2-dimensional F-quadrat ic complex over A (C", g" f Q2 (C", € 1  ) by 



The chain equivalence 

f " : C --------.t C " 

given by 

d d 

defines a homoto~y equivalence of 2-dimensional €-quadratic 

complexes over A 

f "  : (C,*) -(cw,*") . 
Defien a 2-dimensional A-module chain complex C' in normal 

form by 

Choose a splitting map 

for (d $ 0 + ~ ~ 6 )  :C~@C~-C~, so that 



and define a chain equivalence 

with 

f;, = ( - k  - E )  : C;; = c ~ Q c ~ - - - + c ; )  = c 2  

: C; = C~@C~-C; = ker ((A  TO+^$;) : C ~ @ C ~ - ~ C ~ )  

f; = 1 : C" = c*-ci = C2 . 
The connected 2-dimensional €-quadratic complex over h ( C ' , $ ' )  

defined by 

* '  = F Q2cc',.) 

is in normal form, and there is defined a homotony equivalence 

Tha above procedure associates to an isomorphism class of 

c-symmetc ic ( c , $ )  
connected 2-dimensional complexes over A 

E-quadratic (c,*) 

with the chain complrx C in normal form an isomorphism class 

C-symmetric (Ct,@') 
of connected 2-dimensional complexes over A 

c-quadratic (C',$') 

in normal form. Thr association pr~serves homotopy types, and 



also the direct sum 8. In particular, if C is a chain 

contractible 2-dimensional A-module chain comnlex in normal 

Form it is isomorphic to one of the type 

for some F.g. projective A-modvles P , Q ,  so that 

cE(p) 
isomorphic to , and hence is stably isomorphic to 0 .  

CE (P) 

It follows from the Lemma below that homotopy equivalent 
- - 

complexes {:::::, i'?':) with C and F in normal Form determine 
(C,*) 

(C1,$- ' )  
stably isomorphic complexes in normal form 

complexes over A with c , C  in normal form. There exists a 

homotopy equivalence 

I 
if and only if there exists an isomorphism 

for some contractible 2-dimensional A-module chain complexes 

D.D in normal furh. 

Proof: This is a special cas? of Proposition 1 . 1 . 5 .  



(even) E-symmfietk (K,~;L) 
An I-- S-form over A is an 

E-quadratic ---- i (K,B;L) 
(even) E-symmetric ( K , ~ E  Q'(K) 

S-non-sinqular form over A 
€-quadrat ic (K.6 QE(K) 

toqether with an S-laqranqian L. Such an S-form is 

(K.a) 
non-sing% if 
--p 

is a noii-singular form. (An S-form is 
(KtB) 

an s-l~-form in the sense of S 2 . 4 ) .  

(even) c -symmetric 
An lirphisrn of S-forms over A 

E -quadratic 

(even) E-symmetr ic 
is an isomorphism of the forms over A 

c-quadratic 

such that 

f (L) = L' . 

f (even) E-symmetric A stable isomorphism of S-forms over I 
c-quadratic 

(even) E-symmetric 
for some non-singular S-forms over A 

F-quadratic 



(M',@';N0) (M,$) 
such that M is a laqrangian of 

(M1,*';N') (M#* 

and N' is a laqrangian of [:l: 1::') - 

Proposition 3.5.2 i) The stable equivalence classes of 

i 
even E-symmetr ic 

€-quadratic linkinq formations over (A,S) are in a 

split E-quadratic 

natural one-one correspondence with the stable isomorphism 

c-symmetr ic 

even E-symmetric S-forms over A .  Non-singular 

€-quadratic 

linking formations correspond to non-singular S-forms. 

ii) The stable equivalence classes of (even) E-symmetric 

linking formations over (A,S) (M,X;F,G) are in a natural 

one-one correspondence with the hnmotopy equivalence classes 

of connected S-acyclic 2-dimensional (even) (-€)-symmetric 

2 
complexes over A (C,$fQ (C,-E)). Under this correspondence 

the exact sequence of S-torsion A-modules 

can be identified with 

0---+ F n  G -Ffl G' ----+G'/G ---+M/(F+G)* M/(F+GL) -----*Cl , 

Non--singular linking formations correspond to ~oincar; compl, 



iii) There is a natural projection of the set of homotopy 

equivalence classes of conn~cted S-acyclic 2-dimensional 

(-€)-quadratic complexes over A (C ,$  €02(C,-E)) onto the set 

of stable equivalence classes of split c-quadratic linking 

formations over (A,S) (F, ( ( Y )  ,0)G). If the complexes (C,$), 
U 

(C1,$') project to the same stable equivalence class then 

(C1,$') is homotopy equivalent to a complex obtained from 

(C,$) hy an S-acyclic (-c) -quadratic surgery preserving the 

(-€)-symmetric homotopy type, and 

[ 1 

(Before embarking on the proof of Proposition 3.5.2 we remark 

on the similarity between these correspondences and those of 

(linking forms over (A,S)) t- 

(S-acyclic l-dimensional complexes over A) (Proposition 3.4.1) 

(linking forms over (~,S))c-----r 

(S-formations over A )  (Proposition 3.4.3) 

(formations over A) t---, 

(l-dimensional compl~xes over A) (Proposition 1.6.4). 

c-symmetric 
In particular, qiven a connected l-dimensional 

c-quadratic 

I E-symmetr ic (M,X;F,G) 
formation over A the exact 

split c-quadratic (F, U;) ,e)G) 

sequence of A-modules 



(with e0 = (l+TE)CO in the €-quadratic case) may be identified 

wit-h the exact sequence 

and 

even c-symmetric 
Proof: i) Given an -- I linking formation over ( A , S )  

€-quadratic 

(M,X;F,G) 
we have from Proposition 3.4.6 that the 

(M,A ,u;F,G) 

even E-symmetric I (M,A) linking form is isomorphic to the 
c-quadrat ic I (M,\ .U) 

boundary j(K,a) of an S-hyperbolic S-non-sinqu m lar 

E-symmetr ic (K,a € Q€ (K)) 
form over A 

even c-sym~etric (K,a € Q(v,>' (K 
, and that 

) 

E-symrnetr ic 
for some S-isomorphisms of S-non-sinqular 

even E-symnetric 

forms over A 

F-symmetric 
with (KF,4 ) nop-singular. The ( S-form 

F (even F-symmetr ic 

over A associated to 



We defer to ii) the proof that the stable isomorphism class of 

this S-form is independent of the choice of S-non-sinqular 

form (K,*) such that 

i (M,,!) = :l(K,a) 

(M,A,v) = d(K,a) . 
K4 shall now grove that the S-forms associated to stably 

equivalent linkinq formations are stably isomorphic. 

even c-symmetric 
Given an linkinq formation over (A,S) 

 quadratic 

(M, h : F , G )  
and a sublagrangian H write the linking formation 

(M, A.u;F.C) 

obtained by elementary equivalence as 

Cant-inuinq with the previous terminoioqy, let 

c-symmetr ic 
bp t h ~  S- som morph ism of S-non-singular forms 

even E-symmetr ic 

ovpr A associated to H by Proposition 3.4.6 i), with 

AS H G there is also defined an S-isomorphism 



The composite 

(inclusion) [ A I  
F T M/H1 --------j H. 

is onto, with resolution 

Thus the (A,S)-module F' r ker(F---+HA) has f . q .  projective 

A-module resolution 

with 

Define a non-singu 

( R , @ )  = (KF@K 

E-symmetr ic 
1ar [ form over A 

even E-symmetr ic 

OF 0 0 

*mQ,[: r ; , ) e a c ( ~ p ~ * * e K ) )  , 

and let L be the sublaqranqian of ( R , p )  definrd by 



E-symmetric 
is also a non-singular form over A. 

even E-symmetr ic 

The S-isomorphism of €.g. projective A-modules 

E-symmetric 
defines an S-isomorphism of S-non-singular 

even E-symmetr ic 

forms over A 

such that 

coker (f' :K'-+ KF,) = coker (e:K --+ J )  = F '  

(M'eX') 
is the associated lagrangian of >(K',a') = 

(M'PA',P') 

c-symmetr ic 
Thus the S-form over A associated to 

even E-symmetric 

( M ' ,  A1;F',G') 
is qiven by 

(M',A',u';F',G') 

E-symmetric 
Define an S-form over A 

even E-symmetr ic 



By Proposition 1.6.2 the inclusion of the sublagranqian 

E-symmetr ic 
extends to an isomorphism o f  forms over A 

even E-symmetric 

E-symmetric 
Thus there are defined isomorphisms o f  

even c-symmetric 

S-forms over A 



E-symmetric 
Thus the S-forms over A associated to stab11 

even E-symmetr ic 

even c-symmetric 
equivalent link~nq fornmtions over ( A , S )  

c -quadratic 

( K ,  A;F,G) (M',A1;F',G') 
are related by a stable 

(M9,A',~';F',G') 

isomorphism 

Glv-n a split €-quadratic linking formation over (A,S) 

(F, ( ( Y )  ,e)G) we shall obtain an c-quadratic S-form over A ( ~ , 2  
U 

as follows. Let U f Homn(L',L*) be an S-isomorphism of 

E.g. project~vp A-nodulps deflninq a resolution of F by 

{.et e f  Hom,.(L*@I.'*, FBF-) be the projection appearing in the 

corresponding resolution of F@F^ 



define a f . g .  projective A-module 

and write the inclusion as 

There is then a natural identification 

and there exists an S-non-singular c-quadratic form over A 

(K,@ € Q ,  (K)) such that the inclusion ( Y )  :G-----+F@F* is U 

resolved by 

(j k) e 1 
0 +L@L'  + K -------------+ G - 0 

j* (@+CB*) 

11 (c:* :) l ik*..+."J I U 
0 4 LOL ' ---------4 L *@L ' ---------f F@F^ ------+ 0 

(As in Proposition 3.4.6 i) (K.0) is only determined by G 

up to S-isomorphism, i.e. only the coset 

- 1 
[B] f QE(K)/ker (S : Q E  (K) - Q c  ( S - ~ K )  

is determined). Proposition 3.4.3 associates to the (-c)-qu 

linking form over (A,S) 

( G , y A p f  ~ o r n ~ ( G , ~ * )  ,8:G----t O-C(A,S)) 

the €-quadratic S-formation over A 



with 

8 : G = coker ((j k) :L@L' 

for a unique €-quadratic form over A (K,B€QE(K)) in the 

prescribed S-isomorphism class. The E-quadratic S-form over A 

associated to ( F , G )  is defined to be 

The verification that stably equivalent split €-quadratic 

linking formations over (A,S) determine stably isomorphic 

E-quadratic S-forms over A proceeds as in the (even) E-symmetric 

case. 

Conversely, glven an even E-symmetric S-form over A 1 
(K,n€QE(K) ; L )  

i 
even E-symmetric 

(K,u€ Q(V~>~ (K) ;L) we shall define an c-quadratic 

(K,BE: QE(K):L) split €-quadratic 

(M,A;F,G) 

linking formation over (A,S) (M,A,p;F,G), as follows. 

(FtG) 

(even) E-symmetric (K,a;t.) 
Given an S-form over A 

E-quadrat ic (K,B;L) 

let jfHomA(L,K) be the inclusion, and apply Proposition 1.6.2 



to extend the inclusion of the lagranyian 

j : ~ s - ~ L , o )  -------+ s - ~ ( K , ~ )  

j : (s-~L,o) ------t s-~(K,s) 

(even) E-syrnmetr ic 
to an isomorphism of non-singular forms 

over S-IA 

\ 
for some j ' f ~ ! O ~ ~ - ~ ~ ( S - ~ L * , S - ~ K )  such that 

By Proposition 3.1.1 there exists an S-isomorphism s f  HomA(Lt,L*) 

such that 

j 1 s  = k e ~orn A (L*,K) 5 H O ~ ~ - ~ ~ ( S - ~ L * , S - ~ K )  

(K.a;L) 
(stabilizing if necessary). In the E-quadratic case 

(K,%;L) 

so that k*Bk f ker (S-':Q~ (L*) --. Q, (S-IL*) ) and there exists 

an S-l~-module morphism X f HornS-lA (s-~L*,s-~I.) such that 

Applying ~ropdsition 3.1.1 aqain let 

S-isomorphism such that 

,{ t f HornA (L*, 1. ) 5 llornS- l A 



Replacing s,k,x by st,kt,t*xt ensures that 

Define an S-isomorphism of f.g. projective A-modules 

(even) E-symmetric 
The S-isomorphism of S-non-singular forms 

E-quadratic 

over A 

has non-singular ranqe, correspondinq by Proposition 3.4.6 i) 

to a laqranqian 

F = coker (U*: [,-L) M 

even E-symmetr ic ( E-quadratic) 
of t h e  boundary linking form 

split €-quadratic 

ovrr ( A ,  S) 

The inc 

is reso 

lusion of the laqranqian 

lverl by 



1 ( k *  1 
with k*ak = k*(BtcB*)k = 0 f HomA(L*,L) in the E-quadratic 

(even) C-symmetric 
case. The S-isomorphism of S-non-singular 

c-quadratic 

forms over A 

corresponds by Proposition 3.4.6 i) to a sublagrangian 

G = coker((j k):LBL*-K)sM 

even E-symmetr ic ( E-quadrat ic) 
of the linking form over (A.S) 

split €-quadratic 

has resolution 

0 -------, L@L* 
(1 k )  . K ---- ----+ G -------+ 0 

cu* k*nk 

with D =  EtCB*, k*Bk = 0 in the E-quadratic case 



E-symmetr ic 

The above procedure associates an even €-symmetric 

€-quadratic 

even E-symmetric 

linkinq 

split c-quadratic 

formation over (A,S) 

(M,X:F.G) 

(M.X,P;F.G) 

where the hessian ( G , ~ * ~ € H o ~ ~ ( G , G ^ ) , ~ : G - + C ) - ~ ( A , S ) I  is the 

(-€)-quadratic linking form over (A,S) associated by 

Proposition 3 . 4 . 3  to the €-quadratic S-formation over A 

(For an even €-symmetric S-form (K,a:L) Proposition 1.6.2 

actually gives an extension of j € H ~ ~ ~ ~ - ~ ~ ( s - ~ L , s - ~ K )  to an 

isomorphism of non-singular even E-symmetric forms over S-'A 

leading to an S-isomorphism of S-non-singular even €-symmetric 

Forms over A 

In this way it can be proved that every €-quadratic linking 

formation over (ASS) (M,A,P;F,G) is stably equivalent to one 

of the type (H (F) ;F,G)). 



Pven c-symm~tric (€-quadratic) 
It remains to show that the 

split c-ouadratic 

(Mr>AriFr,Gr) ((Mr,Ar,LlriFr,Gr)) 
linking formations over (A,S) 

(Fr ?Gr) 

I (even) c-symmetric ( r  = lr2) associated to an S-form over il 
€-quadratic 

I (K,a;L) using two different choices (kl,ul), (k2,u2) of the pair (K,B;r') 

(that is two different extensions of the inclusion j€HomA(L,K) 

(even) E-symmetric 
to an S-isomorphism of S-non-singular 

€-quadratic 

forms over A 

are stably equivalent. The two choices are related by an A-module 

morphism h € HomA(J.*,L) and S-isomorphisms vl,v2 C? HomA(I,*, L * )  

such that 

We shall consider separately the effects of the transformations 



3 0 7  

I f  the choices (kl,ul),(k2,u2) are related by an 

S-isomorphism v € HornA(I,*, I , * )  such that 

U 

then the 

I = u2v € HornA (L*, L*) , kl = k v f HornA 2 

defined by the resolution 

3 

Thus the linkinq formations associated to the choices (kl,ul), 

(k2,u2) are related by an el~mentary equivalence. 

I f  the choices (kl,ul) , (kZ,u2) ace related by 

for some h f HornA (L*, I,) such that 

~ j h  E Q-'(L*) 

ujh G Q(V~)-~(L*) 



even E-symmetric (c-quad 
there is defined an isomorphism of 

split E-quadratic 

linking formations over ( A , S )  

with 

\ 

and (F; = coker (ul:L* -4 I ,*) ,$ € HomA(F;,F1) ,$:l.'; -Q-, ( A , S  

the (-€)-quadratic linkinq form over ( A , S )  associated by 

Proposition 3.4.3 to the c-quadratic S-formation over A 

This completes the verification that the stable equiv2 

(M,X;F,G) ( (M,A,P;F,G)) 
class of the linking formation 

(F,G) 



(K.a:L) 
associated to the S-form is independent of the choice 

(K,6;1>) 

of (k,u). 

ii) A connected S-acyclic 2-dimensional (even) (-€)-symmetric 

2 complex over A (C,+€ Q (C,-€)) is homotopy equivalent to one in 

normal form, by Proposition 3.5.1. Given such a complex in normal 

form we shall construct an (even) €-symmetric linking formation 

over (A,S) ( M , X ; F , G ) ,  as follows. 

Choose a cycle representative + € lfom z Iz , l  (WrHomA(C*,C) )2 

in normal form, i.e. such that @ O €  H~~~(C',C~) is an isomorphism 

- 2 (which we shall use as an identification), and +l=O€HomA(C ,C1). 

It is thus possible to write the diagram of f.g. projective 

A-modules and A-module morphisms 

with j € HomA(L,K), n €  HomA(K,K*), Q €  HomA(L4,L) such that 



The sequence of f . q .  projective A-modules and A-module morphisms 

j j *a 
0 - L -----------, K - L -----+ 0 

becomes exact over s - ~ A ,  so that there exists an A-module morphism 

k E HomA (I,*,K) such that the A-module morphism 

U = j*ak : L*-I,* 

is an S-isomorphism. Let (M,A) be the non-singular (even) 

E-symmetr ic linking form over ( A , S )  associated by Proposition 3.4.3 

to the non-singular (even) (-E)-symmetric S-formation over A 

Define a lagrangian F and a sublagranqian G of (M,X) by the 

resolutions 



Then (M,X 

over (A,S 

Rep 

:F,G) is the (even) E-symmetric linking formation 

) associated to the complex (C,$). 

lacing @ by a different cycle representative 

( a ' €  Homn(K,K*).~'f HomA(L*,Ij)) such that for some X €  Hom ( L * , I , )  
A 

The A-module isomorphism fEHomA(M,M') given by the resolution 

defines an isomorphism of the associated (even) E-symmetric 

linking formations over (A,S) 



The verification that the stable equivalence class of 

(M,A;F,G) is independent of the choice of 

(k€HomA(L*,K),u€HomA(L*,L*)) proceeds exactly as in the 

2 proof of i) above - indeed, if (C,+€Q (C,-€)) is even then 
2 + € Q<vo> (C,-€) has a cycle representative with 

@2 5 Q = 0 € HOmA(Lt,L) (L - c2) , 

in which case (K,a € aE(K) ;im(j:L-K)) is an E-symmetric 

S-form over A and (M,A:F,G) is the associated even E-symmetric 

linking formation over (A,S). Moreover, 

some f.g. projective A-module P we can 

(k,u) = ((;):P*-P*@P,~: 

so that the associated even E-symmetric 

(M,A;F,G) = 0. 

We have shown that the stable equi 

if (C,@) = (P) for 

take 

P*- P*) 

linking formation is 

valence class of the 

(even) E-symmetric linking formation over (A,S) (M,X;F,G) 

associated to a connected S-acyclic 2-dimensional (even) 

(-E)-symmetric complex over A (C,$) in normal form depends 

only on the stable isomorphism class of (C,@), which by 

Proposition 3.5.1 is just the homotopy equivalence class of (C 

Conversely, given an (even) E-symmetric linking 

formation over (A,S) (M,A;F,G) we shall construct a connected 

S-acyclic 2-dimensional (even) (-E)-synlmetric complex over A 

(C,+) in normal form, such that (M,A;F,G) is in the stable 

equivalence class determined by (C,$), as follows. 

1 Let (D,Q f Q ( D , - € )  ) be an S-acyclic l-dimensional (even) 

(-E)-symmetric ~oincar; complex over A associated to the 

non-singular (even) E-symmetric linking form over (A,S) (M,A) 

by Proposition 3.4.1, with D an S-acyclic l-dimensional 



f . g .  projective A-module chain complex 

Let e € H~~,(D',M) be the projection appearing in the resolution 

0 d* O-D - - D I L M - 0 ,  

and define f.g. projective A-modules 

Di = (e-'(~) ) *  , D; = (e-'(~))* . 
Define A-module morphisms f' f Horn (Di,DO), f" f HomA(Di,Do) to 

A 

be such that their duals are the inclusions 

ft* : DV1 = e-l(F)dDl , f"* : = e -1 (G)-D~ , 

and let d' € HomA(Di.Do), d" f HomA(D;,Do) be the duals of the 

0 1 restrictions of d*€Hom,,(D ,D ) 

(which are well-defined since 

1 - 1 im(d*:oO-~) = e (O)S~-'(F)~~-~(G) ) .  

1,et D1,D" be the S-acyclic l-dimensional €.g. projective 

A-moduie chain complexes defined by 

a,, = d' : Dj----+D;) = Do , D; = 0 (r # 0,l) 

dD,, = d" : DY---+DG = Do , D; = 0 (K # 0,l) 

and let 

f' : D-----+D1 , f" : D----+D" 

be the A-module chain maps defined by 



so that 

€..I l ,.. I1 
D": ...- 0 4 D i  I D "  -0, ... 

0 

f ' *  = inclusion : H~(D') = F-H'(D) = M 

1 
E"* = inclusion : H (D") = G-H~(D) = M 

These inclusions define morphisms of (even) c-symmetric linking 

forms over (A,S) 

(F901 -(MrA) (G.0) -----(MeAI 

which by Proposition 3.4.1 correspond to maps of S-acyclic 

l-dimensional (even) (-E)-symmetric complexes over A 

f' : (D,Q)-(D9,O) , f" : ( D , Q ) v ( D " , O )  . 
Thus there are defined an S-acyclic 2-dimensional (even) 

(-E)-symmetric ~oincar; pair over A 

2 
(€':D-D', (6qQ,n) € Q  (€',-c)) 

and a connected S-acyclic 2-dimensional (even) (-E)-symmetric 

The union 

(C,@) = (D'" DD",-6n'U,16n" F Q~[D'u~D",-E)) 

(as defined in 91.7) is a connected S-acyclic 2-dimnnsio~al 

(even) (-E)-symmetric complex over A .  Next, we show how to 

recover the stable equivalence class @f (M,A:F,G) from ( C , @ ) .  



The relative Z2-hypercohornology classes (6n' ,Jl) € ~ ~ ( f '  ,-c), 

( 6 ~ " , n )  f Q ~ ( F " , - E )  are represent-d by A-module rnorphism 

Define a connected S-acyclic 2-dimensional (even) (-c)-symmetric 

2 
complex over A ( C ' , @ ' E Q  (C',-€)) by 

; i-c; = Do ( (d' -d') : c;  = D $D 

. C l 0  = = 
1 



There is defined a homotopy equivalence 

with h:C -C' the A-module chain equivalence given by 

[-:l) -f" (:l ; 1,) 
C : . . .--+ 0 -+D1 A D'BD 1 0  $0" 1 DO$DO+ 0 '. . . 

-.l (P)  j(; ; Y )  1 (1 -1) 
E "  (d' -d") 

C': ...--+ 0-*D1- Di(BDi r D O 4 O  +... . 

Now apply the method of the proof of Proposition 3.5.1 to obtain 

from (Cn,$') a homotopy equivalent S-acyclic 2-dimensional (even) 

(-E)-symmetric complex over A ( C M , $ "  € ( C " , - 6 ) )  with 



As before, write 

and let sfHomA(D1,D1) be an S-isomorphism such that 

so that the A-module morphism 

k = (1) : L* = D'-K = coker ( :D0-D'@D~@D~) 

is such that ul I*n S-isam-m 

The (even) E-symmetric linking formation over (A,S) (M',X';F1,G') 

associated to the complex (C,$) (via (Cn,$")) is thus described 

by the resolutions 



Let H '  be the sublagranqian of (M1,A';F',G') with resolution 

There is defined an isomorphism of (even) C-symmetric linking 

formations over ( A , S )  

(M, A;F,G) ---------.* (H1I/H', A'L/A';~'fl H'l,G'/H') , 

so that ( M ' ,  A';F',G') is stably equivalent to (M,  A;F,G). 

Next, we consider the effect on the complex 

( C , @ )  = (D' uDD",-6n'u,,brl") 

of the elementary equivalence 
- - - -  

(M,A;F,G)-(M,A;F,G) = (HA/H, A1/A;Fn H1,G/H) 

determined by a sublagrangian H of (M,A;F,G). Let the inclusion 

j € HornA (H,G) have resolution 

with g* F H o ~ ~ ( D " ' ~ , D " ~ )  the inclusion of = e-l(~)c D 
1 

in ,y1 = e-l ( G )  C_ D 1 , where e F HornA(D1,~) is t h e  pro]rction 

(as above). Th? A-module chain map 

f"' : "-----+D"' 

rlc f i ned by 



is such that there exists a connected S-acyclic 2-dimensional 

(even) (-E)-symm~tric pair over A 

The S-acyclic l-dimensional (~ven) (-E)-symmetric ~oincar6 

comnlex over A (D.<€Q'(E,-E)) obtained from (D,q) by S-acyclic 

surgery on (f "' :D ---+D"', ( 6 n " '  , n )  ) has associated non-singular 

(even) E-symmetric linking form over (A,S) 

l - -c 
(H (D) ,n;) = (M,X)  . 

Define S-acyclic 2-dimensional A-module chain complexes D1,D" by 

6" = oc(g:~"------+Dm') , 
and let 

be the A-module chain maps defined by 

(r€Z!.) , 

so that 
- 
E ' *  = inclusion : H1 (D') = F +H~(D) = M 



There exist connected S-acyclic 2-dimensional (even) (-E)-symm~ 

pairs over A 

(F~:D-~~, (G1.;) . - E ) )  , 

( F "  :D ------. D". (G;;" ,X) € (7" ,-c) ) 

such that the union 
- - 

( c ,$ )  = c ~ " u , ~ ~ , - ~ 1 u - ~ 1 ~ e ~ 2 ( D t u  r( @",-c)) 

is a connected S-acyclic 2-dimensional (even) (-€)-symmetric 

complex over A associated to (M,X;P,g). It may be verified thal 

(c,?) is homotopy equivalent to (C, 4 )  , the complex associated 

to (M.X;F,G). 

This completes the proof of ii). It remains to complete 

I even c-symmetr ic the proof of i ) .  Given an linking formation 
E-quadrat ic 

C(M,X;F,G) 
let (K,a) , (K' ,a') be S-non-singular 

t~iFtG) 

forms over A such that 
i c 

over (A,S) 

E-symmetr ic 

even E-symmetr 

(up to isomorphism), so that 

c-symme tr ic 
for some S-isomorphisms of S-non-sinqular 

even E-symmetric 

forms over A 

f : (~,a)----t(K~,a~) , f' : (K1,a') ----+(K$na$) 

with (KF, aF) , (K;, a;) non-singular. We have to show that the 



c-symmetr ic 
associated S-forms over A 

even E-symmetric 

are stably isomorphic. The S-acyclic connected 2-dimensional 

(-E)-symmetric 
complexes over A in normal form obtained 

( - c )  -symmetr ic 

from the S-forms (as in i)) are homotopy equivalent, since they 

correspond to the same linking formation, and are therefore 

stably isomorphic (by  Proposition 3.5.1). It follows that the 

S-forms are stably isomorphic. 

iii) A connected S-acyclic 2-dimensional (-E)-quadratic 

complex over A (C,6€Q2(C,-E)) is homotopy equivalent to one 

in normal form (by Proposition 3.5.1). Given such a complex 

in normal form we shall construct a split E-quadratic linking 

formation over (A,S) 

(F,G) = (F, ,e)G) , 
as follows. Choose a cycle representative 6 f  (WBZIz2, HomA(C*,C) 

in normal form, i.e. such that Jlo€ H~~,(C',C~) is an isomorphism 

- - 2 (which we shall use as an identification) , qO = 0 € HomA(C ,Co), 

Q1 = 0 N ~ ~ ~ ( c ~ , c ~ ) .  It is thus possible to write the diagram 

of € . g .  projective A-modules and A-module morphisms 



with j E HomA(L,K) , B € HomA(K,K*), X € HomA(L,L*) such that 

Let (F,G) be the split €-quadratic linking formation over (A,S) 

associated by i) to the c-quadratic S-form over A 

(K.@€Q,(K);im(j:L-K)) . 
Replacing by a different cycle representative 

HomA(C*,C)t2 replaces B , x  by @',X' such that 

For some w€HomA(K,K*), q€HomA(L,I,*). Neither the E-quadratic 

S-form (K,f3;L) nor the split E-quadratic linking formation (F,G) 

are affected by such a chanqe. 



In particular, if P is a €.g. projective A-module the 

E-quadratic S-form over A (K,B;L) associated to the contractib 

S-acyclic 2-dimensional (-€)-quadratic complex over A C-E(P) 

is given by 

corresponding by i) to a split €-quadratic linking formation 

(F,G) stably equivalent to 0 (take k = : L = P-K = Pap*). 

Thus the stable equivalence class of the linking formati~ 

(F,G) associated to (C,$) depends only on t'!e stable isornorphi: 

class of (C,$), which by Proposition 3.5.1 is the same as the 

hornotopy equivalence class of (C, $) . 
Conversely, given a split €-quadratic linkinq formation 

over (A,S) (F,G) we shall construct a connected S-acyclic 

2-dimensional (-E)-quadratic complex over A (C,$) in normal 

form, such that (F,G) is in the stable equivalence class 

determined by (C,$), as follows. 

Let (K,B;L) be an E-quadratic S-form over A associated 

by i) to (F,G), and let j€HomA(L,K) be the inclusion. For any 

lift E €  HO~~(K,K*) of B €  Qc(K) there exists X €  HomA(L,L*) 

such that 

j * B j  = X - EX* € HomA(L,L*) . 



The method of proof of i) shows that the homotopy equivalence 

class of (C,$) depends only on the stable equivalence class c 
- 

(F,G) together with a choice of hessian ( 0 , ~ )  fQ,(K,L) for tt 

S-lagrangian L of (K,@€ QE(K)), where 

(Define a split €-quadratic S-form over A (K,;IL,~) to be an 

S-non-singular split €-quadratic form over A (K,: € 6 (K) ) 

together with an S-lagrangian L and a choice of hessian ~ € 0 -  

The homotopy equivalence classes of connected S-aoyclic 

2-dimensional (-€)-quadratic complexes over A are in a naturi 

one-one correspondence with the stable isomorphism classes 

of split €-quadratic S-forms over A ) .  

It remains to show that if (C,$), (c,T) are the complext 
- 

associated to two different choices X,X fHomA(L,L*) such th, 

then ( C , ? )  is homotopy equivalent to a complex obtained from 

(C,$) by an S-acyclic (-€)-quadratic surgery. As before, let 

k f HornA (L*, K) be such that 

i) U = j*(B+€B*)k f HomA(L*,L*) is an S-isomorphism 

ii) k*Bk = 0 f QE(I.*) . 
Also, let X' €Horn (L*,L) be such that A 

k*Bk = X' - EX'* € HomA(L*,L) , 

and let (C',$' €Q2(C1,-C)) be the connected S-acyclic 

2-dimensional (-€)-quadratic complex over A in normal form 



associated to the c-quadratic S-Eorm over A 

(K,B f QC (K):im(k:L*-K)) 

with choice of hessian (i,~ ' )  €QE (K,[>*), corresponding by i) 

to the split c-quadratic linking formation over (A,S) 

Let (C",$"€Q2(C",-C)) be the connected S-acyclic 2-dimpnsional 

(-€)-quadratic complex over A obtained from (C.$) by surgery 

sn the connected S-acyclic 3-dimensional (-€)-quadratic pair 

over A (f:C---+D, (61L.6) f Q3(f,-E)) defined by 

S$, = - X '  : D~ = L*----+D1 = L , 

= o : D~- D (r = 1.2) . 

The A-module chain equivalence 

h : C"-C' 

given by 

defines a homotopy equivalence 



Now (C,$) is homotopy equivalent to a complex obtained from 

(C",$") by S-acyclic surqery (since (C",$") is obtained from 

(C, $) by S-acyclic surgery) , so that (C, $) is also homotopy 

equivalent to a complex obtained from ( C 1 , $ ' )  by S-acyclic 

surgery. The complex ( C 1 , $ ' )  is independent of the choices 

x,?€~om~(L,L*). and the effect of successive S-acyclic 

surgeries may be composed (cf. Proposition 1.4.71, so that 

(C,?)  is homotopy equivalent to a complex obtained from (C,$) 

by S-acyclic surgery. 

(even) E-symmetric 
An S-non-singular formation over A 

€-quadratic 

(K,a;I,J) (even) E-symmetr ic 
ia non-singular form over A 

(K,B;I,J) €-quadratic 

(K,a) 
together with a lagrangian I and an S-lagrangian J. 

(K,B) 

(An S-non-singular formation over A is an ~-~~-non-singular 

formation over A in the sense of S 2 . 4 ) .  The induced 

(even) E-symmetr ic S-~(K,~;I.J) 
formation over S - 1 ~  is 

E-quadra t ic s-~(K,B;I,J) 

non-singular, and it is stably isomorphic to 0 precisely 

(K,Q;I,J) 
when 1 is an S-formation (i.e. S-IK = S-~IIBS-~J). 

(K,B;ItJ) 

I (K.Q;I.J) 
The S-non-singular formation is non-singular if 

(K,B;I.J) 

f (~.al 
J is a lagranqian of 



I F-symmetr ic The boundary of an S-non-sinqular even E-symmetric 

€-quadratic 

(K,a F Q€(K) ;I,J) 

formation over A (K, a f  Q < v ~ > ~ ( K )  ;I,J) is the non-singular 

(K,@FQ,(K) ;ItJ) 

i 
even E-symmetric 

€-quadrat ic 1 

split €-quadratic 

( J(K 

inking formation over A 

, a ; I , J )  = ( M , X ; F , G )  

i 3(K,a;I,J) = (M,X,u;F,G) 

S(K,B;I,J) = (F,G) 

associated (uniquely up to stable equivalence) to the 

1 
E-symmetric 1 (K.Q; J) non-singular even c-symmetric S-form over A (K,a;J). 

E-quadratic (K,@;J) 

An S-non-singular formation is non-singular if and only if 

its boundary is stably equivalent to 0 .  

(The boundary operations 

S : (S-non-singular formations over A I  

-+(non-singular linking formations over ( A , S ) )  

can also be expressed in terms of the "dual lattice" 

construction, by analogy with the corresponding expression 

in g 3 . 4  for the boundary operations 

d : (S-non-singular forms over A) 

-----A (non-sinqular linkinq forms over (A,S)). 

i ( K , ~ J )  (fven) 6 -symmetr ic 
A latticc in a non-sinqular form 

( K , B )  6 -quadra t ic 



(Q,+) (even) E-symmetr ic 
over S-'A (which is an form over A 

( Q ,  $1 €-quadratic 

~-l(K.a) = (Q,$) 
such t.hat ) is non-singular if it is a 

s-l(~,B) = (Q,+) 

non-singular form over A, or equivalently if the lattice KC_Q 

(even) €-symmetric 
Given an S-non-singular formation over A 

€-quadratic 

L 

(KI,aI) ~-l(K,a) 
i) a non-singular lattice \ (KI,OI) in [.S-l(K,B) such thi 

is a lagrangian of 



even c-symmetr ic ( - c )  -quadratic 
The boundary linking formation 

split €-quadratic 

over (A,S) is given by 

using Proposition 3.4.6 i) to translate the S-isomorphisms 

(even) E-symmetr ic 
S-non-singular forms over A 

€-quadrat ic 

defined by the inclusions into the lagrangian KI/K1 of the 

even €-symmetric (€-quadratic) 
boundary linking form oveL A(A,S) 

split €-quadratic 

i 7(K1,a') = (~"/~',a"/a') 

X a(K1,e*) = ( K O  / K * , B * ~ / B ~ )  = H E ( ~ I / ~ a )  

and the sublagrangian KJ/K). 

E-symrnetr ic 

even E-symmetric linking 

€-quadratic 

(M, A) 

i 
even ( - E )  -symmetric 

(M, A) is the non-singular (-€)-quadratic 

(M, A,P) split ( - c )  -quadratic 

linking formation over (A,S) 

?(M,A,u) = (M, ( 



where 

is the graph lagrangian of (M,X) in H-~(M) (in H-E (M) if (M,?.) 

is even) 

The boundary operations on S-non-singular formations and 

linking forms are related by the factorization 

a : {linking forms over (A,S)) = (S-formations over A) - (S-non-singular formations over A) 
a 

-{linking formations over ( A , S ) )  . 
(even) ( - E )  -symmetric 

Thus if the S-formation over A 
(-E)-quadratic 

(K,a;I,J) 
associated by Proposition 3.4.3 to an 

(K,B;I,J) 

(even) E-symmetric (M. ?.) 
linking form over (A,S) 

E-quadratic 

(even) (-E) -symmetric 
regarded as an S-non-singular 

( - E )  -quadratic 

formation over A there is a natural identification 

(up to stable equivalence) of the boundary 

I even ( - c )  -symmetr ic ( (-E) -quadratic) 
linkinq formations 

split (-E)-quadratic 

over (A,S) 

[3(K,B;l,J) = ~(M.?..v) . 
(There is an evident analoqy between the boundary operations 

3 : (linkinq forms)--4(linkinq Formations) 

and the boundary oprrations of 91.6 

3 : (forms)----- (formations] . 



To complete the analogy W C  can also define boundary operations 

2 : (linking formations) linking forms) 

corresponding to the boundary operations of S1.6 

a : (formations) ------+ (forms) . 

1 
(even) €-symmetric 

The boundary of an E-quadratic linking formation over (A 

split €-quadratic 

(M. A ; F.G) i (even) E-symmetric (M,A,u;F,G) is the non-singular €-quadratic linkinq 

(spli 

form over (A,S) 

i I (M,A;F,G) = (GJ/G,A1/A) 

1 (M,A,u;F,G) = (G1/G,AJ/A 

E-symmetr ic 

An I even E-symmetric linking form over (A,S) 
€-quadratic 

split €-quadratic 

(L' (A.s) 

is non-singular 

i L(V~>~ (A, S) (resp. represents 0 in the Witt group ) if and only 
LE (A.S) 

( even (-E) -symmetr ic 

(-E) -quadratic 
if its boundary linking formation 

split (-€)-quadratic 

(, split (-E) -quadratic 

over ( A , S )  is stably equivalent to 0 ( r e s p .  if it is isomorphic 



i even €-symmetric to the boundary of an linking formation 
€-quadratic 

\ split €-quadratic 
over (A,S))). 

( C , @  @ Q<V~>~(C,-E)) 
Proposition 3.5.3 Let be an S-acyclic 

(C,e€o,~c.-E~~ 

even (-E)-symmetric 
2-dimensional Poincar6 complex over A ,  

(-E) -quadratic 

(M,AiF,G) 
and let be an associated non-sinqular 

(F,G) 

even E-symmetric 
linking formation over ( A , S )  . 

split €-quadratic 

1 
(c,$) e L ~ A , ~ , E I  

i) the S-acyclic cobordism class 
(C,$) € Ll(A,s,~l 

depends only on the stable equivalence class of /fM'A;F'G) 

3 (K,a;I.J) 
stably equivalent to the boundary 

3(K,B;I,J) 

c-symmetric 
S-non-singular formation over A 

€-quadratic 

such that 



If ker(::iO 

For all A,S 

' ( z ~ ; s - ~ A / A , ~ ) - ~ ~  (z~;A,E)) = Cl 
it is possible 

, E  

(K.n:I,J) c-symmetric 
to choose to be an S-formation over A 

(K,B;I.J) c-quadratic 

(i.e. such that S-IK = s-~I@s-~J), so that 

1 (C,$) = o e I. (A.s.~) (M,  A;F,G) 
if and only if is stably 

(C.$) = 0 € L1(A,S,E) (FrG) 

7 (N.S) (-c) -symmetric 
equivalent to the boundary of a [ 

a(N,S,p) (-E) -quadratic 

ii) 
Proof: i) Immediate from Proposition 3.5.2 

iii) 

ii) By the S-acyclic counterpart of Proposition 1.2.2 iii) an 

even (-c) -symmetric 
S-acyclic 2-dimens ional ~oincar; complex 

(-E) -quadratic 

2 
(c,$ G o ( v ~  (C,-E) ) L ~ ( A , s , ~ )  

over A represents 0 in if and 
(C,$€ Q2(C,-~)) L1(A,S,c) 

only if it is homotopy equivalent to the boundary [::l::: Of 

even (-E) -symmetr ic 
a connected S-acyclic 3-dimensional 

(-E) -quadratic 

3 (D.rl€ Q(vo> (D,-E) ) 
complex over A with D a f . g .  projective 

(D,< f O3(D,-s) 

A-module chain complex of the type 



I even (-E) -symmetr ic 
connected 3-d imensional complex 

(-E) -quadratic 

(n , r l )  
obtained from by surgery on the connected 4-dimensional 

(D,Z) 

even (-E) -symmetr ic 4 (€:D - m ,  (0.~) e Q<v,> (F.-E)) 
pair over A 

 quadratic (€:D---+FD. (Or<) € Q4(fr-~)) 

defined by 

(D'.Q*) = S(D",~") 
Then 1 is the skew-suspension of a l-dimensional 

( D * , C ~ )  = S ( D " , ~ ~ ~ )  

E-symmetr ic (D",nU €Q'(D".E)) 
complex ovrr A such that 

E-quadratic (D".<" €Ql(D",~)) 

E-symmetric 
The homotopy equivalence classes of l-dimensional 

E-quadrat ic 

s-l~-~oincarf complexes over A are in a natural one-one 

correspondence with the stable isomorphism classes of 

F-symmetric 
S-non-singular formations over A (by a 

split €-quadratic 

straightforward generalization of Proposition 1.6.4). 

E-symmetric 
In particular, thr S-non-sinqular format~on 

c-quadrat ic 



(D",rl") 
over A associated to is given u p  to stable isomorphism 

( D "  , L  " )  

and is such that 

even E-symmetric 
The non-singular linking formation over ( A , S )  

split E-quadratic 

(C,+)  
associated to is the boundary 

(C ,$ )  

Since D is S-acyclic there exists an A-module morphism 

qfHomA(D2,Dj) such that the composite 

is an S-isomorphism. Let 

E : D -----+ S D 

be the  A-module chain map defined by 



if = 0 : H~(D)-~~~(z~;s-~A/A,c) 
so that i - 

3 ?'(n) = 0 e Q<vo> (6b,-t) 

= o G Q ~ ( & ~ , - E )  . 

then 

I even ( - 6 )  -symmetric 
The connected S-acyclic 3-dimensional 

(-E)-quadratic 

(T:D-66 ((on) E Q(v,,~ ( ? , - E ) )  

by surgery on the pair i S 

(€:D-65, (or(;) G Q , ( ? , - E ) )  

- -  - (+,h = .5(D",nW) 
the skew-suspension - -  - of an S-acyclic 

(D*,C') = S(D",S-) 
L 

c-symmetr ic (6",;"e~l(~",c)) 
l-dimensional f complex over A 

 quadratic (E+.,:n1 e Q~ (+,c ) 

(-E) -symmetric I (Eq1,; 
linking form over (A,S) associated to 

(-E) -quadratic (Gq6 , S  

If ker ( G ^ : R ~ ( Z ~ ~ S - ~ A / A , E ) - ~ ~ ( Z ~ ; A , E ) )  = 0 then for any 

S-acyclic 3-dimensional even (-c)-symmetric complex over A 

(D,q € Q(v~~(D,-E)) we have 
A 

6 -  
voln) = o : H~(D) -----+H~(Z~;A,E) 

(by Proposition 3.3.1 ii)), and so $(Q) = 0. 



E-symmetric 
Conversely, given an S-non-singular format ion 

€-quadratic 

we have to show that the S-acyclic 2-dimensional 

even (-E) -symmetric (C,@ f Q<VJ~(C,-C)) 
~oincar; complex over A 

(-E) -quadratic ( C , $  f Q,(C,-E)) 

even c-symmetric 
associated to the boundary linking 

split €-quadratic 

3(K,a;I,J) = (M,X;F,G) 
formation over (A,S) is an S-acyclic 

?(K,B;I,J) = (F,G) 

(K,a) 
boundary. As I is a lagrangian of we can identify 

(KrB) 

for some E-symmetric form (I*,B f (I*)) (by Proposition 1.6.2). 

Write the inclusion of J in K = IfBI* as 

such that in the E-quadratic case 

for some (-€)-quadratic form (J,x € Q-, (J) ) . Define a l-dimensional 



cj : DO = J - - + D ~  = I 
, = - X  : DO = J--DO= J*. 

0 : = I*-.--,DO = J* 

c-symrnetr ic 
so that there exists a 2-dimensional ~ - ~ A - ~ o i n c a r 6  

c-quadrat ic 

i 
2 

(€:D-&D, (6v,n) f Q (f,c) 
pair ovet A . Let 

(f:D-&D, ( 6 5 , ~ )  eQ,(f,~)) 

(D',~'€Q(V,>~(D',-C)) 
be the connected S-acyclic 3-dimensional 

( D 1 . c '  €Q~(D',-E)) 

even (-E)-symmetr ic 
complex over A obtained from the 

(-E) -quadratic 
L 

skew-suspension - by surgery on the skew-suspension 

(60,n)) even c-symmetr ic . The boundary 
S(f:D--+&D. ( 6 < , < ) )  split E-quadratic 

~ ( K , ~ ; I , J )  
linking formation over (A,S) is the linking 

a(K.R;I,J) 

formation associated to the S-acyclic boundary 

rqu ivalrncc) . 



(c-symmetric 

even E-symmetric 
Define the Wittgroup of linking 

F-quadratic 

split F-quadratic 

i 
M'(A,s) 

M<v,> '(A,s) 
format ions over (A,S) - to be the abelian group 

McIA.S) 

M~(A.s) 

with one generator for each isomorphism class of non-singular 

even E-symmetric (M,A;F,G) 
linking formations over (A,S) 

E-quadrat ic (M,A,P;F,C 

( split E-quadratic ( (,.G) 
subject to the relations: 

in the (even) E-synm*-tric case 

(M,A;€,G) + (M',X1;F',G') = (M@M',A@A';F@F',GW') 

(M,A;F,Gi + (M,A;G,I{) = (M,A;F,H) 

(M.A;F,G) = (L'/L,A~/A;F~ I,',G/L) 

if L is a sublaqrangian of (M,A;F,G) 

(M, A;F,G) = (Ill/I,,A'/A;F/L,G/iA) 

if L is a sublaqrangian of (M,X;F,G) 

such that L 5  F n G ,  

similarly in the E-quadratic casp, 

in the split E-quadratic case, 

(€,G) + (€',G') = (F@P1,G@G') 

(F,G) = ( F n L L , G / L )  if I. is a sublagrangian of ( € , G )  

)(M,A,p) = 0 if ( M , A , ~ )  is a (-€)-quadratic linking 

form ovcr (A, S )  . 



In particular, stably equivalent linking formations represent 

the same element in the Witt qroup. There are defined forgetfu 

maps 

M(V~)E (A,s)-M~(A,s) ; (M,A;F,G) -(M,A;F,G) 

M~(A,S)--+M(V~)€(A,S) ; (M,A,u;F.G)-(M.A:F,G) 

~~,(A,S)AM~(A,SI : (F,G)-(M,A,V;F,G) . 
In ordrr to verify that GE (A,s)----+M~ (A,s) is well-def ined 

we have to show that 

a(M,X) = 0 f ME(A,S) 

for any ( - E )  -quadratic linking form over ( A , S )  (M, A,P) 1 

for any non-sinqular €-quadratic linking formation (HE(F);F,G 

we have 

(H~(F) ;F,G) = (H~(F) ;F,F*)@(H,(F);F~) 

= (HE(F);pA,~) Hc(A.S) , 

so that for any even (-E)-symmetric linking form (M,A) 

?(M,A) = (HE(M) ;M,r(,, X) = (HE(M) ;MA,r (n, a)) 
= 0 I3 M (A,S). 

The following result is the analogue for linkinq format 

of Propositicn 1.6.5 iii) (a formation represents 0 in the Wi 

group if and and only if it is stably isomorphic to the bound 

of a form). 

I even E-symmetr ic Proposition 3.5.4 A non-sinqular E-quadratic linking 

split E-quadratic 

(M,A ;F,G) 

formation over (A,S) (M,A ,!.I ;F,G) represents 0 in the ~ i t t  

(FrG) 



M<v,)€ (A,S) 

ME (A,S) if and only if it is stably equivalent to the 

ME (A, S) 

I 3 (K.a;I,J) c-symmetr ic 

bouqdary 3(K,a;I,J) of an S-non-singular even c-symmetric 

2 (K,B;I.J) c-quadratic 

(K,a;I,J) 

formation over A (K,a;I,J) such that 

(KrB;I,J) 

If ker(~:i0(Z2:~-1~/~,c) -il(ZZ;A,~)) = 0 

For all A,S,c it is possible 

For all A,S,c 

(K,a:I,J) 

(K,a;I,J) to be an S-formation (i.e. such that 

(K,B;I,J) 

(M,A;F,G) = 0 f M(v~>~(A,s) 

S-'K = s-~I@s-'J), so that (M,A,u;F,G) = 0 € ME(A,S) 

(F,G) = 0 '2 ~€(A,s) 

i 
(M.A:F,G) 

if and only if (M,A,p;F,G) is stably equivalent to the 

(F ,G)  

( - c )  -symmetric 

evrn ( - r )  -symmetric linking 

( - r  )-quddralic 



I (N,C form over (A,S) ( N , C )  . 
(NrS ,L1 

Proof: It is convenient to introduce the following construction, 

which associates an element 

((Q,@) .f. (Q1,@') 1 € ~(v,>~(~,s) 

to an isomorphism of the non-singular E-symmetric forms over S - ~ A  

-1 
f : s-~(Q,$)-~ (Q1,@') 

induced from non-singular E-symmetric forms over A ((!,@),(Q',$'). 

Let u€HomA(P,Q) be an S-isomorphism of €.g. projective 

A-modules such that 

f u € H o m A ( P , Q ' ) ~ H o m S - l A ( ~ - l ~ , ~ - l ~ ' )  . 

(Such U exist for P = Q). Let (P.0) be the E-symmetric form 

over A defined by 

e = uC@u : P -P* . 
The S-isomorphisms of S-non-singular E-symmetric forms over A 

U : (Pt0) -(Q,@) , fu : (P.8) -------+(Q',@') 
correspond by Proposition 3.4.6 i) to lagrangians 

F = coker(u:P-Q) , G = coker(fu:P+Q') 

of the boundary even E-symmetric linking form over (A,S) 

(M,A) = 3 (P,0) . 
Set 

l(Qt@)rf, (Q',@ 

Lemma 1 The Witt class 

1 = (M,A:F,G) e M<~~'(A,s) . 
[(Q.@) ,f. (~'.4') I ~M(v,)'(A.s) is 

independent of' the choice of S- isomorphism U € HornA (P,Q) . 
Proof: If ijfHomA(~,Q) is another choice of S-isomorphism 

th~re exist a r . q ,  projectivr A-module P and S-isomorphisms 

v€llomA(P,P), v€tlomA(F,P) such that 



Therefore it is sufficient to consider the effect of replacing 

U €  Hom (P,Q) by = uvf Hom ($,Q) for some S-isomorphism A A 

v €  HomA(F,P). The non-singular even c-symmetric linking 

formation over (A,Sj 

(M,A;F,G) = (;(P,fl);coker(u:P+Q) ,coker(fu:P-Q)) 

is replaced by 
- - - -  - - 

( H , , : ; F , G )  = ()(P,e);coker (;:P-Q) ,coker (fu:F----+Q)) 

with 
- - -  - W 

e = U * ~ U  = V*OV e flomA(p, P*) . 
By Proposition 3.4.6 i) the S-isomorphism of S-non-singular 

E-symmetric forms over A 
- 

V : (p,e)--(p,e) 

determines the sublagrangian 
- 

H = coker(v:P-P) 

of ( G , : )  = ? (F ,<) .  NOW HcFnG,  and there is defined an 

isomorphism of non-singular even €-symmetric linking formations 

over (A,S) 

( M , A : F , G ) - ~ ( H ~ / H , ~ ~ / ~ ; F / H , G / H )  , 

so that 

(M;A;F,G) = (H~/H,X~/X;F/H,GI/H) 
- - - -  

= (H,X;F,G) € M<v,>~(A,s) . 
I I 

Lemma 2 Given non-singular E-symmetric forms over A (Q,$),(Qa,$'), 

(Qu,$") and isomorphisms of the induced forms over S - ~ A  

the compos i t ?  isomorphism 



Proof: Let ufHomA(P,Q) be an S-isomorphism such that -- 

and let 0 = u*$u € Q'(P) (as before). Let F,G,H be the lagrangi, 

of 3(P,0) = ( M , X )  associated by Proposition 3.4.6 i) to the 

S-isomorphisms of S-non-singular c-symmetric forms over A 

U : ( p # e )  ------+(Q,+) 

fu : (P,O)------*IQ1,@') 

f'fu : (P,0)-(Qu,$") . 
Then 

i ( Q , ~ ) , f # ( ~ ' , + ' ) l @ i ( Q ' ~ + ' ) , f ' , ( Q " , @ " ) l  

= (M,A;F,G)@(M,A;G,H) 

= (M,A;F,H) = ~ ( Q , ~ ) , F ~ ~ , ~ Q * ~ , + ~ ~ ) I  e M<~~>'(A,I 

I 1  

Lemma 3 Let (Q,+), (Q1,+') be hyperbolic c-symmetric forms over 

with lagrangians L,L'. If an isomorphism of the induced hyperb 

c-symmetr ic forms over S - 1 ~  



Proof: Choose direct complements to L in Q and to L' in Q', 

so that 

for some E-symmetric forms over A (L*,a f QE (L*)), 

(L1*,a' 62 Q'(L'*)). There exist S-isomorphisms S € Hom (L,L) , A 

t f HornA ( L * ,  L) such that 

for some S-isomorphisms g €  HomA(L,L'),g'fHom (L*,L') and some 
A 

kfflomA(L*,L'). The S-isomorphism of S-non-singular €-symmetric 

forms over A 

determines a non-sinqular even E-symmetric linking formation 

over (A,S) 

such that 

The S-isomorphisms of S-non-singular E-symmetric forms over A 



It*s O) : (P, B) = (LBL*, 
1 ( * ::It) 

correspond by Proposition 3.4.6 i) to a lagrangian 

H = coker(h:LBL*-I.BL*) C M = coker(0:P-P*) 

and the sublagrangians 

I = coker (i:LBL*-LBL*) F M = coker (0:P - P*) 
J = coker(j:LBLh+L'BL*) C M = coker(B:P --P*) 

of the boundary even E-symmetric linking form over (A,S) 

(M,A) = a(P,B). Now I E F n H ,  J c G n H  and the even E-symmetric 

linking formations over (A,S) (I+/J,A'/X;F/I,H/I) ,(JI/J,X1/A;H/J,G/J) 

are stably equivalent to 0, so that 

[(Q,@) , f ,  (Q',@')] = (MtA;FtG) 

= (M,X;F,H)B(M,A;H,G) 

= (IA/I,A~/A;F/I,H/I)~(J~/J,A~/A;H/J,G/J) 

= o e M<v,)~(A,s) . 



The Witt class ?(K,a;I,J) € M<v >'(A,s) of the boundary 0 

even E-symmetric linking formation over (A,S) of an S-non-singul 

E-symmetric formation over A (K,a;I,J) may be described as follo 

Choose a direct complement to the laqranqian I in K, so that 

for some O€QE(l*). The inclusion of the S-lagrangian 

extends to an S-isomorphism of S-non-singular E-symmetric forms 

over A 

for some S-isomorphism s f  HomA(J,J). Define an isomorphism of 

hyperbolic c-symmetric forms over S - ~ A  

Then 

(To verify that this is the linking formation associated to the 

non-slnqular c-symmrtrlc S-form over A (K,a;J) used to define 

2 (K,a; I ,  J) use the S-isomorphism 

U = (, y )  : P = JIJ* ----JIJ* 

in th6: construction of I (JIJ*, (: :) l  ,f, (m*,(: :)I 1 ) -  



1,cmma 4 If (K,u;I,J), (K1,a';I',J') are S-non-sinqular E-symmetr 

formations over A such that the induced non-sinqular E-symmetri 

formations over S-lA S - l ( ~ , a ; ~ , ~ )  ,s-~(K',~';I',J') are 

isomorphic then 

J(K,a;I,J) = 1(K',a';I1,J') f M(v~>~(A,s) . 
Proof: As above, let 

be isomorphisms of the induced hyperbolic E-symmetric forms 

over s-~A. Let 
- 1 

q : s-l(~,a;I,J)-----+s (K',a';18,J8) 

be an isomorphism of the induced non-singular E-symmetric 

formations over S-~A. The isomorphisms of hyperbolic c-symmetrit 

forms over S-'A 

are such that 

g (S-l1) = S - ~ I  ' C s - ~ K '  

~ ( s - ~ J )  = S - ~ J I C  S-~(J*$J~*) 

Applyinq Lemma 3, we have 

(K,a) , g ,  (K1,a') ] = 0 f M(v~' ( A , s )  



Applying Lemma 2, we have 

I.ernma 5 If (K,a;I,J) is an S-non-singular E-symmetric formation 

over A such that 

S - ~ ( K , ~ ; I , J )  = 0 € M ~ ( s - ~ A )  

then 

~ ( K , ~ ; I , J )  = o E M<V~>'(A,S) . 
1 

Proof: Iset (D, 17€ Q (D,E) ) be the l-dimensional E-symmetric 
p-. 

S - l ~ - ~ o i n c a r 6  complex associated to (K,a;I,J) , with 

for some E-symmetr ic form over A (I*, 0 f Q' (I*) ) such tha' 



with ( :): J-1.1. the inclusion. Now 

so that there exists a 2-dimensional E-symmetric S-1~-~oincar6 

pair over A (f:D----+bD, (611,q) f a2(f,c)) with 6D a 

f.g. projective A-module chain complex such that &Dc = O  (r #0,1,2). 

Define an A-module chain complex 6D' and an A-module chain map 

g : 4D -&D' 

by 

1 and let (D',rll€Q (D',E)) be the l-dimensional E-symmetric 

S-'A-~oincar~ complex over A obtained from (D,Q) by suraery 

on the 2-dimensional E-symmetric pair over A 

% 2 
(gf:D--6D1,(g,1) ( 6 0 , n ) s Q  (gf,E)) 

(which becomes connected over S-l~). The S-non-singular 

c-symmetric formation over A associated to (D',q') is given by 

The boundary even E-symmetric linking formation over (A,S) 

3(K1,a';I',J') is stably equivalent to )(K,a;I,J), by 

Propositions 11.5.1 i), 3.5.2 ii), since 3(K,a;I,J) corresponds 

to the S-acyclic 2-dimensional even (-E) -symmetric poincar; 

complex over A sS(D,~), and ~%(D,Q) is homotopy equivalent 



to 3S(D',q1). Drfine an A-module chain complex 6 ~ '  and an 

A-module chain map 

g ' : D '--------+g6 ' 

with 

: D i  = D $6 D2@6 D~ --------+ D;) = DO@& D1$6 D 2 
1 

g '  = (f d -6n0) : D;, = D ~ @ ~ D ~ @ ~ D ~ - - + ~ E ; )  = &Do . 

The 2-dimensional E-symmetric pair over A 

is ~ - ~ A - ~ o i n c a r e ,  so that there exists an A-module morphism 

i € H~~,(D~,&D') such that the composite A-module morphism 

is an S-isomorphism. Define a l-dimensional A-module chain 

complex D" and an S-equivalence 



Let 

= E Q'(D",€) , 

so that (D" ,Q") is a l-dimensional -symmetr ic S-l~-~oincar& 

complex over A 

format ion over 

corresponding to the S-non-singular €-symmetric 

A 

with 

Proposition 1.6.4 translates the homotopy equivalence of 

l-dimensional E-symmetric ~oincar; complexes over S - ~ A  

- 1 h : S D - S  (D",Q") 

into an isomorphism of non-singular E-symmetric formations 

over S-'A 

h : s-~(K',~':I',J')@s-~(H~(J"*);J"*,J~~) 

------+S-~(K", a u ; I u , ~ " ) ~ ~ - l ( ~ c ( ~ ~ * )  ;J**,J~: 

Applying Lemma 4, we have 

3(K,a;I,J) = 7(K',a';11,J') 

3 (K",~"JI",J") = 3 (K",uW;I",I") = 0 Q M<VJ'(A,S) 

I 

It follows from Proposition 3.5.3 ii) and Lemma 5 that 

the correspondence of Proposition 3.5.2 ii) 

(S-acyclic 2-dimensional even (-E)-symmetric Poincar6 

complexes over A ( C , $ ) )  

-(non-singular even E-symmetric linking 

formations over ( A , S )  (M,h:F,G)) 



can be used to define an abelian group morphism 

We shall prove that this is in fact an isomorphism, so that 

applying Proposition 3.5.3 ii) again it will follow that a 

non-singular even E-symmetric linking formation over (A,S) 

(M, h:F,G) representing 0 in M(v~)~(A,s) is stably equivalent 

to the boundary J(K.a;I,J) of an S-non-singular E-symmetric 

formation over A (K,a;I,J) such that $-~(K,~;I,J) = 0 e M;(s-~A). 

In order to verify that the correspondence of Proposition 3.5.2 ii) 

also defines an abelian group morphism 

we have to show that the S-acyclic 2-dimensional even 

(-c)-symmetric ~oincar6 complex over A associated to the 

non-singular even c-symmetric linking formation over (A,S) 

i 
(M,A;P,G)b(M. A;G,H) 

(M, A;F,G) is S-acyclic cobordant to the complex 

(M, h;F,G) 

1 
(M, X;F,H) 

associated to (L+/L,X1/X;FAI.+,G/L), for any non-singular 

(L1/L, X1/X; F/L,G/I.) 

even c-symmetric link in9 form over (A,S) (M, A) and lagcangians 

i 
lagrangian H of (M,A) 

F,G together with a sublagranqian L of (M,A;F,G) 

sublagrangian L of (M,X) such that L G  F n G  

We shall consider the three cases separately. 



Recall from the proof of Proposition 3.5.2 ii) that the 

S-acyclic 2-dimensional even (-c)-symmetric ~oincar6 complex 

over A (C,+ € Q<v >2(~,-~)) associated to the even E-symmetric 
0 

linkinq formation over ( A , S )  (M,X;P,G) is the union 

( C , @ )  = (60uD6D1 , -B r l  un6r)' f Q(V~)~(~DLJ~~D',-~)) 

2 of the S-acyclic null-cobordisms (f:D----+6D,(6q,q) €Q<vO> (€,-E)), 

(f':D- 6D8, (bq',~) € Q(V,)~(~',-E)) associated to the 

laqranqians F,G by Proposition 3.4.5 

the S-acyclic complex associated to 

Proposition 3.4.1. Let (fV:D+6D" 

the S-acyclic null-cobordism of (D,n 

laqranqian H of (M,A), so that the S 

ii), with ( D , n €  Q(v~>~(D,-E)) 

he linking form ( M , A )  by 

(6n",q) f Q(V~>*(~",-E)) be 

corresponding to the 

acyclic complexes associated 

to the linking formations (M,A;G,H),(M,A;F,H) are the unions 

Now (C",@") is homotopy equivalent to the S-acyclic complex 

obtained from ( C , @ ) @ ( C ' , @ ' )  by sutqery on the connected S-acyclic 

3-dimensional even (-c)-symmetric pair over A 

where 

It Follows from the S-acyclic counterpart of Proposition 1.4.2 that 



The S-acyclic complexes associated to the stably 

equivalent even E-symmetric linking formations (M,A;F,G), 

(LL/L,A'/A;Fn Ijl,G/I.) are hornotopy equivalent (by 

Proposition 3.5.2 ji)) and hence represent the same element 

OF L' (A,s,E). 

Given a non-singular even E-symmetric linking formation 

over (A,S) (M,A;F,G) let (K,a;J) be a non-singular €-symmetric 

S-form over A associated to it by Proposition 3.5.2 i). 

Let jfHomA(J,K) be the inclusion, and let 

be an extension of the inclusion to an S-isomorphism of 

S-non-singular E-symmetric forms over A, with 

an S-isomorphism. Given a sublagrangian L of (M,A) such that 

L c F n G  there exist a f.g. projective A-module J', an A-module 

morphism j'€ HomA(.T',K) and S-isomorphisms U €  Hom (J',J), 
A 

v €  HomA(J1,J) such that the inclusions L- F, L --+G have 

resolutions 



0-JBJ* A J'BJ* F I, -0 

2 Let (C,+€Q<vO) (C,-€)) be the S-acyclic 2-dimensional even 

(-€)-symmetric ~oincar; complex over A in normal form associal 

to the S-form (K,a;J) (as in the proof of Proposition 3.5.2 i 

Define a 3-dimensional S-acyclic A-module chain complex D and 

chain map 

Let (C',$'€Q<V~>~(C',-E)) be the S-acyclic 2-dimensional eve 

(-€)-symmetric Poincar; complex over A obtained from (C,$) by 

surgery on the connected S-acyclic 3-dimensional even 

3 
(-E)-symmetric pair over A (f:C-D, (O,$) € a(v0> (F,-€)). 

Let (C",$" '2 (C",-€) ) be the S-acyclic 2-dimensional eve 

(-c)-symmetric poincar; complex over A in normal form associa 

by Proposition 3.5.2 ii) to the non-singular €-symmetric S-fc 

over A (K,a; im( j' :J'- K )  ) , which corresponds by 

Proposition 3.5.2 i) to the non-singular even E-symmetric 

linking formation over (A,S) (LI/L,A~/X;F/L,G/L).  he chain 



equivalence 

qiven by 

defines a homotopy equivalence 

h : (Ct,$')-(C",$") . 
It follows that 

1 ( C , $ )  = (C',$') = (Cu,$") f L (A,S,E) , 

verifying that the S-acyclic complexes associated to the linking 

formations (M,A;F,G),(L+/L,A1/h;F/L,G/L) are S-acyclic cobordant. 

This completes the id~ntification 

E-quadratic 
The verification that a non-sinqular 

split E-quadratic 

i (M. h ,  v;F,G) 
linking formation over (A,S) represents 0 in the 

( F t G )  

ME(A.S) 
Witt group if and only if it is stably equivalent to 

M=(A,s) 

i(K,a;I,J) r even E-symmetric the boundary of an S-non-singular 
a(K,B;I,J) €-quadratic 

(K.ai1.J) 
formation over A such that 

(K, R;I,J) 



proceeds by analogy with the case of even c-symmetric linking 

formations dealt with above. 

It remains to prove that 

i 
if ker ( g : i 0 ( ~ 2 ; ~ - 1 ~ / ~ , c ) * i 1 ( ~ 2 ; ~ , ~ )  ) = 0 

for all A,S,E a non-singular 

for all A , S , c  

even E-symmetric 

c-quadratic linking formation over (A,S) 

(split €-quadratic 

i 
M ( v ~ > ~  (A.S) 

represents 0 in the Witt group Mc(A,S) if 

RE ( A ' S )  

it is stably equivalent to the boundary 

and only 

of an 

I (-c) -symmetr ic i 
(N,T) 

even (-c)-symmetric linkinq form over fA,S1 (N,E) . 
(-€)-quadratic (N,s,P) 

even E-symmetr ic 
For [ linking formations this follows from 

split c-quadratic 

Proposition 3.5.3 i i ) .  (The projection of Proposition 3.5.2 iii) 

(S-acyclic 2-dimensional (-€)-quadratic ~oincar; 
l 

complexes over A ( C , $ ) )  

---+(non-singular split E-quadratic linking formations 



can thus be used to define an isomorphism of abel 

L (A,S,c) - * M E ( A , S )  ; (C,$) - (F 1 

ian groups 

',G) ) .  

The method of proof of Proposition 3.5.2 ii) is readily 

modified to give the corresponding result for €-quadratic 

linking Formations. 

(even) E-symmetr ic 
A non-singular formation over S - 1 ~  

E-quadrat ic 

i ( Q , $ ; F , G I  
with projective class 

(Q, $;F,G) 

is stably isomorphic to 
.a; 1, J) 

for some S-non-singular 
,B;I,J) 

(even) €-symmetric I (K,a;I,J) formation over A . It follows 
€-quadrat lc (K,B;I,J) 

from Proposition 3.5.4 that the boundary operations 

2 : (S-non-singular formations over A) 

-------+ (linking formations over (A,S)) 

can be used to define abelian group morphisms 

There is also defined a morphism 



The correspondence of Proposition 3.5.2 i) associates to a 

i 
even c-symmetr ic 

non-singular €-quadratic linking formation over (A,S) 

split €-quadratic 

i 
(MtA;F,G) 

(M,X,v;F,G) a stable isomorphism class of non-singular 

( F r G )  

I €-symmetric 1 
(K,a;L) 

even €-symmetric S-forms over A (K,a;L), and it follows 

E-quadrat ic (K,B;L) 

from Proposition 3.5.4 that there are well-defined abelian 

group morphisms 

from the Witt groups of linking formations over ( A , S )  to the 

Witt groups of forms over A defined in S1.6 above. 

------- i E-symmetr ic Define the lower odd-dimensional L-groups 
c-quadratic 



Proposition 3 . 5 . 5  i) The localization exact sequence of algebraic 

Polncar6 cobordism groups 

L2ktl A ,  (-)k~)-~,2kt1(~-1~, ( - )  k E) +L*~+'(A,s, ( - )  k E) 
S 

(A, ( - 1  kE) -L:~ (s-~A, ( - 1  kE) (*l 2ktl 

is naturally isomorphic for to a localization exact 

k ,( -2 

sequence of Witt groups 

ii) l'her~ are defined natural abelian group morphisms 

ME (A,S) + t12k+1 (&.S, (-1 kE) (k 8 1) 

(A,S) is l-dimensional 
for all A,S,E. If ^O 

~ ~ ~ ( ~ : H ~ ( Z ~ ; S - ~ A / A , E ) - - * H  (Z2:A,')) = 0 

then for these are isomorphisms 

iii) If (A,S) is 0-dimensional then 

and there are defined localization exact sequences of Witt 

groups 



-LL,(A,s)----+M-€ (A) O- L(v~>~(A) ----+I,(V~) :(S- A) 

a - ----+MS~ (s-~A) --t~-~ (A'S) -+ I,-, (A) -L:€ (s-~A) 

3 -LcF (A,S)---+M~ (A)-M~(s-~A)----+F~, (A,s)----,. . . . 

i 
im(2:i1°(n2;s-1~/~,E)---,~1(~2:~,~)) = o 

iv) rf f i 0 ( Z 2 ; A , ~ ) + f i 0 ( Z 2 ; S - ' A , , ,  is an isomorphism 

G ~ ( Z ~ : A , E ) - ~ ~ ' ( Z ~ ; S - ~ A , E )  is an isomorphism 

there is a natural id~ntification of Witt qroups of linking 

formations over (A,S) 

r -  ~ < v ~ > ~  (A,s) = M' (A,s) 

ME (A,S) = M<vO>' (A,S) 

M,(A,S) = ME(A,S) . 

In particular, if 1/2fA 

M, (A,s) = M, (A,s) = M(v~>~ (A,s) = M€ (A,s) . 

Preof: i) It has already been verified (in the course of the - 
proof of Proposition 3.5.4) that there are natural identifications 

The localization exact sequence 



The exactness of the Witt group sequence can also be establishe~ 

directly, using Proposition 3.5.4. The direct method applies 

also to the verification of the exactness of 

M < v ~ >  E ( A ) - - + M < ~ ~ > ; ( S - ~ A )  -M~(A,s) - L<V,>~(A) ----+ I. (VO>; (s-~A) . 
ii) Define abelian group morphisms 

ME (A,s) L2ktl (A,S, ( - )  k E) ; (M.A;F,G)Ns~(c,$) (k >, 

by sending a non-sinqular E-symmetric linking formation over ( A  

(M, X;F,G) to the k-fold skew-suspension zk (C,$) of an S-acyclic 
2 2-dimrvsional (-c)-symmetric Poincar; complex over A (C,@fQ (C 

associated to (M,X;F,G) by Proposition 3.5.2 ii) . The S-acyclic 
2k+l k cobordism class sk(c,@) € L (A.S. ( - )  E )  depends only on the 

stable equivalence class of (M,X;F,G) (proved exactly as in 

Proposition 3.5.3 i)), vanishing if (M,X;F,G) = 0 f ME(A,S) 

(proved exactly as in Proposition 3.5.4), so that the morphisms 

are well-defined. If 
= 0 

then for j* ' l L2kt1 k (A.S. ( - )  E )  is the cobordism group of 

ic ~oincar; complexes over 8 

( k = l  

S-acyclic 2-dimensional (-E)-symmetr 

I 3.2.4 (by Proposition ) ,  so that the 
3.3.2 

morphisms are onto. 

2ktl 
If (M,X;F,G) f ker(ME(A,~)-+ L (A,S, (-)k~)) the S-acyclic 

complex (C ,$ )  is homotopy equivalent to the boundary a(D,n) of 

a connected S-acyclic 3-dimensional (-E)-symmetric complex 

3 over A (D,QfQ (D,-€)), and the proof of Proposition 3.5.4 

generalizes to show that (M,X;F,G) = 0 € Me(A,S), so that the 

morphisms are also one-one. 



iii) If (A,S) is 0-dimensional Proposition 3.2.4 shows that 

1 3 
L (A,S,€) = L (A,S,-E) = 0 , 

so that 

M(v,)'(A,s) = M'(A,s) = o . 
The proof of Proposition 3.2.4 generalizes to also show that 

i m ( i : C i 0 ( ~ 2 ; ~ - 1 ~ / ~ , E ) - - - - r C i 1 ( z 2 i ~ , ~ ) )  = 0 

-0 - 1 (Z2iA,c) -H (ZZ;S A,€) is an isomorphism 

Proposition 3.4.2 ii) gives an identification of categories 

(even E-symmetric linking forms over (A,S)) 

= (€-symmetric linking forms over (A,6)) 

(€-quadratic linking forms over (A,S) ) 

= (even E-symmetric linking forms over (A,S)) 

There is thus also an identification of categories 

(even €-symmetric linking formations over (A,S)) 

= (E-symmetric linking formations over (A,S)) 

(E-quadratic linking formations over (A,S)) 

= (even €-symmetric linking formations over (A,S)) 

giving rise to an identification of the Witt groups 

M(~~>'(A,S) = M'(A,s) 

M~(A,s) = M(v~>~(A,s) . 
If fil (z~;A, €1  -----+fil(~~;s-~A, E) is an isomorphism Proposition 

3.4.2 ii) gives identifications of categories 

(split €-quadratic linking forms over (A,S)) 

= (€-quadratic linking forms over (A,S)) 



((-E)-quadratic linking forms over (A,S)) 

= (even (-E)-symmetric linking forms over ( A , S )  1 ,  

so that there is an identification o f  stable equivalence classes 

(split €-quadratic linking formations over (A,S)) 

= (E-quadratic linking formations over ( A , S ) )  , 

giving rise to an identification oE the Witt groups 

fiE(~,s) = ME(A,S) . 



