
The Hauptvermutung Book

A collection of papers on the topology of manifolds

by A.A.Ranicki (editor), A.J.Casson, D.P.Sullivan,

M.A.Armstrong, C.P.Rourke, and G.E.Cooke



M. A. Armstrong
Mathematics Department,

University of Durham,
Durham DH1 3LE,
England, UK

A. J. Casson
Mathematics Department,

University of California,
Berkeley, CA 94720, USA

G. E. Cooke†

A. A. Ranicki
Department of Mathematics and Statistics,
The University of Edinburgh,

Edinburgh EH9 3JZ,
Scotland, UK

C. P. Rourke
Mathematics Institute,
University of Warwick,
Coventry CV4 7AL,

England, UK

D. P. Sullivan
Mathematics Department,
City University of New York,
Graduate Center,

33 West 42 Street,
New York, NY10036, USA



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . 1

On the Hauptvermutung
(by A.A.Ranicki, 1996)
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3

2. The Polyhedral Hauptvermutung . . . . . . . . . . . . . . . 6
3. The Rochlin Invariant . . . . . . . . . . . . . . . . . . . . 11
4. The Manifold Hauptvermutung . . . . . . . . . . . . . . . . 13

5. Homology Manifolds . . . . . . . . . . . . . . . . . . . . . 23
References . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Generalisations and Applications of Block Bundles
(by A.J.Casson, 1967)
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 33

I. Block Bundles . . . . . . . . . . . . . . . . . . . . . . . . 35
II. Homotopy Properties of Block Bundles . . . . . . . . . . . . . 43
III. Tangential Properties of Block Bundles . . . . . . . . . . . . 49

IV. Periodicity of G/PL . . . . . . . . . . . . . . . . . . . . 55
V. Topologically Trivial Block Bundles . . . . . . . . . . . . . . 59
References . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Triangulating Homotopy Equivalences and Homeomorphisms.
Geometric Topology Seminar Notes

(by D.P.Sullivan, 1967)
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 69
I. Triangulating and Smoothing Homotopy Equivalences . . . . . . . 69

II. The Characteristic Bundle of a Homotopy Equivalence . . . . . . 80
III. The Hauptvermutung . . . . . . . . . . . . . . . . . . . . 93
References . . . . . . . . . . . . . . . . . . . . . . . . . . 103

The Princeton Notes on the Hauptvermutung
(by M.A.Armstrong, C.P.Rourke, G.E.Cooke)

Preface (1996) . . . . . . . . . . . . . . . . . . . . . . . . 105

I. The Hauptvermutung According to Lashof and Rothenberg

(by M.A.Armstrong, 1968)
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . 107
2. Splitting theorems . . . . . . . . . . . . . . . . . . . . . 110
3. Siebenmann’s collaring theorems . . . . . . . . . . . . . . . 112

4. Proof of the splitting theorem . . . . . . . . . . . . . . . . 116
5. Proof of the relative splitting theorem . . . . . . . . . . . . 121
6. The trivialization problem . . . . . . . . . . . . . . . . . 123



References . . . . . . . . . . . . . . . . . . . . . . . . . . 125

II. The Hauptvermutung according to Casson and Sullivan
(by C.P.Rourke, 1968)
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . 129

2. Notation and basic definitions . . . . . . . . . . . . . . . . 132
3. An account of Sullivan theory . . . . . . . . . . . . . . . . 138
4. Surgery obstructions . . . . . . . . . . . . . . . . . . . . 143

5. The ‘canonical Novikov homotopy’ . . . . . . . . . . . . . . 148
6. Weaker hypotheses . . . . . . . . . . . . . . . . . . . . . 151
7. Refinements of the Main Theorem . . . . . . . . . . . . . . 154

8. Block bundles and homotopy equivalences . . . . . . . . . . . 157
References . . . . . . . . . . . . . . . . . . . . . . . . . . 162

III. The Hauptvermutung according to Casson and Sullivan

(by G.E.Cooke, 1968)
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . 165
2. Principal fibrations . . . . . . . . . . . . . . . . . . . . . 166

3. Postnikov systems . . . . . . . . . . . . . . . . . . . . . 167
4. Application to G/PL and the Hauptvermutung . . . . . . . . 172
References . . . . . . . . . . . . . . . . . . . . . . . . . . 186

Coda: Connection with the results of Kirby and Siebenmann
(by C.P.Rourke, 1972) . . . . . . . . . . . . . . . . . . . 189

References . . . . . . . . . . . . . . . . . . . . . . . . . . 190



Preface

The Hauptvermutung is the conjecture that any two triangulations of a poly-
hedron are combinatorially equivalent. The conjecture was formulated at the turn

of the century, and until its resolution was a central problem of topology. Initially,
it was verified for low-dimensional polyhedra, and it might have been expected that
further development of high-dimensional topology would lead to a verification in

all dimensions. However, in 1961 Milnor constructed high-dimensional polyhedra
with combinatorially inequivalent triangulations, disproving the Hauptvermutung
in general. These polyhedra were not manifolds, leaving open the Hauptvermu-

tung for manifolds. The development of surgery theory led to the disproof of the
high-dimensional manifold Hauptvermutung in the late 1960’s. Unfortunately, the
published record of the manifold Hauptvermutung has been incomplete, as was

forcefully pointed out by Novikov in his lecture at the Browder 60th birthday
conference held at Princeton in March 1994.

This volume brings together the original 1967 papers of Casson and Sulli-
van, and the 1968/1972 ‘Princeton notes on the Hauptvermutung’ of Armstrong,
Rourke and Cooke, making this work physically accessible. These papers include

several other results which have become part of the folklore but of which proofs
have never been published. My own contribution is intended to serve as an intro-
duction to the Hauptvermutung, and also to give an account of some more recent

developments in the area.

In preparing the original papers for publication, only minimal changes of
punctuation etc. have been made with the exception of the references, which have
been completed and updated wherever possible.

I should like to thank all who in various ways helped in the preparation of
this volume : Tony Armstrong, Tony Bak, Andrew Casson, Cathy Hassell, Bruce

Hughes, Sergei Novikov, Jonathan Rosenberg, Colin Rourke, Ron Stern, Dennis
Sullivan, Simon Willerton and Victor Wu.

A.A.R., Edinburgh, January 1996
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On the Hauptvermutung

by A. A. Ranicki

§1. Introduction.

An abstract simplicial complex K determines a topological space, the poly-
hedron |K|. A triangulation (K, f) of a topological space X is a simplicial
complex K together with a homeomorphism f : |K|−−→X. A topological space X

is triangulable if it admits a triangulation (K, f).

The topology of a triangulable space X is determined by the combinatorial
topology of the simplicial complex K in any triangulation (K, f) of X.

Hauptvermutung is short for die Hauptvermutung der kombinator-
ischen Topologie, which is German for the main conjecture of combinatorial

topology. The conjecture states that the combinatorial topology of a simplicial
complex K is determined by the topology of the polyhedron |K|. More technically,
the conjecture is that triangulations of homeomorphic spaces are combinatorially
equivalent, i.e. become isomorphic after subdivision. A triangulable space would

then have a canonical class of triangulations. The problem was formulated by
Steinitz [44] and Tietze [48] in 1908, and there are statements in Kneser [20] and
Alexandroff and Hopf [2, p.152].

The modern version of combinatorial topology is codified in the PL (piecewise

linear) category, for which Rourke and Sanderson [35] is the standard reference.

Simplicial Approximation Theorem. Every continuous map f : |K|−−→|L|
between polyhedra is homotopic to the topological realization |f ′| : |K| = |K ′|−−→|L|
of a simplicial map f ′ : K ′−−→L, where K ′ is a simplicial subdivision of K.

Thus every continuous map of polyhedra is homotopic to a PL map. It does
not follow that a homeomorphism of polyhedra is homotopic to a PL homeomor-

phism.

Hauptvermutung. Every homeomorphism f : |K|−−→|L| between polyhedra is
homotopic to the topological realization of a simplicial isomorphism f ′ : K ′−−→L′,
where K ′, L′ are simplicial subdivisions of K,L, i.e. every homeomorphism of

polyhedra is homotopic to a PL homeomorphism.

This will also be called the Polyhedral Hauptvermutung, to distinguish

it from the Manifold Hauptvermutung stated below.
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The Simplicial Approximation Theorem shows that the homotopy theory of
polyhedra is the same as the PL homotopy theory of simplicial complexes. Ever

since Seifert and Threlfall [39] standard treatments of algebraic topology have used
this correspondence to show that combinatorial homotopy invariants of simplicial
complexes (e.g. simplicial homology, the simplicial fundamental group) are in

fact homotopy invariants of polyhedra. The Hauptvermutung is not mentioned,
allowing the reader to gain the false impression that the topology of polyhedra is
the same as the PL topology of simplicial complexes. In fact, the Hauptvermutung

has been known for some time to be false, although this knowledge has not yet
filtered down to textbook level.

A simplicial complex K is finite if and only if the polyhedron |K| is compact.
The Hauptvermutung is only considered here for compact polyhedra. However, the

resolution of the conjecture in this case requires an understanding of the difference
between the PL and continuous topology of open PLmanifolds, which is quantified
by the Whitehead group.

The Polyhedral Hauptvermutung is true in low dimensions : it was verified
for 2-dimensional manifolds by the classification of surfaces, for all polyhedra of

dimension ≤ 2 by Papakyriakopoulos [32], and by Moı̈se [28] for 3-dimensional
manifolds.

Milnor [25] obtained the first counterexamples to the Polyhedral Hauptver-
mutung in 1961, using Reidemeister torsion and some results on non-compact

manifolds of Mazur and Stallings to construct a homeomorphism of compact poly-
hedra which is not homotopic to a PL homeomorphism. Stallings [43] generalized
the construction, showing that any non-trivial h-cobordism determines a coun-

terexample to the Polyhedral Hauptvermutung. These counterexamples arise as
homeomorphisms of one-point compactifications of open PL manifolds, and so are
non-manifold in nature.

An m-dimensional combinatorial (or PL) manifold is a simplicial com-
plex K such that linkK(σ) is a PL (m− |σ| − 1)-sphere for each simplex σ ∈ K.

Manifold Hauptvermutung. Every homeomorphism f : |K|−−→|L| of the poly-

hedra of compact m-dimensional PL manifolds is homotopic to a PL homeomor-
phism.

Following Milnor’s disproof of the Polyhedral Hauptvermutung there was
much activity in the 1960’s aimed at the Manifold Hauptvermutung – first proving
it in special cases, and then disproving it in general.
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The Manifold Hauptvermutung is the rel ∂ version of the following conjecture :

Combinatorial Triangulation Conjecture. Every compact m-dimensional
topological manifold M can be triangulated by a PL manifold.

The Manifold Hauptvermutung and Combinatorial Triangulation Conjecture
hold in the low dimensions m ≤ 3.

The 1963 surgery classification by Kervaire and Milnor of the latter’s exotic

differentiable spheres led to smoothing theory, which gave a detailed understanding
of the relationship between differentiable and PL manifold structures. The sub-
sequent Browder-Novikov-Sullivan-Wall surgery theory of high-dimensional man-

ifolds was initially applied to differentiable and PL manifolds. The theory deals
with the homotopy analogues of the Manifold Hauptvermutung and the Combina-
torial Triangulation Conjecture, providing the necessary and sufficient algebraic

topology to decide whether a homotopy equivalence of m-dimensional PL man-
ifolds f : K−−→L is homotopic to a PL homeomorphism, and whether an m-
dimensional Poincaré duality space is homotopy equivalent to an m-dimensional

PL manifold, at least for m ≥ 5. The 1965 proof by Novikov [31] of the topo-
logical invariance of the rational Pontrjagin classes ultimately made it possible to
extend the theory to topological manifolds and homeomorphisms, and to resolve

the Manifold Hauptvermutung and the Combinatorial Triangulation Conjecture
using algebraic K- and L-theory.

In 1969 the surgery classification of PL structures on high-dimensional tori
allowed Kirby and Siebenmann to show that the Manifold Hauptvermutung and
the Combinatorial Triangulation Conjecture are false in general, and to extend

high-dimensional surgery theory to topological manifolds. The book of Kirby
and Siebenmann [19] is the definitive account of their work. Some of the late
1960’s original work on the Manifold Hauptvermutung was announced at the time,

e.g. Sullivan [46], [47], Lashof and Rothenberg [21], Kirby and Siebenmann [18],
Siebenmann [42]. However, not all the results obtained have been published. The
1967 papers of Casson [5] and Sullivan [45] are published in this volume, along

with the 1968/1972 notes of Armstrong et. al. [3].

Kirby and Siebenmann used the Rochlin invariant to formulate an invari-
ant κ(M) ∈ H4(M ;Z2) for any closed topological manifold M , such that, for
dim(M) ≥ 5, κ(M) = 0 if and only if M admits a combinatorial triangulation. A

homeomorphism f : |K|−−→|L| of the polyhedra of closed PL manifolds gives rise
to an invariant κ(f) ∈ H3(L;Z2) (the rel ∂ combinatorial triangulation obstruc-
tion of the mapping cylinder) such that for dim(L) ≥ 5 κ(f) = 0 if and only if f is

homotopic to a PL homeomorphism*. These obstructions are realized. For m ≥ 5

* through homeomorphisms, see also footnote on page 14
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and any element κ ∈ H3(Tm;Z2) there exists a combinatorial triangulation (τm, f)
of Tm with κ(f) = κ, so that for κ ̸= 0 the homeomorphism f : τm−−→Tm is not

homotopic to a PL homeomorphism. For m ≥ 3, k ≥ 2 and any κ ∈ H4(Tm;Z2)
there exists a closed (m+k)-dimensional topological manifoldM with a homotopy
equivalence h : M−−→Tm × Sk such that κ(M) = h∗κ, so that for κ ̸= 0 M does

not admit a combinatorial triangulation. Such counterexamples to the Manifold
Hauptvermutung and the Combinatorial Triangulation Conjecture in dimensions
≥ 5 can be traced to the 3-dimensional Poincaré homology sphere Σ. See §§3-5
for a more detailed account of the Kirby-Siebenmann obstruction.