3.6 The localization exact sequence (n € Z)  

In the course of § 5 3 . 4 , 3 . 5  the definition of the 

E-symmetr ic L"(A,s,E) 
L-groups (n)O) of 5 3 . 2  was extended 

c-quadratic Ln(A.s,~) 

to the range n,< -l, by S-acyclic analogy with the lower 

Ln(A,e) 
L-groups ( n &  -1) of S1.8. Combining the results of 

L,,(ArE) 

Propositions 3.4.7,3.5.5 we have: 

Proposition 3.6.1 i) There is defined a localization exact 

€-symmetric 
sequence of L-groups 

€-quadratic 

ii) The localization exact sequence of E-quadratic L-groups is 

12-periodic, all the groups involved beinq ?-periodic in n, 

and it is naturally isomorphic to the localization exact sequence 

of ,€-quadratic Witt groups 

...- z -E (A,s)-M€ ( A ) - M ~ ( s - ~ A ) ~ E ~ ~ ( A , s )  

S - 1  j -  L L (A) --+LE (S A) -----r LE (A,S) - M-c (A 
iii) In the range n( 2 the localization exact sequence of 

E-symmetric L-groups is naturally isomorphic to the local 

exact sequence of Witt qroups 

. I - -+ .  . . . 

ization 



becoming the 12-periodic E-quadratic sequence on the right. 

iv) ~f io(z2:~,~) 4 ~O(Z~;S-'A,E) is an isomorphism the 

skew-suspension maps 

3 : I,~(A,s,c)- ---r L"+~(A,s,-E) (ne Z)  

are isomorphisms. 

V) If (A,S) is 0-dimensional 

k 
I , ~ ~ ( A , s ,  ( - )  F )  = L'(A,s) ( k  ) l )  

t2k+l (A,s, (-)kc) = M€(A,s) = M(v~>~(A,s) = M'(A,s) = 0 (k 2-1 

If (A,S) is l-dimensional 

L ~ ~ + ~  (A,s, ( - 1  k E )  = M€(A,s) (k ) 1) . 
If ker ( 6 : f i 1 ( ~ 2 ; ~ - 1 ~ / ~ , ~ )  dfi0(iZ2;A,~)) = 0 

(Note that Proposition 3 . 6 . 1  iv) is an S-acyclic analogue o f  

the result o f  Proposition 1.8.1 that i f  ;O(Z~;A,C) = 0 then 

the skew-suspension maps S: 1," (A, c)-Lnt2 (A,-€) (n f Z )  are 

isomorphisms) . 



As promised in S3.1 we shall now apply the localization 

exact sequence to obtain excision isomorphisms and Mayer-Vietor] 

exact sequences for the L-groups of the rings with involution 

appearing in the cartesian square 

associated to a cartesian rnorphism 

f : (A,S)-(f3,T) 

of rings with involution and multiplicative subsets. 

In the first instance we consider the Witt groups of linking 

forms 

formations 

Proposition 3.6.2 A cartesian rnorphism 

f : (A,S)-(B,T) 

induces isomorphisms of Witt groups 

If 2 = O  : G 0 ( ~ 2 ; ~ - 1 ~ , ~ ) - $ 1 ( ~ 2 ; ~ , ~ )  there are also induced 
isomorphisms 



Proof: The cartesian morphism f: ( A , S )  -----+(B,T) induces an 

isomorphism of exact categories 

(Proposition 3.1.3 i)), so that it also induces an isomorphism 

of categories 

forms 
f : {E-symmetric linking over (A,S) 1 

formations 

forms 
------+ (E-symmetric linkinq over (B,Tl 1 ,  

format ions 

and hence also isomorphisms of the corresgondinq Witt groups 

Although the functor 

forms 
E : (split E-quadratic linking over (A,S) ) 

formations 

forms 
-[split c-quadratic linking over (B,T) 

formations 

need not be an isomorphism of categories in the linking formation 

case it does induce isomorphisms in the corresponding Witt groups, 

since it induces isomorphisms 

T 
f : QS(C,E)-Q*(BB~C,E) 

for any finite-dimensional (A,S)-module chain complex C 

(Proposition 3.1.3 ii)). It follows from the exact sequences 

(with the Q-qroups as defined in the proof of Prolosition 3.4.2 ii)) 

that if = 0 : ~"(a.~;r-'n,r) ------, fi1(z2;h,~) then E: ( A , s ) ~ ( B , T )  

induces isomorphisnis of catpqaries 



l forms +{even E-symmetric linking over (5,T) 1  , 
format ions 

forms 
f : {(-E)-quadratic linking over (A,S) 

formations 

forms 
N ) I  (-E]-quadratic linking over ( B , T ) )  

formations 

(as well as an isomorphism 

forms 
f : (split €-quadratic linking over ( A , S )  1 

formatiohs 

forms 
Ad *{split c-quadratic linking over (B ,T)  1 )  , 

formations 

and hence also isomorphisms of the corresponding Witt groups. 

I l 

Next, we consider the excision properties of the L-groups: 

Proposition 3.6.3 i l  A cartesian morphism 

f : (A,S)-------+(R,T) 

induces excision isomorphisms in the E-quadratic L-groups 

and there is defined a Mayer-Vietoris exact sequence 

i i )  A cartpsian motphism 

(A,S) is 0-d~mensinnal - 1 
induces excision 

6 = o : Go(z2:~-'~, F ) - - - + I !  ( z 2 ; ~ , r )  



isomorphisms in the t-symmetric L-groups 

and there is defined a Mayer-Vietoris exact sequence 

for 
with L~~+'(A,s,E) = I,~~~'(B,T,E) = 0 (k)O) and 

C - 
Proof: Immediate from Propositions 3.2.1,3.6.1 and 3.6.2. -- 

In particular, for a central multiplicative subset S c A  

there is defined a cartesian morphism 

( A , S l  -F (it;) 

with i = I.im A/sA the S-adic completion of A, giving rise to 
S%s 

the cartesian square of rings with involution 

ii) 
Proposition 3.6.3 i. shows that 

i f  g = o : f i 0 ( ~ 2 ; ~ - ' i , c ) - $ 1 ( ~ 2 ; ~ , ~ )  (e.g. if 1/2e?-'i) 

for all A,S,c 

E-symmetr ic 
there are defined excision isomorphisms in the 

E-quadratic 



and a Mayer-Vietoris exact sequence 

. . . n --l- ~ L ~ ( A , E ) - I , ~ ( s - ~ A , E ) B L ~ ( ~ , E ) + L ~ ( s  A,E) 

Ln-l (A,€)--+. . . 
. . . --+L~(A,E) - - - - - $ ~ f ( s - ~ ~ , E ) ~ ~ ~ ( i , E ) - r ~ f ( ? - l i , ~ )  

3 
I Ln,l(A,E)---t.. . 

( n €  E )  . 

A ring with involution A is m-torsion-free tor some 

integer m>, 2 if m 1 8 A  is a non-zero-divisor of A ,  in which 

case 

k S = (m 1k)O)cA 

is a central multiplicative subset of A. The localization 

of A away from m is the localization 

A[&] = S-'A . 
The m-adic completion of A is the S-adic completion of A 

im = 9 A/mkA . 

The completion Am is an m-torsion-free ring with involution 

which is a module over the ring of m-adic integers 

km = k m  7L/mkz, and the local izat ion of the completion 
k 

- 1 
is a vector space over the field of m-adic numbers Qm = Zm[ml. 



3 7 3  

A ring with involution A is torsion-free if it is 

m-torsion-free for each integer m 3 2 ,  in which case 

S = Z-{O]CA 

is a central multiplicative subset of A. The localization 

of A at 0 is the localization 

A (0) 
= S-'A = mZA , 

which is a vector space over the field of rational numbers Q. 

The profinite completion of A is the S-adic completion 

which is a module 

torsion-free ring 

the completion 

ii = Lim A/mA , 
m 

over % = LLm Z/mZ?. Furthermore, is a 
m 

with involution, and the localization of 

is a module over the ring of finite adGles a = $-l% of Z. 

As in Ranicki (6,541 define for each integer m b 2  the 

number 

$(m) = the exponent of L'($ ) 

(2 if m is a product of odd primes p ?  l(mod 4) 

4 if m is a product of odd primes at least 

one of which is p S 3 (mod 4) 

8 if m is even , 
0 - and note that L'($) has exponent 8. (In fact, L (Z,) and 

are g i v e n  by 

factorization of m into prime powers, 



with 

Proposition 3.6.4 Let A be a ring with involution which is 

m-torsion-free (resp. torsion-free) , and let 

S = ( m k l ~ k Z O } ~ A  (resp. S = 27,-{O)CA) , 

so that the cartesian square of rings with involution 

is given by 

i )  There is defined a Mayer-Vietoris exact sequence of 

E-symmetr ic 
L-gr oups 

F-quadratic 



ii) The localization maps 

are isomorphisms modulo *(m)- (resp. 8-1 torsion, and the 

dividinq $(m) (resp. 8 ) .  

Proof: i )  The Mayer-Vietoris exact sequence in the E-quadratic 

case is just that given by Proposition 3 . 6 . 3  i) for the 

car tesian morphism 

( A , S )  -( i ,s) 
defined by the inclusion. In the E-symmetric case it is the 

sequence given by Proposition 3 . 6 . 3  ii) - this applies here 

since 1/2 € ?-li, so that 
-0 A -  a = , : tl (z2;s lii,~) = 0-----+ a 1 ( z 2 ; ~ , ~ )  . 

i i) The maps 

are isomorphisms 

localization map 

(by Proposition 3 . 6 . 3  again). Now the 

X -- .?-l; 

is a morphism of Zm- (resp. Z- ) modules, so that by 

Proposition 2.2.6 the localization exact sequence 

n-l - ) - l > ( - 1 i , c ) - 1 n ( , , - 7 5 1 1  (APE) 

A  A  

) - - * L , ~ ( $ - ' ~ , F )  --L (A,S,C) -- Ln-l(i,c) 
(n C Z )  

0 0 ^ 
l. ('L? ) - ! ~ I - s [ > .  1, ( Z )  - ) modules. 



In particular, for any qroup n the qroup ring Z[-] is 

torsion-free, so that by Proposition 3.6.4 ii) the 

localization maps 

are isomorphisms modulo 8-torsion, with 

S = Z-[O)CZ[nl . s - ~ z I ~ ]  = QIn] . 
For each prime p define the multiplicative subset 

k 
S = (p llk>,~)cZ[nl . 
P 

In 54.1 below the L-groups of (Z[nl ,S) will be expressed as 

direct sums 

in which the p-components are L'(% )-modules, and hence of 
P * 

exponent dividing $(p). 

Returning to general rings with involution, we have the 

following result (which is needed for 54.1): 

Proposition 3.6.5 If S , T C A  are multiplicative subsets such 

that 

= *-lA 

(in the sense that there exists an isomorphism of rings with 

involution s-~A-T-~A which is the identity on A) there 

are defined natural identific~tions 



Proof: Immediate from the definitions and the identification 

of exact cateqor ies 

( ( A , S )  -module!;] = ( (A,T) -modules) . 
I l 

Given central multiplicative subsets S,TCA in a ring 

with involution A define a central multiplicative subset 

ST = ( s t \ s e s , t e ~ ) C A  , 

The central multiplicative subsets S , T C A  are coprime if for 

all s f S , t F T  the ideals sA,tA of A are coprime, that is if 

there exist a,b€A such that 

a s + b t = l f A .  

It follows that the inclusion defines a cartesian morphism 

(A,s) -(T-'A,s) , 
giving rise to the cartesian square of rings with involution 

Prcposition 3.6.6 Let S,TCA be coprime central multiplicative 

subsets in a ring with involution A .  

i) For all A,S,T,c there is defined a Mayer-Vietoris exact 

sequencp of €-quadratic L-groups 



ii) If 2 = 0 : f i 0 ( ~ Z ; ( ~ ~ ) - 1 ~ , ~ ) - - - - - * ~ 1 ( ~ 2 ; A , ~ )  (e.g. if the 

involution on A restricts to the identity on S and T )  there 

of €-symmetric is defined a Mayer-vietoris exact sequence 

L-groups 

ii) 
Proof: By Proposition 3.6.3 there are defined excision 

c-symmetric 
isomorphisms of L-groups 

€-quadratic 

It follows from the exact sequence 

. . .-+R1( ( s ~ 1 - l ~ )  -+Ko(~) --+R~(s-~A)&~(T-~A) 

--+ R o (  (ST) -'A) K-l (A) . . 
that the natural map 

irO ( T - ~ A  

is an isomorphism, where S ,T.ST are the *-invariant subgroups 



are isomorphisms, so that the natural maps 

are excision isomorphisms and give rise to the Mayer-Vietoris 

exact sequences claimed in the statement. 

l l 

Given disjoint collections of primes in N 

P = (pl,p 2 , . . . )  , Q = {q1,q2, ... l 
(one of which may he empty) such that 

P u Q  = tall primes in NI 

there are defined coprime multiplicative subsets 

Eor any torsion-free rinq with involution A .  The localization ol 

away from P, or equivalently the localization of A at Q, 

is defined to be t h e  rinq with involution 

The localizations at and away from P are related by a cartesian 

square 



for which Proposition 3.6.6 gives a Mayer-Vietoris exact seque 

In particular, there is defined such a Mayer-Vietoris exact 

E-symmetric 
sequence of the L-groups of the rings with involu 

c-quadrat ic 

appearing in the cartesian square 

with A = Z l n l  a group ring and P = (p) for some prime p. 



3.7 Change of K- theory 

The localization exact sequence of 53.6 will now be 

extended to the intermediate L-groups of 51.10. In fact there 

are two such extensions, one indexed by the *-invariant 

subgroups XCK1(A,SI and one which is indexed by the *-invariant 

subgroups x G ~ ? ~ ( A )  (m = 0,l). The generalizations may be proved 

in the same way as the original sequence, OK else may be deduced 

from i t  using the comparison exact sequences of 51.10. 

In the first instance it is necessary to consider the 

action of the duality involutions on the localization exact 

sequence of algebraic K-theory 

l 2 j io 
K l ( ~ )  A ~ ~ ( 5 - l ~ )  ~ K ~ ( A , S ) ~ ~ ~ ( A ) ~ R ~ ( S - ~ A ~  

for a localization A -----+ S-IA of rings with involution. 

The duality involution 
- 

I) : K,(A) = A (P(A)) -K~(A) = K,(P(A)) (m = o,i) m = 

is induced by the duality involution on the exact category :(A) 

of f.g. projective A-modules 

I) : H(A)----A P(A) ; P+P* = HOmA(PIA) 

and similarly for * : K ~ ( s - ~ A ) ~ K ~ ( s - ~ A ) .  The morphisms 

i :F (A)-K~(S-'A) are induced by a functor of categories m m 

with involution 

so that the diagrams 



commute. The duality involution 

* : K1(A,S) = K 0 (P(A,S))-K1(A,S) = = KO(P(A,S)) 

is induced by the S-duality involution on the exact category 

g(A,S) of (A,S) -modules 

* : g(A,S) ---r g(A,S) ; M -+MA = Hom ( M , s - ~ A / A )  A 

If an (A,S)-module M has f.g. proiective A-module resolution 

the S-dual M" has resolution 

It follows that the morphisms 

(with f,sEHom (P,P) S-automorphisms of a f.g. projective A 

A-module P) and 
- 

j : K1(A,S)----+ KO(A) ; [ M l t '  [P1] - [PO] 

(with PO,P1 the f.q. projective A-modules appearing in a 

resolution O*P1+P - M - - P O  of an (A,S)-modul~ M)  
0 

are well-defined and such that t h ~  diaqram 



commutes . 
Define the S-pro~ective class of an (A,S)-module M to be 

the element 

More 

( A , S  

and 

generally, the S-projective class of an n-dimensional 

-module chain complex C is defined to be 

s such that 

[cn-^] = (-)"[C]* € K~(A,S) . 
A short exact seauence of (A,S)-modules 

0 M - - +  M ' - d M " - - + O  

is an acyclic 2-dimensional (A,S)-module chain complex with 

S-projective class 

fMl - [M'] + [M"] = 0 € K1(A,S) . 
Given a Z[iZ2]-module C, let G- denote the Z[Z21-module 

with the same additive group, but with T €  Z2actinq by 

The TateZ?2-cohomoloqy groups are such that 

- ,. i l * ( i l . * ; ~  ) = H*-~(Z~:G) . 



G i v e n  a  * - i n v a r i a n t  s u b q r o u p  X'SK1(A,S) l e t  

( n  € Z )  b e  t h e  L - g r o u p s  d e f  i n 4  i n  t h e  same way a: 

( A , S ) - m o d u l e  c h a i n  c o m p l e x e s  C w i t h  S - p r o j e c t i v e  c l a s s  

D e f i n e  * - i n v a r i a n t  s u b g r o u p s  

jX = i rn ( j1  : x - ~ ? ~ ( A ) ) G ~ ~ ( A )  , 

so t h a t  t h e r e  is d e f i n e d  a  s h o r t  e x a c t  s e q u e n c e  o f  

Z I Z 2 1 - m o d u l e s  

i n d u c i n g  a  l o n g  e x a c t  s e q u e n c e  o f  T a t e Z 2 - c o h o r n o l o g y  g r o u p s  

3 . . .--+ R n ( z 2 ; x  / k e r  ( a )  ) - L i n ( z 2 : x )  &in-1 (z2; j x )  

T h e  e x a c t  s e q u e n c e s  o f  P r o p o s i t i o n  2 . 5 . 1 ,  3 . 6 . 1  

c - s y m m e t r i c  
. a e n e r a l i z e  to t h e  i n t e r m e d i a t e  L - g r o u p s  

E - q u a d r a t i c  



Proposition 3.7.1 Given *-invariant subgroups XCYCK1(A,S) 

thpre is defined a commutative diagram of abelian qroups 

with exact rows and columns 

(n€ Z) . 
Similarly for the €-quadratic L-groups Ln. 

[ 1 

Given a *-invariant subqroup X c kO(A) define *-invariant 

subgroups 

S-lx = im(i 0 I :X--+Z~~S-~A,) E K~(S-'A) , 

= I .-l (X) CK1(ArS) I 

so that there is defined a short exact sequence of Z[Z21-modules 

- i i 
0---+(xJ/ker ( j : ~ ~  (A,s)-+~~(A) ) ---h X L* S-lx ---0 

inducinq a long exact sequence of Tate Z2-cohomoloqy groups 



Proposition 3.7.2 Given *-invariant subqroups X c Y G  Ro(A) there 

is defined a commutative diagram of abelian qroups with exact 

rows and columns 

Similarly for the c-quadratic 1,-qroups I. . 
l1 

The localization exact sequence OF proposition 3.7.1 

For X = ~ ~ ( ~ : K ~ ( s - ~ A ) + K ~ ( A , s ) )  ker ( ~ : K ~ ( A , s ) - K ~ ( A ) )  C K 1  (A,S) 

coincides w ~ t h  the localizat ,on pxact srqurncr of Proposlt Ion 3.7.2 

for Y = ( 0 1  5 K " ( A )  



This sequence can be written as 

. . .--jvn(~, c ) h v n ( s - l ~ , E )  __Svn(~,s, E) - - - - - - - f v n - l ( ~ , E )  -+. 

with V*(A,E) (resp. v*(s-~A,E)) the V-groups of S1.lO, i.e. th 

analogues of the [.-groups L* (A, E] defined using only €.g. free 

A- (resp. S-IA-) modules, and V*(A,S,c) the analogues of the 

L-groups L*(A,S,c) defined using only (A,S)-modules with a 

f.g. free A-module resolution of length 1. 

An (A,?,)-module M is S-based is there is given a E.g. fr 

A-module resolution of lenqth 1 

with PO and P1 based. The S-torsion oE M is then defined to be 

T ~ ( M )  = T ( ? , - ~ ~ : s - ~ P ~ - J s - ~ P ~ )  f K~(S-'A) . 

The S-dual (A,S)-module M* is also S-based (using the dually 

based A-modules P$,P;), with S-torsion 

T, (M^) = l (s-ld* :s-~P;-s-~P*) 1 = T~ (M) C a, (s-~A) 

More generally, the S-torsion of an n-dimensional S-based 

(A,SI-module chain complex C is defined to be 

If D is an (nt1)-dimensional S-acyclic based A-module chain 

complex resolvinq C (with the S-hases of the (A,S)-modules Cr 

determined by the bases of the A-modules Dr) then S-'D is an 

(n+l)-dimensional acyclic based S-'A-module chain complex 

such that 

- - 1  
T ~ ( C )  = ?(D) € K 1  (S A) . 



It follows from the definitions that 

TS = T [S-lDn+l-* = I-)"~,(c)* E kl(s-l~) . 
The torsion of an n-dimensional acyclic S-based (A,S)-m 

chain complex C is defined to be 

T (C) = T (D) f X I  (A) 

with D an (n+l)-dimensional acyclic based A-module chain comp 

resolving C. It follows from the definitions that 

T (cn-*) = T(D"+~-*) = (-lnT (C) E K1(~) . 
The torsion of a homology equivalence 

f : C -------+ C ' 

of n-dimensional S-based (A,S)-module chain complexes is 

defined to be 

s-l~(f) = T ~ ( C )  - T~(C') f K ~ ( S - ~ A )  . 

The torsion of an n-dimensional S-based E-symmetric Poi 

complex over (A,S) (C,+ 8 Q~(C,E)) is defined to be 

T (C,+) = (T (O~:C"-~-C) ,T~(C) 

with T:~('~-R~;TI---+T* the duality involutions. The torsion 

an n-dimensional S-based €-quadratic ~oincar; complex over ( $  

(c,+€ Q ~ ( c , E ) )  is defined to be the torsion of the c-symmetrl 



G i v e n  a  * - i n v a r i a n t  s u b g r o u p  X S R  (A) d e E i n e  a  * - i n v a r i a n t  1 

s u b q r o u p  

S-'X = i m ( i l J  :x-gl ( s - ~ A )  ) C z l  ( S - ~ A )  . 
G i v e n  * - i n v a r i a n t  s u b g r o u p s  X F  E l  ( A )  .Y S f l  ( s - ~ A )  s u c h  t h a t  

S-'X 5 Y c il ( S - ~ A )  

let  [ ~ ~ ; , ~ ( A t S t c )  
( n  f Z )  be t h e  L - y r o u p s  d e f i n e d  i n  t h e  same  

L:" ( A , s , E )  

I . " ( A , s , E )  
way a s  ( n f  Z )  b u t  u s i n g  o n l y  S - b a s e d  a l g e b r a i c  

I . n ( A . S . ~ )  

~ o i n c a r ;  c o m p l e x e s  o v e r  ( A , S )  w i t h  t o r s i o n  i n  

Fo r  X = E l  ( A ) ,  Y 

As i n  S 2 . 5  

o f  a  morph i sm o f  

d e f i n e  t h e  r e l a t i v e  T a t e  Z 2 - c o h o m o l o g y  q r o u p s  

ZL [ZL21-modules  

f  : G ---4 H  

( ( x , Y )  ~ G ~ H ) x *  = ( - ) " - ' x , ~ x =  y t  ( - ) " - l y * )  
f i n  (z2;  f )  = (n (mod  2 ) )  , 

( ( U  + ( - ) " - ' u * , f u  +  v +  ( - ) " V * )  I ( u , v )  F G ~ B H )  

a n d  n o t e  t h a t  t h e r e  i s  d e f i n e d  a  l o n g  e x a c t  s e q u e n c e  

. . . - - * ~ " ( z ~ ; G )  - - f - - t f i n ( Z 2 ; H )  - - - - + f i " ( ~ ~ ; f )  +f?n-1(Z2;~)  4.. . . 



The exact sequences of Propositions 1.10.1,2.5.1 and 

3.6.1 generalize to the intermediate torsion L-groups as follows: 

Proposition 3 . 7 2  Given *-invariant subgroups X C X ' C  Fl(A), 

Y c l" C El (s-~A) such that S-lX cY, s - ~ x ' ~  Y' there is defined 

a commutative diagram of abelian oroups with exact rows and 

columns 

(nf 22)  . 
Similarly for the E-quadratic I.-groups L n' 

I l 

The generalizations to thr intermediate L-qroups of the 

excision isomorphisms and Mayer-Vietoris exact sequences of 5 3 . 6  

will be dealt with in S6.3 hclow. 



S 4 .  Arithmetic L-th- 

1,ocalization has long been a key tool in the unstable 

classification of quadratic forms over rings of arithmetic 

type - cf. the work of Gauss, Minkowski, Hasse et. al. 

The classification over a qlobal ring such as an algebraic 

number field (e.g. Q) is reduced to the classifications over 

local rings such as the completions at the various valuations 

(e.g. the p-adic fields 6 and the reals R for Q). This 
P 

reduction can also be used for the classification over an 

order such as the ring of alqebraic integers (e.g.Z in Q). 

See O'Meara [l], Milnor and Husemoller [l] and Cassels [l] 

for modern accounts of the arithmetic theory of quadratic 

forms. 

Many authors have used the localization techniques of 

algebraic number theory to obtain localization exact 

sequences for the Witt qroups of quadratic forms over rings 

of arithmetic type and more general Dedekind rings, notably 

Kneser, Milnor, Wall 161, ~rohlich [l], Knebusch and 

Scharlau [l], Durfee [l] and Barge, Lannes, Latour and Vogel [l 

The ari&etic approach has been extended to more general 

orders in semi-simple algebras (e.g. Z[n] in Q [ n l  for a finite 

group n) by Wall [ E ] ,  Bak and Scharlau [l], and Rak 121. 

We shall now apply the localization exact sequence of S3 

to the L-theory of rinqs with involution which are algebras 

over a Dedekind ring. As usual, we start with some K-theory. 

Let R be a Dedekind ring, and let A be a ring which is 

an algebra over R. Then S = R-(0)CA is a multiplicative 

subset of A such that the localization S-'A = FBRA is the 

induced algebra over the quotient field F = s - ~ R .  



An (A,S)-module M is "?-primary" if the annihilator of M is 

k ( ~ € R [ ~ M = o )  = F a R 

for some maximal ideal P q R ,  with k al. Every (A,S)-module M 

has a canonical decomposition as a direct sum of V-primary . 

( A , S )  -modules 

M = ? M ? #  

with 7 ranging over all the maximal ideals of R. The resulting 

identification of exact categories 

{ (A,S) -modules) = :(?'-primary (A,S) -modules) 

gives rise to an identification of algebraic K-qroups 

K,(A,s) = F K ~ ( A , " ~ )  ( n e  zz) , 

so that the algebraic K-theory localization exact sequence car 

be written as 

. . . -+K~(A)-K~(S-~A)--+ @K~(A,Q@) -+K,-~(A)--+ . . . . 
f 

In the case A = R a devissage argument (due to Bass 121 for n. 

and to Quillen [l] for n) 2) identifies 

K, (R,?-) = (R/?) (n c z) , 

so that the sequence can also be written as 

. . .---+Kn (R) Kn (F)  ---+ @ K n - l  (R/?) --+Kn-l (R) ---+. . . 
7' 

In S4.1 we shall deal with with the algebraic L-theory 

localization exact sequence for a ring with involution A whict 

is an algebra over a Dedekind ring R, with S = R-(01~~. The 

decomposition of (A,S)-modules into ?-primary components will 

be used to obtain natural direct sum decompositions of L-grou! 

with P ranging over all the maximal ideals of R which are 



invariant under the involution, 7 = ? Q R .  For A = R, 1/2€A 

such decompositions have been previously obtained by Karoubi (31. 

In 54.2 the results of 54.1 are specialized to the 

L-theory of a Dedekind ring, with A = R. In particular, an 

L-theoretic devissage argument will be used to identify 

LO(R,P~,C) = LO(R/?,E) , 

thus recovering the localization exact sequence of Milnor and 

Husemoller fl,IV.3.3] relating the symmetric Witt groups of a 

Dedekind rinq R and its quotient field F 

extending it to the right by the map onto L-~(R) . 
In ~ 4 . 3  the results of 54.2 are applied to obtain the 

I.-theory of 27, and Q. 



4.1 Dedekind aLgebra 

We refer to Zariski and Samuel ll,SV.6] for the basic 

properties of Dedekind rings. 

A w e k i n d  algebra with involution (A,S) is a ring with 

involution A together with a central multiplicative subset S C A  

such that R = Su(0) is a Dedekind ring with respect to the 

ring operations inherited from A. The localization away from S 

S - ~ A  = FBRA 

is the induced algebra over the quotient field F = s-~R. 

For example, a torsion-free ring with involution A is the 

same as a Dedekind algebra (A,Z-(O)), and a Dedekind ring 

with involution R is the same as a Dedeklnd algebra (R,R-10)). 

Let (A,S) be a Dedekind algebra with involution, and 

let max(R) be the spectrum of maximal ideals of the Dedekind 

rinq R = Su(O), that is the set of maximal ideals ( =  non-zero 

prime ideals) of R. 

The annihilator oC an A-module M 1s the ideal of R 

defined by 

ann(M) = ( r € ~ l r x = O € M  for all x € M ) O R  . 
By the classical ideal theory of Dedekind rinqs this has a 

unique factorization as a product of powers of maximal ideals 

A non-zero A-module M is S-torsion if and only if ann(M) is a 

proper ideal of R. If M is an (A,S)-module then 

ann (M*) = ann(M) Q R 

(since ann (M) 5 ann (M*) for any A-module M and M * *  = M For an 

(A,S)-module M) . 



An S-torsicn A-module M is ?-primary if 

ann(M) = yk 

for some ? €  max(R), k >,l. An (A,?=)-module is an (A,S)-module 

which is ?-primary, that is a ?-primary S-torsion A-module of 
m 

homoloqical dimension 1. An n-dimensional (A,? )-module chair 

complex C is an n-dimensional (A,S)-module chain complex 

such that each Cr ( 0 <  r S n )  is an (A,?=)-module. An A-module 

chain complex D is pm-acyclic if it is S-acyclic and the 

homology S- torsion A-modules H, (D) are pm-acyclic. 

Proposition 4.1.1 There are natural identifications of sets 

of homology equivalence classes 
m 

In-dimensional (A,? )-module chain complexes~ 

= (?=-acyclic (nt1)-dimensional A-module chain complex 

(n€iZ,?€ max(R)) . 
Proof: Immediate from Proposition 3.1.2. 

I I 

I.et ?€max(R). Thr localization of A at 7' is the ring 

obtained from A by inverting R-?CA 

A = (R-?)-'A . 2 
If 3 = P then R-?CA is a multiplicative subset in the sense 

of 53.1, and Ap is a ring with involution 

- 
(If ? f ? then A X A- is a ring with involution 2 P 



If M is an (A,S)-module the localization of M at P is the 

(A, pm) -module 

M? = A I M ( =  R,IRM) , P A 
that is 

k k k 
If ann(M) = ?11?22.. .? (as above) there are natural 

q 

identifications 

and if M' is another (A,S)-module 

There is thus an identification of exact categories 

{ (A,S)-modules) = @ { (A,?-)-modules) 
'?E max (R) 

The S-duality involution 

{(A,S)-modules]----t[(A,S)-modules) ; M-M̂  

sends the ?-primary component M,of an (A,S)-module M to thc 
- 
?-primary component (M*)-, of the S-dual M*, that is 

Define =(R) to be the subset of max(R) consisting of 

the maximal ideals of R which are invariant under the invol~ 



For each p € =(R) define the K-dimensional 

same way as 

L"(A,s. E) 
(n f Z) but using only (A,~~)-module chain complexes, 

Ln(AtSt E )  

or equivalently Pm-acyclic A-module chain complexes. 

Proposition 4.1.2 The L-groups of a Dedekind algebra (A,S) have 

natural direct sum decompositions 

Proof: In the first instance recall from Proposition 1.1.4 

that for any finite-dimensional A-module chain complexes C,D 

there are natural direct sum decompositions 

(nfi2) . 
By Proposition 4.1.1 an S-acyclic (n+l)-dimensional A-module 

chain complex C is chain equivalent to the dl 'rect sum 

CB max (R)C(p) of ?m-acyclic (n+l) -dimensional A-module chain 

complexes C (p). If ,T2 F max(R) are such that # P2 then 

HornA (C (P1) *,C (y2) is an acyclic Z-module chain complex, so that 

in particular 

Hn+l(lfomA(C(P1)*,C(P2) 1 )  = 0 : 

if € max(l<) is such that ;, # then llomA(C(i-?)*,C((?)) is an 



acyclic Z[Z2]-module chain complex, so that in particular 

Choose a decomposition of max(R) -=(R) as a disjoint union 

max(R) - = ( R )  = Q}  U (G} . 
Applying the above sum formula there is thus a direct sum 

decomposition 

with 9 ranging over =(R). An S-acyclic (ntl) -dimensional 

even (-E) -symmetric 
~oincar; complex over A 

(-E) -quadratic 

(C,+€ Q < V ~ > ~ + ~ ( C , - ~ ) )  
is thus homotopy equivalent to a 

(c,'$€ Q,+, (c,-E)) 

even (-E)-symmetric 
~oincar; complex over A and 

( - E )  -quadratic 



even (-E) -symmetr ic 
The (n+2)-dimensional S-acyclic Poincar6 

(-E) -quadratic 

pair over A 

n+2 [ ( ( l  o) :C(Q)BC(~~I--+C(~~), (o,@(~,ii)) eocvo> ((1 0) ,-c)) 

(P€ = ( R ) ,  n 30) . 
Similarly for the lower L-groups. 

A multiplicative subset P C A  is character istic for 

?€=(R) if there is an identity of categories 

((A,?~)-modules) = ((A,P)-modules) . 
For example, if some power pk  (k >, l) of ? is a principal ideal 

of R, with generator n €  R 

y k =  n R 4 R  , 

then = nu € R for some unit u C R  such that uu = l. and the 

multiplicative subset 

Sn = ( n m u n ( m b 0 , n € i Z ~ ~ ~  

is characteristic for F. 



Proposition 4.1.3 If €=(R) has a characteristic 

multiplicative subset P c A  there are natural identifications 

of L-groups 

Proof: Immediate from the definitions and Proposition 3.6.5. 

[ 1 

Let =(R). The localization of (A,S) at P is the 

Dedekind algebra with involution (Ap,Sp) defined by 

Now R, is a local ring, with unique maximal ideal 

and SpC AT is a character istic multiplicative subset for 

so that by Proposition 4.1.3 there are natural identification! 

The functor 

{ (A,?-)-modules]----+( (A? ,sp)-modules) = ( (AF,?T)-modules) ; 

M+-Mp (= M as an A-module) 

is an isomorphism of cateqories. 

i 

Proposition 4.1.4 i) For every P €  =(R) there are natural 

identifications 

L~(A,?-,E) = I.,,(A,,,S~,E) ( n f ~ )  . 



i i )  If T' f = ( R )  is such that 

either the map G ~ ( Z ~ ; A . E ) - - - - - - , ~ ~ ( Z ~ ; A ~ , E )  is one-one 

o r there exists a characteristic multiplicative 

subset P c A  for 'P and the map 

- 1 ti1(z2;~,cl-~ ( Z ~ ; A , , C ) ~ ~ ~ ~ ( Z ~ : P - ~ A . ~ )  

is one-one 

(e.g. if some power yk (k > 1) is principal 
and G0(iZ2;~,c) = 0) 

then there are natural identifications 

Proof: Consider first the case n+O. 

Let C be a Pm-acyclic (nt1)-dimensional A-module chain 

complex, so that ApBAC is an +-acyclic (n+l) -dimensional 

A -module chain complex. Workinq as in the proof of 
9 
Proposition 3.1.4 we can identify 

(C,-c) = Q~+'(A~B~C,-E) 

(C,-c) = (AplAC,-c) . l Qn+l 
Also, there is defined an exact sequence 

so that if k e r ( i j 1 ( ~ 2 ; ~ , E ) - i 1 1 ( ~ 2 ; ~ B , c ) )  = 0 we can also 

identify 

O(V~)~+' ( C , - r )  = O(V~)"+~ (A 9 B A C,-E) . 
As for the Q-groups, so for the L-groups. 



For the case n <  -1 we need only consider n = -1,-2. 

In the first instance, we show that if the map 

ij1(z2;A,~)---+fj1 (z2;Ap, E )  is one-one there are identifications 

of categories 

( (-E)-quadratic linking forms (resp. formations) over 1 

= ((-€)-quadratic linking forms (resp. formations) over (Ap,Sp)] 

e. 
where a linking form (resp. formation) over (A,? ) is defined 

to be a linking form (resp. formation) over (A,S) involving 

only (A,?-) -modules. By the above identifications of Q-groups 

there are identifications of categories 

I (-E)-symmetr ic (resp. split ( - E )  -quadratic) 
a. 

linkinq forms over (A,? )l 

= ((-E)-symmetric fresp. split (-€)-quadratic) 

linking forms over (Ap,.+)] . 
By Proposition 3.4.2 i) every (-€)-quadratic linking Form 

over (Ay,SP) 

(M,A:Mx M----+sV1A /A,u:M ------+ O-c(Ap,Sp)) 

can be lifted to a split (-€)-quadratic linking form over (AC,+), 

and hence to a (-c)-quadratic linking form over (A,yrn) 

(M,A 1 :M M -+s-~A/A,~~:M -Q-€ (A,s) 

with A 1  uniquely determined by A . If (M,A1,p2) is another 
such lifting of (M,A,u) then for each x f M  

= ker (f11(Z2:A,c)--+il (z2:np,~)) 

Thus if ker (h1 (ZZ~:A,E)-~~~(Z~:A~,F)) = 0 there arc ident~flcations 

of categories as claimed above  and I,~(A.~",C) = l."(ilp,Sp,r) 

for n = -) (resp. n = -1). 



If there exists a characteristic multiplicative subsct 

P c  A for? € = ( R )  there is defined a cartesian morphism 

(A, P )  - ( A ? ,  P )  . 
There is an identity of categories 

((A ,F)-modules} = ((Ap,Sr)-modules) ( =  ((A,~~)-modules~), P 

so that by Proposition 3 . 6 . 5  therr are identifications 

I."(A~,P, E) = L . ~  (A~,s~,E) (n E Z)  . , 

1 
rf ~^'(z~;A,~)----sfl ( z 2 ; ~ p , c ) ~ ~ 1 ( ~ 2 : ~ - 1 ~ , ~ )  is one-one then 

by Proposition 3 . 6 . 3  ii) there are also identifications 

L"(A,P,F) = L~(A?,P,E) ( n f z )  , 

and by Proposition 4.1.3 

I,"(A,P~,E) = I,"(A,P,c) (nf 22) . 
[ l  

Given 'P F max(R) define the P a d i c  completion of A to be 

the rinq 

k % P  = Lim A/? A 
T 

h 

which is also the ??-adic completion (A ) = A?/P*A,, of 
?P 

the localization A p  o f  A at 9. If B €  G ( R ) ~  max(R) the 

completion A ?  is a rinq with involution, and " = RP- ( 0 )  C Ap 
A ,. 

is a multiplicativc subset such that (Ap,Sp) is a Dedekind 

algebra with involution. 'The quotient field of RI? 

Py = ;pli+, 
is the ?-adic field of R, and is such that 

z-li = i,agyi, . 

The S-adic completion j\ = 1,im A/sA is the unrestricted product 
%S 



of the 3'-adic completions 

S , =  s , ,  
!?€max (R) 

and the localization of the completion is the restricted 

product 
,, - 1- 
S A =  

Pemax (R) 

consisting of collections ( xp € ?il?$,l~€ max(~) such that 

x p €  for all but a finite number of P €  max(R). 

Thus the cartesian square of rings with involution associated 

can be written as 

If P C A  is a characteristic multiplicative subset for TF ;=(R) 

the?-adic completion of A is just the P-adic completion of A 

i = LLm A/pA . 
PG p 

For example, the ring of p-adic inteqers 'f2 = p$ z/pki2 is the 
P 

(p)-adic completion of Z ,  with (p) = p Z  € =(Z) (p prime), 

and % = 6 is the field of p-adic numbers. 
(P) P P 



Given ?€=(R) let 

+, = PR, G G(iiP) 

be the unique maximal ideal of the complete loacl ring g?. 

The multiplicative subset 

S, = RP-{O) C A T  

.. - A  

is characteristic for TT €max(Rp), and there are natural 

identifications of exact cateqories 
m m 

( (A,? )-modules) = ( (Ap .P )-modules] 

= { (ip,T) -modules) = ( (Ar,?$) -modules) . 
Proposition 4.1.5 i )  There are natural identifications of 

E-quadratic L-groups .. .. 
L~(A,~PO,E) = L ~ ( A ~ . s ~ , E )  (ne E) , 

giving rise to a Mayer-Vietoris exact sequence 

with? ranging over =(R). 

ii) If ? G  = ( R )  is such that 

either the maps ;'(Z~;A,E)-~~~(Z~;%,E) and 

or there exists a characteristic multiplicative subset 

P C A  for 3 and the map 

is one-one 

(e.g. if some p o w r  'Yk (k> 1) is principal and 

~ ~ ( 1 1 ~ ; ~ ~  ,E) = 0) 



there are natural identifications of E-symmetric l.-qroups 

IE one of these conditions is satisfied for eachT€=x(~) 

there is defined a Mayer-Vietoris exact sequence 

are L0(k) -modules. 

Proof: i),ii) Immediate from Propositions 3.6.3.3.6.5 and 4.1.4 

using the cartesian morphisms (Ap,S,, J --+ (&,S?), (A,P) +(Ap,P). 

(The restricted product E(G?,H~) of a collection of abelian 
3' 

group morphisms Hp-G indexed by a set [9) is the eirect limit 
P 

taken over all the finite subsets I of (9)). 

iii) Immediate from i),ii) and Proposition 2.2.6. 

l l 

The hypotheses of Propositions 4.1.4 ii), 4.1.5 ii) are 

satisfied if the Dedekind ringRis of characteristic # 2 and 

has finite reduced projective class group KO(R) ( =  the ideal 

class group), such as is the case for the rinq of integers R 

in an algebraic number Eield F. In particular, the hypotheses 

are satisfied, if (A,S) is the Dedekind algebra with involution 

defined by a torsion-free rinq with involution A ,  with 

S = iZ-(OIC A , R = Su[O) = Z , 

for which Proposition 4.1.5 givrs identifications 



(n € Z, p prime, (p) = p Z  4 22) 

and a Mayer-Vietoris exact sequence 

L*(A, 
Moreover, the L-groups are L'(% )-modules, and 

L*(Ar (P) re) P 

hence of exponent $(p). (See 53.6 for the definition of $(P)). 



4.2 ~edekind rings 

We shall now specialize the results of ~ 4 . 1  to the cas, 

of a Dedekind algebra with involution (A,S) with A = R = S u  

i.e. A is itself the underlying Dedekind ring with involutio~ 

Let then R be a Dedekind with involution, and let 

S = R-(0)CR. 

so that the quotient field of R is given by 

F = S - 1 ~  . 
Recall from S3.1 the definition of the maximal S-torsion 

submodule of an R-module M 

TSM = { x € ~ l s x = O € M  

I torsion An R-module M is p 

torsion-free 

for some s€S)CCl . 

if 

M 

IO) . 
an (R,S)-module 

An R-module is if and only if it 
a f.g. projective R-module 

tors ion 
is f.g. and 

torsion-free 

Given a finite-dimensional R-module chain complex C let 

T~ (C) = T ~ I ~ ~  (C) T' (C) = T~H' (C) 
(resp. ( r f Z  

Fr (C) = Hr (C) /TSHr (C) F~ (C) = (C) / T ~ H ~  (C) 

maximal torsion submodule 
be the of H[ (C) (resp. 

minimal torsion-free quotient module 

an (R,S)-module 
which is . The universal coefficie 

a f.g. projective R-module 

theorem gives natural R-module isomorphisms 



Pr~pos~ition 4.2.1 The L-groups of a Dedekind ring with involution 

R and of the quotient field F = S - ~ R  are such that 

i )  The skew-suspension maps in the *E-symmetric L-groups 

: L~(R,E)+L~+~(R,-~) (n 3 0 )  

S : L"~R,S,E)-----+L~+~(R,S,-E) (n2l) 

are isomorphisms. 

1 
c-symmetr ic 

ii) The Witt group of even E-symmetric formations over F 

€-quadratic 

vanishes 

1 
1 M'(F) = L (Fee) = o 

M(v,>€(F) = L-~(F,-~) = o 

Me(F) = L1(F,E) = 0 , 

1 
E-symmetric 

as does the Witt group of even €-symmetric linking formations 

E-quadratic 

over (H,s) 

3 ( M'(R.S) = I. (R,s,-c) = o 



iii) There are defined localization exact sequences of 

Witt groups 

In particular, there are natural identifications of Witt groups 

of formations over R with quotients of Witt groups of linking 

(non-sizlar (-E)-symmetric linking forms over (R,S)) 
M€(R) = (boundaries of S-non-singular + (hyperbolics) 

(-c)-symmetric forms over R 

M<V~>€(R) = 

(non-sinqular even (-E)-symmetric linkinq forms over (R,S) ) 

(boundaries of S-non-singular (-E)-symmetric forms over R) 

Mc(R) = 

(non-singular (-E) -quadratic linking forms over (R,S) ) 

(boundaries of S-non-singular even 

(-E)-symmetr ic forms over R) 

(non-singular split (-€)-quadratic linking forms over (R,S)) 

(boundaries of S-non-singular (-E) -quadratic Forms over R) . 
even (-E) -symmetric 

(Note that a stably hyperbolic linking 

( split (-E) -quadratic 
form over (R,S) is isomorphic to the boundary of an S-non-singular 

I 

) even l-E)-symmetric form over R, by ~roposition 3 . 4 . 6  ii) l .  



) the isomorphism iv) For n = 2i (resp. n = 2itl 

- L  : L"(R,E.) -----+L" 

S -1 : Ln(R,c) - Ln 
I E-symmetr ic sends the cobordism class of an n-dimensional 
E-quadratic 

i 
,?(R, ( - )  i ~ )  = (R) L~ (R, ( - )  i ~ )  = M(-) E (R) 

(resp. 1 
rJO(R, (-)Is) = L . (R) L1(R, (-)'E) = M (R) 

( - )  1~ . ( - 1  E 

of the non-singular form over R 

v) There are nat-ural direct sum decompositions of Witt 

- - 
for W = L~,L<V~>~,L,,L,,M,. (The Witt qroups W(R,?~) are def: 

in the same way as W(3,S) but using only (R,?-)-modules). 

vi) There ace natural identifications 

and the localization exact sequence of Witt qroups can be 



expressed as 

ned 

Proof: i) -v) Immediate from Propositions 1.2.3,3.6 

M an 

are 

link 

since a Dedekind ring is l-dimensional and the quotient fie 

is 0-dimensional. 

vi) Define an  module M (k > l )  to be a ?-primary 

(R,S)-module with annihilator 

ann (M) = 7' 4 R 

for some j ( k. Let L'(R,F~) (k 3 l) be the Witt gcoup of 

non-singular E-symmetric linking forms over (R,pk), that i s  

non-sinqular E-symmetric linkinq forms over (R,S) (M,X) wit 

k (R,? )-module. The natural maps 

L~(R,T~)-L~(R,~~+') ; (M,A) -(M,A) (k> 1) 

isomorphisms, for if (M,A) is a non-singular E-symmetri 

ing form over (R,pktl) then 

k L = 3 M C M  

is a sublagran~ian of (M,A) such that 1, is an (~,T'~~'l-modk 

and (LL/L,AL/A) is a non-singular E-symmetric linking form 

k over (R,? ) ,  so that there are defined inverses 

There is a natural identification of categories 

I (R,?) -modules} 

= (finite-dimensional vector spaces over the 

residue class field R/?) . 



Choose an element n € '? -'p *, so that n € RP is a generator of 

the unique maximal ideal = n R 9  f =(Rg) of the local ring R I" 
and note that for any (R,?)-module M there is defined an 

R-module isomorphism 

M* = HornRk (M, R/?) --+ !lA = HomR (M, F/R?) ; 
P 

f - ( X  H=) . 
Moreover, the €-duality involution TE on HomRh(M,M*) 

corresponds under this isomorphism to the €-duality involution 

(M,MA). (We are assuming here that = X€?). 

The natural R-module morphism 

HomR(M, F/R)--+HomR (M,F/R9) ; f (X Wf (X) ) 
? 

is an isomorphism, so that we have identifications of categories 

(E-symmetric linking forms over R/?] 

= (€-symmetric linking forms over (RS,Pp)l 

= (E-symmetric linking forms over (R,?)) 

and hence also of E-symmetric Witt groups 

r,'(~/p) = L€ (R?,?? = L' (RP) = L' (R,?~) 

(with only the identification LE (R/?) = LE (R?,T?) depending 

on the choice of uniformizer n). 

l 1  

The 1.-theoretic devissage argument used to identify 

LS. (~ ,prn)  = L ' ( R , ~ )  in the proof oE Proposition 4.2.1 vi) above 

breaks down in the €-quadratic case. Given a non-singular 

€-quadratic linking Form over (R,S) (M,X,u) such that 

ann (M) = T k+l ( k  >l) 

for some P f G (R) i t  need not be the case that L = $'k~ C M  

is a suhlaqrsnqian of (M,h,u) as well as of ( M , h ) .  



For example, consider the non-singular quadratic linking form 

over (2Z.Z-{OJ) (M,X,v) defined by 

2 M = Zq (so that ann(M) = (2) 4 Z )  

1 X : MxM-Q/Z; (m,n)--mn 4 

1 2  P : M----+Qt1(Z,iZ-[01) = Q/2Z ; rnt--+p . 
Then L = 2 M C M  is a lagrangian of the symmetrization (M,X) but 

not of (M, X, p), since 

~ ( 2 )  = 1 # 0 € Q / 2 Z .  

In fact, the kernel of the symmetrization map of Witt qroups 

m +l 
1tT : L+l(Z, (2) ) = Z 8 @ Z 2 4 ~ f 1 ( ~ ,  (2)m) = L (Z2) = Z2 ; 

(a,b) - b 
is generated by (M,X,u) = (1,O) € ker (l+T) = Z8, and the non-singular 

quadratic linking form over (Z,Z-(O)) (M',X',u') defined by 

M' = Z2 

X' : M' X M ' d Q / Z  ; (m,n)-$mn 

L+1(Z2) = Z2 (generated by the non-singular quadratic form over Z 

/ l  1 
( Z 2 @ Z 2 t  l) f Qtl(Z2@Z2) ) of Arf invariant l), so that 

m 
Ltl(Z, (2) # Lt1(Z2) . 

In Proposition 4 . 3 . 3  below we shall relate this failure of 

devissage in quadratic L-theory to a failure of reduction 

modulo a complete ideal (=  Hensel's lemma) in symmetric L-theory. 



The E-symmetric Witt group localization exact sequence 

of Proposition 4.2.1 vi) 

o -- L'(R) AL'(F)- @ L'(R&) 
ye =(R) 

was first obtained by Milnor (cf. Corollary IV.3.3 of Milnor 

and Husemoller [l]) in the case E = +l f R, with R a Dedekind 

ring of characteristic # 2. The identifications of 

Proposition 4.2.1 iii),vi) 

were first obtained by Karoubi 131, in the case 1/2€R. 

Example IV.3.5 of Milnor and Husemoller [l] can be interpreted 

as stating that for the coordinate ring of the circle 

2 2 R = ~lx,yl/(x +y -1) 

the Witt group of non-singular skew-symmetric formations over I 

is given by 

M-~(R) = iz , 

generated by the formation 

corresponding to the symplectic automorphism 

( -I)€ SL2(RI = Aut(R@R', 

Given a Dedekind rinq with involution R and ~ F = ( R )  

together with a choice of uniforrnizer n € .p -p2 such that ii = n 

there is defined a non-singular skew-symmetric S-formation o v e ~  



w i t h  i f H o m R ( ? , R )  t h e  i n c l u s i o n ,  c o r r e s p o n d i n g  by P r o p o s i t i o n  

t o  t h e  n o n - s i n q u l a r  s y m m ~ t r i c  l i n k i n g  fo rm o v e r  ( R , P )  

The i n c l u s i o n  o f  t h e  l a g r a n g i a n ( , i i ) : ~ + ~ ~  e x t e n d s  by 

P r o p o s i t i o n  1 . 6 . 2  to a n  R-module i somorph ism 

B @p* ROR* . 
Thus  i f  R  h a s  t h e  i d e n t i t y  i n v o l u t i o n  (7 = r f o r  a l l  r f  R )  

t h e  d u a l i t y  i n v o l u t i o n  o n  t h e  r e d u c e d  p r o j e c t i v e  c l a s s  g r o u p  

( =  t h e  i d e a l  c l a s s  g r o u p  o f  R) is  g i v e n  by 

a n d  

I k e r  (2 : iO(R)-k0(R))  m O(mod 2)  
G m ( Z 2 ; 8 , ( R ) )  = 

c o k e r  ( 2 : i o ( ~ ) - i 7 0 ( ~ )  ) m F l (mod  2 )  

Now v ' ( R , - ~ )  = 0 ( b y  C o r o l l a r y  1 . 3 . 5  o f  M i l n o r  and  Husemol le r  

s o  t h a t  a  p o r t i o n  o f  t h e  r e l e v a n t  e x a c t  s e q u e n c e  o f  

P r o p o s i t i o n  1.10.1 c a n  be  w r i t t e n  a s  

. . . - - - - , U ~ ( R , - ~ ) - - + R ~ ( Z ~ ~ K ~ ( R ) ) ~ V ~ ( R , - ~ )  

1 --+U ( R , - l )  - G ~ ( Z ~ ; R ~ ( R ) ) ' ~ O  . 

is  o n t o :  i f  I is a n  i d e a l  o f  R  s u c h  t h a t  I 2  = rR is a p r i n c i ~  

i d e a l ,  w i t h  g e n e r a t o r  r  8 1 2 ,  t h e n  

( I , @ : I  X I + R  ; ( x , y )  



is a non-singular symmetric form over R with projective class 

1 [I1 B KO(~). Thus the map f i 1 ( ~ 2 ; ~ O ( ~ ) ) - - + V  (R,-l) is 0, and 

there is defined a short exact sequence 

If R is the ring of integers in an algebraic number field F then 

by Milnor [4,Cor.16.3] 

so that there are identifications 

The consequent identification 

appears as Example IV.3.4 of Milnor and Husemoller [l] - in this 

connection see also Knebusch and Scharlau [l]. 

See Pardon [61,[7] for an extension of the localization 

exact sequence of L-groups of Dedekind rings to more general 

regular rings, and for an application of the algebraic theory 

of surgery to the conjecture that for a regular local ring R 

with quotient field F = ( R - ~ o I ) - ~ R  the natural map of symmetric 

Witt groups LO(R) -L'(F) is injective. 



4.3 hIe2ral and rational L-theory 

The results of 54.2 will now be applied to obtain the 

L-groups of the Dedekind ring R = Z a n d  of its quotient field 

S - 1 ~  = Q (with S = Z-(O)CZ), in the sense of reducing the 

computation to the well-known stable classifications of forms 

over Z and Q. In the first instance we recall the classical 

invariants of forms over 24. 

A symmetric form over Z (M,@) induces a symmetric form 

over R which can be expressed as 

up to isomorphism. The signature of (M,@) is defined by 

If (M,+) is even ($(X) (X) E O(mod 2) for each X € M) then 

The deRham invariant of a non-singular skew-symmetric 

linking form over (Z,S) (M,A) is defined by 

or equivalently the mod 2 reduction of the number of summands 

in the decomposition of M as a direct sum of cyclic groups of 

type Z (p prime,k >, 1). If (M,X) is even ( X ( x )  (X) = o€Q-'(o/z)= Z2 
P 

for each xfM, e.q. if M is of odd order) then 



A non-singular skew-quadratic form over Z (M,$) induces 

a form over Z2 which can be expressed as 

( b  >O,c = 0 or 1 )  

up to isomorphism. The Arf invariant of (M,$) is defined by 

Proposition 4 . 3 . 1  The symmetric and quadratic L-groups of Z - 

are given by 

The invariants are given by 

S 
(C,@ f Q ~ ~ + ~  ( C )  ) -deRham invariant of ( T ~ ~ ~ ~  (C) 

Lqkt2 ( z ) - z 2  ; 

( C , $  f Q4k+2 ( C )  )- Arf invariant of ( C )  , J IO )  . 



The hyperquadratic L-groups f,*(~) (as defined in S2.3) are 

given by 

Proof: Proposition 4.2.1 reduces the computation of the 

even- 

{ odd- dimensional L-groups of Z to the stable classification 
forms over 72 

of non-singular , for which we 
linking forms over (Z,Z-{O)) 

Arf [ll, Milnor and Husemoller 111 
refer to 

deRham [l], Wall [l] 

symmetric LO(?Z) = Z 
The generator of the L-group 

quadratic Lo(Z) = 22 

symmetric 
is represented by the non-singular form over Z 

2 2 L (72) = L (72,Z-(0)) = L (Z,(Z)~) = Z 
is represented by 

L2(?Z) = L3(z,z-IO}) = L3(z,(2)m) = z2 I 
l symmetric formation the non-singular over Z of 
skew-quadratic form 

invariant l € Z2 



corresponding I skew-symmetric linking form to the non-singular 
split skew-quadratic linking 

over (z, ( 2 ) "  
formation 

Of course, the computation of the simply-connected surgery 

obstruction groups L , ( z )  is well-known, going back to Kervaire 

and Milnor [l]. 

Proposition 4.3.2 The L-groups of Q are given by 

symmetric 
L-theory localization exact sequence 

quadratic 



splits 
, with 

does not split \zrz2 if 1 p l (mod 4) 
p - 3(mod 4) 

I l 

The computation of Lf(Q) is also well-known, cf. SIV.2 of 

Milnnr and Husemoller Ill. 

l e L0(i2, (2)") = Z2 
The element is the image 

(1,O). (0,l) e Lo(Z. = Z8@Z2 

2 : LO(Q)+LO(Z, (2)") 
under of the Witt class of the non-singular 

a : L ~ ( Q ) - + L ~ ( ~ ,  (2)" 1 

symmetric (Q, 2 E Q+I ( 0 ) )  
form over Q 

quadratic (Qe2f Qtl(Q)),(QtleQtl(Q)) 

symmetric 
corresponding to the non-singular linking form 

quadratic 

(Z2'A') 
over (z, (2)" defined in S4.2 above 

(z4,~,u) (iz2,ao,~*) 

By contrast with Proposition 4.3.2 both the symmetric and 

quadratic localization exact sequences for the Witt group of 

split, with 



L'(% ) = Z 8 B Z 2  , 
The element 2 is represented by 

symmetric 
the non-singular form over the 2-adic ring g2 

quadratic 

In identifying Lo(Z2) = Lo(Z2) we are dealing with a special 

case of the result of Wall 171 concerning reduction modulo a 

complete ideal in quadratic L-theory: if R is a ring with 

involution which is complete in the I-adic topology, i.e. such 

that the canonical map 

R 2 = g m  R/I 
k 

k 

is an isomorphism, for some 2-sided ideal I in R such that i = 

then the projection R +R/I induces isomorphisms in the 

quadratic L-groups 

L*(R)-+L*(R/I) 

- an L-theoretic version of Hensel's lemma. In particular, 
G2 is complete in the (2)-adic topology, with ( 5 )  = 2g24 g2 

and g2/(5) = n2. 



Proposition 4.3.3 i) Reduction modulo a complete ideal fails 

for the symmetric L-groups, since 

0 
L0(G2) = Z8@Z2 # L (Z2) = z2 . 

ii) Devissage fails for the quadratic L-groups, since 

A * c m  
L0(Z2' (2) = Z8@Z2 # L0(Z2) = z2 . 

I l 

The result of Proposition 4.3.3 i) is a direct consequel 

of the well-known failure of Hensel's lemma for symmetric for1 

at the prime 2, which is remedied by reducing modulo ( 2 )  = ( I  

instead of (2) - cf. Weyl Jl,§III.S), In particular, the 
0 0 natural map L0(g2) +L (z~/(?)~) = L (Z8) = iZ8@ZZ2 is an 

isomorphism. 

See Proposition 4.2.1 vi) for devissage in the symmetril 

L-groups of Dedekind rings. 



55. Polynomial extensions ( G  = X) 

We shall now study the L-theory of the polynomial extensions 

Aa[xl, Aa[x,x-'1 of a ring with involution A, with 

for some ring automorphism a:A----+A such that a(a) = a-'(;) € A 

for all a f A  (e.g.a=id. :A---+A), with the involution extended by 
- 
x = x .  

(See Ranicki [21,[31 and S7.6 below for the L-theory of polynomial 

extensions A [z,z-l] with 2 = z-l). As usual, we start with a 

discussion of the relevant algebraic K-theory. 

Given a central indeterminate X over a ring A let A[xl 

be the ring of polynomials a .xl in X with coefficients 
j=o J 

a . f A ,  only a finite number of which are to be non-zero. 
3 

The central multiplicative subset 

is then such that the localization 

m 

is the ring of polynomials , 1 a.xl in an invertible central 
I=- m l 

indeterminate X with coefficients a . F A ,  only a finite number 
l 

of which are to be non-zero. Bass, Heller and Swan [l] (for n=l). 

Bass [2,XI1] (for n 6 0 )  and Quillen (for n > 2, cf. Grayson [l]) 

used the linearization trick of Higman [l] and the isomorphism 

of exact categories 



m ( A )  = (€.g. projective A-modules P with a nilpotent A-module 

morphism v €  HomA(P,P) (i.e. vk = 0 for some k +O)) 

___t 

to identify 

Kn 
h-. 

KnfA[x]) = KnfA)@Niln(A) (ne z) 

( Z ( A )  ) and N ~ ( A )  the flbre of the forgetful with Cln(A) = Kn-l - 
functor of exact categories 

N&(A) d E ( A )  = (f.q. projective A-modules) ; ( P , v ) U  P . 

The algebraic K-theory localization exact sequence 

- a ...+ Kn(A[xj)- Kn(A[x,x l])--+~n(Af~I,X) ---* Kn-l(AIxl)--+. 

was shown to be made up of naturally split short exact sequences 

rJ Clu N 

0 4  Kn (A)%Nil,(A)-K, (A)@Kn-l (A)@Niln (A)@Niln (A) 

a - 
U (A)(BNiln(A) - d o  , 

and the "fundamental theorem of algebraic K-theory" was proved, 

the naturally split exact sequences 

0----9 Kn (A) -Kn (A[xJ)@K~ (~[x-ll) __)K~(A(X.X-~I 1 

-----+ Kn-l (A) -+ 0 . 

These results were extended for n =  l to the a-twisted polynomial 

extensions Aalxl,Aa[x,x-lj of a ring A by Farrell and Hsiang 111, 

and Siebenmann [l], with X no longer a central indeterminate 

over A buC such that 

ax = xa (a) (a f A )  

for some automorphism a : A d A .  (These results were obtained 

in connection with the obstruction theory of ~arrell (11 for 



1 the problem of fibring a manifold over S , and the codimensio 

splitting obstruction theory of Farrell and Hsiang [l] (resp. 

for homotopy equivalencesof finite CW complexes (resp. compac 

manifolds) with fundamental qroup nxaZthe a-twisted extensio 

of a group n by Z for some automorphism a:n-n - cf. the 

discussion of codimension 1 splitting in 57.6 below). 

The multiplicative subset 

is such that 

X - ~ A ~ [ X J  = Aalx,x-l] , 

and the functor 

U ( A , a )  = (pairs (P,v) consisting of a f.g. projective - 
A-module P and a function v:P---+P such that 

v(y+z) = v(y) + ~ ( z ) ,  v(ay) = a-'(a)v(y) f P ( Y , Z ~  

and vk = 0 : P -P for some k > ,  l) 

is an isomorphism of categories, so that the algebraic K-the0 

eccentric localization exact sequence of Grayson 121 

is naturally isomorphic to the exact sequence 



N hJ 

with Niln(A,a) = Kn-l(N&(A,a)) (n € 27,) the algebraic K-grou - 
of the fibre N&(A,a) of the forgetful functor of exact cat 

and K,(A,a),B.y the abelian groups and morphisms appearing 

the exact sequence 

l-a . . .--+ K n ( ~ ) a K n ( ~ )  &K, (A,,) (A) - - z K ~ - ~  (A) - 

In 55.1 we shall study the algebraic L-groups of the 

a-twisted polynomial extensions A, [x ] ,  A, [x,x-'] of a ring 

with involution A, with a:A-A a ring automorphism such 

that u(a) = a-'- (a) € A (a f A) and x = X € A [XI, so that 

is a multiplicative susbset in the sense of S3.1 and 

E E-symmet as a ring with involution. We shall show that the 
E-quadr; 

L-theory localization exact sequence given for (Aa[x],X) 

by 53.6 



-1 d . . .+L:(A~[xI ,C)-+L~(A~[X,X 1 ,E)--+L~(A~IXI P X P E )  

n-l 
-LK (Aalxl,E) -+... 

a . . .-L;(A~[XI ,c)~~:(~,lx,x-~l ,c)+Ln(Aa[xl ,X,€) 

-L:-~ ( A ~ ~ X I  ,E)- - .  . 
(K = irn(~o(~)--+~o(~))c F0(E3), B = Aalxl ,Aaix.x-ll, n f  E) 

is made up of naturally split short exact sequences 

(by contrast with the correspondinq localization exact 

sequence in algebraic K-theory, which need not split ifa #id.) 

Furthermore, we shall show that each of these short exact 

sequences is naturally isomorphic to 

( (the E-quadratic analogue) , 
LNil*(A,a, E) 

with the L-groups cobordism groups of chain 
LNil, (A,a, E) 

E-symmetr ic 
complexes in N&(A,a) with an a-twisted poincarg, 

€-quadratic 

duality, and Aa the ring with involution defined by giving the 



ring underlying A the involution 

; -----) A~ : a I-+ a(%) 

In S5.2 the results of S5.1 will be extended to more 
e 

genkal intermediate L-groups of the a-twisted polynomial 

extensions AaIxl, Aa(x,x-l~ of a ring with involution A .  

(In S7.6  we shall outline a geometric interpretation of an 

appropriately 

K 
L,(A,I~,~-'I 

for a group r 

m intermediate version of the decomposition 

ing A = Zln]). In particular, in the untwisted 

case a = id. : A A A  there will be obtained the "fundamental 

E-symmetr ic 
theorem of L-theory", the naturally split exact 

c-quadratic 

€-symmetric V*(A.c) 
relating the free L-groups (as defined in 51 

c-quadrat ic V,(A,E) 

€-symmetric II*(A,c) = L'(A,c) 
to the projective L-groups 

€-quadratic U,(A,c) = L,(A,c) 

The c-quadratic L-theory fundamental theorem was obtained by - 
Karoubi 121, 131 for 1/2 f A (when [.Nil, ( A )  = 0 hy Karoubi [l]) 

using localization, and by Ranicki 141 usinq the techniques 

developed by Novikov 111 and Ranicki ( 2 1  in the proof of the 



5.1 L-theory of polynomial extensions 

Let A be a ring with involution, and let 

be a ring automorphism such that 

Tlw a-twisted polynomial extension of A A,[x] is the ring 

m .  

of finite polynomials 1 a.x3 in an indeterminate X over A 
j=o 3 

such that 

with the involution on A extended to Aa!xl by 
- 
x = x .  

Thus addition and multiplication in Aa[x] are given by 

and the involution is given by 

Define the multiplicative subset 

The localization away from X 

is the a-twisted Laurent polynomial extension of A, the ring 

of finite polynomials a.xJ (a. €A) with involution hy = X, 
, = - m  3 3 

containing Aa[x] as a subrinq with involution. 



Given an A-module M and j f Z let xJM be the A-module 

with elements x'y (y f M) , addition by 
j x'y + x3y' = ~'(y+~') f X M (y,yl€M) 

and A acting by 

(The automorphism of the projective class group K (A) induced 
0 

by the ring automorphism aJ:A-A is given by 
I 

a' : Ko(A)-Ko(A) ; [M] -lx-jMl ) .  

An A-module morphism f f HornA (X'M,X~N) (for some A-modules M,N 

and j, k f Z) is a function 

f : M ------+ N 

such that 

i) f (yty') = f(y) + f (y') f N 

ii) f (ay) = ak-j(a)f (y) f N 

(a€ A, y,y'fM) 

with 

k k 
f : X'M-X N ; xjy-x f(y) . 

In particular, there is defined an A-module isomorphism 

(xjM.2) * = ~ o m ~  (X'M,A) ----+X-' (M*) = x-jIiomA (M,A) ; 

(f:xj~-+~)c---, x-J(y-+a-'(~(xJy))) (y B M) 

with inverse 

We shall write X-'M as ~ x j ,  

X-', = ~x' (j E Z) . 
With this terminology there is a natural identification of 

A-modules 

(xj,), = ~ * x j  (j E Z) . 



For any A-module M the induced Aa[x]-module 

Ma[xl = Aalx1BAM 

m .  

consists of finite polynomials 1 xIy. (y. €M). As an A-module 
j=o J J 

it can be expressed as a direct sum 

For any A-modules M,N there is a natural identification of 

abelian groups 
m 

Hom (Malxl .Nalxl) = ,I ~ o m ~ W , x ~ ~ )  . 
Aalxl J =o 

Similarly, the induced Aa[x,x-']-module 

m .  
consists of finite polynomials 1 x'y. ( y .  €M), it can be 

,=-m 3 J 

expressed as a direct sum of A-modules 

and there is a natural identification 

An A-module morphism v €  HomA(M,Mx) is nilpotent if 

the composite A-module morphism 

vk : M -V M X V - M X ~ +  . . .- 
k is 0, vk = 0 € HomA(M,Mx ) , for some k >, l. ( A n  A-module 

morphism f € Hom (M,N) induces A-module morphisms 
A 

f € ~ o m ~  (x'M, X'N) ( j € 52) by 



f : X ~ M - ~ J N  : xIy c--+ x3f(y) (ye M) 1 .  

Equivalently, V:M - -M is a function such that 

i) v(y+yl) = v(y) + v(y') 

ii) v(ay) = a-'(a) v(y) 

iii) vk ( y )  = 0 for some k >, l 

(a€A, y,y'€M) . 
An a-twisted nilmodule over A is a pair 

(f.g. projective A-module M, nilpotent morphism v€HomA(M,Mx)) 

A morphism of a-twisted nilmodules over A 

f : (M,v) ------+(M1,v') 

is an A-module morphism f€HomA;M,M1) such that there is defined 

a commutative diagram 

Define the duality involution on the category of a-twisted 

nilmodules over A 

: m ( A , a )  = (a-twisted nilmodules over A)-N&(A,a) ; 

An n-dimensional a-twisted nilcomplex over A (C,v) is an 

n-dimensional chain complex of a-twisted nilmodules over A 

Equivalently, we have that C is an n-dimensional A-module chain 

complex such that Cr = 0 for r < 0 and r > n together with a 



nilpotent A-module chain map 

v : C-Cx. 

Note that (cn-*, v*) is also an n-dimensional a-twisted nilcomp 

over A. 

Proposition 5.1.1 i) There is a natural isomorphi 

categories 

( ( A , [ x l , X ) - m o d u l e s ) - h a ( A , a )  : 

M- (M, v:M--+Mx = X - ~ M  ; y- X- 

under which the X-duality involution 

( ( A a [ x l , X ) - m o d u l e s ) - ( ( A a I x l , X ) - m o d u l e s )  ; 

M-M* = iforn Aalxl (M,A,,IX,X-~I/A~IXI 

corresponds to the duality involution on the cdteqory of 

a-twisted nilmodules over A 

S : NA(A,a) -u(A,a) ; ( M , v ) M ( M . v ) *  = (xMW,v*) , 

with a natural A [X]-modul.e isomorphism 

ii) For each n h O  there is a natural identification of exact 

categories 

(n-dimensional (Aa[x],X)-module chain complexes) 

= (n-dimensional a-twisted nilcomplexes over A) 

Proof: i) This isomorphism was first established by Bass (2,XI 

in the untwisted case a = id. : A d  A. (See also 

Proposition 3.10 of Karoubi [ 2 1 ) .  The extension to the a-twist1 

case is due to Farrell and Hsiang (11. 



In part 

determines an 

icular, an a-twisted nilmodule over A (M,v) 

with a canonical E.g. projective AJxl-module resolution 

where 

ii) Immediate from i). 

We shall now use the identifications of Proposition 5.1 

E-symmetr ic Lf(Aa[x1 ,X.€) 
to express the relative L-groups 

€-quadratic L, (Aalx1 ,X. €1  

appearing in the localization exact sequence of 

Proposition 3.6.1 

+Ln-l(Aa[~Ir€)3... 

(n €Z) 

LNil* (A,a , E) 
as the L-groups of finite-dimensional a-twisted 

LNil,(A,a, E) 



€-symmetric 
nilcomplexes over A with an poincar; duality 

E-quadratic 

structure, and to prove that the maps 3 are split surjections 

€-symmetric 
In dealing with complexes over the a-twisted 

€-quadratic 

polynomial extensions Aa[x] ,Aa[x,x-'1 we shall assume that 

This is automatically the case if E = +l f A, for example. 