§2. The Polyhedral Hauptvermutung.

Theorem. (Milnor [25]) The Polyhedral Hauptvermutung is false : there exists a

homeomorphism f : |K|−−→|L| of the polyhedra of finite simplicial complexes K,L
such that f is not homotopic to a PL homeomorphism.

The failure of the Polyhedral Hauptvermutung is detected by Whitehead tor-
sion. The construction of the Polyhedral Hauptvermutung counterexamples of

Milnor [25] and Stallings [43] will now be recounted, first directly and then us-
ing the end obstruction theory of Siebenmann [40]. See Cohen [7] for a textbook
account.

Given a topological space X let

X∞ = X ∪ {∞}

be the one-point compactification. If X is compact then X∞ is just the union of

X and {∞} as topological spaces.

Let (W,∂W ) be a compact n-dimensional topological manifold with non-
empty boundary ∂W , so that the interior

Ẇ = W\∂W

is an open n-dimensional manifold. Since ∂W is collared in W (i.e. the inclusion

∂W = ∂W × {0}−−→W extends to an embedding ∂W × [0, 1]−−→W ) the effect of
collapsing the boundary to a point is a compact space

K = W/∂W

with a homeomorphism

K ∼= Ẇ∞

sending [∂W ] ∈ K to ∞. Now suppose that (W,∂W ) is a PL manifold with
boundary, so that Ẇ is an open n-dimensional PL manifold, and K is a compact

polyhedron such that there is defined a PL homeomorphism

linkK(∞) ∼= ∂W .
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The compact polyhedron K is a closed n-dimensional PL manifold if and only if
∂W is a PL (n − 1)-sphere. If ∂W is not a PL (n − 1)-sphere then K is a PL

stratified set with two strata, Ẇ and {∞}.

Suppose given compact n-dimensional PLmanifolds with boundary (W1, ∂W1),
(W2, ∂W2) such that

W2 = W1 ∪∂W1 V

for an h-cobordism (V ; ∂W1, ∂W2) .
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There is defined a PL homeomorphism

(V \∂W2, ∂W1) ∼= ∂W1 × ([0, 1), {0})

of non-compact n-dimensional PL manifolds with boundary, which is the iden-
tity on ∂W1. The corresponding PL homeomorphism of open n-dimensional PL

manifolds Ẇ1−−→Ẇ2 compactifies to a homeomorphism of compact polyhedra

f : K1 = W1/∂W1 = Ẇ∞
1 −−→ K2 = W2/∂W2 = Ẇ∞

2 .

The homeomorphism f is homotopic to a PL homeomorphism if and only if there

exists a PL homeomorphism

(V ; ∂W1, ∂W2) ∼= ∂W1 × ([0, 1]; {0}, {1})

which is the identity on ∂W1.

If M is a closed m-dimensional PL manifold then for any i ≥ 1

(W,∂W ) = M × (Di, Si−1)

is a compact (m+ i)-dimensional PL manifold with boundary such that

Ẇ = M × Ri ,

W/∂W = Ẇ∞ = M ×Di/M × Si−1 = ΣiM∞ .

Milnor [25] applied this construction to obtain the first counterexamples to the
Hauptvermutung, using the Reidemeister-Franz-deRham-Whitehead classification
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of the lens spaces introduced by Tietze [48]. The lens spaces L(7, 1), L(7, 2) are
closed 3-dimensional PL manifolds which are homotopy equivalent but not simple

homotopy equivalent, and hence neither PL homeomorphic nor homeomorphic
(by the topological invariance of Whitehead torsion). For i ≥ 3 the compact
(i+ 3)-dimensional PL manifolds with boundary

(W1, ∂W1) = L(7, 1)× (Di, Si−1) ,

(W2, ∂W2) = L(7, 2)× (Di, Si−1)

are such that W2 =W1 ∪∂W1 V for an h-cobordism (V ; ∂W1, ∂W2) with torsion

τ(∂W1−−→V ) ̸= 0 ∈Wh(Z7) = Z⊕ Z .

(See Milnor [26] for Wh(Z7).) The corresponding PL homeomorphism of open
(i+ 3)-dimensional PL manifolds

Ẇ1 = L(7, 1)× Ri −−→ Ẇ2 = L(7, 2)× Ri

compactifies to a homeomorphism of compact polyhedra

f : K1 = ΣiL(7, 1)∞ −−→ K2 = ΣiL(7, 2)∞

which is not homotopic to a PL homeomorphism. In fact, f is homotopic to the
i-fold suspension of a homotopy equivalence h : L(7, 1)−−→L(7, 2) with Whitehead

torsion

τ(h) = τ(∂W1−−→V ) + τ(∂W1−−→V )∗

= 2τ(∂W1−−→V ) ̸= 0 ∈Wh(Z7) .

The homotopy equivalence h is not homotopic to a homeomorphism (by the topo-
logical invariance of Whitehead torsion) let alone a PL homeomorphism.

Let (N, ∂N) be a non-compact n-dimensional PL manifold with a compact
boundary ∂N and a tame end ϵ.

∂N N ϵ

A closure of the tame end ϵ is a compact n-dimensional PL cobordism (W ; ∂N,
∂+W )

∂N W ∂+W
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with a PL homeomorphism

N ∼= W\∂+W

which is the identity on ∂N , in which case π1(∂+W ) = π1(ϵ) and there is defined
a homeomorphism

W/∂+W ∼= N∞ .

The end obstruction [ϵ] ∈ K̃0(Z[π1(ϵ)]) of Siebenmann [40] is such that [ϵ] = 0 if

(and for n ≥ 6 only if) ϵ admits a closure. The end obstruction has image the Wall
finiteness obstruction [N ] ∈ K̃0(Z[π1(N)]), which is such that [N ] = 0 if and only
if N is homotopy equivalent to a compact polyhedron. See Hughes and Ranicki

[16] for a recent account of tame ends and the end obstruction.

The closures of high-dimensional tame ends ϵ are classified by the Whitehead

group Wh(π1(ϵ)). This is a consequence of :

s-cobordism Theorem. (Barden, Mazur, Stallings)
An n-dimensional PL h-cobordism (V ;U,U ′) with torsion

τ(U−−→V ) = τ ∈Wh(π1(U))

is such that τ = 0 if (and for n ≥ 6 only if) there exists a PL homeomorphism

(V ;U,U ′) ∼= U × ([0, 1]; {0}, {1})

which is the identity on U .

Let (W1; ∂N, ∂+W1), (W2; ∂N, ∂+W2) be two closures of an n-dimensional
tame end ϵ (as above), so that there are defined PL homeomorphisms

N ∼= W1\∂+W1
∼= W2\∂+W2

and a homeomorphism of compact polyhedra

f : K1 = W1/∂+W1 −−→ K2 = W2/∂+W2 .

The points

∞1 = [∂+W1] ∈ K1 , ∞2 = [∂+W2] ∈ K2

are such that

linkK1(∞1) = ∂+W1 , linkK2(∞2) = ∂+W2 .

If neither ∂+W1 nor ∂+W2 is a PL (n − 1)-sphere then these are the only non-
manifold points of K1,K2 – any PL homeomorphism F : K1−−→K2 would have

to be such that F (∞1) =∞2 and restrict to a PL homeomorphism

F : linkK1(∞1) = ∂+W1 −−→ linkK2(∞2) = ∂+W2 .

If ∂+W1 is not PL homeomorphic to ∂+W2 there will not exist such an F which
provides a counterexample to the Hauptvermutung. In any case, for n ≥ 6 there
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exists an n-dimensional PL h-cobordism (V ; ∂+W1, ∂+W2) such that up to PL
homeomorphism

(W2; ∂N, ∂+W2) = (W1; ∂N, ∂+W1) ∪ (V ; ∂+W1, ∂+W2)

∂N ∂+W1W1 V ∂+W2

W2

and the following conditions are equivalent :

(i) the Whitehead torsion

τ = τ(∂+W1−−→V ) ∈Wh(π1(V )) = Wh(π1(ϵ))

is such that τ = 0,
(ii) there exists a PL homeomorphism

(W1; ∂N, ∂+W1) ∼= (W2; ∂N, ∂+W2)

which is the identity on ∂N ,
(iii) there exists a PL homeomorphism

(V ; ∂+W1, ∂+W2) ∼= ∂+W1 × ([0, 1]; {0}, {1})
which is the identity on ∂+W1,

(iv) the homeomorphism f : K1−−→K2 is homotopic to a PL homeomorphism.

Returning to the construction of Milnor [25], define for any i ≥ 1 the open
(i+ 3)-dimensional PL manifold

N = L(7, 1)× Ri

with a tame end ϵ, which can be closed in the obvious way by

(W1, ∂W1) = L(7, 1)× (Di, Si−1) .

For i ≥ 3 use the above h-cobordism (V ; ∂W1, ∂W2) with τ(∂W1−−→V ) ̸= 0 to

close ϵ in a non-obvious way, with W2 =W1 ∪∂W1 V such that

(W2, ∂W2) = L(7, 2)× (Di, Si−1) ,

and as before there is a homeomorphism of compact polyhedra

f : K1 = W1/∂W1 = ΣiL(7, 1)∞ −−→ K2 = W2/∂W2 = ΣiL(7, 2)∞

which is not homotopic to a PL homeomorphism.

A closed m-dimensional PL manifold M determines a non-compact (m+ 1)-
dimensional PL manifold with compact boundary

(N, ∂N) = (M × [0, 1),M × {0})
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with a tame end ϵ which can be closed, so that

[ϵ] = 0 ∈ K̃0(Z[π1(ϵ)]) = K̃0(Z[π1(M)]) .

Assume m ≥ 5. For any (m + 1)-dimensional PL h-cobordism (W ;M,M ′) the
inclusion M ⊂W\M ′ extends to a PL homeomorphism of open PL manifolds

U = M × [0, 1) −−→ W\M ′

which compactifies to a homeomorphism of compact polyhedra

f : K = U∞ = M × [0, 1]/M × {1} −−→ L = W/M ′

such that f is homotopic to a PL homeomorphism if and only if τ = 0 ∈
Wh(π1(M)). Thus any h-cobordism with τ ̸= 0 determines a counterexample

to the Polyhedral Hauptvermutung, as was first observed by Stallings [43].

§3. The Rochlin Invariant.

The intersection form of a compact oriented 4k-dimensional manifold with
boundary (M,∂M) is the symmetric form

ϕ : H2k(M,∂M)×H2k(M,∂M) −−→ Z ; (x, y) 7−→ ⟨x ∪ y, [M ]⟩

where [M ] ∈ H4k(M,∂M) is the fundamental class. The signature of (M,∂M)
is

σ(M) = signature (H2k(M,∂M), ϕ) ∈ Z .

Proposition. Let M be a closed oriented 4-dimensional topological manifold.
For any integral lift w2 ∈ H2(M) of the second Stiefel-Whitney class w2(M) ∈
H2(M ;Z2)

ϕ(x, x) ≡ ϕ(x,w2) (mod 2) (x ∈ H2(M)) ,

and

σ(M) ≡ ϕ(w2, w2) (mod 8) .

Proof. See Milnor and Husemoller [27, II.5].

A closed oriented 4-dimensional manifold M is spin (i.e. admits a spin struc-
ture) if w2(M) = 0 ∈ H2(M ;Z2), in which case σ(M) ≡ 0(mod 8).

Theorem. (Rochlin) The signature of a closed oriented 4-dimensional PL spin

manifold M is such that

σ(M) ≡ 0 (mod 16) .

Proof. See Guillou and Marin [13], Kirby [17,XI].
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Definition. (i) The Rochlin invariant of a closed oriented 4-dimensional topo-
logical spin manifold M is

α(M) = σ(M) ∈ 8Z/16Z = Z2 .

(ii) The Rochlin invariant of an oriented 3-dimensional PL homology sphere Σ

is defined by

α(Σ) = σ(W ) ∈ 8Z/16Z = Z2 ,

for any 4-dimensional PL spin manifold (W,∂W ) with boundary ∂W = Σ.

Proposition. (i) Let (M,∂M) be a connected 4-dimensional topological spin man-
ifold with homology 3-sphere boundary ∂M = Σ. The Rochlin invariant of Σ is
expressed in terms of the signature of M and the Kirby-Siebenmann invariant of

the stable normal bundle νM :M−−→BTOP by

α(Σ) = σ(M)/8− κ(M) ∈ H4(M,∂M ;Z2) = Z2 .

(ii) Let M be a connected closed oriented 4-dimensional topological spin manifold.
The Rochlin invariant of M is the Kirby-Siebenmann invariant of M

α(M) = κ(M) ∈ H4(M ;Z2) = Z2 .

Proof. (i) By Freedman and Quinn [10, 10.2B], for any 4-dimensional topologi-
cal spin manifold with boundary (M,∂M), there exists a 4-dimensional PL spin

manifold with boundary (N, ∂N) such that ∂M = ∂N , and for any such M,N

1
8 (σ(M)− σ(N)) = κ(M) ∈ H4(M,∂M ;Z2) = Z2

(ii) Take ∂M = ∅, N = ∅ in (i).

Examples. (i) The Poincaré homology 3-sphere

Σ = SO(3)/A5

is the boundary of the parallelizable 4-dimensional PL manifold Q obtained by

Milnor’s E8-plumbing, such that

σ(Q) = 8 ∈ Z , α(Σ) = 1 ∈ Z2 , κ(Q) = 0 ∈ Z2 .

(ii) Any 3-dimensional topological manifold Σ with the homology of S3 bounds a
contractible topological 4-manifold (Freedman and Quinn [10, 9.3C]). If (Q,Σ) is
as in (i) and W is a contractible topological 4-manifold with boundary ∂W = Σ

there is obtained the Freedman E8-manifold M = W ∪Σ Q, a closed oriented
4-dimensional topological spin manifold such that

σ(M) = 8 ∈ Z , α(M) = 1 ∈ Z2 , κ(M) = 1 ∈ Z2 .
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§4. The Manifold Hauptvermutung.