--- I E-symmetric Q* (C,Q,E) 
Define the a-twisted Q-groups 

€-quadratic Q,(CrQ,E) 

of a finite-dimensional A-module chain complex C to be 

with T€Z2acting on HomA(C*,xC) by the a-twisted €-duality 

involution 

is an n-dimensional A-module chain complex C together with an 

Q"(c,~,E) 
e lenen t . Such a complex is poincar; if the 

'$fQn(C,a.€) 

A-module chain map 



is a chain equivalence, inducing A-module isomorphisms 

(c)&H, (XC) = XH, (cl . 
c-symmetric 

The n-dimensional a-twisted L-group of A 
€-quadratic 

L ~ ( A . ~ , E I  
(n>O) is the cobordism group of n-dimensional 

Ln(A,QrEI 

c-symmetric 
a-twisted ~oincar; complexes over A. Note that 

€-quadratic 

there are defined isomorphisms 

L ~ ( A , ~ , E ) ~ L ~ ( A , ~ - ~ , E )  ; (C,@ 

- 1 
Ln(A.a,€)ALn(A,a , E )  ; (C,$ 

("30) . 
In the untwisted case a = 1 : A-A the canonical 

isomorphism of A-module chain complexes 

xc-C ; xy +-----+ y 

can be used to identify 

HomA/C*,xC) = HomA(C*,C) , 

Let Aa denote the ring with involution with the ring 

structure of A, but with the involution 

l- 
: A ~ -  --+A' ; a++a(a) . 

Given an A-module M let M~ denote M regarded as an Aa-module, 

so that is the right Ad-module with the additive group 



of M and A" acting by 

and M"* is the A"-module with additive group HomA(M,A) and 

A" acting by 

Proposition 5.1.2 There are natural identifications of L-group: 

Proof: For any finite-dimensional A-module chain complexes C,D 

there is defined an isomorphism of Z-module chain complexes 

c t a A ~  = CBZD/(y@az - ayC3z)af A,y f C,= e D] ----+HomA(C*,D) ; 

uav +-, (F c--*f(UJv) 

which can be used to identify 

ctC# D = HomA(Cf ,D) . A 

In particular, for D = Cx there are identifications ofZ-modulc 

chain complexes 

Furthermore, the o-twisted €-duality involution T,, on 
, E  

HomA(C*,Cx) can be identified with the c-duality involution TE 

on ~om~a(c"*,~"), so that 

and similarly for the L-groups. 



Given a finite-dimensional a-twisted nilcomplex over A 

(C,v:C---+Cx) define a Z [ Z  ]-module chain map 2 

with T €  Z2 acting on HomA(C*,xC) by Tar, (as above) and HornA( 

the Z[Z2]-module chain complex defined by the Z-modulechain 

complex HomA(C*,C) with Tf Z2 acting by the (-€)-duality 

c-symmetr ic 
involution T-€. Define the QNil-groups of (C, v )  

€-quadratic 

QNil* (C,v,E) 
to be the relative groups appearing in the 

QNil,(C,v,E) 

long exact sequence of abelian groups 

( & $ , $ l  f QNiln(~,v,€) 
An element is an equivalence class of 

( & $ , $ l  f QNiln(C,v .E) 

collections of A-module morphisms 

such that 



E-symmetr ic 
An n-dimensional a-twisted 

--- i nilcomplex over A 
E-quadratic 

(C,v,6Or6) 
(n),O) is an n-dimensional a-twisted nilcomplex 

(Crv,6C,b) 
C 

(66n9) f Q N ~ ~ ~ ( c , v , E )  
over A (C , v )  together with an element 

t6J,6) QNiln(C,vl~) 

l E-symmetr ic n-dimensional a-twisted Poincar6 complex over A. 
€-quadratic 

E-symmetr ic 
The n-dimensional a- twisted LNil-group of A 

€-quadratic 

L ~ i l ~ ( ~ , a , c )  -symmetric 
is the cobordism group of n-dimensional 

LNiln(A,a,c) 

Poincar; nilcomplexes over A (n > 0) . 



Proposition 5.1.3 i) For each n > 0  there is a natural 

identification of categories 

(even) E-symmetric 
(n-d imensional (Poincar6) complexes 

€-quadratic 
L over (Aa[xl ,X) l 

E-symmetr ic 
= (n-dimensional a-twisted (~oincar;) 

E-quadratic 

nilcomplexes over A )  

identifications of L-groups ii) There are natural 

L" ( ~ ~ 1 x 1  

Ln (A, 1x1 

E-symmetr ic 
iii) The L-theory localization exact sequence of 

€-quadratic 

(Aa[xl,X) in the range n > , O  is made up of naturally split 

short exact sequences 

Proof: i) This follows from Proposition 5.1.1 i), provided we 

can show that if D is an X-acyclic (n+l)-dimensional 

Aa[xl-module chain complex resolving an n-dimensional 

(Aalxl,X)-module chain complex != a-twisted nilcomplex over A) 



The exact sequence of ZZ [ Z  2 ]-modules 

- 1 o h  ~ ~ [ x l - +  A,[x,x-'1 -5Aa[x,x l/Aa[x1 h 0  

splits, with T 8  Z2 acting in each case by 

(a.€A) . 
3 

It follows that every X-acyclic (nt1)-dimensional (-E)-symmetr 

complex over Aa[xl (D,@ € Qntl (D,-E) ) is even, since 

An n-dimensional a-twisted nilcomplex over A (C,v) can 

be regarded as an n-dimensional (A [xl,X)-module chain complex 

by Proposition 5.1.1 iij, and as such has a canonical resolutic 

(D, h:D -+C) with D the X-acyclic (nt1)-dimensional 

Aa[xJ-module chain complex defined by 

= (Cr-l),xlxl@(xCr-2)a[xl 

and h : D 4 C  the homology equivalence of AJxI-module chain 

complexes defined by 



The Z-module chain map 

h : HornAa (D*,D) -HornAa (D*,C) ; g-hg 

is also a homology equivalence (working a s  in the proof of 

Proposition 3.1.3 ii)). Now 

allowing Hom (D*,C) to be identified with the algebraic 

mapping cone C ( r V )  of the Z[Z21-module chain map 

used to define the QNil-groups. Thus 

is a ZIZ21-module chain map inducing isomorphisms in homolo~ 

Z2-hypercohornology 
and hence also in the groups 

Z2-hyperhomology 



I."(A~[X],X,E) = LNiln(A,a,~) 
ii) The identifications (n 3 0 )  

Ln(Aa[xl ,X, E) = LNiln(A,a, € 1  

are immediate from i). 

iii) The abelian group morphisms 

defined by 

are right inverses ( > A  = 1) for the morphisms 

appearing in the localization exact sequence, since 

(The underlying (n+l)-dimensional X-acyclic A,[x]-module chain 

equivalent to the canonical resolution D = C(x-~:(xC)~[x]--+C,[x]) 



60:~n-*-----r xc 
of C, since is a chain equivalence of 

(1+T,, ,) $O:~n-*---+x~ 

A-module chain complexes). 

1 1  

-------- i €-symmetric , Define the n-dimensional a-twisted LNil-group 
E-quadratic 

%ln(A,a, E )  
(n* 0) to be the group appearing in the natural 

=ln(A,a, E) 

direct sum decomposition 

obtained from the natural injection 

5 : L n ( A , a , ~ ) - - - L N i l n ( A , a , E )  ; (C,$)*[Ctoro,$) 

and the natural projection 

(which are such that Il6 = 1). 

Let A,[x-l] be the ring with involution defined in the 

same way as A,[xl but with a-',x-l in place of a,x so that 

The function 
1 

Aa-11x1 --+ A, 

is an isomorphism of rings with involution. The rnl~ltiplicative 



subset 

is such that 

- 1 (X-)-l~alx-ll = A [x,x I = (X+)- 

k where X+ = X = fx l k  >O)CAalxl is the multiplica 

dealt with above. The inclusions 

- 
e, : A-- -+A [X''] ; at--za 

are split by the projections 

1x1 , 

tive subset 

with e,et = 1. The inclusions 

+ 1 2, : Aalx- ]+Aa[x,x-l] ; 

do not split. 

+ l  - 1 Let K c kO(~a[x- 1) (resp. kO(Aa[x,x 1) ) be the *-invariant 

+l subgroup of the projective classes [P [ X '  1 )  (resp. [Pa[x,x-l] J )  

of the modules induced from €.g. projective A-modules P by 

- -  - -  
<:A-----+ ~,,lx~ll (resp. E+e+ = E-e- : A -A~[X,X-']). 

Proposition 5.1.4 For each n 3 0  there is defined a commutative - 

c-symmetric 
braid of naturally split exact sequences of 

€-quadratic 



and there are defined natural direct sum decompositions 

L;(A~IX] ,E) = Ln(A, E ) @ ~ l " ( ~ , a - ~ . c )  

L ; ( A ~ I X - ~ I  , E )  = L " ( A , ~ ) ~ B L X ~ " ( A , ~ , ~ )  

L:(A~IX,X-~I ,E) = Ln(A, E ) @ Z l n ( A , a ,  c)@~=l~(A,a-~, E)@Ln(~,a,C 

Proof: In the first instance note that the sequence of c-symmetric 

and its €-quadratic counterpart are both naturally split exact: 



this may be deduced from Proposition 5.1.3 iii) using the 

appropriate comparison exact sequences of Proposition 1.10.1, 

noting that 

- - - 1 ~ i m ( E t : K O ( A a I ~ l ) - ~ ~ O ( ~ a [ x , x  ]))/im(EtF+:K"O(~)-it (A [x,x-~])) 
0 a 

is an isomorphism, or else may be obtained directly from the 

corresponding intermediate L-theory localization exact sequence 

of Proposition 3.7.2 by constructing a splitting map At for a +  

as in the proof of Proposition 5.1.3 iii). Let 

E ~ :  L : ( A ~ [ x , x - ~ I , E ) - - - - L ~ ( A ~ I x I . E )  ( n % O )  

be the split surjections associated to the split injections 

-1 
A+ : L N ~ ~ ~ ( A , ~ , E ) - L ~ ( A ~ [ ~ , ~  ],E) (n> 0) , 

and similarly in the €-quadratic case. By Lemma 1.1 of Ranicki [ 4 ]  

it now suffices to prove that the diagrams of €-symmetric L-qroups 

and their €-quadratic analogues are commutative in order to 

establish the split exactness of the other sequences in the 

braids, and hence to obtain the direct sum decompositions. 



The relation {-Q, = 2 - A +  is easy to verify directly. The relation 

- - 
E-E+ = e-et was verified explicitly in Ranicki [4,§4] in the 

c-quadratic case for a = 1 : A--+A (taking into account 

that the splitting maps E, defined there are slghtly different 

from those defined here, being geared to the splitting maps of 

+l 
rings A[xfl]+A for ~ * : A ~ A I X -  I given by xi'-1 

rather than e+:xilctO). The verification of E-E+ = F-e+ in 

the general case requires a symmetric L-theory Higrnan linearization 

trick, and is deferred to Ranicki 1111. 

l 1  

We shall now identify linking forms (resp. Eormations) 

over (A [xl,X) with a-twisted forms (resp. formations) over A 

together with a nilpotent structure. This will allow us to 

~ ~ i l "  (A,a,E) 
express the LNil-groups for n = 0 (resp. n = l) 

LNiln(A,a,c) 

as the Witt groups of such objects, and also to define lower 

L N ~ ~ " ( A , ~ , c )  
LNi l-groups (n< -l), which appear in the extensions 

LNiln(A,a,E) 

to the lower L-groups of the results of Propositions 5.1.2, 

5.1.3 and 5.1.4. 

Given a €.g. projective A-module M define the a-twisted 

c-duality involution 

Tact : HomA(M,xM*)-HomA(M,x~*) : @-E@* . 
An element OEIHomA(M,xM*) is the same as a pairing 

(identifying xM* = (MX)*) such that 



The a-twisted €-dual T $ €  HomA(M,M*x) is the pairing defined by 
Q, c 

(Working as in the proof of Proposition 5.1.2 it is possible 

to identify 

Define the g-twisted @-groups of M 

I 
Q (M,a) = coker (l-Ta ,E :HomA(M,xMf) --+HomA(M,xM*) ) . 

(even) c-symmetric 
An a-twisted form over A 

E-quadratic 

f.g. projective A-module M together with an element 

$ €  aE(M,a) ($C Q(~~)~(M,Q)) . Such a form is non-singular if 
ILf Q,(M,a) 

@ €  HomA(M,xM*) 
is an isomorphism. There are evident 

(l+Ta, c) J, f HomA(M,xM*) 

notions of -- morphism, (sub)laqranq@, hyperbolic, Witt group 

for a-twisted forms. The Witt group of non-sinqular a-twisted 

(even) c-symm~tric 
forms over A is denoted by 

E-quadratic 

1.' (A,u) (I~CV~)' (A,(I) 
. Thcrr a r r  idrntifications of 

(Are) 



categories 

(even) c-symmetric 
(0-dimensional a-twisted 

c-quadrat ic 

(~oincar;) complexes over A) 

(even) c-symmetric 
= ( (non-singular) a-twisted forms over A) 

c-quadratic 

and hence also identifications of groups 

Given an a-twisted ni le over A (M,v f HomA(M,Mx)) 

define the QNil-qroups of (M,v) by 

j QNilE(~,v) = 

) { ( f ~ o m ~ ( ~ , x ~ * ) ~ ( = + + r + *  for some + E H ~ ~ ~ ( M . X M * )  

< such that v*+ - +v = 66 + r6+* f HomA(M,M*) 

\ some 6+ f HomA(M,M*)} gQNilr(~,v) 

--- i 
(even) E -symmetr ic (M,v ,@) 

An a-twisted nilform over A 
c-quadratic (M.V ,G$ ,J 

is an a-twisted nilmodule over A (M,v) together with an element 



(even) €-symmetric 
non-singular a-twisted form over A. 

c-quadratic 

There are evident notions of morphism, (sub)laqrangian, 

m e r b o l i c ,  Witt group for nilforms. The Witt group of 

(even) E-symmetr ic 
non-singular a-twisted nilforms over A 

C-quadrat ic 

L~il'(A,a) ( ~ ~ i l < v ~ > ~ ( A , a ) )  
is denoted by 

LNilC (A,a) 

Proposition 5.1.5 i) There are natural identifications of 

categories 

I E-symmetr ic (0-dimensional a-twisted (~oincar;) 
€-quadratic 

nilcomplexes over A) 

E-symmetric 
= ((non-singular) a-twisted nilforms over A) 

€-quadratic 

E-symmetric 
= ( (non-singular) linking forms 

split E-quadratic 

((non-singular) a-twisted even E-symmetric nilforms over A) 

= ( (non-singular) even E-symmetr ic linking forms 

over (Aa [X] ,X) ) . 
ii) There are natural ident 

~ ~ i l O ( ~ , a , c )  = ~ N i l ~ ( ~ , a  

ifications of L-groups 



Proof: i) Given an a-twisted nilmodule over A (M,v€HomA(M,Mx)) 

define a 0-dimensional a-twisted nilcomplex over A 

and note that 

This gives the identification of 0-dimensional a-twisted 

€-symmetric €-symmetric 
nilcomplexes over A with a-twisted 

€-quadratic €-quadratic 

nilforms over A .  The correspondence between nilforms and 

linking forms now follows from Propositions 3.4.1, 5.1.3 i) 

E-symmetr ic 
In particular, an a-twisted nilform over A 

€-quadratic 

(M,v,$) E-symmetr ic 
determines the linking form 

(M, v, & $ , $ l  split €-quadratic 



E-symmetr ic 
and every linking form over (A,[x] ,X) can 

split €-quadratic 

be expressed in this way. 

By definition, an €-quadratic linking form over (A,[xl,X) 

((M,v),t,p) is an E-symmetric linking form over (A,[x],X) 

( (M, v )  , c )  together with a function 

= { d + ~ d €  A ~ [ x , x - ~ ] / A ~ [ x ]  Id € A,[x]) 

(with GC as in the proof of Proposition 3.4.2 ii)) satisfying, 

among others, 

The natural map 

is injective, so that p (if it exists) is determined by 5. 

By Proposition 2.4.1 i) every €-quadratic linking form admits 

a split €-quadratic refinement. Thus we can also identify 

a-twisted even c-symmetric nilforms over A with €-quadratic 

linking forms over (A [X; ,X). 

ii) Immediate from i )  and Propositions 3.4.7 i), 5.1.3 ii). 

I l 



--- i (even) E-symmetr ic An a-twisted formation over A 
€-quadratic 

(M,@;F,G) (even) €-symmetr ic 
is an a-twisted form over A 

(M,JI;F.G) E-quadra t ic 

lagrangi~n F and a sublagrangian G. Such a formation is 

non-sinqular if G is a laqrangian. There are evident notions 

of (stable) isomorphism and Witt group for a-twisted formatio 

(even) E-symmetric 
The Witt group of non-singular a-twisted 

€-quadratic 

I M'(A,~) (M(v~>~(A.~) 
formations over A is denoted by . There 

ME(A,a) 

are identifications of groups 

--- i (even) E-symmetr ic An a-twisted nilformation over A 
€-quadratic 

(M.V,Q;F,G) (even) E-symmetric 
is an a-twisted nilform 

(M. V, 6$,$;F,G) E-quadra t ic 

(M,vf HomA(M,Mx) ,Of Q~il'(M,v)) ((M,",$€ Q N ~ ~ < v ~ > ~ ( M ,  
over A 

(M,vf HomA(M,Mx) ,I)€ QNilE(M,v)) 

together with a lagranqian F 

that in the €-quadratic case 

- 

(M,v.6$,$) = (F@xF* ,  

and a sublaqranqian G, and such 

for some nilpotent map w € H o m  (F,Fx) and some €-quadratic for1 
A 



over A (xF*, h €  Q€(xF*)), with ( G , v \ ~ , J I I ~ )  an a-twisted even 

(-€1-symmetric nilform over A. Such a nilformation is 

non-sinqular if G is a lagrangian. There are evident notions 

of (stable) isomorphism and Witt group for a-twisted 

nilformations. The Witt group of non-singular a-twisted 

(even) €-symmetric 
nilformations over A is denoted by 

€-quadratic 

€-symmetric 
A l-dimensional a-twisted nilcomplex over A 

€-quadratic 

(C, v:C---+Cx, ( & $ , @ l  € ~Nil'(~,v, E)) 
is connected if 

(C,v:C----+Cx, (6JI.JIJ f QNill(C,v,~) J 

Proposition 5.1.6 i )  There are natural identifications of sets 

of equivalence classes 

E-symmetr ic 
(connected l-dimensional a-twisted 

€-quadratic 

complexes over A) 

E-symmetr ic 
= (a-twisted nilformations over A) 

C-quadra t ic 

(even) E-symmetr ic 
linking formations over (Aa(x] ,X) ) , 

split c-quadratic 

(a-twisted even E-symmetric nilformations over A) 

= (€-quadratic linkinq formations over ( A  [ X ]  ,X)) . 



~oincar; nilcomplexes correspond to non-sinqular nilformations, 

which in turn correspond to non-singular linking formations. 

ii) There are natural identifications of L-groups 

LNil (A,~,E) = MNil, ( ~ , a )  = iE ( ~ ~ 1 x 1  ,X) = L ~ ( A ~ I X I  ,X,€) 
1 

Proof: By analogy with Proposition 5.1.5. 

In particular, given a connected l-dimensional a-twisted 

E-symmetric (C,v,6+,4) 
nilcomplex over A there is defined an 

€-quadratic (c.v,~+.+) 

I E-symmetric a-twisted nilformation over A ,  as follows. 
E-quadratic 

The nilcomplex (C,v:C-Cx) is defined by a morphism 

of a-twisted nilmodules over A 

1 
(6+,$) € QNil (C,v, E) 

The class i s  represented by a collection 
(64~~6) € QNill(C,v,E) 

of A-module morphisms 

satisfying 



E-symmetr ic 
The a - t w i s t e d  n i l f o r r n a t i o n  o v e r  A a s s o c i a t e d  t o  

E-qi!adrat ic 



\ (resp. LNiln(A.a,r) = LNiln+2i(A,a, I - )  i r ) )  (n 2-L,nt' 

LNiln(A,a, E) 
(n C -l) be the groups appearing in the natu 

LNiln(A,a, E) 

direct sum decompositions 

as in the case n 2 0  dealt with above. 

Proposition 5.1.7 For each n € Z t h e r e  is defined a commutatiu 

braid of naturally split exact sequences of c-symmetric L-grc 
- 

0 LNiln(A,a- 

0 l,Niln(A,a, E) 0 

a +E- L -- - 

and there are defined natural direct sum decompositions 

A 
L;(A~[X] ,E) = L ~ ( A , ~ ) @ L N ~ ~ " ( A , ~ - ~ , E )  

L ~ ( A ~ [ X - ~ I ,  c) = L"(A, E)@LN~~"(A,~. E) 

-, ,- .\, 
r ~ x ,  , E  = ~ ~ ( ~ , r ) @ 1 , ~ i l ~ ( ~ , o , r ) @ 1 . ~ i l ~ ( A , n - ~ , E ) @ ~ ~  



as well as natural identifications 

Similarly for the E-quadratic L-groups. 

Proof: By analogy with the case n ) O  (Propositions 5.1.2,5.1.3 

and 5.1.4). 

I l 

In the untwisted case a = 1 : A----+A the terminology 

involving a is contracted, for example 

LNil*(A,l,€) = LNil*(A,€) . 
We shall now reiterate the example given in Ranicki [ 6 , § 6 1  

of a pair (A,S) for which the natural projection of Witt groups 

is not injective, showing that in general split €-quadratic 

linking forms over (A,S) carry more information than ,-quadratic 

linking forms over ( A , S ) .  Namely, let 

and note that the non-singular skew-quadratic nilform over 72 

represents the element 

invariant 1 element, and that the natural map 



T'v 
L ~ ( Z [ X I  , X )  -----9 ~ ~ ( 7 ~ ~ x 1  , X )  = L < v ~ > ~ ( z ) @ L N ~ ~ ~ v ~ ~ ~ ( z )  

sends this element to 0 ,  since L<v >'(a) = 0 (Proposition 4.3.1). 0 



5.2 Change of K-theory 

The results of 55.1 will now be extended to the 

intermediate L-groups of the a-twisted polynomial extensions 

Aa[x], Aa[x,x-'] of a ring with involution A, using the 

intermediate L-theory localization exact sequences of 5 3 . 7 .  

As in 5 3 . 7  we start by considering the action of the 

duality involutions r on the algebraic K-theory localization 

exact sequence, which in this case is 

for a ring with involution A and a ring automorphism a:A--+.A 

such that a(a) = a-l (5) € A (a € A). The action is such that 

By the results of Facrell and Hsiang 111,[21 and Siebenmann [l] 

this sequence can be expressed as 

with 



and Km(A,a) (m=0,1) the relative K-groups appearing in the 

exact sequence 

The duality involution on the exact category N&(A,a) of 

a-twisted nilmodules over A 

induces the duality involution 

with *a the composite of the automorphism of the K-group 

a : Km-1 (A) = K,-1 (g (A) ) Km-l (A) 

induced by the automorphism of the exact category g(A) 

a : e(A) = (£.g. projective A-modules) ---+g(A) ; 

and the duality involution 

Km-1 (A) --------P Km-l (A) a :  

induced by 

* : ;(A 

Note that *a : K 
m- l 

- g l A )  ; P-P* = HomA(p,A) . 
(A) ---t Km-l(A) is just the duality involutio 

*:Km-l (A')-+K,_~ ( A ~ )  associated to the ring with involution 



defined in 55.1 above, with the ring structure of A and involution 

- : A ~ _ _ _ - _ s A ~  ; a+--ta(S) . 
The duality involution 

: Km(A,a)-km(A,a) 

which K,(A,a) inherits from K 1 ( ~ a ~ ~ , ~ - l ~ )  is such that in the 

diagram 

3 l-a i 
&K~(AQ)---, %(A) O +iTg(A,a) 

*I 1 l i o , * i  
'l , K~(A~)-----+ K ~ ( A )  K~ (A. a) 

we have the relations 

,im = i (m= 0,l) , *l1 = R1* , *(l-a) = -(l-a)* . 
The duality involutions on the remaining groups of the algebraic 

K-theory localization exact sequence are given by 



Given a *-invariant subgroup YGK1(Aa[xl,X) define the 

E-symmetr ic LN~~;(A,~,E) 
intermediate LNil-groups (nf Z) 

€-quadratic LN~~:(A,Q,E) 

LNilt(A,a, E) 
in the same way as the groups of S5.1 (the 

LNil,(A,a, E) 

special case Y = K1(Aa[x] ,X)) but using only a-twisted 

nilcomplexes over A with X-projective class in YcK1(Aa[x],x). 

The proof of Proposition 5.1.3 ii) gives natural identifications 

the groups on the left hand side being defined as in S3.7. If 

Y = YO@YIC K1(A,[x] ,X) = KOfAa)@~ill(A,a) - 
for some +-invariant subgroups yOE K ~ ( A ~ )  , YIC- Nill (A,a) there 

are natural direct sum decompositions - 
LNil* (A,a, E) = LE (A,a, c)bLNilf (A,a, E) 

Yo 1 

90 LNil,(A,a,c) = L, (A.a.6 1 .  
with YO~KO(Aa) the image of Yo under 

(A') + KO (A') . 

)@L=:' ( A  

the natura 1 pro jection 

Given a *-invariant subgroup Y ~ R  (Aa) define +-invariant 
0 

subqroups 

Y:' = a;'!~) c K ~ ( A , ~ ) c  K 1 ( ~ a [ ~ , x - l ~ )  

The natural map 

I : Y ---- KO(A)/(l-a) (Y) ; [P]- (l-a) (Y) + [P] 



is a Z[Z21-module morphism, with T € Z 2  acting on Y by the 

a-twisted duality involution it inherits from i? (A) (i.e. the 0 

duality involution on XO(~a) with respect to which Y is 

invariant) and by the duality involution inherited from R0(A) 

on G(A)/(l-a) (Y). Let (A,a,€) (n€ Z )  be the relative 
Y' 

€-symmetric L-groups appearing in the exact sequence 

d L n - 1  B -n-l 
(l-a) Y (A,€) --+I, (Atat€) +... 

YJ 

with 6 the composite 

6 : L;(A~,E) -Hn(Z2;Y) ~ f 1 n ( Z 2 ; ~ o ( ~ ) / ( l - ~ ) ~ )  

3 
Define similarly relative E-quadratic L-groups L: (A,a,€) 

Prossition 5.2.1 Given *-invariant subgroups Y E K ~ ( A ~ ) ,  -- 
N +l 

Z c Nil (A,a- ) there is a natural identification of the - 1 

intermediate c-symmetric L-theory localization exact sequence 

(n 8 Zl 

with the exact sequenc? 



I E Y  = ( O I C ~ ~ ( A " )  or if a = 1 : A-A then 6 = O a n d  the 

exact sequence is naturally split. 

Similarly for the €-quadratic L-groups L,. 

Proof: By analogy with Propositions 3.7.1, 5.1.4. 

If Y = (01 or a = 1 define splitting maps 

exactly as in the proof of Proposition 5.1.3 iii). 

I l 

Given a *-invariant subgroup Y c K ~ ( A )  (m = 0 or 1) defir 

*-invariant subgroups 



The natural map 

I : (l-a)-'y -km(A)/Y ; W-Y + W 

is a Z[Z21-module morphism. Let "L (A,a,c) be the relative 
X-IY 

E-symmetric L-groups appearing in the exact sequence 

6 
-L~-~(A,~)--+... , Y 

with 6 the composite 

6 : L" (A~,E)-G~(Z~; (I-~)-'Y) L i n ( z 2 i ~ m ( A ) / y )  
(l-a) -ly 

d 

Proposition 5.2.2 Let Y C ~ ~ ( A ) ,  Z2E Nilm(A,atl) ( m  = 0 or 1) 

be *-invariant subgroups, with 2 ,  = 0 if m = 0. There is a 

natural identification of the intermediate E-symmetric 

L-theory localization exact sequence 



'V A/ 
where LNil; (A,afl,E) E ~~il*(A,a'l.E) if m = 0. If Y = km(A) 

f 

or if a = 1 : A-----+A then 6 = 0 and the exact sequence is 

naturally split. 

Similarly for the €-quadratic L-groups L,. 

Proof: As for Proposition 5.2.1, but using 3.7.2 and 3.7.3 

instead of 3.7.1. 

(1 

In the special case a = 1 : A+A, Y = { O J C  FO(A) 

c-symmetr 
Proposition 5.2.2 gives the "fundamental theorem of 

E-quadrat 

L-theory", the naturally split exact sequences 

l +Un(A,E) '0 . 
(The c-quadratic case was previously obtained in Ranicki [41) 



56. Mayer-vietoris sequences 

We shall now investiqate the existence or otherwise of a 

E-symmetr ic 
Mayer-Vietoris exact sequence of intermediate 

€-quadratic 

Y Y' 
+ L " - l  (B, E)@I'n-l (B' ,E)-, 

for a commutative square of rings with involution 

and a commutative square of *-invariant subgroups 

for m = 0 or 1. As usual, we start with a review of the 

relevant algebraic K-theory. 



A Mayer-Vietoris exact sequence of classical algebraic 

K-groups 

has been obtained for three types of commutative square of ri 

Q (as above) : 

I) Q is cartesian, i.e. the sequence of additive groups 

is exact, and g:B-A' (or g 8 : B ' 4  A') is onto, 

11) @ is the cartesian localization-completion square 

associated to a multiplicative subset S C A ,  with A = Lim A/sA 
ses 

or some abstraction thereof (e.q the cartesian square 

A - S-IA 
i I associated to a cartesian morphism ( A , S ) d ( B ,  

B ----+T-'B 

111) Q is a pushout square with 

A' = B*AB' 

the free product of B and B' amalgamated alonq A ,  with the 

morphisms €:A---B, €':A----+R' injective, and satisfying 

some e x t r a  c o n d i t i o n s .  



The first such exact sequence was obtained by Milnor 14,541, 

who showed that for a cartesian square of rings @ of type I 

there is indeed a   ay er-Vietoris exact sequence of the type 

3 K1 (A)+K1 (B)@K1 (B1)-+ K1 (A') + K ~ ( A ) - K ~ ( B ) @ K ~ ( B ' ) + K ~ ( A ' )  . 
Bass [2,XII] defined the lower algebraic K-groups K,(A) (n6 -1) 

inductively by 

Kn(A) = coker (Kn+l(A[xl )@Kn+l(~l~-l~ ) d K n + l ( ~ ~ ~ , ~ - l l ) )  

and extended this sequence to the right by 

...* Ko(B)@KO(B1)+K 0 (A')~+K-~(A)+K-~(B)@K-~(B')+K-~(A')--~. . . . 
Swan [l] showed that there does not exist a K2-Functor 

extending the sequence to the left for all squares @ of type I. 

However, Milnor [4,SS5,6] defined K2(A) using Steinberg relations 

such that for the squares @ of type I with both q:B-A' and 

g':B'-A' onto there is an extension of the sequence to the 

left by 

K 2 ( A ) - K 2 ( B ) @ K 2 ( B ' ) - - - + K 2 ( ~ ' ) ~ ~ 1 ( ~ ) - - * ~ 1 ( ~ ) @ ~ 1 ( ~ ' )  --+. . . . 
Quillen [l], 121 defined the higher K-groups K, (A) (n D 3) 

of a ring A to be the homotopy groups of a space BGL(A)+, with 

Gersten 121 extended this definition to the lower K-groups, 

constructing a spectrum K(A) such that 

The triad K-qroups K,(@) of a commutative square of rings 



can thus be defined by 

and are such that there is defined a commutative diaqram of 

abelian groups with exact rows and columns 

. . .--+Kn (A) -Kn (B) -Kn(f) (A)-Kn-l (B)-. . . 

(nf ZZ) . 
The triad K-qroups vanish 

K,(@) = 0 

i f  and only if the natural maps 

in which case they are called "excision isomorphisms". IF in fact 

K,(@) = 0 the above diaqram collapsrs to a commutative braid 

of exact ?e<iuences 



and there is defined a Mayer-Vietoris exact sequence 

(: 3 )  

A (A) -------+ (B)BKn-, (B') . . . ( 

with the connecting maps d given by 

(or equivalently 

In particular, for a cartesian square 0 of type I1 

(localization-completion) it is the case that K,(@) = 0 ,  since 

the identification of exact categories 

( (A,S)-modules) = ( (8,s)-modules) 

of Karoubi [2,App.5] (cf. proposition 3.1.3 i) above) gives tha 

K, (A-S-~A) = K*-1 ( (A,S)-modules) 

= K,-1 ( (A.3) -modules) = K, (A -2-'~), 



so that there is defined a Mayer-Vietoris exact sequence 

We shall only consider the K- and L-theory Mayer-Vietor 

sequences for squares of type I and I 1  in S6, leaving 

type 1 1 1  (pushout) to 57, on account of the close connections 

with topology. 

E-symmetric 
In S6.1 we shall define the triad L-groups 

€-quadratic 

L"(+,€) 
(n€ Z) of a commutative square of rings with ir~volu 

L,,(+, E) 

The necessary and sufficient condition 

E-symn 
for there to be excision isomorphisms in the relative 

€-quad 

I E-symmet and a Mayer-Vietoris exact sequence in the absolute 
E-quadrt 



\ 
I 

will be interpreted in 56.1 in terms of Mayer-Vietoris splittings 

of algebraic ~oincar; complexes over A '  with respect to 0 , 

usinq the algebraic glueing operations of 51.7. In S6.2 the 

theory will be extended to the intermediate L-groups of 51.10, 

since in practice there are only such excision isomorphisms 

and Mayer-Vietoris exact sequences for the intermediate 

L-groups associated to a commutative square of *-invariant 

subgroups 

such that 

ii) the sequence 

is exact 



Moreover, if @ is such that there is defined a Mayer-Vietoris 

exact sequence in the reduced classical algebraic K-groups 

(9-3') - 
k (B)@k (B') -A K1(A0) 1 1 

and there is defined a Mayer-Vietoris exact sequence of 

E-symmetr ic 
intermediate L-groups 

€-quadratic 

for one such square K then there is defined such a sequence 

for all squares K satisfying i )  and ii). At any rate, for any 

commutative squares @,K there are defined intermediate 

E-symmetric L,"(w 
triad L-groups (nf Z) such that if 

E-quadrat ic L:(S,E) 

then there is defined a Mayer-Vietoris exact sequence in the 

E-syrnmetr ic 
corresponding intermediate L-groups . 

E-quadratic 

(The generalities of 556.1,6.2 appiy equally well to L-theory 

Mayer-Vietoris sequences for squares of type 111) as to those 

of type I) $nd 11)). In 56.3 we shall show that for squares K 

satisfying i) and ii) it is indeed the case that L:(@,C) = 0 

if 4 is either a cartesian square of type I) (g:B----+A' or 



gl:B'+A' is onto) or a cartesian square of type I1 

(localization-completion), thus obtaining a Mayer-Vietoris 

exact sequence in the corresponding intermediate E-quadratic 

L-groups. Furthermore, we shall show that L;(O,E) = 0 for K 

satisfying i) and ii) with O of type I1 satisfying the extra 

condition 

" 1 6̂  = 0 : ;O(Z~;;-~~,E)-H (2Z2;A,c) , 

thus obtaining a Mayer-Vietoris exact sequence in the 

corresponding intermediate E-symmetric L-groups. 

(Special cases of the localization-completion Mayer-Vietoris 

sequences have already been obtained in S3.6 above). 

In S 6 . 4  we shall consider the excision properties of the 

L-groups of cartesian squares of type I associated to ideals. 

In particular, an example will be constructed for which 

L:(@,E) f 0 

with O of type I (with both g:B-A' and g':B1--+A' onto) 

and K satisfying i) and ii). Thus the E-symmetric L-groups 

do not have as good excision as the E-quadratic L-groups. 

Quadratic L-theory Mayer-Vietoris exact sequences for 

cartesian squares of types I and I1 have also been obtained 

by Bass [ 3 1 ,  Wall 181, Karoubi 121 and Bak ( 2 1 ,  in various 

special cases. 



6.1 Triad L-groups 

E-symmetr ic 
We shall now define the triad L-groups 

E-quadratic 

L* 0 ,  E )  
of a commutative square of rings with involution 

L* (Q, c )  

using the algebraic Poincarg triads of S1.3. The condition 

L*(@, e )  = 0 
for excision will be interpreted in terms of 

L,(@,€) = 0 

algebraic Poincar6 splittings with respect to @ of algebraic 

Poincar; complexes over A'. (The connections with geometric 

Poincar6 splittings will be explored in S7.5 below). In orde 

to do this it is convenient to use the unified L-theory of S 

to adopt the following terminology for algebraic Poincar; 

complexes, pairs and triads, which is a straightforward 

adaptation of the familiar terminology for geometric Poincar 

complexes, pairs and triads. A more detailed account of this 

terminology will appear in Ranicki (111. 

----- i E-symmetr ic An n-dimensional Poincar; complex over A 
E-quadratic 

 in(^, € 1  
(nf 22) is a closed object X of . For n) 0 this is 

.-n(A,E) L 
exactly the same as an alqebraic poincar; complex of tnis 

type in the sense of S1.1. 



E-symmetric 
An n-dimensional Poincar6 pair over A (x,y) 

E-quadratic 

( A ,  E) 
(nf Z) is defined by an object X of and an object y of 

Ln (A, €1  

together with a homotopy equivalence 

f :  3 x A y ,  

which will be used to identify y = ax. 

E-symmetr ic 
An n-dimensional poincar; triad over A 

E-quadratic 

(x;3,x8 4-X: 33,~) (n f Z) is defined by an object X of i P ( A ,  C) Ln (A, E) 

and objects 1+x,3-X of toqether with homotopy 

equivalences 

which will be used as identifications. 

The algebraic glueing operation of S1.7 is readily 

generalized to define the a of adjoining n-dimensional 
E-symmetr ic 

poincar6 triads over A (x;y,y1:z),(x';y',y";z) 
rquadratic 

E-symmetric 
as an n-dimensional ~oincarg triad over A 

E-quadrat ic 



Given a morphism of rings with involution 

let E € A be a central unit such that E = E-'€ A [as usual) 

and such that f ( ~ )  € B  is a central unit, also to be denoted E. 

E-symmetric 
An n-dimensional ~oincari pair over f ( y , x )  (n€ 72) 

E-quadratic 

consists of 

E-symmetric 
i) an (n-l)-dimensional ~oincar; complex 

E-quadra t ic 

over A X 

c-symmetric 
ii) an n-dimensional ~oincaci pair over B 

E-quadratic 

c-symmetric ~ " l f , ~ )  
The relative L-group (n € 'L?) defined in 

t-quadratic Ln(f ,E) 

c-symmetric 
5 2 . 2  is the cobordism group of n-dimensional 

E-quadartic 

~oincare pairs over f. 

Let Q be a commutative square of rings with involution 

and let E € A  be a 

that the elemehts 

central units, a1 

central unit such that = c-' € A ,  and such 

f(~) € B,~'(F) € B1,gf(c) = gff'(EJ B A '  are also 

1 to be denoted by E .  



An 

;yry' 

i) 

over A X 

ii) 

E-symmetric 
n-dimensional Poincar; triad over @ 

e-quadratic 

;X) (n € Z)  consists of 

c-symmetr ic 
an (n-2)-dimensional poincar; comple, 

E-quadratic 

E-symmetric 
an (n-l) -dimensional poincar; pair 

E-quadratic 

c-symmetr ic 
iii) an (n-l) -dimensional poincar; pair 

€-quadratic 

over D' (y' ,DIBAx) 

E-symmetr 
iv) an n-d imensional 

E-quadrat 

over A' 

In particular, (x';A'lgy,A'mB,y';AII 

C 
poincar; pair 

C 

X )  is an n-dimensiona 

E-symmetr ic 
Poincar6 triad over A'. 

e-quadratic 

c-symmetric 
Define the n-d imens i& triad L-group I 

E-quadratic 

L"(@,€) 
( n €  iZ) to be the cobordism group of n-dimensions 

Ln(@,c) 

c-symmetr ic 
~oincar; triads over a .  

E-quadratic 



Proposition 6.1.1 i) The E-symmetric triad L-groups L*(@,E 

into a commutative diagram of abelian groups with exact rc 

and columns 

Similarly for the €-quadratic triad L-groups L* (4, E) . 

I L*(Q,c) = 0 
ii) If @,E are such that then there are d e f i ~  

L*(@,€) = 0 

I c-symmetr ic excision isomorphisms of relative L-groups 
E-quadratic 



E-symmetric 
and a Mayer-Vietoris exact sequence of absolute 

€-quadratic 

with the connecting maps a given by 

We shall now interpret the excision condition 

C L*(@,€) = 0 

L*(@,€) = 0 

in terms of algebraic ~ o i n c a r 6  splittings with respect to @ 

of algebraic Poincar; complexes over A'. 



h ~oincar6 splitting (with respect to ) (y,y',x) of an 

E-symmetr ic 
n-dimensional poincar; complex over A '  X' (n€ Z) 

€-quadratic 

consists of: 

c-symmetr ic 
i) an (n-l) -dimensional poincar; complex 

c-quadratic 

over A X 

c-symmetr ic 
ii) an n-dimensional ~oincar; pair over B 

c-quadrat ic 

(Y, BBAx) 

I E-symmetric iii) an n-dimensional poincar; pair over B' 
c-quadratic 

(y',BIBAx) 

iv) a homotopy equivalence 

which will be used as an identification. 

There is also a relative version of Poincar; splitting. 

as follows. 



A ~ o i n c a r b l i t t i n ~  (with respect to @ L  

E-symmetr ic 
( (Y, 2 , ~ ) ~  (Y' , ~ , y ' ) ,  (X, 'X)) of an n-dimensional 

c-quadra t ic 

Poincar; pair over A '  (X', ::X') (n€ Z )  consists of: 

c-symmetr ic 
i) an (n-l) -dimensional poincar; pair over A 

c-quadratic 

c-symmetric 
ii) an n-dimensional ~oincar; triad over B 

C €-quadratic 

1 c-symmetric iii) an n-dimensional ~oincar; triad over B' 
E-quadratic 

iv) a homotopy equivalence of pairs 



Note that (2+y,J+y',-3x) is a poincarc splitting of the 

€-symmetric 
boundary (n-l) -dimensional ~oincar; complex 

€-quadratic 

over A' ax'. 

E-symmetr ic 
An n-dimensional poincar; triad over Q 

€-quadratic 

E-symmetric 
(xl;y,y';x) is thus an n-dimensional ~oincar6 

€-quadratic 

pair over A' (x',axl) together with a poincar6 splitting 

€-symmetric 
(y,yl,x) of the boundary (n-l)-dimensional 

€-quadratic 

poincar6 complex over A '  bx', so that 

A cobordism of such triads (x;;yi,y;;xi) (i = 1,2) is an 

E-symmetr ic 
(n+l) -dimensional poincar; triad over A' 

€-quadratic 

E-symmetr ic 
such that the n-dimensional poincarg pair 

€-quadratic 

over A '  (3+6x',Jx10-dx') has a ~oincar6 splitting 
1 2  

extending the given ~oincar; splitting ( y  1 $-y2, yi0-y;,xl@-x2) 

I E-symmetric of the boundary (n-l)-dimensional ~oincar6 
E-quadratic 

complex over A' ;X'$-3x' 1 2' 



E-symmetr ic Ln(4,c) 
The n-dimensional triad L-group (n f z) 

E-quadratic L,,(@,€) 

c-symmetr ic 
is thus the cobordism group of n-dimensional 

c-quadratic 

~oincar; pairs over A '  with a ~oincarE split boundary. 

E-symmetr ic 
Proposition 6.1.2 The L-theory excision condition 

c-quadrat ic 

L*(@,E) = 0 E-symmetr ic 
is satisfied if and only if every 

L*(@,€) = 0 €-quadratic 

~oincar; pair over A '  with a ~oincar6 split boundary is 

cobordant to a ~oincar6 split pair. 

In particular, if the excision condition is satisfied 

c-symmetric 
then every ~oincar6 complex over A '  X' is cobordant 

E-quadratic 

to a Poincar6 split complex A'@ByUA.~A(-x)A'Q(-y') and the 

E-symmetric 
connecting maps in the L-theory Mayer-Vietoris 

E-quadrat ic 

exact sequence of 4 

While the Poincar6 splitting condition for excision of 

Proposition 6.1.2 has a pleasantly geometric flavour (to which 

we shall return in S7 below) the following criterion for 

excision will be found to be of qreater use in S6.3 below. 



Proposition 6.1.3 The induced map of relative E-symmetric 

L-groups for some n f 22 

(for a commutative square of rings with involution f' I * i l :  
is an isomorphism if and only if there exist abelian group 

morphisms 

6 : L"(A~,E)-L"(F,c) 

8 : L"(~*,~)-L~-~(A.C) 

fitting into a commutative diagram 

involving the change of rings exact sequences 

If such morphisms 6,6 exist there is defined an exact sequence 

with 



n + l  
a n d  i f  ( f l , g ) : L  ( f , ~ )  - + ~ ~ + ~ ( g ' , c )  is o n t o  t h e r e  is a n  

e x t e n s i o n  o f  t h i s  s e q u e n c e  to t h e  l e f t  by  a n  e x a c t  s e q u e n c e  

S i m i l a r l y  f o r  t h e  € - q u a d r a t i c  L - g r o u p s  L,. 

p r o o f :  IF  ( f ' , g )  : L ~ ( E , E ] - L ~ ( ~ '  , c )  is a n  i s o m o r p h i s m  d e f i n e  

6 = ( f ' , 9 ) - l y g ,  : L ~ ( A ' , E ) - L ~ ( ~ ~ ~ )  

6̂  = : f ( f ' , g ) - l  : L ~ ( ~ ' , E ) - - + L ~ - ~ ( A , € )  . 
C o n v e r s e l y ,  g i v e n  6 , 6  we s h a l l  v e r i f y  t h a t  ( £ ' , g ]  is a n  

i s o m o r p h i s m  by d i a g r a m  c h a s i n g ,  a s  f o l l o w s .  

L e t  X €  k e r ( ( f ' , g ) : L n ( f , € ) + L n ( g ' , € ) ) ,  SO t h a t  

I f ( x )  = 8 ( f t , g )  ( X )  = 0 f L " - ~ ( A , E )  

a n d  X €  k e r ( 3 f : ~ n ( f , E ) - - + ~ n - 1 ( ~ , E ) )  = i m ( y f : L n ( B , e )  - L n ( f , t  

L e t  y €  L n ( B , r )  b e  s u c h  t h a t  

g ( y )  = 9 ' ( Z )  e L " ( A Q , E )  , 

s o  t h a t  

X = y f ( y )  = 6 g ( y )  = 6 g 1 ( z )  = 0 € ~ " ( f . c )  . 
T h u s  ( f l , q )  : L n ( f  , E ) - L n ( g g , c )  is o n e - o n e .  



Given  a n  e l e m e n t  U €  L n ( g ' , ~ )  we have  

f  :(U) = O e L n - l ( e ,  E)  , 

so t h a t  

: (U)  €  ~ ~ ~ ( ~ : L " - ~ ( A , E ) - - L ~ - ~ ( B , E ) )  

= i m ( a f : ~ n ( i , ~ ) + ~ n - l ( ~ , ~ ) )  

L e t  v €  L " ( £ ,  E) b e  s u c h  t h a t  

; ( U )  = a,(v)  e L " - ~  ( A ,  E)  , 

so t h a t  

( u -  ( f l , g ) ( v ) )  €  k e r ( 6 " : ~ ~ ( ~ ' , c ) - ~ ~ - ~ ( A , E ) )  

L e t  w  €. L" (A ' ,  E)  b e  s u c h  t h a t  

~ h u s  ( i v , g )  :L"(£ ,  ~ ) - - - - t ~ " ( g l ,  E )  is o n t o .  

,. 
S u p p o s e  now t h a t  6,6 e x i s t .  

Given  X f  k e r  ( : L ~ - ~ ( A , E ) - L " - ~ ( B , E ) @ L " - ~ ( B ' , E ) :  

we h a v e  t h a t  

L e t  y L " ( £ , € )  b e  s u c h  t h a t  



a n d  t h e r e  e x i s t s  z  € L" ( A ' ,  E )  s u c h  t h a t  

( f ' , g )  ( y )  = Y g ,  ( 2 )  f L n ( g ' . E )  . 
T h u s  

x  = ~ ~ ( y )  = a f ( f l , g ) -  l y s , ( z )  = a ( z )  e L " - ' ( A , ~ )  , 

a n d  w e  h a v e  v e r i f i e d  t h e  e x a c t n e s s  o f  

L n - l  
G i v e n  X €  k e r ( 3 : L n ( ~ ' , ~ ) +  ( A , € ) )  we h a v e  t h a t  

y f 6  ( X )  = o e L"- ' (A,E)  . 

a n d  t h e r e  e x i s t s  y '  f L " ( B ' , E )  s u c h  t h a t  

X = q ( y )  - g 1 ( y ' )  f L " ( A ' , E )  . 
T h i s  v e r i f i e s  t h e  e x a c t n e s s  o f  

so t h a t  t h e r e  e x i s t s  z E L n ( A , E )  s u c h  t h a t  

y  = f ( z )  e L " ( B , E ) .  



so that there exists W €  L"+' [ g o ,  E )  such that 

y Q  - f1(z) = 3 (W) e L"(B*,E) . 
4 '  

As (fl,g) is onto there exists v €  L"+'(E,E) such that 

w = (fl,g)(v) e ~"+l(g',c) . 
The element 

X = z + a f  ( V )  e L"(A,~) 

is such that 

(y,yt) = ( E ( x )  ,fl(x) e L"(B,E)@L"(B~,EI , 

verifying the exactness of 



6.2 Change of K-theory 

We shall now develop the theory of intermediate triad 

L-groups, that is the analogues of the triad L--groups of 56.1 

for the intermediate L-groups of S1.lO. The terminology and 

and results of Sb.1 have obvious intermediate L-theory analogue: 

In 56.3 the intermediate triad L-groups will be used to obtain 

excision isomorphisms and Mayer-Vietoris exact sequences in 

Given a commutative square of rings 

let 

(m = 0 or 1) 

be a commutative square of *-invariant subgroups, that is a 

collection of *-invariant subqroups 

such that 

B B A X & Y  , B ' B ~ x S Y '  , A ' B B Y c X 1  , A ' B  B  , Y 1 c X '  . 



The Tate Z2-cohomology groups o f  K a* ( z ~ ; K )  ace defined by 

ker (dn:G+G) 
Fin(z2;~) = (n (mod 2) ) 

im(dntl :G+G) 

with 

l-(-)"T (-)"g -(-)"g' 0 

l+(-)"T 0 ( - 1  "f 

0 0 lt(-)"T (-)"f' 

0 0 0 l-(-)"T 

and are such that there is defined a commutative diagram of 

abelian groups with exact rows and columns 



Given two squares K ~ , K ~  such as K, with K ~ S  (i.e. such that 

X1c X2,Y1C Y2,YiC Y;,XjG X;), there are also defined relative 

Tate Z -cohomology groups 6*(Z2;~2/~1), which fit into an 2--- 

exact sequence 

. . . -+ i ln(~2:~1)- in(~2;~2)* i in(~2:~2/~1)  --+F"'1(~2;~1)-. . 
(n (mod 2)) . 

Given commutative squares @,K as above define the 

--- 1 ~-symmetr ic L,"(@&) 
intermediate triad L-groups (nf Z) 

c-quadrat ic L: (Q, E) 

in exactly the same way as the triad 

(which are the special case K = / 
E-symmetr ic 

but using only the ~oincar; triads over @ with 
€-quadratic 

K-theory in K. There are then intermediate versions of 

Propositions 6.1.1,6.1.2,6.1.3. 

Proposition 6.2.1 Given commutative squares 0,K1,K2 such that 

K ~ C  there is defined an exact sequence of intermediate 

E-symmetr ic 
triad L-groups 

E-quadratic 

Proof: By analogy with Proposition 1.10.1. 

l l 



In 5 6 . 3  below we shall prove that for certain @,K 

L:(@,E) = 0 
, thus obtaining a Mayer-Vietoris exact sequence 

L:(B,E) = o 

E-symmetr ic 
of intermediate L-qroups 

€-quadratic 

. . .+L;(A,E)AL;(B,E)~L;, (B*,E)-L:, (AI ,E) LL;-'(A,C)+. . . 
Y 3 X . . . - L ~ ( A , E ) - L ~ ( B , E ) ~ L ~ ' ( B * , E ) ~ L ~ ' ( A ~ , E ) - L ~ - ~ ( A , E ) +  n ... 

(n E Z )  . 
In every such case K will satisfy the following condition. 

The commutative square of *-invariant subgroups 

is cartesian if 

i) X contains the *-invariant subgroup 

ii) the Z [Z71 -module sequence 

is exact. 

The Tate Z2-cohomologygroups of such K are qiven by 

I 

In Proposition 6 . 2 . 2  below it will be shown that if @ 

is such that there is excision in the associated classical 

E-symmetr ic 
algebraic K-groups then the intermediate triad 

c-quadratic 



L : ( ~ , E )  
L-groups of cartesian squares K are in fact independel 

L: ( 9 .  c )  

of K. In particular, if it can be shown that for 

one such K then this is also the case for all other cartesian I 

Define *-invariant subgroups 

Define abelian group morphisms 

[PI e fiO(z ; I  1 
as follows. An element O is represented by a 

E.g. projective A-module P such that for some q&O there exist 

h:P-P* 
i) an A-module isomo-phism 

h : pep* A A ~ ~  

ii) a B-module isomorphism k : B B A p L B q  

iii) a B'-module isomorphism k' :BtBAP d B q q  . 

Let G* (Z2;d) be the relative groups appearing in the exact 

sequence 



The commutative square of rings with involution Q is 

c*-cartesian if - 

i) the commutative squares of *-invariant subgroups 

are cartesian 

ii) ~ * ( z ~ ; A )  = 0 . 
(See S6.3 below for examples of G*-cartesian squares @. 
In particular, if Q is such that there is defined an algebraic 

K-theory Mayer-Vietoris exact sequence 

then Q is l?*-cartesian) . 
Proposition 6.2.2 For an R*-cartesian square @ the intermedial 

I c-symmetr ic triad L-groups are such that there are natural €-quadratic 

identifications 

for any two cartes 

Proof: For a fixed 

ian squares K 1 1 K 2 '  

Q and a fixed m ( =  0 or 1) the set of 

km(~)--+",c~) 

cartesian squares K C  ( 1 -1 ) is partially ordered 
Km(B1)--*Km(A1) 

by inclusion, with minimal element 



and maximal element 3,. The Tate Z2-cohomology groups of any 

cartesian square K are such that 

A*-2 
~ * ( z ~ ; K )  = H (Z2;Im) = ;*(z 2;xm) t 

so that if*(z2;~/rm) = 0 and by the exact sequence of 

Proposition 6.2.1 there are natural identifications 

Thus for fixed @,m the intermediate triad L-groups are 

independent of K. 

In order to identify the intermediate triad L-groups for 

m = 0 with those for m = 1 consider the commutative diagram of 

abelian groups with exact rows and columns 
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in which fi*(z2;A) = 0 (by the hypothesis on $ ) .  It follows that 

The commutative square of rings with involution 4 

is cartesian if 

I L:(@,€) = 0 
ii) for some cartesian square K of *-invariant 

L;($,E) = o 

subgroups. 

L* - 
(See 56.3 below for examples of cartesian squares 4 ) .  

Proposition 6.2.3 Let 

be an L*-cartesian square of rings with involution. 

i) For any cartesian square of *-invariant subgroups 

there are defined excision isomorphisms o f  relativ~ intermediate 

E-symmetr ic L-groups 



and a Mayer-Vietoris exact sequence of the absolute intermediate 

in which the connecting maps :j are given by the composites 

i i )  For cartesian squares of *-invariant subgroups K 1 , ~ 2  

such that 

there is defined a commutative diagram of abelian groups with 

exact rows and columns 



iii) The Mayer-Vietoris exact sequences associated to the 

cartesian squares of *-invariant subgroups x0 and 3 intertwine 1 

in a commutative braid of exact sequences 

Similarly for L,-cartesian squares Q 



Proof: i) It is immediate from Proposition 6.2.1 that - 
L : ( @ , € )  = 0 , 

which is precisely the condition for there to be excision 

isomorphisms and a Mayer-Vietoris exact sequence in the 

intermediate E-symmetric L-groups associated to K, by the 

intermediate version of Proposition 6.1.1 ii). 

ii) The only parts of the diagram where commutativity is perhaps 

not quite obvious are those involving the connecting maps a .  

For those parts consider the more obviously commutative diagram 

in which the composites of the horizontal maps (inverting the 

excision isomorphisms (f',g)) are the connectinq maps a .  

iii) By analoqy with ii). 

[ l  

Madsen [2,4.111 makes use of a particular case of the 

naturality property of Proposition 6.2.3 ii), indicating a 

proof specific to that case. 



6.3 Cartesian 1,-theoz 

A commutative square of rings 

is cartesian if the sequence of abelian groups 

(3 (g -9') 
0 F A ------+ B@B ' -h A' ----+ 0 

is exact. 

The cartesian squares of rings with involution O for which 

we shall obtain excision in L-theory will be such that there 

is excision in the classical algebraic K-theory of the underlying 

cartesian square of rings, in the following sense. 

A cartesian square of rings @ is K,-cartesian if 

i) @ is cartesian 

ii) the natural map of relative K-groups 

is an isomorphism 

iii) the sequences of reduced algebraic K-groups 

are exact. (!or m = 0 this follows from ii)). 

In particular, for a K,-cartesian square @ there is defined a 

Mayer-Vietoris exact sequence of reduced alqebraic K-groups 



with the connecting map 3 given by 

A cartesian square of rings O with g:B-----cA' (or g1:B' 

onto is K,-cartesian, by Milnor [ 4 , § 4 1 .  The cartesian square 

associated to a cartesian morphism of rings and rnultiplicativ 

.. 
(e.g. (A,S)--+(A,S) with = &m A/sA) is K,-cartesian, by 

ses 

Karoubi [2,App.5] (cf. Proposition 3.1.3 i)) 

Let then O be a K,-cartesian square of rings as above 

Given 

i) a E.g. projective B-module P 

ii) a €.g. projective B'-module P' 

iii) an isomorphism of the induced f.g. projective A'-mod 

h : A'rn P - + A 1 r n B , P '  B 

there are defined 

i) the p u l l ! s k  € . q .  projective A-module 

(P,h,P1) = {(x,xi) f PBP'Ih(lBpx) = lPB,x' €A'@B,P') 

A x (P,h,P1) - l(P,h,P1) ; 

( a ,  ( x x -  + ( f  (a)x,f1(a)x') 



ii) an isomorphism of f.g. projective B-modules 

i : B I A ( P , h , P 1 ) d P  ; b8(x,x1)-bx 

iii) an isomorphism of E.g. projective B'-modules 

i' : BIIA(P,h,P')-P' ; b18(x,x')-b'x' 

such that there is defined a commutative diagram of 

E.g. projective A'-modules and isomorphisms 

The isomorphisms i,i' will be used to identify 

BPA(P,h,P8) = P , B1BA(P,h,P') = P' . 
The connecting map in the algebraic K-theory Mayer-Vietoris 

exact sequence of @ can be expressed in terms of the pullba< 

construction by 

a : E l ( ~ ~ )  -ZO(~) ; T(~:AI~+A+~)-I ( B ¶ , ~ , B I ~ )  1 

The pullback construction for modules extends to morphisms: 

if (P,h,P'),(Q,k,Q') are pullback f.g. projective A-modules 

there is defined a Mayer-Vietoris exact sequence of abelian 

groups 

O ~ H o m A ( ( P , h . P ' l ,  ( Q , k , Q ' l l + H o m B ( P t Q ) @ H o m B ,  (P1.Q') 

so that there is a natural identification 



HomA((P.h.P'),(Q,k,Q')) 

= ((e,e') EHomB(P,Q)BHomB, (P',Q1) 

I (1BB,eU)h = k(lBBe) €HornA, (A'C4BP,A'C4B,Q')] . 
Let now @ be a K,-cartesian square of rinqs with involution 

If (P,h,P' 

defined an 

(Pith*- 

(e,e 

is a pullback £.g. projective A-module there is 

isomorphism of f.g. projective A-modules 

,P1*)&(P,h,P')* ; 

)-((x,x')- (e(x),el (X')) 

€ ker((g -g1):BbB'-A') = A) 

which we shall use to identify 

(P,h,P1)* = (P*,h*-l,~'*) . 
It follows that the square 

is skew-commutative, that is 

*l  = - 3 *  , 

and hence that the abelian group isomorphisms 

3 : i?l(~l)/~l& Io 

induces isomorphisms in the TateZ2-cohomology groups 

: Z ;  ( A ) / J ~ ) ~ ~ ( ~ ; I )  ("(mod 2)) 

inverse to the natural maps 

A : fin-' (z2; I ~ ) - ~ ' ( Z  2;K1(A')/J1) - (n(mod 2 )  



defined in $6.2 above. Thus (z~:A) = 0, and O is h*-cartesian 

in the sense of S6.2. 

The first step in provinq that a K,-cartesian square of 

L* - 
rings with involution O is cartesian in the sense of S6.2 

would be to extend the pullback construction of f.q. projective 

E-symmetric 
A-modules to Forms and formations over A .  

[c-quadratic 

Unfortunately, such an extension is not always possible. We shall 

now inv~stiqate the extent to which such an extension is in fact 

possible, in the first instance by considering the behaviour 

under pullback of the various Q-groups used to define forms 

in 51.6 above. 

Let O be a K,-cartesian square of rings with involution, 

and let (P,h,P1) be a pullback f.g. projective A-module. 

The split E-quadratic Q-group 

6,((p.h,P1)) = HomA((P,h,P'), (P,h,P1)*) 

fits into an exact sequence 

0 ----ta,((~,h,~'))----+G, (P)@~,(P')-~,(A'B~P)-+O , 

which is in fact an exact sequence of Z[Z2]-modules with T € Z 2  

acting by the €-duality involution T,:+c--'E$* on each 0-qroup. 

Thus the pullback construction of modules qeneralizes to split 

€-quadratic forms, as detailed further below. The E-symmetric 

and €-quadratic Q-groups 

are such that there is defined an exact sequence 



O-Q'((P,~,P~)) --+Q~(P)$Q'(P~)-------,Q~(A~B~P) 

7 - .- +Q ((P,~,P'))---+Q~(P)@Q~(P')-----+Q~(A~P~P)+ 

with the connecting map 2 given by 

a : Q'(A'B~P)---~Q~((P,~.P*)) ; 4' €4;' $B, - E$;,) 

expressing 4' as 

Q' = l@@, - h*(l@,,@,,)h F QE(A'aBp) 

for some € i jE (P) , $B, € QC (P') . The even €-symmetric Q-group 

Q < v ~ > ~ ( P )  = i m ( l + ~ ~ : a ~ ( p ) - - - + " Q ~ ( ~ ) )  

is such that there is defined an exact sequence 

o-+($€ QE( (Prh,P1)) I@(x) (X) € im(;:fl'(~~;A',E) 3fi0(7L2;A,~)) 

for all X €  (P,h,P1)) 

- Q ( V ~ > ~ ( P ) ~ Q < V ~ ~ ~ ( P ~ ) - Q < V ~ ~ ~ ( A ~ B ~ P ) - - - - + O  . 
Thus the pullback construction generalizes to €-symmetric forms, 

as detailed further below, but not necessarily to even 

E-symmetric and E-quadratic forms. However, if 

2 = o : ~ 0 ( z , ; ~ o , ~ ) - + f 1 1 ( z 2 ; ~ r ~ )  then 

7 = o : Q'(AQB~P)-+Q~((P,~,P')) 

and there are defined short exact sequences 

O - - - , Q ~ ( ( P , ~ , P ~ ) ) ~ Q ~ ( P ) B Q ~ ( P ~ ) ~ Q ~ ( A ~ ~ ~ P  

0--- Q ((P,h,P1))--+QE(P)BQE(P9) -+ Qc(A1BBP 

o----,Q(v~)-~((P,~,P*)) - - - ~ Q < v ~ > - ~ ( P ) $ Q < v ~ > - ~ ( P ~ )  

-E 
-----tQ<v0> (A'BBP)--+O , 

so that the pullhack construction qeneralizes to c-quadratic 



and even (-c)-symmetric Forms. 

for the K,-cartesian "arithmet 

ring with involution A 

In particular, this is the case 

ic" square associated to a 

since A*(Z~;~&~A,E) = 0 (on account of 1/2 8 6) - the L-theory 

of such cartesian squares was first studied by Wall [8],[9] as 

part of his programme for computing the quadratic L-groups 

L,(Z[n]) of finite groups n. (For torsion-free A ,  such as 

A = Z[nl for any group n, this is a localization-completion 

square as in S3.1, with S = Z-{OICA) . On the other hand, the 

K,-cartesian square of rings with involution 

defined by = T € 22[z2] and 

e* : Z[Z2] --4 iZ ; a+bT c+ atb 

p = projection : Z------tZ 2 

is such that there is no pullback construction for skew-quadri 

forms, since the connecting map 

a : ~ ~ ~ ~ r ~ m ~ ~ ~ ~ ~ ~ ~ . ~ . r ~ ~  = R~-Q-~~~z.~.zz)) = r, 

((Z,l,Z) = ZfZ21 

is non-trivial. (For this ~xamplr I am indehted to #.Pardon). 



Given 

an c-symmetric 
i )  { i (M, $ F  Q ~ ( M ) )  

form over B 
a split €-quadratic (M, $F ijE(~)) 

an €-symmetric (M', 4 '  f Q€(M')) 
ii) form over B' 

a split €-quadratic (M'. 6 '  f a E ( ~ ' )  ) 

E-symmetr ic 
i i i )  an isomorphism o f  t h e  induced 

split €-quadratic 

forms over A' 

E-symmetric 
there is defined a pullback form over A 

split €-quadratic 



Given 

an E-symmetr ic (M,$:F.G) 
i) \ formation over B 

a split E-quadratic (F, ( ( ; l  ,@)G) 

an E-symmetr ic (Mt,$';F',G'1 
ii) formation over B' 

a split €-quadratic 

E-symmetric 
iii) an isomorphism of the induced 

split €-quadratic 

formations over A '  

E-symmetr ic 
there is defined a pullback formation over A 

split &-quadratic 

with $,€ HomB(F*,F), $B, € HornB, (F1*,F') such that 

- 1 *-l 
$ = l @ b B - a  (l@dB,)a €Q_,(A'BBF*) 

and xB € HomB(G,G*), xB, € HornB, (G' ,G'*) such that 

B*(lBB,B')6 - 1BB8 - ( l B B ~ * ) $ ( l @ B N € Q - E ( A ' @ B G )  . 
There are natural identifications 



Proposition 6.3.1 Given a cartesian square of rings with invol 

let K be a cartesian square of *-invariant subgroups 

If either i), q : B - A '  is onto 

or ii), Q is the cartesian square 

associated to a cartesian morphism of rings with involution ar 

multiplicative subsets 

( A , S )  ----+(BST) 

then @ is L,-cartesian 

L : ( @ , C )  = 0 r 



and there is defined a Mayer-Vietocis exact sequence of 

intermediate E-quadratic L-groups 

a 
-h ( A ,  c) -. . . 

Define also the conditions 

i)* = the maps g:B-A', gl:B'---+A' and 

-0 (Z~;B,E)&H -0 (Z~;A#,C), 9 ' : ~  -0 (z2;~*.~)--'fi0(z2;~ 

are all onto 

ii)* = ii), and also 

-0 - 1 8 = o : H (ZZ~;T B,E)---+R~(Z~;A,~) . 

Then if holds 8 is 
ii)* 

I such that L:(@,c) = 0 (n rC 1) 

and for there is defined a Mayer-Vietoris exact seque 

of intermediate E-symmetric L-groups 



proof: i) Consider first the special case 

Assuming condition we shall now define morphisms of 

E-symmetric 
L-groups 

€-quadratic 

5 n,c l 
for satisfying the hypotheses of the appropriate 

) n e z  
C 

intermediate version of Proposition 6.1.3, thus obtaining the 

E-symmetric 
intermediate L-theory Mayer-Vietoris exact sequence 

E-quadratic 

in the special case K = T 
0' 

i VO(A~,€) Every element of is represented by a non 
VO(A1,E) 

E-symmetr ic € Q ~ ( A ' ~ )  
form over A' of the type 

E-quadra t ic (Atq, ~ l '  I? QE(Aqq) 

and g : ~ 0 ( ~ 2 ; ~ ,  E)-~~(z~;A',c) is onto 
As ¶:B--*A' is onto I - 

i E-symmetric (Bq,@ f (Bq)) 
there exists an form over B 

E-quadratic (Bq,$ E: QE ( B ~ )  1 



such that 

In the c-quadratic case define 

and let ((Bq) *,X 8 Q C (  (Bq)*)) be an c-quadratic form over B such 

that 

((ngq)*,x*) = A ~ B ~ ( ( B ~ ) * , x )  . 
even ( - E )  -symmetr ic 

Use the isomorphism of non-singular 
split (-E) -quadratic 

formations over A' 

-even (-E) -symmetr ic 
to define a pullback non-sinqular 

split ( - F )  -quadratic 

formation over A 



1 (1- (x+Ex*) (*+E**) ,O) 
= ( ( B ~ , L B ~ ~ ) ,  ( 

($+E$*, 1) 

+-(++E+*) X($+€+*) ( B ~ , ~ J ~ + E ~ ~ * , B #  

( ( B ~ , ~ , B I ~ )  = ~ q )  

with projective class 

[G] - [F*] = [(B',@',B'~)] - [A'] 

(where @ '  = $ '  +E$'* in the E-quadratic case). The isomorphi 

even (-E) -symmetric 
of non-singular formations over B 

split ( - E )  -quadratic 

can now be used to define an abelian group morphism 

The construction of 6 in the (-€)-quadratic case also gives 

abelian group morphism 

where (H (.Aq) ;Aq,G) is the non-singular €-quadratic formatiol 



vl(~l,E) 
Every element of is represented by a non-si 

V1(A',€) 

E-symmetr ic 
formation over A' of the type 

E-quadratic 

(H'((A'~)*,s') ; A ' ~ , ~ ( A # ~ ) )  isomorphism 
(q) 0) for some 

(H,(\") ;A'~,cI(A'~)) automorphism 

c-symmetric forms 
of 1: standard hyperbolic over A, 

split c-quadratic form 

by Proposition 1.6.2. In the c-symmetric case we have that 

maps g:B---+A1, g : f i 0 ( ~ 2 ; ~ , c ) - f i 0 ( ~ 2 ; ~ ' , ~ )  are onto, so 1 

there exists an €-symmetric form over B ((Bq) *,C € QE ( (Bq)*: 

such that 

furthermore, the maps g' :B'---*A',gq :fi0(~2;~',~)-fi0(~2 

are onto, so that there also exists an c-symmetric form ovt 

( (B")*,c E Q' ( (Bgq)*)) such that 

((A'q)*,<') = A'@B, ((Btq)*,c) . 
€-symmetric 

The pullback non-singular form over A 
split €-quadratic 

has projective class 

[M] = J T ( ~ : A ' ~ @ ( A ' ~ ) * ~ A ' ~ B ( A ~ ~ ) * )  € X = I ciT 0- 0 



E-symmetr ic 
Use the isomorphism of non-singular forms over B 

E-quadratic 

to define an abelian group morphism 

The construction of 2 in the (-€)-quadratic case also gives 
an abelian qroup morphism 

with a:H-€ (A") --J--* H-' (A") an automorphism of a standard 

hyperbolic even (-€)-symmetric form over A '  and 

(M,$-€$*) = (gq) ,,,H-~ (B'~)) 

the pullback non-singular even (-€)-symmetric form over A. 

even (-E) -symmetric 
formation over B' of the type 

split (-E)-quadratic 

(with G = B t q  as a B'-module) together with 

E-symmetr ic ( A ' ~ , @ ~  €Q€(A'~) 
form over A' of the type 

€-quadratic (A'~,J,' € Q,(A'~) 



even (-E) -symmetric 
and an isomorphism of formations over A' 

split (-€)-quadratic 

(89, + E Q€ ( B ~ )  E-symmetr ic 
Let be an 1 form over B such that 

(Bq, 6 € (Bq)) E-quadratic 

reven (-E) -symmetr ic 
Use the pullback construction of 

/split (-c)-quadratic 

formations over A to define an abelian group morphism 

and define similarly 

((H, (Btq) ;Bgq,G), (A",~'-E$'*), 

~:~(A'~,$'-EQ'*)-+ A ' B  (Hc(Blq) ;Boq,~)) B' 

using the pullback construction for E-quadratic formations over A 

vl(q',c) 
An element of is rppreseqted by a non-sinqular 

Vl (q"c) 

c-symmetric ( B ' ~ , $  € @ F  (,lq)) 
form over P' O F  the type 

split c-quadratic (nqq,$ € aE (Bsq)) 



E-symmetric 
together with an isomorphism of forms 

split  quadratic 

over A' 

h : H ~ ( ( A * ~ ) * , ~ + )  -=+AIB~< ( B V ~ , + )  BH'((A~~)*,c,~) 
(2P = 

(hvx) : ii ( A I ~ )  2-+~1t+B, (BQ~,,) B a E ( ~ l r )  . i c 

In the c-symmetric case let ((BP) *,S € Q'( (BP) * ) )  be an 

E-symmetric form over B such that 

((A*~)*,C') = A ~ B ~ ( ( B ~ ) * , S )  , 

and let ((B'~)*,<€ Q~((B'~)*)) be an E-symmetric form over B' 

such that 

( ( ~ * ~ ) * , i ' )  = A ' B ~ ,  ((B'~)*,s) 

i 
E-symmetric 

Use the pullback construction of forms 
split €-quadratic 

over A to define an abelian group morphism 

l 
0 8 : V ~ ( ~ ' , E ) L U ~ ( A , E )  ; 

( ( ~ ' ~ , + ) , h ) t - - - - r ( ~ ~ ( ( B ~ ) * , 5 )  ,h, (B'~,+)BH~((B'~)*,<)~ 

? : v l ( g q , ~ ) - - u ~ ( ~ , ~ )  ; 

( ( B U ~ , ~ ) ,  m,x))t--+(EEmP), (h,~), ( B ~ ~ , + ) B E ~ ( B ~ ~ ) )  , 

and define similarly 

: v-l(g~,c) = V(VJ l(qs,-~)+uX - 2 (A,€) = u(v~)~(A,-E) o ; 

( (B#~,+-C$*) , h : ~ - €  (ASP) a A' B ~ ,  (B*~,+-E+*) B H - ~  (AI' 

+--+(H-€ ( B ~ )  ,h, ( B ~ ~ , $ - E ~ * ) B H - ~  ( ~ 1 ~ )  ) 

using the pullback construction of even (-E)-symmetric forms 

over A. 