Theorem. (Kirby-Siebenmann [18], [19])
The Combinatorial Triangulation Conjecture and the Manifold Hauptvermutung

are false in each dimension m ≥ 5: there exist compact m-dimensional topological
manifolds without a PL structure (= combinatorial triangulation), and there exist
homeomorphisms f : |K|−−→|L| of the polyhedra of compact m-dimensional PL

manifolds K,L which are not homotopic to a PL homeomorphism.

The actual construction of counterexamples required the surgery classification

of homotopy tori due to Wall, Hsiang and Shaneson, and Casson using the non-
simply-connected surgery theory of Wall [49]. The failure of the Combinatorial
Triangulation Conjecture is detected by the Kirby-Siebenmann invariant, which

uses the Rochlin invariant to detect the difference between topological and PL
bundles. The failure of the Manifold Hauptvermutung is detected by the Casson-
Sullivan invariant, which is the rel ∂ version of the Kirby-Siebenmann invariant.

For m ≥ 5 an m-dimensional topological manifold admits a combinatorial trian-
gulation if and only if the stable normal topological bundle admits a PL bundle
refinement. A homeomorphism of m-dimensional PL manifolds is homotopic to a

PL homeomorphism if and only if it preserves the stable normal PL bundles.

A stable topological bundle η over a compact polyhedron X is classified by
the homotopy class of a map

η : X −−→ BTOP

to a classifying space

BTOP = lim−→
k
BTOP (k) .

There is a similar result for PL bundles. The classifying spaces BTOP,BPL are
related by a fibration sequence

TOP/PL −−→ BPL −−→ BTOP −−→ B(TOP/PL) .

A stable topological bundle η : X−−→BTOP lifts to a stable PL bundle η̃ :

X−−→BPL if and only if the composite

X
η
−−→ BTOP −−→ B(TOP/PL)

is null-homotopic.
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Theorem. (Kirby-Siebenmann [18], [19] for m ≥ 5, Freedman-Quinn [10] for
m = 4)

(i) There is a homotopy equivalence

B(TOP/PL) ≃ K(Z2, 4) .

Given a stable topological bundle η : X−−→BTOP let

κ(η) ∈ [X,B(TOP/PL)] = H4(X;Z2)

be the homotopy class of the composite X
η
−−→BTOP−−→B(TOP/PL). The topo-

logical bundle η lifts to a stable PL bundle η̃ : X−−→BPL if and only if κ(η) = 0.
(ii) There is a homotopy equivalence

TOP/PL ≃ K(Z2, 3) .

A topological trivialization t : η̃ ≃ {∗} : X−−→BTOP of a stable PL bundle

η̃ : X−−→BPL corresponds to a lift of η̃ to a map (η̃, t) : X−−→TOP/PL. It is
possible to further refine t to a PL trivialization if and only if the homotopy class

κ(η̃, t) ∈ [X,TOP/PL] = H3(X;Z2)

is such that κ(η̃, t) = 0.
(iii) The Kirby-Siebenmann invariant of a compact m-dimensional topological
manifold M with a PL boundary ∂M (which may be empty)

κ(M) = κ(νM :M−−→BTOP ) ∈ H4(M,∂M ;Z2)

is such that κ(M) = 0 ∈ H4(M,∂M ;Z2) if and only if there exists a PL reduction

ν̃M : M−−→BPL of νM : M−−→BTOP which extends ν∂M : ∂M−−→BPL. The
invariant is such that κ(M) = 0 if (and for m ≥ 4 only if) the PL structure on
∂M extends to a PL structure on M × R. For m ≥ 5 such a PL structure on

M × R is determined by a PL structure on M .
(iv) Let f : |K|−−→|L| be a homeomorphism of the polyhedra of closed m-dimen-
sional PL manifolds. The mapping cylinder

W = |K| × I ∪f |L|

is an (m + 1)-dimensional topological manifold with PL boundary ∂W = |K| ×
{0} ∪ |L|. The Casson-Sullivan invariant of f is defined by

κ(f) = κ(W ) ∈ H4(W,∂W ;Z2) = H3(L;Z2) .

For m ≥ 4 the following conditions are equivalent :

(a) f is homotopic to a PL homeomorphism*,
(b) W has a PL structure extending the PL structure on ∂W ,

(c) κ(f) = 0 ∈ H3(L;Z2).

* through homeomorphisms - thanks to Yuli Rudyak for pointing out that this
condition was omitted from the original printed edition
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(v) The Combinatorial Triangulation Conjecture is false for m ≥ 4 : there ex-
ist closed m-dimensional topological manifolds M such that κ ̸= 0 ∈ H4(M ;Z2),

which thus do not admit a combinatorial triangulation.
(vi) The Manifold Hauptvermutung is false for m ≥ 4 : for every closed m-
dimensional PL manifold L and every κ ∈ H3(L;Z2) there exists a closed m-

dimensional PL manifold K with a homeomorphism f : |K|−−→|L| such that
κ(f) = κ ∈ H3(L;Z2).

The stable classifying spaces BPL,BTOP,BG for bundles in the PL, topo-
logical and homotopy categories are related by a braid of fibrations

������

N
N

N
NN

A
A
A

A
AA

�

K(Z2, 3)'
'
'')

BPL BG

G/PL
N
N
N
NNP

BTOP

���
��

�

[
[
[
[]

'
'
'')
κ

G
N
N
N
NP

G/TOP

���
��

[
[
[
[]

K(Z2, 4)

'
'

'
'

''

[
[
[
[
[]

��
��

��

N
N
N
N
NNP

Sullivan determined the homotopy types of the surgery classifying spaces

G/PL and G/TOP . See Madsen and Milgram [22] for an account of this de-
termination, and Rudyak [36] for an account of its application to the Manifold
Hauptvermutung.

The homotopy groups of G/TOP are the simply-connected surgery obstruc-
tion groups

πm(G/TOP ) = Lm(Z) =


Z if m ≡ 0(mod 4)

Z2 if m ≡ 2(mod 4)

0 if m ≡ 1, 3(mod 4) .

A map (η, t) : Sm−−→G/TOP corresponds to a topological bundle η : Sm−−→
BTOP (k) (k large) with a fibre homotopy trivialization t : η ≃ {∗} : Sm−−→BG(k).
Making the degree 1 map ρ : Sm+k−−→T (η) topologically transverse regular at

Sm ⊂ T (η) gives an m-dimensional normal map by the Browder-Novikov con-
struction

(f, b) = ρ| : Mm = ρ−1(Sm) −−→ Sm
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with b : νM−−→η. The homotopy class of (η, t) is the surgery obstruction of (f, b)

(η, t) = σ∗(f, b) ∈ πm(G/TOP ) = Lm(Z) ,

where

σ∗(f, b) =

{
1
8σ(M) ∈ L4k(Z) = Z if m = 4k

c(M) ∈ L4k+2(Z) = Z2 if m = 4k + 2

with c(M) ∈ Z2 the Kervaire-Arf invariant of the framed (4k + 2)-dimensional

manifold M . Similarly for maps (η̃, t) : Sm−−→G/PL.

The low-dimensional homotopy groups of the bundle classifying spaces are
given by

πm(BPL) = πm(BO) =


Z2 if m = 1, 2

0 if m = 3, 5, 6, 7

Z if m = 4

πm(BTOP ) =


Z2 if m = 1, 2

0 if m = 3, 5, 6, 7

Z⊕ Z2 if m = 4 .

The first Pontrjagin class p1(η) ∈ H4(S4) = Z and the Kirby-Siebenmann invari-

ant κ(η) ∈ H4(S4;Z2) = Z2 define isomorphisms

π4(BPL)
∼=−−→ Z ; (η̃ : S4−−→BPL) 7−→ 1

2p1(η̃) ,

π4(BTOP )
∼=−−→ Z⊕ Z2 ; (η : S4−−→BTOP ) 7−→ ( 12p1(η), κ(η)) .

For any map (η, t) : S4−−→G/TOP with corresponding 4-dimensional normal map
(f, b) :M−−→S4

(η, t) = σ∗(f, b) = 1
8σ(M) = − 1

24p1(η)

∈ π4(G/TOP ) = L4(Z) = Z ,

by the Hirzebruch signature theorem. In particular, the generator 1 ∈ π4(G/TOP ) =
Z is represented by a fibre homotopy trivialized topological bundle η : S4−−→BTOP
such that

p1(η) = −24 ∈ H4(S4) = Z ,

κ(η) = 1 ∈ H4(S4;Z2).

This corresponds to a normal map (f, b) :M−−→S4 where M is the 4-dimensional
Freedman E8-manifold. For any map (η̃, t) : S4−−→G/PL and the corresponding
4-dimensional PL normal map (f, b̃) :M−−→S4

p1(η̃) ≡ 0(mod 48) ,

σ(M) = −1
3p1(η̃) ≡ 0(mod 16)
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by Rochlin’s theorem, so that

(η̃, t) = σ∗(f, b̃) = 1
8σ(M) = − 1

24p1(η̃)

∈ π4(G/PL) = 2Z ⊂ π4(G/TOP ) = Z .

The natural map G/PL−−→G/TOP induces isomorphisms

πm(G/PL)
∼=−−→ πm(G/TOP ) = Lm(Z) (m ̸= 4)

and multiplication by 2 in dimension 4

2 : π4(G/PL) = Z −−→ π4(G/TOP ) = L4(Z) = Z ,

and there are isomorphisms

π4(G/TOP )
∼=−−→ Z ; ((η, t) : S4−−→G/TOP ) 7−→ 1

24p1(η) ,

π4(G/PL)
∼=−−→ Z ; ((η̃, t) : S4−−→G/PL) 7−→ 1

48p1(η̃) .

See Milgram [24] for a detailed comparison in dimensions ≤ 7 of the homotopy

types of BTOP , BPL and BG.

By definition, the structure set STOP (M) of a closed m-dimensional topo-
logical manifoldM consists of equivalence classes of pairs (L, f) where L is a closed
m-dimensional topological manifold and f : L−−→M is a homotopy equivalence.

Equivalence is defined by (L, f) ∼ (L′, f ′) if f ′−1f : L−−→L′ is homotopic to a
homeomorphism. There is a similar definition in the PL category of SPL(M).
The structure sets for m ≥ 5 (or m = 4 and π1(M) good for TOP ) fit into a

commutative braid of Sullivan-Wall surgery exact sequences of pointed sets

������

N
N

N
NN

N
N
N
NN

APL

������

H3(M ;Z2)'
'
'')

[M,G/PL] Lm(Z[π1(M)])

SPL(M)
N
N
N
NP
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���
��

N
N
N
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A

'
'
'')
κ

Lm+1(Z[π1(M)])
N
N
N
NP

STOP (M)

���
��

N
N
N
NP

H4(M ;Z2)

'
'

'
'

'

[
[
[
[
[]

'
'

'
'

'

[
[
[
[
[]
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where L∗(Z[π1(M)]) are the surgery obstruction groups and

STOP (M) −−→ H4(M ;Z2) ; (L, f) 7−→ (f−1)∗κ(L)− κ(M) .

The TOP surgery exact sequence was expressed algebraically in Ranicki [33] as

an exact sequence of abelian groups

. . . −−→ Lm+1(Z[π1(M)]) −−→ STOP (M) −−→ Hm(M ;L.)
A
−−→ Lm(Z[π1(M)])

where L. is the 1-connective quadratic L-spectrum such that

π∗(L.) = L∗(Z) (∗ ≥ 1) ,

the generalized homology groups H∗(M ;L.) are the cobordism groups of sheaves

over M of locally quadratic Poincaré complexes over Z, and

A : [M,G/TOP ] = Hm(M ;L.) −−→ Lm(Z[π1(M)])

is the algebraic L-theory assembly map.

Proposition. (Siebenmann [42, §15], Hollingsworth and Morgan [14],Morita [29])
(i) For any space M

im(κ : [M,BTOP ]−−→H4(M ;Z2))

= im((r2 Sq
2) : H4(M ;Z)⊕H2(M ;Z2)−−→H4(M ;Z2)) ,

where r2 is reduction mod 2.
(ii) For a closed m-dimensional topological manifold M with m ≥ 5, or m = 4 and

π1(M) good, the image of the function STOP (M)−−→H4(M ;Z2) is the subgroup

im(κ : ker(A)−−→H4(M ;Z2)) ⊆ im(κ : [M,BTOP ]−−→H4(M ;Z2)) ,

with equality if

im(A) = im(APL : [M,G/PL]−−→Lm(Z[π1(M)])) .

Example. (Hsiang and Shaneson [15],Wall [49, 15A],Kirby and Siebenmann [18]).
The surgery classification of PL structures on tori is an essential ingredient of the

Kirby-Siebenmann structure theory of topological manifolds. The assembly map

A : Hn(T
m;L.) −−→ Ln(Z[Zm])

is an isomorphism for n ≥ m + 1, and a split injection with cokernel L0(Z) for
n = m. (This was first obtained geometrically by Shaneson and Wall, and then
proved algebraically by Novikov and Ranicki).
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The braid of surgery exact sequences of Tm (m ≥ 5)

������
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has

STOP (Tm) = 0 ,

SPL(Tm) = [Tm, TOP/PL] = H3(Tm;Z2) .

Thus every closed m-dimensional topological manifold homotopy equivalent to Tm

is homeomorphic to Tm, but does not carry a unique PL structure. A fake torus

is a closed m-dimensional PL manifold τm which is homeomorphic but not PL
homeomorphic to Tm. Every element

κ ̸= 0 ∈ SPL(Tm) = H3(Tm;Z2)

is represented by a triangulation (τm, f) of Tm by a fake torus τm such that κ(f) =
κ. The homeomorphism f : τm−−→Tm is not homotopic to a PL homeomorphism,
constituting a counterexample to the Manifold Hauptvermutung. The application
to topological manifold structure theory makes use of the fact that f lifts to

a homeomorphism f : τm−−→Tm
of finite covers which is homotopic to a PL

homeomorphism, i.e. every fake torus has a finite cover which is PL homeomorphic
to a genuine torus.
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Example. The braid of surgery exact sequences of Tm × Sk (m+ k ≥ 5, k ≥ 2)
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has

STOP (Tm × Sk) = [Tm, G/TOP ] ,

SPL(Tm × Sk) = [Tm, G/PL]⊕H3−k(Tm;Z2)

with

im(κ : STOP (Tm×Sk)−−→H4(Tm×Sk;Z2)) = H4(Tm;Z2) ⊂ H4(Tm×Sk;Z2) .

For every element

κ ∈ H4(Tm;Z2) ⊂ H4(Tm × Sk;Z2)

there exists (L, f) ∈ STOP (Tm × Sk) with (f∗)−1κ(L) = κ. If κ ̸= 0 the closed

(m+ k)-dimensional topological manifold L does not admit a PL structure, con-
stituting a counterexample to the Combinatorial Triangulation Conjecture. (After
Freedman STOP (Tm×Sk) = [Tm, G/TOP ] also in the casem+k = 4.) See Sieben-

mann [42, §2], Kirby and Siebenmann [18, pp. 210-213] for explicit constructions of
such high-dimensional torus-related counterexamples to the Hauptvermutung and
Combinatorial Triangulation Conjecture, starting from the Milnor E8-plumbing 4-

dimensional PL manifold (Q4,Σ3) with boundary the Poincaré homology sphere
Σ. See Scharlemann [38] for explicit constructions of manifolds without combi-
natorial triangulation in the homotopy types of S3 × S1#S2 × S2, T 2 × S3 and

CP2 × S1.

The original Milnor differentiable exotic spheres arose as the total spaces of

PL trivial differentiable sphere bundles over S4. The original Novikov examples
of homotopy equivalences of high-dimensional differentiable manifolds which are
not homotopic to diffeomorphisms were constructed using fibre homotopy trivial-
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izations of differentiable sphere bundles over S4. Likewise, fibre homotopy trivial
topological sphere bundles over S4 provided examples of topological manifolds

without a combinatorial triangulation :

Example. The structure sets of Sm × Sn with m,n ≥ 2 are such that

STOP (Sm × Sn) = Lm(Z)⊕ Ln(Z) if m+ n ≥ 4

SPL(Sm × Sn) = L̃m(Z)⊕ L̃n(Z) if m+ n ≥ 5

where

L̃m(Z) = πm(G/PL)

=

{
πm(G/TOP ) = Lm(Z) if m ̸= 4

2π4(G/TOP ) = 2L4(Z) if m = 4

(Ranicki [33, 20.4]). For any element (W,f) ∈ STOP (Sm × Sn) it is possible to
make the homotopy equivalence f :W−−→Sm×Sn topologically transverse regular
at Sm × {∗} and {∗} × Sn ⊂ Sm × Sn. The restrictions of f are normal maps

(fM , bM ) = f | : Mm = f−1(Sm × {∗}) −−→ Sm ,

(fN , bN ) = f | : Nn = f−1({∗} × Sn) −−→ Sn

such that

(W,f) = (σ∗(fM , bM ), σ∗(fN , bN )) ∈ STOP (Sm × Sn) = Lm(Z)⊕ Ln(Z) .

Every element

x ∈ Lm(Z) = πm(G/TOP )

= πm+1(BT̃OP (n+ 1)−−→BG(n+ 1)) (n ≥ 2)

is realized by a topological block bundle

η : Sm −−→ BT̃OP (n+ 1)

with a fibre homotopy trivial topological sphere bundle

Sn −−→ S(η) −−→ Sm .

Making the degree 1 map ρ : Sm+n−−→T (η) topologically transverse regular at

Sm ⊂ T (η) gives an m-dimensional normal map

(fM , bM ) = ρ| : Mm = ρ−1(Sm) −−→ Sm

with bM : νM−−→η, such that the surgery obstruction is

σ∗(fM , bM ) = x ∈ Lm(Z) .

The closed (m + n)-dimensional topological manifold S(η) is equipped with a

homotopy equivalence f : S(η)−−→Sm × Sn such that

(S(η), f) = (x, 0) ∈ STOP (Sm × Sn) = Lm(Z)⊕ Ln(Z) ,

where f−1(Sm × {∗}) =M . The normal bundle of S(η) is classified by

νS(η) : S(η)
f
−−→ Sm × Sn

proj.
−−→ Sm

−η
−−→ BTOP ,
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with the Kirby-Siebenmann invariant given by

κ(S(η)) = κ(η) =

{
x(mod2) if m = 4

0 if m ̸= 4

∈ im(H4(Sm;Z2)−−→H4(S(η);Z2))

where

H4(Sm;Z2) = coker(L̃m(Z)−−→Lm(Z))

= πm−1(TOP/PL) =

{
Z2 if m = 4

0 if m ̸= 4 .

The surgery classifying space G/TOP fits into a fibration sequence

G/TOP −−→ BT̃OP (n) −−→ BG(n)

for any n ≥ 3, by a result of Rourke and Sanderson [34]. The generator

1 ∈ L4(Z) = π5(BT̃OP (3)−−→BG(3))

= π4(G/TOP ) = Z

is represented by a map (η, t) : S4−−→G/TOP corresponding to a topological

block bundle η : S4−−→BT̃OP (3) with a fibre homotopy trivialization t : η ≃
{∗} : S4−−→BG(3), such that

p1(η) = −24 ∈ H4(S4;Z) = Z ,

κ(η) = 1 ∈ H4(S4;Z2) = Z2 .

For every n ≥ 2 the closed (n+ 4)-dimensional topological manifold

Wn+4 = S(η ⊕ ϵn−2)

is the total space of a fibre homotopy trivial non-PL topological sphere bundle
η ⊕ ϵn−2

Sn −−→ W −−→ S4 ,

with a homotopy equivalence f :W−−→S4 × Sn. The element

(W, f) = (1, 0) ̸= (0, 0) ∈ STOP (S4 × Sn) = L4(Z)⊕ Ln(Z)

realizes the generator

x = 1 ∈ L4(Z) = π5(BT̃OP (n+ 1)−−→BG(n+ 1))

= π4(G/TOP ) = Z .

The manifold W does not admit a combinatorial triangulation, with

κ(W ) = 1 ∈ H4(W ;Z2) = Z2

and M4 = f−1(S4 × {∗}) ⊂W the 4-dimensional Freedman E8-manifold.
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§5. Homology Manifolds.

An m-dimensional homology manifold is a space X such that the local
homology groups at each x ∈ X are given by

Hr(X,X\{x}) = Hr(Rm,Rm\{0})

=

{
Z if r = m

0 otherwise.

An m-dimensional topological manifold is an m-dimensional homology manifold.

The local homology groups of the polyhedron |K| of a simplicial complex K

at x ∈ |K| are such that

H∗(|K|, |K|\{x}) = H̃∗−|σ|−1(linkK(σ))

if x ∈ int(σ) for a simplex σ ∈ K.

An m-dimensional combinatorial homology manifold is a simplicial

complex K such that for each σ ∈ K
H∗(linkK(σ)) = H∗(S

m−|σ|−1) .

Similarly for a combinatorial homotopy manifold.

A PL manifold is a combinatorial homotopy manifold. A combinatorial ho-

motopy manifold is a combinatorial homology manifold. The polyhedron of a
simplicial complex K is an m-dimensional homology manifold |K| if and only if K
is an m-dimensional combinatorial homology manifold.

Example. For m ≥ 5 the double suspension of any (m−2)-dimensional combina-
torial homology sphere Σ is an m-dimensional combinatorial homology manifold

K such that the polyhedron |K| is a topological manifold homeomorphic to Sm

(Edwards, Cannon). The combinatorial homology manifold K is a combinatorial
homotopy manifold if and only if Σ is simply-connected.

More generally :

Theorem. (Edwards [8]) For m ≥ 5 the polyhedron of an m-dimensional com-
binatorial homology manifold K is an m-dimensional topological manifold |K| if
and only if linkK(σ) is simply-connected for each vertex σ ∈ K.

This includes as a special case the result of Siebenmann [41] that for m ≥ 5
the polyhedron of an m-dimensional combinatorial homotopy manifold K is an
m-dimensional topological manifold |K|.

Triangulation Conjecture. Every compact m-dimensional topological manifold
can be triangulated by a combinatorial homology manifold.
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The triangulation need not be combinatorial, i.e. the combinatorial homology
manifold need not be a PL manifold.

It follows from the properties of Casson’s invariant for oriented homology

3-spheres that the 4-dimensional Freedman E8-manifold cannot be triangulated
(Akbulut and McCarthy [1, p.xvi]), so that :

Theorem. The Triangulation Conjecture is false for m = 4.

The Triangulation Conjecture is unresolved form ≥ 5. The Kirby-Siebenmann
examples of topological manifolds without a combinatorial triangulation are tri-
angulable.

Definition. A manifold homology resolution (M,f) of a space X is a com-
pact m-dimensional topological manifold M with a surjective map f : M−−→X
such that the point inverses f−1(x) (x ∈ X) are acyclic. Similarly for manifold
homotopy resolution, with contractible point inverses.

A space X which admits an m-dimensional manifold homology resolution is
anm-dimensional homology manifold. Bryant, Ferry, Mio and Weinberger [4] have

constructed compact ANR homology manifolds in dimensions m ≥ 5 which do not
admit a manifold homotopy resolution.

Let θH3 (resp. θh3 ) be the Kervaire-Milnor cobordism group of oriented 3-
dimensional combinatorial homology (resp. homotopy) spheres modulo those
which bound acyclic (resp. contractible) 4-dimensional PL manifolds, with ad-

dition given by connected sum.

Given a finite m-dimensional combinatorial homology manifold K define

cH(K) =
∑

σ∈K(m−4)

[linkK(σ)]σ ∈ Hm−4(K; θH3 ) = H4(K; θH3 ) .

Similarly, given a finite m-dimensional combinatorial homotopy manifold K define

ch(K) =
∑

σ∈K(m−4)

[linkK(σ)]σ ∈ Hm−4(K; θh3 ) = H4(K; θh3 ) .

Theorem. (Cohen [6], Sato [37], Sullivan [47, pp. 63–65])
(i) An m-dimensional combinatorial homology manifold K is such that

cH(K) = 0 ∈ H4(K; θH3 )

if (and for m ≥ 5 only if) K has a PL manifold homology resolution.
(ii) An m-dimensional combinatorial homotopy manifold K is such that

ch(K) = 0 ∈ H4(K; θh3 )
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if (and for m ≥ 5 only if) K has a PL manifold homotopy resolution.

The natural map θh3−−→θH3 is such that for a finite m-dimensional combina-
torial homotopy manifold K

Hm−4(K; θh3 ) −−→ Hm−4(K; θH3 ) ; ch(K) 7−→ cH(K) .

Every oriented 3-dimensional combinatorial homology sphere Σ bounds a par-

allelizable 4-dimensional PL manifold W , allowing the Rochlin invariant of Σ to
be defined by

α(Σ) = σ(W ) ∈ 8Z/16Z = Z2

as in §3 above. The Rochlin invariant defines a surjection

α : θH3 −−→ Z2 ; Σ 7−→ α(Σ) ,

with α(Σ) = 1 ∈ Z2 for the Poincaré homology 3-sphere Σ.

Remarks. (i) Fintushel and Stern [9] applied Donaldson theory to show that the
kernel of α : θH3 −−→Z2 is infinitely generated.

(ii) The composite

θh3 −−→ θH3
α
−−→ Z2

is 0, by a result of Casson (Akbulut and McCarthy [1, p.xv]).

The exact sequence of coefficient groups

0 −−→ ker(α) −−→ θH3
α
−−→ Z2 −−→ 0

induces a cohomology exact sequence

. . . −−→ Hn(M ; ker(α)) −−→ Hn(M ; θH3 )
α
−−→ Hn(M ;Z2)

δ
−−→ Hn+1(M ; ker(α)) −−→ . . .

for any space M .

Theorem. (Galewski-Stern [11], [12], Matumoto [23])
(i) The Kirby-Siebenmann invariant κ(M) ∈ H4(M ;Z2) of a compactm-dimension-

al topological manifold M is such that

δκ(M) = 0 ∈ H5(M ; ker(α))

if (and for m ≥ 5 only if) M is triangulable. If M is triangulable then for any
triangulation (K, f : |K|−−→M)

κ(M) = f∗α(c
H(K)) ∈ im(α : Hm−4(M ; θH3 )−−→Hm−4(M ;Z2))

= im(α : H4(M ; θH3 )−−→H4(M ;Z2))

= ker(δ : H4(M ;Z2)−−→H5(M ; ker(α))) .
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(ii) Every finite m-dimensional combinatorial homology manifold K for m ≥ 5
admits a topological manifold homotopy resolution (M,f : |K|−−→M) such that

M is a triangulable m-dimensional topological manifold with

κ(M) = f∗α(c
H(K)) ∈ im(α : Hm−4(M ; θH3 )−−→Hm−4(M ;Z2))

= im(α : H4(M ; θH3 )−−→H4(M ;Z2)) .

(iii) The Triangulation Conjecture is true for every m ≥ 5 if and only if the
surjection α : θH3 −−→Z2 splits, i.e. if and only if there exists a 3-dimensional com-
binatorial homology sphere Σ such that α(Σ) = 1 ∈ Z2 and 2(Σ) = 0 ∈ θH3 .

(iv) The stable classifying spaces BPL,BTOP,BH for the bundle theories asso-
ciated to PL, topological and combinatorial homology manifolds are related by a
braid of fibrations

'
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[
[
[

'
'') [

[
[

'
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NPα
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The Cohen-Sato-Sullivan PLmanifold homology resolution obstruction cH(K)
∈ H4(M ; θH3 ) of an m-dimensional combinatorial homology manifold K is the ho-
motopy class of the composite

K
νK

−−→ BH
cH

−−→ K(θH3 , 4) .