Having defined maps 

satisfying the hypotheses of the appropriate intermediate ver 

of Proposition 6.1.3 we have from its conclusion that the nat 

E-symmetr ic 
maps of relative intermediate L-groups 

€-quadratic 

for K = X O ,  and hence by Proposition 6.2.2 also for any othe~ 

cartesian square of *-invariant subgroups K ,  giving rise to 

c-symmetr 
the Mayer-Vietoris exact sequence of intermediate 

c-quadrat 

In order to extend the E-symmetric sequence to the left by a 



it suffices by Proposition 6.1.3 to prove that the map 

is an isomorphism for any cartesian square K. For K =IO this 

has already been done above, and the construction of the maps 

6,6 used to do this extends to the case K = rl, so that 

(€',g) is an isomorphism for K = xlalso. Any other cartesian 

square K is such that Kzrm (m = 0 or l), and applying the 

5-lemma to the morphism of exact sequences 

it is clear that the middle (€',g) is also an isomorphism. 

ii) Excision isomorphisms and a Mayer-Vietoris exact 

€-symmetric 
sequence for the intermediate L-groups associated 

€-quadratic 

to a cartesian square of rings with involution 

ii) * 
satisfying condition have a 

ii), 

Proposition 3.6.3 i), in the spec 

square of *-invariant subqroups 

lready been obtained in 

ial case of the cartesian 



Thus @ is cartesian in the sense of 56.2, and there are 

defined excision isomorphisms and a Mayer-Vietoris exact 

sequence for any cartesian square of *-invariant subgroups K ,  

by Proposition 6.2.3. 

I l 

It is possible to give an alternative proof of the 

L-theory Mayer-Vietoris exact sequence of Proposition 6.3.1 ii) 

(the localization-completion case) which avoids the localization 

exact sequence of 53, and is closer in spirit to the proof 

of the Mayer-Vietoris sequences of Proposition 6.3.1 i) 

(the case of a cartesian square O with q:B--+A' onto) 

involving the explicit construction of the maps 6 , 6  for K = TO. 

The main idea here is that even though neither B-T-~B nor 

s-~A-T-~B is onto for every X €  T-'B there exists t € T 

I 

E-symmetr ic 
such that txf ~ ~ ( B - + T - ~ B ) ,  so that every 

c-quadratic 

(T-'B~,@I E Q'(T-'B~) ) 
form over T - ~ B  of the type is isomorphic 

O '  € Q~ (T-'"") ) 



E-symmetric 
to the form induced over T-'B from an form over 

€-quadratic 

(Bq,$ f Q' (8') 
of the type via an isomorphism 

(gq, J, QE (Bq) ) 

for some T-isomorphism t € HomB (Bq,Bq) (e.g. multiplication 01 

the right by an element t€T), and similarly for higher-dime1 

I E-symmetr ic complexes over T-'B. Indeed, such was the orig 
c-quadratic 

approach adopted by Wall [8] in his work on the quadratic L- 

of arithmetic squares. 

We refer to Madsen rl,p.249] for an application of the 

Mayer-Vietoris exact sequence of Proposition 6.3.1 i), to a 

proof of Theorem 13A.4 iii) of Wall 141, that for a finite 

the inclusion i:Z-Z[n] is onto. For another application 

see Cappell and Shaneson [41. 



6.4 Ideal L-theory 

ional 

a1 

eor y 

Given a ring A and a two-sided ideal I a A  define the 

double of A along I D(A,I) to be the ring consisting of ord 

pairs (a,b) of elements a,b€A such that 

a -  b e  I 4 A .  

with addition and multiplication by 

(a,b) + (al,b') = (a+a',b+bt) € D(A,I) 

(a,b) (al,b') = (aal,bb') € D(A,I) 

((a,b), (al,b') € D(A,I), aa' - bb' = (a-b)a' t b(a'-b') € I  

exactly as in Milnor [ 4 , S 4 1 .  There is defined a cartesian S 

of rings 

with 

f : D(A,I)----A ; (a,b)- a 

f' : D(A,I)-A' ; (a,b)-b 

g = g' = projection : A-A/I . 
The diagonal map 

A : A-D(A,I) ; at-(a,a) 

is a ring morphism such that 

f A = l :  A A A .  

Thus the relative K-groups of ( A , I )  K ( A , I )  ( m  = 0.1) defin 

Km(A,I) = ker (f :Km(D(A,I) )-Km(A)) 

are such that there are natural identifications 



by the excision property of Milnor [ 4 , § 4 ] ,  with an exact sequence 

- - - + K O ( A , I ) - - - - + K O ( A ) - K o ( A / I )  . 
There is also defined a cartesian square of rings 

where 1' ZcBI is the ring with addition and multiplication by 

(n,i) + (nn,i') = (n+nq,i+i') f 1' 

(n.i) (n',il) = (nn',ni1 t n'i + ii') € I' 

(n,nS € t , i,i' €1) 

and 

F : I ; ~~~~~~n 
F' : 1'-A ; ( n , i ) u n l A +  i 

G : Z -A/I ; n ~-,nl 
A/I 

G' = projection : A-A/I . 
The inclusion 

d : z---- I' ; n---+(n,~) 

is such that 

Fd = l : t - Z .  

Thus the algebraic K-groups of I K (I) (m = 0,l) defined by 

K,(I) = i7, , , (1+) = K,,~(F:I+--+Z) 

are such that 



The natural map 

(F',G) : K1(F) = KO(I)--+K1(G1) = KO(A,I) 

is an isomorphism by the excision property of classical 

algebraic K-theory, cf. Bass [2,IX.1.2]. Swan (11 has 

constructed examples of pairs (A,I) for whlch the natural 

map 

(F1,G) : K2(F) = K1(I)--K2(G') = K1(A,I) 

is not an isomorphism, so that excision fails in higher 

algebraic K-theory. 

We shall now investigate analogous results in algebraic 

L-theory. Roughly speaking, the 4-periodicity of the €-quadratic 

L-groups L,(A,c) = L,+4(A,~) of a ring with involution A keeps 

them sufficiently close to being the L-theory analogues of 

the classical algebraic K-groups KO(A),K1(A) for there to he 

excision with respect to the involution-invariant ideals I of A, 

as will be shown in Proposition 6.4.1 below. The E-symmetric 

L-groups L * ( A , c )  are closer in spirit to the higher algebraic 

K,(A), and in Proposition 6.4.2 we shall qive an example of 

the failure of excision in c-symmetric L-theory. 

Let then A be a ring with involution. A two-sided ideal 

1 4  A is invariant if 
- 
I = I q A  , 

that is i €  I for each i €  I. The double D(A,I) is then a ring 

with involution 
- 

: D[A,I)-D(A,I) ; (a,b)+---+(5,6) , 

and 1' is a ring with involution 



- + 
: I ----I+ ; (n,i)- (n,T) , 

so that the cartesian squares and @l defined above are in 

fact cartesian squares of rings with involution. Define the 

E-symmetr ic 
L-groups of (A, I) 

E-quadratic 

The diagonal map A:A+D(A,I);a+-+(a,a) is a morphism of 

rings with involution such that € A =  l:A-----A, so that there 

are natural identifications 

L-symmetr ic 
For E = +l define the L-groups of I 

€-quadratic 

so that there are natural identifications 

Pr-ition 6.4.1 Given a ring with involution A and an - 

invariant ideal I 4  A let 

IF ii0(z2;~,c) --+~~O(Z~;A/I,E) is onto 
there are natural 

For all A , I , E  

identifications 



E-syrnmetr ic 
and there is defined an exact sequence of [ L-g r 

LE-quadratic 

Furthermore, in the €-quadratic case for E = tl the 

natural identifications 

Ln(A,I,c) = Ln(I,c) ( n e Z )  

and the exact sequence can be written as 

.. .-L~(I,c)-L~(A,E) +L:(A/I,E)-L~-~(I,€I-. 

proof: Immediate from Proposition 6.3.1 i) applied to QI ar - 

In particular, for the ideal (2) = 2Z4Zthere are 

defined isomorphisms of rings with involution 

(the involution being the identity in each case), so that I 

cartesian squares O  ( 2 ) ,  O f 2 ,  may be identified with the cal 

square 



previously defined in 96.3. It follows that for E = +l there 

E-symmetr ic 
are natural identifications of L-groups 

€-quadratic 

skew-symmetr ic 
Let us write the L-groups of a ring with 

skew-quadratic 

involution A as 

Proposition 6.4.2 Excision fails for the E-symmetric L-theory 

ZIZ~I-Z 

of the cartesian square 1 4 1  with E = -1, since 

z -------4 Z 2  

There is no Mayer-Vietoris exact sequence of E-symmetric L-groups 

s ince 

-0 -- 1 iO(z)= 0 ,  L (Z2)= Z 2 '  L (2Z[iZ21) = 0 .  

Proof: As o ~ ( z ~ : z [ z ~ ~ , - ~ )  = 0 Proposition 1.8.1 identifies 

The Mayer-Vietoris exact sequence of quadratic L-groups given 

by Proposition 6.3.1 i), 



shows that L1(Z[Z2]) = 0 ,  since L2(Z) = L2(Z2) = Z2 , 

L1(Z) = 0 by Proposition 4.3.1. 

1 1  

Anticipating the splitting theorem 

V"(AIZ,Z-~],E) = v~(A,E)ou"-'(A,E) (ne Z, Z =  z-l) 

conjectured in SI.10 and mentioned in the introduction to S 7  below 

it is possible to extend the failure of excision given by 

Proposition 6.4.2 to the higher-dimensional z-symmetric L-groups, 

as follows. For each k 30 let @k be the cartesian square of 

rings with involution 

Then 



S7. The algebraic theory of codimension q surgery 

The Browder-Novikov-Sullivan-Wall surgery theory of 

topological manifold structures on geometric poincar; complexes 

was reformulated in Ranicki 171 in terms of the algebraic 

poincar; complex theory of I.,II. and the algebraic theory 

of surgery classifying spaces. This reformulation is recalled 

in S7.1, and in 57.2 it is extended to the Browder-Wall 

surgery theory of topological (manifold, codimension q 

submanifold) structures on qeometric poincar; (complex, 

codimension q subcomplex) pairs, with q 8 l .  In 57.3 the 

quadratic construction on a stable map F:L~x---+c~Y of SI.l 

is refined to a "spectral quadratic construction" $F on a 

"semi-stable" map F:E=X-Y (i.e. a map oE spectra with 

domain a suspension spectrum), for use in S7.4 and beyond. 

In S7.4 we recall and expand the expression due to Quinn 

of geometric codimension q surgery obstruction theory in 

terms of qeometric poincar6 splittings. The theory is then 

expressed in terms of algebraic Poincar6 splittings in S7.5. 

The algebraic theory of codimension 1 surgery is developed 

in S7.6. In S7.7 our methods are extended to surgery with 

coefficients, such as the Cappell-Shaneson homology surgery 

obstruction theory. This extension is needed for the algebraic 

theory of codimension 2 surgery developed in S7.8. Finally, 

in 57.9 we outline the algebraic theory of knot cobordism 

(the origin of codimension 2 surgery), giving various 

algebraic characterizations of the high-dimensional knot 

cobordism groups C,. 



As noted in the Introduction S7 is only a preliminary 

account of the algebraic theory of codimension q surgery, 

just as Ranicki (71 is only a preliminary account of the 

total surgery obstruction theory, the full account of both 

to appear as Ranicki [11],[121. In particular, Ranicki Ill] 

will carry out the programme set out in S7.5 for the algebraic 

derivation of codimension q splitting theorems for manifolds, 

such as those of Cappell [il (16 i < 9) for q = 1, by proving 

codimension q splitting theorems for quadratic Poincar6 comple 

The algebraic methods should also apply to the symmetric 

L-groups. For example, the splitting theorem for the quadratic 

- 1 - 1 L-groups of the Laurent extension A[z,z 1 (; = z ) of 

Shaneson [l], Novikov [l] and Ranicki [2] 

-1 
Vn(Alz.z l )  = Vn(A)@Un-,(A) (n€ z) 

should be extended to the splitting theorem for the symmetric 

L-groups conjectured in SI.10 

- 1 vn(~[z,z 1 )  = v"(A)Bu"-~(A) (nf Z) . 



7.1 The total surgery obstruction 

We shall now recall the total surgery obstruction theory 

of Ranicki 171, at the same time extending it to geometric 

poincar; complexes which may be disconnected and/or 

nonorientable. Such complexes arise naturally in codimension q 

surgery obstruction theory, particularly for q = 1. In the 

first instance, we develop some terminology with wnich to 

handle such complexes. 

Given a topological space X with a finite number of 

path-components X1,X2, . . . ,  X, define the fundamental groupoid 

of n (X) to be the disjoint union of the fundamental groups 
1 

of the path-components 

(In dealing with fundamental groups and groupoids we can 

afford to neglect the effects of the choice of basepoints, 

since all the alqebraic L-functors of groups are such that 

inner automorphisms induce the identity, cf. Taylor 121 for 

the quadratic L-qroups). An algebraic ~oincar; complex 

over Z[n (X)] X is defined to be a collection (xi(16 is  m] 1-- 

of algebraic Poincarg complexes over Z[n (X )I X .  1 i 1' 

symmetric L* ( z  Inl (X) 1 )  
The 1 L-groups of iZ[nl(X)] are the 

quadratic I,, ( z  Inl (X) l) 

symmetr ic 
cobordism groups of ~oincar6 complexes over Z[nl(X)l, 

quadratic 

and are such that 



If 
geometric Poincare complex 

is an n-dimensional 
(f,b) : M - - + X  

symmetr ic 
the [ signature 

quadratic 

is defined exact1.y as in S1.2, with components 

( (o*(xi) E L " I Z I I ~ I X ~ ) I )  / l <  ic m] 

( {o*((fi,bi) = (f,b) 1 : M i =  f - l ( ~ i ) d x i l  f +.,(Z["~(X~) ])/l$ i$ m] . 
(The inverse images Mi = f-l(Xi)S M of the path components X. 

of X need not be connected, cf. Ranicki 181). 

In order to deal with nonorientable geometric Poincar; 

complexes we define generalized homology groups with twisted 

coefficients in the following manner. 

Let (X,w) be a pair consisting of a topological space X 

and an orientation double covering 
- 

W : X ---j X , 

which is classified by a map 

W : ll1(X)----7Z. = [?l] 
I L 



which is equipped with an orientation-reversing involution 

. M + y .  

-------- i cohomology The W-twisted M-coefficient groups of X are define1 
homology 

In particular, for the EilenbergLMacLane spectrum of Z 

with the orientation-reversing involution T:K--K induced by 

cohomology 
the W-twisted K-coefficient groups of X are the 

homology 

I cohomology W-twisted integral groups of X 
homology 

where 22- denotes the Z[Z2]-module with additive group Z 

and Z2 actinq by T. 

An n-dimensional geometric Poincar; complex X has a 

fundamental class [XI € Hn (X,w) ( =" z m ) ,  with orientat ion map 

W = W(X) : n (X)-+ZZ. Let -X denote the geometric ~ o i n c a r E  

complex with the same underlying CW complex, but with 

fundamental class 

Homotopy equ~valences of geometric ~ o i n c a r 6  compl~xes 

F : X  .X' 



are required to be orientation-preserving, with 

f,([Xl) = [X'] € Hn(X1,w') . 
Every compact n-dimensional topoloqical manifold M is to he 

equipped with a fundamental class [M] € Hn (M,w (M) ) , so that 

it has the structure of a simple n-dimensional geometric 

poincar; complex. 

Given a pair (X,w:i-----t~) let ifToP(~,w) denote the 

bordism group of maps f:M-X from compact n-dimensional 

topological manifolds M for which the orientation map 

factors as 

Then if the spectrum 

MSTOP = IMSTOP(~) ,ZMSTOP(~)-MSTOP(~+~) Ik> 01 

of the Thorn spaces T(lk) = MSTOP(k) of the universal oriented 

topological k-disc bundles lk:BSTOP(k)-RSTOP(k) is given 

the orientation-reversing involution 

T :  F W M S T o p  

induced by the oppositely oriented bundles -lk:BSTOP(k)-BST 

there are natural identifications 

nSTOP (X,w) = H,,(X,w;MSTop) (n # 4) . 
These follow from the identification 

- 
X+AzZMSTOP(k) = T(qk) 

with T(qk) the Thorn space of the topolog ical bundle nk 

classified by the map ok appearinq in the homotopy-th~oretic 

pullback diagram 



and topological transversality in dimensions # 4 
- 

The paic (X,w:X -+ X) is untwisted if E = X u  Y. is the 

trivial double coverinq of X, that is w(g) = +l for each 

g €  nl(X), in which case the W-twisted &coefficient 

cohomology 
qroups of X are just the usual M-coefficient 

hornoloqy 

cohomology 
groups of X 

hornoloqy 

k- k [ Hnix.*;~) = L A  li X+,Mntkl, = L* li X+.Mn+kI = Hn(x;y) 
k 2 k 

cohomology 
and the W-twisted integral \ groups are just the 

[homology 

j cohomo logy 
usual integral, groups 

j homology 

\H~(X,W) = H ("0" Iz21 (C(?) .z-) I = H ~ ~ H o ~ ,  (CIX) ,l) = H"(XI 

- 
Hn(X,w) = Hn(z t4zIz21 C ( ? ) )  = H,(C(X)) = Hn(X) . 

The topological bordism groups of (X,w) are just the usual 

oriented topological bordism groups of X 

STOP STOP P,, (x,w) = n (X) 

( = Hn (X;-) for n # 4) 



From now on we shal 

to W in dealing with W-tw 

1 suppress the explicit reference 

cohomology 
isted qroups, writing 

homology 

H* (X;MI 
, the contributions of the orientation 

H ,  (X;!) 

covering w:~-x and the orientation-reversing involution 

T:M---+M being understood. 

An s-triangulation of a simple n-dimensional qeometric 

Poincar6 complex X is a simple hornotopy equivalence 

f : M--X 

From a compact n-dimensional topological manifold M. 

A concordance of S-triangulations € : M - - > x , ~ ' : M ' ~ x  

is a simple homotopy equlvalence of triads 

(g;€,€') : (N;M,M1)-(x x I;X xO,X X l) ( I  = [O,l]) 

from a compact (n+l)-dimensional topological manifold triad 

(N;M,M1). The topological manifold structure set 5T0P(~) of 

a simple n-dimensional geometric Poincar6 complex X is the 

set (possibly empty) of concordance classes of S-triangulations 

f:M+X. For n 2 5 the concordance of S-triangulations is 

also the equivalence relation defined by 

( € : M A  X) - (f0:M' ---+ X) 

if there exist a homeomorphism h : M t M 1  

and a homotnpy q : F =  €'h : M-------+X 

TOP by the topological S-cobordism theorem, so that .g (X) is 

the topologjcal manifold structure set of X in the sense of 

Sullivan [l] and Wall 14,§101 



An h.-trianqulati~ of a finite n-dimensional geometric 

Poincar6 complex X is a homotopy equivalence 

f : M  - + X  

from a compact n-dimensional topological manifold M. Concordancc 

of h-triangulations is defined as for S-triangulations, but 

using a homotopy equivalence of triads instead of a simple 

homotopy equivalence. 

For the sake of the above application of the s-cobordism 

theorem we shall be primarily concerned with the S-triangulatior 

theory of simple qeometric Poincar6 complexes. Accordingly, 

we shall be dealing with the simple quadratic L-groups of 

group rinqs 

( n l ~ K ~ ( ~ l n 1 )  
~s(n,w) = V, (Zlnl) 

originally defined by Wall 141 using based ZInI-modules, 

simple isomorphisms (with T = 0 f Wh(n) = Rl(~[n])/{n]) and 

the W-twisted involution on Z[n] for some orientation map 

w:n- z2.  From now on L,(Zlnl) will stand for the simple 

L-groups L: (n, W) rather than the projective L-groups 

~$(n,w) = U,(Z[n]) as heretofore, which will be denoted by 

h 
L:(Z[~]). The free L-groups L,(n,w) = V,(Zlnl) are denoted by 

h 
L,(Zfnl). 

The S-trianqulation theory developed here has of course 

its counterpart in a parallel theory for the h-triangulation 

h 
of finite geometric Poincarg complexes, involvinq L,(Z[nl). 

(Define a p-triangulation of a finitely dominated n-dimensional 

geometric Poincar6 complex X to be an h-triangulation of the 
1 

finite (nt1)-dimensional qeometric ~oincar6 complex X x S . 



Following Pedersen and Ranicki [l] there is also a parallel 

theory for the p-tr iangulation of finitely dominated geometric 

~oincar6 complexes, involving L: (Z 1111 ) . 
From now on geometric Poincar; complexes are to be taker 

as simple (unless specified otherwise), and manifolds are to 

be taken as compact, topological and triangulable. Similarly 

for geometric Poincar6 pairs and manifolds with boundary. 

As in Ranicki 171 let 4 ILO denote the spectrum of 

(symmetric 

{ quadratic Poincarg n-ads over Z w i t h  homotopy 

groups 

and such that there is defined a fibration sequence 

(There are defined algebraic U-spectra for any ring with 

involution A ,  using algebraic Poincar6 n-ads over A ,  but only 

the case A 9 Zneed concern us here. The general theory will 

be developed in Ranicki 1121). 



For any space X equipped with an orientation double 

covering W:%----+X there are defined assembly maps 

where the homology groups are defined usinq W-twisted coefficients 

and the L-qroups are defined using the W-twisted involution 

on the group ring Zlnl(X)1. The assembly maps fit together 

to define a natural transformation of exact sequences 

with n = nl(X). (The hyperquadratic L-groups C * ( A )  were defined in 52.1 

The n-ad version of the Browder-Novikov transversality 

construction of topological normal maps combined with the 

n-ad version of the quadratic kernel construction of 1 1 .  and 

the computation 

nn (G/TOP) = Ln(Z) ( n  > l) 
give a canonical homotopy equivalence 

G/TOP &+ LO 
with IL the 0th space of the R-spectrum ILO = Qa-k-ll k 3 0). 0 

In fact, the quadratic L-spectrum is homotopy equivalent 

to the 0-connective cover of the Quinn [l] spectrum of 

simply-connected surgery problems ( =  topological normal maps 



of n-ads (f,b):M-------+X with nl(X) = (l)), corresponding to 

the infinite loop space structure of G/TOP qiven by the 

Sullivan characteristic variety addition. The quadratic 

assembly map o+:H+ (X;KO) -4 L +  (;Z [nl (X) l) is the algebraic 

version of the geometric assembly map of Quinn 121- 

Given a (k-l)-spherical fibration 5:X------rRG(k) over a 

space X let F---+ X be the orientation double covering 

classified by wl([) & H~(x;z~), SO that 5 lifts tq a Z2-equivariant 

map 5:x---+BSG(k) classifying an oriented (k-l)-spherical 

fibration over 2. We shall consider spherical fibrations 5 

to be equipped with a choice of lift c, letting -F denote 

the same fibration with the other choice of lift. The base 

space X will always be taken to be a finitely dominated CW complex. 

,-Rjtll j 2 0) be a ring spectrum, Let R = (R.,ZR. 
l 

as defined by structure maps 

t4 : R. A Rk- Rjtk , 1 .  : SJ---+R. (j,k&0) , 
3 l 3 

with an orientation-reversing involution T:R -R inducinq 

the additive inverse T:n+ (R) ---+n+ (R) ; X  - -X. 
An R-orientation of a (k-l)-spherical fibration [:X -----*BG(k) 

is a W ([)-twisted !-coefficient Thom class, i.e. an element 1 

such that for each map i: (pt.)-X i*U, & hk(T(i*r) ;E) = nO(P) 

is a unit. R-orientations are required to be compatible with 

the choice of, lift F:x-+ BSG(k), so that 

If M is an R-module spectrum there are defined Thom lsonlorphisms 

I cohomoloqy in !-coefficient 
homol oqy 



for any orientation maps w',wU:nl(X] --*ZZ such that w ' w "  = W  
1 

topological bundles 
The Whitney sum of oriented 

spherical fibrations 

induces products in the Thom spaces 

= (MSTOP(j) ,CMSTOP(j)---+MSTOP(l+l) 11 >Ol 
makinq into 

MSG = ( M S G ( ~ ) , L M S G ( ~ ) - M S G ( ~ + ~ ) ) ~ ) O )  

topological bundle 5 :X ----+ BTOP(k) 
a rinq spectrum. A has 

spherical fibration {:X-BG(k) 

a canonical orientation c- l""- 

the element represented by the Z2-map of Thom spaces 

5 :F----, BSTOP(~) 
induced by the classifying map 



The tensor product oE algebraic ~oincar; n-ads over Z 

gives rise to pairings of spectra 

C4 : & O A z O - - + &  0 

- 0 
B : L O A  kO---+& 

0 making goand go into ring spectra, and ILo into an 5 -modul 

i symmetric spectrum. The Poincar; n-ads over 72 
(symmetric, quadratic) 

manifold 
of oriented n-ads define a map of ring spectr 

normal space 

such that there is defined a commutative square of ring spe 

J I  ,* - 1. 0 

MSG -- 

topological bundle e:X---+BTOP(k) 
It follows that a has 

spherical fibration <:X------+BG(k) 

. k 
Ue € H ( T ( E )  :l&()) 

canonical orientation A O  , the image und 
G E  e ik (~(5) ;c ) 

MSTOP with 5 = JE : X - B G ( k )  such that 
-orientation, [E- 1 - 

JU- = 6 € A~(T(~);&') . 
c, c, 



We refer to Rourke and Sanderson [11,[2] for the definition 

and basic properties of topological block bundles. 
- 

A t-trianqulation 5 of a spherical fibration f :X+BG(k) 

is a reduction of 5 to a topological block bundle, as defined 
'V 

by a classifying map ::X-----tBTOP(k) together with a homotopy 
- - 

b:J5 2 5:X ---+BG(k). A concordance of t-triangulations t0,c1 
v - 

is a t-triangulation ( F  X I) :X x I -BTOP(k) of 

project ion 
E, X I : X X I 

5 
A X - BG(k) 

such that 

(and similarly for the homotopies bo,bl), i.e. an isomorphism - yO- t1 over l:X +X of the TOP reductions. Define the 

topological structure set of 5 rToP(6) to be the set of 

concordance classes of t-triangulations of 5. For k = 1,2 - 
BTOP(k) = BG(k) so that 'TToP(f) consists of a single element, 

and for k ), 3 ~(k)/T%(k) = G/TOP so that 'J'TOP(f) is the set of 

stable equivalence classes of stable reductions of 5 to a 

genuine topological bundle t:X-BTOP(~') (kW large) which 

is either empty or in unnatural one-one correpondence with 

[X.G/TOPI. In particular, note that a topological block bundle 

(k) has a canonical &'-orientation U f ik (T(c) ;&O) 5 
such that 

is the canonical iO- orientation OF the underlyinq spherical 

fibration 5 = J ~ : x -  *RG(~), namely the canonical &'-orientation 

oE any stably equivalent genuine topoloqical bundle. 



Proposition 7.1.1 Let <:X----+ BG(k) be a (k-l)-spherical 

fibration over a space X. 

i) The t-trianqulability obstruction of C. 

t(o = H ( C ~ )  f fikt1(~(~) 

is such that t(6) = 0 if and only if < admits a t-triangulation, 
hi 

i.e. a TOP reduction t : ~  -BTOP(k). 
-2 

ii) Given a subspace Y c X  and a t-triangulation v:Y--+ BTOP(k) 

of the restriction 6 1 : Y ---BG(k) there is defined a 

re12 t-triangulability obstruction 

t;(~,n) H~+'(T(c) ,T(Q) ;%) 
such that t. ( 5 , ~ )  = 0 if and only if 6 admits a t-triangulation 

TV 

: X ~ B T O P ( ~ )  such that 51 = n : Y -----P BT?~P(~). The obstruction 

0 
with i =  inclusion: (T(c),pt.) --+(T(F),T(n)), U,,€ik(~(Q);& ) 

the canonical &'-orientation of Q and 6 the connecting map. 

iii) If k 3 3  and 6 admits a t-triangulation the topological 

structure set 7'T0P(5) carries a natural affine structure vith 

translation group fik(T(6);g0), the difference of two 

t-triangulations rO,cl:X ----+ B=P(~) beinq the element 

f Hktl(Tl~ 1 )  IT(CO~-Cll ;ao) = bkt1(~~([) :a,) = iik(rlri ;_a,) 

with image 
l 

l t 1  = 1 - " - f i,k(~('.);&O) . 
0 51 



A particular choice of t-triangulation ?:X--- L~T%P(~) 

determines an isomorphism of abelian groups 

(U C "-)-l : f i k ( ~ ( ~ ) ; I L O ) - ~  ti O (X;IL.~) = IX,G/TOPJ 

0 0 
with u - e ~ ~ ( ~ ( c ) ; I &  ) the canonical & -orientation. 

5 
Proof: See Ranicki 171, where it was shown that c:X -----tBG(k) -- 

admits a t-triangulation C : X + B T ~ ; ( ~ )  if and only if there 

0 k exists an I& -orlentation U - 8  fi (TIC) it&') such that 
5 

JU, = a, € fik(~(c);&O) 

is the canonical &'-orientation. 

Let X be an n-dimensional qeometric Poincars complex wit 

Spivak normal structure ( v X : X d  BG(k) ,pX:sntk- --T(vx)) and 

let W:X-+X he any double covering of X, so that there is 

defined an SZ2-duality map 

P A - 
CI ' 
X '  sntk --X-~(vX) ---, X+ A z2 T (cX) . 

Thus for any coefficient spectrum M there are definer1 SZ2-dua 

isomorphisms 

: hr(T(vX);M) = L1,m [Z'T(;~) ,Mjt1lz 
1 2 

using W-twisted M-coefficients and an involution T:M-+M. 



An R-orientation of X is an R-orientation of vX:X---+BG(k), 

or equivalently a w(X)-twisted R-coefficient fundamental cla 

[XI f Hn(X;R) 

such that U, = ail( [XI) f ik(~(vX) ;R) is an R-orientation o 
X 

For any A-module spectrum M = ( M . , Z M . + M j + l , R . ~ M k - - t M j + k l j ,  
7 l l 

there are then defined 5-coefficient Poincar; duality 

isomorphisms 

for any orientation maps w',wW:nl(X) -----t Z2 such that w'w" = 

In particular, the canonical &'-orientation 6 f ik(T(vX);g 
X 

of vX determines the canonical of X 

0 
[?I = aX(Cv ) G H,(x;& ) . 

X 

Proposition 7.1.2 An n-dimensional manifold M has a Sanonica 

IL'-O~ ientat ion 

0 
[M] = a (U ) f Hn(M;g ) 

M "M 

with (vM = vMc Sn+k : M + BTTP(~) , P ~ : s ~ + ~ - -  T(vM)) the 

canonical topological normal structure, such that 

i) J([Ml) = [h] E H~(M;~&') is the canonical LO-orienta 

ii) o*([Ml) = a*(M) f L~(Z[~~(M)]) , with a* the symmet 

assembly map and a*(M) the symmetric signature of M. 

Proof: See Ranicki (71. 



A t-trianqulation of an n-dimensional geometric Poincar; 

complex X is a topological normal map 

(f,b) : M----+X 

in the sense of 51.2. A concordance of t-triangulations 

(fo,bo) :MOL X, (fl.bl):M1---X is a topological normal 

map of triads 

((9,~); (fo.bo), (fl,bl)) : (N;MO,M1)-JX x (1;O.l) . 
The topological normal structure set of X 'rToP(x) is the set 

of concordance classes of t-trianqulations (f,b):M-X. 

(of course, yToP (X) may be empty). In dealing with t-trianqulations 

(f,b):M-X we shall sometimes omit to mention b, writing 

f:M+X in conformity with the terminology for S-triangulations, 

even though f does not in general determine b. 

Proposition 7.1.3 Let X be an n-dimensional geometric ~oincar; 

complex with Spivak normal structure 

(vX:X - - h B G ( k )  ,pX:sntk + T(vX)) (k 3 3) . 
i) The Browder-Novikov transversality construction of 

topological normal maps defines a natural bijection 

a . TTOP 
X '  (VX) +?OP (X) ; 

( ; I X : x - ~ ~ T p ( k ) ) t - - - - - - , ( ( f , b )  :M -X) 

sending the t-triangulation uX of vX to the t-triangulation 

(f,b) oT X obtained by making o ~ : s ~ + ~ L T ( ~  ) topologically 
X 

transverse at the zero section XcT(vX) with respect to GX 

(For n = 4 M is allowed one singularity, cf. Scharlemann [l]). 



ii) The S Z  -duality isomorphism 2 

aX : ilk+l(~(v X );U -0 ) -+H~-~(x;ILJ 

sends the t-triangulability obstruction t(vX) of vX to the 

t-triangulability obstruction of X 

t(X) = aX(t(vX)) € Hn-l(X;&,) 

such that t(X) = 0 if and only if X is t-triangulable. 

The image of t(X) under the quadratic assembly map is 

O,(t(X)) = (RC([X]n -:c(xjn-*----, C ( % )  . * )  

= 0 € Ln-l(Zlnl(X) 1 )  

with % the universal cover of X. (See Proposition 7.4.3 iii) 

for a generalization of this to normal spaces). 

iii) A t-triangulation (f,b) :M+X of X determines an 

5'-or ientat ion of X - 

0 
[XI = f, ([M1 € Hn(X;& ) 

such that J ( [X]) = [g] f (X;&') is the canonical $'-orientation 

of X, and such that the surgery obstruction o,(f,b) f Ln(Z(nl(X)Il 

has symmetrization 

(l+T)a,(f,b) = o*(M) - o*(X) 

= o*(lxl) - o*(X) f L ~ ( Z ( ~ ~ ( X ) I )  . 

iv) If X is t-triangulable the set T~O'(X) carries a 

natural affine structure with translation group Hn(X;ILO). 

the difference of two t-triangulations (fO,bo) :MO- X ,  

(fl,bl):M1&X being the element 

t1(f0'fl) = ax(t 8 Hn(X:ILO) , 

with t( (<X)O, (VX) f kk (T(vX) :g0) the diffetence of the 

corresponding t-triangulations (SX)O,(SX)l of vX. 



The different? has lrnages 

(l+T)t(fo.fl) = fo,(lMol) - fl*(fM1l) E H,(X;~') 

U*(t(fo.fl)) = O*(forbo) - o,(fl.bl) € Ln(Zlnl(X)I) . 

Proof: See Ranicki 171, where it was shown that X admits an 

0 U -orientation [XI € Hn(x;&O) such that - 

i) J([X]) = [;l f Hn(x;kO) 

ii) o*([Xl) = o*(X) € Ln(221nl(~)1) 

iii) the relations i) and ii) are compatible on the 

U-spectrum level 

if (and for n + 5  only if) X admits an s-triangulation. 

I I 

As they stand the conditions i),ii),iii) listed above 

are just a restatement in algebraic terms of the Browder- 

Novikov-Sullivan-Wall two-stage obstruction theory for the 

S-triangulability of an n-dimensional geometric ~ o i n c a r 6  

complex X, with i) giving a t-triangulation (f,b) :M- X 

and ii) giving a vanishing of the surgery obstruction 

o,(f,b) f L (Zln (X) 1) up to the (8-torsion) difference between n 1 

the quadratic and symmetric L-groups which is taken care of 

by iii). However, the three conditions were united and 

expressed as the vanishing of a single invariant, as follows. 

Given a space X with an orientation double covering 

w:X--+ X define the ~ u a d r a t i c  I-qroups 4, (X) to be the 

abelian groups appcarinq in the pxact s e q u e n c p  

0 * . H ~ X ;  - + L ~ ( ; z [ ~ ~ ( x )  1 )  + dn(x) 

- - 7  Hn-l (X;&') -+ . . . , 
in which the homoloqy groups are deflned uslnq W-twisted 



ILo-coefficientsand the L-qroups are defined using the W-twiste~ - 

involution on Zlnl(X)]. An orientation-preserving map f:X+X 

induces abelian group morphisms 

f, : 2.c~) ---+ 4 , ( x 1 )  

which are isomorphisms if f is a homotopy equivalence. 

The total surgery (or S-triangulability) obstruction of 

an n-dimensional geometric ~oincar; complex X is an element 

s(X) 8 $,(X) 

with the following properties. 

-sition 7.1.4 i) s(X) = 0 E 8JX) if (and for n ) 5  only if) 

X is S-trianqulable, i.e. has the simple homotopy type of a 

manifold. 

ii) The image of s(X) in H,-l(X;gO) is the t-trianqulability 

obstruction of X 

[ S I X )  l = t ( X )  f Hn-l(X;&o) . 
If 

s (X) € ker (jn (X)- (X;%) 

= ~ ~ ( O * : L ~ ( ~ [ ~ ~ ( X ) I ) + ~ ~ ( X ) ) C ~ ~ ( X )  

(i.e. if X is t-trlangulsble) the inverse image of s(X) in 

L (Z[n1(X) 1 )  is the coset of the subgroup 

ker(Ln(z[nl(X) l)----+8n(~)) 

= ~~(O,:A~(X;II,~) ---'L (Z[nl(X) 1) S Ln(Zlnl(l 

consisting of the surgery obstructions o ,  (f, b) € L n (Z In l (X) 1 ) 

of all the t-triangulations (f, b) :M ---+X. 

ili) If n > 5  and X is S-trianqulable the topological manifold 

structure set qToP(x) carries a natural affine structure wlth 

translation group 3n+l (X), the difference of two S-tr ianqulation 



fo:MO-N-, X, E .M --+X being an element 1' 1 

S(f0'fl) € $,+p) 
with imaqe 

Is(f0,f1) l = t(fo,fl) € Hn(X;rL0) . 
(See Proposition 7.1.4 (re13) iv) below for the alqebraic 

surqery exact sequence involving S ~ O ~ ( X ) ,  and for an expression 

of the difference s(fo,fl) as a re12 S-triangulability obstruction). 

Proof: See Ranicki 1 7 1 .  

1 

(IE n is a group equipped with an orientation map w:n+ Z2 

the Sullivan-Wall homomorphism 

(cf. Wall (4.Thm.13.B.31) factors through the quadratic assembly 

map as 

using the composite map of spectra 

Thus if n is finitely presented and n 3  5 the subgroup 

im(o.:Hn(K(n,l) ;IL0)-----+Ln(Z[nl)) C Ln(z[nl 

consists of the surgery obstructions o,(f,b) o e  t-triangulations 

(f,b):M---+X of closed n-dimensional manifolds X equipped with 

a reference map XL K(n,l)) . 



There are relative and re13 versions of total surgery 

obstruction theory, which we shall now summarize. 

Let (X,Y) be an n-dimensional geometric Poincar; pair 

with Spivak normal structure 
such that Y is a manifold 

triangulation of (X,Y) is a topological normal map of pairs 
A {:;-- 

. The triangulation 
such that q : N d Y  is a homeomorphism L- 

is the image of the trianqulability obstruction of 

under the S Z  -duality isomorphism 2 

triangulation of (X,Y) is a tr ianqulation l::- 
I 

( ( f , b ) ,  ( 9 , ~ )  : (M.N) ~ ( x , Y )  

( f . s )  : (M,N)'(X,Y) 
such that is a simple homotopy equivalence. 

f:M- .X 



triangulations of (X,Y) . 

The rel.1 total surge3 (or s3-triangulability) obstruction 

of an n-dimensional geometric Poincar; pair (X,Y) with manifold 

boundary Y is an element 

S, (X,Y) f An(x) 

with the following properties. 

Proposition 7 . 1 2  (re13) i) s3 (X,Y) = 0 f Jn(X) if (and for 

n) 5 only if) (X,Y) is s3-trianqulahle. 

ii) The image of sa(X,Y) in Hn-l(X;ILO) is the t -trianqulability 
J 

obstruction of (X,Y) 

Is3 (X, Y) I = t2 (X. Y )  e (X;&,) . 

iii) If n b  5 and (X,Y) is sj-triangulable the structure set 

8ToP (x,Y) carries a natural affine structure with translation 

group qntl (X). 
iv) For n r 5  an s-triangulation E : M a  X of an n-dimensional 

geometric PoincarG complex X d~termines an isomorphism between 

the Sullivan-Wall surgery exact sequence of the manifold M 

and the exact sequence 
a *  . . . -+ ?n+2 (X) - + Hntl(X;IL -0 ) - -3 LntI(Z[nl(X) l )  

+Sntl ( X )  ---+H~(x;IL~) - 2 % .  (zInl ( X )  I 



In particular, f determines a bijection 

fx : ATOP (X) 4 sn+l(~) i 

(f':M1-+ X) M s(fl,f) = s3 (W'u -W,M1u -M) X 

sending f to 0 ,  with W (resp. W') the mapping cylinder of E 

(resp. f') and using the homotopy invariance of the 8-groups 

to identify 3n+l(W'~X-W) = 8n+l(X). Similarly, f induces 

bijections 

k 
fX : . s ~ ~ ( M ~  Dk,a (M X  D 1 1  + n + k + l X  Ik2O) 

which are isomorphisms of abelian groups for k >l. 

Proof: See Ranicki 1 7 ) .  

I I 

The relative 4-groups J,(X,Y) of a pair of spaces (X,Y) 

(equipped with an orientation double covering W) ace defined 

to fit into a commutative diagram of abelian groups with exact 

rows and columns 



The total s u w  (or S-triangulability) obstruction 

of an n-dimensional geometric Poincar6 pair (X,Y) is an element 

S(X,Y) f 8n(x,~) 

with the following properties. 

Prsosition 7.1.4 (rel) i) s(x,Y) = 0 € Sn(X,Y) if (and for - p--p 

n ) 6 only if) (X,Y) is S-triangulable. 

ii) The image of s(X,Y) in Hn-l(X,Y:ILO) is the t-triangulability 

obstruction of (X,Y) 

Is(xrY)I = t(X,y) € Hn-l(XvY;&) . 
The image of s(X,Y) in 8n-1(Y) is the total surqery obstruction 

s(Y) of Y. If Y is a manifold s(X,Y) is the image of the re12 

total surgery obstruction sj(X,Y) € R  (X). 

iii) If n)6 and (X,Y) is S-triangulable the structure set 

J ~ O ~ ( X . Y )  carries a natural affine structure with translation 

group An+l(X,Y). An S-triangulation f :  (M,N)-(X,Y) 

determines a bijection 

f X  : 4 T 0 P ( ~ , ~ )  3 Jn+l(X,Y) 

sendinq f to 0. 



7.2 The geometric theory of codimension q surgery 

We shall now extend the total surqery obstruction theory 

of 57.1 to the problem of simultaneously S-trianqulatinq a 

geometric ~oincar; complex X and a codimension q ~oincar; 

subcomplex Y C X ,  that is finding an S-triangulation of X 

f : M ---X 

such that 

i) E is topologically transverse at Y c X  with respect to 

a t-triangulation ~:Y+BT?P(~) of the normal fibration 

5 = vyc X : Y d B G ( q ) ,  so that in particular N = f-l(~)c M 

is a codimension q submanifold 

ii) the restriction of f defines an S-triangulation of Y 

g = fl : N f Y  

iii) the restriction of f to the complements defines a 

simple homotopy equivalence 

h = f( : M - N A X - Y  . 
(For q =  2 there is also a theory for the weaker problem in 

which f is only required to satisfy i) and ii), so that h 

need only be a Zlnl(X)]-homology equivalence - see 5§7.7,7.8) 

This problem is closely related to the obstruction theory Eor 

deciding whether a particular triangulation €:M---+X of X / :: 
is concordant to such a simultaneous S-triangulation of X and Y, 

i.e. can be "split along Y C  X". Followinq the solution by 

Browder 111,131 of the splitting problem in the simply-connected 

case Wall [4,Slll (lrvelopcd an o l x t t  uct Ion theot y for the 

codimension q splitting probl~m in the non-simply-connected case. 



11s. ( a )  
The obstruction qroups were defined geometrically, but 

LP*  ( 9 )  

shown to depend only on the fundamental group data of the 

pushout square 

shall he only concerned with the g~ometrically defin~d 

C LS- 
groups. In S7.5 we shall give an algebraic definition 1 LP- 

in the non-trivial cases q = 1,2 using quadratic Paincar6 

individually with the two cases of the algebraic theory of 

codimension q surgery 

In the first instance, we recall the qeometric 

LS - 
definition of the groups, for any q a l 

A codimension q CW pair (X,Y) is a CW complex X with 

a decomposition 

for some (q-l)-spherical Fibration [ : Y L B G ( ~ )  over a 

subcomplex Y C X ,  with Z C X  a disjoint subcomplex and 



(D',S~-')- (E(C;),S(C)) --+ Y 

the associated (D',s'-')-fibration. In dealing with geometri 

defined L-groups it is assumed that X has a finite 2-skeleto 

so that n (X) is finitely presented - no such restriction is 1 

required for the algebraic definitions in $5 7 6 , 7 8  Mm 

Applying the generalized Van Kampen theorem there is obtaine 

an expression for the fundamental qroupoid nl(X) as a free 

product with amalgamation 

nl(X) = nl(E(C))fnl(S(E))~l(Z) , 

i.e. there is defined a pushout square in the category of 

groupoids 

(It is not assumed that the maps in Q are injective). 

 give^ an orientation map for X 

W(X) = W : n l ( x ) - z 2  

define orientation maps for S(C) ,E(C) , Z  using the restrictic 

and give Y the orientation map 

w(Y) = w(E(S))wl(C) : nl(Y) = n1(E(c))'z2 

with wl([): nl(Y)-Z2 the orientation map of C:Y-BGl 



Define the transfer maps in quadratic L-theory induced by (X,Y) 

P C !  : L~(zI~~(Y)I)-L Z I ~ Z I Z I ~ X I  (n>O) 
n+q 

to be the composites of the transfer maps induced by 5  

C !  : ~ n ~ ~ ~ ~ l ~ ~ ~ l ~ ~ ~ n + q ~ Z l ~ l ~ S ~ C ~ ~ l ~ ~ l ~ l ~ E ~ ~ ~ ~ l ~  

and the maps naturally induced by @ 

p : I . n + q ( ~ ~ ~ l ~ S ( S ) ) l - Z [ n l ( E ( S ) ) l )  

-Lntq(ZInl(Z) J--Zl~l(X) l )  , 

with 5 '  sending the quadratic signature o ,  (f ,b) of a normal map 

of n-dimensional geometric Poincar6 complexes 

(f,b) : M -N 

equipped with a reference map q:N-Y to the relative 

quadratic signature 5 ' 0 ,  ( f  ,b) = a ,  ( (f,b) l )  of the induced 

normal map of (n+q)-dimensional geometric ~oincat-6 pairs 

Following Wall 14,p. I ::: l define the quadratic 

appearing in the exact sequence 

+ 1 ,  n+r!-~(zl"(z)l)---. ... 
and satisfyinq thr followinq ~~roperties: 



LS- 
Proposition 7.2.1 i )  The quadratic groups are 4-periodic 

ii) The LS-groups are related to the LP-groups by a commutative 

iii) The LS-groups are related to the trlad L-groups L,(Z[@l) 

by a commutative braid of exact sequences 

- -- 
Y e  / \  



3 0  1 

with I.S,(Y) the LS-groups of the pushout square of qroupoids 

associated to the codimension q CW pair ( E ( S  

An (n,n-q)-dimensional (or codimension 

(X,Y) is a codimension q CW pa ~oincar; pair 

i) X is 

ii) Y is 

iii) (2,s 

, Y) . 
1 1  

g )  geometric 

ir such that 

an n-dimensional geometric poincar; complex 

an (n-q)-dimensional geometric poincar; complex 

5)) is an n-dimensional geometric ~oincar; pair. 

(Actually, iii) implies ii)). Then Y C  X is a "codirnension q 

poincar; embedding" with complement Z and normal fibration 

v y c x  = : Y- +BG(q) . 

The prescribed Spivak normal structure of X 

(vX:X-BG(k) ,PX:~ntk-~(vX)) 

A normal map of (n,n-q)-dimensional geometric poincar; 

pairs 

((f.b), (9,~)) : (M.N) -(X,Y) 

is a normal map of n-dimensional geometric Poincar6 complexes 

(f,b) : M-----+X 

with a decomposition 



where (g,c):N-Y is a normal map of (n-q)-dimensional 

geometric Poincar6 complexes such that 

9 c 
v = v  N C M  : N-Y .BG(k) 

and (h,d): (P,S(v))-(Z,S([)) is a normal map of 

n-dimensional geometric ~oincari? pairs such that 

(h,d)l = (g,c)!l : S(v)-S(S) . 
Proposition 7.2.2 Given a normal map of (n,n-q)-dimensional 

geometric ~oincar; pairs 

such that f:M---+ X is a simple homotopy equivalence I - 
there is defined a codimension q quadratic signature 

I o*((ftb) t (gtc)) f LS ( @ l  
n-q 

o*( (f ,b), (¶,C) f LPn-,(@) 

I o*((f,b), (g,C)) e 
with imaqe 

(o*(frb) ,o*(grc) e Ln(Z[nl(X) 1)@Ln-.,(ZZ.nl(Y) l )  

such that o,((f,b), (g,c)) = 0 if ((f,b), (g,c)) is normal bor, 

by a geometric Poincar6 S-cobordism of (f,b) i - to a normal m. 

of pairs such that the maps f:M-X, g:N-----+Y, h:P-Z 

are all simple homotopy equivalences. 

For q )  3 nl(S(C)) = nl(E([)), nl(Z) = nl(X) and 



ProoJ: The normal maps of n-dimensional geometric ~oincar; -- ~ 

pairs (f,b): (M,0)-(X,0),(9,~)!: (E(~),S(V))*(E(S),S(~)) 

are normal bordant via the normal map 

so that in particular the restriction 

deEines a normal null-bordism of (q,c) ! I  : S(v) ----+S(c). 

This gives a particular reason for 



An (n,n-q)-dimensional t-normal geometric poincarc pair 

(x,Y,~) is an (n,n-q)-dimensional geometric poincar6 pair (X,Y) - 
together with a choice of t-triangulation <:Y -4 BTOP(~) of 

the normal fibration 5 = vyCX : Y d  BG(q). We shall be 

primarily concerned with the cases q = 1.2. for which 
TU 

BG(q) =BTOP(q) so that the t-normal structure is redundant. 

An (n,n-¶)-dimensional (or codimension q) manifold pair 

(M,N) is an n-dimensional manifold M toqether with a locally 

flat codimension q submanifold N C M .  The normal block bundle 

v = v  N c M  : N --BTOP(q) 

is such that 

M = E(v) U ~ ( ~ ) M \ E ( V )  . 

In particular, (M,N) has an underlying structure of an 

(n,n-q)-dimensional t-normal geometric ~oincar; pair. 
- 

Let (X,Y,c) be an (n,n-q)-dimensional t-normal geometric 

Poincar6 pair. A topological normal map (or a t-triangulation 

of (x,Y,~)) 

( ( F , ~ - J ) ,  (q,c)) : (M,N)  -(X,Y) 

is a t-triangulation of X (i.e. a topological normal map) 

which is topologically transverse at Y C X  with respect 

so that (M,N = f-l (Y) ) is an (n, n-q) -dimensional manifo 

with normal block bundle 

the restrict,ion of ( f  ,b) 

f b  = c : - + Y  

is a t-triangulation of Y, the restriction 



In particular, ((f,b),(q,c)) has an underlying structure of 

a normal map of codimension q geometric Poincar; pairs. 

Let Y ~ O ~ ( X , Y , ~ )  be the set of concordance classes'of 

t-triangulations of (X,Y , S ) .  
Proposition 7.2.3 The forgetful map 

TOP ( x , Y , ~ ) - - + ~ ~ ~ ~ ( x )  ; ((€,b), (g.c))-(f,b) 

1s a bljection. Thus if X is t-trianqulahle T ~ O ~ ( X , Y , T )  carrie! 

a natural affine structure with translation group Hn(X;Fo). 

Proof: Topological transversality. -- 

[ l  

Let (X,Y,<) be an (n,n-q)-dimensional t-normal geometric 

Poincar6 pair. An s-trianqulation of (X,Y,r) is a t-triangulat. 

((f,b), (g,c) : (M,N) (X.Y) 

such that each of the constituent t-triangulations 

(f,b) : M-----+X 

is an S-trianqulation. Let qToP(,~,~,?) be the set of concordant 

classes oE S-trianqulations. The forqetful map 

TOP 
A ~ ~ ~ ( X , Y , ~ : ) -  - -+A ( X )  ; ((f,b), (g,c)) -(f,b) 

is in gpneral neith~r injective nor surjective. 



An S-triangulation f:~& X is split along Y c X  if f actua 
- 

defines an S-triangulation of (X,Y ,S) 

Given an triangulation (f,b) :M- X make f topologically 1 :: 
transverse at Y c X  with respect to 5, and use the codimension 

quadratic signature of the resulting t-tr iangulation of (X,Y, 

(as given by Proposition 7 . 2 . 2 )  to define the a m e n s i o n  q 

The following is essentially a restatement of the 

obstruction theory of Wall [4,§11] for the "smoothing of 

codimension q Poincar6 embeddings", by a method of proof 

going back to Browder 1 3 1 .  

Proposition 7 . 2 . 4  The trianqulation (f,b):M-X is suck 1:: 
s(f,Y) = 0 € LS (Q) 

that 1 if (and for n-q + 5 only if) (F ,b) 
t(f,Y) = 0 € L P  (9) 

n-q 

is concordant to an S-triangulation of X which is split alonc 

s(f,Y) f LS,_< 
Proof: The codimension q splitting obstruction 

t(f,Y) f LPn-< 

has image 

the surgery obstruction of the t-trianoulation (a,c):N d 



NOW o,(q,c) = 0 if (and for n-q a 5  only if) there exists an 

(n-qt1)-dimensional topolooical normal map of triads 

(G,C) : (L;N,N1;@) -----+Y x ([1,21:1,2;@) 

such that 

i) (G,C) I = (q,c) : N-- Y X l 

ii) (G,C) I = (g',cl) : N'-Y X 2 is an S-triangulation. 

Given such an extension (G,C) of (g,c) let 

G 
(A;v,v') : (L;N,N1) - A Y  x (11,21;1,2) 

- 
projection 5 - - Y - BTOP(¶) 

and define an (n+l)-dimensional topological normal map of triads 

(F'.B') = (F,B) U (q,c) ! (G,C) ! 

: (v;;+v,3-v;aa+v) 

= ( M X  luE(,,) X l ~ ( ~ ) ; ~ \ ~ ( ~ )  X 1 X l~().) ,MXOUE(V');S(V')) - (w;B+w, a-W; 33,~) 
= (X x 1 0 , 1 1 ~ ~ ( ~ )  lE(t) X 11t2I:zx l ~ ~ ( ~ )  lS(5) X flt21, 

XuE(S) X 2;S(E) X 2) 

such that the restriction 

is an S-triangulation, hy qlueinq toqether topological normal 

maps of triads as in the picture 



The surgery obstruction 

(F1.B') 
is 0 if (and for n > 5 only if) is topologically 

(F1,B') 1 3 + , ,  
(F',B') 

normal bordant re1 to an S-trianqulation of an 
(F',U') I o a t v  

tr iad 
dimensional geometric poincarg 

pair 

r (H,D) : (Q:P,S-V:?~,V) - -  -'--+ (IJ; +W, >-w:;,~+w) 

(JtH,2,D) : (P,dd,V) --~--i ( 3  W,33+W) 

by an (ntl) -c l  :tnensional topological normal bordism 

Such an (H,D) (if it ex 

V)---> ( 1  1qx  I ; ) + W x  O,i+lJx 1:3j+IJx I) . 

ists) can be reqarded as a concordance 

of [ t-trianqulat ions of 



with f' : M' = E ( v ' )  yS(",)P ---+X = E([) cl 
s(clZ an 

S-trianqulation of X which is split along Y C X .  

~ h u s  if o,(g,c) = 0 € L (ZInl(Y) 1) there exists an 
n-q 

extension (G,C) of (g,c) satisfyinq i) and ii), and the 

correspondinq (nt1)-dimensional topological normal map of triad 

(F',B'):(V;3,V.J-V;3;,V) -(W:S,W,?-W;33,W) is such that 

t(f,Y) = [o,((F0,B') I?+,,) 1 

€ ker (LP (D)-Ln-q(7Z[nl(Y) l )  
n-q 

= im(Ln(Zlnl ( 2 )  ])-LPn-,(@)) . 

If (f,b):M-- - + X  is an S-triangulation of X which is 

split along Y C  X then (g,c) :N-Y is an S-triangulation 

of Y, so that O,(g,c) = 0 € L (Z[nl(Y)]). Taking 
''-cl 

( G , C )  = (g,c) X id. : N X (1;0,1;0) - - 4 Y  X (I;O,I;@) 

we have that 
I 

( F ' , B 1 )  = (f,b) x id . , O ,  l(g,c)' X id. 11,21 

0*(F',B1) = 0 
is an S-trianqulation of triads, so that 

IatV) = o 

S(f,Y) = 0 
and by the above remark 

t(f,Y) = 0 

s(f,Y) = 0 
Conversely, if n-q > 5 and then 0, (g,c) = o 

t(f,Y) = 0 

and there exists an extension (G,C) of (g,c) satisfying i) and 



By the surgery obstruction realization theorems of Wall ( 4 . 5 s  

there exists an (n-¶+l)-dimensional topological normal map 

of triads 

(G',C1) : (L';N',NW;@) -----J Y X (I;O,l;@) 

such that 

i)' (G',c') I = (g',c') : N I  -------+Y X o 

ii) ' (G',C1) I = (g",cW) : Nu-Y x l is an s-triangula 

iii) ' o,(G',Ct) = -a € Ln-,+l('Z[nl(Y) 1) . 

Replacing (G,C) by the extension of (q,c) defined by 

(G",C") = (GrCl U (g,,c,) (G'rC') 

: (LUN,Lt;N,N";@) -Y x (I;0,1;8 

we have that (F',B') is replaced by an (nt1)-dimensional 

topological normal map of triads 

(F",BW) = (F',B') L1 (G''tCq') 

: (V1;a+v',a-v';aa+v8) ------,(W;~+W.~-W;~~+W) 

such that 

o*(F",B") = o*(FB,B') + 0*((G',CT) ! )  

! = pc (a)  + pcl(-a) = 0 f Lnt1(Z[n1(Z)]-Z[n 



so that the coresponding S-triangulation f":MU+X is split 

along Y C X. 

l l 

For q g 3  Proposition 7.2.2 gives 

i 
s(f.Y) = o,(q,c) f LSn-q(@) = Ln-q(Zlnl(Y)l) 

t(f,Y) = (o,(f,b)to,(q,c)) 

f LP ( @ l  = L n ( ~ f n l ( X ) l ) ~ L n - q ~ Z l n l ( Y ) l )  . 
n-q 

The following is essentially a restatement of Wall [4,Cor.11.3.1]: 

Proposition 7.2.5 For q)3 an (n,n-q)-dimensional geometric 

Poincarg pair (X,Y) is such that the geometric Poincar; complexes 

X and Y are individually S-trianqulable if (and for n-q>,5 only if) 

(X,Y) admits a t-normal structure C:Y -BT~P(~) such that (X,Y,t) 

is S-triangulable. 

Proof: It is clear that if (x,Y,~) is S-triangulable then so 

are X and Y. 

Conversely, suppose that n-qb5 and that there arc given 

S-triangulations (f,b) :M a X ,  (9.c) :N - t Y .  Let 

be corresponding topological normal structures, with 

Sn+k 'X projection 
Py : -T(vX) ---T(V )/T(v I ) = ~ ( v  ) . X X Z Y 

The t-trianqulations and vy of VX:X-BG(k) and 

- 
vy:y --+BG(q+k) determine a unique t-triangulation 5 of 



5 = VYc X : Y B B G ( q ) ,  since 

vy = SbvX/y : Y -BG(q+k) . 
- 

Making f topoloqically transverse at Y c X  with respect to 5 

note that the t-triangulation (f,b) : F - ~ ( Y ) ~ Y  corresponds to 

the same topological normal structure (<y,~y) as (g,c) :N-----+Y, 

so that 

s(f,Y) = o,(g,c) = 0 € LS ( a )  - L (iZlnl(Y)l) 
n-q n-q 

and (f,b) is concordant to an S-trianqulation of X (also denoted 

by (f,b):M----+X)) which is split along Y CX, with the iestricticn 

(f, b) : E-' (Y) -Y an S-tr ianqulation of Y concordant to 

(g,c):N-Y. (In fact, the proof of Proposition 7.2.4 gives 

an embedding N C M  such that (f,b) l = (q,c! : f-l(Y) = N vY). 

l1 

Moreover, Wall [4,Cor.11.3.41 proved that if (W,aW) is an 

n-dimensional manifold with boundary such that W is an 

h-triangulable (n-q)-dimensional qeometric Poincar; complex 

and q >,3  then every h-triangulation V U + W  is homotopic 

to an embedding, the non-simply-connected Browder-Casson-Sullivan 

theorem. 

We shall now extend the total surqery obstruction theory 

of S7 .1  to codimension q t-normal qeometric FoincarG pairs (X,Y,i). 

(See Levitt and Ranicki [l1 for an extension to the S-trianqulatior 

theory of "stratified geometric Poincar6 complexes" - the pair 

(X,Y) is the case of one stratum). In the first instance wr 

have to definr transfer maps in thc 3-qroups 



A o$imension q t-normal CW pair ( x , Y , ~ )  is a codimensic - 
CW pair (X,Y) toqether with a t-triangulation t:~-----BTOP(q) 

of the normal fibration c : Y  - +  BG(q1. For example, a 

codimension q t-normal geomrtric Poincar6 pair is such an obje 

The composite of the transfer isomorphisms 

- 1  
5. = (u-n-)-' : H,(Y;IL~) , 

5 
H ( E ( S )  ,S(S) ;Lo) 

+q 

0 0 (with U - € i q ( ~ ( ~ ) ; L  ) the canonical -orientation of 5 )  and 
S 

the excision isomorphisms 

P : H,tq(E:5) ,S(S) ;gO) + H , t q ( X r Z ; I L  -0 ) 

define transfer isomorphisms 

: H,(Y;IL -0 ) -?A H,tq(X,Z;&o) . 
These are compatible via the assembly maps with the transfer 

maps in the quadratic L-groups 

Thus there are defined transfer map!; in the 8-groups 

p<! : ~,cY)----+~,+~(x,z) , 

which are composites 

and fit into a natural transformation of exact sequences 



n q 

ct. 

Proposition 7.2.6 Let ( x , Y , ~ )  be a codimension q t-normal CW 

with pushout square of fundamental groupoids 

n1(S(5) - nl(z) 
i l 

i )  The LS-groups of O are related to the d-groups by a 

commutative braid of exact sequences 

ii) There are defined 8-groups &(x,Y,<) which fit intc 

commutative braid of exact sequences 



i i i )  The  L P - q r o u p s  of @ a r e  r e l a t e d  t o  t h e  6 - g r o u p s  by 

a c o m m u t a t i v e  d i a g r a m  w i t h  e x a c t  r o w s  a n d  c o l u m n s  



iv) The maps U - , v  are related to each other by a 
F, r, 

The total surgery (or S-tr ianqulability) obstruction of 

an (n,n-q)-dimensional t-normal codimension q qeometric Poincarc 

pair (X,Y,r) is an element 

s(x,Y,<) e S,(X,Y,I) 

with the following properties. 

Proposition 7.2.7 i) s(X,Y,t) = 0 if (and for n-q 1 5  only if) 

(x,Y,~) is S-trianqulable. 

ii) The obstruction has images 

iii) I t  f - M  -X, fl:Ml-+X are /s-trianqulatinns 01 X with 
0 '  0 1 t -  



along Y C  X diEfer by 

Thus if 

s(X,Y,T) f ker (Jn(~,~,t)---+~n-l(X;h) 

= im(LP (@)-9n(X.Y,r)) C $,(X,Y.~ 
n-q 

\ 

S - 
triangulable) the inverse image of s(X,Y,t) in 

consisting of the splitting obstructions along Y C  X 

S(f,Y) 
trianyulations €:M-+X of X. 

t(f,Y) 

iv) If n-q>, 5 and ( X , Y )  is an (n,n-q)-dimensional manifold pair 

there is a natural identification 

?TOP 
(x,Y,?) = 9 n + L ( ~ , ~ ' <  

and the commutative exact braid of Proposi 

a natural expression as a braid of surgery 

tion 7.2.6 iv) has 

exact sequences 



l 1  

(According to Ranicki (71 the topoloqical manifold struct 

set qToP(x) of an n-dimensional geometric ~oincar6 complex X wi 

n ) , 5  is in natural one-one correspondence with the set of 

ILO-orientations [XI f H,(x;&') such that - 

- 0 i) J([XI) = [RI f Hn(X;& ) is the canonical &O-orientatic 

iii) the relations i) and ii) are compatible on the U-spect 

level. 

In view of this Proposition 7.2.7 can be interpreted as stating 

that the structure set 8 T 0 P ( ~ , ~ , ~ )  of an (n,n-q)-dimensional 

geometric Poincar6 pair (X,Y) for n-q>5 is in natural one-one 

0 correspondence with the set of -orientations [X] f H, (X;-&') 

satisfyinq i),ii),iii) and also 



the comoosite iv) 

sends 1x1 

ana logous 

0 
to an g -orientation [Y] f H (Y;&') satisfyinq 

n-q 
conditions i),ii),iii) determining an S-triangulation 

of the (n-q)-dimensional geometric ~oincar6 complex Y 

V) the composite 

0 0 
sends 1x1 to an g -orientation [Z] f Hn(Z,S ( F )  ;g ) satisfying 

analogous conditions i),ii),iii) determining an S-triangulation 

of the n-dimensional qeometric Poincarg pair (Z,S(€,)) which on 

the boundary is the S-triangulation of S(5) induced by from 

the S-trianqulation of Y qiven by iv)). 

In dealing with the qeometric theory of codirnension q 

surgery we have only considered the simplest case of geometric 

Poincarg complexes and closed manifolds. More generally, 

suppose given 

i) an n-dimensional geometric ~oincarg pair (X,AX) 

ii) an (n-q)-dimensional geometric ~oincar6 pair (Y,>Y) 

iii) a geometric ~oincar; embedding 

(Y, JY) c (X, 3X) 

with normal fibration 

(5,:C) : (Y,IY)-BG(q) . 
so that 

(X, 1x1 = ( E ( E )  US(C)Z,E(s'C) US(-,S) 3+z) 

for some n-dimensional qeometric Poincar; triad (z;n+z,s(~);S(~S)) 



together with a t-triangulation - (Y,Z; : :y,aY) --------, BTOP(~) , 

i v )  an triangulation oE pairs {:I 
such that 3f:JM-dX is an S-triangulation which is split 

along b Y C  DX 

there is defined a re12 codimension q splitting obstru* 

along Y c X 

s; (f,Y) € LS ( @ l  
n-9 

tn(f ,Y) E LP (a) 
n-q 

with the pushout square of fundamental qroupoids 

such that 

concordant re1 S E  

) = O  
if (and for n - q g 5  only if) E is 

) = O  

to an s-trianqulation of (X,?X) which is 



split along (Y,7Y) c (X,3X). By the realization theorem o f  

Wall (4,gllI every element of is a re13 codimension q 

sa ( F  ,Y) 
splitting obstruction . The total surgery obstruction 

t;(E,Y) 

theory for codimension q geometric PoincarG pairs also has a 

re13 version. 



7.3 The spectral quadratic construction 

The quadratic construction of 511.1 (recalled in S1.2) 

associates to a stable n-map F:X of n-spaces X,Y 

a natural transformation 

with f : t(x)--+t(Y) a Z[nJ-module chain map induced by F 

and iX:i*(X/n)---+Q*(t(x)) the symmetric construction on X. 

The quadratic construction is an equivariant chain level 

generalization of the functional Steenrod square method used 

by Browder ( 5 1  to define the quadratic function needed to 

define the Arf invariant of a normal map of even-dimensional 

geometric poincarg complexes. 

The spectral quadratic construction which we shall now 

be considering associates to a semi-stable n-map F:X--4 Xrny 

of n-spaces X,Y a natural transformation 

with f : R~~'(x)----?~'(Y) a Z[n]-module chain map induced by F. 

The spectral quadratic construction is an equivariant chain 

level generalization of the functional Steenrod square method 

used by Browder I41  to define the quadratic function needed t 

define the Arf invariant of a Wu-orlented even-dimensional 

geometric poincar; complex. The name derives from the use of 

the spectra of stable homotopy theory, which are only implici 

in our terminology. 



Let n be a group, and let w:n+Z2= [fl) be an 

orientation map. 

A semi-stable n-map is a n-map 

F : X-zPY 

from a n-space X to the p-fold suspension of a n-space Y, 

for some p > O .  In the first instsnce, we shall only be concerned 

with the case when p is large, which is signified by writing 

p = - ,  F:X-- +E-Y . 
The chain level method used to define the quadratic 

construction in SII.1 (taking into account the correction on p . 3 0 )  

applies equally well to define the spectral quadratic construction 

on a semi-stable n-map F:X-zmY inducing the Z[nl-module chain 

map f :nm?(x)- E(Y), as abelian qroup morphisms 

defined using W-twisted coefficients and the W-twisted involution 

on Z l n l .  

F'roEsition 7.3.1 The spectral quadratic construction has the -- 

following properties: 

% - 
i) (1+T)4~~ = e Oyf, : ~,+,(x/n)~Q*(C(f)) 

with e : ~(Y)-c(€) the inclusion, 

with g : C ( F ) - - - + ~ ~ - ~ ~ ( X )  the projection and 



m 
iv) if X = C X. for some n-space X 

0 

with $ the spectral quadratic construction of SII.1 on the 
F. 

stable n-map 

V )  if there are given n-spaces X,X1,Y,Y' and a commutative 

diaqram of (semi-) stable n-maps 

F 
X --, 1-Y 

inducing the commutative diagram of Z[n]-module chain complexes 

and chain maps 

with ~~~:i,+~(X/nl d Q , ( C ( f )  ) (resp. $F, :i(++m(X'/~) -----+Q*(C(f1))) 

the spectral, quadratic construction on F (resp. F') and 

JIH:H,(Y)-Q, (C(Y')) the quadratic construction on H. 



By analogy with the unstable quadratic construction of 

SII.l on an unstable n-map F:Z'X ---Jz'Y (p>O) 

Io,~-ll (&(y)) $F : ;*(x/n) Q* 

we also have: 

Proposition 7 . 3 2  Given n-spaces X,Y and a semi-stable n-map 

F : X -zPY 

for some p 3 0  there is defined an unstable spectral quadratic 

construction 

$F : (X/~)---,Q!~'~-~~(C(€)) 
*+P 

with f:flP?(x) -----t ?(Y) a Zlnl-module chain map induced by F. 

If p = 0 then $F = 0. 

l1 

Given a commutative ring R let the group ring R[nl have 

the W-twisted involution 

Given a n-space X and a ring with involution A equipped with 

a morphism 

Rlnl A 

define the -f€icient chain complex of X to be the A-module 

chain complex 

C(X;A) = ABRlnlC(X;R) 

with C(X;R) = RIZZC (X), and similarly for the reduced complex 

&(x;A) = AIRln1k(X:R). Define the A-coefficient symmetric 

construction on X to be the natural transformation 



obtained from the Z[n]-module chain level symmetric constructi 

iX : k(~)-~om 

(i.e. the underlying diagonal chain approximation) by applying 

HMz[nl- and composing with the H-module chain map induced 

Define similarly the A-coefficient quadratic construction 

on a stable n-map F:c~x----+E~Y 

and the A-coefficient spectral quadratic construction on a 

semi-stable n-map F:X -+ L ~ Y  

symmetric 
Recall from 5 1 1 . 1  that the Wu classes 

quadratic 

symmetric 
of the mod 2 ( =  Z2-coef f icient) construction 

quadratic 

have an expression in terms of Steenrod squares 1 iunct ional 



$F k n ( x ; Z 2 )  -Q,(? ( Y ; z ~ ) )  -V> ~om, (fin-' ( Y ; Z 2 )  , Z 2 )  ; 
2  

r  + l  X-(y +--+ cSqh  (Xrn,)  , z m x > )  

( X €  k n ( x ; z 2 ) ,  y e  H " - ~ ( Y ; Z ~ )  = [ ~ , ~ ( z ~ , n - r ) l ,  

I = g e n e r a t o r  € ( K  ( Z 2 , n - r )  ; Z 2 )  = Z2 , 

h  = ( 1 - y ) ~ -  Z ~ ( ~ * Y )  e r z m ~ , ~ m ~ ( n 2 . n - r )  l ( =  I X , K ( Z ~ , ~ - ~ )  1 )  

f  : k ( x )  = R Y ( Z ~ X )  F n m ? ( z m y )  = t ( y ) )  
'. 

w i t h  v r  = f o r  [ n <  2 r  . T h r  i n t e r s e c t i o n  p a i r i n g  o f  t h e  c o m p l e x  
v r  = O  n. 2 r  

n '  ( ~ ( x ; z ~ ) ,  i X ( x ) f  Q ( C ( X ; Z 2 )  ) is  j u s t  t h e  e v a l u a t i o n  o n  X 8 A ( X ; Z 2 )  

o f  t h e  c u p  p r o d u c t  

a n d  i t  F o l l o w s  f r o m  t h e  r e l a t i o n  

( ~ + T ) C ~  = f 8 i X  - i y f ,  : i n ( x ; z 2 )  - Q " ( C ( Y ; Z ~ )  



Proposition 7.33 The quadratic Wu classes v* of the m o d 2  - 

spectral quadratic construction ~ J ~ : H , + ~ ( X ; Z ~ )  --Q, ( C  (f;Z2) ) 
m 

on a semi-stable {l)-map F:X----+X Y inducinq the Z-module 

chain map f:Rmk(x)+6(~) are such that 

i) the rth quadratic Wu class has an expression 

in terms of functional Steenrod squares 

with v ~ ( J I ~ )  = 0 if n >2r, 



(The identity of Prnposi tion 7.3.3 is a direct consequer 

( 1 + ~ )  +F = f* 
of the identity of Proposition 7.3.1 

g%+, = W, ii) 

Recall from SII.9 the -quadratic construction 8 X On 

n-space X, which is the composite natural transformation 

-L Q N- k J + E~N-k - = 6-k(e(~)-*) ( k  

defined usinq any n-space Y Sn-dual to X and any Sn-duality ma 

a:SN-A X A ,,Y (but which is independent of the choice of Y a 

with J as in Proposition 1.1.2. There is also an A-coefficient 

Qperquadratic construction 

ex : i l k ( ~ / n ; ~ ) - + 6 - k ( ~ ( ~ : ~ ) - * )  (k % o )  . 
The hyperquadratic IJu classes G, of the mod 2 hyprquadrat ic 

construction eX:fik (X:Z~)-----+$-~ (~(x;z~)-*) on a l 1  l-space X 

have an expression in terms of the dual Steenrod squares 

Given a spherical fibration c:X-BG(k) over a space 

we shall say that a covering % of X is oriented with respect t( 

if the yroup of covering translations n is equipped with a map 

w:n--+a2 such that the orientation map of 5 factors as 



projection 5 in which case the composite : g------X -------+BG(k) ir 

an oriented spherical fibration over z .  The formally n-dimen! 
hyperquadratic complex of{ is the pair 

defined for any n E Z, with Ut ;€  hk(T(C)) the W-twisted coeff 

Thom class of 5 and 

the hyperquadratic construction on the Thom W-space Tn(C), U 

the Zlwl-module chain equivalence 

U r n -  : ~(T~(E))*S~C(:) 

to identify 

If A is a rinq with involution which is equipped with a morF 

Z[n]-A the A-coefficient Wu classes of C v,(<) are defi 

to be the hyperquadratic Wu classes of Amz ,n16f (C), the A-mc 

morphisms 

The mod2 Wu classes defined in this way 

vr(C) : Hr(~;~2)----*fir(Z2;~2) = Z2 (c) 0) 

agree with the usual mod2 Wu classes v,(5)€H*(x:z2), whicl 

characterized by 

vr (5) U U C  = x(sqr) (U5) E fik+r (T(c) :Z2) 



Let X be an n-dimensional geometric Poincar; complex 

with Spivak normal structure 

(vX:X---RG(k) , D ~ : s ~ + ~ ~ T ( V ~ ) )  , 

and let 2 be an oriented coverinq of X with group of covering 

translations n. With A as above there is defined an n-dimensional 

symmetric Poincar; complex over A 

a* (x )  = ( C ( X ; A ) , + ~ ( I X I ) ~ Q ~ ( C ( " X A ) ) )  , 

and as in Proposition 11.9.6 it is possible to use the Sn-duality 
- 

between X+ and the Thom n-space Tn(uX) defined by 

P A - 
ax : s"+~&T(V X ) --+ X+ A "TV (vX) 

and the Poincari duality A-module chain equivalence 

to identify 

Jo*(X) = S*(vX) . 
Thus the A-coefficient Wu classes OF X defined by 

Vr($-(lX1)) 
Vr (X) : H"-~(R;A) -----L H ~ - ~ ~  (z~;A, 

(with J an isomorphism for n f  2r) can be identified with the 

A-coefficient Wu classes of vX 

In particular, for A = Z2this recovers the usual identification 

of the mod 2 Wu classes v,(X) f H* (X:Z2) chatacterized by 

vr (X) U x = sqr(x) f Hn(~;ZZ) 

(r > 0, XEH"-~(X;Z~)) 
with the mod 2 Wu classes of vX:X------rBG(k) 



A formally n-dimensional normal space (X,VX,PX) (or X for 

short) consists of 

i) a finitely dominated CW complex X 

ii) a spherical fibration VX:X+BG(k) over X 

iii) a map pX:~ntk-~(vX) . 