The Galewski-Matumoto-Stern triangulation obstruction δκ(M) ∈ H5(M ;
ker(α)) of an m-dimensional topological manifold M is the homotopy class of the
composite

M
νM

−−→ BTOP −−→ K(ker(α), 5) .

Example. Let (Q4,Σ) be the Milnor 4-dimensional PL E8-manifold with bound-
ary the Poincaré 3-dimensional homology sphere, such that σ(Q) = 8, κ(Q) = 0,
α(Σ) = 1. Coning off the boundary of Q defines a 4-dimensional combinatorial

homology manifold K = Q ∪Σ cΣ such that

cH(K) = [Σ] ̸= 0 ∈ H4(K; θH3 ) = θH3 ,

so that K does not have a PL manifold homology resolution. Let (W,Σ) be the
contractible Freedman 4-dimensional topological E8-manifold, such that σ(W ) =
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8, κ(W ) = 1 (as at the end of §3). The polyhedron |K| admits a manifold ho-
motopy resolution f : M = Q ∪Σ W−−→|K|, with the non-triangulable closed

4-dimensional topological manifold M such that

κ(M) = [f∗cH(K)] ̸= 0 ∈ im(α : H4(M ; θH3 )−−→H4(M ;Z2)) .

The product |K| × S1 is a 5-dimensional topological manifold, with f × 1 : M ×
S1−−→|K|×S1 homotopic to a homeomorphism triangulating M ×S1 by K×S1.
The Kirby-Siebenmann invariant of M × S1 is

κ(M × S1) = p∗κ(M) ̸= 0 ∈ im(α : H4(M × S1; θH3 )−−→H4(M × S1;Z2))

with p : M × S1−−→M the projection, so that M × S1 is a triangulable 5-
dimensional topological manifold without a combinatorial triangulation. In fact,
M × S1 is not even homotopy equivalent to a 5-dimensional PL manifold.

The rel ∂ version of the Cohen-Sato-Sullivan PL manifold resolution obstruc-

tion theory applies to the problem of deforming a PL map of PL manifolds with
acyclic (resp. contractible) point inverses to a PL homeomorphism, and the rel ∂
version of the Galewski-Matumoto-Stern triangulation obstruction theory applies

to the problem of deforming a homeomorphism of PL manifolds to a PL map with
acyclic point inverses, as follows.

Let f : K−−→L be a PL map of compact m-dimensional PL manifolds, with
acyclic (resp. contractible) point inverses f−1(x) (x ∈ L). The mapping cylin-
der W = K × I ∪f L is an (m + 1)-dimensional combinatorial homology (resp.

homotopy) manifold with PL manifold boundary and a PL map

(g; f, 1) : (W ;K,L) −−→ L× (I; {0}, {1})

with acyclic (resp. contractible) point inverses. For each simplex σ ∈ L let D(σ, L)
be the dual cell in the barycentric subdivision L′ of L, such that there is a PL
homeomorphism

(D(σ,L), ∂D(σ, L)) ∼= (Dm−|σ|, Sm−|σ|−1) .

The combinatorial (m+1−|σ|)-dimensional homology (resp. homotopy) manifold

(Wσ, ∂Wσ) = g−1(D(σ, L)× I, ∂(D(σ,L)× I))

is such that the restriction

g| : (Wσ, ∂Wσ) −−→ (D(σ, L)× I, ∂(D(σ,L)× I)) ∼= (Dm+1−|σ|, Sm−|σ|)

is a homology (resp. homotopy) equivalence, with

∂Wσ = f−1D(σ,L) ∪ g−1(∂D(σ,L)× I) ∪D(σ,L) .

If f has acyclic point inverses define

cH(f) = cH∂ (W ;K,L)

=
∑

σ∈L(m−3)

[∂Wσ]σ ∈ Hm−3(L; θ
H
3 ) = H3(L; θH3 ) ,
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and if f has contractible point inverses define

ch(f) = ch∂(W ;K,L)

=
∑

σ∈L(m−3)

[∂Wσ]σ ∈ Hm−3(L; θ
h
3 ) = H3(L; θh3 ) .

Proposition. A PL map of compact m-dimensional PL manifolds f : K−−→L
with acyclic (resp. contractible) point inverses is such that cH(f) = 0 (resp.
ch(f) = 0) if (and for m ≥ 5 only if) f is concordant to a PL homeomorphism,
i.e. homotopic to a PL homeomorphism through PL maps with acyclic (resp.

contractible) point inverses.

Remark. Cohen [6] actually proved that for m ≥ 5 a PL map f : K−−→L of m-

dimensional combinatorial homotopy manifolds with contractible point inverses
is homotopic through PL maps with contractible point inverses to a PL map
F : K−−→L which is a homeomorphism. If K,L are PL manifolds then F can be

chosen to be a PL homeomorphism, so that ch(f) = 0.

Returning to the Manifold Hauptvermutung, we have :

Proposition. Let f : |K|−−→|L| be a homeomorphism of the polyhedra of com-

pact m-dimensional PL manifolds K,L. The Casson-Sullivan invariant κ(f) ∈
H3(L;Z2) is such that

δκ(f) = 0 ∈ H4(L; ker(α))

if (and for m ≥ 5 only) if f is homotopic to a PL map F : K−−→L with acyclic
point inverses, in which case κ(f) is the image under α of the Cohen-Sato-Sullivan

invariant cH(F )

κ(f) = α(cH(F )) ∈ im(α : H3(L; θH3 )−−→H3(L;Z2))

= ker(δ : H3(L;Z2)−−→H4(L; ker(α))) .

Proof. The mapping cylinder W = |K| × I ∪f |L| of f is an (m+ 1)-dimensional

topological manifold with PL boundary ∂W = |K| × {0} ∪ |L|, and with a home-
omorphism

(g; f, 1) : (W ; |K|, |L|) −−→ |L| × (I; {0}, {1}) .

By the rel ∂ version of the Galewski-Matumoto-Stern obstruction theory κ(f) ∈
im(α) if (and for m ≥ 5 only if) the triangulation of ∂W extends to a triangulation

of W , in which case it is possible to approximate g by a PL map G such that the
restriction G| = F : K−−→L is a PL map homotopic to f with acyclic point
inverses and κ(f) = α(cH(F )).

Corollary. If the Triangulation Conjecture is true for every m ≥ 5 (i.e. if α :
θH3 −−→Z2 splits) every homeomorphism of compact m-dimensional PL manifolds
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is homotopic to a PL map with acyclic point inverses.
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Generalisations and applications of block bundles

By A. J. Casson

Introduction

Rourke and Sanderson [10] introduced the idea of a block bundle. They
used block bundles in the PL (piecewise linear) category as a substitute for the

normal bundles of differential topology. Their block bundles had fibre Iq (the unit
cube in q-dimensional space).

We generalise the idea to allow any compact PL manifold F as fibre. Chapter
I sets up the theory; in particular, it is shown that there is a classifying space

BP̃LF for block bundles with fibre F .

In Chapter II we compare block bundles with Hurewicz fibrations. Let F

be a compact PL manifold with boundary ∂F , and let BGF classify Hurewicz
fibrations with fibre (F, ∂F ). We produce a map χ : BP̃LF−−→BGF , arising from
a natural transformation of bundle functors.

We wish to obtain information about BP̃LF ; in fact we can study BGF

(which is purely homotopy theoretic) and the fibre GF /P̃LF of χ. In Chapter III

we construct a map θ : GF /P̃LF−−→(G/PL)F , where G/PL is the space studied

in Sullivan’s thesis under the name F/PL, and (G/PL)F is the space of all unbased
maps from F to G/PL. Theorems 5,6 show that, under suitable conditions, θ is
almost a homotopy equivalence. For these results it is essential to work with block

bundles rather than fibre bundles.

Sullivan shows in his thesis (see [13] for a summary) that G/PL is closely

related to the problem of classifying PL manifolds homotopy equivalent to a given
manifold. Therefore it is important to have information about the homotopy type
of G/PL. In Chapter IV we apply Theorem 5 to show that Ω4(G/PL) is homotopy

equivalent to Ω8(G/PL); it is almost true that G/PL is homotopy equivalent to
Ω4(G/PL).

In Chapter V (which is almost independent of the earlier chapters) we show
that, with certain restrictions on the base-space, a block bundle with fibre Rq

which is topologically trivial is necessarily piecewise linearly trivial. It follows
from this (again using the results of [13]) that the Hauptvermutung is true for
closed 1-connected PL manifolds M with dimM ≥ 5 and H3(M ;Z2) = 0.

I should like to thank Professor C.T.C.Wall for suggesting the study of gener-
alized block bundles and for much encouragement. I am also very grateful to Dr.

D.P.Sullivan for several conversations during the summer of 1966.
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Origins of the ideas

Chapter I is based on §1 of [10]; the definitions and technical details are new,
but the general plan is similar. The use of block bundles with arbitrary fibres was

suggested to me by Professor Wall.

Chapter II is mainly technical, and new as far as I know.

Chapter III generalizes results in Sullivan’s thesis (but the proofs are based

on the references given rather than on Sullivan’s work).

The result and method of proof in Chapter IV is new, as far as I know.

I believe that Sullivan∗ has a stronger result than Theorem 8 of Chapter V,

but have not seen his proofs. I proved Theorem 8 before hearing of Sullivan’s
latest result. My proof is an extension of the idea of [16].

Summer, 1967

∗ See D.P.Sullivan, On the Hauptvermutung for manifolds, Bull. Amer.
Math. Soc. 73 (1967) 598-600. The theorem announced there includes ours, but
the proof seems somewhat different.
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I. Block Bundles

A polyhedron is a topological space together with a maximal family of PL
related locally finite triangulations. A cell complex B is a collection of cells PL

embedded in a polyhedron X such that :

(1) B is a locally finite covering of X,
(2) if β, γ ∈ B then ∂β, β ∩ γ are unions of cells of B,

(3) if β, γ are distinct cells of B, then Intβ ∩ Int γ = ∅.

We write |B| forX and do not distinguish between a cell β ofB and the subcomplex
it determines. A cell complex B′ is a subdivision of B if |B′| = |B| and every
cell of B is a union of cells of B′. A based polyhedron is a polyhedron with

a preferred base-point; a based cell complex is a cell complex with a preferred
vertex. All base-points will be denoted by ‘bpt’.

Let F be a polyhedron and let B be a based cell complex. A block bundle
ξ over B with fibre F consists of a polyhedron E(ξ) (the total space of ξ)
with a closed sub-polyhedron Eβ(ξ) for each β ∈ B and a PL homeomorphism

b(ξ) : F−−→Ebpt(ξ), such that :

(1) {Eβ(ξ)|β ∈ B} is a locally finite covering of E(ξ),

(2) if β, γ ∈ B then

Eβ(ξ) ∩ Eγ(ξ) =
∪

δ⊂β∩γ

Eδ(ξ) ,

(3) if β ∈ B, there is a PL homeomorphism h : F × β−−→Eβ(ξ) such that

h(F × γ) = Eγ(ξ) (γ ⊂ ∂β) .

If ξ is a block bundle over B and B0 is a subcomplex of B, the restriction

ξ|B0 is defined by

E(ξ|B0) =
∪

β∈B0∪{bpt.}

Eβ(ξ) ,

Eβ(ξ|B0) = Eβ(ξ) , b(ξ|B0) = b(ξ) .

Note that ξ|B0 is a block bundle over B0 ∪ {bpt.}, not necessarily over B0 itself.

If ξ, η are block bundles over B, an isomorphism h : ξ−−→η is a PL homeo-

morphism h : E(ξ)−−→E(η) such that

hEβ(ξ) = Eβ(η) (β ∈ B) , hb(ξ) = b(η) .

A particular block bundle ϵ over B is obtained by setting

E(ϵ) = F ×B , Eβ(ϵ) = F × β ,

b(ϵ) = 1× bpt : F −−→ F × bpt .
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A trivial block bundle is one isomorphic to ϵ; an isomorphism h : ϵ−−→ξ is a
trivialisation of ξ. It follows from condition (3) that ξ|β is trivial for each β ∈ B.

Let B,C be based cell complexes and let ξ be a block bundle over B. Define

a block bundle ξ × C over B × C by

E(ξ × C) = E(ξ)× C , Eβ×γ(ξ × C) = Eβ(ξ)× γ
(for cells β ∈ B, γ ∈ C) and b(ξ × C) = b(ξ)× bpt.

Lemma 1. Suppose |B| = β, where β is an n-cell of β, and let γ be an (n − 1)-
cell over B. If ξ and η are block bundles over B, any isomorphism h : ξ|(∂β −
γ)−−→η|(∂β − γ) can be extended to an isomorphism h : ξ−−→η.

Proof. Since ξ = ξ|β, η = η|β, ξ and η are both trivial. Let k and l be trivialisa-

tions of ξ, η, respectively. Then a PL homeomorphism

l−1hk : F × (∂β − γ) −−→ F × (∂β − γ)
is defined.

Choose a PL homeomorphism

f : (∂β − γ)× I −−→ B

such that f0 : (∂β − γ)−−→B is the inclusion, and let

g = 1× f : F × (∂β − γ)× I −−→ F × β.
The required extension of f is given by

h = lg(l−1hk × I)g−1k−1 : E(ξ) −−→ E(η) .

Lemma 2. Let B be a based cell complex and take bpt×0 as base-point for B×I.
If ξ, η are block bundles over B × I, then any isomorphism

h : η|(B × 0) ∪ (bpt× I) −−→ η|(B × 0) ∪ (bpt× I)
can be extended to an isomorphism h : ξ−−→η.