(Normal spaces were introduced by Ouinn 1 3 ) ) .  The orientation 

of X is the orientation map of v X 

w(X) = w1 (vx) : n1 (X) - z2 - 
The fundamental class of X is the w(X)-twisted integral homology 

class 

1x1 = h(oX) n U, e H, (X) , 
X 

with h:nn+k(T(VX))+hntk(T(v ) )  the Hurewicz map and X 

U, € i k ( ~ ( v  ) )  the w(X)-twisted integral cohomoloqy Thom class 
X X 

of v X' 

An n-dimensional geometric ~oincar; complex X is a 

formally n-dimensional normal space such that the Z [ n  (X) ]-module 1 

chain level cap product with the fundamental class [ X ]  

[XI n - : c(ljn-* a c ( % )  

is a chain equivalence, with the universal cover of X. 

A formally n-dimensional d ~ g r e e  1 map 

f . M--- 'S 

is a map from an n-dimensional geometric PoincarG complex M 

to a formally n-dimensional normal space X such that 



A formally n-dimensional normal map 

(f,h) : M - --.X 

is a formally n-dimensional degree 1 map £:M-----+X together 

with a map of the normal fibrations b:vM+vX covering f 

such that 

Formally n-dimensional normal maps arise in codimension q 

surgery theory - see 57.5 bclow, particularly Proposition 7.5.4 

^degree 1 

l 
f :M-----, X 

An n-dimensional of geometr 
norma l (f,b) :M A X 

degree 1 
~oincar; complexes is a formally n-dimensional 

normal 

such that X is an n-dimensional geometric ~ o i n c a r 6  complex. 

We shall now generalize the construction in S1.2 of 

symmetric o'(f) 
kernel from an actually to a formally 

quadratic o,(f,h) 

f:M-+ X 
n-d imensional \ normal ( E  ,b) :M-----+X 

Let A be a ring with involution. 

symmetric 
A formally n-dimens iona1 complex over A 

quadratic 

(C.@) 
is a finite chain complex C of f.g. projective 

(C, 6 )  

together with an element 



If C is an n-dimensional A-module chain complex (i.e. if 

(C,+) 
Hr (C) = 0 for r ( 0 and H~ (C) = 0 for r z n) then 

(C.$) i Is 
symmetr ic 

the same as an n-dimensional complex over A in 
quadratic 

the sense of S1.l. The manipulations of finite-dimensional 

symmetric 
complexes (such as the algebraic surgery of 51.5) 

quadratic 

symmetric 
carry over to formally finite-dimensional complexer 

quadratic 

Given a formally n-dimensional degree 1 map 

f : M-X 

and an oriented covering 2 of X with group of coverinq 

translations n let fi be the induced oriented covering of M, 

and let ?:K---+F be a n-equivariant map coverinq f. 

The Umkehr chain map of f is the composite Zlnl-module chain 

There are natural identifications 

H*(€.) = H"-*(?) , 

so that the Z[nl-module chain maps 

e = inclusion : C(M) - ---i C(E!) 

g = projection : c(f!)-- +sc(x)"-* 



are such that there are defined lonq exact sequences 

identifying H*(fi) = Hn-.(k) by the ~oincar; duality of M. 

Proposition 7.3.4 Given a formally n-dimensional normal space x - 

and an oriented covering 2 of X with qroup of covering 

translations n the followinq complexes are defined. 

i) The symmetric complex of X is a formally n-dimensional 

symmetric complex over Z [n l 

O*(X) = (C(%),@€ ancccji,,, 

such that 

4, = [xln - : c(K)"-*-c(?) . 
ii) The quadratic ~oincar; complex of X is a formally 

(n-l)-dimensional quadratic Poincar6 complex over Z[n] 

O,(X) = ( R C ( ~ X I ~ - : C ( ~ ) ~ - * - C ( ~ ) ) , ~ ~ Q ~ - ~ ( R C ( [ X I ~ - ~ ) ~  

such that 

(~+T)o,(x) = ao*(x) 

q%o*(X) = Hd*(vX) . 
where ,o*(X) is the boundary of the symmetric complex o*(X) and 

q = projection : OC([Xl n - )  -C(%)"-* . 
iil) The symmetric kernel of a formally n-dimensional 

degree 1 map f:M-X is a formally n-dimensional symmetric 

complex over Z In] 

D * ( € )  = (c(fl) ,$~Q"(c(€'))) 

such that there are defined homotopy equivalences 



h : ;io* (F) A - jo* (X) 

iv) The quadratic k e r n  of a formally n-dimensional 

normal map (f,b):M---+X is a formally n-dimensional quadratic 

complex over Z I n l  

such that 

and such that there is defined a homotopy equivalence 

h : Oo,(f,b) --̂ -i----, -0, (X) 

P:M1+ 
M2 is a 1 degree 1 map of n-dimensional 

(F,F) :M1-M2 normal 

f. :M,--X 
geometric Poincar6 complexes and l (i = 1,2) are 

degree 1 
formally n-dimensional maps such that there is defined 

normal 

a commutative diagram 

symmetric o* (F) 

the I l kernel is canonically cobordant to the 
quadratic a, (F, B )  

symmetric 
union formally n-dimensional ~oincare' complex over Z [ n l  

quadratic 



obtained by glueing alonq the 
a.(fl,bl)u h-lh -a*(f2,b2) 

2 1 

composite homotopy equivalence 

Thus on the L-group level 

Proof: i) Define o*(X) = ( ~ ( x )  , @ )  by 

@ = ~Q([XI) f Qn(c(k)) . 
ii) See Proposition 7.4.1 iv) helow for the definition of 

iii) Define a*(f) = (C(fl),@) by 

@ = e'@fl(f~l) € Qn(c(f!)) 

with e = inclusion : C(R)------+C(f!). 
I 

iv) Define o,(f,b) = (C(f') ,(I) as follows. 

Let Tn(vX)* he a n-space Sn-dual to the Thorn n-space Tn(v ) .  X 

The Sn-dual of the induced n-map of Thorn n-spaces 

Tn(b) : Tn(uM) d T n ( v X )  

is the geometric Urnkehr semi-stable n-map 

inducing the IJmkrhr chaln map 

Evaluatlnq the spcctral quadratic construction 



. k 
eT,,(b)* : H (T(vX))- -- +Qn(c(f!)) 

on the Thom class U € hk (T(vx) ) set 
V X 

v) This is a generalization of the sum formula of Propositio 

11.2.5 degree 1 
for the composition of maps of geometric 

11.4.3 normal 

~oincarg complexes, and may be proved similarly. 

[ l  

There are evident A-coefficient versions of the 

constructions of Proposition 7.3.4, for any ring with 

involution A equipped with a morphism ~ [ n l - A .  

A formally n-dimensional topological normal map 

(f,b) : M-X 

(or a t-triangulation of X) consists of: 

i) an n-dimensional manifold M and an embedding M C S n t  

with consequent topological normal structure 

i i )  a formally n-dimensional normal space X with a 

topological normal structure 

(OX:X - ~ s ( k )  ,P~:S"+~-----+ T(vX) 

iii) a degree 1 map f:M----+X 

iv) a map of topological block bundles 

b:v ---+ SX 
M 

covering f, such that 



(The Browder-Novikov transversality construction applies equally 

well to Formally n-dimensional topological normal maps. Thus the 

set of concordance classes of t-triangulations of a 

formally n-dimensional normal space X is in natural one-one 

correspondence with the set 'TToP(vX) of concordance classes of 

t-triangulations ? x : ~ - - - - - * ~ ~ T ~ ( k )  of a normal fibration 

vX:X-BG(k) (k 2 3 ) ,  in the non-empty case carrying C? natural 

k affine structure with translation qroup (T(v )-L ) ,  exactly as 
X '4 

for the t-trianoulations of a qpometric Poincarg complex X 

considered in Proposition 7.1.3). The usual notion of a 

geometric s u r g e 2  on an n-dimensional topological normal map 

((f,b) :M-+X) 

-((fl,bl) : M' = M \ S ~ X D ~ - ~ ~ D ~ + ~ X S ~ - ' - ~  ----+ X) 

carries over to a formally n-dimensional topoloqical normal map. 

Indeed, the assertion of Milnor [l,p.46) that every compact, 

smooth and oriented n-dimensional manifold M is cobordant to 

one for which the classifying map of the tangent bundle 

lM:M-BSO(n) induces monomorphisms 

concerns geometric surqery in the smooth category on the 

formally n-dimensional topoloqical normal map 

(rM,b) : M- +BSO(n) 

(replacing BSO(n) bp some hiqh-dimensional skeleton) 

Proposition 7.3.5 A qeometric surqery on a formally n-dimensional -- 

topoloqical normal map (f,h):M-- -+X determines an alqebraic 

surqery on the quadratic k ~ r n e l  u,(f,b). 

Proof: By analoqy with Proposition 11.7.3. 



If (f,b):M------+X is a formally 2i-dimensional normal 

map then the quadratic kernel over Z2 

o,(f,b) = (C(€!) , $ G  o2,(c(f!))) 

determines a quadratic self-inters-ction form over Z2 

This generalizes the functional Steenrod square construction 

due to Browder 1 4 1  of a quadratic self-~ntersection form over Z2 

(ker (f.:Hi (M:Z2)-Hi (X;Z2)) , A , P )  

in the case vitl (vX) = O f  Hit1(~:7Z2). (See Proposition 7.3.7 ii) 

below for the connection between the two forms). The latter form 

was given a geometric interpretation by Browder 191 in the case 

of the formal ly 2i-dimensional topological normal map 

2 i + k 
(f,b):M-X defined by a framed embedding f : ~ ~ ~ c  X (k t 0 )  

of a Zi-manifold M in a (2itk)-manifold X (possibly with 

houndary) such that vitl(X) = O F  Hit1(x;7Z2). 

In qeneral, the above self-intctsrction forms over iZ 
I 

2 

(K,X,p) are singular and il:K---r?Z does not vanlsh on L 

ker ( A  :K-----?K*) 5 K ,  so that the A r f  lnvar iant is not drfined 

for (K.A,u). We shall now qivc an intcrprctatlon in terms o f  



h 0 7  

4 tk&++- 
our theory for the Arf invariant to be defined, in the more L 
general context of c-quadratic forms over any semisimple rinq 

with involution A, extendinq the results of Browder [ 8 , § 2 ]  

for A = Z 2 '  

Let then A be a ring with involution which is semisimple, 

i.e. 0-dimensional in the sense of S1.2, so that every A-module 

is projective and every submodule of an A-module is a direct 

summand. 

The radical of an E-symmetric form over A (M,$€QE(M)) 

is the annihilator of M 

M1 = ker(@:M------,M*)c M . 
The induced €-symmetric form on the quotient A-module M/ML 

(M/ML, @/@l € Q' (M/M1) ) 

is non-singular and such that 

(M8$) = (M/ML,@/@l)@(M1cO) 

(up to non-canonical isomorphism). The Witt class of (M,$) is 

defined by 

o+(M,b) = (M/M1,@/bL) € L'(A) . 

If (M,@) is an even E-symmetric form then so is (M/M1,@/@I), 

allowing the definition 

o*(M,@) = (M/ML,@/$') € I , < v ~ > ~  (A) . 
An E-quadratic form over A (M, $ €  Q (M)) is eradicable if 

$I M ,  = 0 € QE(M1) 

with M1 = ker ($+€$*:M--+M*) the radical of the E-symmetrizati~ 

(M, $+E$* € Q F  (M) ) , or equivalently if for each x € ML 

$(X) (X) = 0 f OE(A) = H/ (a - ca l  a € A) . 
There is induced an E-quadratic form on the quotient A-module M/E 



(M/M1,$/*l€ o€(M/ML)) 

which is non-singular and such that 

(M,$) = (M/M',$/$lI@(M1,O) 

(up to non-canonical isomorphism). The Witt class of an 

eradicable €-quadratic form over A (M,$) is defined by 

o,(M,$) = (M/M1,$/$'l LE(Al 

We have the following algebraic version of the Novikov 

additivity property for the signature, involving the glueing 

of forms defined in S1.7. 

1 
any €-symmetric 

Proposition 7.3.6 Given any even €-symmetric forms over a 

eradicable €-quadratic 

(M',$') 

semisimple ring with involution A 1 f ! E l ,  \ (M1,$') and a stat 
(M1,*') 

( even ( - E )  -symmetr ic 

isomorphism of boundary formations over 

split ( - c )  -quadratic 

1 f : ](M,$) - *a(M1,-@'1 

f : 3(M,$)-;I(Mt,-$') 

I €-symmetric the Witt class of the union non-sinqular even E-symmetric 

€-quadratic 

i 
(M,@) Uf(M4 

form over A (M,@) U (M',@') is qiven by 

(M,$] Uf(Mt,$') 



Proof: As in the proof of Proposition 1.7.1 there is defined 

l E-symmetric zn isomorphism oE even c-symmetric forms over A 

€-quadratic 

i 
(M,-$)@((M,$) U f(~'t@'))L + (M',g')@(hyperbolic) 

(M,-$)@( (M,$) U f(M',$') )---I (M',@')@(hyperbolic) 

(M,-*)@( (M,$) U f(M'.$') + (M1,$')@(hyperbolic) . 
Passing to the quotients by the radicals gives rise to the 

Witt class sum formula. 

[ l  

It follows from the proof of Proposition 7.3.6 that the 

eradicability of an €-quadratic form over A (M,$) depends only 

on the boundary split (-E)-quadratic formation over A O ( M , $ ) .  

This dependence has a concise expression in terms of the 

associated tc-quadratic complexes. For any i >  l let 

(C,$€ Q (C, ( - )  i ~ ) )  be the 2i-dimensional ( - 1  ic-quadratic 2 i 

complex over A defined by 

so that the boundary 

,' (C,*) = (-C, :* f Q2i-1 (C, ( - )  iE) 

IS the (21-l)-dimensional ( - )  'E-quadratic ~oincar6 complex 

over A def i n ~ d  by 



dnC = + E$* : ac. = M ----P-+ JC. = M* 
1-1 

with ith (-)'E-quadratic Wu class 

The E-quadratic form (M,$) is eradicable if and only if v'( i L )  = 0. 

I €:M-X Proposition 7.3.7 Let be a Formally 2i-dimensional 
(f ,b) :M ------r X 

for some semisimple ring with involution A equipped with a 

morphism Z [ n  (X) ]--A. 1 

( - )  i-symmetric intersect ion 
The 

( - )  -quadratic self-intersect 
form on 

ion 

Hi(f!;A) = Hitl(f;A) determined by [ 1::: 
(Hi+l (f;A),A= +0: Hitl(f;A) XH~+~(E;A)-A) 

(tlitl(f;A), A = (l+T)JIO : Hi+](f:A) X Hitl(f;A) -A, 

U = v'($) : H~+~(F;A)---,Q(-) i ( ~ ) )  

has the following properties. 



i )  T h e  n a t u r a l  A - m o d u l e  r n o r p h i s m  

c* = d : H i t l ( f ; A ) o H i ( M ; A )  

d e f i n e s  a m o r p h i s m  of ( - ) ' - s y m m e t r i c  f o r m s  o v e r  A 

e* : ( H i t l ( f : A )  . A )  - (Hi (M;A)  . B )  

w i t h  ( H i  ( M ; A )  , B  = / M ]  fl - : H i  ( M ; A )  = H ' ( M ; A )  a~~ ( M ; A )  = H ' ( M ; A )  

t h e  n o n - s i n g u l a r  ( - ) i - s y m m e t r l c  i n t e r s e c t i o n  f o r m  o v e r  A  o f  M. 

T h e  r a d i c a l  o f  ( t l i t l ( f ; A )  , X )  is t h e  s u b m o d u l e  

H i + l ( f ; A ) L  = i r n ( H i + l ( f X l  n-:A)---,Hitl(f;A))CHitl(f;A), 

a n d  is s u c h  t h a t  

k e r ( e * : H i t l ( f ; A ) - H .  ( M ; A ! )  = l m ( g * : H i t l  ( X ; A ) - + H i t l ( f ; A ) )  

c H i t 1 ( f ; A ) I .  

T h e  q u o t i e n t  A - m o d u l e  

H i t l ( f ; A ) / k e r  ( e * : H i t l ( f ; A ) - - - - +  H i  ( M ; A ) )  

= i m ( e * : H i t l ( f ; A ) - H i ( M ; A ) )  

= k e r ( f , : H i ( M ; A ) - H i ( X ; A ) )  

i 
s u p p o r t s  a ( - )  - s y m m e t r i c  f o r m  o v e r  A  i n d u c e d  f r o m  ( H i t l ( f ; A ) , A )  

w h i c h  is a l s o  a s u b f o r m  of ( H i ( M ; A )  , B )  

( k e r  ( f * : H i  ( M ; A ) d H i ( X ; A ) ) ,  [ X ]  = 81)  

w i t h  a n n i h i l a t o r  

i m ( f ! : ~ ~  ( x : A ) - - F I ~ ( M ; A ) )  = k e  

a n d  r a d i c a l  

I ' 
i m ( f '  : H '  ( x ; A ) - H ~  ( M ; A ) )  n k e r  

c k e r  



ii) The restriction of U:H~+~(~;A)-----+ i(A1 to the 
Q ( - )  

submodule 

im(g*:Hi+l (X;A)+Hi+l (f;A) ) = ker (e*:Hi+l (f;A)-Hi (M; 

CHi+l(f ;A) 

is given by the (i+l)th A-coefficient Wu class of vX:X-BG 

vi+l (vx) : H ~ + ~ ( x ; A )  H ~ + ~ ( ~ : A )  -Q(-) i ( A )  = H~(Z~:A. 

Thus there is induced a (-)'-quadratic form over A 

(ker(f,:Hi (M;A)-+Hi ( X : A ) ) ,  ( A l .  Ivt) 

if and only if = 0. In particular, if (t~~+~(f;A),X,p) 

is eradicable then = 0. 

iii) The ( - 1  i-quadratic form over A (Hi+l(f;A) ,A,u) is 

eradicable if and only if the boundary formally (2i-l)-dimensi 

quadratic Poincar6 complex over A 

do,(€ ,b) = -a,  (X) 

= (ac([xln -:c(x;~)~~-*---+c(x;~)).c CQ,~-,(~C(IXI 

is such that 

v1(5) = 0 : H ~ + ~ (  [X] n -;A)- Ho(Z2;A, ( - )  '1  . 

In any case, the restriction of v i  ( S )  to the submodule 

Proof: i )  Consider the commutative braid of exact sequences of 

A-modules 



identifying H~(x;A) = Hi(X;A)* by the universal coefficient 

theorem and H'(M;A) = H i  (M;A) by the ~oincar; duality of M. 

Note that e,f HomA(Hi(M;A),Hitl(f;A)*) has a factorization 

with j* the split injection dual to the natural projection 

1 : H i t l ( f ; A ) i e : H i t 1 f ; A ) - H i  (M;A)) . 
ii) ,iii) These follow from Proposition 7.3.4 ii) ,iv) 

and the commutative diagram 

in which the map Hitl(lX1 n - : A )  - --+liiil(F;A)J is onto. 



Combining the sum formulae of Propositions 7.3.4 v), 7.3.6 

with the eradicahility condition of Proposition 7.3.7 there is 

obtained a sum formula for the quadratic signature over a 

semisimple ring with involution A of a normal map of 

2i-dimensional geometric ~oincar; complexes 

which appears in a commutative diaqram of formally 2i-dimensional 

normal maps 

with the formally 2i-dimensional normal space X such that the 

quadratic complex over A of X 



7.4 Geometric Poincar; splitting 

Geometric Poincar; surgery is not logic ally nec essary 

for the development of the alqebraic theory of codimension q 

surqery in g7.5 below. However, it is a convenient halfway 

point between manifold and algebraic surgery, just as homotopy 

theory is halfway between geometry and algebra. We refer to 

Browder 171, Levitt [l], Jones Ill, Quinn 131, Lannes, Latour 

and Morlet Ill and Hodgson 111 for various expositions of 

geometric poincar; surqery theory. In particular, Quinn 

reformulated the codimension q manifold surgery theory in 

terms of surgery on geometric poincar; complexes and normal 

spaces. We shall now recall and extend this reformulation, 

takinq into account the total surgery obstruction theory 

of Ranlcki 171 and replacing geometric ~oincar; surqery 

with algebraic poincar; surqery as far as possible. 

An n-dimensional normal space X is a formally 

n-dimensional normal space (X,v .X+ BG(k) ,P~:S"+~-* T ( v ~ )  ) 
X '  

in the sense of 57.3 such that X is a finite n-dimensional 

CW complex. In dealing with normal spaces we shall assume 

a certain minimal amount of ~oincar; duality (which can be 

achieved by surgery on 0-cells), namely 

i) cap product with the fundamental class [X] €Hn(X) 

defines a Z [ n  (X) 1 -module epimorphism 1 

with X the universal cover of X, so that RC([x]n -:c(x)~-*---+C 

is an (n-l)-dimensional Z[nl(X) 1-module chain complex, 



- 
ii) slant product with aX = BpX f nn+k (X+ A T(tX) 

2 

defines abelian group isomorphisms 

0 
aX : kk(~(vX) ;& ) " 5 Hn(X;& 0 

aX : kk (T(vX) ;g0) -H~(X;&') , 

where the homology and cohomology groups are defined using 

w(X)-twisted coefficients. It then follows from the commutat: 

diagram of abelian groups with exact rows 

that the restriction 

aXI : i m ( ~ : k ~  (T(v~) ;&O) -hk+' (T(vX) ;L+)) - ~~(H:H~(x;&')& Hn-' (X;%)) 

is an isomorphism. Thus the t-trianqulability obstruction of 

.k+l 
t(vX) = H(O ) f H (T(vX);ILO) is such that t(vX) = 0 if anc 

Vx 
only if aX(t(vX)) = 0 f Hn-l(X;s). The t-triangulabil-1Q 

obstruction of X t(X) = aX(t(vX)) f (X;ILO) is therefore a --..p. p 

that t(X) = 0 if and only if X (i.e. vX) is t-trianqulable. 

An n-dimensional normal pair (X,Y) consists of 

i) a finite CW pair (X,Y) with X n-dimensional and 

Y (n-l) -dimensional 

i i )  a spherical fibration v X : X - - +  BG(k) 

iii) a map of pairs 

(PX, Py) : (D"'~ - ( T ( v X )  ,T(vy)) 



with vy = vXly : Y --+BG(k), such that (Y.vy,py) is an 

(n-l) -dimensional normal space. 

The orientation mae of (X,Y) is the orientation map of vX 

w(X) = w 1  (vX) : n1 (X) + iZ2 

and the fundamental class of (X,Y) is the w(X)-twisted integral 

homology class defined by 

[XI = h ( ~ ~ , ~ ~ ) n  uv F H,(x,Y) 
X 

with h : nntk(T(vX) ,T(vy) )-4Hntk(T(vX) ,T(vy)) the Hurewicz 

map and U, f flk(~(vX)) the w(X)-twisted integral Thom class of vX. 
X 

In dealing with normal pairs (X,Y) we shall assume that 

i )  cap product with [XI B Hn(X,Y) defines a Z[nl(X) ]-module 

epimorphism 

1x1 - : H" (5 )----9* H~(X,Y) 

with the universal cover of X and ? the induced cover of Y, 

so that nC([Xl n-:C(%)"-*-C(%?)) is an (n-l)-dimensional 

iZ1nlIX)]-module chain complex, 

ii) slant product with aX = A(p /p ) € nntk(%/'ir\ T(;~)) X Y 
IL2 

defines abelian group isomorphisms 

- k 0 
aX : H (T(vX) :g )~H~(X,Y;I&') 

- 0 
aX : (T(vX) :go) A Hn(X,Y;& ) 

The elem~nt t(X,Y) = ax(t(vx)) F Hn-l(X,Y:iLO) is the 

t-tr ianaulability obstruction of (X,Y) . -- -- --p-p- 

A finite n-dimensional g~ometric Poincarg pair (X,Y) 

is an n-dimensional normal pair such that the Z [ n  (X) I-module 
1 

chain map 

1 x 1  n - : C ( X )  " - *  - - s c ( x , Y )  

is a chain equivalence. 



An +ensional (normal, qeometric ~oincar;) pair (X,Y) 

is an n-dimensional normal pair such that Y is an 

(n-l) -dimensional geometric ~oincarg complex. 

Given a space K with an orientation double covering 

P w:E-K let nr(~), R,(K) (resp. nflrP(~)) denote the bordism 

group of n-dimensional normal spaces X (resp. geometric ~oincarg 

complexes X, (normal, geometric Poincarg) pairs (X,Y)) which 

are equipped with a map X-K such that the orientation map 

factors as 
W 

w(X) : a l  (X) -+n (K) -~-4 Z2 1 

There is thus defined an exact sequence 

N tJ , P . . .+RP(K)-- + R  (K) --> Rn (K) -Q;-~(K) ---3 . . . * 

We shall only be concerned with the case when K is a CW complex 

with a finite 2-skeleton, for which the Levitt-Jones-Quinn 

geometric ~oincar; surgery theory identifies 

P (K) = ( Z  [ m l  (K) I )  (n 35). 

We shall now use algebraic Poincar; surgery and the spectral 

quadratic construction to define quadratic signature maps 

which the theory implies are isomorphisms for n 3 5. (It follows 

from the surgery obstructian realization theorems of Wall l 4 1  

that they are split surjections, at any rate). 

Proposition 7 . 4 . 1  i )  Given an n-dimensional (normal, 
- 4 

Poincarc) paik (X,Y) and an oriented coverinq (X,Y) with qroup 

of coverinq transldtions n there is defined in a natural way 

an (n-l)-dimensional quadratic Poincarc complex over Z l n l ,  

the quadrat-ir . - l'olncarc .comp_lrx ( r , u )  



o,(X,Y) = (X(1Xln -:C(:)"-* -C(?,?)) ,$F (DC([XJn - ) ) )  . 
The quadratic siqnature of (X,Y) is the cobordism class 

0, (X,Y) f ~,-~(Zlnl) . 
ii) The symmetrization of the quadratic complex (l+~)o,(x,Y) 

is canonically cobordant to the symmetric ~oincare complex o*(Y), 

so that on the L-group level 

(~+T)~,(x,Y) = u*(Y) L"-'(z[~I) . 
iii) The ZlnJ-module chain map 

q = projection : RC([X1 n -)--C(%)"-* 

is such that 

ggo*(x,y) = HS * (vX) 

where S* (vX) = ( C ( % ) ~ - * . O ~ ~  (vx) (Uv ) f Gn(c(k)"-*) ) is the 
X 

hyperquadratic complex of vX:X - d B G ( k ) .  

iv) If Y = @  (i.e. given an n-dimensional normal space X) 

the quadratic Poincarc compl?x of X is the (n-l)-dimensional 

quadratic ~oincar; complex over z [ n 1  

o,(X,8) = o,(X) = (QC( 1x1 n -:C(?)"-*---+c(z)) , Q €  Qn-l(RC( lX]n - )  ) )  

The hyperquadratic signature of X is the element 

6*(x) ef,"(zrnl) 

defined by o,(X.@) together with the canonical null-cobordism 

of the symmetrization (l+T)o,(X,@). The zadratic signature of X 

is the quadratic signature of (X,@), i.e. the element 

H~*(x) = o, [ X )  € (Z?[nl) . 
If X is an n-dimensional geometric ~oincare complex then 0, (X,@) 

is contractible and 

$*(X) = J~*(x) e L"(zI~I) , o,(~) = o G L,-~(ZIITI) 

with o * ( X )  f Ln(Z?[n]) the symmetric signature. 



Proof: Let (C, +f Qn-l(c) ) be the symmetric ~oincar6 complex 

over Z[n] of Y 

O*(Y) = (c(Y).+~(IYI)) = (C,+) , 
and define a Zlnl-module chain map 

f = inclusion : C = C(?) ------+ D = C(%) . 
The evaluation of the relative symmetric construction of S I I . 6  

+K,? : Hn(X,Y) -Qn(€) 

on the fundamental class [XI € Hn(X,Y) gives a connected 

n-dimensional symmetric pair over Zln] 

Poincar; complex over z[n]obtained from (C,+) by surgery on 

the pair (f :C -D, (6+,+) ) , so that 

c 1 = ~c([xln -:c(it)"-*--+c(%,1)) 

= RC(~:D"-*---, c(f)) 

with g:Dn-**~(f) the Z[nl-module chain map defined by 

Proposition 1.5.1 ii) (or rather its proof in Proposition 1.4.1) 

gives a canonical symmetric Poincarg cobordism between (C,+) 

and (C 

be the 

the pa 

, + l ) .  Let 

(D',&+') = (c(f).6@/+f~~(c(f))) 

n-dimensional symmetric complex over z[n] obtained from 

r (€:C-D,(6+,+)) by the algebraic Thom complex 



construction of S1.4. Equivalently, (D',&$') is the complex 

defined by the evaluation on [XI f Hn (X,Y) = il (X/Y) of the 

absolute symmetric construction on c/? 
- -  

$;(l, : Wn(x/~)----+~"(c(x/y)) , 

identifying 
- - 

D' = C(f) = ~(x,?) = C(X/Y) , a $ '  = $~/y([Xl) 

The inclusion C(f) - +  c ( g : o n - * h  C(f)) defines a iZ[n]-module 

chain map 

e : D' = C(€)-----tC(q) = SC' 

such that 

% e ( 6 6 ' )  = S(@') on(c') , 

where S : Q ~ - ~ ( c ' )  -+Qn(Sc') is the algebraic suspension map 

of S1.l. Let Tn(vX)* be a n-space Sn-dual to the Thom n-space 

Tn(vX), so that the Sn-duality theory of 511.3 applied to 

the composite Ill-map 

G : T"(V,)*-+~~(X/?) 

inducing the i2ln)-module chain map 

Evaluatinq the spectral quadratic construction 

$ G  : fik(~(vX))---- +Qn (C(q)) 

on the W-twistfrl coefficient Thom class Uv € ~l~(T(u~)) t h ~ r e  
X 



is obtained an element 

$ '  = *,(Uv ) € Qn(c(s) 
X 

such that 

(1+~)$' = e8(64') f on(sc') = anfc(q)) 

by proposition 7.3.1 i). Considering the exact sequence 

(or rather the underlying short exact sequence of chain complexes, 

cf. Proposition 1.1.3) there is obtained an element $ J € Q ~ - ~ ( C ' )  

such that 

(l+T)$J = 6 '  f Q"-~(c') 

S$ = $ '  Qn(SC1) , 

with o,(X,Y) = (C8,$) an (n-l)-dimensional quadratic Poincar; 

complex over Z [ n ] .  

I l 

If (f,b):M+X is a normal map of n-dimensional 

geometric Poincar; complexes and W is the mapping cylinder 

of f : ~ d X  then (w,M U-X) is an (n+l)-dimensional 

(normal, qeometric Poincar;) pair (cf. Cuinn 1 3 1 )  with 

quadratic signature 

o,(W,M u-X)  = o , ( f , b )  F Ln(Z[q1) , 

that is the quadratic signature of (f,b) in the sense of 51.2. 



Proposition 7.4.2 The various signature maps fit together to 

define a natural transformation of long exact sequences 

with n =nl(K), n)O. 

I I  

As noted above, it follows from the Levitt-Jones-Quinn 

qeometric Poincar6 surqery theory that the quadratic signature map 

o, : ~?:;T(K) ----+ Ln(Z[nl(K) I )  ( n  > 4 )  

a r e  isomorphisms. In general, neither the symmetric signature maps 

o* : Q~(K)-L~(Z[~~(K)I) 

nor the hyperquadratic signature maps 

a *  : ~ ~ ( K ) - - - - - + ? , " ( Z [ ~ ~ ( K ) ] )  

are isomorphisms. See Ranicki 17,p.306] for an example in 

which L?* is not onto, and see Proposition 7.6.8 below for 

an example in which U *  is not onto. 

An &,n-q) -d imepsional (or codimension q) normal pair (X,Y) 

consists of: 

i) an n-dimensional normal space 

(x,vX:X -----+BG(k) ,PX:sntk- T(vX)) 

ii) an (n-q)-dimensional subcomplex Y C X  

iii) a (q-l)-spherical fibration over Y 

= r; : Y *BG(q) 
V~ c X 



and a subcomplex Z C X  disjoint from Y such that 

X = E(S) U s(clZ 

and such that Y is an (n-¶)-dimensional normal space with 

(vy = S Q U ~ I ~  : Y-----+~~(q+k), 

P 
pY : ~("-q)+(q+~) = s"+~-LT(V X ) - - + T ( ~ ~ ) / T ( U ~ I ~ )  = T(V~) 

In particular, (X,Y) is a codimension q CW pair 

of 3 7 . 2 .  A codimension q geometric ~oincari pair 

codimension q normal pair with X and Y qeometric 

in the sense 

(X,Y) is a 

poincar; 

complexes and ( Z , S [ ( ) )  a qeometric Pr)incar6 pair. 

Let (X,Y) be a codimension q CW pair with 

X = E ( C ) U ~ ( ~ ) Z  , 5 : Y---+BG(q) . 
normal space 

A map E : M 4 X  from an n-dimensional 
geometric ~oincari comple 

normal 
transverse at Y c  X if (M,N = f-'(~) c M) is an 

~oincar; 

normal 
(n, n-q) -dimensional pair with 

qeometric ~oincar6 

g = f l  5 
= v : F: -- - Y - B G ( q )  , M = E(E;)LI~(~)P P =  

C M 

Accordinq to the normal transversality theory of Quinn l 3 1  

every map f:M---+X from a normal space M is normal trapsverse 

Y c X ,  for any codimension q CW pair (X,Y), so that in particulal 

there is an analogue for the normal bordism groups Q!(K) of the 

Pontrjagin-Thom isomorphisms nSToPl~) g H, (K;-) ( *  # 4) for 

topoloqical bordism, as follows. 



Given an n-dimensional normal space 

use the canonical =-orientation V,, € ilk (T (vM) :S) to define 
M 

the canonical MSG-fundamental class 

[M1 = uM(U ) € H n ( M ; m )  
"M 

using w(M)-twisted coefficients. (The cap products 

[M] n - : H* (M;=)-Hn_, (M;?) 

are not in qeneral isomorphisms). 

The normal space Pontrjagin-Thom isomorphisms are defined 

by noting that K + A  MSG(k) = T(rlk) is the Thom space of the 
Zz 2 

(k-l)-spherical fibration classified by the map qk appeaing 

in the homotopy-theoretic pullback square 

and settinq 

Hn(K;%) = I.im nntk(Xt A MSG(~))  if(^) ; 
7;' z 2  

using normal transvecsality. The inverse isomorphisms are defined by 

with [M]€Hn(M;MSG) the canonical =-fundamental class. 



Proposition 7.4.3 An n-dimensional normal space X has a 

canonical &'-fundamental class 

1x1 € Hn(x:&O) 

such that - 0 i) the map H:Hn(X:& )- (X:ILO) sends [il to the 

t-trianqulability obstruction of X 

i i) 

sends [ S  

iii) 

sends H( 

H (  1x1)  = t(X) f (X;.Lo) 7 

the hyperquadratic assembly map ~ * : H ~ ( x ; & ~ ) - ~ E ~ ( z [ ~ ~ ( x )  l) 

to the hyperquadratic signature of X 

C*( 1x1) = d*(x) Ln(z[nl(x) I )  , 

the quadratic assembly map U,:H,-~(X;%)- (z[nl (X) I) 

i]) = t(X) to the quadratic siqnatur~ of X 

0 Proof: Use the canonical & -orientation Gv € kk(~(vX) :a0) 
X 

to define 

121 = a (G ) E H~(X;$') 
X Vx 

with (vX:x+ B G ( ~ )  ,pX:~ntk-~(v X ) )  the normal structure and a X =  ApX 

Alternatively, reqard as the spectrum of oriented normal 

space n-ads and use the n-ad version of the (symmetric, quadratic) 

~oincar; complex construction of Proposition 7.4.1 i) to 

define a morphism of ring spectra 

C* : "-g0 
and use the canonical MSG-fundamental class [XI f Hn(X;EG) 



The hyperquadratic siqnature map on the normal bordism 

groups factorizes throuqh the hyperquadratic assembly maps 

by Proposi 

A t- 

quadratic 

tion 7 . 4 . 3  i). 

triangulable n-dimensional normal space X has 

siqnature 

by Proposition 7 . 4 . 3  iii). The vanishing of Lne quadratic 

signature for t-triangulable normal spaces has a simple geomet 

interpretation: given a t-triangulation 

(f,b) : M-- ? X 

(i.e. a formally n-dimensional topological normal map) note th 

the mappinq cylinder W of f:M----*X defines a normal space 

cobordism (W;M,X) between the manifold M and the normal space 

with a reference map 

(q;f,l) : (W;M,X)---+X, 

so that 

o,(X) = U, ( M )  = HJn*(M) = 0 Cl I,n-l (Z[nl(X) 1 )  

by Proposition 7 . 4 . 2 .  In fact, the quadratic kernel o,(f,b) 

is a connected n-dimensional quadratic complex over Z[n1(X)1 

such that the quadratic Poincarg complex a,(X) used to define 

the quadratic signature is homotopy equivalent to the 

boundary !(-o,(f,b)), by proposition 7 . 3 . 4  iv). 



Given a codimension q CW pair (x,Y) with 

normal space 
there are defined transfer maps in the 

geometric poincar; 

I'(~:M -Y) = ((E(€*[) ,S(f*C)) - ( E ( [ )  ,S(S))) 

and p the natural maps induced by the inclusion 

(E(C),s(C))-(X,Z) - 
The normal space bordism transfer maps pc! are isomorphisms, 

with C ' :n:(~) 4 R;+~(E(S) ,S(E) ) the inverses of the 

MSG-coefficient Thom isomorphisms 

(with U E iq(~(5) ;E) the canonical %-orientation of 5 )  a1 c 

-R;+~(x,z) = Hn+q(X,Z;gl 

the =-coefficient homology excision isomorphisms. 

n:(:ec!) normal space 

(n > 0) be the relative bar( 
n:(apc') qeometr ic ~oincarg 

groups appearing in the exact sequence 



...- ? . n N  n-q+l 
JP[! -- R~:(z) -----+~:(3pt,!) -+ ClP (Y) 

n-q 

the bordism groups of pairs of maps 

(g : N - - + Y .  h : (P,S(f*S))---+(z.S(S))) 

normal space 
such that N is an (n-q)-dimensional 

geometric poincar; complex 

normal 
and (P,S(f*[)) is an n-dimensional pair, 

geometric ~oincar6 

There are defined maps 

with 

normal space 
A map €:M--X from an n-dimensional 

geometric ~oincar; complex 

norma l 
M is bordant to one which is transverse at Y C X  if 

~oincari 

The maps Clt(0pS')A nY(X) are isomorphisms, by normal 

transversality. Recall from S7.2 that the analogously defined 

relative quadratic L-groups L,(;!p[!) appearing in the exact 



sequence 

, , P C  
. . . --* Ln-q+l (Z[nl(Y) 1) Ln(ZInl(Z) 1) 

+~.~(!p[!) - - + L ~ - ~ ( z [ ~ ~ ( Y ) I )  +... 

are the codimension q surgery obstructions LP,(@) of Wall 141 

L n 0 P h  = L P  (0) 8 

n-q 

and such that the analogously defined maps LP (0)----+Ln(Z[nl(X) I )  
n-q 

fit into the exact sequence 

...---+ LS (0) -LP 0 -  L n Z l 1 x  1 - L S n q l +  .. . . 
n-q n-q 

Proposition 7.4.4 Given a codimension q CW pair (X,Y) with 

the fundamental groupoid 

nl(E 

pushout squa 

0 

there is defined a commutative braid of exact sequences for n-q> 5 



Lsn-q-l (9) 
(n-q)5) is tha bordism group of maps 

LPn-q-l ( a )  
(f,Df) : (M,aM) +X 

qeometric Poincarg 
from n-dimensional pairs (M,aM) 

(normal, qeometric poincar;) 

such that ;f:aM-----+X is Poincar; transverse at Y C X .  

Aqain, let (X,Y) be a codimension q CW pair. 

t geometric ~oincarh complex A map f:M+X from an n-dimensional 
normal space 

(Poincarh 
M is Poincar; split alonq Y c X  if f is bordant to a 

[normal 

map f':M1-+X from an n-dimensional geometric poincar; complex 

M' which is Poincart? transverse at Y C X .  The Poincarh splitting 

is the element obstruction of E alonq E 

S (f,Y) = U  c 
c 

using periodicity, by 

7.4.4. (For n-q 4 4 define 
\ t ~ ( f  ,Y) 

proj~ction f 

I sP(f,Y) = U ( M x  ( c P ~ ) ~  --------+ M -------+ X) 
5 

e I,Sn+4k-q-1(@) = LS n-q-l ( @ )  

projection f 
tP(f,y) = V C  ( V x  (=P2lk ----A M -- --+X) 

i F LPn+4k-q-1 ( a )  = ($1 

for any k 8 l such that nt4k-q > 5). 
P 

The Poincarg splittinq obstruction s (f,Y)fLSn-q-1(9) was first 

obtained by Quinn 131.  



For q) 3 the two poincar; splitting obstructions along Y c  X for 

a map f : M u X  from an n-dimensional geometric Poincar; comple 

M coincide, with 

Proposition 7.4.5 The ~oincar; splitting obstruction along Y C  X 

geometric poincarg complex 
map f:M+X from an n-dimensional 

normal space 

1 such that if (and for n-q> 5 only if) 
tP(f,Y) = 0 f LPn-q-l(0) 

f is ~oincar6 split along Y C X .  

It is reasonable to expect an expression for the poincar6 

splitting obstruction along Y C  X of a map 

geometric poincar; complex 
f : M d X  from an n-dimensional M 

normal space 

in terms of the t-triangulability obstruction t([) € kqtl(~(c) ;g  

of c:Y-BG(q) and the triangulability obstruction of M L: 
s (M) f 8, (M) 

, for if 5 is t-triangulable and M is 
t (M) f Hn-l(M;ILO) 

~oincar; 
triangulable then f:M-X is bordant to a map 

normal 

f':M1-X from a manifold M' which is topologically (and 

a fortiori geometric poincar61 transverse at Y c X .  he shall obt 

such an expression in Proposition 7.4.6 below. 



The product of spherical fibrations a :X -+ B G (  j )  , 

B : Y  ------, B G ( k )  is the spherical fibration a x 6 : X x  Y - B G ( j + k )  

defined by 

( D 3 x  D k , D ' x  ~ ~ - ~ U S j - ~ x " ~ ) & ( E ( f l )  X E ( B ) , E ( Q )  x S ( e ) U S ( Q )  x E ( B ) )  

( = ( , , ~ + k , ~ j + k - l  1 )  ( = ( E ( a x B )  . S ( u x B )  ) 

W X X Y ,  

with Thorn space 

T ( a x 6 )  = E ( a x B ) / S ( o x B )  

= ( E ( a )  x  E ( 6 )  ) / ( E ( a )  X S ( 8 ) u  S ( a )  X S ( 6 )  ) 

= ( E ( a ) / S ( a ) )  A ( E ( B ) / S ( B ) )  = T ( a )  A T ( B )  . 
The canonical $'-orientation of a x B  is the product of the 

canonical &'-orientations of Q and B 

f i a x B  = c o l  O ;  E k j t k ( ~ ( a )  h T ( B )  ;&'l 

defined using the multiplicative structure of the ring spectrum c'. 
The Whitney sum of spherical fibrations a : X - B G ( j ) ,  

B:X-----tBG(k) over the same base space X  is the fibration 

a W : X  - B G ( j + k )  obtained from the product a x B  by pullback 

alonq the diagonal map A:X-X X X : x - ( x , x )  

a @ $  : X-- + X  x X > ' & ~ ~ ( j + k )  . 
The canonical &'-orientation of a@B is the product of the 

canonical &'-orientations of a and B 

Oae9 = h * O o x R  = 6 € h j t k  
fl B ( T ( n @ B )  ;&') 

defined usinq the multiplicative structure of the ring spectrum go 
and the induced map of Thom spaces A : T ( n @ R ) - - - + T ( a x B )  = T ( Q ) A  T ( R ) .  

The t-triangulability obstruction of nWH is thus qiven by 

.. ,. 
t ( o b ( i )  = f l ( U n W R )  = I I ( U a f f l  

{ , j + k + l  ( T ( n b l ? )  ;lLO) . 



In particular, if %:X --+BG(k) admits a t-triangulation 
h 

B:x -BTOP(k) and U f hk(~(f3) is the canonical B 
L'-or ientation then 6 = JU- € H~(T(B) ;g0) and the - e e 
t-triangulahility obstruction of abR is the product 

defined using the structure of %as an lI,O-module spectrum. 

Proposition 7.4.6 Let (X,Y) be a codimension q CW pair, and let 

geometric ~oincar; complex 
f:M+X be a map from an n-dimensional 

normal space 

M which is normal transverse at Y C X .  Let 

g = fl : N = f - l ( ~ ) o Y  , i = inclusion : N d M  

and let vM:M.BG(k) be the normal fibration of M. 

i) The image of the ~ o i n c a r 6  splitt ing obstruction of f 

a long Y C X in Ln-q-l ('Z[lrl(Y)J) is given by 

with o,(N) € Ln-q-l(iZ[nl(N)j) the quadratic signature of t h ~  

(n-¶)-dimensional normal space N and t(N) S Hn-q-l(~;&O) the 

t-trianqulat~ility ohstruction of N, and hencr also of 

vN = qfC@i*vM : N --+~~(q+k) . 
In particular, for q t 3  

P 
s (€,l') - [S (€,l') I € LS  -c,- = l,n-q-l(zfnl(Y) 1 )  

tP(f,l') = ( ltP(f,~) l ,O) : p rJ'n-q-l(B) = (Slnl(Y: l)@Ln-l(Zlnl(X)l) . 



i i )  If q = 1 or 2 and M is 

,v 

(since BTOP(q) = BG(~)). 

is a manifold with normal bundle - 
If q >  3 and M v M : ~  -BT%P 

admits a t-trianqulation 

the poincari splitting obstruction of f:M----+X along Y c X  is 

f Ln-q-l (72 Inl (yl) 

P with t (f,Y) = ([tP(f,~)I,O) as in i) and U; € ik(~(vM) 
M 

the canonical %'-orientation of 7 
M '  

iii) If 5:Y ---+BG(q) admits a t-triangulation S:Y +BG 

the maps 

appearing in the braid of Proposition 7.4.4 

factor as 

with the maps appearing in the natural transformation of i v, 
exact sequence$ given by Proposition 7.2.6 iv) 



Thus the poincar; splitting obstruction along Y C X of 

is given by 

sP(f.y) = uc(f,s(M)) f LSn-q-l(Q) 

tP(f,ll = vf(f.tIM1) f LPn-q-l(Q) 

S(M) e !+,(M) 
with the [s-trianqulability obstruction of 

t (M) f H"-1 (M;&) t - 

d 
In fact, the t-triangulations ;:Y -BTOP(q) of a 

spherical fibration c:Y-----+BG(q) over a space Y are in a 

natural one-one correspondence with the geometric ~oincar6 

transversality structures along the zero section YcT(I;) for 

maps f : M d T ( < )  from manifolds M, i.e. ways of making them 

Poincar; transverse at Y C X  - see Levitt and Morgan [l], 

Brumfiel and Morgan (11 for the simply-connected case, Levitt 

and Ranicki [l] for the non-simply-connected case. Dually, th 

manifold structures on an n-dimensional geometric ~oincar6 

complex M are in a natural one-one correspondence (at least 

for n 35) with certain geometric poincar; transversality 

structures for maps f:M+T(c) to the Thom spaces of 

topological block bundles ?:Y A B T ~ P ( ~ )  - see Levitt and 
Ranicki [l]. From the point of view of Ranicki 171 

such a geometric ~oincar6 transversality structure on 



a (q-l) -spherical fibration C:Y ----tBG(q) 
is an 

an n-dimensional geometric Poincar; complex M 

P uS C? A'(T(S) ;cP) 
f? -orientation with image the canonical 

[M1 € Hn(M:gP) 

N uifiq(~(i);eN), [ -  
fl -orientation - 

[M] f H~(M;'~) with of ( [M] = ( ~ : M - + M )  € n;(M) ' 

where gP is the spectrum of oriented geometric ~oincar, n-ads 

and cN = is the spectrum of oriented normal space n-ads 

P P N (so that n, (R ) = Q, (pt.), n, (C ) = net=) = ~t(pt.) and there 

is defined a cofibration sequence of spectra 

go---+ gP ---- gN - - - +  Z-~IL - -. . . ) . 
-0 

The geometric ~oincar; assembly maps 

are defined for any space X ,  and fit into a commutative braid of 

exact sequences 

/' /-\ /--"h 

Hn(X;ILO) 

L, ( z  Inl (X) 1 4, (X) 



There are evident relative and rel'i versions of the 

geometric Poincarg splitting obstruction theory. In particular, 

given a codimension q CW pair (X,Y) and a map 

(f, 3f) : ( M , : I M ) d X  

~oincar; 
from an n-dimensional pair (M,2M) 

(normal, geometric ~oincar;) 

such that af:aM-+X is ~ o i n c a r 6  transverse at Y C X  there is 

defined a re13 ~ o i n c a r 6  splittinq obstruction of f along Y C X  

s:(f ,Y) f LSn-q-l (Q) 

t';(f,Y) f 

such that the following re13 version of Proposition 7 . 4 . 5  holds. 

Proposition 7 . 4 . 7  The re12 ~oincar; splitting obstruction is 

I s;(f ,Y) = 0 f LSn-q-l ( @ )  
such that p if (and for n-q 5 only if) 

t3 (f ,Y) = 0 f (9) 

qeometric Poincarg 
there exists a relative bordism 

(norma1,geometric ~oincat-6) 

between (f,af):(M.>M)+X and a map (f'.7f'):(M',JM1)+X 

from an n-dimensional geometric Paincar6 pair (M1,3M') which 

is Poincacg transverse at Y C X ,  and such that the 

(n-l)-dimensional geometric Poincar6 bordism 

is Poincar6 tqansverse at Y C  X. 



The manifold codimension q splitting obstruction theory 

described in S7.2 has a natural expression in terms of re12 

qeometric Poincar; splitting obstruction theory, as follows. 

Proposition 7 . 4 . 8  Let (X,Y,<) be an (n,n-q)-dimensional t-nor - 

geometric Poincari pair, and let f:M-X be an triangulat [:I 
of X which is topoloqically transverse at Y c X  with respect t 

The manifold codimension q splitting obstruction along Y C X  o 

is the rel: ~oincar6 splittinq obstruction along Y c  X of the 

evident map 

qeometr ic ~oincar6 
from the (ntl) -dimensional pair 

(normal, geometric Poincar6) 

(W,Mu-X) defined by the mappinq cylinder W of f:M---+X 



7.5 Algebraic PoincarQ s p l i u  

From now on we shall only be dealinq with codirnension 

surgery theory for q = 1 , 2 ,  since for q)3 the obstruction gr 

are just the quadratic L-groups already dealt with in §l. 

Let (X,Y) be a codimension q CW pair with 

X = E ( [ )  U S ( S ) ~  , 5 : Y -BG(~) = BTTP(~) ( q =  1.2 

and let @ be the corresponding pushout square of fundamental 

groupoids 

We wish to give an algebraic account of the codirnension q 

LS,(ID) 
surgery obstruction groups defined geometrically in 

LP* (0 )  

to fit into the exact sequence 

-LP + L  ( z l n l ( Y ) l ) ~ .  
n-q n-q 

In S7.6 (q = l) and S7.8 (q = 2 )  we shall construct algebraic 

transfer functors 

p c !  : (n-dimensional quadratic (~oincar;) complexes over i 

+((n+q)-dimensional quadratic (~oincar;) pair 

over 7 L [ n l ( z )  ] ---+ z [ n l  ( X )  1 )  



LS* ( $ 1  
allowing to be identified with the relative quadratic 

Is'* (0) 

appropriately relative quadratic Poincar; cobordism. We shall 

now assume the existence of such algebraic transfers, leaving 

the details of the construction to 5S7.6.7.8. Instead, we go 

LS* (a) 
beyond such a direct algebraic definition of [ to a 

LP* ($1 

formulation in terms of algebraic poincar; splittings with 

respect to 4 of quadratic Poincar; complexes over z[n (X)], 1 

making use of an algebraic analogue of codimension q topological 

transversality, which we shall need in S57.6,7.8 to recover 

the existinq algebraic interpretations of the LS-groups in 

particular cases and also to obtain some new ones. However, 

the proof of this algebraic formulation will still involve 

some geometry. A purely algebraic proof will be obtained in 

Ranicki [l11 

rings, and a 

In the 

as O the not 

- this will also apply to rings other than group 

lso to symmetric L-theory 

first instance we extend to pushout squares such 

ion of algebraic ~oincarg splitting already 

developed in 56.1. We continue with the terminology that 

for n F  Z a n  n-dimensional quadratic Poincar; complex X over 

a ring with involution A is a closed object X of the category 

Ln(A) OF S1.8. In particular, given an n-dimensional quadratic 

Poincarg complex y over Z[n (Y)] there is defined an l 

(n+q)-dimensional quadratic Poincar; pair (pE!y,ap5 !y) over 

z Inl ( 2 )  l ---+ Z Inl (X) l .  



An n-dimensional quadratic Poincar6 splitting over 4 (y,z) 

consists of 

i) an (n-9)-dimensional quadratic ~oincar6 complex y 

over Z[nl(Y) 1 

ii) an n-dimensional quadratic Poincarg pair (z,?pt !y) 

over Z [nl ( Z )  1 .  

In keeping with the convention that we are considering simple 

geometric Poincarg complexes (unless speciEied otherwise) y 

1 and (', ,?pc y) are to be taken as simple - as usual, there are 

also free and projective versions of the theory, which are 

compared to each other in Proposition 7.5.2 below. 

It follows from the above that the union 

is a (simple) n-dimensional quadratic Poincar; complex over 

Z[nl(X)]which we shall abbreviate to pc!yuz. The splitting 

is contractible if the union is contractible. 

A Poincarg splitting (with respect to 4) (y,z) of an 

n-dimensional quadratic Poincar; complex x over 22 In ( X )  1 

is an n-dimensional quadratic Poincar; splitting over 6 

together with a simple homotopy equival~ncp 

! PS YU' - ) X .  



For example, if (X,Y) is an (n,n-qi-dimensional geometric 

poincar; pair and (f ,h) :M 4 X is a normal map from an 

n-dimensional geometric ~oincar6 complex M which is Poincar6 

transverse at Y C X  so that 

then the quadratic kernel o , ( f , b )  over Z[nl(X) 1 admits a Poinca 

splittinq, since 
I 

n , ( f , b )  = o*(g,c) 'U u*(h.d) . 
The splitting is contractible if and o:ily if f is a slmple 

Z [n (X) ]-homology equivalence. 1 

An n-dimensional relative quadratic Poincar; splittinq 

over 4 ((y,ly), (z,a+z)) consists of 

i) an (n-¶)-dimensional quadratic Poincar6 pair (y,3y) 

over Z f n l  (Y) J 

ii) an n-dimensional quadratic poincar; triad 

(z; ,+z,:8+p~!y;.lp~! ly) over z[n1(7,) I . 
It follows that the union 

is an n-dimensional quadratic Poincar6 pair over Z[n1[x)1 
I 

which we shall abbreviate to (pC!y u z,pc 'yu 2,~). 

A k)oincarh splittinq (with respect to ((Y, ly), (z,'J+z) 1 

of an n-dimensional quadratic ~oincarg pair (x,?x) is an 

n-dimensional relative quadratic poincar; splitting over 0 

together with a simple homotopy equivalence of pairs 
I I 

(p6.y U Z,PS' !Y U .l+z) A .+ ( X  $ 2 ~ ) .  



A normal splittinq (with respect to 0) ((y, 3y). (2, J,Z) ) 

of an n-dimensional quadratic poincar6 complex X over Z[n (X) 1 

is a poincar6 splitting of the n-dimensional quadratic Poinca~ 

pair (X, 3x) over Zlnl(X) 1 .  Note that ( 3 y ,  3,z) is then a 

contractible ~oincar; splitting (of 3x). 

Proposition 7.5.1 Let (X,Y) be a codimension q CW pair, and 14 

0 be the associated pushout square of fundamental groupoids. 

i) Every quadratic Poincar; complex X over Zlnl(X) 1 ;S 

cobordant to one which admits a normal splitting ((y,Jy),(2,3. 

LS (4: 
ii) The codimension q surgery obstruction group 

[ "ntractible 
is the cobordism group of n-d imensional 

quadratic Poincar6 splitting5 over 9. The maps appearing in tl 

exact sequence 

are given by 



LS (Q)-----+LPn-q(Q) ; (yt~)t-------+(y,z) 
n-q 

l 
LP ( 8 )  - - +  Ln(Zlnl(X) l )  ; (y,z) -P~'YU z 

n-q 

Ln(Z[nl(X) l)----, LSn-q-l(Q) ; X-+ !ly, ' +z )  

(if ((y,dy), (z,J+z)) is a normal splitting of X )  . 
In particular, the imaqe of an element X €  Ln(Zlnl(x) l )  in 

LSn-q-l(Q) is the obstruction to X having a Poincar; splitting. 

iii) If f:M+X is map from an n-dimensional 

1 transverse at Y C  X 

geometric ~oincarg complex 

normal space M which is norma 

with 

f = g'u h : M = E(v) U ~ ( ~ ) P - - - +  X = E 

v : N = f-'(y) -%~-~-l Y + B G ( q )  , 

h = fl : P = f-l(z)-z 

then the codimension q poincarg splitting obstruction of F along Y C  X 

1:ontractible 
is represented by the 

(n-l)-dimensional quadratic Poincar; splitting over 0 

of the (n-1)-dimensional quadratic Poincar6 complex over Z[nl(X)] 

of M 

the (n-q-l)-dimensional quadratic ~oincarg complex over Z[nl(Y)] 

of the (n-q)-dimensional normal space N and 



the (n-l)-dimensional quadratic ~oincar; pair over Z[nl(Z)l of the 

n-dimensional normal pair (P,S (v) ) . 
iv) If (I,Y) is an (n,n-q)-dimensional geometric ~oincar; pair 

and (f,b):M-+X is an triangulation of X which is i: : 
topologically transverse at Y C  X, with 

then the codimension q manifold splittinq obstruction of f 

s(f,Yl f LS (8) ' 0 ~ t ~ ~ ~ t i b 1 ~  
along YC X n-q is represented by the 

t(f,Y) e LP,-,(@) 

n-dimensional quadratic ~oincar; splittinq over Q 

of the n-dimensional quadratic kernel of ( F ,  b) over Z [nl (X) l ,  

with o,(g,c) the (n-q)-dimensional quadratic kernel of 

(g,c) :N-Y over Z[nl(Y) 1 and o,(h,d) the n-dimensional 

are Proof: In the first instance note that ii),iii) and iv) 

immediate consequences of i) and its relative version. 

To prove i )  use the realization theorem of Wall (41 to 

identify x C  Ln(Z![nl (X)]) with the re1 surgery obstruction 

o,(f,b) of a t-triangulation of an n-dimensional manifold 

with boundary (X1, .)X1) (n )/ 5 )  





s(;lf,:iY1) e LS n-q-l (0) is the image of X = o,(f,b) 63 Ln(z[nl(: 

under the canonical map. 

Alternatively, it is possible to prove i) using the 

normal space transversality of puinn 131. Consider xfLn(Z[n 

as the quadratic signature o,(W,;W) of an In+l)-dimensional 

(normal. qeometric poincar6) pair (W,aW) equipped with a 

reference map (r, I r )  : (W, 3W)-X. Making (r, 3r) normal 

transverse at Y c  X note that the constructions of Proposition 

translate the consequent normal splittinq of (W,JW) into a 

normal splitting of X = o, (W, aW) . In general, ;r: 3W + X is 

not Poincarg split along Y c X ;  in fact, the splitting obstruc 

sP(ar,y) € LSn_q-l (0) is the imaqe of X = 0, (W, ;W) € L ~ ( Z [ ~ ~ ( X  

under the canonical map. 

(The two methods of proof of i) are related to each 0th 

by the mapping cylinder construction, cf. Proposition 7.4.8). 

l l 

An algebraic proof of Proposition 7.5.1 i) requires an 

L-theoretic version of the linearization trick of Higman [l] 

- see the introduction to 57.6 below for a brief survey of th 

corresponding algebraic K-theory for q = 1. 

There are evident analogues of Proposition 7.5.1 for th 

LS*(@) : LS~(*) 
versions of the groups appropriate to the 

LP*(@) 5 LP:(@) 

free and projective quadratic L-theory, which we denote by 

h L$(@) iLSt'" and [ . 
LP* ( 0 )  LP!(@) 



Proposition 7.5.2 Let (X,Y) be a codimension q CW pair, and let 

Q be the associated pushout square of fundamental groupoids. 

Ins* (0) 
The simple groups are related to the free qroups 

LP* ( 8 )  

by a commutative diagram with exact rows and columns 

i WhS, ( a )  
with the relative groups appearing in the exact sequence 

WhP, ($1 

I 1,s: ( $ 1  
Similarly for the relation between the free groups h 

LP* (0) 

LS!(*) 
and the projective qroups , with the Whitehead groups 

r . ~ ?  ( 4 )  



Wh (n) replaced by the reduced projective class groups FO(Z[n j )  . 
1 1  

Furthermore, the splittinq theorems for the quadratic 

L-groups of Shaneson 111. Novikov [l] and Ranicki 1 2 )  

extend to the groups \ ::: 

with @ the fundamental groupoid pushout square of a codimension q 

1 CW pair (X,Y) and @ X Z the pushout square of ( X  x S',Y X S ) . 
The codimension q splitting obstruction theory €or 

t-triangulations (the LP-theory) was developed as a tool for 

understanding the obstruction theory for s-trianqulations 

(the LS-theory) - From now on wr shall be mainly concerned 

with the latter. 

Let (M,N) be an (n,n-q) -dimensional manifold pair (q 3 l). 

Ambient surqery on N inside F1 is the operation 

(M,N) - -+(M,N1) 

determined by an embeddinq 

L : (Drtl,sr) X D"-"-' C------* (M,N) 

such that e-l(N) = S' x , with 



N I  = N \.E (sr X D ~ - ~ - ~  ) uDr+lxSn-q-r-l c M 

obtained From N by an ordinary surqery. The trace of the surger! 

on N embeds in M x  I as a codimension q submanifold, defining 

an ambient cobordism inside M x  I between N c  M x  (0) and 

N ' C  M x  {l) 

Conversely. evpry ambient cobordism inside M  X I can be broken u~ 

into a finite sequence of ambient surgeries. 

A formally (n,n-¶)-dimensional normal pair (X,Y) is a 

codimension q CW pair such that 

i) X is a Formally n-dimensional normal space (in the 

sense of S7.3) with normal structure 

Sn+k 
(vx:X BG!k) ,pX: +T(vX) 

ii) Y is a formally (n-q)-dimensional normal space with 

normal structure 

(vy = ClvX(y : Y-BG(q+k), 

P 
py : 

---L T ( v ~ )  --------sT(v~)/T(v~I~) = T(vy)) . 
Such a pair is !--norm4 if there is given a t-triangulation 

?:Y ---", B T O ~ ( ~ )  of t:Y - - d B G ( q ) .  In particular, a formally 

(n,n-q)-dimensional (t-normal) qeometric ~oincare pair (X,Y) 

is a formally (n,n-q)-dimensional (t-normal) normal pair. 



Let (X,Y) be a formally (n,n-¶)-dimensional t-normal 

pair. A formally (n,n-¶)-dimensional topological normal map 

(ftb) : (M,N) ----+ (X.Y) 

is a formally n-dimensional topological normal map (f,b):M--4 

(in the sense of 5 7 . 3 )  which is topologically transverse at YC 

so that the restriction 

(f.b) l = (g,c) : N = F-'(Y) -F Y 

is a formally (n-q)-dimensional topological normal map and 

the restriction 

(f.b) 1 = (h,d) : (P,S(v)) = E-~(Z,S(S)) A (z,s(c)) 

is a formally n-dimensional topological normal map of pairs 

such that 

(f,b) = (9,~)' u (h,d) 

with 

The notion of ambient surgery on codimension q 

submanifolds carries over in the obvious way to such topologic 

normal maps. Given a formally (n,n-¶)-dimensional topological 

with restriction 

(f,b)l = (g,c) : N-Y 

define an ambient surqery on (g,c) inside (F,b) to be a 

surqery on (g,c) such that the trace normal bordism 

( G , c )  : (NX I U D ~ " ~  D " - ~ - ~ : N , N I )  .YX (I;o,~) 

is a restriction of the normal map o f  (n+l)-d~mensional triads 

( f , b )  x 1 : M x  (I;0,1) --+X X ( J ; 0 , 1 )  . 



There is a corresponding algebraic notion of ambient surgery 

on a pair of the type 

(a formally (n-q)-dimensional quadratic complex over Z[nl(Y)l 

(C,$), a Eormally n-dimensional quadratic pair over iZ In1 (2) 1 
I I 

( 3 p < ' C 4  D, (6$,.~~S!9)) with boundary apC, ( C , + ) )  

which preserves the (homotopy type of) the union formally 

n-dimensional quadratic complex over Z[nl(X)l 

PC! (C.+) uzlnl(x) I (J~C'C -D. (61~,ap('o) . 
Algebraic ambient surgery will be developed further in Ranicki 1111. 

By analogy with Proposition 7 . 3 . 5  (the case Y = 8 )  it is 

possible to describe the algebraic effect of geometric ambient 

surgery on the quadratic kernels defined using the spectral 

quadratic construction: 

Proposition 7 . 5 . 3  Given a formally (n.n-ql-dimensional 

topological normal map 

(f,b) : (M.N) -(X,Y) 

there is defined a quadratic kernel pair 

o, ((g.c), (h,d) ) = (the formally (n-q)-dimensional quadratic 

kernel complex over Zlnl(Y)] o*(g,c) = (~(q!) ,Q) of 

the restriction (g,c) = (f,b)l : N --+l', 

the formally n-dimensional quadratic kernel pair 

! 
over zln1(z)1 o,(h,d) = ( 3 ~ 5  C ( ~ ! ) - C ( ~ ' ) , ( ~ ~ Y , ~ P C ! J I ) )  

of the restriction (h,d) = (f,b) I : (P,S(u)) ---+(Z,S(S)) 

wlth boundary ! (C,$ )  ) 

with union 
l l I 

pF'o,(q,c) un , (h ,d )  = (C(f'),pT'$ U&$)  = o,(f,k)) 

the formally n-dimensional quadratic kernel complex over Z[n (X)] 
1 



of (f,b) :M --------+X. 

Geometric ambient surqery on (q,c) inside (f,b) has the 

algebraic effect of ambient surgery on the quadratic kernel 

o,((g,c),(h,d)), i.e. of algebraic surgery on o,(g,c) inside 

o,(f,b). 

l 

In particular, if (X,Y) is an (n,n-¶)-dimensional t-normal 

geometric Poincar; pair and (f,b):(M,N)------+ (X,Y) is an 

(n,n-q)-dimensional normal map such that f:M---+X 1s an 

S-triangulation of X then the quadratic kernel o,((g,c),(h,d)) 

is a contractible n-dimensional quadratic ~oincar6 splitting 

over the associated pushout square of fundamental qroupoids O. 

By Proposition 7.5.1 iv) the splitting obstruction of f along Y c X  

is the cobordism class of this kernel 

s(f.Y) = o,((g,c), (h,d)) € LS,-,(O) 

(with s(f,Y) = o,(g,c) f LSnUg(O) = Ln-q(Zinl(Y) 1 )  for q 2 3 ) .  

which is thus the obstruction to maklng f concordant to an 

S-triangulation of (X,Y) by a finite sequence of ambient 

surgeries on (g,c) inside (f,b). 

For q = 1,2 ambient surqery on a codimensivn q submanifold 

can be related to ambient surgery on a normal map, as follows. 

Let (M,3M) be an n-dimensional with boundary (which may 

be empty), and let N c M  be a codimension q submanifold such that 

N n 3 M  = pl with 

VN c M = \h : N BTOP(q) = B G ( q )  , M = E(V) y s(vlp * 

P = M\E(v) . 



Let g:N -~+M be the inclusion, and assume given a 

factorization of the orientation map of N through nl(M) 

(which is automatic for q =  l) so that v:N-+BG(q) has orientat 

The Poincar; dual of g,lNl fHn-¶(M,w(N)) is an element 

5 f H'(M, ~M,w(M)Y\:~) ) classifying a (q-l)-spherical fibration 

over M 

: M -  - + B G ( q )  

with a section of C ;  such that 

1) c l N  V : N 4 B G ( q )  

with w:P- BG(1) the S9-fibration ( =  line bundle) over P 

classified by 

The inclusion of the zero section MCE(I;) of F; can be perturbe 

to define a formally n-dimensional tnpological normal map of p 

( E  ,b) : (M, 3M) -- + ( E ( F ; ) , s ( t ) )  

such that f:~-----+~(c) is a simple homotopy equivalence, which 

is topologically transverse at ?7 <E([) with f-l(M) = N c M .  

The restrictions of (f,b) define a formally (n-¶)-dimensional 

topological normal map 

(f,b)I = (g,c) : N-----*M 



ion map 

with c:vN---+vMBS and a formally n-dimensional normal map 

of triads 

(f.b) l = (h,d) : (P;S(v) ,aM)-S(S) x (I;0,1) . 
Proposition 7.5.4 Ambient surgery on N inside M corresponds 

ambient surgery on (g,c) :N -M inside (f,b) : (M,aM) ---+(E( 

The algebraic effect is an ambient surgery on the quadratic 

kernel pair 

(the formally (n-¶)-dimensional quadratic complex over Z 

! a, (q,c) = (C (g ) ,$) , the formally n-dimensional quadrati 

triad over ZIn ( S ( [ ) )  1 a,(h,d) with boundary component! 1 

3 ~ ! o , ( q , c )  and o,(df,Db)) 

preserving the union formally n-dimensional quadratic pair 

over Z Inl (M) ] 

A codimension q spine of an n-dimensional manifold wit 

boundary (M,aM) is a codimension q submanifold N c M  such tha 

the inclusion defines an s-triangulation 

g : N  - P M .  