Proof. Write Br for the r-skeleton of B, and let Cr = (B × 0) ∪ (Br × I).
Suppose inductively that h can be extended to an isomorphism h : ξ|Cr−−→η|Cr;

the induction starts trivially with r = 0. Let β be an (r+1)-cell of B. By Lemma
1,

h : η|(β × 0) ∪ (∂β × I) −−→ η|(β × 0) ∪ (∂β × I)
can be extended to an isomorphism h : ξ|(β × I)−−→η|(β × I). Thus we have
defined an isomorphism

h : ξ|Cr ∪ (β × I) −−→ η|Cr ∪ (β × I) .
Do this for all r-cells of B to obtain

h : ξ|Cr+1 −−→ η|Cr+1
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extending the given isomorphism. The Lemma now follows by induction.

Let ξ be a block bundle over B and let B′ be a subdivision of B. A block
bundle ξ′ over B′ is a subdivision of ξ if E(ξ′) = E(ξ), Eβ′(ξ′) ⊂ Eβ(ξ) (for all

cells β′ ∈ B′, β ∈ B with β′ ⊂ β) and b(ξ′) = b(ξ).

Theorem 1. Let B′ be a subdivision of a cell complex B. Any block bundle over

B′ is a subdivision of some block bundle over B. Any block bundle ξ over B has a
subdivision over B′, and any two subdivisions of ξ over B′ are isomorphic.

Proof. First we prove the following propositions together by induction on n.

Pn : If |B| is homeomorphic to an n-cell, then any block bundle over B is
trivial.

Qn : Let dimB ≤ n and let B0 be a subcomplex of B. Let B′ be a subdivision
of B, inducing subdivision B′

0 of B0. Let ξ be a block bundle over B and let ξ′0
be a subdivision of ξ|B0 over B′

0. Then there is a subdivision ξ′ of ξ over B′ such
that ξ′0 = ξ′|B′

0.

Observe that P0 and Q0 are both true. We shall prove that Qn =⇒ Pn and
Pn &Qn =⇒ Qn+1.

Proof that Qn =⇒ Pn. Suppose |B| is homeomorphic to an n-cell, and let ξ be
a block bundle over B. Since |B| is collapsible, there is a simplicial subdivision B′

of B which collapses simplicially to the base point [19]. Assuming Qn, there is a
subdivision ξ′ of ξ over B′. It is enough to prove that ξ′ is trivial.

Let

B′ = Kk ↘s Kk−1 ↘s . . . ↘s K0 = {bpt.}

be a sequence of elementary simplicial collapses. Suppose inductively that ξ′|Kr

is trivial; the induction starts with r = 0. Write

Kr+1 = Kr ∪△ , Kr ∩△ = Λ ,

where △ is a simplex of Kr+1 and Λ is the complement of a principal simplex in
∂△. Let h : F×Kr−−→E(ξ′|Kr) be a trivialisation of ξ′|Kr. By Lemma 1, h|F×Λ
extends to a trivialisation of ξ|△. Thus we obtain a trivialisation of ξ′′|Kr+1. By

induction, ξ′ is trivial, as required.

Proof that Pn &Qn =⇒ Qn+1. Suppose B,B0, B
′, ξ, ξ′0 satisfy the hypotheses of

Qn+1. If A is any subcomplex of B, we write A′ for the subdivision of A induced
by B′. Let B1 = B0 ∪Bn, assuming Qn there is a subdivision ξ′1 of ξ|B1 over B′

1

such that ξ′0|(B0∩Bn)′ = ξ′1|(B0∩Bn)′. Let β be an (n+1)-cell of B−B0, and let
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γ be an n-cell of B contained in ∂β. Since |∂β − γ| is homeomorphic to an n-cell,
ξ′1|(∂β − γ)′ is trivial by Pn. Let h be a trivialisation of ξ′1|(∂β − γ)′; a fortiori, h

is a trivialisation of ξ|(∂β − γ).

By Lemma 1, h extends to a trivialisation of ξ|β. Let C be the cell complex
consisting of β, γ and the cells of (∂β − γ)′. Define a block bundle η over C by

Eβ(η) = Eβ(ξ) , Eγ(η) = Eγ(ξ)

and Eδ′(η) = Eδ′(ξ
′
1) for each cell δ′ of (∂β − γ)′. Then k is a trivialisation of η,

so η satisfies condition (3) in the definition of block bundle.

Let δ′ be an n-cell of (∂β − γ)′, so |∂β′ − δ′| is homeomorphic to an n-cell.
Assuming Pn, ξ

′
1|(∂β′ − δ′) is trivial; let h′ be a trivialisation. A fortiori, h′ is a

trivialisation of η|(∂β′ − δ′).

By Lemma 1, h′ extends to a trivialisation k′ of η. In fact, k′|F × ∂β′ is a

trivialisation of ξ′1|∂β′, because k′ extends h′ and k′(F × δ′) = Eδ′(ξ
′
1). To extend

ξ′1|∂β′ to a subdivision ξ′|β′ of ξ|β, we define Eα′(ξ′) = k′(F ×α′) for each cell α′

of β′.

Do this for all (n+1)-cells of B−B0, and define ξ′|β = ξ′0|β for each (n+1)-
cell β of B0. We obtain a subdivision ξ′ of ξ over B′ such that ξ′0 = ξ′|B′

0, as

required.

By induction, Pn and Qn are true for all n. Let B be any based cell complex
and let B′ be a subdivision of B.

Let ξ′ be a block bundle over B′. We define a block bundle ξ over B with
E(ξ) = E(ξ′) by setting Eβ(ξ) = E(ξ′|β′) (where β′ is the subdivision of β induced
by B′) for each cell β of B. This clearly satisfies conditions (1),(2) in the definition

of block bundle. By Pn, ξ
′|β′ is trivial, so ξ also satisfies condition (3). Clearly, ξ′

is a subdivision of ξ.

If ξ is a block bundle over B, it follows from Qn (by induction on the skeleton
of B) that ξ has a subdivision over B′. Let ξ′0, ξ

′
1 be two such subdivisions. Recall

that η = ξ× I is a block bundle over B× I. Define a block bundle η′0 over B′×∂I
by ξ′t = η′0|B′ × {t}, (t = 0, 1). Again it follows from Qn that η has a subdivision
η′ over B′× I such that η′0 = η′|B′×∂I. Observe that η′|bpt× I = ξ′0× I|bpt× I.
By Lemma 2, the identity isomorphism

η′|(B × 0) ∪ (bpt× I) −−→ ξ′0 × I|(B × 0) ∪ (bpt× I)

extends to an isomorphism η′−−→ξ′0 × I; it follows that ξ′1
∼= ξ′0. This completes

the proof of Theorem 1.
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Let X be a polyhedron and let B,C be cell complexes with |B| = |C| = X;
suppose all three have the same base-point. Let ξ, η be block bundles over B,C

respectively. We call ξ, η equivalent if, for some common subdivision D of B,C,
the subdivision ξ over D is isomorphic to the subdivision of η over D. This relation
is clearly reflexive and symmetric; by Theorem 1 it is also transitive.

Let IF (X) be the set of equivalence classes of block bundles over cell complexes

B with |B| = X. It is easily checked that, if |B| = X, then each member of IF (X)
is represented by a unique isomorphism class of block bundles over B.

Suppose X,Y are polyhedra and let y ∈ IF (Y ). Let B,C be cell complexes
with |B| = X, |C| = Y , and let η be a block bundle over C representing y. If
p2 : X × Y−−→Y is the projection, let p∗2(y) ∈ IF (X × Y ) be the equivalence class

of B × η.

If i : X−−→Y is a closed based PL embedding, let C ′ be a subdivision of
C with a subcomplex D′ such that |D′| = i(X). Let η′ be a subdivision of η
over C ′, and let ξ′ = η′|D′. It follows from Theorem 1 that the equivalence class

x′ ∈ IF (i(X)) of ξ′ depends only on y. Let i∗(y) ∈ IF (X) correspond to x′ via
the PL homeomorphism i : X−−→i(X). The next lemma will enable us to define
f∗ : IF (Y )−−→IF (X) for any based PL map f : X−−→Y .

Lemma 3. Let X,Y, V,W be polyhedra and let i : X−−→V × Y , j : X−−→W × Y
be closed based PL embeddings such that p2i = p2j : X−−→Y . Then

i∗p∗2 = j∗p∗2 : IF (Y ) −−→ IF (X) .

Proof. Let k : X−−→V ×W × Y be defined by

p13k = i : X −−→ V × Y ,

p23k = j : X −−→ W × Y .

In the diagram

IF (V × Y )
[
[
[
[

[[̂

i∗

u
p∗13

*'
'
'
'
''

p∗2

(1) IF (X) u k∗ IF (V ×W × Y ) u
p∗3 IF (Y )

IF (W × Y )

��
��

���
j∗

u

p∗23
QN
N
N
N
NNp∗2

the right-hand triangles are clearly commutative. We prove that the bottom left-
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hand triangle commutes. There is a contractible polyhedron Z and a closed based
PL embedding l : V−−→Z. Consider the diagram

IF (X) u k∗ IF (V ×W × Y )

IF (Z ×W × Y )

��
��

��
(bpt× j)∗

N
N
N
NNP(l × 1)∗

IF (W × Y )

�
�

�
�

�
�

�
�

��

j∗ u

p∗23

4
4
4
4
4
4
4
4
46

p∗23

The bottom two triangles clearly commute. Since Z is contractible to its base-
point, p1(l × 1)k ≃ p1(bpt× j). But p23(l × 1)k = j = p23(bpt× j), so there is a
closed based PL isotopy between (l× 1)k and (bpt× j). It follows from Lemma 2

that ((l × 1)k)∗ = (bpt× j)∗. Clearly k∗(l × 1)∗ = ((l × 1)k)∗, so the top triangle
commutes. Therefore the bottom left-hand triangle in diagram (1) commutes, so
the Lemma is proved.

Let X and Y be based polyhedra and let f : X−−→Y be a based PL map.
There is a polyhedron V and a factorization f = p2i, where i : X−−→V × Y is a

closed based PL embedding. For example, we can take V = X and i = 1× f . By
Lemma 3, the map i∗p∗2 : IF (Y )−−→IF (X) depends only on f ; we define f∗ = i∗p∗2.

Lemma 4. IF is a contravariant functor from the category of based polyhedra and
based PL maps to the category of based sets.

Proof. The base-point of IF (X) is the class of the trivial bundle. For any poly-
hedron X, 1∗X is the identity map. Let X,Y, Z be polyhedra, and let f : X−−→Y ,

g : Y−−→Z be based PL maps. Let V,W be polyhedra and let i : X−−→V × Y ,
j : Y−−→W × Z be closed based PL embeddings such that f = p2i, g = p2j.
Consider the diagram
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IF (X)

IF (V × Y )

u

i∗

IF (V ×W × Z)
�
�
���(1× j)∗

IF (Y )

u

p∗2

IF (W × Z)

u

p∗23[
[

[[̂
p∗23

IF (Z)

u

p∗2

This clearly commutes; the right route defines f∗g∗ and the left route defines

(gf)∗. This proves that IF is a contravariant functor.

Theorem 2. If F is compact, then there is a based polyhedron BP̃LF and an
element wI ∈ IF (BP̃LF ) such that f 7→ f∗(wI) defines a natural equivalence

[ , BP̃LF ]−−→IF .

Proof. First we show that IF satisfies the following axioms :

(1) If X,Y are based polyhedra and f0 ≃ f1 : X−−→Y by a based PL homotopy,
then f∗0 = f∗1 : IF (Y )−−→IF (X).

(2) If Xi is a based polyhedron (i ∈ I) and uj : Xj−−→
∨

i∈I Xi is the inclusion,
then Πi∈Iu

∗
i : IF (

∨
i∈I Xi)−−→Πi∈IIF (Xi) is an isomorphism.

(3) Suppose that X,X0, X1, X2 are polyhedra with X = X1∪X2, X0 = X1∩X2,

and that the inclusions ui : X0−−→Xi, vi : Xi−−→X are based maps. If
xi ∈ IF (Xi), (i = 1, 2) satisfy u∗1(x1) = u∗2(x2), then there exists x ∈ IF (X)
with xi = v∗i (x), (i = 1, 2).

(4) IF (S
0) is a single point and IF (S

n) is countable where Sn denotes the bound-
ary of an (n+ 1)-cell.

Proof of (1). This follows from Lemma 2 and a short argument about base-points.

Proof of (2). Let Bi be a cell complex with |Bi| = Xi. Let x ∈ Πi∈IXi and
let ξj be a block bundle over Bj representing pj(x). Let A = ∪i∈IE(ξi), A0 =
∪i∈IEbpt(ξi), b = ∪i∈Ib(ξ)

−1 : A0−−→F and define E(η) = A∪b F . If β is a cell of
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i∈I Bi, then β is a cell of some Bj , so we can define Eβ(η) = Eβ(ξj) ⊂ E(η). Let

b(η) = b(ξj) : F−−→Ebpt(η), which is independent of j. Then η is a block bundle

over
∨

i∈I Bi; let y ∈ IF (
∨

i∈I Xi) be the class of η. Then x 7→ y defines an inverse
to Πi∈Iu

∗
i , so (2) is proved.

Proof of (3). Let B be a cell complex with |B| = X and with subcomplexes
B0, B1, B2 such that |Bi| = Xi (i = 0, 1, 2). Let ξi be a block bundle over Bi

representing xi (i = 1, 2). Since u∗1(x1) = u∗2(x2), there is an isomorphism h :
ξ1|B0−−→ξ2|B0. Let E(ξ) = E(ξ1) ∪h E(ξ2), let Eβ(ξ) = Eβ(ξi) if β ∈ Bi and
let b(ξ) = b(ξ1) = b(ξ2) : F−−→Ebpt(ξ). Then the class x of ξ has the required

properties.

Proof of (4). Clearly IF (S
0) is a single point. Let B be a cell complex such that

Sn = |B|, and let β be an n-cell of B. Any element x ∈ IF (Sn) can be represented
by a block bundle ξ over B. Let k, l be trivialisations of ξ|β, ξ|B − β, and let
h = k−1l : F × ∂β−−→F × ∂β.