The problem of finding a codimension q spine is a typical 

application of ambient surgery obstruction theory. As alread 

noted in the remark followinq Proposition 7.2.5 for q > 3 an 
n-dimensional manifold with boundary (M,2M) admits a 

codimension q spine if and only if M is an s-triangulable 

(n-q) -dimensional qeometr ic ~oincar; complex, at least if n- 



If (M,JM) is an n-dimensional manifold with boundary 

such that M is an (n-q)-dimensional geometric poincar; complex 

(g = l or 2 )  then the fundamental class [M] € H (M,w) is 
n-q 

represented by a codimension q submanifold N c  M with 

normal bundle v : N - - - - - B G ( q ) .  The corresponding n-dimensional 

topological normal map 

homotopy 
is a simple equivalence of pairs (assuming 

Z [nl (M) 1-homology 

n1 (JM) ? n l  ( S  ( 6 )  1 )  such that the restriction 

is an (n-q)-dimensional topological normal map. The quadratic 

kernel pair (a, (g,c) ,a, (h,d)/o, (3f ,ab)) consists of an 

(n-q)-dimensional quadratic poincar; complex over Zln (M)] 
1 

Poincar; 
o,(g,c) and the n-dimensional quadratic 

z [ITl (M) ] -Poincar; 
1 pair over z[nl(S(C)) l ~*(h,d)/o,(Sf,Sb) with boundary 2 6  a,(g,c) 

obtained from o,(h,d) by collapsing o,(Sf,3b). The union 

is a contractible n-dimensional quadratic PoincarG complex 

over Z[nl(M)l. Let @ be the pushout square of fundamental 

groups associated to the codimension q CW pair ( E ( [ )  ,M) 



For q = 1 Proposition 7.5.1 iv) gives the splittinq obstruction 

re1 2M of f along McE(C) to be the element 

s(f,Y) = (o,(g,c) ,o,(h,d)/o,(df,2b)) f LSn-l(@) , 

so that by Propositions 7.2.4, 7.5.4 s(f,Y) = 0 if (and for 

n )6 only i f )  ( M , a M )  admits a codimension l spine N C M .  

The map LSn-l (4) -----+ 4n-l (M) appearing in the exact sequence 

of Proposition 7.2.6 i) 

sends S (f,Y) to S (M) f 4n-l (M). For q = 2 it is necessary to 

use the algebraic theory of codimension 2 surgery developed 

in s 7 . 8  below (generalizing the oriqinal theory of Cappell and 

Shaneson [l]) in which only the homology type of the complement 

of the codimension 2 submanifold is taken into account, not 

the homotopy type. In terms of that theory Proposition 7.8.6 

gives for q = 2 the weak splitting obstruction re1 SM of E 

along McE(C) to be the element 

ws(f,Y) = (a,(g,c),o,(h.dl/o,(jf.ab)) € rSn-2(@) , 

so that by Propositions 7.8.2 i), ? . 3 . 4  ws(f,Y) = 0 if (and for 

n 37 only if) (M,aM) admits a codimension 2 spine NCM. 

The map rSn-; (8) ----t 4 (M) appearing in the exact sequence n-2 

of Proposition 7.8.3 i )  

srinds ws ( f  , Y )  to the total surgery obstruction (M) f -5n-2(~) 



Following Wall [4,p.1381 denote the LS-groups of a 

codirnension q CW pair ( X , Y )  (q = 1 or 2) such that 

nl(X) = nl(Y) = n , nl(Z) = nl(S(S)) = n' 

w ( X )  = W : n (X) = n ---+ Z2 1 

L S , ( B )  = LN,(nl-"rn,w) . 
In 5 7 . 8  the terminology will be extended to the rS-groups, with 

Wall [4,§12C1 
expressed the codirnension 

Matsumoto [ l ]  

LN,(nQ --+ n,w) 
surgery obstruction groups as the re13 

TN,(n'- n , ~ )  

obstruction groups for the existence of codimension spines, i : 
L 

and obtained an algebraic formulation as a variant of the 

ordinary surgery obstruction groups L,(Z[nl) by a development 

of codimension ambient surgery analogous to that of I: 
ordinary surgery in 555.6 of Wall 141. In we shall show 

iS7.8 

how the language of algebraic ~oincar; splittings can be used 

to obtain this formulation algebraically, subject only to the 

(provisional) use of topological transversality in the proof 

of Proposition 7.5.1 i). 



7.6 The alqebraic theory of codimension 1 surgery 

We start with a brief account of codimension 1 CW surger! 

and the related algebraic K-theory. 

A codimension q CW pair (X,Y) is finite if X is a finite 

CW complex. 

A homotopy equivalence of finite CW complexes f : M a  X 

has a Whitehead torsion ~ ( f )  €Wh(nl(x)). Two such homotopy 

equivalence5 f:M-X, €':M1*X are concordant if 

f1-lf:~---"--, M' is a simple homotopy equivalence, that is if 

~ ( f )  = ~ ( f ' )  € Wh(nl(X)) . 
Let (X.Y) be a finite codimension q CW pair, so that 

X = E ( C ) u  
s (clZ 

with S:Y--iBG(q). A homotopy equivalence f:M-----+X from a 

finite CW complex M is split along Y c X  if f is concordant to 

a homotopy equivalence (also denoted by f) with a decomposition 

I 
f = g'u h : M = E(U) U s(V)P---* X = E ( ~ ) u ~ ( ~ ) Z  

such that the restrictions 

g = €1 : N = f-'(~) A Y  

h = € 1  : P = f-l(2.1-------+Z 

are both homotopy equivalences, where 

CJ F 
v : N ------+ Y -----4BG (q ) , 

and such that (M,N) is a finite codimension q CW pair. 

A codimension q CW pair (X,Y) is connected if X and Y 

(but not necessarily Z )  are connected CW complexes. We shall 

be mainly concerned with splittinq obstruction theory for 

connected pairs. 



The splitting obstruction theory for finite connected 

codimension 1 CW pairs (X,Y) divides into three cases: 

A )  Y is 2-sided in X (i.e. 5 is trivial) and the 

complement Z is disconnected, with components Zl,Z2 say, 

so that 

1 X = Y x D  u y  X SO (zlU z2) 

( =  Z10yZ2 adding collars to Z1,Z2) . 

The fundamental qroup of X is the free product with 

amalgamation 

nl(X) = nl(Z1)*nl(Y) n1(z2) 

determined by the maps il: nl (Y)-nl(Z1), i2: n1 (Y)-3n1(Z2) 

induced by the inclusions Y'---+Z1, Yc--+ z2 - 
B) Y is 2-sided in X and the complement Z is connected, 

so that 

1 X = Y x D  u y x S O Z .  



The fundamental group of X is the HNN extension 

nl(x) = nl(Z)*nl(Y) It) 

determined by the maps il,i2:n1(Y)--+n l (Z) induced by the 

inclusions Y X [+l)-Z, Y x ( - 1 ) U Z .  

C) Y is l-sided in X (i.e. C is non-trivial). 

Actually, the codimension 1 CW splitting obstruction 

theory has only been worked out in the two-sided cases A) and B), 

under the additional hypothesis that the maps il,i2 are injective. 

Following the results in special cases of Higman Ill, Bass, 

Heller and Swan [l], Stallings (2). Gersten [l], Farrell and 

Hsiang (21, Casson [l], Waldhausen [2],[31 obtained a very 



general splittinq theorem in the algebraic K-theory of such 

cases, as follows. There are defined hiqher/lower Whitehead 

groups Wh, (X) for any spacp X, to f l t into an exact sequence 

of abelian qroups 

. . H n X - K n ( Z [ n l ( X )  l )  --+ Whn(X)-Hn-l(X;E) -+. . . ( 1  

with 5 the spectrum of the algebraic K-theory of Z, such that 

n,(5) = K,(Z). (Note the analogy with the exact sequence used 

to define the 8-groups 8, (X) in 57.1). The higher/lower 

Whitehead groups of a qroup n are the hiqher/lower Whitehead 

groups of the Eilenberg-MacLane space K(n.1) 

Wh,(n) = Wh,(K(n,l) , 

with Who(n) = KO(z[nl) the reduced projective class group of thc 
- 

qroup rinq Zlnl and Whl(n) = Wh(n) = Kl(Z[nl)/{tn) the usual 

Whitehead group of n. For a finite connected codimension 1 

CW pair (X,Y) of type with the maps il,i2 one-one there 

N 
are defined exotic K-groups Nil,(@) of nilpotent objects 

depending on the pushout square of qroupoids 

with V the connected groupoid with two vertices and trivial 

vertex groups (whlch is such that Wh,(n X V) = Wh,(n) for any 
N 

qroup n). Thf-re are dcflned spllt sur~ectlons Wh, (n) - >Nil, ( 0 )  

whxch f ~ t  lnto an exact sequence of abellan qroups cflGK~('~ 



The two main ingredients of the proof of this splitting theorc 

were: 

i) the translation into a qeneralized Higman linearizati 

trick of the geometric transversality argument in the CW catec 

by which every homotopy equivalence of finite CW complexes 

f:M-X can be made concordant to a map of codirnension l 

CW pairs 

f : (M,NJ ( X r Y 1  , 

i.e. such that (M,N = f-l(Y)) is a codimension l CW pair with 

f = q'u h : M = E(v) U P --f X = E ( 6 )  U S(r)Z , S(v) 

involving the restrictions 

g = €1 : N ------+ Y 

h = fl : P = f-l(7,)-- Z 

and the pullback 
g L 

V : N ----+ Y -BG(l) (C = E )  

ii) an analysis in terms of nilpotent objects of the 

obstruction to further deforminq the map f:(M,N)-----+(X,Y) 

to one for which g and h are homotopy equivalences, i.e. 

to splitting f:M*X alonq Y C X ,  by a finite sequcncr of 

"cell exchanqc" CW surgeries on N inside H. 



A homotopy equ 

(with 5 trivia 

if and only if 

ivalence of finite CW complexes f : M a X  

1 and il,i2 injective) can bp split along Y C  X 

If f = g'uh is split along Y C X  then ~ ( f )  is the image of - 
~ ( h )  € Wh(nl(Z)). In fact, Nil,(@) = 0 in many cases, and 

Wh,(n) = 0 for any infinite torsion-free group n built up 

out of the trivial group 11) by successive free products with 

amalgamation and/or HNN extensions (e.g. n = Z ) .  In particular, 

the fundamental groups of irreducible sufficiently large 

3-manifolds (the "Haken manifolds") are of this type - it will 

be recalled from the introduction to Waldhausen [3] that the 

original motivation for this splitting theorem was the absence 

of Whitehead torsion in the earlier result of Waldhausen [l] 

that every homotopy equivalence of such 3-manifolds is 

homotopic to a homeomorphism. 

* * *  



We now turn to the codimension 1 manifold splitting 

obstruction theory. 

Let (X,Y) be a connected (n, n-l) -dimensional geometric 

~oincar; pair. The obstruction theory for splitting 

S-triangulations f:M-X along Y c X  divides into the same 

three cases as the codimension 1 CW splitting obstruction 

theory: 

A) Y is 2-sided in X and the complement Z is disconnected, 

so that 

Z = Z 1 U Z 2  , X = Z1UyZ2 , nl(X) = nl(Z1)fn 

Codimension 1 splittinq obstruction theory for A) was 

first studied by Browder 111 in the simply-connected case 

n,(X) = nl(Y) = n (Z ) = n (Z ) = (11 , 1 l 1 2  

for which every S-triangulation f : M A X  can be split along Y C X ,  

at least if n, 6. Lee [l] obtained such a splitting theorem 

in some further special cases. The expression for the Splitting 

obstruction with arbitrary (X,Y) of type A )  as an element 

s(f,Y) € Lsn-l(4) 

of a geometrically defined [.S-group is due to Wall (4,5111 

Cappell [i] (16 i S 9 )  has made an extensive study of the 

obstruction theory for A) in the case when the maps 

i l : n 1 ( Y ) 4 n  (Z ) ,  i2:ni(Y)---+ n (7 ) are inlective, 1 1  1 '2 

introducing exotic algebraic I,-qruups UNil,(O) of nilpotent 

objects such that 

~n 
ISn-l(W = H H(iZZ:I)@UNiln+l(@) 

with 



and defining split surjections Lntl(~[nl(X)J) -UNiln+,(8) 

(qeometrically) to fit into an exact sequence 

There is a parallel splittinq obstruction theory Cor 

h-trianqulations, with 

LS:-~(O) = fin(7Z2; I~)@uN~~:+~(@) , 

c KO(zrnl(~)1) 
and the correspondinq exact sequpnce involving I,h-qroups. 

[Thete is also a parallel splittinq obstruction theory for 

p-trianqulations, as usual). In fact, Cappell showed that in 

I.S*-l(a) = 0 
many cases by geometrically provinq codimension l 

LS;-~(O) = 0 

splitting theorems, in which case the above sequences are 

quadratic L-theory Mayer-Vietoris sequences of the general 

type considered in S 6 . 2 .  We shall now use the algebraic 

characterization of the LS-groups given in g7.5 to provide 

an alqehraic connection between such splittinq theorems, 

Mayer-Vietoris sequences, and the decompositions 



Proposition 7.6.1A Let ( X , Y )  be a connected codimension 1 

CW pair of type A ) ,  with associated pushout square of 

fundamental groupoids 

and let 0 be the pushout square of rinqs with involution 

i) The LS-groups of 9 are naturally isomorphic to the 

triad L-groups of Z [ @ ]  

(G) = Lntl (iZ(91) (nf Z) . 

i i )  The LS-groups of are also naturally isomorphic to 

the triad L-groups of 0 

(9) = Ln+l(Ol (n f 'Z) . 
Proof: i) This identification (which was first observed by 

Wall [4,Cor.12.4.11) is immediate from the definition of the 

LS-groups on noting that the transfer maps are given by 



ii) This identification (which is also originally due 

to Wall [4,p.138]) follows from a comparison of the notion of 

algebraic Poincar; splitting used to define the triad L-groups 

in S6 with the algebraic Poincar6 splitting used to qive an 

algebraic characterization of the LS-groups in 57.5, as follows. 

To conform with the terminology of S6 write the square B as 

l 

The triad L-qroup Lntl(0) was defined in S6.1 to be the 

cobordism qroup of (ntll-dimensional quadratic Poincar6 triads 

(x;zl,z2;y) over B, consisting of an (nt1)-dimensional quadratic 

Poincari pair (x.3~) over A '  = z[nl(X) l such that the boundary 

?X is Poincar6 split with respect to B 

for some n-dimensional quadratic Poincar; pairs (zk,y) (k=1,2) 

over ik : A =  Z[nl(Y)]+B = Zln ( Z  )l. By the relative version k 1 k 

of the alqebraic normal transversality of Proposition 7.5.1 i) 

it can be shown that every such triad is cobordant to one with 

the pair (x,ax) contractible, in which case (y,zlu-z ) is a 2 

contractible n-dimensional quadratic ~oincar6 splitting over @ 

in the sense of 57.1. Now LSn-l(0) was characterized in 

Proposition 7.5.1 ii) as the cobordism qroup of such splittings, 

so that the natural identification is given by 



In particular, Proposition 7.6.1A ii) identifies the 

condition = 0 For there to be type A )  codimension 1 

splitting with the condition = 0 of Proposition 6.1.1 i i )  

for there to be a Mayer-Vietoris exact sequence of quadratic L-groups 

f il\ 

Proposition 7.5.1 ii) characterizes the type A) 

codimension 1 splittinq obstruction group for triangulations 

as the cobordism group of triples 

simple 
(n-l) -dimensional quadratic ~oincar; complex over A 

finite 

simple 
n-dimensional quadratic Poincar; pair over B 

finite 1 

(jl:B 1 t3 A C--+D1, (661,1f4AJi) EQn(jl)) , 

simple 
n-dimensional quadratic ~oincarh pair over B 

f lnite 2 

such that the A'-module chain map 

simple 
is a 1 chain equivalence, and s l r n l l a t  l v  for T.s:_,(+). 



proposition 7.5.1 iii) shows that if M is an (n+l)-dimensional 

geometric ~oincar; complex the ~oincar; splitting obstruction 

along Y C  X = ZluyZ2 of a map f:M-+X normal transvrrse at Y c X  

is given by 

Proposition 7.5.1 iv) shows that if (X,Y) is an (n,n-l)-dimension 

geometric ~oincar; pair (of type A)) the manifold splittinq 
I 

obstruction along Y c X  of an S-triangulation f:M-X topologica 

transverse at Y c X  is given by 

1 - 1 s ( f , ~ )  = (o,((f,b) 1 :E- (Y) --+l') ,o,((ftb) I : f  (ZltY)-(ZlrY 

o,((f,b) 1 :f-l(z2,y) ---+(Z2,Y))) € 

We shall now interpret in terms of our theory Cappell's 

decompositions 

for a codimension L CW pair (X,Y) of type A )  with the maps 

i l : n l ( Y ) d  nl(Zl), i2:n1(Y)---+ n 1 2  (Z ) injective. As before, let 

The induced morphisms of rings with involution il:A- B1' 

i2:A-B2 are also injective, and A '  is the free product of 

Bl and B2 amalgamated along A 

A ' = B * B  1 A 2  ' 

The (A,A) -bimodules defined by 

Bk = Z[nl(Zk)-iknl(Y)l ( k =  1,2) 

are such that 

B~ = A B B ~  , 



so that A' can be expressed as a direct sum of (A,A)-bimodules 

Before dealing with the elements of LSn-l(@) and LS:-~(@) let 

us consider a triple 

c = ((C,$), (jl:BIIBIAC-+D1, (6J11.1BA*) 1 ,  (j2:BpAC ---+D2, 16*2s1BA 

consistinq of a projective (n-l)-dimensional quadratic poincar; 

complex (C,$€Qn-l(C)) over A together with projective 

null-cobordisms (jk:BkBAC +Dk, ( 6 4 ~ ~ , 1 B ~  ) €Qn( jk)) over Bk of 

BkSA(C,$) ( k  = 1,2) such that the A'-module chain map 

is a chain equivalence, i.e. a representative of an element 

c €  LS:-~ ( a )  of the projective LS-group. The restriction of the 

Bk-action to A C B k  allows jk€ Horng (BkSAC,Dk) to be regarded 
k 

as an A-module morphism 

iLjk : c@(lekBAc) P ~LD,  , 

and to regard ( jk:BkBAC -(6Gk, lBA$) ) as an n-dimensional 

quadratic Poincar; "cobordism" over A from (C,$) to BkBA(C,-$) 

The quotation marks refer to the possibility that iknl(Y) may 

be a subgroup of infinite index in nl(Zk), in which case Ek is 

an infinitely generated free (A,A)-bimodule and the projective 

A-module chain complexes EkBAc, i : ~ ~  are not finite-dimensional 

in the sense of S1.1 (i.e. not finitely qenerated). The quadratic 

poincar; "cobordism" category defined using possibly infinitely 

qenerated projective chain complexes enjoys all the formal 



properties of the quadratic Poincarg cohordism category of S1 

defined usinq finite-dimensional chain complexes; in particular, 

the glueing of "cobordisms" may be defined as in 51.7. Use this 

glueing operation to define two n-dimensional quadratic Poincar6 

"null-cobordisms" over A of ( C , $ )  

is chain contractible, restricting the action of A' on the right 

hand side to ACA'. It follows that the A-module chain map 

is a chain equivalence, and hence that the A-module chain 

complexes D+,U- have the chain homotopy types of n-dimensional 

A-module chain complexes. Thus up to homotopy equivalence 

c+ and c- are qenuine quadratic Poincar6 null-cobordisms over A 

of (C,$). The union of c+ and c- can be written as 

c + u  (C , , , )~ -  = AteR ( j  .C-+D1, (6$1,1@A$)) 
1 l' 

~nseA(c,$)"@B2(j2:C-D2, (6J12,1BAJI)), 

and so can he reqardrd as a contratrtil~l~ n-dimensional quadratic 

poincar; complex over A'. ~ l s o ,  the union can be expressed as 



a union of null-cobordisms over B1 of BlmA(C,$) 

C+ = "~~m,(c,$)~+ * 

so that the B -module chain map 1 

is a chain equivalence. Similarly, over B 2 

C+ " ( C , $ ) ' -  = C2 B~~,(C,$)'- 

so that the B -module chain map 2 

is also a chain equivalence. Thus in the (reduced) projective 

class groups 

n- l 
[Cl = [D+] + ID-l = [D+] + ( - )  fD+lf 

= [D_] + (-)n-ll~-lf € KO(,) 

Define an (n+l)-quadratic ~oincar; relative null-cobordism of 

the n-dimensional quadratic Poincare pair over A 

(i.e. an (n+l)-dimensional quadratic Poincar; triad over A 

in the sense of S1.3) by 



and define also an (nt1)-dimensional quadratic poincar; 

null-cobordism of the n-dimensional quadratic Poincar; pair 

over Bk 

(j . B  B C A  Dk,(61(1k,1PA$) fOn(jk)) (k = 1.2) k' k A 

The union of the induced cobordisms over A' is an (nt1)-dimensio 

quadratic Poincar; triad over A' which can be expressed up to 

homotopy equivalence as 

A'mB b l U A'OADtA"Aa " A ' C ~ ~ D - ~ " B ~ ~ ~  

defining an ("+l)-dimensional quadratic ~oincar; complex over A '  



The construction of cL is the algebraic analogue of the 

"unitary nilpotent cobordism construction" of Cappell [7.SII.1! 

~f [C] = 0 f (A) and [nk] = o f FO(~k) (k = 1,2), so that 
0 

h 
C f LS,-~ (Q), then 

CL f I.;,~("~) . 
Furthermore, the projective class [D+] f ZO(A) is such that 

and the element defined by 
h 

C, = [D+] f fin(z2;1 ) 

is such that the natural map 

;n+l 
V 

(z2;qh(nl(X))) -----------+ i ( n ( ~ 2 ; ~ h ) e i n t 1 ( ~ 2 ; ~ i l l ~ ) )  

sends the element 

(for arbitrary choices of bases for C,D1,D2 which may be assum 

to be f reel to the element (cK, T (cL) ) . 
If C is a based f.g. free A-module chain complex and Dk ( k = l ,  

is a based f.g. free B -module chain complex, and all the k 

chain equivalences appearing in c are simple so that c €  LSn-l( 

then 

cL e J . ~ + ~ ( A ~ )  

and there is defined an element 

c, = T (f+:C-+D+, (6$+,$)) f Gn(z2;1) 



is a naturally split surjection: the construction of the map 

fjn (Z2; Iq) + L:-~ ( A )  appear inq in the exact sequence of 

Proposition 1.10.1 

readily extends to define a natural riqht inverse 

in (z2; I¶) - L& (0) . 
Frcm the present point of view it is convenient to define 

the UElil-groups of Cappell [ 4 ]  by 

U~il;,~ (a) = ker ( L S ~ _ ~ ( ~ ) - ~ ~ ( Z ~ ; I ~ ) )  ( q  = s,h n f Z )  . 

(In Ranicki [l11 the UNil-groups will be expressed as the 

cobordism qroups of quadratic ~oincar6 complexes with a nilpotent 

structure, qeneralizinq their oriqinal formulation in terms of 

UNil-forms). The map 

U~il~+~(8)-~:+~ (A') ; c -+c L 

i q ' e ~ h l ~  
is a naturally split &: the canonical morphism 

(A') LS:-~ (8) maps onto U~il;,~ (6) C LSZ-~ (a), defining 

a left inverse. Thus every element c f L S Z - ~  (8) can be expressed as 

c = (c,,c,) f = fin(Z2;~q)@~~il:+l(6) 

(q=s,h) . 
P h In particular, if c =  s ( f , Y )  f LSn-L(6) is the Poincari' splittinq 

obstruction along Y C X  of a map f:M+X from a finite 

(n+l)-dimensional qeometric Poincar6 complex M then 

c K f  Rn(z2: I h ) 1s the imaqe under the natural map 

of the element rrpr~srntcil t~y thr Whitrhead torsion of M 



T(M) = -;([M] " - : C ( M ) " + ~ - * ~ C ( M ) )  €Wh(nl(M)) 

(or rather its imaqe f * ~  (M) € Wh(nl(X))), with G the universal cover. 

If (X,Y) is a finite (n,n-l)-dimensional geometric ~oincar; pair 
h 

(of type A )  with il,i2 injective) and c = s(f,Y) f I.Sn-l(6) is the 

splitting obstruction alonq Y c X  of an h-trianqulation €:M +X then 

cK f in(ZZ;Ih) is the image under the natural map of the element 

T (C) = ~ ( f )  € fint1(z2:~h(nl (X))) represented by the Whitehead 

torsion T (f) € Wh(nl(X)). Furth~rmore, in this case c C in(Z2;Ih). K 

is the obstruction to modifying c (resp. f )  by a finite 

sequence of algebraic (resp. geometric) "handle exchanges" 

to a triple c' (resp. concordant h-triangulation f') which is 

cobordant to 0 (resp. topoloqically normal bordant to an 

h-triangulation of X which is split alonq Y c X), and if cK = O  

h h 
then cL€UNilntl($)C Lntl(A1) is the surgery obstruction of 

such an algebraic (resp. geometric) cobordism, which in the 

geometric case is the Cappell unitary nilpotent cobordism. 

The decomposition LS:-~ (0) = in (Z2: I ~ ) U I U N ~ ~ ~ , ~  (0) (q = S, h) 

of the LS-groups gives rise to a corresponding decomposition 

of the L-groups 

with Ltq((::)) the relative L-groups appearing rn the exact sequence 

14 
L ~ + ~ ( B ~ ) @ L ~ + ~ ( B ~ )  -Lnti ((::)I 

1 



Proposition --p 7.6.2A Let (X,Y) be a finite codimension 1 CW pail 

of type A) with il,i2 injective. The exact sequence relating I 

associated free and simple LS-groups 

h . . . -+ WhSn (8) --• I,Sn-l ( 0 )  ( G )  +WhSn-, (8) ---+ . . . (n 

is naturally isomorphic to the direct sum of the exact sequenc 

Similarly for the exact sequence relating the associated projc 

and free LS-qroups, with KO in place of Wh. 

Proof: Immediate from the decompositions of the LS-groups and 
-- 

the comparison exact sequence of Proposition 7.5.2. 

l 1  

B) Y is 2-sided in X and the complement Z is connected, 

so that 

1 X = Y X r, $ 0 Z  , n l ( X )  = nl(Z)*-nl(Y) (t) . 

Codimension 1 splitt~ng obstruction theory for B) first 

appeared in the work of Stallinqs 111, Erowder and Levine [l], 

Farrpll [l] and Siebenmann I l l  on the characterization of 

1 
manifolds which fibre over S , since a fibre is then a 

codimension 1 submanifold of type R). A qeneral result was 

first obtained by  Drowdfr 1 2 1 ,  who show~d that if (X,Y) is 

an (n,n-l)-dimensional qeomptric ~oincar; pair of type B )  witt 



t ive 

then every S-triangulation f:M--+X can be split along Y C X ,  

at least if n+6. The expression for the splitting obstructic 

with arbitrary (X,Y) of type B) as an element 

S(f,Y) e LSn-l(Q) 

is due to Wall [4,§11], the general obstruction theory being 

the same for B) as for A ) .  

If the maps il,i2:~1(Y)Anl(Z) are isomorphisms 

1 .  (e.q. if Y-X---+S is a fibre bundle) the automorphism 

a = i-1. l : Y -v1(Y) 

is such that the group nl(X) is the a-twisted extension of 

nl(Y) by Z 

nl(X) = nl(Y) X .;I. , 

with 

gt = tu(g) (q€nl(Y),t= l € z ) .  

The group ring Z[nl(X)] is the a-twisted Laurent extension 

of iZ[nl(Y) 1 
- 1 

Z[nl(X)l = Z[nl(Y)la[t,t l . 
with 

at = ta(a) (a€ Z[nl(Y)l) 

and the w(X)-twisted involution 

In this case Wall [4,Thm.12.5] used a qeneralization of the 

work of Farrell [l] to identify 

I>sn-l(@) = in(z2;1) 

with 

I = Wh(nl(Y) )a = ker (l-a:Wh(n (Y)) ----+ Wh(nl(Y))) cWh(", 1 



Farrell and Hsianq 111. l 3 1  studied the splittinq obstruction 

theory for h-trianqulations in this case, in effect identifying 

In particular, they showed that every S-triangulation f : ~ ~ t x  is 

concordant to one frr which f l : €-'(Y) A Y  is an h-triangulation, 

i.e. regarded as an h-trianaulation f can be split along Y C X ,  

at least iE n 36. Shaneson I11 used the Farrell-Hsiang splittinq 

theorem in the case a = id. : nl (Y) --+v1 (Y) 

(e.q. if X = Y X sl) to give a geometric proof of the splitting 

theorem for the quadratic L-groups of a Laurent extension 

which was then proved algebraically by Novikov [l] and Ranicki 121. 

-n For arbitrary a the identification LSn-l(0) = H (Z2;I) is 

equivalent to the exact sequence 

obtained qeometrically by Cappell Ill and algebraically by 

Ranicki 1 3 1 .  

The codimension 1 splittinq obstruction theory of 

Cappell lil (l ,< i$9) includes the case B) with the maps 

il.i2:n1(Y)-nllZ) injective. As for A) there are defined 

exotic algebraic L-groups IINil,(@) of nilp~tent objects such that 



LSn-l(@) = fin(z2; I)@lJNilntl(0) 

with 

I = ker(il - i2 : Wh(nl(Y))+Wh(nl(Z))) c Wh(nl(Y)) 

and there are defined split sur jections (ZInl (X) 1) -UNilntl ( 4 )  

(geometrically) to fit into an exact sequence 

Again, there is a parallel theory for h-triangulations, with 

lh = ker (il-i2:ao(Z?[nl(~) I ) ~ ~ ~ ( Z [ ~ ~ ( Z )  I) ) 

c K ~ ( Z ? [ ~ ~ ( Y )  l) 

and similarly for p-triangulations. If the maps il,i2:n1(~)tnl(Z) 

are isomorphisms then u~il?($) = 0 for q = s,h,p. 

Proposition 7.15.1~ Let (X,Y) be a connected codimension 1 

CW pair of type B), with associated pushout square of 

f undamental groupoids 

The LS-groups of are naturally isomorphic to the triad 

L-groups of Z? ($11 

LSn-l ( 8 )  = Lntl ( Z  [@l) (n f 21) . 



Proof: By analoqy with Proposition 7.6.1A i). The identificat 

(which was also first observed h y  Wall [4,Cor.12.4.1]) is 

immediate from the definition of the LS-groups on noting that 

the transfer maps in this case are given by 

-t L"+l ( Z  [nl ( 2 )  l - 72 In1 (X) l )  ; 

y - +(O, I ~ Y B - I ~ Y )  (n€ Z) . 
Alternatively, it may be deduced from the braid of 

Proposition 7.2.1 iii), since LM,(nun ---+n X V,w) = 0 (n = n 1 

[ l  

There is also a case B) version of the identification 

of Proposition 7.6.1, ii), with an analogous algebraic 

characterization of the LS-groups, as follows. 

Given a codimension 1 CW pair (X,Y) of type B) let 

A=Z[nl(Y)l , B = Z [ n l ( Z ) J  , A' =Z[nl(X)] , 

so that A' = BaA(t) is the generalized Laurent extension of B 

determined by the morphisms of rings with involution 

il, i2:A+B induced by the group morphisms il, i2:n1(Y) -nl 

with t an indeterminate over B such that 

Let Bk ( k  =1,2) be the (B,A)-bimodule with additive qroup B a1 

B X Bk X A -Bk ; (b,x,a)* b.x.ik(a) . 
It follows from Proposition 7.6.1B and the algebraic normal 

transversality of Proposition 7.5.1 ii) that the type B) 

codimension 1 splittinq obstruction qroup for trianqulatio~ 1:: 



is the cobordism group of pairs 

simple 
(a  ' (n-l) -dimensional quadratic ~oincari complex o. 

(finite 

simple 
n-dimensional quadratic Poincare pair over B 

finite 

((Fl f2) : BlmACBB28AC --+ D,(6JI,lli $)€Qn(fl 
1 2 

such that the A'-module chain map 

chain equivalence, regarding A '  as an (A',A)-bin 

via the composite A i1 + B C I A 9 .  Similarly for LsK-~(W ). 

Proposition 7.5.1 iii) shows that if M is an (n+l)-dimension; 

geometric Poincar6 complex the ~oincar; splitting obstructior 

1 along YcX = Y x  D u y x SOZ of a map f:M-X normal 

transverse at Y C X  is qiven by 

Proposition 7.5.1 iv) shows that if (X,Y) is an (n,n-l)-dimen 

geometric ~oincar6 pair (of type B)) the manifold splitting 

obstruction along Y C X  of an S-triangulation f : M A X  

topologically transverse at Y C X  is given by 



Note that Proposition 7.6.1B identifies the condition 

LS*-l(@) = 0 for there to be type B) codimension 1 splitting 

with the condition L,+l(Z1@l) = 0 for there to be a Mayer-Vietoris 

exact sequence of quadratic L-qroups 

If (X,Y) is a codimension 1 CW pair of type B) such that 

the maps il,i2:n1(Y)--+nl(Z) are injective there are defined 

Cappell decompositions 

which may be interpreted in terms of our theory as for the case A) 

above. In particular, Proposition 7.6.2A carries over word for 

word to its type B) analogue, Proposition 7.6.2B. 

A) or R )  Y is 2-sided in X (i.e. 5 = vyCX is trivial) 

Cappell 171 has shown that in many cases UNil,(O) = 0 

both for A) and B), by obtaining the equivalent codimension 1 

splitting theorems (under the hypothesis fi*(Z2;1) = 0). In effect, 

Cappell proved that the assembly maps 

o, : H,(K(n,l);&Ol~L~(Zlnl) 

are isomorphisms and hence that 8 ,  (K(n.1)) = 0 for any infinite 

torsion-free group n built up out of the trivial group 11) by 

successive free products with amalgamation n 1*pn2 and/or 

HNN extensions t) along subgroups p c n k  satisfy in9 the 

2 "square root closed" condition: if 9 € n k  is such that 9 €pen k 

then g € p c n k  (e.9.n = Z). However, it is not known if 

8, (K(n,l) = 0 for the fundamental groups n of irreducible 

sufficiently large 3-manifolds (except when the square root 



closed condition is satisfied), although the results of 

Waldhausen [1],[21,[31 that every homotopy equivalence of such 

manifolds is homotopic to a homeomorphism and that Wh,(n) = 0 

do suggest that such ought to be the case. 

Let R be a ring such that Z c R c Q .  The groups 

r,(Zlnl--+R[nl) =L:(R[~I) (R=s-'z) 

are the obstruction groups for surgery on normal maps up to 

R-homotopy equivalence (see S 7 . 7  below for further details of 

surgery with coefficients). In particular, for R = Zthis is 

the ordinary surgery theory up to homotopy equivalence dealt 

with above. Cappell [4] extended his codimension 1 splitting 

obstruction theory to surgery with R-coefficients, introducing 

the appropriate UNil-groups UNil,(R[@]) with all the formal 

properties of UNil,(@) r UNil,(Z[$lj. Furthermore, he proved 

that the groups UNil,(R[@I) are 2-primary for any R, and that 

UNil,(R[91) = 0 if 1/2 € R. Farrell [2] has shown that the 

groups UNil,(@) are in fact of exponent 4 - as pointed out in 

the introduction to that paper it follows from the localization 

exact sequence of S3 ahove that the exponent of UNil,(R[@I) 

is at most 8 (usinq the result oE Proposition 3 . 6 . 4  that the 

localization maps L, ( z [ ~ ] ) ~ L ~ ( R ( ~ ] )  are isomorphisms 

modulo 8-torsion) . 



C) Y is l-sided in x (i.e. E = vy, X :Y-BG(l) is non-trivi 

Codimension 1 splitting obstruction theory for C) was 

first studied by Browder and Livesay 111 for the codimension 1 

qeometric poincar; pairs (X,Y) = (RP",IRP"-~) (n, l), in 

connection with the classification of fixed point free involutio 

on manifolds which are homotopy spheres. 1.6pez de Medrano [1),[2 

extended the Browder-Livesay theory to fixed point free 

involutions on arbitrary simply-connected manifolds, thus 

describing the splitting obstruction theory for codimension 1 

geometric Poincar6 pairs (X,Y) of type C) with 

a 1 ( X )  = nl(Y) = Z2 , nl(S(S)) = nl(Z) = 11) . 
The expression for the splitting obstruction along Y C  X of an 

S-triangulation €:M-X for an arbitrary (n,n-l)-dimensional 

geometric Poincar; pair (X,Y) of type C) as an element 

S(f.Y) f LSn-l(@) 

is due to Wall 14,5111, the general obstruction theory being 

the same for C) as for A )  and B). Furthermore, in the case 

nl(X) = n (Y) Wall [4,§12C] gave an algebraic expression for 1 

the obstruction qroups LS,(@), by realizing each element of 

LSn-l(@) as the re13 obstruction to finding a codimension 1 

spine M C V  for an n-dimensional manifold with boundary (V,JV) 

such that V is an (n--l)-dimensional qeometric poincar; complex, 

and developinq a non-simply-connected Drowder-Livesay theory. 

We shall now recover this expression from the qeneral 

algebraic formulation of the LS-groups in 57.5 above. 



We start by extending the formulation of the quadratic 

L-groups in terms of chain complexes to the quadratic L-groups 

of rings with antistructure in the sense of Wall f51. 

Let A be an associative ring with 1. An antistructure 

on A (a,€) consists of a function 

a : A - A ; a-a(a) 
and a unit E €  A such that a(€) = E-' € A and also 

i) a(a+b) = a (a) + a(b) 

ii) a(ab) = a(b)a(a) 

iii) a(1) = l 

2 - 1 iv) a (a) = E a€ 

for all a,bfA. (In particular, if € € A  is a central unit 

then a:a-a is an involution as in 51.1). Given a €.g. 

projective A-module M let A act on the dual M* = HomA(M,A) by 

AxM*-M* ; (a,f)t--+ (X-f(x)a(a)) , 

and use the natural A-module isomorphism 

M - M** ; X-(F c---ra(f(x))) 

to identify M = M**. Given also a f.g. projective A-module N 

define a duality isomorphism 

HomA(M,N)-HomA(N*,Mf) ; fc--+(qc-,(x~g(f(x))) . 
Let T f  Z? act on Hom (M,M*) by the La,€)-duality involution 2 A 

T : HornA (M,M*) - HornA (M,M*) ; 
a, E 

(c$*:x-(y-Ca($(y) (X)) ) )  . 
Given a finite-dimensional A-module chain complex C let T € Z 2  

act on HomA(C*,C) by 



The (a,€)-wariratic - - -  L-%rooups of A Ln(Aag€) (n 3 0 )  are defined 

be the cobordism qroups of n-dimensional (~,~)-quadratic ~oincar6 

complexes over A (C,$fQn(C,~)), exactly as in the case of 

central E. All the results of §§l-6 in the central case have 

evident qeneralizations to rinqs with antistructuce. 

(There are also defined (a. E )  -symmetric L,-grows L* (Aa, E) - 

we shall be mainly concerned with the (a,€)-quadratic L-groups 

here). In particular, the (a,c)-quadratic L-groups are 4-periodic 

L~(A',E) = T , ~ + ~ ( A ~ , - F )  = L ~ + ~ ( A ~ , E )  (n) O) 

and L O ( ~ a , ~ )  is the Witt group of non-singular (a,€)-quadratic 

forms over A (M,$), as defined by a f.q. projective A-module M 

together with an element 

6 f QarE(M) = coker (l-T :HomA(M,M*)---+HomA(M,M*)) 
a r c  

such that @ = $+~~*EHomA(M,M*) is an isomorphism. Note that @ 

can be viewed as an (a,€)-sesquilinear pairing 

@ : M X M -----+A ; (x.Y)-@(x)(Y) 

such that 

i )  @(axeby) = b@(x,y)a(a) 

ii) Q(y,x) = ~a(@(x.y)) 

for all a,bfA, x,y€M. 

In keepinq with our previous convention we shall now assume 

that A =  z [ n ]  is a group ring and that the (a,c)-quadratic L-qroups 

L,(A~,E) L ~ ( A ~ , C )  are the simple L-qroups defined using 

based A-modules and simple isomorphisms (with T =O€Wh(n)), 

although there are versions of t h ~  theory for arbitrary rings 

with antistructure and for the free and projective L-groups L!, Lt. 
AS we shall be dealinq with various antistructures on the same 



qroup ring Z[n1 we shall write M * ' "  For the dual of an 

A-module M with respect to an antistructure (a,~), and Q:'~(c,E) 

for the (a,~)-quadratic 0-qroups of an A-module chaln complex C, 

abbreviating to Q:'"(c) if C = 1. IF is the W-twisted involution 

on Z J n ]  for some orientation map w:"Z2 = ['l), that is 

the dual A-module is denoted by M*'~, the Q-groups 

Q~'"(c,E) are denoted by Q:'~(c,E), and the L-qroups L,(2?[nla,c) 

are denoted by ~ , ( ~ f n ~ l , c ) ,  with Q:'~(c), I2,(~[nW1) if E = 1 

Let now (X,Y) be a connected codimension 1 CW pair of 

type C) with nl(X) = nl(Y). As 5:Y -BG(1) is non-trivial 

the double covering S ( c )  of Y is determined by a group extension 

which we shall write as 

P 5 
( 1 ) -------* ;, --& n dZ2-- .(l) . 

Denote the orientation map of X by 

w(X) = W : n (X) = rr --+ z? 1 2 ' 

so that the other orientation maps are given by 

w(Y) = WC : n ( Y )  = n -- --t Z 1 2 ' 

As before, d e n o t ~  the LS-qroups of ( X , Y )  

by ~ ~ , ( n ' ~ n , w ) .  BY Proposition 7.2.1 ii) 



the LN-qroups fit into the exact sequence 

By Proposition 7.5.1 ii) LNn-l(n'+n,w) (n2l) is the 

cobordism group of contractible n-dimensional quadratic 

Poincar; splittings over 6 ,  i.e. of pairs 

l nl,w' , Q ~ C ! , € : C  - --+ D,(R6..15 $1 f Q, ( € 1 ) )  

consistinq of an (n-l)-dimensional quadratic Poincar; complex 

(C, $) over Z! [nwS1 and an n-d~mensional quadratic ~oincar; pair 

( f :  JC'C--4 D. ( 6 $ ,  -5'6)) over ~ l n ' ~ ' I  such that the Z[n]-morlul 

chain map 

is a (simple) chain equivalence, where i is the Z[nl-module 

chain map appearinq in the n-dimensional quadratic Poincar; 

pair over z[nW] 

c!(c,$) = ( i : ~ ~ n ~ m  
Zln'l 

.C!C ----+C, (5!~1,1~15!J1) € ~:'~(i)) . 
1 

We now have to give an alqehraic definition of ['(C,+). 

Choose an element t f n such that C ( t )  = - l ,  so that as a 

set n is the dlsjoint union 

n = a' U tn' . 

so that 
- 1 

a = [a] t ldtlt F n[nl 



and as an additive qroup Z[n] has a direct sum decomposition 

Z[n] = Z[n']@tZ[n'l . 
Define a ring automorphism 

X : Zlnl h Z I n l  ; a - lal - latjt-l 

such that k 2  = l. The induced functor 

1 : P(Z[nl) - = (f.g. projective ~[nl-modules)-E(Z[nl) 

M YAM 

sends ~ € l g ( ~ l n l )  l to the f.g. projective Z[n]-module AM wit1 

the same additive group and 

Z[nl xAM--------+AM ; (a,x)-A(a)x . 
The inclusion p:n '4 n induces an in€ lation functor 

P! : p(Z[n'I)---+E(ZInl) ; 

N- p!N = Z[nllZln,lN . 
and there is also defined a restriction functor 

p! : g(~fn~)-gl~[n'~j ; M-~!M , 
sending M €  l~(Zln]) I to the f.g. projective Z[nl]-module p ! ~  

with the same additive qroup and 

Z I ~ ~ I  X P!M - P!M ; (a,x) +-------r ax . 
The two functors are related by a short exact sequence 

which is split (non-canonically), with 

l 
i : P!P'M --- M ; a@x W a x  

k : XM -----$ p , p ! ~  ; X t----, 18x- t@t-lx - 

Given M €  J g ( ~ [ n l )  l use the Zln'l-module isomorphism 

as an identification, and define a ~ l Z ~ ] - m o d u l e  morphism 



I 
41 +I~'$:x+-(yb-+f4(~) (Y) l )  3 

with T €  Z2acting by the duality involution T:@t----*@* on both 

sides. Given N E  1 g(T,ln'l) l use the Z[nl-module isomorphism 

as an identification, and define a Z[Z21-module morphism 

8. (P!e:x++ (Y -(118) (X) ( y ) ) )  . 
The ZlZ21-module morphisms p!,~, can also be defined using 

the orientation map WC instead of W. Note that 

M*, WC = A(M*'~) . 
Given a finite-dimensional Z[nl-module chain complex C 

use the Z[ZZ21-module chain map 

to define restriction maps in the Q-groups 

p! : Q:'~~(C) -Q:"~'(P!C) . 
Given a finite-dimensional ZIn'l-module chain complex D 

use the Z[Z21-module chain map 

p! : Hom (D*fW' 
Zln'l ,D)--,HomZIn1 ( (P!D)*'~,P!D) 

to define inflation maps in the Q-groups 

p! : Q:"~' (D)- O:'~(P,D) . 
The short exact sequence of finite-dimensional Zlnl-module 

chain complexes 

k I i 
0- AC - P!P'C -c-0 



is split when regarded as an exact sequence oE graded Z[nl-modules. 

~ h u s  applyinq Homzlnl (C*'W, - ) there is obtained a short exact 

sequence of z-module chain complexes 
I 

W P' 
0- Hornzlnl (C ' ,;\C) --+ ROFRzlnj (C*'~,P!P!C) 

i 
____$ Hornzlnl (C*'W,~) -+O . 

Using the natural isomorphisms of Z-module chain complexes 

as identifications there is obtained a sequence 

which is in fact a short exact sequence of Z1Z21-module chain 

complexes inducinq a lonq exact sequence of Q-groups 

. . . L Qn'W 

( n € Z )  . 
Define a Z1Z2]-module chain map 

5' : Hornzlnl (c*'~',cI 

! *,W ' --,RC(i~:HomzInl ((pip C) ,p!p.C) -Horn (c*lW,c)) ; Zlnl 

so that there is defined a natural transformation of lonq 

exact sequences of Q-groups 



An element $If o:'~' (C) is sent by c! to the element 

E ! ( $ )  = (6$,p,p!$) f Q:;;(i) . 

Proposition 7.6.3 The transfer maps in quadratic L-theory 

associated to a connected codimension 1 CW pair (X,Y) of type C) 

with nl(x) = nl(Y) = n are qivrn algebraically by 

l l 
(This qeneralizes the algebraic expression for ? c '  = p '  of Thomas 

Continuing with the previous t~rminoloqy deflne 

an automorphism of the ring Z l n ' J .  The induced functor 

v : g(z[n'l) -4 e(z[n'I) ; ?J -UN 

sends a f.g. projective Z[n'l-module N to the F . q .  projective 

Z[n'l-module pN with the same additive group and 



Then for any N f  lg(Zln'1)l there are defined natural 

isomorphisms in g(Z?[nl]) 

N B ~ N  a p ' p , ~  ; (x,y) - iex + tmy 

N*'O& p (N*,W1 - 1 
) ; fc--,(x---+lJ (€(X))) 

which we shall use as identifications. In particular, we 

have identifications of 7.-modules 

*rW ~ o m ~ ~ ~ ~  (P!N, (P~NI ) = ~ o m  z I n , I  IN.P!P! (N*"')) 

= Hom Z[nf] (NIN *,W'~,,(~*VW')) 

= H O ~  zln, l (N.N**~')BHO~ z l n , l  (N.N*'~) . 
and hence an identification of Z[Z2]-modules 

HomZlnI (P,N, (P,N)*'~) 

= H O ~  zl,, I ( N . N * * ~ ' ) B H O ~ ~ ~ ~ ,  l ( N , N * ~ ~ )  

with TfZ2actinq by the duality involution T:9+-+-$* on the 

left and by TBT 2 on the right. 
w(t)t 

Given a finite-dimensional Zln'l-module chain complex D 

we thus have an identification of ZliZ ]-module chain complexe! 2 

~ o m  Z I ~ I  ((P!D)*'~,P!D) 

= Horn (D*tW' 
Z[nll . D I B H O ~ ~ ~ , , , ,  ~D*",D) , 

so that 

Replacing 

since F.(t 



Assume now that the underlying codimension 1 CW pair (X,Y) 

is a formally (n,n-l)-dimensional normal pair (in the sense of 57.5) 

and that there is given a formally (n,n-l)-dimensional topological 

normal map 

( f , b )  : ( M , N )  - -+  (X,Y) , 

According to Proposition 7.5.4 ambient surgery on (g,c) inside 

(f,b) has the algebraic effect of surqery on the quadratic 

kernel pair (o,(q.c),o,(h,d)) preserving the union 
l 

C'a,(g,c) upo,(h,d) = o,(f,b). We shall now associate to the 

pair (a, (g,c) ,a, (h,d) ) a formally (n-l) -dimensional 

(B,-w(t) t2)-quadratic complex over Z [ n t 1  o;(f ,b) such that 

surgery on the pair determines surgery on the complex, 

and such that if €:M -X is an S-triangulation algebraic 

surgery determines geometric surgery, generalizing the treatment 

of type C )  codimension 1 surgpry due to Wall [4,S12C]. 

(f,b) : M d X  

The quadratic kernel of 

(h,d) : (P,S(v)) ---+ (Z,S(5) 

i 
complex 

is the formally quadratic complex 

pair 



where Y is the universal cover of Y r ' and 

( 2 , s x )  I ' (ZrSf')) 

1" is the induced cover of N l :p#s(")) . It follows from 
- ,-.-' 
(P,S(v) ) 

the geometric decomposition of the normal map 

(f,b) = (g,c)!u (h,d) : M = E ( ~ ) L J ~ ( ~ ) P  ----+X = E ( ~ ) U  ~ ( 5 ) ~  

that there is an alqebraic decomposition of the quadratic kernel 

o,(f,b) = ~!o.(q,c)u p~,(h,d) . 
Define the antiquadratic kernel of !f,b) to be the formally 

2 
(n-1)-dimensional (8,-w(t) t )-quadratic complex over Z [ n ' l  



The function ( o , ( q , c ) , o , ( h , d ) ) m o ; ( f , b )  will now be 

used to recover the expression of the type C )  codimension l 

LN-groups LN,(n'--?n,w) as the L-groups of a ring with 

antistructure due to Wall [4,Thrn.12.91. The identification of 

of an exact sequence characterizinq the LN-groups with a 

relative L-theory exact sequence was first obtained by 

Wall [4,Cor.12.9.21 in the special case n = n' X Z; and by 

Cappell and Shaneson 131 (implicitly) and Hambleton [l] in gel 

Proposition 7.6.4 Given a group extension 

l n L n 5 b z * - L  [l] 

and an orientation map w:nP*Z2 there is defined a natural 

isomorphism of exact sequences of abelian groups 

2 with t € n an element such that C (t) = -l, (a,t ) the antistrucl 

on zln] defined by 

2 and (6,t ) the antistructure on Z[n'l defined by 



ral. 

Proof: Given a E.g. projective Z?[n]-module M use the scaling 

isomorphism of the dual Z[n]-modules 

t : M*'W " : f - (X f ( ~ )  t) 

to  define a scaling isomorphism of Z [ Z  ]-modules 2 

t :  ( H O ~  Zlnl ( M , M * ' ~ ) , T ~ , ~ ) ~  (Homzrnl (M,M*'") ,Ta,w(t)t21 

Given a finite-dimensional Z[nl-module chain complex C therc 

is thus defined a scaling isomorphism of Z[Z21-module chain 

complexes 

*,a t : (HornZInl (c*'~,c) ,Tw,l) -(HomZ?[nl (C ,C) ,Ta,w(t)t 2 l 

inducing scaling isomorphisms of Q-groups 

t : Q;~~(c) -==LQ;~~(C,W(~) t2) 

and hence also of L-groups 

Note that the morphisms induced in the Q-groups by the 

Z [n] -module chain map 

i k  : C ---+p!plc ; X 7 iex + tet-'X 

are given by 

( y' ) : Q;'~(C) 
P't 

sending the element 

to the element 



* 
--% z [ 

(p!t6s:Cr'W x ~ n - r - S r W  &Z 6 

f (p!~)@Q~"~(p!~,w(t) t2) 

defined using the abelian group morphisms 

P! : Z I ~ I - Z L I ~ ~ ]  ; a.[a] 

p!t : Z I n ] ~ 7 L [ n 1 ]  ; a++ [at] 

and identifying 

~ o m ~ ~ ~ ~  (cr,z[n]) = crtW = (p!~)rtW' = (p!~) r t a  = H O ~  z l n t l  ( P  1 Cr,z[n1 

as abelian groups. 

Next, we shall define the natural isomorphisms 

2 (identifying L,-l(Z[n 'lB,-w(t) t ) = L,+1(Z[n'lB,w(t)t2) by the 

skew-suspension isomorphisms). 

Given an element 

is a (simple) chain equivalence, since it is given that the 

Z? [ n  l-module chain map 

is a (simple) chain equivalence, P,P:C fits into thc short 

exact sequence of iZ [n] -module chain complexes 



k Xi 
0 -c . p,& --* AC h 0  

and the ring morphisms p:Z[n']- Z[n], A:z[n] ----+ ~ [ n ]  are 

such that Ap = p. The induced isomorphism of 0-groups 

sends $ €  Q::~;'(c) to the element 

is an (n-l)-dimensional 

(-w(t) t2)-quadratic poincar; complex over Z[nt l, and the 

element correspondinq to s is 

2 s g  = (D,e,P!t($)) C ~ , ~ - ~ ( z [ n * ~ ~ , - w ( t ) t  ) . 

Conversely, suppose given an element 

Define an (n-l)-dimensional quadratic poincar; complex (C,$) 

over z [ n W S ~  by 

n WC n' 2 
C = P!D , o = (o,$*) anll (C)  = ~ ~ - ; ~ ' ( o ) @ ~ : l ; ' ( ~ , - w ( t ) t  ) . 

(The expression for ~;''~'(e) follows from the identification 

of the exact sequence 



and the exact sequence 

The isomorphisms I :Q: "W' (VD) (D) appearing in ( * )  

are those induced by the isomorphism of Z [ Z  ]-module chain 
2 

complexes 

1 : ~ o m ~  [ ", ( ( ~D)*~~',vD)-~+Ho~ l " a  l (D*.~' ,D) ; hc--tu-lh , 

using the automorphism u:~[n'~'l - - + ~ [ n ' ~ ' ]  of the ring Z[n'] 

with the W'-twisted involution to identify ( p ~ ) * ' ~ '  = p (D*lW'). 

The sequence ( * * )  is a special case of the sequence of 

Proposition 1.1.3 (p = l), usinq the skew-suspension isomorphisms 

2 S : o;V;@(n~,-~(t) t - a ~ ; " @ ( ~ , w ( t )  t2) 

as identifications). The element corresponding to S' is defined by 



In order to verify that the diagram 

commutes consider an (n+l)-dimensional quadratic PoincarG 

complex over 'Z[nW1 (C.6 E Q:;;(c)). The composite 
l 

t 
('Z [nW1 + + 

2 p' 
~,+~(~l.[n~",w(t) t ) -------+ L~+~(ZIIIII',~(~) 

be a normal splitting of (C,$), as given by Proposition 

so that up to (simple) homotopy equivalence 

L ~ + ~ ( Z I ~ ~ I ) -  L.N,-~(~'--+ ',W) --=+ ~ ~ + ~ ( ~ f n ' l ~ , w ( t ) t  2 

! n' 2 sends (C,$) to S(3+~.a+r%p t(ae) ~ ~ , - ~ ~ ( a + ~ , - w ( t ) t  ) ) .  Define a 

Z 1111-module chain map j:p!~--j E'@ = CC! ) 

! Surgery on (p c,p1t$) by the connected (n+2)-dimensional 

2 (B,w(t)t )-quadratic pair over Z [ n ' ]  



/ I / I 2 
(j:p.C --l:, (O.p.t$) €~:;;'(~,w(t)t ) )  

results in the (ntl) -dimensional ( B  ,W (t) t2) -quadratic ~oincar; 
- I 

complex over Zln'l S(t+E,O+fgp't(;lfl)), so that the above 

diagram does indeed commute. Moreover, if (C,$) is such that 

it admits a Poincar6 splitting it is possible to set ~n = 0, 

7,E = 0 ,  and the above procedure defines abelian qroup morphisms 

L n+l ( p ! : ~ l n ~ ~ l - - - t ~ 1 n ' ~ ' 1 )  - - - - + ~ ~ + ~ ( p ~ : ~ ~ n l ~ ~ ~ l n ' ] ~ , w ( t ) t ~ )  ; 

((D,@), (E:P!D-E, ( u . p ! o ) ) )  

F- ( (C, t$) , (,<plc +E!(o,P! t$) ) ) 

such that there arp defined commutative diagrams 

It now Eollows Erom a 5-lemma arqument that these morphisms 

are also isomorphisms. 

I l 



'� he natural isomorphism of exact sequences of 

Proposition 7.6.4 extends to a natural isomorphism oE 

commutative braids of exact sequences, from 

The isomorphism of exact sequences obtained by Hambleton 111 is 

n 
the one involving the sequences 1 1 .  



The LN-groups have been used by Cappell and Shaneson 131, 

and Hambleton Ill to detect which elements of the quadratic 

L-groups L,(Z[nl) of finite groups n are the surgery obstructio 

of topoloqical normal maps of closed manifolds (i.e. belong to 

im(o,:H,(K(n,l) ;go) --+I.,(Z[n])) c L,(Z[r])). In effect, they 

were making use of a special case of the natural transformation 

of exact sequences given by Proposition 7.4.6 iii) 

which is defined for any group extension 

(at least if the qroups are finitely presented) and any 

orientation map w:n * Z 2 ,  with W' = wp : n1+Z2 as before 

In connection with their work on pseudo-free group actions 

Cappell and Shaneson 131 associated to a non-trivial line 

bundle [:M --+BG(1) over an n-dimensional manifold M a 

surgery exact sequence 



From the point o f  view o f  S 7 . 2  this is just a part of the 

Mayer-Vietoris exact sequence 

. . .---+ Hntl(M,wC;ILo)@LNntl (n'--t n , w )  

associated to the commutative braid of exact sequences of 

abelian groups 

which is a special case of Proposition 7.2.6 i). 



The proof of Proposition 7.6.4 can be used to relate the 

type C) codimension 1 splitting obstruction theory of Browder 

and Livesay 11) and ~ 6 ~ e z  de Medrano (11 in the special case 

nl(X) = nl(Y) = Z2 to the theory of Wall [4,§12C] in the 

more qeneral case n l (X) = n l (Y) , by expressing both in terms 

of our alqebraic theory, as follows. 

In the first instance, let us recall from 11. the 

connection between the quadratic construction and the 

self-intersections of immersed manifolds. Let ~:M~-N" (m< n) 

be an oriented immersion in general position of an m-manifold M 

in an n-manifold N. Let N be an oriented cover of N with group 

of covering translations n and orientation map w:n-Z2, such 

the pullback of along f is the trivial cover H = n x M of M, 

and let f :~-i be a n-eguivariant lift of f. The double point 

set of f 

S,(€) = ( ( x , ~ )  € M x  M( €(X) = f(y), X # Y  >/EZ 

= (c:,?) i;MI?(z) = ? ( y ) ,  2#"y/z2 
is then a (2m-n)-dimensional manifold (which may be empty, 

e.g. if 2m c n), with T €  Z2 acting by T: (ji,T)-(q,ji). 

Let S2(E)' be the evident double cover of S2(f), and let 

c ' : S 2 ( f ) ' ~ E L 2  be a E -equivariant map lifting a classifying 2 

map c : S 2 ( f ) d B E 2 ,  so that S,(€) is equipped with a map 

Y : S2(f)-EZ2x ( M ~ ~ M )  ; 
Z2 

I x , y l  t----+[c1 ( x , y )  ,x,y1 . 
N 

Let vf:M- RSTOP(n-m) he the normal block bundle of the 

immersion f, so that applyinq t h e  Pontrjagin-Thom construction 

to an embeddinq fn,:ML-+F1 x IR- approximatinq f there is 



defined a stable n-map 

collapse - - - - - 
F : C%+ = x R=/$ x - . N x R ~ / N  x IRm - nbhd. of €,(M) 

= z ~ T ~ ( v ~ )  

inducing the Umkehr Zlnl-module chain map 

The quadratic construction on F 

sends the fundamental class IN] fHn(N,w) to the image under y of 

the fundamental class [S2(f) l f H2m-n(S2(f)) defined using the 

appropriately twisted coefficients 

by the argument outlined on pp.279- 282 of 1 1 .  (The reference 

there to the work of Koschorke and Sanderson should be auqmented 

by a reference to the earlier work of Vogel (11 on the interpretatio~ 

of the approximation theorem R ~ I ~ X  = ( U ELk x (n  XI ) / -  
k > , 1  L k k  

for connected spaces X in terms of immersion theory). 

In particular, if n = 2m, M~ = Sm then 

CF(1N1I = P(€) f Ho(Z2:~lnw1, (-)m) 

is the self-intersection number defined geometrically by Wall (4,551 

for an immersion € : S ~ - + N ~ ~ ,  with U(€) = 0 if (and for m l 3  , n  = nl(. 

2 m 
only if) f is reqularly homotopic to an embedding f:sm-N . 
In the subsequent applications we shall he concerned with a 

douhle covc~rlinq p = projrction : N' = G/i1---4N defined by 

a sul~qrou[, n ' r  n of inticx 2 ,  51, that as Iwfole there is defined 

J. q r < , u i )  cxtrncinn 



and there is an element t e n  such that C(t) = -1. Furthermore, 

the immersion f:M%-N will be assumed to lift to an 

embedding f':M-N', in which case the double point set 

of f can be expressed as 

S2(f) = [(x,y) € M x  Mlf' (X) = T f l  (y))/XZ 

with T:N1+N' the covering translation. The commutative 

diagram 

gives rise to a commutative diagram of stable n-maps 

inducing the Umkehr Zlnl-module chain maps 

with 6' the pullbact of N alonq p:N3---AN and 

p! : C ( N )  - 1 ( N I )  = p ,  p ! ~  (N) ; X c-----, 1Px + tPt-'X . 



- 
The stable n-map P:C N + d ~ " f i ;  can be defined in one of two 

(equivalent) ways, either in the same way as F using a framed 

embedding N ' N X Rm such that 

lifting to the covers and applying the Pontrjagin-Thom constr 

(i.e. using the fact that p:N'-N is an immersion with 

normal bundle v = 0 : N'-BG(O), although the constructi, 
P 

of P is valid for any double covering p:N1----+N), or using t 

Dyer-Lashof map D (cf. Brumfiel and Milgram [l]) with the 

adjoint of P given by 

a m m- 
adj(P) : kt-----+ (EC2xC (fin xk4))+ - - - - - - - -+  n Z N; 

2 

defined using a Z2-equivariant lift p':N'-EZ2 of a 

classifying map p:N-BC2. The quadratic construction on P 

JI P :H,(N,w)---+ ~ ~ ~ ~ ( ~ ( f i ~ ) )  = Q:'*~'(P!c(G))BQ:"~(~!c(F~) ,W( 

has symmetrization 

1 %  
(1+T)4~~ = $yj,P' - P' @fi 

Let $i : H,(N1,w')--+Q;, (~!c(N)) he the symmetric construct 
,W' 

on fi with respect to the restriction of the n-action on N to 

n'c n (noting that ii/nl = NI), so that the symmetric construc 

on NI  with respect to t h ~  n-action is qiven by 



since F:N'------~N is a trivial double cover. It now follows 

from the chain level commutativity of the diagram 

that the first component of $ p  is 0 

The second component defines a natural transformation 

the antiquadratic c o n s t r u e  associated to the double covering 

@:NI-N,  such that 

-(l+Tw(,) ,2)*; = 

Q- t 
: f i * ( ~ t w ) A  Q;,w(~(G)) --7,Q;,(I(~(ii~ ,w(t) t2) 

P! + Q ; ,  , B ( ~ ! ~ ( ~ )  .w(t)t 2 ) . 
The quadratic construction on F in this case is qiven by 



In particular, if n = 2m the non-trivial component is the 

equivariant self-intersection of (f : M ~ -  N ~ ~ , ~ Q  : M ~ W  N ' ~ ~ )  

p,(f) = fi$if [NI) € ~ ~ ~ ' ~ ( s ~ ~ f n '  x M) ,w(t) t2) 

= H ~ ( Z ~ ; Z ! [ ~ ' I ~ ,  (-)"'w(t) t2) 

such that v(€) = vO(f) t-l, measuring the number of pairs of 

points in the intersection f' (M) n Tf' (M) c N' , which is a 

0-dimensional manifold with a free E -action. (If (a,&) is an 2 

antistructure on a ring A then HO(Z2;A,c) = A/(a- ccr(a) J a f  A I  , 

by definition). Wall [4,§12C] defined pO(f) geometrically. 

In the oriqinal work of Browder and Livesay Ill uO(E) was 

expressed in the case n' = {l) in terms of a mod2 cohomology 

operation, which was expressed as a functional Steenrod square 

in Ranicki 181 and which has been extensively studied by 

Conner and Miller [l]. 

Let (M,N) be an (n,n-l)-dimensional manifold pair of 

type C), i.e. such that the normal bundle v = vNc M :N ---+BG(l) 

is non-trivial. Let pN : N' = S(v) ----+ N be the associated 

double cover of N, and let P = M\E(v) so that 

M = F ( v )  P . 
The double covering of M 

pM : M' = PtUN,P---B M 

defined using two copies P+,P- interchanged by the covering 

translation T:M'&M' is such that 

- 1 
PM1 = P N  : PM (NI = N'+N . 



A o n e - s i d e d . h a n d l e  e x c h a n g e  o n  N i n s i d e  M i s  t h e  a m b i e n t  s u r q  
p- 

(M,N) k -  - +  (M,N \ S' x D"-'-' " Drtl X s ~ - ~ - ~  ) 

d e t e r m i n e d  by a n  e m b e d d i n g  ( D r t l , s r )  X D " - ~ - '  C (M,N) w h i c h  l i f  

to a n  e m b e d d i n g  (Dr" ,Sr)  X D"-'-' C ( P t , N t )  s u c h  t h a t  

T h i s  operation is equivalent to a n  iZiiu&v_a_r1ant h a n < l e  exchan :  

o n  N '  i n s i d e  M '  

( c f .  ~ 6 p e z  d e  Medrano  [ l , S I . 1 . 2 ] ) .  



Proposition 7.6.5 Let (X,Y) be a formally (n,n-l)-dimension; 

normal pair of type C) with 

nl(X) = n  (Y) = n ,  nl(Z) =nl(S(S)) = n '  , w(X) = W :  n -  1 

i) If (f,b): (M,N) -----+(X,Y) is a formally (n,n-l)-dir 

topological normal map a one-sided handle exchange on 

(g,c) = (f,b) ( : N  --+ Y inside (f,b) :M- X has the algc 

effect of surgery on the antiquadratic kernel o : ( f , b ) .  

ii) If (X,Y) is an (n,n-l)-dimensional geometric Poincz 

pair and (f,b) : (M,N) - (X,Y) is an (n,n-l)-dimensional 
topological normal map such that €:M-X is an S-triangul 

of X the antiquadratic kprnel o ; ( f , h )  is an (n-l)-dimension; 

(-w(t) t2)-quadratic ~oincar6 complex over Z[nl 1' . The spli 
obstruction of f along Y C X  is given by 

s(~,Y) = o;(f,b) E LN,-~(~'----, n , ~ )  = L ~ - ~ ( Z L I ~ Q I ' , - ~ (  

Proof: i) The antiquadratic kernel o;(f,b) was defined usinc 

the quadratic kernel o,(g,c). We shall now obtain it using 

the antiquadratic construction associated to the double cove 

of N classified by v  = vN c M : N ----f BG (l), thus relatinc 

o;(f,b) to the equivariant self-intersections which are the 

obstructions to individual one-sided handle exchanges. 

Let 

px : X' = z+uy,z--X 

be the double covering of X defined using two copies Z + , Z -  o 

interchanqed by the coverinq translation T:Xt----+X', with 

the double coverinq of Y associated to E:Y ---+BG(1). 



The formally n-dimensional topological normal map (f,b):M-X 

has a decomposition 

(f.b) = (g,c)!u (h,d) : M = E ( V ) U ~ ( ~ ) P  -X = E ( F , ) u  s(c)Z 

with 

(g,c) = (f,b) l : N = f-'(y)-Y 

(h,d) = (f,b) l : (P.S(v)) = f-l(~,S(c) 

v = v  5 
N C M  : g ,Y -BG(l) . 

Let be the universal cover of Y, and let G:ii-P be a 

n-equivariant lift of q:N --jY, so that the Umkehr Z[n]-module 

chain map of g is defined by 
- 
9 * n-l-*,WC , c(~)n-l-*,wg [NI n - 

g! : c(Y) - c(Q) . 
The quadratic kernel of the formally (n-l)-dimensional topological 

normal map (g,c):N-Y is the formally (n-l)-dimensional 

quadratic complex over Z [nW5] 

with $ G : H n - l ( Y . w S ) - ~ ~ ~ ~ C ( ~ ( g ! ) )  the spectral quadratic 

construction on the geometric Umkehr semi-stable n-map 

G:Tn(vy)* ---+ E N+ obtained by equivariant S-duality as in 57.3. 

The quadratic kernel of the formally (n-l)-dimensional 

topological normal induced from (g,c) :N ---+ Y by py:Y 'h Y 

( q 0 , c ' )  : N' -?Y1 

is the restriction of the quadratic kernel of (q,c) 

I 
O*(q1,c') = p'o,(g,c) 

with p : n '  = nl(Y') - - - - - - - , v  = n (Y) the inclusion. 

The quadratic kernel of the formally n-dimensional topological 

normal map of pairs 



(h,d) : (P,N1) (2.Y') 

is a formally n-$imensional quadratic pair over ~ [ n ' ~ ' ]  

o,(h,d) = (e:plc-------+D, (6$,p!+) €Q:"~' (e)) 

defined using the relative spectral quadratic construction, 

with D = ~ ( h ! )  the algebraic mappinq cone of the Umkehr 

Zln'l-module c h a i ~  map 

with Z the universal cover of 2 and G :  (F,G) ------+(Z,y) a 

no-equivariant lift of h: (P,N) ----+ (2,Y). Let py:yl+ P 

be the n-equivariant (trivial) double cover of Y obtained from 

F y : Y ' + Y  by pullback along the coverinq projection ~ V Y ,  

inducinq the Z[n]-module chain map 

ijy : C(?') = p,plc(Y) - c(Y) ; alx F---+ ax 

(aeZ(n1, xf~(?)) , 

and similarly for N. The Z[n]-module chain map 

! 1 l i : p!p C(g') = p!p'C C ; alx -ax 

fits into a commutative diaqram 

The Z[n]-module chain map 

fits into a commutative diaqram 



I 

n-l-+,WC g ' '  ---, C ( N ' ) 

j 6. j plc 
- - 

C (P, U P-) p ,  D 

with qN:N-P the inclusion. It is thus possible to identify 

The quadratic kernel of the formally n-dimensional topological 

normal map (f,b):M----+ X is the formally n-dimensional 

quadratic complex over Z [nwl 

o,(f,b) = (c(f!),JIF([X1) €Q~'~(C(~!))I 

= ~!a,(g,c) up!o.(h,d) 

with QF:Hn(X.w) ---+Q:'~(c(~!)) the spectral quadratic 

construction on a geometric Umkehr semi-stable n-map 

a- 
F:Tn (vX) * -- + Z M+ inducing the Umkehr Z[n]-module chain map 

with X the universal cover of X and F:i? - 2  a n-equivariant 

llft of F:M- - + X .  Deflne a Z(nJ-module chain map 

with 



the Zlnl-module chain map appearing in the short exact sequenc 

X k I Xi 
0 -. C -- p!p'C ------+ AC - 0  . 

(Recall that k was defined by 

k : XC v p!p!~ ; x b d  llx - t~t-'X ) . 

It follows that the Z[n]-module chain map 

appearing in the commutative diagram 

is a simple chain equivalence. The Zlnl-module chain map 

Xk:C - - - + p , p ! ~  fits into a commutative diagram 

The double covering of ( f , b ) : M 4 X  induced from the double 

covering pX:X1-+X is a formally n-dimensional topological 

normal map 

(f',b') = (h+,d+) U ,c*) (h-ld-) 

: M' = P+ U N , P -  -I X' = Z+uy*z- 



for two copies (h+.d+), (h-.d-) of (h,d). Regarded as a 

7Z[n1I-module chain map J can be written as 

with j+:p!C -D a copy of 

and j- = uj , .  

The antiquadratic kerne 

the formally (n-l)-dimensiona 

over Z[n'] 

I t  
the inclusion p.~(q.)+~(h!) 

of (€,h) : (M.N) ---+(X,Y) is 

2 (B ,-w(t) t )-quadratic complex 

In order to relate this to the antiquadratic construction 

2 +bN:H.(N,wi) -----* Q:"~(~!c(B) .-u(t) t ) o n  the geometric 

m m 
Umkehr n-map PN:T N+----+Z N; of the double covering pN:N1----+N 

consider the commutative diagram of normal maps 

Tile equivariant S-dual of the induced diagram of maps of Thom 

n-spaces is a commit tative diagram of (semi-) stable n-maps 



By the sum formula for the spectral quadratic construction 

of Proposition 7.3.1 v) 

: H,,~(Y,W~) ----+ Q " ' ~ ~ ( C ( ~ ~ ! ) )  n-l 

where a = inclusion : C(R) - - - +  ~ ( q ! )  = C and 

The antiquadratic construction JI '  is such that $ = 
P~ 

and = (P:') (since the double covering F y : i t - ?  is 

trivial), so that 

The verification that a one-sided handle exchange on (g,c):N--SY 

inside (f,b):M-----+X determines an algebraic surgery on o;(f,b) 

now proceeds as for ordinary surgery in Proposition 11.7.3, 

with the equivariant self-intersection p,, playing the role of U. 

ii) The natural isomorphism of Proposition 7 . 6 . 4  

[.~~_~(n~---+n,w) -=- ~ ~ - ~ ( ~ f n * ~ ' , - w ( t )  t2) 

sends the splitting obstruction s(f,Y) = (o,(q,c),o,(h,d)) 

to the coborqism class of the antiquadratic kernel o;(f,b). 

l l 



In the original example of Browder and Livesay 111 

(X,Y) = (RP",IRP~-~) and the splitting obstruction along Y C X 

of an S-triangulation f : M A X  (for n ) 5 )  is an element 

Thus the obstruction is 0 if n zO(mod 2), and is 

the A r f  invariant skew-quadratic 
of a non-singular form 

;(the signature) quadratic 

n : l(mod 4) 
over Z if . ~ 6 p e z  de Medrano [l] studied the 

n z 3 (mod 4) 

splitting obstruction theory for arbitrary type C) 

(n,n-l)-dimensional geometric ~oincarc pairs (X,Y) with 

nl(X) = n (Y) = Z2, for which the splitting obstruction along 1 

Y C X  of an S-triangulation f:M+X is an element 

with E = w(X) (t) = +l if T:Xa----+ X' is orientation-preservin 

(i.e. if X is orientable) and E = -1 otherwise. 

~f (MJM) is an n-dimensional manifold with boundary 

such that M is an (n-l)-dimensional geometric ~oincar; complex 

the Poincar6-~efschetz dual of the mod2 fundamental class 

1 
[M] € Hn-l (M;Z2) is an element 5 F H (M, S M ; Z 2 )  classifying an 

SO-fibration <:M + BG(1) such that 

i) < I N  = V = V N c  M : N -------+ BG(1) is the non-trivial 

normal bundle oE a codimension 1 submanifold N C M  such that 

N n j M  = pl and g ,  [NI = [M] f (M,W~) (W = w(M, aM)), with 

g:N --+M the inclusion 

ii) [ l  p = E : P -BG(l), with P = M\E(v) . 



Let (f,b): (M,aM) -(E(C) ,S(c)) be an S-triangulation of 

the n-dimensional geometric ~oincar; pair (E(S) ,S(S)) topolc 

transverse at the zero section M c  E ( 6 )  with f-l(M) = N C M ,  

as in the discussion at the end of S7.5. The re1 aM splittin 

obstruction of f along M c E ( 6 )  

sa (€,M) = o;(f,b) = (D,+' e Q:;;'(D,-W(~) t2)) 

f LNn-l(n'-n,~) = L ~ - ~ ( ; Z I ~ * I ~ , - ~ ( ~ )  t 2 

is the obstruction to the existence of a codimension 1 spine 

N c M  obtained by Wall [4,§12C]. In particular, if n-l = 2m 

and (f,b) I = (9.c) : N ------+M is (m-l)-connected (as can b 

achieved by preliminary one-sided handle exchanges helow the 

middle dimension) it is possible to represent every element 

by a framed immersion X :S"-N~~ with a lift to an embedd 1 

xi = x2 : s ~ - N ' ~ ~  in the double cover N' = S(") which 

extends to a framed embedding (x3,x2) : (Dm+' ,sm) 4 ( P + , N 1 )  

together with a null-homotopy (x4,gx1) : (Dm+l,~") -M of g 

The antiquadratic kernel o;(f,b) is given in this case by th 

2 non-singular (6, (-)mtlw(t) t )-quadratic form over Z l n ' ]  

1 l l 
(Hm(h+) . AO = (1+T (-)m+lw(t)t2)66 : Hm(h;) X Hm(h;) + Z I n ' l  

Hm(hi) - HO(Z2iiZlrr'l6, (-Im+'w(t) PO = vrn(+') . 
defined geometrically by Wall 14.S12C1, with uO(x) the 

equivariant self-intersection of (xl,xi). An element x€H,(h 

is such that pO(x) = 0 if (and for m) 3 only if) it can be k 

by a ob~e-sided handle exchanqe on (g,c) : N  +M inside 

( f , b ) : ( M , a M ) P ( E ( c ) , S ( C ) ) .  



) with If (X,Y) is a codimension 1 CW pair of type C 

n1 (X) = nl(Y) = n , n1 ( 2 )  = nl(S(E)) = n' , w(X) 

and €:M---+X is a map from an n-dimensional geometric ~oincar; 

complex M the Poincarg splitting obstruction of f along Y c X  

is given by Propositions 7.5.1 iii), 7.6.4 to be an element 

B 2 sP(f,y) 8 ~~~-~(n'---+n,w) = L,,(zI~'I ,w(t)t ) . 
As it stands the construction of this invariant requires f to 

be normal transverse at Y CX. However, in the case n = Z 2 ,  n' = 111, 

n = 2m Hamhleton and Milgram [l] identified this Poincarg 

splitting obstruction with the Arf invariant of the non-singular 

quadratic form over iZ 2 

with pM:M1+M the double cover of M induced along f from 

the double cover pX:Xt = Z + U ~ ( ~ , Z - - - +  X of X, which is 

defined without normal transversality. We shall now use the 

antiquadratic construction to express the non-simply-connected 

poincar; splitting obstruction in terms of a generalization 

of this form, which is also defined intrinsically (i.e. without 

appealing to normal transversality). 



Let M be an n-dimensional normal space, and let k be an 

oriented covering of M with qroup of covering translations n 

and orientation map w:n--+Z2 such that n is equipped with 

a subgroup n'c n of index 2, so that 

p = projection : ~ / n '  = M' ----+M 

is a non-trivial double covering of M with a geometric Umkehr 

stable n-map 

P : zmfit .i+ ____$-'M; . 

As before, write the group extension as 

2 choose an element t e n -  n' and define an antistructure ( B , t  j 

on Zln'j by 

(W' = wp : n' w Z 2 1  . 
Use the antiquadratic construction on P 

2 $1: : H,(M,~) -----+ n ' t O ( p ! ~ ( ~ )  ,~(t)t * 
Qn 

to define the antiquadratic complex of frl,p), the n-dimensional 

2 (B,w(t) t )-quadratic complex over Zfn'l 

o,(M.p) = (p!~(kl ,$;( IMII) 



Proposition 7 . 6 . 6  i) The antiquadratic complex o, (M,p) is 

such that 

(1+Tw(t),2)o,(M.~) = p!to*(~) 

where o* (M) = (c(M) ,ak([~]) € Q:,,(c(M))) is the symmetric 

complex of M, o,(M) = (~C([M] n - )  ,$F Q:~~(Qc([M] n - ) ) )  is the 

quadratic ~ o i n c a r 6  complex of M and 

g = inclusion : ~ ! c ( G )  -,p!C( [M] n -:C(G)~-*'~-C(E;~)) 

ii) If M is an n-dimensional qeometric Poincar; complex then 

2 o, ( ~ , p )  is an n-dimensional (B,w(t) t )-quadratic Poincarg 

complex over Z [ n l ] .  The antiquadratic signature of (M,p) 

is the cobordism class 

2 
o,(~,p) c ~ ~ ( ~ ~ n ' l ' , w ( t ) t  ) . 

iii) The antiquadratic signature vanishes if (M,p) is the 

boundary of an (n+l)-dimensional geometric Poincarg pair 

(6M,M) equipped with a double cover (dp,p) : (AM',M1) --+(6M,M) 

such that M extends to a cover (6,;) of (6M,M), in which 
Q 

case the antiquadratic complex n,(M,p) is the boundary of the 

2 (n+l) -dimensional ( B ,  t )-quadratic Poincar; pair over z [n ' 1  

iv) The antiquadratic signature vanishes if (M,p) admits a 

characteristic qeometric ~oincar; subcomplex, that is if the 

classifyinq map p:M- BG(1) = RP- is poincar; transverse at 

IRpm, so that (M,N = p-'(RPm-')) is an (n,n-l)-dimensional 

geometric Poincar; pair of type C) with f? = ~ + u ~ f j - .  



More precisely, the antiquadratic signature vanishes 

2 
o,(~,p) = o e ~~cz~n'l',w(t)t ) , 

since the antiquadratic complex o,(M,p) is the boundary of the 

2 (n+l)-dimensional (B,w(t) t )-quadratic ~oincar; pair over z[na 

n' 6 . 
o.(M,N) = (~+:P!c(M) -~(fi,B+), (O,e;(lMl)) €Qn+; ( I , ) )  . 

Proof: i) Let ( v M : ~ - ~ ~ ~ ( k ) , p M : s n t k - ~ ( v  M 1 )  be the normal 

structure of M. As in the proof of Proposition 7.4.1 i )  let 

F:Tn(vM)*-E%+ be a semi-stable n-map inducing the 

72 I nl -mods~le chain map 

IMI n - : ---+c(ii) . 
The projection p:M' &M is covered by a map of (k-l)-spheri 

fibrations b:ptvM-vM, with a commutative diagram 

in which both p and S(b) are double coverings. The geometric 

Umkehr 111-maps P and S(B) induced by p and S(b) fit into the 

commutative diagram 

so that there is induced a stable [l)-map of Thom spaces 



T(B) = P/S ( B )  
m m m m m 

: rm~(v ) = z M+/C s(vM)+ ---+C T(p*vM) = I: M;/C s(p*vM) + . M 

Define a normal structure for the double covering M' of M by 

m .̂ 

so that the corresponding semi-stable n-map F1:Tn(vM,)* --+I: M ' ,  

fits into the commutative diaqram of (semi-)stable n-maps 

inducinq the commutative diagram of Zlnl-module chain maps 

By the sum formula for the spectral quadratic construction 



(p!,p*) = ~k : C(IMI n - )  

-C([M']n - )  = p!p!c([M)rr - )  . 
As F : M ' - ~  is a trlvial double covpring p!t$JF, = 0, and 

= 0, so that 

.k 
: H (T(v~) ,w)---*Q~~~(c([M*I n - 1 )  

2 
= Q~"~'(~!c([M] n -))@Q:"~(P!C([M] n - )  ,w(t)t 1 .  

Evaluating the second component on the Thom class 

Uv € kk(T(vM) ,W) and rearranqinq we thus have 
M 

2 
-~,+',(IMI) = p!t$,(uV ) E Q:"~(~!c(IMIo -~,w(t)t 

M 
and 

l 

g%o, (M,p) = P'tSo, (M) 

(with So,(M) the suspension of the (n-l)-dimensional quadratic 

poincar; complex over Z inW] 

o,(M) = (nc([Mln - 1  , $ c  Q:;~(RC([MI n-))) 

defined in Proposition 7.4.1 i)). 

ii),iii),iv) are direct consequences of the definitions. 

l l 

(The definition in Proposition 7.6.6 ii) of the antiquadratic 

signature o,(M,p) €ln(Z?[n'lB,w(t)t2) of an n-dimensional 

geometric  dinc car^ complex M with a non-trivial double covering 
p:Mi+M corrects the definition of o,(M,p) in Ranicki [8,p.5661). 



In particular, it follows from Proposition 7 .6 .5  iii) 

that for any space X equipped with an orientation map 

W : n1 (X) = n --+ Z2 and a non-trivial map 5 : n + Z2 the 

antiquadratic signature defines abelian group morphisms 

2 
0 :  : n:(x,w)-~~(z[~~~~,W(t)t ) ; 

(f:M-----+x)~-------*o,(M,p~) (n>O) 

with n' = ker([:n--+Z ) ,  pM = €*c : M-----+BG(l). 

If pM:M'-M is a trivial double covering then a,(M,pM) = 0, 

by a special case of Proposition 7.6 .6  iv) (with N = 0). 

The antiquadratic signature maps U: are related to the 

symmetric signature maps U* by a commutative diagram 

Proposition 7.6 .7  Let IX,Y) be a codimension 1 CW pair of 

type C) with 

nl(x) = nl(y) = , n1 (2) = nl(s(S)) = n '  , w(x) = W . 
i )  The ~oincar6 splitting obstruction function 

U : f M sP(f,y) on R:(x,w) coincides with the antiquadratic r. 
signature map 

2 
uc = 0 :  : Q ~ ( X , ~ ) - - - L N ~ - ~ ( ~ ~ - ~ + ~ , W )  = ~~(;z~n'l',w(t)t 



ii) The hyperquadratic signature map 6* on ny(~,w) 

is such that 

iii) If (f,af): (M,~M)- X is a map from an n-dimens 

geometric ~oincar; pair (M,aM) which is (normal,Poincar6) 

transverse at Y C X with (f,af)-l(Y) = (N,'IN) c (M,?M) then tht 

re13 Poincars splitting obstruction of f along Y C X  is given 

ProoE: i) In the first instance we shall combine Proposition 

7.5.1 iii), 7.6.4 to give an explicit description of the 

~oincarg splitting obstruction of f along Y c  X 

assuming that f:M-X is normal transverse at Yc X. Let 

Let be the covering of M obtained from the universal cover 

of X by pullback along f, so that E C G  is the covering of 1 

obtained from the universal covering of Y by pullback alonc 

and 

for two copies F+,F- of the covering F of P obtained from thi 



universal covering Z of Z by pullback along h. The construction 

of Proposition 7.4.1 i) associates to the (n-1)-dimensional 

normal space N an (n-2)-dimensional quadratic Poincar; complex 

over rz[nwtl 

o*(N) = (C.*) 

= (QC( IN] n -:C(K)"-~-*'~' --+c(G)) , + E  Q;:~'(C)) . 
Denote the double covering ~ / n '  = S ( " )  of N by NI, so that 

(P,N') is an n-dimensional normal pair. The relative version 

of the construction of Proposition 7.4.1 i) associates to (P,N') 

an (n-l)-dimensional quadratic ~oincar; pair over ~ [ n ' ~ ' ]  

Define a Z[n]-module chain map 

is a simple chain contractible (based) Zlnl-module chain 

complex and ) is a simple chain equivalence. The expression 
for the ~oincar6 splitting obstruction given by Proposition 

7.5.1 iii) is 



sP(f,y) = (a,(~) ,a, (P.N')) 

= ((C,$). (e:p!~ ----, D, (~+,P!s)) 

€ T,Sn-2(9) = LNn-2(n' +n,w) . 

As in the proof of Proposition 7 . 6 . 4  we have that the composite 

z[n]-module chain map 

1 k p I 
J : c ---A p!p!c - '-- p!rJ 

is a simple chain equivalence, wlth 

Xk : C ------t p!p!c : X + -+l@x + t0t-'X . 

The restriction of the Z[n]-action to Z[n'l C ~ [ n ]  d e f  ines a 

simple Z[n']-module chain equivalence 

with D, a copy of D and D- = uD,. It now 

= D,fBD- 

follows from 

Proposition 7 . 6 . 4  that the Poincar; splitting obstruction 

As it stands $€Q:T~'(C) 1s defined usinq the spectral 

quadratic construction $F on a qemi-stable H-map 
m- 

F:Tn ( v F l )  * -- L N, lnducinq the 27. In]-module chain map 

I [NI n - : ~ ( i i ) " - l - * ~ ~ ~  -c(Fj) . 
Working as in the proof of Proposition 7.6.6 i) it is possible 

n' 2 
to express p ! t  ($1 G Qn-;B (p!~,-w(t) t ) and hence also h' in 

terms of the antiquadratic construction $ '  . I t  follows from 
P~ 



this expression that surgery on the connected (n+l)-dimensional 

(8,w(t)t2)-quadratic pair over ~ [ n ' ]  

results in the skew-suspension S(D+,$') of (D+,$'). Thus the 

skew-suspension isomorphism 

P 
sends the Poincar; splitting obstruction s (f,Y) = (D+,$') to th 

antiquadratic signature %(D+,+') = n , ( ~ , p ~ )  = (p!~(~),$8 ([M])). 

ii) Working as in the proof of Proposition 7.6.4 it may 

be verified that the composite 

is 0 .  (This does not require any algebraic transversality). 

If ~ : M + X  is a map from an n-dimensional normal space M 

which is normal transverse at Y c  X, with N = E-~(Y), P = f - l ( ~ ) ,  

N' = f-l(Yr) as in i), then the hyperquadratic signature 

;*(M) € En(~[nW]) is the image of (8*(~) ,~*(P,N')) € tn(i!). 

It follows that p!t6*(~) = 0. 

iii) This is a direct generalization of i), and may be 

proved similarly. 

I I 

The expression for the rel, Poincare splitting obstruction 

as a union given by Proposition 7.6.7 iii) 

S P ( f A  = .*(MtPM)~o*(IM,PBMI - U *  (;M, JN) 

can be combined with the sum formula of Proposition 7 . 3 . 6  to 



recover the result of Mann and Miller [l] that for n 5 O(mod 2) 

the Arf invariant of Z2@o,(M,p ) is defined (i.e. the middle- M 

dimensional self-intersection form is eradicable) if and only 

if the Arf invariant of Z2W,(JM,iN) is defined, and that if 

such is the case the difference of Arf invariants is the mod2 

re17 ~oincar6 splitting obs 

Proposition 7.6 .8  Let k) 0, -. 

be the 2k-dimensional symme 

P ruction IZ2@s. (f ,Y) . 
and let 

k 
( =  the group ring Z[Z21 with the involution = ( - )  t) define( 

by the k-fold skew-suspension of the non-singular (-)k-symmetr 
k 

form (Z [Z2]  , t) over Z [Zi-' 1 . Then 
k 

i) xk fZ i r n ( a * : ~ ~ ~ ( ~ ( Z ~ , l ) , ( - ) ~ ) - ~ ~ ~ ( z f Z ~ - )  l)) 

^2k k 
ii) JX, fZ i m ( 6 * : R ~ k ( ~ ( ~ 2 , 1 ) , ( - ) k ) - ~ n  (z[z~-) 1 ) )  

Proof: i) Let 6 :  K(Z2,1)-BG(1) ( =K(Z2,1)) be the uni 

line bundle, and consider the commutative diagram 

vers 

k The 2k-dimensional ( - )  -symmetric ~oincat-6 complex over Z 

is the k-fold skew-suspension of the non-singular symmetric 



k f 1  0 
form over Z p!t(~[~:-) 1 .  t) = (.@a. l) I of signature 2. 

As 2 g O(mod 8) it follows that xk im(o*). 

ii) By i) 

so that Jxk P im($*) by Proposition 7 . 6 . 6  ii). 

l 1  

In conclusion, we shall use the LN-groups to give a 

geometric interpretation of the exact sequence of Proposition 5.2.2 

- 1 for the simple c-quadratic 1,-qroups L,(Aa[x,x ],F) (E = t1) 

of the a-twisted Laurent polynomial extension A,[x,x-'1 tax= xa(a)) 

of a group rinq A = ZInl with the involution extended by = X 

. . .- L~(A.E)oL~(A~,E) - L ~ ( A ~ [ x , x - ~ I  , E )  

with a:A---+A the rinq automorphism induced by a group 

automorphism a:n A n  such that a2 = id., Y = (n) K ~ ( A ) ,  
/-U 

Zt = l01 ~ ~ i l ~ ( ~ , a " ) .  The key idea here is due to 

Tom Farrell and Sylvain Cappell (independently) - I am particularly 
indebted to the former for a helpful letter. The idea is to 

express the infinite dihedral group 

Dm = [x,yl (xy)2 = y2 = 1) 

in two different ways: 

i) as the f r ~ e  product of two copies of Z 2 

with generators tl = XY, t2  = Y 



ii) as an extension of z? by Z 2 

P 5 
{ 1 1 ----, z? ---------, D_ -- +E2 -+{l) 

with p(1) = X 8 D,, 5 (X) = 1, (y) = -l f Z2 = ( i l l  , 

and to compare the codimension 1 splitting obstruction theory 

of type A) associated to i) with the codimension 1 sp 

obstruction theory of type C) associated to ii). This 

done using either the manifold splitting theory of g 7  

geometric poincar; splitting theory of S 7 . 4 ,  or the a 

itting 

can be 

2, or the 

gebraic 

poincar; splitting theory of 57.5 - we shall stick to manifolds. 

Let then n be a finitely presented group which is equipped 

with an orientation map w:n----+Z2 and an automorphism a:n--+n 

such that 

a* = id. : n--+n, wu = W :  n - E2 ' 

Give the group ring A = Zinj the W-twisted involution 

and note that the automorphism 

is such that 

- -1 - 
a(a) * a(a) = u ( a )  € A (a f A) , 

so that A,a satisfy the hypotheses of 55.1 and the a-twisted 

polynomial extensions A,[x], Aa[x,x-l] of A are defined as 
- 

rings with involution (ax = xa(a), X = X ) .  For each element 

s f  Ln(Aalx,x-l], c )  ( c  = *l) write the imaqe of s as 
1 

ISI = ( ~ S I ~ ,  1 ~ 1 ~ '  I S I ~ )  



and if Is] = 0 denote an inverse imaqe of s by 

[Is11 = (1Is1l1, IIs112) f Ln(A,c)@Ln(~a,~) . 
We seek a geometric interpretation of these decompositions. 

Let n xaD_ be the extension of n hy D_ defined by 

gtl = t19 , qt2 = t2a(g) ( g  f n) . 
As for D_ above (the special case n = {l)) there are two 

different ways of expressinq n xaDm : 

i) as the free product with amalgamation ' 

D_ = (7 Z2) (n xa Z 2 )  

with n X .Z the extension of n t )y  z2 defined by qt2 = t2a (g) 
2 

ii) as an extension of nx,z by Z2 

P 5 
(11- n x a z  - - + n  X an,-- z2 +(l1 

with i(q) = q, p ( 1 )  = X, ((9) = 1, C(x) = 1, [(y) = -1. 

Note that X = tltZ (by definition) so that 

gx = gtlt2 = t19t2 = tlt2a(q) = x u ( y )  f nx D_ 

Fix numbers k >, 3, n ), k+7 and let ( M ~ - ~ - ~ , ~ M ~ - ~ - ~  ) be an 

(n-k-2)-dimensional manifold with boundary such that 

nl(M) = n (JM) = n, w(M) = W : n -4Z2 . 1 

k k 
Let P ~ # F ~  he the connected sum of two copies P ~ , P ~  of the real 

k 
projective k-space R P  , and let 

1 0  1 p  (D , S  ) -------t(Nk+l,~k-lX S ) -----t 
P1tP2 

k k 
be the (Lll,~')-bundle over P1#P2 classified by 

k k 
f : nl (P1#l>2) = Z 2 * Z  1 = [lm --  -* Z2 . 

n-2. ~ n - ~ ,  ,_o : -~ )  (i = 1,2) be (n-2)-dimensional manifolc 1'f.t (Qi , l +  , 
triads such that there are defined fibre bundl~s 



qi --- 

(M, (M) - Q Q - + pk l - D~ 

with 

')-Qi = qil (Sk-') = M X Sk-l 

nl(Q1) = n ( 2  Q )  = n 1 + l  X z 2  

n ( Q )  = n  ('Q) = n x  
1 2  1 "t 2 az2 

(e.g. (Ql;~+Ql,j-Q,) = (M X N;aM x N , M  x sk-l)). The (n-2)-dime, 

manifold with boundary defined by 

is then such that 

and there is defined a fibre bundle q = q l u q 2  over 

Define also an (n-l)-dimensional manifold triad ( x " - ~ ; ~ + x " - ~ ,  

so that (X,)-X) 1s the total space of a (D~,s') bundle C over 

( [ ~ J - C )  
(D',s') (X, ,-X) - - - 3  Q 

(namely the pullback of p along q, with classifying map the 

group morphism 5 : n (Q) = n X ---3 Z2 deflned above), and 1 

(",X,uJ+X) is the total space of the restriction of C to a 

(~l,s')-bundle +C over J Q  



1 0  \C = 51 
(D ,S ) -+ ('+X,S;)+X) --- --, >Q 

(namely the pullback of p alonq Define also the manifold 

triads and manifolds w i t h  boundary 

(X;-'; d+x;-2, :-xyZ) 

1 
= (5- ( Q ~ ) ; s - ~ ( . ~ - Q ~ ) ~ . ~ + ~ - ~ ( ~ ~ + Q ~ ) , ~ c - - ' ~ Q ~ ) )  (i=1,2) 

(yn-2 . n-3 , )Y ) = the zero section of ( 5 ,  3+5) = (Q, ;'Q) X 0 c (x,Stx) 

n-2 (Yi :3+Y;-3,?-~;-3) 

= (Xi" Y;,:+xin Y.:)+X1n ~ + X ~ A Y )  = (Qi;3+~i,a-~i) X o (i = i,2) 

(2n-Z; ~ ~ z n - 3 ,  ,-@ ) 

= (c-'(M X sk-l) ( iM X sk-l), b_c-'(M X sk-l) ) 

= (X1" X2; '+X n i+X1 n >+X2, 3-Xln >-X2) 

= (M x sk-l x gl;.)M x sk-l x x Sk-l X SO) 



For E = (-)ktl let Z; (resp. D: = E ; * z ; )  denote the 

group Z2 (resp. D_) with the orientation map Wc(t) = E 

(resp. wE(t.) = E (i = 1,2)), and write L N * ( n ~ n x a Z 2 , w x w  ) 

(resp. LN,(nx Z - - + n x  D_,WXW ) )  as LN,(n~---nx zE) a 2 

(resp. LN, (nxaZ -+ nx D:) ) . 
By Wall 14,Thms.11.7,12.9] every element 

is the celd splitting obstruction along Y C X  of an S-triangulation 

of the (n-l)-dimensional manifold triad (X;a+X,yl-X) 

f : (vn-l; -(x;>+x, { - X )  

such that ?+f = f \  : 3+V -- 3+X is split alonq S Y c  3+X, and 

the LN-group may be expressed as an L-group 

L N ~ - ~  (P X ,Z 3 n x a~:) = L ~ ( A ~ I X , X - ~ I  , E )  

with t = t2 € nxaD_ here (cf. Proposition 7.6.4). The image of 
- E  

S =  sl(f,Y) F L n ( A a [ ~ , ~ - l ~ , ~ )  in Ln-2(Z(nXaD 1 )  is the re1 

surgery obstruction o,(g,c) of the (n-2)-dimensional normal 

map of pairs 

( g , ~ )  = (f,b) : f - l ( ~ , ? ~ )  -(Y,aY) 

which restricts to an S-triangulation of SY. The image of 

o,(g,c) f Ln-2(ZIn~ D-']) in the group 

is the splittiinq obstruction S( ,g, "W) alonq c of the 

S-triangulation 

'g = g1 : f-l( Y)-?--f Y .  



It is thus possible to identify 

By the unitary nilpotent cobordism construction of Cappell 171 

it is possible to replace F by a normal bordant S-triangulation 

of (X;J,X,,-X) with dg split alonq W C J Y .  By the Browder-Wall 

n-n theorem it is possible to extend this splitting of 39 to 

a splitting of the S-triangulation !+f : a + V  A S+X along 

1 Z c  >+X. The obstruction to extending the splitting of 

,{:I+€ = 0 - f  : + 3  - V + 1.1-X along .i;i+Z = a2-Zc 20-X to a 

splitting of the S-triangulation !-f : 2-V --u-i 3-X along 

Z c *-X is the element 

Applyinq the unitary nilpotent cobordisrn construction again, 

it is possible to replace f by a normal bordant S-triangulation 

of (X;'i+X, ,-X) with 5-F split along 2-Z c?-X. The obstruction 

to extending the splitting of the S-triangulation 

.IF = !,F U , - f  : ,#V = i+V ".,-V& 3X = a+X U 3-X 

along ,Z = ?+Z U 4 - z c.)X to a splitting of f along Z C X is the 

element 

'-/ 
[sI3 = S ,  ( f , Z )  S LNllniA,n,~) = l,Sn_,(@E) = UNil ( a ' )  . 

Applying the unitary nilpotent cobordisrn construction once more, 

it is possit~le to replace F by a normal bordant S-triangulation 

of (X; .,X, . _ X )  which is split alonq ( 2 ;  ,+Z, 1-2) c (X: ~ J + X ,  .]-X), 

so that f restricts to S-triangulations 



fi = f l : (V;-l; 1+vy2, 

'(Xi;2+Xi,2-Xi) (i = 1.2) 

such that 3+fi = fit : ;+Vi-2-+ :+Xi is split along 

3Y. = 2 + Y i u a W W C  atxi. Thus if 

[sl = ([sll. IsI2. = 0 - 
E L N i l n ( A , a , ~ ) @ i i n ( Z 2 ; ~ h ( n ) a ) ~ ~ ~ i l n ( ~ , a .  E) 

the original S-triangulation f of (X:~+X;I-X) is concordant to 

one which is split along ( Z ; 3 + Z . i - Z )  C (X;?+X,;I-X), in which cas 

a choice of concordance (which is unique up to ~nt1(z2;~h(n)a): 

-1 determines an inverse image of s€Ln(Aalx,x ],E) 

[[SII = ( [ [ S I I ~ .  [[sl12) E L~(A,C)@L~(A~,E) . 
The obstruction to extending the splitting of 3+fl along ?YIC ? 

to a splitting of fl along Y1 C X1 is 

S) (fl,Y1) = IIs1ll € LNn-2(n-n X ~ 5 )  = Ln(A,~) , 

and the obstruction to extending the splitting of !+f2 along 

aY2C 3+X2 to a splitting of f2 along Y 2 c X 2  is 

S? (f2,y2) = [[s1j2 E ~ ~ ~ - ~ ( n 3 n  X .z:) = L ~ ( A ~ , E )  . 
From the point of view of the algebraic theory of 

codimension 1 surgery the above decompositions of the elements 

s € Ln(Aa [x,x-~] ,E) may be deduced from the Eollowing 

cornrnutatlve diagram of exact sequences of ahelian qroups, 

in which the horizontal sequences are of types A) and D), 

thr vertical sequences are of type C) , and L, (n) 5 L, (Z[nl) (as 



I U-8 - n 
W N W N  

N N 
X 
F 



7.7 Surgery with coefficients 

In the original theory of Wall [ 4 1  quadratic L-qroups 

L , ( A )  were defined for all rinqs with involution A ,  but only 

the quadratic L-groups L, (Z In]) = L, (n) of inteqral group 

rings z(n1 were given a geometric interpretation as surgery 

obstruction groups. Since then many authors have developed 

analogues of the theory for surgery with various types of 

coefficients, giving geometric interpretations of the quadratic 

L-groups L, (s-'z [nl) of the local izations away from appropriate 

multiplicative subsets ScZln]. We shall now list these 

analogues, after which we shall develop the alqebraic theory 

of the Cappell-Shaneson homology surgery which is needed 

for the algebraic theory of codimension 2 surgery of S7.8. 

I) Q-coef f i c e  

Even prior to the theory of Wall 141 it was clear From 

the work of Kervaire and Milnor [l] and Wall 121 that quadratic 

linking forms over (Z[nI ,Z-(0))  play an important role in 

surgery obstruction theory, in the first instance as a 

computational tool For finite groups a .  Later, Passman and 

Petrie [l] and Connolly [l1 obtained special cases of the 

localization exact sequence 

. I n z n I  - L I  n z l n , s - + n l l l - ) . .  

(S = Z-~O)cZ[nI,nfZ) 

using a mixture of geometry and algebra. Pardon [11,121,131 

obtained the sequence in general, purely alqebraically (at least 

for finite n ) ,  and interpreted L (Z[n],S) as the obstruction 

qroup for the problem of makinq an (n-l)-dimensional topoloqi~al 



normal map ( I , b ) : M  - - -+X  which is a rational homotopy equivale 

(n,(f)PQ = 0) normal bordant to a homotopy equivalence 

(fl,b'):M'---+X (n,(fl) = 0) by a normal bordism 

(g,c): (N;M,M1) ---+X x (I;0,1) which is also a rational 

homotopy equivalence, 

11) g.p-coefficlents 

Let P C {all prlwes in Z) be a subset (possibly empty), 

so that there is defined a multiplicative subset 

i l  i 2 k 
Sp = (ql q2 ...qk lql,q 2,...,qkF (all primes in Z) - P ,  

il,i2 ,..., ik"O)C Z 
and the localization of Z at P 

Zp = S;'=! E Q 

is defined as usual. Every r l n ~  R such that Z G R S Q  is of the 

type R = Zp for some P. A map of finite CW complexes f:M---+X 

such that f,:nl(M)--n (X) is a P-local homotopy equivalence 1 

(n,(f)P7Lp = 0) if and only if it is a Zp[nl(X)]-coefficient 

homology equivalence (H,(f;Zp[nl(X)]) = O ) ,  by the P-local 

Whitehead theorem. The theory of Wall [ 4 1  is the case 

P = (all primes in Z) , when Zp = Z; the theory of I) is the 

case P = g ,  when Zp = Q. 

Surgery on topological normal maps up to Zp[nl-coefficien 

homology equivalence was first studied by Zones [l], in 

connection with his work on the fixed point sets of 
4 

semi-free actions of cyclic groups on manifolds (Smith theory). 

In particular, the theory of Wall 141 was extended there to 

surgery on formally n-d~menslonal topol~q~cal norm~ll maps 

( f . h )  :M t X to n-cilm~nsion;ll Z? In ( X )  I-co~fflclrnt q~cmetrlc P 1 



ice Poincar; complexes X. It was shown that such a map is normal 

bordant to a P-local homotopy equivalence if (and for n 3 5  

only if) o,(f,b) = 0 f I,n(zp[nl(X) l). Quinn 1 4 1  extended this 

theory to surgery on 22 -homology manifolds. P 

The original application of surqery to the classificatic 

of manifolds which are homotopy spheres due to Kervaire and 

Milnor [l] was qeneralized by Barge, Lannes, Latour and Voqel 

to the classification of manifolds which are Zp-homology sphe 

G.A.Anderson [l] developed an analoque of the Browder-N, 

Sullivan-Wall theory (the special case P = fall primes in 72) 

for the classification of spaces with the P-local bomotopy 

types of manifolds. The theory was reformulated by Taylor and 

Williams [21, and applied there to the classification of 

embeddings of manifolds in P-local homotopy spheres, the 

P-local version of some of the results of Browder 1 3 ) .  

This theory deals with P-local Spivak normal structure: 

we shall only be concerned with normal spaces 

(X,vX:X ---+ B G ( k )  --+T(v ) )  with P-local X 

poincar; duality, i.e. such that the Rp[nl(X) ]-module 

chain map 

[XI n - : C(X;Z~)"-*-- + C (X; zP) 

is a chain equivalence with 2 the universal cover of X and 

c(i:z P ) = z,mac(i) = zplnl(X)l@ 
Z[nl(xl l C(%) . 

Pardon [4] used local surqery theory to extend the work 

of Madsen, Thomas and Wall on the classification of free acti 

of finite qroups on spheres ("the topoloqical spherical space 

form problem") to the classification of free actions of finit 

groups on manifolds which are zp-homoloqy spheres. 



111) AsgfFicients 

Cappell and Shaneson [l] developed an obstruction theory 

for the problem of makinq a topoloqical normal map (f,b):M-dX 

to an n-dimensional r,-coefficient qeometric ~oincare complex X 

normal bordant to a A-coefficient homology equivalence, for any 

locally epic morphism of rings with involution Z [ n l ( X ) J A A ,  

in connection with their work on codimension 2 surgery. 

In particular, the theory introduced the r-groups T, and the 

A-coefficient homoloqy surgery obstruction was expressed as 

an element o, (f, b) € rn ( Z  [nl (X) 1 - - + A ) .  The homology surgery 

theory of I) (resp. 11) is essentially the special case 

A = Q[nl(x) l (resp. A = Z [n (X)]), with T,(Z[nl(X) 1- A) = L,(A). P 1 

As already noted in 53.2 above Smith [l] expressed the 

r-groups r * ( Z [ s l ~ Z [ p l )  for certain surjective group 

morphisms n - D as the L-groups L, (s-~z [n]) of the localization 

of Z[n] away from the multiplicative subset 

S = Il+ili€ ker(Z[n]-~[p])) C Z[n] , 

and that more generally Vogel [l) has expressed the r-groups 

r,(Z[n] -A) of any locally epic morphism Z[nJ -A as 

the L-grousp L,(A) of an appropriate ring with involution A .  

Furthermore, Smith ( 2 1  developed an obstruction theory for the 

problem of making a topological normal map (f,b):M-X 

which is a A-coefficient homoloqy equivalence normal bordant 

to a homotopy equivalence by a normal bordism which is also a 

A-coefficient homoloqy ~qulvalcnce, expressing the obstruction 

7L?[nl(x)]--tZIn1(X)1 

as an elempnt 0 ,  ( f , t ) )  € r (n = dlm X). 



(This theory will be described and generalized further below). 

IV) g -coefficients 

As already noted in 52.3 above there is an obstruction 

theory for surqery on Zm-manifolds (=manifolds with Zm-type 

singularities), going back to Sullivan [2], for which the 

obstruction groups are the relative L-groups L,(Z[nl;Zm) 

appearing in the exact sequence 

... ---LL~(z[~I) L ~ ( z [ ~ I ) - - - - - - + I , ~ ( z [ ~ I ; z ~ ) - +  L~-~(z[~I)-... 

Again, we refer to Morgan and Sullivan [l], Wall 1131, Jones 121, 

Taylor and Williams 111 tor applications of surgery on 

Zm-manifolds to ordinary surgery. 

* * *  

An n-dimensional geometric A-Poincar; complex X is 

an n-dimensional normal space such that the Z[nl(X)l-module 

chain level cap product 

[XI n - : C (X) n-* -L C (g) 

is a A-equivalence for some locally epic morphism of rings 

with involution Z[nl(x) ] ---+A, with 2 the universal cover. 

(For id. : Z[n (X)] --+ A = Z[nl(X)] this is just the 1 

usual notion of a geometric ~oincar; complex). If X is a 

finite n-dimensional CW complex with a fundamental class 

[X] F Hn(X) such that [X] n - : H"-*(x;A)---+H,(X;A) is an 

isomorphism for some locally epic morphism Zln (X)]---+ A 1 

and there exists a rinq morphism A then X is an 

n-dimensional geometric A-Poincar; complex. In keeping with 
I 

our previous conventions UP shall assume that the geometric 

h-Poincarg compl~xes X W? are d~alinq with are finite and such 

that 1x1" - :  C(x;~)~-*---rc(x;h)=AI C(X) is a simple 
zlnl(X) 1 



A-module chain equivalence. (As usual, there are also versions 

for finite and finitely-dominated complexes) 

Recall from Proposition 2.4.6 that the relative quadratic 

A--+ h 
I-group ln ( 1  4 ) is the cobordism proup of In-l)-dimensional 

A ---9 B 

B-acyclic quadratic Poincare complexes over A ,  for any locally 

epic morphism A---+B. In particular, if X is an n-d,imensional 

geometric A-~oincare complex t h ~  construction of 

Proposition 7.4.1 i) associates to X an (n-l)-dimensional 

(simple) A-acyclic quadratic ~ o i n c a r 6  complex over Z[vl(X) 1 

A U,(X) = H ~ * ( x )  = (RC([XI n-:c(ji)"-*--+c(ji)) , $ c Q ~ - ~ ( R c ( [ x ~ ~  - 1 ) )  
A 

such that (l+T)o,(X) = ;Jo*(x), representinq the quadratic signature 

An (n+lj -. -dimrnsional .- (normal ,A-~oincar;) pair (X,Y) is an 

(nt1)-dimensional normal pair such that the boundary Y is an 

n-dimensional geometric A-Poincar; complex, with respect to a 

locally epic morph~sm Z l n  (X) 1 -  - +A. Proposition 7.4.1 i) 1 

associates to such J pair (X,Y) an n-dimensional quadratic 

A-~oincar; complex over Z [ n  (X) 1 1 

A o,(X,Y) = (RC([XJ n -:c(x)~"-*+c(x,Y) ,$EQn(RC([Xl 0 -  1 ) )  
A such that (1+7')u, (X, Y) i': symmetric A-Po1ncar6 cubordant to 

u ; , ( Y )  - ( ~ . ( Y ) , ~ ~ ~ ( I Y I )  eon(c(U))) , 

representinq t h ~  ~ p a ( l r ~ t  ic ;iynr~tgre of (X,Y) 

(,:(X,Y) r , , ( z ~ ~ ~ ( x )  I - - + A )  , 

with 2 the universal cover of X ancl Y the induced cover of Y 



Given a space K and a locally epic morphism of rings 

with involution Zfnl(K)l - - - + A  let OiP(K) denote the bordism 

group of maps f:X-K from n-dimensional geometric 

A-Poincar; complexes X, and let Q:'~~(K) denote the bordism 

qroup of maps f:(X,Y)-K from n-dimensional 

(norma1,A-I'oincar;) pairs (X,Y), so that there is defined 

a long exact sequence 

. . .+ o/'(K) +#(K) ----+ON'AP 

It is tacitly assumed that K is equipped with an orientation 

map W : nl(K)-Z2, so that Z[n (K) l is given the W-twisted 1 

involution, and w(X) = wf,. Also, it is assumed that K is a 

CW complex with a finite 2-skeleton, so that in particular 

nl(K) is finitely presented. In the special case 

id. : Z[nl(K)] -----t A = Z[nl(K)] 

ntP(~) = OE(I0 , O~tAP(lo = flttP(K) , 

using the geometric Poincar; surgery of Browder (71 to 

ensure that f,:nl(X) nl(K) is an isomorphism. 

Proposition 7.7.1 The various quadratic signature maps fit 

together to define a natural transformation of lonq exact 

sequences 

where n = n (K). 1 



In dealing with geometric A-Poincarg complexes we shall 

assume that the A-coefficient analogue of the Levitt-Jones-Quinn 

geometric poincarg surgery sequence 

is exact (at least for n) 5, which we shall also assume). 

It follows that the quadratic siqnature maps 

ate isomorphisms. Note that if 1/2fA the composites 

are isomorphisms, so that there are defined natural direct 

sum decompositions 

N 
n;'(K) = rn(Zfnl(K) 1 - A)@Rn(K) . 

An "-dimensional geometric (A,A')-poincar6 pair (X,Y) 

is an n-dimensional normal pair such that the Z[nl(X)l-module 

chain level cap product 

1x1 n - : c(x)~-*-c(X,?) 

is a A-equivalence, and such that Y is an (n-l)-dimensional 

geometric A'-poincar; complex, for some locally epic morphisms 

Z[nl(X) 1 A', An---- + A .  Given a space K and lccally epic 

morphisms Z Inl (K) 1 -A', A'--+A let RAPfA'P(~) denote the 

bordism group of maps f: (X,Y) ---+ K from n-dimensional 

geometric (A,A1)-poincar; pairs, so that there is defined an 

exact sequence 



Recall from Proposition 2.4.6 that the relative quadratic 

is the cobordism group of (n-l)-dimensional 
B'-+B 

B-acyclic quadratic B'-Poincar; complexes over A ,  for any 

locally epic morphisms A--,B', B ' - -  , B .  In particular, 

if (X,Y) is an n-dimensional geometric (A,A')-~oincar; pair 

the construction of Proposition 7.4.1 i) gives an 

(n-l)-dimensional A-acyclic quadratic A'-~oincar; complex 

over Z I n I  (X) I 

A , A '  
0, ( x , Y )  = (RC([X] n - : ~ ( i ) ~ - * d ~ ( j i , ? ) )  , 6 €  Q~-~(RC([X] n - ) ) )  

representing the quadratic signature 

Proposition 7.7.2 i) The quadratic signature maps 

are isomorphisms, where n = n1 (K). 

i i )  There is defined a natural transformation of exact sequences 



iii) T h ~ r e  is defined a commutative braid of exact sequences 

I I 

Given a formally n-dimensional normal map 

(f,b) : M-X 

from an n-dimensiorlal geometric poincar; complex M to an 

n-dimensional qeometric A-Poincar; complex X there is defined 

a quadratic kernel as in S 7 . 3  

using the spectral quadratic construction JIF:Hn(X)----+Qn(C(f!) 

on the geometric Umkehr semi-stable n-map 
m- 

F = Tn ( h )  * : T n  ( v  ) *  X s T ~  ( v M )  * = 1 M (I = n1 (X) 

inducinq the Umkehr ZInJ-module chain map 

[M1 n - 
f ! C ( X )  "-*-f*+ C (M) n-* - + C ( M )  . 

The quadratic kernel is an n-dimensional quadratic ~-poincar6 

complex over Z l n ]  representing the 9uadratic signature 



The quadratic signature of (E,b) can be interpreted as the 

A quadratic signature o,(W,Mu-X) of the (n+l)-dimensional 

(norma1.A-Poincar6) pair (W,M U - X )  defined by the mapping 

cylinder W of f:M-X. 

The quadratic signature of a formally n-dimensional 

topological normal map 

(f,b) : M-X 

from a manifold M to a geometric A-Poincar; complex X is the 

A-homology surgery obstruction 

A 
o.(f,b) E rn(zInl(x) I +AI 

as originally defined by Cappell and Shaneson I11 by a direct 

generalization of the method of Wall 141, which is the specie 
A case A = Z[nl(X)l. The obstruction vanishes o,(f,b) = 0 if 

(and for n)5 only if) (f,b) is bordant to a simple A-homoloc 

equivalence. 

More generally, given a formally n-dimensional topologi 

normal map of pairs 

(f, b )  : (M, 2M) --+(X, 2x1 

such that ;If = f l : ;M --+ 3X is a simple A-homology equivalenc 

there is defined a relJ A-homology surgery obstruction 

the quadratic kernel is an n-dimensional quadratic 

pair over Zlnl(X)l 

A o,(f, Jf;b,3b) = (i:~(3f!)----,~(~!), (JIF([XI) 

(i = inclusion) 

A such that o,(f,b) = 0 if (and for n) 5 only if) (f,b) is bord 

re1 if to a simple A-homology equivalence of pairs. In this c 

A-Poincar; 



such that the boundary (n-l)-dimensional quadratic A-Poincar; 

complex 

ot(ff,.lb) = (~(af!) ,6jF(f3X1) €Qn-l(C(af!))) 

is simple A-acyclic. The rel,) A-homoloqy surgery obstruction 

is the cohordism class of the n-dimensional quadratic ~-poincar& 

complex over 72 In1 (X) 1 
A 

o+(f,b) = (C(i) ,JIF([XI)/QdF([axl) E Qn(C(i))) 
A 

obtained from a,(£, lf;b, ib) by applying the algebraic Thom 

A complex construction of 51.2 to collapse the boundary o,(df,Jb). 

Given a commutative square of locally epic morphisms 

of rinqs wlth involution 

there are defined relative quadratic r-groups r,(@) to fit 

into the exact sequence 

--+ rn ( $1  -+ rn-l (Zln'l-A') -+ ... 
either qeometrically as in Cappell and Shaneson [l] or algebraically 

as in s2.4 above. Given an n-dimensional geometric (A,A1)-Poincar6 

triad (X;X',Y;Y1) with n (X) = n, n (X') = n' and a topological 1 1 

normal map of triads 

(f,b) : (M;M1,N;N') -(X;X1,Y;Y') 

(with IM' = aN = N', > M  = M' uN,-N) such that the restriction 

(g,c) = (f,b) l : (N,N') (Y.Y') 

is a simple (A,A')-homology equivalence of pairs there is defined 



a relative (A,A')-homology surgery obstruction 

o;""(f,b) e rn(0) 

such that o!'~' (f,b) = 0 if (and for n) 6 only if) (f,b) is 

normal bordant re1 ( g , c )  to a simple (A,A')-homoloqy equivalence 

of triads. The image of o ; " '  (f,b) € in Tn-l(Z[n']-A') 

is the re11 A'-homology surqery obstruction of the restriction 

(f,b) I :  ( M 1 , N ' )  ---t(X',Y1). 

In the applications of homology surgery theory to 

codimension 2 surgery due to Cappell and Shaneson 111 the 

obstruction groups arising are actually the relative r-groups 

of commutative squares of the type 

Z[nl --- + ;?.[a1 

Z l n l --------+ A 
(cf. the algebraic theory of codimension 2 surqery of 97.8). 

Pardon [l] (for A = Q[nl) and Smith [21 (for arbitrary A) have 

interpreted the groups T,(OO) as the obstruction qroups for 

making a topological normal map (f,b):M-X (nl(X) = n) 

which is a simple A-homology equivalence normal bordant to an 

S-triangulation of X by a normal bordism which is also a 

simple A-homology equivalence - we shall qeneralize this 

interpretation in Proposition 7.7.3 below. In particular, 

for A = QInI the F-group exact sequence 

...- 4t' (l:Z[nl -+Zfn]) ---+rn(Z[nl-Q 



coincides with the quadratic L-theory localization exact 

sequence for the multiplicative subset S = 'ZZ-~O)cZ[nl 

. z + L;(QI~I) - 9 L ~ ( Z I ~ I , S )  

obtained by Pardon [l], [21,[31 and In S3 above. 

Let 

be a commutative square of locally epic morphisms of rings 

with involution. Given an n-dimensional geometric (A,A)-Poincar; 

pair (X,ZIX) with n (X) = n and a topologicdl normal map of pairs 1 

such that f:M---j X is a simple A-homology equivalence and 

d E =  € 1  :M8---+dx is a simple A'-homology equivalence, so that 

the quadratic kernel o,(f,df;b,Ib) = (i:r(df1) - C ( € ! ) ,  (6,11$)) 

is an n-dimensional A-acyclic quadratic A'-~oincar; pair over Z[n 

with a A'-acyclic boundary U,( sf , 2 b )  S ( ~ ( 2 f ' )  , l $ ) .  ~ollapsing 

the boundary by the algebraic Thom complex construction 

(as before) there is obtained an n-dimensional A-acyclic 

quadratic A'-~oincar6 complex over Z [nl u:'~' (f ,b) = (C(i) ,Q/:$) 

representing the *dratic signature 



Proposition 7.7.3 i) The quadratic signature is such that 

oA8A' (f ,b) = 0 B l'n+1(80) if (and for n 3 5 only if) (f ,b) 

extends to a topological normal map of (n+l)-dimensional triads 

(F,B) : (N;N',M;M1) -----+ (X X 1;X X 0,X X 1;jX X I) (I = [O,l] 

such that F:N-Xx I is a simple A-homology equivalence and 

FI:N1--XxO is a simple A'-homology equivalence. 

ii) Let (F,B) : (N;N' ,M;M') -(X X 1;X X 0,X x l;3X X I) be a 

topological normal map of (n+l)-dimensional triads such that 

the restriction (f ,b) = (F,B)I : (M,M') -------t (Xx l,>X X I) ( =(x,;Ix 

is a simple (A,A1)-homology equivalence of pairs. Then the 

relative (A,A')-homology surgery obstruction of (F' ,B)  is the 

quadratic signature of (f,b) 

Proof: i) The image of atfA' (f ,b) E: l'n+1(80) in l'n(Z[nl - - + A g )  

is the obstruction to extending (f,b) to a topological normal 

map of (nt1)-dimensional triads 

(FIB) : (N;N1,M;M') ----+(X X 1;X X 0,X X 1;3X X I) 

such that FI:N' ----+X x O  is a simple A'-homology equivalence. 

Such an extension (F,B) determines a quadratic A'-~oincar6 

null-cobordism of the quadratic kernel o,(f,b), and conversely 

every such null-cobordism determines such an extension (F,B). 

The null-cobordism is A-acyclic precisely when F:N-----+Xx I 

is a (simple) A-homology equivalence. 

ii) There is a canonical topological normal bordism re1 f:~-) 

of topological normal maps of (ntl) -dimensional triads, from 

(F,B) : (N;N';M;M1) ------"(X x I;X X 0,X X 1;SX X I) to 

(f,b) X l : (M x 1 ; M x o . M ~  1 ; ~ '  x I) +(X X I;X XO,X X 1;ax X I) 



(essentially given by N x I, involving a copy of N from N' to 

M X 0) so that 

A,A1 
0, (F,B) = otrA' ((f ,h) X l) € rn+l(OO) 

The relative (A,A1)-homology surgery obstruction 

A A' OtrA' ((€,h) X 1) f rnll ( Q o )  is represented by the pair 

(the n-dimensional quadratic ~'-poincarg complex over Zlnl 

o,(f,b), the quadratic A-~oincar; null-cobordism of o,(f,b) 

determined by its A-acyclicity) , 

which is just the A-acyclic quadratic A'-~oincar6 cobordism 

class o;"' (f,b) € rn+l(OO) appearing in i). 

l 1  

The total surgery obstruction theory of S7.1 extends 

to homology surgery as follows. 

Given a topological space X (equipped with an orientation 

map w:nl(X)-22 ) and a locally epic morphism of rings with 2 

involution 22 Inl (X) 1 ----+ A define the A-coef f icient J-rlro- 

~,(x;A) to fit into the exact sequence 

where o ;  is the composite 

o* 
0: : H (X:U ) - - - - + ~ ~ ( ~ I n ~ ( x ) l )  - rn(Zlnl(x)l-+A) . 

n -0 

For id. : Z [m1 (X) 1 -------t A = Z Inl (X) l these are just the 8-groups 

of S7.1 

/9,(x;~In~(x) 1) = 4(x) . 



Proposition 7.7.4 Given a space X and a commutative square - 

of locally epic morphisms 

Z l n l  --+ Z l n l  

there is defined a commutative braid of exact sequences 

An sA-tr iangulation of an n-dimensional geometric 

A-Poincar6 complex X is a formally n-dimensional topological 

normal map 

(f,b) : M --*X 

such that € : M  -+ X is a simple A-homology equivalence. 

(If there exists a ring morphism A 4 Z  every A-homology 

equivalence f!:M-X from a manifold M can be given the 

structure of an sA-triangulation (f , b )  :M-+X, since 

integral homology equivalences induce isomorphisms in 

topological K-theory). Let 3T0P(~:~) denote the set of 



concordance classes of sA-triangulations of X. 

The total A-homoloqy surpe9 (or sA-triang~labilit~) 

obstruction of an n-dimensional geometric A-Poincar; complex X 

is an element 

A 
S (X) E 

with the following properties. 

A -0sition 7.7.5 i )  s ( X )  = 0 f $n(X;A) if (and for n > 5  only if 

A 
ii) The imaqe of s (X) in Hn-l (X;lLO)@ Yn (n = n1 ( )  

is given by 

A 
Is ( X ) ]  = (the t-triangulability obstruction t(X), 

A 
the quadratic siqnature U, (X) ) 

If 

A 
S (X) F ker (9n (x;A) -----*H~-~ (X;&)) 

A 
(i.e. if X is t-triangulable) the inverse image of S (X) in 

rn(Z[nl (X) 1 - A) is the coset of the subgroup 

consistinq of the A-homology surgery obstructions 

U:(€ ,b) f r n ( Z  [ n  1 (X) ]-----+A) of all the topological normal maps 

(f,b) :M - ----,X. 

iii) If n 3 5  and X is sA-triangulable the structure set 8T0P(~:;~1 

carries a natural affine structure with translation group 8n+l(X; 

If X is an n-dimensional manifold there is a natural 

identification 



and the A-homology surgery exact sequence 

. . .---+T~+~(ZZ.I~~(X) I---+ A) ---+nToP(x;~) - IX,G/TOPI -----+ rn(z[nl(x) I -A) 

can be identified with the exact sequence of abelian groups 

Furthermore, if Z[nl(X)]-A factors throuqh a locally epic 

morphism Z [nl (X) I----+ A '  the canonical map 

A sends an s -triangulation (f,b):M* X to the obstruction 

otrA' (f,b) 8 Tn+l(@O) to making (f,b) concordant ( =  topological 

normal bordant by an sA-triangulation of triads 

((F,B); (f,b), (f',bl)) : ( N ; M , M 1 ) A X  X (I;0,1)) to an 

sA'-triangulation (fl,b') :M'-X. 

l 1  

The total A-homology surgery obstruction defines abelian 

group morphisms 

A sA : O;'(K)+ gn(K;A) ; ( f : X 4  K)- f,s (X) 

for any space K equipped with a locally epic morphism 

Z[nl(K) I---* A. which fit into a commutative braid of 

exact sequences 



involvinq the geometric A-~oincarg assembly maps 

P 'T* P 
U; : Hn(K;g --+Rn(K) WQ/~(K) . 

P P with gP the geometric ~oincar6 bordism spectrum (n, (g  ) = a, (pt.) ) . 
Thus an n-dimensional geometric A-Poincar6 complex X is 

sA-triangulable if (and for n >, 5 only if) there exists an 

nP-or ientation [XI f Hn such that - 

a;([XI) = (1:~-X) E C~;'(X) . 

Also, in this case the A-coefficient 4-qroups J,(X;A) fit into 

the exact sequence 

- -  . . . - H  (X;IL0) n - )@rn(izlnl(x) I - + A )  -A~(x;A) 

-& Hn-1 - . # 

and sA(x) f An(X:A) is the image of ([?l ,u;(X)), so that X is 

A 
S -triangulable if (and for n g 5  only if) there exists an 



0 
L'-orientation [XI€ Hn(X;& ) such that - 

i )  J( [XI ) = [;l €2 H~(x;&') is the canonical &'-orientation o f  X 

ii) oI((X1) = o;(X) € r n ( z [ a l ( X )  ]-A) is the symmetric 

signature o f  X. 

T h u s  i f  1 /2eA it is not necessary t o  consider the delicate 

U,-spectrum level compatibility condition needed for A = Z [ n l ( X ) ] .  - 



7.8 The algebraic theory of codimension 2  surgery 

Codimension 2  surgery qoes back to knot theory, which i 

1 the classification theory of embeddings k:S c s3 .  The applica 

of surgery methods to the classification of high-dimensional 

knots k:snc 5"'' (n 3 1) was initiated by Kervaire [l] and 

Levine [21,141. (We shall discuss high-dimensional knot theor: 

in 57.9 below). Non-simply-connected codimension 2 surgery fi 

occurred in the work of Browder 151 on free Z -actions on 
P 

homotopy spheres. The general codimension q surqery obstructi~ 

theory of Wall [4,5111 applies equally well for q = 2, provid, 

it is qeneralized to take into account "the general philosoph: 

for dealing with surgery problems in codimension 2: do not 

insist on obtaining homotopy equivalences when you are doing 

surgery on the complement of a submanifold, be happy if you c, 

oba in the correct homology conditions" suggested by ~ 6 p e z  de 2 
Medrano [l], and the homology surgery theory developed for th, 

purpose by Cappell and Shaneson [l]. Codimension 2 surgery ha. 

also been studied by Matsumoto Ill and Freedman Ill, by consi~ 

ambient surgery on the submanifold instead of homology surger' 

on the complement. We shall now specialize the algebraic the0 

of codimension q surgery of 57.5 to the case q = 2, making us( 

the algebraic homology surgery theory of S 7 . 7 .  In particular, 

enables us to compare the previous approaches to each other. 

TO start with we shall modify the geometric theory of 

codimension q surgery of 5 7 . 2  for q = 2 so as to only take t h ~  

homology type of the complement into account. 



ring 

of 

his 

A %k (n, n-2) -dimensional (or codimension 2) geometr i 

poincar; pair (X,Y) is a codimension 2 CW pair (X,Y) such th 

i) X is an n-dimensional geometric poincarE complex 

ii) Y is an (n-2)-dimensional geometric ~oincar; comple 

Then nl(Z)--+nl(X) is onto, and (Z,S(c)) is an n-dimensions 

geometric Z[s (X) l-~oincar6 pair, with X = E(c) u ~ ( ~ ) Z ,  1 

c:Y m B G ( 2 )  = BT%P(~). 

A t-triangulation of a weak codimension 2 geometric 

poincar; pair (X,Y) 

((ftb) 8 (9,~)) : (MtN) -(X,Y) 

is a t-triangulation (f,b):M----+X of X (i.e. a topological 

normal map) which is topologically transverse at Y c  X, so th 

(M,N = f-'(y)) is a codimension 2 manifold pair with normal 

block bundle 

fl 5 
V : N + Y -----A BTYP ( 2 . 

The restrictions of (f,b) define topological normal maps 

(f,b) I = (g,c) : N +Y 

(f,b) 1 = (h,d) : (P,S(v)) -(Z,S(C)) (P = M\E(V) 

so that 

(f,b) = (g,c)!v (h,d) : M = E(v) U,(~)P -X = E(C)uS 

A s  for a strong codimension 2 qeometric Poincar6 pair (X,Y) 

(Proposition 7.2.3) the set of concordance classes J ~ O ~ ( X , Y ,  1 

of t-triangulations of (X,Y) is naturally identified with 

'TToP (X), and hence also with J~~~ (vX) , by topoloqical 

transversality. 



A weak S-triangulation of a weak codimension 2 geometric 

~oincar; pair (X,Y) is a t-triangulation 

((fib), ( 9 , ~ )  ) : (M.N) -----+(X,Y) 

such that (f,b):M--+X is an S-triangulation of X and 

( g , c ) : N - A Y  is an S-triangulation of Y, in which case 

(h.d) = (f,b) l : (P,S(v)) (Z,S(S)) 
A is an s -triangulation of (Z,S(C)) with A = Z [ n  (X)]. 

1 

Let w!I~~~(x,Y, F )  denote the set of concordance classes of 

weak S-trianqulations of (X,Y). An S-triangulation (f, b) :M X 

of X is weakly split along Y C X  if f actually defines a weak 

S-trianqulation of (X,Y) . 
S - 

The weak splittinq obstruction theory for 

LS - 
involves the following analoques of the groups appearing 

in the strong splitting obstruction theory of 5 7 . 2 .  

Given a (connected) codimension 2 CW pair (X,Y) let 0 

denote the associated pushout square of fundamental groups 

and l ~ t  a Z ,  @X denote the commutative squares of qroup rinqs 



Define the transfer maps in quadratic r-theory induced by (X,Y) 

to be the composites 

the relative groups appearing in the exact sequence 

rs-  
Proposition 7 . 8 . 1  i) The quadratic groups are 4-periodic 

ii) The W-groups are related to the IS-qroups by the commutative 

braid of exact sequences 



i i i )  The FP-groups are related to the LP-groups by the 

commutative braid of exact sequences 

i v )  The rP-qroups are related to the rS-groups by the 

commutative braid of exact sequences 

V) The LS-,rS-,LP-,rP-groups are related to each other by the 

commutative braid of eaxct sequences 



Given a weak (n,n-2)-dimensional geometric ~oincar; pair 

(X,Y) and an triangulation (f,b) : M - X  topologically i :: 
transverse at Y c X  there is defined a weak codimension 2 

splitting obstruction&onq Y C  X 

with image the surgery obstruction a *  (g,c) 8 L,-, (Z[nl (Y) l) 

of the (n-2)-dimensional topological normal map 

(q,c) = (f,b)l : N = £-~(Y)-Y , 

by analogy with the strong splitting obstruction of S 7 . 2 .  

 he canonical map TSn-2 (0) +TPn-2 (0) sends ws (f ,Y) to wt (f t Y) 



ws(f,Y) = 0 e rsn-2 (8) 
that { if (and for n > 7  only if) (E,b) 

~t(f.Y) = 0 e TPn-,(8) 

is concordant to an S-triangulation of X which is weakly split 

along Y C  X. 

i i) The canonical map TPn-2 (8) -- ' Tn (OZ) sends wt (E ,Y) to the 
cobordism class of the (n-l)-dimensional Z[n (X)]-acyclic 

1 

quadratic ~oincar; complex over Z[nl(Z)l obtained from the 

quadratic kernel a,( (f ,b) l = a(g,c) ! : S(v) -----+S(<)) by surgery 

on the n-dimensional quadratic ZL[nl(X)1-~oincar6 pair over n[nl(Z) 1 

The weak codimension 2 splitting obstruction of Cappell 

and Shaneson [l, 5 8 1  for an S-tr iangulaticn (f , b) :M a X 



The  t o t a l  c o d i m e n s i o n  q  s u r g e r y  o b s t r u c t i o n  t h e o r y  o f  S 7 . 2  

e x t e n d s  to weak c o d i m e n s i o n  2 g e o m e t r i c  ~ o i n c a r ;  p a i r s  a s  f o l l o w s  

G i v e n  a  c o d i m e n s i o n  2 CW p a i r  (X,Y) d e f i n e  t h e  " d ! ~ - ~ r o u ~ s  

W h , ( X , Y , S )  by a n a l o q y  w i t h  t h e  g r o u p s  ~ , ( x , Y , C )  o f  S7.2, 

to f i t  i n t o  t h e  c c m m u t a t i v e  b r a i d  o f  e x a c t  s e q u e n c e s  

I 
w i t h  A = z [ n l ( X )  l ,  p c '  t h e  c o m p o s i t e  

A,(x,Z;A) t h e  r e l a t i v e  A - c o e f f i c i e n t  ( - g r o u p s  a p p e a r i n q  

i n  t h e  e x a c t  s e q u e n c e  

...--4 4,(Z;A) --+ 3 (X)---,  4 (X ,Z ;A)  ~ --+ 3 n - l ( Z ; A )  -+... 

a n d  . ( , ( Z ; A )  t h e  A - c o e f f i c i e n t  4 - q r o u p s  a p p c a r i n q  i n  the e x a c t  

s e q u e n c e  
A 

='* . . . - ~ H , , ~ Z ; U ~ ~  - --P-+ r n ( z [ n l  (7,) I -  - % A )  

~ - 4 ) ) ~  (Z;A)  - - - -A H n - l  ( Z ; k 0 )  + . . 



Propos i t ion  7 . 8 . 3  i )  The R-g roups  a r e  r e l a t e d  t o  the  3-groups 

by the  commutative h r a i d  of e x a c t  sequences 

i i )   he V3-qroups of (X,Y,S) a r e  r e l a t e d  t o  t h e  4 -g roups  by 

the  commutative h r a i d  of  e x a c t  sequences  



The total weak surgery obstruction of a weak 

(n,n-2)-dimensional geometric Poincar; pair (X,Y) is an 

element 

WS(X,Y.S) e Vhn(X,Y,0 

with the following properties. 

Proposition 7 . 8 . 4  i) ws(X,Y,c) = 0 if (and for n)7 only if) 

(X,Y) is weakly S-triangulable. 

ii) The obstruction has image 

[ws(X,Y,c) 1 = (the total surgery obstructions (s(X) ,S(Y)) , 

the quadratic signature 

A o,(z,s(c)) = (nc(fz1 ~-:C(Z)~-*-+C(Z,S?) 

e 5n ( x ) B ~ ~ - ~  (Y)B~,, (aZ) (A = z[n1(x)1) . 

iii) If n ) 7  and (X,Y) is an (n,n-2)-dimensional manifold pair 

there is a natural identification 

The codimension q geometric ~oincar6 splitting theory 

of S 7 . 4  extends to weak codimension 2 geometric Poincar6 

splitting, as follows. 

Let (X,Y) be a codimension 2 CW pair. 

A map f:M-X from an n-dimensional geometric Poincar6 

complex M is weakly poincar6 transverse at Y c X if (M,N = fel(Y) 

is a weak (n,n-2)-dimensional qeometric Poincar; pair. 

Let n/PtP(2p~ ! )  (n 3 0) be the relative geometric Poincar6 

bordism qroups appearinq in the exact sequence 



There are defined maps 

P n;P'P(3p~!)--+~n(X) ; 

((h,g): (PtN)------+ (Z,Y)) 
I 

b . - - - + ( €  = q ' u  h : M =  E ( ~ * C ) L J ~ ( ~ , ~ ) P - - - +  X=E(5) u 
S(C)~) 

A map f:M-+X from an n-dimensional geometric Poincar; complex M 

is bordant to one which is weakly Poincar; transverse at Y c  X 

i €  and only if 

P (€:M--+X) f irn(~:~'~(,>~~!) - -+Q~(X))S\(X) . 

ProposlJio_n 1.!,5 Given a codimension 2 CW pair (X,Y) there is 

defined a commutative braid of exact sequences 

I rSn-3 ( @  
Thus 1 r p n 3  I. 
from n-dimens 

Of:JM---+jX 

is the bordism group of maps (f, If) : (M, aM)-----r X 

qeometric ~oincarh 
onal pairs surh that 1 (normal, qeometric poincar;) 
s wpnkly ~oincar; transvrrse at Y c X .  



If f:M--+X is a map from an n-dimensional 

[geometric ~oincar; complex 
M the weak Poincarg splitting 1 normal space 

obstruction of along Y C X 

ws (E,Y) = WU5(f) f rSn-3(a) 

wtP(f,y) = wv ( f )  f rPn--,(6) i p 5 

wsP(f,y) = 0 
is therefore such that if (and for n 2  7 only if) 

wtP(f.y) = 0 

~oincar; 

is { bordant to a map from an n-dimensional geometric 
. normal 

Poincar; complex which is weakly Poincar; transverse at Y c  X .  

The codimension q algebraic Poincar; splitting theory 

of S 7 . 5  also extends to weak codimension 2 algebraic Poincar6 

splitting, as follows 

A weak n-dimensional quadratic Poincar; splitting over Q 

(y,z) consists OF 

i) an (n-2)-dimensional quadratic Poincar; complex y 

over 27, Inl (Y) 1 

ii) an n-dimensional quadratic 27,[n1(~)]-~oincar& pair 

The union 

is an n-dimensional quadratic Poincar; complex over Zlnl(X)l, 

which we shall abbreviate to p t ! y u  z. The splitting is 

contractible ---p - if the union is contractible. 



The normal splitting over 0 of quadratic ~oincar; 

complexes over z[n (X)] given by Proposition 7.5.1 i) 1 

provides the followinq extension to of the expression 

LS, (a) contractible 
in terms of ( quadratic Poincar6 

LP, (0) i - 

splittings over @ given by Proposition 7.5.1 ii) 

Proposition 7.8.6 The weak codimension 2 surgery obstruction 

lrsn-2 [:ontractible 
group (nf Z) is the cobordism group of 

( rpn-2 (a) 

weak n-dimensional quadratic ~oincar6 splittings over a. 

The maps appearing in the exact sequence 

(iE ((y,3y), (z,a+z)) is a normal splitting of X ) .  

In particular, the image of an element x€Ln(Z[nl(X)l) in 

TSn-j(@l is the obstcuction to X having a weak 

Moreover, the weak codimension 2 geometr 

poincar6 splitting 

l 1  

qeometric ~oincare complex 
from an n-dimensional M 

normal space 



(resp. the weak codimension 2 manifold splitting obstruction 

(X,Y) is a weak (n,n-2)-dimensional geometric Poincar; pair) 

/;ontractible 
can be expressed in terms of a weak quadratic 

~oincar; splitting over O using normal (resp. topological) 

transversality, exactly as was done for the strong case in 

Proposition 7.5.1 iii) (resp. iv)). 

For a codimension 2 CW pair (X,Y) with 

the LS-qroups are written 

as before, and the PS-groups are written 

We shall now investigate the algebraic properties of the 
[iak 

I LN,(nv-n,w) codimension 2 surgery obstruction groups 
rN,(n8---+n,w) 

by analogy with the algebraic investigation in 57.6 of the 

type C) codimension 1 surgery obstruction qroups LN,(n'-n,w). 

In the first instance we have to qive an algebraic description 

of the transfer maps induced in quadratic L-theory 

by the sl-fibration C : Y w R C , ( 2 )  ( =  B O ( 2 ) )  



1,et (n,w) be a pair consistinq of 

i) an exact sequence of groups 

i P 
n : Z? --B n ' - v n  -(l) 

ii) a qroup morphism 

W : n L Z 2  = [?l1 

such that 

g'tq'-l = t ~ '  

where t = i(l) f n', and W' = w p  

Wall I4,Prop.ll 

1 
1s an S -fibrat 

with fundamenta 

41 has shown that associated to (n,w) thrre 

qroup exact sequence 

1 P X n x  : nl(s ) - nl(x1) L ~ ~ ( X )  -[l1 

isomorphic to Il, X' = K(nl,l) and with orientation map 

W ( p )  = W  : n (X) = n----+ 1 X 1 z 2  

which has the following universal property: given an sl-fibration 

P 
s1 A Y '  Y Y 

and a map of pxact sequences of qroups 

such that 

f W 
w1(pY) : nl(Y) -+ n / z 2  

there exists a map of sl-fibrations 



P 
An sl-fibration sl- Y' 4 Y has data (n,w) if it is 
equipped with such a morphism f : (ny,w (p ) )  -p(l[,w). 1 Y 

Note that py is orientable if (and for f : n l ( Y ) 4 n  only if) 

t e n '  is a central element. We shall be only concerned with 

sl-fibrations py over finite CW complexes Y, although the 

1 theory may easily be extended to S -fibrations over finitely 

dominated CW complexes. 
P 

Given an sl-fibration S1-Y' - Y with data 
1 (n:Z ---+nl-n -ll),w:n-iZ ) let S ----t X'--+ X be 2 

the universal sl-fibration with data (n,w). We shall now 

introduce the cateqory of "pseudo chain complexes over (n,w)" 

to help explain the relationship between the Z[nl-module 

chain complex C ( ? )  of the cover ? of Y classified by 

Y -----+ X - K(n,l) and the Z [m']-module chain complex ~(i;') 

of the cover y '  of Y' classified by Y'-X' = K(nl,l). 

(In the special case of the universal data 

(ny:Z -n1(Y8) -% nl(Y) {l) ,wl(p) :nl(Y) - iz2) 
? is the universal cover of Y and ? '  is the universal cover of Y'). 

This relatiohship is considerably more complicated than that 

between the universal covers of the total and base space of 

an SO-fibration ( =  double cover), for in that case the universal 

covers coincide as spaces. 



Given data (n,w) define ring automorphisms 

W' (9') = +l wl(g') = -1 

(ng,ng 0 ' Z )  . 
Given a Zlnl-module M let aM denote the Zlnl-module with the 

same additive group and Z [n I acting by 

ZInIx aM ------+aM : (a,x) b - j a ( a ) x  . 
Similarly, given a Z[n']-module M' let a'M' denote the 

Z[nl]-module with the same additive group and Z[n'I acting b] 

Z[n'] X a'M' -----+ a'M' ; (a,x) -a' (a)x . 
For any such M' there is defined a Z[n']-module morphism 

which is natural in the sense that for any Zln'l-module 

morphism f' € HornZln, l (M',N') there is defined a commutative 

diagram 

l-t 
a'M' --p M' 

with a' f' € HornZ , (atM',a'N') defined by 

a'f' : a'M'-----+alN' ; X-f'(x) . 
Also, for any such M' there is defined a natural Z[n']-module 

isomorphism 

t : a'2M'+M' ; X+--+tX . 



A pseudo chain complex over Z In] c = (C' ,d' ,e') is a 

collection of Z![n']-modules 

c* = {c;Irez) 

and 22 [n ' l -module morphisms 

d' = (d'eHom 22[nol (c;tc;-l) l1 z.1 

such that 

i) dg2 = (l-t)eg : C; C;-2 
(r f2 Z!) 

ii) (a1d')e' = e'd' : C; +a'C;-j 

The projection of is the (genuine) Z![n]-module chain compl 

C defined by 

The induction of y i s  the Z![n']-module chain complex C! defi 

The projection and induction are related by the identity 

~[n1@~[,,, C !  = C(e:RC -aSC) 

with e the 22[nl-module chain map 

e = 1Be' : RCr = Z[n]Bz[n,lC;t1-----3aSCr = ~ [ n ] B ~ [ ~ , ~ a  

The pseudo chain complex ?is F-dimensional if C; = 0 for r <  

and r > n, and each C; (0s r n) is a E.g. free Z![n'l-module, 

in which case C is an n-dimensional Z![n]-module chain comple 

and C' is an (ntl) -dimensional Z! [n '1 -module chain complex. 

The pseudo chain complex Z is contractible if the projection 

is chain contractible. 