Since F is compact, there are finite simplicial complexes K,L with |K| =
F × β, |L| = F × (B − β) and such that h is simplicial. Clearly the simplicial
isomorphism class of the triple (K, L, h) determines x completely. But there are
only countably many such classes (of triples), so IF (S

n) is countable.

Now we can apply Brown’s Theorem on representable functors [4] to IF . We
deduce that there is a countable based CW complex W and a natural equivalence

R : [ ,W ]−−→IF . By a theorem of J.H.C.Whitehead [18], there is a polyhe-

dron BP̃LF and a homotopy equivalence ϕ : BP̃LF−−→W . Let wI = R(ϕ) ∈
IF (BP̃LF ); then the pair (BP̃LF , wI) has the required properties.

Remark. The compactness of F was only required to make the classifying space
BP̃LF a polyhedron. If F were an infinite discrete space (for example), then the

space W constructed above would have uncountable fundamental group.

Our main concern is with block bundles having a compact PL manifold F as
fibre. If ξ is such a bundle over a cell complex B, we can define a block bundle ∂ξ
over B with fibre ∂F as follows.

Let β be a cell of B, let k, l be trivialisations of ξ|B and let h = k−1l :
F × β−−→F × β. Since h(F × γ) for each γ ⊂ ∂β, h(F × ∂β) = F × ∂β. Therefore

h(∂F × β) = h(∂(F × β)− F × ∂β) = ∂F × β ;

it follows that k(∂F × β) = l(∂F × β). Define

Eβ(∂ξ) = k(∂F × β) ,
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where k is any trivialisation of ξ|β, and define

E(∂ξ) =
∪
β∈B

Eβ(∂ξ) , b(∂ξ) = b(ξ)|∂F .

Then ∂ξ is a block bundle over B with fibre ∂F .

Lemma 5. Suppose that |B|, F are compact PL manifolds, that ∂β contains the

base-point of B and let ξ be a block bundle over B with fibre F . Then E(ξ) is a
compact PL manifold and ∂E(ξ) = E(∂ξ) ∪ E(ξ|∂B).

Proof. Let B′ be a simplicial division of B and ξ′ be a subdivision of ξ over B′.
Clearly ∂ξ′ is then a subdivision of ∂ξ. If p ∈ E(ξ), then

p ∈ P , where P = E(ξ′|St(q,B′))− E(ξ′|Lk(q,B′))

for some vertex q of B′; we can choose q ∈ IntB unless p ∈ E(ξ|∂B). Let

Q = St(q,B′)− Lk(q,B′) ,

so Q is an open ball if p /∈ E(ξ|∂B), and a half-open ball if p ∈ E(ξ|∂B).

A trivialisation k of ξ′|St(q,B′) defines a homeomorphism k : F × Q−−→P
such that k(∂F × Q) = P ∩ E(∂ξ). Let N be an open ball neighbourhood of
p1k

−1(p) in F if p /∈ E(∂ξ), or a half-open ball neighbourhood if p ∈ E(∂ξ).

If p /∈ E(∂ξ)∪E(ξ|∂B), then k(N ×Q) is an open ball neighbourhood of p in
E(ξ). If p ∈ E(∂ξ) ∪ E(ξ|∂B), then k(N × Q) is a half-open ball neighbourhood

of p, and p ∈ k(∂(N × Q)). This proves that E(ξ) is a PL manifold (obviously
compact) with boundary E(∂ξ) ∪ E(ξ|∂B).

II. Homotopy Properties of Block Bundles

Let ξ be a block bundle over B with fibre F . A block fibration for ξ is a
PL map π : E(ξ)−−→|B| such that Eβ(ξ) = π−1(β) for each β ∈ B. A block

homotopy for ξ is a PL map H : E(ξ) × I−−→|B| such that, for all t ∈ I,
Ht : E(ξ)−−→|B| is a block fibration for ξ.

Lemma 6. Any block bundle ξ has a block fibration, and any two block fibrations
for ξ are block homotopic.

Proof. Write Br for the r-skeleton of B. There is a unique block fibration π :
E(ξ|B0)−−→|B0|. Suppose inductively that π can be extended to a block fibration

π : E(ξ|Br)−−→|Br|, and let β be an (r + 1)-cell of B. Then π : E(ξ|∂β)−−→|∂β|
can be extended to a PL map π : E(ξ|β)−−→|β| such that π−1(|∂β|) = E(ξ|∂β).
Do this for all (r+1)-cells of B to obtain a block fibration π : E(ξ|Br+1)−−→|Br+1|
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extending the given block fibration. By induction, ξ has a block fibration; it is
obvious that any two block fibrations for ξ are block homotopic.

Let ξ be a block bundle over B with fibre F , and let π be a block fibration

for ξ. Let

E = {(x, ψ) : x ∈ E,ψ : I−−→|B| such that π(x) = ψ(0)} ,

with the compact open topology. Define i : E(ξ)−−→E , p : E−−→|B| by i(x) =
(x, constant) and p(x, ψ) = ψ(1). Then i is a homotopy equivalence and p is a

Hurewicz fibre map. Let F = p−1(bpt) be the fibre of p.

Theorem 3. The map ib(ξ) : F−−→F is a homotopy equivalence.

Proof. By [9], F has the homotopy type of a CW complex. Choose a component

F1 of F ; F1 lies in some component E0 of E . Let E0 be the corresponding compo-
nent of E(ξ), and let B0 be the component of B containing the base-point. It is
easy to see that π|E0−−→B0 must be surjective, so F0 = E0∩Ebpt(ξ) is non-empty.

Choose a base-point for F0 = E0 ∩ F .

If n ≥ 1, there is a commutative diagram

πn(E0, F0) w
i∗

�
�
���π∗

πn(E0,F0)

N
N
NNQ
p∗

πn(|B0|,bpt)

Since p : E0−−→|B0| is a Hurewicz fibration, p∗ is an isomorphism. Using the fact
that π : E0−−→|B0| is a block fibration, we shall prove that π∗ is an isomorphism.

It will follow that i∗ is an isomorphism; hence there is a unique component F1

of F0 with i(F1) ⊂ F1. An application of the Five Lemma will show that i∗ :
πr(F1)−−→πr(F1) is an isomorphism for all r ≥ 1, and the Theorem will follow by

the Whitehead theorem.

To prove that π∗ is surjective, consider an element α ∈ πn(|B0|, bpt). By
subdividing, we may assume that B0 is a simplicial complex (note that subdivision
does not alter the homotopy class of π : E0, F0−−→|B0|, bpt). LetDn be a standard

n-cell. There is a triangulation of Dn such that Dn ↘s bpt ∈ Sn−1 and α is
represented by a simplicial map f : Dn, Sn−1−−→B0, bpt. Let

Dn = Kk ↘s Kk−1 ↘s . . .↘s K0 = bpt

be a sequence of elementary simplicial collapses.
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Suppose inductively that there is a map g : Kr−−→E0 such that, for all x ∈
|Kr|, πg(x) is in the closed carrier of f(x) in B0. We can write Kr+1 = Kr ∪∆,

Kr ∩∆ = Λ for some simplex ∆ ∈ Kr+1. Let ∆1 = ∆− Λ, so ∆1 is a principal
simplex of ∂∆. Let β = f(∆), β1 = f(∆1) be the image simplices in B0. Then

g : Λ, ∂Λ −−→ Eβ(ξ), Eβ1(ξ)

is defined. Since Eβ1(ξ) is a deformation retract of Eβ(ξ), g can be extended to a

map

g : ∆,∆1 −−→ Eβ(ξ), Eβ1(ξ) .

Thus we obtain an extension of g to g : Kr+1−−→E0 such that, for all x ∈ |Kr+1|,
πg(x) is in the closed carrier of f(x) in B0.

Now we have completed our induction and have obtained a map g : Dn−−→E0

such that for all x ∈ Dn, πg(x) is in the closed carrier of f(x) in B0. In particular,
g(Sn−1) ⊂ F0, so g represents an element β ∈ πn(E0, F0). Clearly π∗β = α, so

π∗ is injective as asserted. A similar argument shows that π∗ is injective, and the
Theorem is proved.

We now restrict F to be a compact PL manifold with boundary ∂F . Let X be
a based polyhedron; a Hurewicz fibration over X with fibre (F, ∂F ) consists of
a pair of topological spaces (E , ∂E), a map p : E−−→X and a homotopy equivalence

of pairs

b : F, ∂F −−→ p−1(bpt), p−1(bpt) ∩ ∂E

such that;

(1) For all x ∈ X, (p−1(x), p−1(x) ∩ ∂E) ≃ (F, ∂F ),
(2) Given a pair of topological spaces A, ∂A, a map f : A, ∂A−−→E , ∂E and a

homotopy G : A × I−−→X such that G0 = pf , then there exists a homotopy
H : A× I, ∂A× I−−→E , ∂E with H0 = f , G = pH.

Two Hurewicz fibrations (E , ∂E , p, b), (E ′, ∂E ′, p′, b′) are fibre homotopy
equivalent if there are maps

h : E , ∂E −−→ E ′, ∂E ′ , h′ : E ′, ∂E ′ −−→ E , ∂E

and homotopies H : h′h ≃ 1, H ′ : hh′ ≃ 1 such that, for all t ∈ I,

pHt = p , Htb = b , p′H ′
t = p′ , H ′

tb
′ = b′ .

We write HF (X) for the set of fibre homotopy equivalence classes of Hurewicz
fibrations over X with fibre (F, ∂F ). The well-known construction for induced
fibrations makes HF into a contravariant functor from the category of based poly-

hedra and based PL maps to the category of based sets. A proof that HF is
representable is indicated in [4]; the step which is given without proof can be dealt
with by the methods of Theorem 3 above. We summarise the conclusion as follows.



46 casson

Proposition. If F is a compact PL manifold, then there is a based polyhedron
BGF and an element wH ∈ HF (BGF ) such that f 7→ f∗(wH) defines a natural

equivalence [ , BGF ]−−→HF .

Lemma 7. There is a natural transformation S : IF−−→HF .

Construction of S. Let X be a based polyhedron and let x ∈ IF (X). Let B be a

cell complex with |B| = X, and let ξ be a block bundle over B representing x. By
Lemma 6, ξ has a block fibration π : E(ξ)−−→X. Construct p : E−−→X as above,
and let ∂E = {(x, ψ) ∈ E : x ∈ E(∂ξ)}. It is easily proved that p : E , ∂E−−→X
satisfies part (2) of the definition of Hurewicz fibration. By Theorem 3, part (1)
is also satisfied, and

ib(ξ) : F, ∂F −−→ p−1(bpt), p−1(bpt) ∩ ∂E

is a homotopy equivalence. Therefore (E , ∂E , p, ib(ξ)) defines an element S(ξ, π) ∈
HF (X).

Let π′ be another block fibration for ξ. Construct (E ′, ∂E ′, p′, i′) from π′ as

above. Define j′ : E ′, ∂E ′−−→E(ξ), E(∂ξ) by j′(x, ψ) = x; then j′ is a homotopy
inverse to i′. Thus ij′ : E ′, ∂E ′−−→E , ∂E is a homotopy equivalence of pairs and p′ ≃
p.ij′ via a homotopy H with Ht.i

′b(ξ) = ib(ξ). It follows from Theorem 6.1 of [5]

(modified to take account of base-points and pairs of fibres) that (E ′, ∂E ′, p′, i′b(ξ))
is fibre homotopy equivalent to (E , ∂E , p, ib(ξ)). Therefore S(ξ, π) depends only
on ξ.

If ξ′ is a subdivision of ξ, then S(ξ, π) = S(ξ, π′) = S(ξ′, π′) for any block
fibrations π, π′ of ξ, ξ′. Therefore S(ξ, π) depends only on the equivalence class x

of ξ; we write S(x) = S(ξ, π).

Naturality of S. It is enough to prove that S is natural
(1) with respect to projections p2 : Y ×X−−→X,
(2) with respect to closed based PL embeddings j : Y−−→X.

Proof of (1). Let B, C be cell complexes with |B| = X, |C| = Y . Let ξ be a block
bundle over B representing x ∈ IF (X), and let π be a block fibration for ξ. Then

π× 1 : E(ξ)× Y−−→X × Y is a block fibration for ξ×C (which represents p∗2(x)).
Construct (E , ∂E , p, ib(ξ)) representing S(x). Let Y I be the space of unbased
maps ψ : I−−→Y and define e1 : Y I−−→Y by e1(ψ) = ψ(1). Then

(E × Y I , ∂E × Y I , p× e1, (i× bpt)b(ξ))

represents S(p∗2(x)). But this fibration is equivalent to

(E × Y, ∂E × Y, p× 1, (i× bpt)b(ξ)) ,

which represents p∗2(S(x)).
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Proof of (2). Let B be a cell complex with |B| = X and with a subcomplex C
such that |C| = j(Y ). Let ξ be a block bundle over B representing x ∈ IF (X),

and let π be a block fibration for ξ. then π|E(ξ|C)−−→|C| is a block fibration for
ξ|C (which represents j∗(x)). Construct (E , ∂E , p, ib(ξ)) representing S(x). Write
i′ for the restriction

i| : E(ξ|C), E(∂ξ|C) −−→ p−1|C|, p−1|C| ∩ ∂E ;

clearly π|E(ξ|C) = pi′.

Identify F with b(ξ)F and write F for p−1(bpt). Consider the commutative
diagram

πn(E(ξ|C), F ) w
i′∗

�
�
���π∗

πn(p
−1|C|,F)

N
N
NNQ
p∗

πn(|C|, bpt)

As in Theorem 3, π∗ is an isomorphism; since p∗ is an isomorphism, i′∗ is also an
isomorphism. Therefore i′ : E(ξ|C)−−→p−1|C| is a homotopy equivalence. Simi-
larly i′ : E(∂ξ|C)−−→p−1|C| ∩ ∂E is a homotopy equivalence, so i′ is a homotopy

equivalence of pairs. It follows from Theorem 6.1 of [5] that

(p−1|C|, p−1|C| ∩ ∂E , p|p−1|C|, ib(ξ))
represents S(j∗x), so j∗S(x) = S(j∗x). This completes the proof of Lemma 7.