A pseudo chain map of pseudo chain complexes over Z [ R ]  

f- = (f',gl) : ? =  (C1,d;,e;) ---------+ a = (Df.d;,e;) 

consists of collections of Zln'l-module morphisms 

f' = {f' €HomZ,n,l (C;,D;) (r f 22) 

g '  = ( g '  € Hornz(,,] (C;,Q'D;-l) l r  €Z) 

such that 

i) dbf' - f'd; = (l-t)q' : C; D;-l 

ii) e'f' D - ( a ' f l ) e ;  = (a'dA)q' + q'd; : C; ----+Q'D;-~ 

(r f Z) . 
The projection o f F  is the Z[n]-module chain map 

f = f'al : C = Z[n]C4 
Z(n'1 

c' ,D = ~Inle,~~,,D' . 
The induction of 7: is the Z In1]-module chain map 

f! : C! - I 
D -  

defined by 

The pseudo chain map P : --+ 23 is an eouivalence if the 

projection £:C -D is a chain equivalence. 

A pseudo chain complex = (C',dt,e') is untwisted if 

e' = 0 ,  so that C' is a Z[n'l-module chain complex and 

C! = c(l-t:alct --C*) . 
Similarly, a pseudo chain m a p y =  (f',ql) : 2 --+a is 
untwisted if p,d) are untwisted and q' = 0, so that ft:C' +Dt 

is a Z[n']-module chain map. 



Proposition 7.8.7 i) The induction C! of a finite-dimensional 

pseudo chain complex is chain contractible iE (and for 

untwisted only if) IIJ is contractible ( =  C is chain contractible). 
l l 

ii) The induction f .  :C.----+ D! of a pseudo chain map F:x -+ a 
of finite-dimensional pseudo chain complexes is a chain 

equivalence if (and for untwisted q o n l y  if) F is an equi 

( =  f:C ---+D is a chain ~quivalence). 

iii) A finite-dimensional Z[n']-module chain complex C' 

Zlnl-acyclic if and only if l-t:a'C'-C' is a chain 

equivalence. 

Proof: i) If the projection C of ?y: is chain contractible let 

A = { A €  Homz(nj (Cc,Cr+l) Ir f R.] 

be a chain contraction, so that 

dA + Ad = 1 : C -cr . 
As p:Z(n']---+Z(n] is onto with ker(p) = im(l-t:E[n']-+Z[n']) 

there exist A' f HornZln, l (C;,C;+l), E' E Hornzln, l (C;, a'C; ) such 

that lBA' = A and 

d'A' + A'd' - l = (l-t)E' : C; -C; (rf Zl . 
The Z[n']-module morphisms 

are such that for each r f Z  

l : C: = c;@~~c;-~ L C! r = clea r '';-l 

is a (simple) Zln'l-module automorphism. Thus the automorphism 

of the induction C!  of defined by 



d!*! + A!d! : c! c! 

is null chain homotopic, and C! is chain contractible. 

ii) Define the algebraic mapping cone of the pseudo chain map 

= ( f ' ,g ' ) : Y: --P a to be the pseudo chain complex 

with projection C(f:C -D) and induction C(f)! = c(~':c!-D 

Now apply i) to ?(F). 

iii) Apply i) to the untwisted pseudo chain complex (C1,d',O). 

1 l 
1 Pseudo chain complexes arise from S -fibrations as follo 

1 Proposition 7 . 8 . 8  Given an S -fibration 

P 
\ Y' - ---+ y 

with data (n:z +n' ----+ n -{lJ,w:n -----P Z2) over a 

finite n-dimensional CW complex Y there is defined in a natura 

way an n-dimensional pseudo chain complex over (ll,w) 

t(Y,p) = (C1,d',el) 

such that 

i) the projection C = c(Y) is the n-dimensional 

Z[n]-module chain complex of the cover Y of Y classified 

by Y----+ K(n,l) 

ii) the induction C! = c(Y') is the (n+l)-dimensional 

Z[n']-module chain complex of the cover F' of Y' classified 

by Y' -K(n 8 , l )  

iii) the Z[n]-module chain map 

e : nc = nc(?) -aSC = ~ s c ( Y )  

is the chain level cap product e = e(p)n - with the W-twisted 



2 Euler class e(p) f H (Y,w) (which together with the orientatio 

map wl(p) : nl(Y) - 4 s  Z2 classifies p:Y- BG(2)) 

iv) if p = W@E : Y -BG(2) (i.e. if e(p) = o f  H~(Y,U 
- 

then r(Y,P) = (C1,d',O) is the untwisted pseudo chain complex 

defined by the n-dimensional ~[n'l-module chain complex 

(C',d') = c(Y) of the covering Y of Y classified by the compo 
S 

Y Y' -> K(nl,l) with s the section of p qiven 

Furthermore, a map of sl-fibrations with data (n,w) 

determines a pseudo chain map 

with projection 

and induction 
I - 

f'=F1 :c:=c(~;) 

Proof: The construction of u(Y,p) is by induction on the numb 

of cells in Y, starting with Y = for which t(y,p) = 0. 

Assume inductively that Y(~,P) has already been defined for 

p:Y j B G ( 2 )  and let 



be an extension of p to the complex Y1 obtained from Y by 

attaching an r-cell. The attaching map f : S'-' d Y  defines 

1 a map of S -fibrations 

using the trivialization of f*p : Sr-l - Y P B G ( 2 )  

qiven by q : o r d B G ( 2 )  to identify it with the trivial 

1 S -fibration E = projection : sr-' X s1 ------+sr-l over sr-l 

The covering zr-l of S'-' classified by the composite 

sr-l c____ , sr-l f' 
X s1 - -+ Y' -K(n',l) 

determines an (untwisted) pseudo chain map 

5 = (gt,o) : (sr-'~~nl] ,o,o)--- ?[B~-~,E) = (c(iTr-') ,o,o) . ' 
Define the pseudo chain complex t(yI,pl) to be the alqebraic 

mapping cone of the composite pseudo chain map 



P 
Given an sl-fibration s1 AY'-- Y with data 

(JI:Z-n'----+n ---4 (11,w:n---+Z2) there is defined a 

transfer map in the Whitehead qroups 

p! : Wh(n) -4 Wh(n') ; 

T(f:M X)- T(~':M'+ X') 

sending the Whitehead torsion ~ ( f )  of a homotopy equivalence 

of finite CW complexes f:M 2-+X equipped with a reference map 

X - + Y  to the Whitehead torsion ~ ( f ' )  of the homotopy 

1 equivalence €':M'-- X' of the total spaces of the S -fibrations 

induced from p. This transfer was first defined geometrically by 

D.R.Anderson [l], and an alqebraic description was first 

obtained by Munkholm and Pedersen Ill. From the point of view 

of Proposition 7.8.8 the transfer map sends the Whitehead 

torsion T(C) fWh(n) of a based acyclic f.9. free Z[n]-module 

chain complex C which is the projection of a based 

pseudo chain complex = (Ct,d' .e') over (11.1~) to the 
l l l 

Whitehead torsion ~ ' T ( C )  = T(C') F Wh(n') of :he induction C'. 

In particular, if C is l-dimensional (Cr = 0 for r # 0,l) 

then any lift of the Z[n)-module isomorphism d:C1+Co 

to a Z[n']-module morphism df:Ci d C 6  defines a hased 

pseudo chain complex p= (Ct,d',O) with projection C, and in 
this case the induction 

l ( c:::l 1 ( d B  -(l-t)) 
c. : ... -+o -- -- 

1 
> c 9 '8" 'c- -- - -- 

1 
.-+cg --+o--+ ... 

0 

is the algebLaic description of p!r(~) = T(c!) due to 

Munkholm and Ped~rsen [l]. 



Next, we shall construct the Q-groups of pseudo chain 

complexes, allowing the definition of "algebraic Poincare' 

pseudo complexes". 

Given data 5 = (n:Z - no r -!l],w:n--jZ2) 

and an orientation map w:n---+a2 define orientation maps by 

Define the W-twisted dualq "-*lW of an n-dimensional 

pseudo chain complex 2 = (C',d',el) to be the n-dimensional 

pseudo chain complex vn-t'w = (Dt,d;,e;) with 

5 ---*D;-l = QOCun-r+l,w' 1 

The projection D of ?"-*lW is the W-twisted dual of the project 

C of y 
D = cn-*'W 

The induction D !   of^"-*'^ may be identified with the  twist 
dual of the induction C! of 

D! = (c!)n+l-*,w'c 

since the Zln'l-module isomorphisms 



define a canonical isomorphism of Zln'l-module chain complex, 

D! - , (c!)ntl-*,w'~ 
Given a finite-dimensional pseudo chain complex 

= (C',d',el) define a Z [ ~ ~ ~ I - m o d u l e  chain complex 

Hom,(~*'~,f) by 

pseudosymmetr ic 
Define the w-twisted Q-qroups of Y 

seudoquad* 

( Q t , e U )  
An element is represented by a collection t 

( e B , x t )  e ~ : ~ ~ ( p  



The Z[Z21-module chain map 

p! : Hom (tffw,t) A Horn (c*'~,c) ; n Zlnl 
7 @ = 1%' 

defines the projection maps in the Q-groups 

( I f  t F  n' is of infinite order and e' = 0 these maps are 

isomorphisms). The Z[Z2]-module chain map 

with 



0 

a )  t -  (-)Pet @ '  
: C'P#w''@Q,C'~-l,w'~__ ---, C ' @ C I ' C '  

q q-1 

defines the induction maps in the Q-groups 

Replacing W by W' there are also defined W'-twisted 

Q-groups Q'rw"r) with projection maps 

(Both the W-twisted and the W'-twisted Q-groups arise in the 

applications) . 
A pseudo chain map of finite dimensional pseudo chain 

complexes over ZIn] 

'F = (f'.g1) : Y =  (c1,d:,ei) - D = (~',d;,e;) 

induces the Z(Z :  ! - m o d u l e  chain map 
2 

HO~,,(F*'~,F) : ~om~(y*'~,?) - - -+  Hom i21*lW,3) n 
defined by I 



Thus there are induced morphisms in the Q-groups 

(which are isomorphisms if$:Z---*a is an equivalence) 

which are compatible with the prnlection and induction maps 

in the @-groups. 

i P pseudosymmetr ic An n-dimensional complex over z lnW]  
seudoquadratic 

(Y, (@',a1)) 
is an n-dimensional pseudo chain complex over Z l n l  

(Y, (*',X')) 

( + * , e m )  
= (C',d',el) together with an element 

( $ * , X ' )  

Such a complex is poincar6 if the projection 

symmetric 
is an n-dimensional Poincarg complex over 1~ [ n W ]  , 

quadratic 

that is if the pseudo chain map 

is an equivalence, since it has projection 



in which case the induction is an 

symmetric 5 
(nt1)-dimensional ~oincar.5 complex over Z [n lW' 1, 

quadratic 

by Propos 

. Def 

ition 7.8.7 ii). 

pseudosymme tr ic ~ " ( ~ l n ~ ] )  
ine the - L-groups of z[nW] ( r  

seudoquadrat ic L ~ ( Z I ~ ~ I )  

pseudosymmetr ic 
to be the cobordism groups of n-dimensional 

pseudquadratic 

~oincar.5 complexes over Z [nWl . Pseudoquadratic surgery below 
the middle dimension gives the periodicity 

L,(ZI~~I) = L~+,(ZIIT~I) (n ho) , 
and identifies L ~ ~ ( Z [ I I ~ ] )  (resp. L2i+l(ZlllW~) ) with the Witt 

qroup of non-singular ( - 1  i-pseudoquadrat ic forms (resp. format ior 

over z[nW], by analogy with the usual quadratic L-groups L,(Z?[nW 

i Every ( - )  -quadratic form (resp. formation) over Z[nw] lifts to 

a ( - )  i-pseudoquadratic form (resp. formation) over z [flu] , and 

the projection maps in the quadratic L-groups 

P! : Ln(z[llW1) --J Ln(z[nW1) ; ( P ,  ( J I ' r x ' ) )  -(c,+) (n) 0) 

are isomorphisms, which we shall use as identifications. 

(It is not clear if the projection maps in the symmetric L-qroups 

P! : ~~(ZlIl~l)? Ln(z[nW1) ; (?, ($',8'))-+(C,4) (n >,O) 

are? also isomorphisms, except in special cases, e.g. if ten' is 

of infinite order so that l-t:Z?[n'l-~[n'] is injective, or if 

there exists a group morphism s:n-n' such that p s = l  : n +n) 



(pseudo)symmetric 
There are defined induction maps in the L-groups 

(pseudo)quadratic 

In terms of forms and formations the induction ( =  transf-r) map in 

P.:I.~~ (z[nw]) L ~ ~ + ~ ( ~ I ~ * ~ ~ ~ I )  
quadratic L-theory E: (i(mod2)) 

P . : [ ~ ~ ~ + ~ ( z I ~ ~ I ) ~ L ~ ~ + ~ ( z [ ~ ' W I  I) 

sends a non-singular ( - )  i-quadratic over z [nwl 

(M. J') 
to the non-singular 

(H(-)i(F) ;F,im( ( : ) : G  --F~BF*.')) 

i 
formation 

i+l-quadratic 1 ::: - , W Q C  overZIn 1 

l-t 
(H(-) i (M') ;M8,im( : a'M' -----*M'tBM1 *,wuc 

a'$'+(-)'t + '  
) 



(Munkholm and Pedersen have also obtained an alqebraic description 

,wvc 
of the transfer maps p!:~,(Zln~]) -L,+l(Z[n 1) in terms of 

forms and formations, extending their algebraic description of 

p!:wh(n)+wh(nl)). For n u =  n x Z  p!:~,(~[nj) - L,+l(Z[n x Z ] )  

is just the splitting map R = O*(S1) C4 - appearing in the 

splitting theorem of Novikov [l] and Ranicki 1 2 1 .  We shall now 
l 

relate the algebraic L-theory induction maps p' to geometric 

transfer maps. 

Let 

1 be an S -f 

( n : ~  &n 

be the fin 

associated 

P 
s1 X -' X 

ibration over a finite CW complex X with data 

l P ,n -j{ll,w:n -'z*). Let ?(%,p) = (cl,d',e*) 

ite-dimensional pseudo chain complex over Z[n] 

to p : X - + B G ( 2 )  by Proposition 7.8.8, with projection 

C = C(%) the chain complex of 

X -K(n,l) and induction C! 

the cover X '  of X '  classified 

the quotient of 2 '  by the acti 

the cover 2 of X classified by 

= C(:') the chain complex of 

by X' -K(n0,l). Let X'/t be 

on of i(Z)cnl, which is the 

cover of X' classified by X' -----.t K (n' ,l) P + K(n-l). 

Define the Umkehr Zlnl-module chain map 

p! : asc(ii) -- c(F1/t) 

by 

(There is also defined a geometric Umkehr stable n-map 

~ : ~ ~ ~ n ( w ) - - - i ~ ~ ( % ' / t ) +  inducinq p! on the chain level). 

The definition of @X,p) by the algebraic glueinq of the 

untwisted pseudo chain complexes of the restrictions of p:X--+BG(2) 

to the cells of X extends to thp symmetric construction: 



Proposition 7.8.9 There is defined a natural transformation -- 

of abelian groups, the pseudosymmetric construction on (X,p) 

for any orientation map w : n h Z 2 ,  which is related to the 

symmetric constructions on and 2 '  by a commutative diagram 

Given an n-dimensional qeometric ~oincar6 complex M and 

map €:M---X such that w(M) = f*w the pullhack sl-flbratia 

f f*p:M -P+ X - P + B G ( 2 )  ovrr M 

sl 4 ,", ' f*P -f M 

has total spacr M' 

~oincar; complex W 

fundamental class 

an (ntl) -dimensional qeometr IC 

ith orientation map w(M0) = €'*W" and 

The n-dimensional pseudosymmetric ~oincar6 complex over Z[nW 

U *  (M,P) = (K(M, €*P) t @M, f*p ( [ M ]  1 € o~,,(op(M,f*p))) 

has projection the n-dimensional symmetric ~oincar6 complex 



and induction the (n+l)-dimensional symmetric ~ o i n c a r 6  comp 
5 

over ~ [ n ' ~ '  1 

p!a*(~,p) = M = ( c ( R ~ ) . @ ~ , ( ~ M ~ I )  ~ Q " : ~ , L I C ( ~ ~ V ) ) )  

The pseudosymmetric siqnature map 

o; : R~(x,w)----+L~(zIII~I) : (~:M---+x) +-----+u*(M,~) 

fits into a commutative diagram 

with 

p! : R;(x,w) ~ R ; + ~ ( X ' , W " )  ; (f:M- X)- (€':M8-- 

The pullback of a formally n-dimensional normal map 

(f,b):M----+ X along an S'-fibration p:X-----+ DG(2) is a 

formally (n+l)-dimensional normal map (f',b') :M'-------+X1. 

The Umkehr ZIn1-module chain map of f 
- 
f* 

f! : c(i)n-*lW- + C(%) "-*lW IMl; - 
+ c ( G )  

is the projection of the Umkehr pseudo chain map 



and the Umkehr Zln'l-module chain map of f' 

is the induction  of^!. The quadratic kernel of (E,b) is the 
formally n-dimensional quadratic complex over L [nW] 

o.(f,b) = (C(€!) ,JIF([XI) €~~'~(c(f!))) 

with (JF:Hn(X,w)- Q:'~(C(~!)) the spectral quadratic construction 

on a qeometric Umkehr semi-stable n-map F:Tn (vx) S--+ I%+ 

inducing f!. The quadratic kernel of (f',bl) is the formally 

(n+l) -dimensional quadratic complex over L [n 'W" I 

~ , w l S  
o,(fl,b') = (~(f'!) ([X1l) (C(€"))) 

with VF. (X' ,W'') +Q~~iwoc(C(f'!)) the spectral quadratic 

construction on a geometric Umkehr semi-stable n'-map 

F' :Tn' (vX,) *----+C~E; inducing f", with v X ,  = p* (vX8w) 

(involvinq the orientation line bundle W = W (p) : X B B G ( 1 )  
1 

of p:X--+BG(2)). T h e  definition of '?ffg,p) also extends to 

the quadratic construction: 

Proposition 7 . 8 - 1 0  There is defined a natural transformation 

o €  abelian qroups, the 2xctral p s ~ a u a d r a t i c  construction 

H,,(X,w) Q~'~(C(F') 1 *,,p . 
wit-h symmetrization 

( ~ * T I + ~ , ~  = ~ % $ ~ ~ , ~ f '  : H ~ I X . W ) - - - - - - + Q ~ , ~ ~ C ( F ~ I  

( E  = projection : Z("Mf**p) ---+C(?')) , 
and such that there is defined a commutative diagram 



l 1  

The pseudoquadratic kernel of ((f,b),p) is the formally 

n-dimensional pseudoquadrat ic complex over z [nW1 

with projection the quadratic kernel of (f,b) 

p,oy(f,b) = o,(f,b) 

and induction the quadratic kernel of (f',bl) 

p1oT(f,b) = o,(f',bq) . 
If (f,b) :M---+ X is a genuine normal map, that is if X is an 

n-dimensional geometric ~oincar6 complex, then o:(f,b) is an 

n-dimensional pseudoquadratic Poincar6 complex over 2?lnwl 

with cobordism class 

op(f,b) = o,(~,b) e L,(Z[~~I) = ~ ~ ( z z . 1 1 ~ 1 )  . 
(Moreover, in this case the spectral pseudoquadratic construction 

is a composite 

*F,P 
$F,p : H ~ ( x . ~ )  -~r[,,"(t (a,f*~)) 



L e t  ( X , Y )  b e  a  c o n n e c t e d  c o d i m e n s i o n  2  CW p a i r  w i t h  

n l (X)  = n l ( Y ) ,  a n d  l e t  @ b e  t h e  p u s h o u t  s q u a r e  o f  f u n d a m e n t a l  

g r o u p s  

D e n o t e  t h e  u n i v e r s a l  d a t a  o f  [:Y-BG(Z! 

W , ( < )  : n l ( Y )  d z 2  
P  

by (n:Z - + n '  ---+n -- - , I l ) ,w:n -'E2), a n d  w r i t e  t h e  

o r i e n t a t i o n  map o f  X a s  

w(X) = W : n l  (X) = n + Z2 , 

so t h a t  t h e  o t h e r  o r i e n t a t i o n  maps a r e  g i v e n  by 

7 . 2 . 1  i i )  
By P r o p o s i t i o n  t h e  [LS-lroups o f  (X,Y) 

7 . 8 . 1  i v )  l. S- 

LS, ( a )  = LN, (n ' ----+ n  , W )  
f i t  i n t o  t h e  e x a c t  s e q u e n c e  

TS, ( 0 )  = T N ,  (n ' ---+ n  , W )  

I . . . -+ L n + l ( Z l n W l  -LNn-2(n -+n , W )  

---+ L,,( I ~ ! : z I ~ ~  I - Z I ~ ' ~ ' I I  -+ t J n ( ~ ~ n w 1 )  -+ ... 



7.5.1 ii) 
By Proposition the codimension 2 splitting 

7.8.6 

LNn-2(n' - ",W) 
obstruction group (n + 2) is the cobordism 

rNn-2 I n t - - - +  n ,W) 

group of contractible n-dimensional quadratic ~oincar; 
Iieak 

splittings over @ ,  i.e. of pairs 

consisting of an (n-2)-dimensional quadratic ~oincar; complex 

WC (C.+) over Z I n  1 and a n-dimensional quadratic ~oincar; 
iieak 

pair (~:?s'c ----+ D, ( 6 e , a c L + ) )  over z[nlW'l such that the 

ZZ fn l -module chain map 

is a (simple) chain equivalence, where i is the Zfnl-module 

chain map appearing in the n-dimensional quadratic Poincar; 

pair over z[nW] 

We now have to give an algebraic definition of <!(C,$). 



Proposition 7.8.11 The transfer maps in quadratic L-theory - 

associated to a codimension 2 CW pair (X,Y) with n 1 (X) =nl(Y) = n 

n ( z )  = " ( S ( t ; ) )  = n', w(X) = W : n - + z 2  are qiven algebraically by 1 

< I  : Ln(zInwC)) ,Lnt2(p:Zinlw')+~~nw~) ; 

(C,$)H((C!,C!), ( i : ~ 1 ~ 3 8 z ~ n , l C 1 - t ~ I  (o,l@$!l)) (n $01 

r, 
with (C,$€ Q:'~ (C)) the projection of an n-dimensional 

pseudoquadratic Poincari complex l?, ( $ ' , X ' )  f Q:'*'(Tl over 

C 
Z[nW ] and (i:iZlnlB 

zln'l 
c!--+c, (0,lW') f ~:;y(i)) the 

(n+2)-dimensional quadratic Poincar; pair over Z[nw] with 

i = (1 0) : (Z[n]B;Z[n,lC!)r = Cr@aCr-l--3Cr . 

Proof: Immediate from the pseudoquadratic kernel construction. 

1 1  

Continuing with the previous terminology define an 

antistructure (B,t) on Zln'l by 

so that there is defined a morphism of rings with antistructure 

p : (ZI~'I,~,~)----+(ZI~~I,W',~) . 
In the oriented case W ( F )  = W = +l the unit t f  Z[n'l is central 1 

and 8:z[n1)--4 Z[n') is the W'-twisted involution. 



Assume now that the underlying codimension 2 CW pair 

(X,Y) is a formally (n,n-2)-dimensional normal pair (in the 

sense of S 7 . 5 )  and that there is qiven a formally 

(n,n-2)-dimensional topological normal map 

(f.b) : (M,N)--------t (X,Y) , 

denoting the restriction normal maps by 

(f,b)) = (q,c) : N = f-'(~) -Y 

(f,b) ( = (h,d) : (P.S(v)) = F-'(z,s(sI) - - - - - t (Z .S(C)I  , 

with 
9 E 

V : N -------+ Y ---------+ BG (2) . 
According to Proposition 7.5.4 ambient surgery on (q,c) inside 

(f,b) has the algebraic effect of surgery on the (pseudo)quadratic 

kernel pair (oy(g,c) ,Q, (h,d) ) preserving the union 

f,!of(g,c) upo,(h,d) = @,(f,b). We shall now associate to the 

pair (o:(g,c) ,m, (h,d) ) a formally (n-2) -dimensional 

(f3,t)-quadratic complex over Z[n'] o;(f,b) such t h ~ t  surgery 

on the pair determines surqery on the complex, and such that 

if f : M - - - + X  is an S-triangulation algebraic surqery determines 

qeometric surgery, generalizing the treatment of codimension 2 

surgery due to Matsumoto [l] and Freedman [l]. 

The pair (@y(g,c) ,o, (h,d)) consists of a formally 
E. 

(n-2) -d imensional pseudoquadrat ic complex over Z! 1 nW 1 which 

we shall write as 

I m, WC 
of:fg,c) = (Cl5 )I$G,P(IYI)) = (L?'= (C1,d',e'). ( $ ' , X ' )  (C)) 

and a formally n-dimensional quadratic pair over Z [ nlW' 1 which 

we shall write as 



o,(h,d) = (fo:c(g ! )  - c(h!) .$H([~~)) 
= (fo:C! -----ta'SD1, ( 6 $ ' , + ! )  '2~:"~' (fo)) 

with 

fo = (a'k a'jl : = C;@~'C;-~-+~'D' r-l ' 

Define an untwisted pseudo chain complex over Z[nl 

a = (D1,O) , 

and note that j,k define a pseudo chain map 

7 = ( j , k )  : "g ------+a . 
As 3 is untwisted the Z [Z2]-module chain complex (Horn,, (a* 
is the algebraic mapping cone of the Z[Z2]-module chain map 

l-t : (Hom (auDg*tw' ' D '  T l ~ ( H ~ m Z [ , , J  (,,*,B 
Z[n1I , D '  

and 3 induces a natural transformation of exact sequences of 

abelian groups 

Define the antiquadratic kernel of (f,b):(M,N) ----+(X,Y) to 

the formally (n-2)-dimensional (8,t)-quadratic corrplex over 

'b. 



Proposition 7.8.12 Given data 

and an orientation map w : n -  Z2 there are defined natur; 

isomorphisms of abelian groups 

which fit together to define a natural isomorphism o f  exact 

sequences 



Proof: Given an (n-2)-dimensional (B,t)-quadratic 

~oincar; 
complex over z [ ~ * I  (D',$' EQ;I;~(D',~)) 

z[n)-~oincar; 
r 

define an (n-2)-dimensional pseudoquadratic complex over ZlIIW~1 

Poincar6 
and define also an n-dimensional quadratic 

~[nl-~oincark 

pair over ~ [ n ' ~ ' ]  (fO:D!- a'SD1, (0,$!) €~:"~'(f,)) with 

such that (P:f0) : Z [ T I @ ~ [ ~ .  ]D!- is a 

simple Z[nl-module chain equivalence (the identity in fact) 

I 5 
rn-2(p:Z~n'1B - - + Z l n W  1,t) --+ rNn-2(n'-n,~) ; 

( D ~ , + @ )  ++(P, ($*,o)), (fo:~!-a~s~*, (o,~!))) 

are the isomorphisms inverse to the morphisms defined above. 

Given a 22 In]-acyclic (n-2) -dimensional (B, t) -quadratic 

~oincar; complex over Z[nll (D',$' f Q::;@ (D'. t)) we have that 

the Z[ntl-module chain map l-t:o'D'-D' is a chain equivalence, 

by Proposition 7.8.7 iii), so that there is induced an isomorphism 

l-t : Q::;~' (alD' ,-l) 2~::;' (D' ,t) 

- 
and (a'~D',s(l-t)-~$' f (a'SD1)) is a Zlnl-acyclic 

n-dimensional quadratic ~oincar; complex over z [n lW' 1 . 



The corresponding abelian group morphisms 

are the isomorphisms inverse to the morphisms defined above. 

If (X,Y) is a (n,n-2)-dimensional geometric Poincar; 

pair (such that nl (X) = nl(Y) = n, nl(S(<)) = nl(Z) = n', w(X) = W) 

and (f ,b) : (M,N)  ------P (X,Y) is an (n,n-2) -dimensional topological 

normal map such that (f,b):M +X is an S-triangulation of X 

the antiquadratic kernel o;(f,b) is an (n-2)-dimensional 

~oincar; 
(B',  t)-quadratic complex over Z [n ' 1 . 

Zlnl-~oincar; 

Proposition 7.8.13 The 
[ieak 

splitting obstruction of f along Y c X  

Proof: Immediate from Proposition 7.8.12. 

[l 

Matsumoto [l] and Freedman [l I (independently) analyzed 

ambient surgery on codimension 2 submanifolds in terms of a 

geometrically defined t-quadratic form analogous to the 

self-intersection form of Wall 14.551 and the equivariant 

self-interseckion form needed for codimension 1 surgery (cf. 57.6). 

The antiquadratic kernel 0 :  (f,b) is nvidently a homological 

version of this t-quadratic form. 



If (M,bM) is an n-dimensional manifold with boundary an< 

U c a M  is a codimension 0 submanifold (which may be empty) of 

the boundary such that (M,U) is an (n-2) -dimensional qeometr ic 

Poincar6 pair, and such that there is given a codimension 2 

spine K c U, then the obstruction o,(M,K) f Pn-2(n,~) obtained 

by Matsumoto [l] (in the oriented case W = W = +l) for the 

existence of a codimension 2 spine (N,K) c(M,U) is the re13 

weak splitting obstruction along the zero section' MCE([) o f  

an szlnl-triangulation (defined as in Proposition 7.5.4) 

(f,b) : (M;u,x;~u) - ( E ( [ )  ;~(rl,,) , s ( r )  ;s(cIU)) ( X  = aM 

topologically transverse at the zero section (M,U) c (EIS) ,E(S[ 

with €-'(U) = K c U  

o,(M,K) = wsa(f,M) o;(f.b) 

f ~ , - ~ ( n , w )  = ~ ~ ~ _ ~ ( n ' - - f n , w )  = T n-2 ( p : ~ ~ n ' l ~ - ~ ~ n  

1 with [:M+RG(2) an S -fibration over M extending 

K--BG(z), n = n l ( ~ ) ,  n' = nl(s(~)), W = w(M,~M). 
'KCU' 

The obstruction to the existence of a codimension 2 spine 

obtained by Cappell and Shaneson 121 is the relative 

(Z[n'],Z[n])-homology surgery obstruction of the n-dimensiona 

topoloq 

(h,d 

fl 
with v = v N = f-I (14) -F M - N C M  ' +BG(2), P = M \  E ( ' ) ,  

which is the image o,(h,d) f rn(oW') under the canonical map 

of wsl(f,M) f I ' N n - Z ( n ' I n , ~ ) .  By Proposition 7.7.3 ii) this 



obstruction is the reld quadratic signature of the 

sz[nl-triangulation 

that is 

We shall now consider the codimension 2 surgery obstru 

1 
theor.. in the case when the normal S -fibration admits a sac 

e.o. if it is trivial (the situation arisinq in knot theory) 

We shall develop non-simply-connected analogues of various k 

invariants, which will be related to their origins in knot t 

in 57.9 below. For example, the above expression for o,(h,d) 

a generalization of the expression of the knot cobordism cla 

of a (high-dimensional) knot in terms of the Blanchfield 

pairing in the homology groups of the knot complement. 

Let then (X,Y) be a codimension 2 CW pair such that 

f 5 = ME : Y - BG(2) 
for some line bundle w:Y -------+ BG(l), and such that 

nl(x) = nl(y) = n , 

in which case nl(Z) = nl(S(C)) = n' is the semidirect produc 

ON of n and Z $etermined by the orientation map w:n+~ut(~) 

with n' = 1gt'1g€ n,jf Zl as a set and 

(,tJ) (htk) = (gh) t w(h)jtk € n' (g,h€n, j,k€ Z )  

p(gtj) = g G n . 
( ~ f  w is trivial n' = n X Z). Denote the orientation map of X 

W(X) = w : n ------+Z 
2 '  



so that 

W(Y) = WC : n z2 ; g -w(g)w(g) 

w(Z) = W' : n1---,z2 ; gt' - w(g) . 
A mild generalization of the splitting theorem of Shaneson [l] 

(the trivial case W = +l) identifies 

5 
L,(ZI~'~'I) = L ~ I ~ Z I ~ ~ I ) ~ L ~ - , ( Z [ ~ ~  I )  , 

so that the transfer map in quadratic L-theory associated to ( X , Y )  

WC 
C! : Lnlajn i ) - - ~ ~ + ~ ( p : ~ [ n ~ ~ ' l - ~ [ n ~ ] )  = L:(zlnwc]) 

is just the forqetful map appearing in the Rothenberg exact 

sequence. The resulting identification 

-n+l 
LNn(ns--rn,w) = H (Z2;Wh(n)wC) 

was first obtained by Wall [4,Prop.13A.10] (for W = +l). 

It now follows from the exact sequence given by Proposition 7.8.1 i )  

W C  .. . -int1(iz2;~h(n) ) - r~~(n*---+ n,w) 
that TEln(nl +new) can be identified with the cobordism 

group of Zlnl-acyclic (n+l)-dimensional quadratic ~oincar6 

complexes over ~ [ n ' ~ ' l  (C,$) such that C is based, 

~ ( ~ [ n l ~ ~ [ ~ , ]  C) = 0 f Wh(n), T ( ( ~ + T ) $ I ~ :  C"~'-*'~'+C) = 0 € Wh(n ' )  , 
and such that an invariant in the second Whitehead group WhZ(n) is 0 .  

We shall use this expression for TN, in S7.9  below in the special 

case n = [l) (when all the Whitehead groups are 0) to describe 

the high-dimensional knot cobordism qroups C, as the cobordism 

qroups of Z-acyclic alqebraic Poincar; complexes over Z [ Z 1 ,  



generalizinq Blanchfield duality. In 57 .9  there will also be 

given a description of C, as the cobordism groups of 

"ultraquadratic" ~oincar6 complexes over Z ,  generalizing 

the Seifert form, which motivates the following expression 

for rN,(n X Z --+n,w). 

Let A be a ring with involution, and let C be a 

finite-dimensional A-module chain complex. The case p = 1 of 

Proposition 1.1.3 gives the exact sequence 

l+TE S 
. . .-+Q~+*(sc,E) ---+H~(HO~~(C*,C)) ----+Q~(c,E) -Q~+'(sc,€) 

with E B A  a central unit such that = E-'€A and 

l+Tc : H (Ho~~(C*,C))-Q~(C,E) : 

The Z[iZ2]-module defined by the abelian group Hn(HomA(C*,C)) 

with T €  Z2 acting by the c-duality involution Tc:$+-+(-)pqE$* 

(if HO~~(C',C ) )  is denoted by Gn(c.€). An element 
q 

c. 1 

41 € Qn(C,E) = Iln(HomA(C*,C)) 

is a chain homotopy class of A-module chain maps 

: cn-*---c . 
An n-dimensional c-ultraquadratic complex over A (C,$) 

is an n-dimensional A-module chain complex C together with an 

element $ B  ;,(C,E). Such a complex is ~oincar; if 

( 1 + ~ ~ ) $  : C"-* ----t C 

is a chain homotopy class of chain equivalences. Similarly 

for pairs. Define the n-dimensional E-ultraquadratic L-group 

ofA E,(A,C) (n )O) to be the cobordism sroup of n-dimensional 



E-ultraquadratic Poincare complexes over A. The F-ultraquadrat, 

version of the algebraic surgery of 51.5 shows that the 

skew-suspension maps 
- A 

S : L ~ ( A , E )  --j i n + 2 ( ~ , - ~ )  ; (C,$)- (sc,s$) ( n > C  

are isomorphisms, just as for the c-quadratic L-groups L,(A,c). 

There are defined forgetful maps 

with ILO = $, $, = 0 (S? 1) 

An c-ultraquadratic form over A (M,$) is a f.g. projectic 

A-module M together with an element $€nomA(M,M*). Such a form 

is non-singular if the A-module morphism 

$+E$* : M-M* 

is an isomorphism. A morphism (resp. isomorphism) of such forms 

€ : (M,$) - - + ( M * , $ * )  

is an A-module morphism (resp. isomorphism) f€HomA(M,M1) such 

that 

~ * j l f  = j Ho ~ ~ ( M , M * )  . 
A sublagrangian of an €-ultraquadratic form (M,$) is a direct 

summand L of M such that the inclusion j€HomA(L,M) defines a 

morph ism 

j : (L,O)+(M,$) 

and such that j * ( $ + ~ $ * )  FHomA(M,L*) is onto. A lagrangian is a 

sublaqranqian For which 
A .. 

1. = krr ( j *  ( $ + c $ * )  :M - + L * )  . 
An E-ul traquadratic formation over A (M, $;F,G) is a non-singula 

A 

E-ultraquadratic form over A over A (M,$) toqether with a 



lagranqian F and a sublagrangian G. Such a formation is 

non-sinqular if G is a lagrangian. The E-ultraquadratic versic 

of the theory ot S1.6 identifies the homotopy equivalence claz 

0-d imensional 
E-ultraquadratic (~oincar;) comple 

connected l-dimensional 

isomorphism 
over A with the classes of (non-singular) 

stable isomorphism 

forms 
E-ultraquadratic over A, and also identifies 

formations 

= the Witt group of non-singular E-ultraquadrati 

forms 
over A . 

formations 

~,(A.E) -LO(A.~) 
The forgetful map 

E1(~, E )  - L~(A, c) is [Onto . 
one-one 

By analogy with the the intermediate E-quadratic L-grout 

X - 
L,(A,c) ( X ' G  Km(A), m = 0,l) of S1.10 there are defined intermed 

E-ultraquadratic L-groups ~:(A,E), with an exact sequence 

^ X  - Ln-l (A, E) ' . . . 
For E =  l € A the terminology is contracted in the usual 

fashion 

l-ultraquadratic = ultraquadratic . 



In dealing with the ultraquadratic L-qroups in the topological 
- 

*[n}G Kl(zlrl) 
context we shall be working with L, (Z[nl), and from 

now on i, (zln]) will denote these E-groups. 
Ultraquadratic complexes arise in topoloqy by applying 

the unstable spectral quadratic construction of Proposition 7.3.2 

to a n-map F:X-----+ZY, to obtain a natural transformation 

with C(f) the algebraic mapping cone of the induced Z[nl-module 

chain map f : R?(x) ---+ k ( ~ )  . We shall call jF the ultraquadratic 
construction on F. If X = EXo is the suspension of a n-space X. 

then is the composite 

with +F the unstable quadratic construction on F:EXO----+EY 

in the sense of SII.l and e:C(Y) e C ( f )  the inclusion. 

For connected Y it is possible to construct $F by means of the 

adjoint n-map adj(F) : Xo---+ REY and the approximation theorem 

due to James [l], with 

Similarly for disconnected Y of the type (Y1)+ for some space 

with a-action Y', using REY = O n (  U (nYg)) and 
b. k>l k 

fin(fi1y/n) = ~ [ Z l @ z [ , l ~ l ~ n ( ( ~ ~ ' ) / n ) ,  i.e. the group completion 

version of the James construction. 



Let X be an n-dimensional geometric Poincar; complex with 

(nl(X),w(X)) = (n,w), and let Z[n) have the W-twisted involution. 

Given an  triangulation 
(9.c) : W -X X s1 

topologically transverse at X X pt. c X x S' there is defined an 

n-dimensional topological normal map 

- 1 
(f,b) = (g,c)I : M = 9 (Xxpt.) ------*.X . 

We shall call normal maps arising in this way ultranormal. 

The ultraquadratic k e r n s  of (f,b) is the n-dimensional 

ultraquadratic ~oincar; complex over Z[n1 

?,(f,b) = (c(f!) ,jeCn(c(f!))) 

l 
refining the quadratic kernel o,(f,b) = (C(f ),$G Qn(C(f!))), 

which is defined as follows. Let 2 be the universal cover of X ,  

let be the pullback of X" x s1 along g, and let 6:k ---+z x s1 

be a n-equivariant homology equivalence covering g. 

The embedding M X D1 = fl(x x D') c W lifts to a n-equivar iant 
h 1 1 embedding M X D'C W, where X x D c X X S' is a normal D -bundle 

of X x pt. C X x sl. Applying the Pontrjagin-Thom construction 

there is obtained a n-map 

- collapse - --p 
: W - --W/W - M x D' = G x D 1 / ~  x S' = ZG+ 

sends the fundamental class ( W ]  fHn+l(W) to the element 



appearing in s,(€,b). The cobordism class 

G,(f,b) Cn(Z~nl) 

is the ultraquadratic signature of (f,b). 

Proposition 7.8.14 Given a (finitely presented) group n there 

are defined natural isomorphisms of abelian groups 

in(zlnl) >rbJn(n X Z -----tn) = Tn(Z[n X Zl+Zlnl,z) ; 

with z = (1,l) f n X Z , C(z,z-l] = Zln x Zl@zlnlC and 

*0 = 1, CS = 0 ( ~ 2 1 ) .  

Proof: By the theory of Matsumoto [l] every element of 

TNn (n X 2 + n) (at least for n ), 5) is the obstruction o, (M,K) 

to extending a codimension 2 spine K c U  to a codimension 2 spin 

(N,K) c (M,U) , for some (n+2) -dimensional manifold with boundary 

(M,aM) and codimension 0 submanifold U c 3 M ,  such that (M,U) is 

an n-dimensional geometric Poincar6 pair with n (M) = n and 1 
2 Hn(M,U) -H (M,)M) = H (M) ; (M] -0. The associated 

 triangulation of triads 
2 

( q , ~ )  : (M;UrX;3U)-----+(Mx D';U X D ,Mx S1:ux S13 (X=? 

restricts to an n-dimensional ultranormal map of pairs 

- 1 
( F , b )  = (g,c) l : (N,K) = q ((M,U) Pt.) ------+(M,U) 

such that ( J f J h )  : K --------+U is an S-triangulation of U. 

The ultraquadratic signature defines the inv~rse isomorphisms 

1 ' ~  (n z ---, n) -f.,(~[n]) ; 

a. (M,K) = wsa (q,M) k--+s,(f,b) . 
I I 



Let A[z,z-ll be the ring of finite Laurent polynomials 
m 

1 a .zl ( a .  € A )  in a central invertible indetermin ate z ove 
, = - m  3 7 

ring with involution A, extending the involution by 2 = z-l. 

The projection 

is a morphism of rings with involution. Define the coverinq o 

an n-dimensional c-ultraquadratic Poincar; complex over A 

(C, & €  6 (C, E) ) to be the A-acyclic (ntl) -dimensional c-quadra 

~oincar; complex over AI~,~-'I 

given by 

: Dr = c, [z, z - ~ ] @ c ~ - ~ + ~  [z,z-l 

es = 0 (S)1) , 

where C[z,z-l] = A[z .Z-~I@~C. If (C,;) is projective (resp. f! 

then B(c,&) is free (resp. simple). If A = z[n] then 

Alz,z-l] = Z [ n  x Z]. 



Proposition 7.8.15 Given a (finitely presented) qroup n there 

are defined natural isomorphisms of abelian groups 

(C,$) - B(c,$) (nao) , 

nl) is the cobordism group of free n-dimensional 

ultraquadratic ~oincar6 complexes over Zln]. 

Proof: This follows from Proposition 7.8.14 and a 5-lemma 

argument applied to the natural transformation of exact sequences 

In the full account (Ranicki 1111) we 

1 l 

shall be obliged 

to obtain the identifications TN,(n X 72 --+ n) = ~,(zI~I), 

r,+2(0) = E:(ZI~I) of Propositions 7.8.14,7.8.15 algebraically, 

usinq an appropriate Hiqman linearization trick to replace the 

codimension 1 transversality. 



7.9 The alqehra&thcwry of knot cobordism 

We shall now illustrate the various approaches of the 

alqebraic theory of surqery to codimension 2 embeddinqs by 

givinq various L-theoretic interpretations of the high-dimensional 

knot cobordism groups C,, as well as defining some isotopy 

invariants of knots. 

We refer to Kervaire and Weber (1) for a survey of 

high-dimensional knot theory. 

Given a (locally flat) topological knot k:snc (n z, l) 

let U = S" X D'C S"+* be a closed regular neighbourhood of 

k(Sn) = S" x O  CSnt2. The knot complement is the Int2)-dimensional 

rranifold with boundary 

( X ,  ,X) = (Snt2 - u,sn X sl, , 
with X a deformation retract of the actual complement Snt2 - k(Sn). 
The generator l € trl (Snt2 - k (Sn) ) = Z is represented by an 

(n+2)-dimensional topoloqical normal map of pairs 

1 ( 9 , ~ )  : (X, ax) --------t(~"+l sl,sn s ) 

1 which is a Z-homology equivalence with g1 = id. : a X  -Sn X S , 
z i.e. an sa -triangulation of (D"~' X S' ,S" X sl). 

The Blanchfield complex of a knot k:Snc S"+' is the 

Z-acyclic (nt2)-dimensional quadratic Poincarg complex over z![z,z- 1 

o,(k) = o,(q,c) 

defined by the quadratic kernel of (¶,c). The chain complex 

involved in o,(k) = (~(g!) , $ €  Qnt2(C(g!))) is the algebraic 

1 mapping cone C(g ) of the ~ l z , ~ - ~ l - m o d u l e  Umkehr chain map 
j 

( [on+' X sll n -)-l 
g! : C (on+' X R )  - V c(nn+' X R,S" X 



with X the infinite cyclic covering of X .  The non-trivial horn, 

kernel 'Zlz,z-ll-modules of q are the knot modules of k 

H +  (~(9')) = H,(?) ( *  # 01 . 
=oation 7.9.1 The homotopy equivalence class of the Blanc1 

complex o,(k) is an isotopy invariant of the knot k:snc snt2 

I l 
Define a multiplicative subset 

Proposition 7 . 9 . 2  i) The following conditions on a 

f inite-dimensions1 ~[z,z-']-module chain complex C are equiva 

b) C is P-acyclic, i.e. pH,(C) = 0 for some p €  P, 

- 1 c) 1-2 : C-----cc is a 'Z[z,z ]-module chain equivalence, 

i.e. 1-2 : H, (C) &H, (C) is an automorphism. 

- 1 
ii) If C is a finite-dimensional Z-acyclic 22[2,2 ]-module 

chain complex the E-syrnmetrization maps in the Q-groups 

are isomorphisms, For any unit ~€iz(z,z-~l. 

Proof: i) a) <=>c) is immediate from the short exact sequence 
-- -- 

of 'Z-module chain complexes 

1-2 
0 ----A C p----, C ----+ 'ZI z[z,z-llC 'O . 

b )  + a) by the factorization of the projection 

C) + b )  The homology H, (C) is a f.g. 'Z[z,z-ll-module such tha 

l-z:H, (C) -----+H, (C) is an automorphism. Wc now U-- t h c  arqumpn 

of Levinr I5,Cor. l. 3 1 .  J.pt xl,x2,. . . ,X E' l i ,  ( C )  t w  a Finite srt 



hfield 

(n >, l). 

lent : 

of Z[z,~-~]-rnodule generators, so that xi = (1-2) yi for 

some yi = fl a . X ,  P H* (C) ( a  . P Z [z,z-'l, 1 4  i 6 m). Define 
j=l 11 l 1 3  

an m x  m matrix over Z[z,z-ll B = (b. . )  
I] l <  i,j<m by 

(z-1)a. . if i # j 
b . .  = 1 3  

l + (2-l)aii if i = ] , 
m 

so that 1 b. .X. = 0 B H, (C) (1s i 4 m). Now p = det ( B )  P P an 
j=1 '1 l 

there exists an m X m matrix over Z[Z,Z-~] B' = (bjj) l 
i, j,< 

such that BIB = p1 (with B-' = p - l ~ '  over ~ - ~ Z [ z , z - ~ ] ) ,  so t 

and pH, (C) = 0. 

(This is the special case n' = Z ,  r = (l) of the result of 

Smith [1,Prop.2.31 that if K'---gn is a surjection of grou) 

such that 

P = [ p €  Z[n'l(p- l €  ker(Z[n11---+z[nl)) c Z ( n ' ]  

is a multiplicative subset then a finite-dimensional iZ[nll- 

chain complex C is Z?[nl-acyclic if and only if it is P-acyc 

If the surjection is part of  data 

L 
(n:z -no 4 n -(l},~:n +Z2 )  

with w = +l and i(1) = z € n' then Proposition 7.8.7 iii) s 

that a finite-dimensional Zln'l-module chsin complex C is 

Z[nl-acyclic if and only if 1-z:H,(C)tH,(C) is a Zln'l. 

isomorphism. Note however that the result of Smith [l,Cor.3 

is false: if ker (n'+n) = Z and 
m . m 

- ( ,  1 pjzl 1 ,  1 pj = l ,  pjf Z I ~ P c ~ [ n ' l  
]=-m 



it is not in qeneral true that a finite-dimensional Z[nl-acyclic 

Zln'l-module chain complex C is P -acyclic. The error in the 0 

proof arises in assuminq that if M is a f.g. Zln'l-module such 

that l-z:M-M is an automorphism and MO is the f.9. 

Z [z,z-ll-submodule of M generated by a finite set of Z[n']-module 

generators then the restriction 1 - z : M 0 4 M 0  is also an 

automcrphism) . 
ii) By Proposition 3.2.1 i) an (n+l)-dimensional P-acyclic 

~[z,z-'1-module chain complex C is the resolution of an 

- 1 n-dimensional (Z[z,z ],P)-module chain complex D, with H,(C) =H,(D) 

and 1-z:D-D an automorphism by i ) .  By the exact sequence 

of Vogel 12,2.4) (cf. the discussion in S3.1) 

its E-symmetric analogue 

and a 5-lemma argument it suffices to show that the 

E-symmetrization maps in the Q-groups of D 

are isomorphisms. The automorphism 



Use u:D----+D to define isomorphjsms inverse to the 

E-symmetrization maps 

$ = (0,Is::O) - i  = (Cs = ) 
otherwise . 

(The isomorphism l+TE:Q,(C,r)+Q*(C,~) is a qeneralization 

of the result of Levine (5,Prop.12.31 that the symmetric 

Blanchfield pairinq on a knot module admits a quadratic 

refinement. The use of the automorphism U = (l-z)-l was suggested 

by Neal Stoltzfus). 

I l 

The Alexander polynomial p € P  of a finite-dimensional 

Z-acyclic iZ[z,z-']-module chain complex C is the generator 

(unique up to unit) of the maximal principal ideal contained 

- 1 in the order ideal {S€ Z [ Z , Z - ~ ]  IsH,(c) = 01 4 Z1z.z l .  

Thus if M(A) denotes the cyclic @[z,z-']-module of order 

A € Z[z,z-l] and pm H,(C) = @ M(A) is the decomposition of the z A 
induced Q[z,~-~]-module @C4 H,(C) as a direct sum of irreducible Z 

cyclic modules then p € P  is the lowest common multiple (1.c.m.) 

of the polynomials A € Z I Z , ~ - ~ I  



The A-nder polynogaJ p f P of a knot k:snc Snt2 (n 3 1) 

is the Alexander polynomial of the (nt2)-dimensional P-acyclic 

- 1 
Z[z,z ]-module chain complex ~(9'). For n = 1 this is just 

the polynomial originally defined by Alexander 111. For n 3 1 

it is the 1.c.m. of the knot polynomials defined by Levine [l 

The linking pairing of the Blanchfield complex o,(k) = (~(9') 

( 1 + ~ )  6: : H~ ( d )  x H ~ - ~ + ~  (X) -- F P-~z[z,z-~I/z[z,z-~] ; 

1 
(x,Y) +4 -(l+T)JIO(x) (W) P 

(r+0,n+3 XGC(%)', ~GC(~X)"-'+~ ,  we^(%)"-^+^, d*w = py) 

agrees via the ~oincar; duality Hnt2-*(R) = H ,  ( g )  ( *  # n,n+2) 

with the pairing originally defined by Blanchfield [l] 

1 H,+,-~ ( z )  X H ~ - ~ ( x )  --P- z ~ ~ , Z - ' I / Z I ~ , ~ - ~ I  

using geometric linking numbers of homology classes. The knot 

module parings have been studied more recently by Levine [5]. 

A Seifert surface for a knot k:snc Snt2 (n) 1) is a 

codimension 1 framed submanifold M""C Snt2 with boundary 

,M = k(sn). G i v e n  a knot k:snc make the sz-trianqulation a 
( 9 , ~ )  : ( x , ~ x )  -P----+ (gn+' X sl,sn x sl) topologically transverse 

n+l 1 at (D"+~,S") X pt. C (D ,Sn) x S , thus obtaininq a Seifert 

surface M = g-l(~n+l X pt.)c X =Snt2 (with a collar removed) 

together with an (n+l)-dimensional ultranormal map 

n+l (f,b) = (g,c) l : (M,OM) = (Dntl.Sn) X pt.) -- ( D  .S") 

such that f l  = id. : SM = k(sn) +Sn. Conversely, every 

Seifert surface M determines an ultranormal map 

(F, b) : (M, 'M) -+ ( D ~ + ~ , s ~ ) ,  by the method recalled in the 

proof of Proposltlon 7.9.3 below. In the original work of 



1 Seifert nl M was obtained for k:S c s 3  using the knot project 

The Seifert complex i?,(k,M) of a pair (k,M) consisting 

of a knot k:snc snt2 (n) 1) and a Seifert surface Mntlc snt2 

for k is the (n+l)-dimensional ultraquadratic ~oincar; complex 

over Z 

6,(k,~) = 6,(f,b) 

defined by the ultraquadratic kernel of the associated 

ultranormal map (f, b) : (M, 2M) -(Dntl,sn). The chain complex 

appearing in 6,(f,b) = (~(f!) , $ Q  6n+l(~(f!))) is the algebraic 

mapping cone ~ ( f ! )  of the Z-module Umkehr chain map 

so that there is an identification 

c(f!) = C(M) . 
Identifying C (M) = C (M) "'I-* by the Poincarg-~efschetz duality 

of the (n+2) -dimensional manifold triad (Mn+'; k (D!), k (D" : k (sn. 

and C(snt2-~) = ;(M) by Alexander duality, note that the 

ultraquadratic structure $ €  Gntl(c(f!)) = Hntl (HomZ(C(f!) *,C(f 

can be identified with the chain homotopy class of the Z-modul 

chain map 

$ : C(f!) "+I-* = e (M) n+1-* - - (M) V+ -C (Snt2-M) = -C (M) 

induced by the map v+:M + snt2-~ ; (x,O) - ( X ,  l) pushing 

M = M x 0 csnt2 off itself along the positive normal direction 

determined by the framing of the normal bundle vMcSn+2, with 

E ( V ~  csn+l) = M X  l-1.11 csnt2. In particular, for n = 2i-1 

the pairinq 



J, : Hi(Pl)/torsionx H. (M)/torsion -4Z 

is the usual Seifert form of (k:sZi-'c s ~ ~ + ~ , M ~ ~ ) .  

The Blanchfield and Seifert complexes of a knot are 

related by the covering operation of S7.8 

D : (n+l)-dimensional ultraquadratic ~oincar; complexes over Z1 

IZ-acyclic (n+2)-dimensional quadratic 

~oincar; complexes over 2Z [ z ,  z-l] l . 
Define (n+l)-dimensicnal ultraquadratic PoincarG complexes 

over Z (C,$), (C',$') to be S-equivalent if their coverings 

B ( c , $ ) ,  8(C1,$') are homotopy equivalent. S-equivalence is an 

equivalence relation such that 

homotopy equivalence -S-equivalence ====+cobordism . 
We shall relate this notion of S-equivalence with the usual 

S-equivalence of Seifert matrices further below. 

Proposition 7.9.3 Let k:snc (npl) be a knot, and let 

M""C Snt2 be a Seifert surface for k. Then 

i) B$,(k,M\ = o , ( k ) ,  up to homotopy equivalence 

ii) the S-equivalence class of the Seifert complex ;,(k,M) 

is an isotopy invariant of k, namely the homotopy equivalence 

class of o,(k). 

Proof: There is a standard way of constructing the infinite 
p. 

cyclic covering X of the knot complement X from a Seifert 

surface M : cut X along M to obtain an (n+2)-dimensional 

manifold triad ( N ~ + ~ ; M , z M : ~  (S")) involving a copy zM of M, 

and set 

Accordinqly, the (nt2) -dimensional topological normal map 



I n  l (g,~): (X,>X) A (Dnt1 X S ,S x S ) used to define o,(k) =a, (s,c) 

may be constructed from the (nt1)-dimensional ultranormal map 

(f,b): (M,OM)---+(D"~'.S") used to define ;,(k,M) = d,(f,b) : 

glue together Z copies of an (nt2)-dimensional topological 

normal map of triads 

(G,c) : (N;M.ZM:~(S")) +(D"+' x 1;~"" x O,D n+l X 1;s" X 1 )  

and quotient out the free Z-action to obtain ( G , C ) / Z  = (g,c). 

Passing to algebra it follows that o,(k) may be constructed 

from s,(k,M) in the same way, using the algebraic glueing 

operation of 51.7, which in this case gives the covering 

operation 6:6,(k,M)+--+~~,(k,M) = a,(k). 

I 1  

:$2i-1, s2i+l 

An 1 Odd- dimensional knot k:s2ic s2i+2 ( i  ),l) is simple 
even- 

1 if nr (X) = ar (S ) for r < i, that is if the S;-triangulation 

(g.c): (X, aX) ---"(D"+~ X sl,sn X sl) is (i-l)-connected. 

The Blanchfield complex of a simple knot k is the i-fold 

skew-suspension 

a,(k) = S1oi (k) 

of a P-acyclic dimensional ~oincar; complex [ :: 
The Blanchfield linking /zation of a simple knot 

k:S2i-1, S2itl 
I 

k:s2ic s2i+2 is the non-singular ( - 1  itl-symmetric linking 



[ ion 
ovrr (~[z,?-'l ,P) associated to (ltT(-) i)oi (k) by 

3.4.1 
Proposition . There is no loss of structure in passing 

3.5.2 

from oi(k) to (1tT i)oi(k), since it follows from 
( - )  

Proposition 7.9.2 ii) that there are natural identifications 

forms 
(c-quadratic linking over (Z[Z,Z-'] ,P)) 

formations 

forms 
= (E-symmetric linking over (~[z,z-ll ,P 

formationr 

(E = fl) . 
As a special case of Proposition 7.9.1 we have that the 

isomorphism 
class of the Blanchfield linking 

stable equivalence 

is an isotopy invariant of a simple knot. (Indeed, the linking 

formation is only defined up to stable equivalence). 

M2i, s2i+l 

A Seifert surface M2i+lc s2i+2 of an dimensional 
even- lodd- 

k:s2i-lc s2itl 

knot 1 k:S2iC S2i+2 
that is n (M) = 0 for 

it admits a simple Se 

(i? l) is simple if M is (i-l)-connected, 

r <  i. A knot is simple if and only if 

ifert surface. If M is a simple Seifert 

surface the Seifert complex is the i-fold skew-suspension 

i of a )O-dimensional ( - 1  ultraquadratic PoincarG complex over 
1- 



form 
The Seifert 
p 

ion 
of a simple (knot, Seifert surfam 

(k:s2i-1, s2i+l,M2i) 

pair (k:s2i, S2i+2 M2i+l (i > l) is the non-singular 
1 

(Q,$€ Homz(Q,Q*)) 
( - 1  i-ultraquadratic over Z 

(Q, $;F,G) 

Q = lli(M) 
associated to 6 .  (k,M) , with d 

G = Citl(M) --+ Q/F = Ci (M) 

Levine 141 
This is the Seifert used by in the  

Kearton ( 3 1  

isotopy classification of simple dimensional knots (i > 
even- [Odd- 

The Seifert form was originally defined by Seifert 121 for 

classical knots k:S1= S3. An "c-form" (Q,j;F,G;@) in the sens 

of Kearton [ 3 )  is a non-singular c-ultraquadratic formation 

over Z (Q, $;F,G) together with an exact sequence of abelian 

groups 

and a hilinear pairing $ :  n X n - + z 2  such that 

$(a,gb) = $(ha,b) , $(gb,a) = $(b,ha) Z (a,bf Q) 

The (-)i-form associated to a simple pair (k:sZic s ~ ~ + ~ , M ~ ~ + '  

consists of the Seifert formation (Q,$;F,G) and the homotopy 

theoretic analogue on m = nitl(M) of the Seifert pairinq 

with h : n = nitl(M) - F n G  = Hitl(M) the Hurewicz map. 



For a simple odd-dimensional knot S 2i+l (i p 1) 

Proposition 7.9.3 i )  reiterates the well-known relationship 

between the Blanchfield linking form 

(l+T(-) i)ai(k) 

= (Hi(E) ,O:Hi(?) X H~(%)---,P-~z[z,z-~]/z[z,z-~]) 

and the Seifert form of a simple Seifert surface M ~ ~ ~ s ~ ~ ~ ~  for k 
.. 

Gi(k,M) = (Hi(M),$:Hi(M) xHi(M)-+Z) 

with 

H ~ ( x )  = coker($+(-) izj*:~i(~) [z,z-l] ---+H~(M)*[Z,~-~]) 

A Seifert matrix of type E ( E =  ?l) is a square matrix V  

with entries in Z such that V t c V '  is invertible, where V '  is 

the transpose of V  (vij = v..). There is an evident one-one 
3 1 

correspondence between such matrices and non-singular 

E-ultraquadratic forms over Z (Q,$) with a choice of base 

for the f .q. free Z-module Q. Trotter 111 and Murasugi (11 

introduced the S-equivalence relation on Seifert matrices 

of type c  = -1, using congruences and elementary enlargements, 

correspondinq to elementary ambient surgeries on a Seifert 

surfacr c s 3  of a knot k:slc s3. Levine 141 extended this to 

E = +l, and used the results of Kervaire [l] on the 

classification of hiah-dimensional knots to identify 



(isotopy classe.: of simple odd-dimensional knots ~:s*~-'c S2it1) 

= (S-equivalence classes of Seifert matrices of type E = (-)i) (i 3 

Trotter 121, I31 (algebraically) and Kearton (l] (geometrically) 

then used the Blanchfield linking form to identify 

(S-equivalence classes of Seifert matrices of type E = (-)l) 

= (isomorphism classes of non-singular ( - )  itl-symmetric 

linkinq forms over ( ~ [ z , z - ~ ]  ,P)) . 
Thus our notion of S-equivalence for 0-dimensional E-ultraquadratic 

Poincar; complexes over Z is the same as the S-equivalence of 

Seifert matrices of type E. Kearton 131 used elementary 

operations to define a T-equivalence relation on E-forms ( =  Seifert 

formations with a homotopy pairing) and used the results of 

Kervaire 121 and Levine I41 to identify 

(isotopy classes of simple even-dimensional knots k : ~ ~ ~ c S ~ ~ ~ ~  

such that ni(X) has no 2-torsion) 

= (T-equivalence classes of ( - 1  i-forms (Q,$;F,G;o) 

such that Q/(F+G) has no 2-torsion) (i 3 3) . 
(See Kearton I41 and Richter Ill for some preliminary results 

expressing this set in terms of Blanchfield linking formations 

with a homotopy pairing). In the full account of codimension 1 

splitting theorems in Ranicki 111) there will also be included 

an ultraquadratic version, in particular expressinq the 

S-equivalence relation on Seifert complexes in terms of elementary 

operations, and using the covering operation B to identify 

(S-equivalence classes of n-dimensional E-ultraquadratic 

Poincar; complexes over Z )  

= (homotopy equivalence classes of iz-acyclic (nt1)-dimensional 

- 1 E-quadratic kincar; complexes over ;Ilz,z I) 

(n>O,p = ?l) . 



For n = 1 this will identify the part of the T-equivalence 

relation concerning the Seifert formation (Q, $;F,G) with the 

S-equivalence relation defined above. Farber [1],12] has 

extended the classification of high-dimensional simple knots 

in terms of stable homotopy theory to the metastable range, 

identifyinq the isotopy classes of knots k:snc snt2 such that 

nr ( X )  = nr (sl) (r +(ntl), n 2, 5 ) with "R-equivalence" classes 

of homotnpy Seifert pairings. As for T-equivalence, the chain 

level part of R-equivalence is the S-equivalence of 

ultraquadratic Poincar6 complexes over Z. In particular, Farb 

completed the classification due to Kearton [3] of simple 

even-dimensional knots k:SIic s~~~~ (i 3  3) in terms of stable 

algebra, including the case when ni(X) has 2-torsion. 

A knot k:snc snt2 (n l) is fibred if the canonical map 

q:~"+~-k(S") v s 1  is a fibre bundle, in which case the 

closure of the fibre is a SeiCert surface Mnt1cSnt2 for k. 

The corresponding Seifert surface 2, ( k , ~ )  = (?(M) ,&E Gntl (:(M) 
is such that 

$ : e(M)"+l-* +e(M) 

is a chain homotopy class of Z-module chain equivalences 

(the monodromy of k). Simple fibre4 knots are of interest in 

the study of algebraic sinqularities, cf. Milnor 121. 

Odd-dimensional simple fibred knots have b ~ ~ n  classified by 

Durfee [l] in terms of non-sinqular Seifprt matrices. 

Kojima [l] has obtained a partial clas5ification of 

even-dimensional simple fibr~d knots in terms of Seifert 

formations with a homotopy pairing (the same as the one of 

Kearton [3]). 



Following the work of Fox and Milnor [l] on Cl Kervair~ 

defined the cobordism groups Cn of knots k:snc snt2 (n 11). 

Proposition 7.9.4 The high-dimensional knot cobordism groups 

Cn (n 4) have natural identifications 

Proof: l )  The ultranormal maps (f , b )  : (M,DM) ------+ (D~+',s") 

associated to the various Seifert surfaces M"+'~s"+* of a 

knot k:snc snt2 are ultranormal bordant. More generally, the 

ultranormal maps associated to Seifert surfaces of cobordant 

knots are ultranormal bordant. Thus the Seifert complexes of 

cobordant knots are cobordant, and the ultraquadratic signat 

defines abelian group morphisms 

a, : cn-----+tntl(z) ; (k:sncsnt2)-8*(k,~) ( n b l  

Kervaire Ill showed that C2i = 0 (i) 2). It follows from 

Proposition 1.6.5 iii) that the forgetful maps 
,. 
L2i+l (A'E)- L2i+l (A'€) 

are one-one, for any ring with involution A. In particular, 

E2i+l(Z) C L2i+l ( Z )  = 0, so that i2i+l (Z) = 0 = C2i (i & 2). 



The odd-dimensional knot cobordism qroups C 2i-1 (i 3 3 )  were 

identified by 1,evine 121 with the Witt groups of non-singular 

( - )  l-ultraquadratic forms over z (i.e. Seifert forms), so that 

C2i-l = E,(z, (-)l) = EZi(;Z) and S, is an isomorphism in this 

case also. 

ii) The identification Cn = rn+3(0) was first obtained 

geometrically by Cappell and Shaneson 111, as a special case 

of their theory of "semi-local knots". 

iii) The identification C = Tn+l(Z[z,z-ll---' Z,z) 

was obtained by Matsumoto [11,121,131 both qeometrically and 

algebraically. The cobordism class of a knot k:Snc .Sn+' is 

identified with the obstruction to extendinq the inclusion 

k (Sn) C U of k (Sn) in a closed reqular neighbourhood U = sn X D2 c S"+' 

to a codimension 2 spine ( ~ , k  (Sn)) c (D"+~,u). 

iv) Immediate from iii) and the exact sequence 

. . .- L~(ZIZ,~-'I , z )  ---+ rn(z[~,z-li--+zrz) - rn(o,z) --+I, (ZIZ,~-'I,=) - .. . , n-l 

since I,,(Zf~,z-~],z) = 0. 

v) Immediate from iii) and Proposition 7.8.12. 

The cobordism class of a knot k : ~ ~ c S ~ + ~  is interpreted as 

the re12 obstruction ws. (h,Y) f TNntl(Z --+{l]) to a weak 

codimension 2 splitting of an sz-triangulation of the 

(n+3) -dimensional geometric ~oincari triad (Dn+),U) X ( D ~ , s ~ )  

1 h : (D"+';u,x; ( X )  -----+(Dnt3 X ll2:U X D ~ , D " + ~  X S1;u X S ) 

alonq ( Y ,  i Y )  = (Dnt3,u) X pt. C (nnt3 X D2,U X D'). 



vi) The quadratic signature of the Blanchfield complex 

defines abelian group morphisms 

- 1 
a *  : Cn+ Lnt3(Z1Z,Z l ,P) ; 

(k:sn c s"+~) H a, (k) (n > 1) . 
The expression of the odd-dimensional knot-cobordism groups 

C2i-l (i 3 3) as the Witt groups of non-singular ( - )  i+l-quadratic 

linking forms over (Z[Z,Z-~J ,P) (i.e. Blanchfield forms) is 

due to Kearton 121. The actual identification 

-1 Cn = Lnt3(Z[z,z 1 , P )  is due to Pardon l11 and Smith 121. 

vii) According to the theory of 57.7 for n 3 3  

1 TOP(~ntl X sl,sn X 5';~) Ant3(S ;z) = 4a 

is the set of concordance classes of S:-triangulations of 

(D"+' X sl,sn x sl), which (by definition) are (nt2)-dimensional 

topological normal maps 

1 
(g,c) : (X, )X) -+ (IInt1 X sl,sn X S ) 

such that 9:X ---+D"'~ X s1 is a 22-hornoloqy equivalence and 

g1 : 3 ~ +  S" x s1 is a homeomorphism. In particular, the knot 

complement (X,3X) of a knot ~:s"c S"'' determines such an 

z S,-triangulation, so that there are defined abelian qroup 

morphisms 

C n 4  jnt3fs1;z) ; k - (q,c) . 
The inverse isomorphisms art? defined by associatinq to an 

sz-triangulation 3 (g,c) with nl(x) = nl(sl) the cobordism 

class of the knot 
I 

k : S" x o CS" x D? iJsn g l  X = snt2 . 



For any rinq with involution A and any multiplicative 

subset S C A  define L)-equivalence to be the equivalence relatio 

E-symmetr ic 
on ~-~~-non-singular forms over A given by 

€-quadratic 

X - X' if there exists an isomorphism XbY* X'bY' 

for some non-singular forms Y,Y' . 
Combining Proposition 1.7.1 with the results on linking forms 

of 53.4 we have that the boundary operation defines a natural 

one-one correspondence 

1 : (4-equivalence classes of S-l~-non-singular 

I E-symmetric forms over A )  
€-quadratic 

d I even c-symmetl -----+(isomorphism classes of non-singular 
split E-quadrt 

linking forms over (A,S) which are null-cobordant 

even (-c) -symmetric 
regarded as non-singular 

( - c )  -quadratic 

formations over A) . 
For linkinq forms over (Z[Z,Z-~] ,P) 

E-symmetric = even €-symmetric = c-quadratic = split E-quadrat 

by Proposition 7.9.2 ii) . A non-singular ( - )  itl-symmetric 

linkinq form over ( ~ l z , z - ~ l  ,P) (M,A) is null-cobordant 

even ( - 1  itl-symmetr ic 
regarded as a non-sinqular formation 

( - )  itl-quadratic 

U *  ( M . A )  = 0 0' (M, A) 
over Z I Z , Z - ~ ]  if and only if , where 

o,(M,A) = 0 0, (M,X) 

denotes the image of t h ~  linkinq form cobordism class 



ic 

ric 

it1 ~ - ~ ( z z , z - ~ l ,  ( - 1  ) = ~ < v ~ > O ( z , ( - ) ~ )  
under the map 

appearing in the localization exact sequence 

- 1 
-L-l(Zlz.z l .  ( -  

If (N.$) is a Seifert form for the Blanchfield linking form 

, that is a non-singular ( - 1  i-ultraquadratic form over Z 

the signature) of (N,$+$*) if i O(mod 2) and is 

if i Z ](mod 2). Applying the t the Arf invariant of (N.+) 
above special case of Proposition 1.7.1 we have: 

Proposition 7.9.5 The boundary operation defines a natural 

one-one correspondence 

3 : {a-equivalence classes of Z-non-singular 

( - )  i+l-symmetric 
forms over i~lz,z-~11 

( - )  i+l-quadratic 

-% [isomorphism classes of non-sinqular ( - 1  itl-symmetr ic 



The result that z-non-singular €-quadratic forms over 

22 [z, z-l] have isomorphic boundary c-symmetric linking forms 

over (Z?lz.~-~] ,P) if and only if they are 3-equivalent was 

first obtained by.Stoltzfus [2,Prop.5.5], by a generalization 

of the method of Wall [10]. 

The computation CZi = 0 ( i b  2) can be used to express 

the stable equivalence classes of non-singular ( - )  itl-symmetric 

( = ( - )  itl-quadratic) linking formations over (IL(z,z-~] ,P) 

in terms of ( - 1  i-symmetric linking forms over (z[z,z-l] ,P), 

relating non-singular Blanchfield linking formations to 

singular Blanchfield linking forms as follows. 

For any rinq with involution A and multiplicative subset 

S C A  define 2-equivalence to be the equivalence relation on 

c-symmetric linkinq forms over (A,S) (M,X) generated by the 

elementary operations: 

i) ( M , A ) U ( M ' , X ' )  is (M',Xt) is isomorphic to (M,X) 

ii) (M,X)-(L1/I,,A1/A) if L is a sublagrangian of (M,X) 

iii) (M,A)-(M,X)@(Mt,A') if (M',X') is non-singular. 

A special case of the S-acyclic analogue of Proposition 1.8.3 

shows that the boundary operation defines a natural one-one 

correspondence 

, .  , . (,-equivalence classes of E-symmetric linking forms 

over (A,S) 1 

*(stable equivalence classes of null-cobordant 

non-singular even (-E)-symmetric linking formations 

over (A,S) 

it1 (cf. proposition 3.5.4). NOW C2i = Ll(Z[~,Z-l~,~,(-) ) = 0 ,  



so that every non-singular ( - )  itl-symrnetr ic linking formation 

over (ZZ  ~ z , z - ~ ] ,  P) is null-cobordant, and consequently: 

Proposition 7.9.6 The boundary operation defines a natural 

one-one correspondence 

3 : (3-equivalence classes of ( - )  i-symmetric 

- 1 
linking forms over (Z[z,z l ,P)) 

r.2 ---+(stable equivalence classes of non-singular 

- 1 ( - 1  i+l-symmetric linking formations over (72 lz,z 1 ,P) ) . 
l 1  

In conclusion, it should perhaps be pointed out that the 

various characterizations of the odd-dimensional knot cobordism 

groups C2i+l ( i > /  2) given by Proposition 7.9.4 have little 

computational significance. The actual computations use t h e  

"isometric structures" of Milnor 131 - see Levine 131, 
Kervaire 121 and Stoltzfus [l!. 
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