Recall that wI ∈ IF (BP̃LF ), wH ∈ HF (BGF ) are the universal elements.

There is a based map χ : BP̃LF−−→BGF such that S(wI) = χ∗(wH). This

defines the based homotopy class of χ uniquely.

Consider the topological space L = {(x, ψ)} of pairs with x ∈ BP̃LF , ψ :
I−−→BGF such that χ(x) = ψ(0), ψ(1) = bpt, with (bpt,constant) as base-point.

There is a based map χ′ : L−−→BP̃LF defined by χ′(x, ψ) = x. By theorems of

Milnor [9] and J. H. C. Whitehead [18], there is a based polyhedron GF /P̃LF and

a homotopy equivalence i : GF /P̃LF−−→L. Define χ1 = χ′i : GF /P̃LF−−→BP̃LF .

Let B be a based cell complex and let F be a compact PL manifold. A
GF /P̃LF -bundle over B consists of a block bundle ξ over B with fibre F and a

PL map

t : E(ξ), E(∂ξ) −−→ F, ∂F

such that tb(ξ) = 1. Two GF /P̃LF -bundles (ξ, t) and (η, u) over B are isomor-
phic if there is an isomorphism h : ξ−−→η such that uh ≃ t (rel b(ξ)(F )). Define
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the equivalence of GF /P̃LF -bundles over a polyhedron X as in Chapter I, and
let JF (X) be the set of equivalence classes.

Lemma 8. Let (ξ, t) be a GF /P̃LF -bundle over B and let π : E(ξ)−−→|B| be a

block fibration for ξ. Then

t× π : E(ξ), E(∂ξ) −−→ F × |B|, ∂F × |B|

is a homotopy equivalence of pairs.

Proof. Apply Theorem 3 as in the proof of Lemma 7.

We make JF into a contravariant functor as follows. Let f : X−−→Y be a
based PL map, and suppose f = p2j, where j : X−−→V × Y is a closed based PL
embedding. Let B, C, D be cell complexes with

|B| = X , |C| = Y , |D| = Z ,

and let (η, u) be a GF /P̃LF -bundle over C representing y ∈ JF (Y ). Let (D×C)′
be a subdivision of D × C with j(B) as a subcomplex, and let (D × η)′ be a

subdivision of D × η over (D × C)′. Then f∗(y) is represented by

((C × η)′|j(B) , up2|E((C × η)′|j(B))) .

The proof of Lemma 3 shows that f∗ : JF (Y )−−→JF (X) is well-defined, and that
JF is a contravariant functor.

Theorem 4. If F is a compact PL manifold, then there is an element wJ ∈
JF (GF /P̃LF ) such that f 7→ f∗(wJ) defines a natural equivalence [ , GF /P̃LF ]−−→
JF .

Proof. Let CI , CJ , CH be cell complexes with

|CI | = BP̃LF , |CJ | = GF /P̃LF and |CH | = BGF .

Let ηI be a block bundle over CI representing wI , and let ηH be a Hurewicz
fibration over |CH | representing wH . Let ηJ be a block bundle over CJ representing

χ∗
1(wI), and let πI , πJ be block fibrations for ηI , ηJ .

Recall that S(wI) = χ∗(wH); let h : S(ηI , πI)−−→χ∗(ηH) be a fibre homotopy

equivalence. The proof of naturality of S (Lemma 7) provides a fibre homotopy
equivalence

S(ηJ , πJ) −−→ χ∗
1S(ηI , πI) .

Compose this with

χ∗
1h : χ∗

1S(ηI , πI) −−→ χ∗
1χ

∗(ηH)

to obtain a fibre homotopy equivalence

h1 : S(ηJ , πJ) −−→ χ∗
1χ

∗(ηH) .
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Now χχ1 = χχ′i, where χ′ : L−−→BGF sends (x, ψ) to x. There is an obvious
null-homotopy H : L× I−−→BGF of χχ′, so H ′ = H(i× 1) is a null-homotopy of

χχ1. Let h
′ : χ∗

1χ
∗(ηH)−−→ϵ be the trivialisation defined by H ′. The composite

E(ηJ )
i
−−→ S(ηJ , πJ )

h1

−−→ χ∗
1χ

∗(ηH)
h′

−−→ ϵ
p1

−−→ F

defines a map

uJ : E(ηJ), E(∂ηJ ) −−→ F, ∂F

such that uJb(ηJ ) = 1. Let wJ be the equivalence class of (ηJ , uJ) in JF (GF /P̃LF ).

Clearly f 7→ f∗(wJ) defines a natural transformation from [ , GF /P̃LF ] to

JF . Let B be a cell complex and let (ξ, t) be a GF /P̃LF -bundle over B; we have
to prove that the equivalence class of (ξ, t) corresponds to a unique element of

[|B|, GF /P̃LF ]. Let π be a block fibration for ξ.

There is a map g : |B|−−→BP̃LF such that ξ represents g∗(wI); g is unique
up to homotopy. The proof of naturality of S (Lemma 7) provides a fibre ho-

motopy equivalence S(ξ, π)−−→g∗S(ηI , πI). Compose this with g∗h : g∗S(ηI , πI)
−−→g∗χ∗(ηH) to obtain a fibre homotopy equivalence k : S(ξ, π)−−→g∗χ∗(ηH).

Now tk−1 : g∗χ∗(ηH)−−→F defines a fibre homotopy trivialisation of g∗χ∗(ηH),
unique up to fibre homotopy. Let K : |B| × I−−→BGF be the corresponding null-
homotopy of χg : |B|−−→BGF . Then (g,K) defines the unique homotopy class of

maps f : |B|−−→GF /P̃LF such that (η, t) represents f∗(wJ). This completes the

proof of Theorem 4.

III. Tangential Properties of Block Bundles

Let In denote the product of n copies of the unit interval; we writeGn/P̃Ln for

GIn/P̃LIn . The obvious natural transformation JIn−−→JIn+1 (multiply the fibre

of each bundle by I) defines a homotopy class of maps Gn/P̃Ln

in
−−→Gn+1/P̃Ln+1.

Write G/PL for the direct limit of the sequence

in−1

−−→ Gn/P̃Ln

in
−−→ Gn+1/P̃Ln+1

in+1

−−→ . . . .

More precisely, for n = 1, 2, 3, . . . replace Gn+1/P̃Ln+1 by a homotopy equivalent

polyhedron in such a way that in is an injection, and identify Gn/P̃Ln with

in(Gn/P̃Ln). Now define G/PL to be the nested union of the Gn/P̃Ln; it can be

shown that the homotopy type of G/PL is independent of the choices made (see
Lemma 1.7 of [3]).

G/PL was studied by Sullivan in his thesis (but he called it F/PL). The

aim of this chapter is to obtain a map θ : GF /P̃LF−−→(G/PL)F , where (G/PL)F
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is the space of all unbased maps from F into G/PL (with the compact open
topology). Let C be the category of based, compact, stably parallelizable PL

manifolds and based PL maps. Our first step is to define a natural transformation

T : [ , GF /P̃LF ] −−→ [ , (G/PL)F ] ,

where the functors are defined on C.

Let N be an object of C, with boundary ∂N , and let B be a cell complex
with |B| = N . Let β be a principal cell of B with the base-point as one vertex.

Let x ∈ [N,GF /P̃LF ] be represented by a GF /P̃LF -bundle (ξ, t) over B. Extend
b(ξ)p1 : F × bpt−−→E(ξ|bpt) to a homeomorphism b : F × β−−→E(ξ|β). Change

t by a homotopy (rel b(ξ)(F )) until tb = p1 : F × β−−→F .

We write E = E(ξ), so E is a PL manifold with ∂E = E(∂ξ)∪E(ξ|∂B). We

write W for F ×β and identify W with b(W ). Let π : E−−→N be a block fibration
such that π|F ×β = p2. Let Q = F ×N , so by Lemma 8, t×π : E, ∂E−−→Q, ∂Q is
a homotopy equivalence of pairs. Note that t× π|W = 1 and (t× π)−1(W ) =W .

Let g : Q, ∂Q−−→E, ∂E be a homotopy inverse to t × π such that g|W = 1 and
g−1(W ) =W .

Let k be large, and choose embeddings

e : E, ∂E −−→ Dk, Sk−1 , q : Q, ∂Q −−→ Dk, Sk−1

such that e|W = q|W . By [6], there exists normal bundles νQ, νE of Q, E in

Dk. Choose νQ, νE so that νQ|W = νE |W (using the uniqueness theorem of [6]
and regular neighbourhood theory). Let Qν , Eν , W ν be Thom spaces for νQ, νE ,
νQ|W , and let

γ : Qν/∂Qν −−→ W ν/∂W ν , γ : Eν/∂Eν −−→ W ν/∂W ν

be the collapsing maps. Let ν̄Q = g∗(νE) have Thom space Qν̄ and collapsing map

γ̄ : Qν̄/∂Qν̄ −−→ W ν̄/∂W ν̄ = W ν/∂W ν .

There is a homotopy equivalence h̄ : Eν/∂Eν−−→Qν̄/∂Qν̄ covering t×π : E−−→Q
and such that γ̄h̄ = γ.

There is a map Dk−−→Qν/∂Qν which collapses

Sk−1 ∪ (complement of total space of νQ)

to a point. If we identify Sk with Dk/Sk−1, we obtain a map ϕ : Sk−−→Qν/∂Qν ;

let ψ : Sk−−→Eν/∂Eν be defined similarly. Let ϕ̄ = h̄ψ : Sk−−→Qν̄/∂Qν̄ ; then
γ̄ϕ̄ = γϕ = γψ.

By theorems of Atiyah [1] and Wall [15, Th 3.5] there is a fibre homotopy
equivalence f̄ : ν̄Q−−→νQ such that f̄ ϕ̄ ≃ ϕ. It follows from Wall’s theorem that f̄
is unique up to fibre homotopy. Consider f̃ = f̄ |(ν̄Q|W )−−→(νQ|W ); this has the
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property that

γϕ ≃ γf̄ ϕ̄ = f̃(γ̄ϕ̄) = f̃(γϕ) .

By the uniqueness clause in Wall’s theorem, f̃ is fibre homotopic to the identity.
Therefore we can alter f̄ by a fibre homotopy until it is the identity on ν̄Q|W .

Let G be defined as in [8] (this agrees with the definition used in [15]), so G

is an H-space. Since W is a retract of Q, the map [Q/W,G]−−→[Q,G] is injective.
It follows that two fibre equivalences f̄0, f̄1 : ν̄Q−−→νQ which are the identity
on ν̄Q|W are fibre homotopic (rel ν̄Q|W ) if and only if they are fibre homotopic.

Therefore the fibre homotopy equivalence f̄ : ν̄Q−−→νQ obtained above is unique
up to fibre homotopy (rel ν̄Q|W ).

Let τQ be the tangent bundle on Q, and choose a fixed trivialisation κ :
τQ ⊕ νQ−−→ϵ. Then

f = κ(1⊕ f̄) : τQ ⊕ ν̄Q −−→ ϵ

is a fibre homotopy equivalence, which agrees with κ on τQ ⊕ ν̄Q|W . The pair
(τQ ⊕ ν̄Q, f) represents an element

T (x) ∈ [Q/W,G/PL] ∼= [N, (G/PL)F ] .

Since the normal invariants ϕ, ψ are unique up to homotopy and PL bundle
automorphisms, T (x) depends only on x. Thus we have defined a map

T : [N,GF /P̃LF ] −−→ [N, (G/PL)F ] .

Lemma 9. T is a natural transformation (between functors from C to the category
of based sets).

Proof. Let f :M−−→N be a based PL map. Express f as a composite

M
×0
−−→ M ×Dr

u
−−→ N ×Ds

p1

−−→ N ,

where u is a codimension 0 embedding. We prove that T is natural

(1) with respect to ×0 and p1,

(2) with respect to codimension 0 embeddings.

Proof of 1. Consider p1 : N ×Ds−−→N ; let B be a cell complex with |B| = N .

Let (ξ, t) be a GF /P̃LF -bundle over B representing x ∈ [N,GF /P̃LF ], so that

(ξ ×Ds, tp1) represents p
∗
1(x). Let

Q , W , νQ , ν̄Q , ϕ : Sk −−→ Qν/∂Qν , ϕ̄ : Sk −−→ Qν̄/∂Qν̄
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be defined for (ξ, t) as above. The corresponding objects for (ξ ×Ds, tp1) are

Qs = Q×Ds , Ws = W ×Ds ,

νQs
= νQ ×Ds , ν̄Qs

= ν̄Q ×Ds ,

Ssϕ : Ss+k −−→ Qν
s/∂Q

ν
s , S

sϕ̄ : Sk −−→ Qν̄
s/∂Q

ν̄
s

(note that Qν
s/∂Q

ν
s
∼= Ss(Qν/∂Qν), Qν̄

s/∂Q
ν̄
s
∼= Ss(Qν̄/∂Qν̄)).

Let f̄ : ν̄Q−−→νQ be a fibre homotopy equivalence such that f̄ ϕ̄ ≃ ϕ and f̄

is the identity on ν̄Q|W . Then f̄s = f̄ × 1 : ν̄Qs−−→νQs is the identity on ν̄Qs |W ,
and f̄s(S

sϕ̄) ≃ Ssϕ. Therefore (τQs ⊕ ν̄Qs , 1⊕ f̄s) represents T (p∗1(x)). It follows
that T (p∗1(x)) = p∗1(T (x)), as required. Since ×0 : N−−→N × Ds is a homotopy

inverse to p1, T is also natural with respect to ×0.

Proof of 2. Let u : M−−→N be a codimension 0 embedding. Let B be a cell
complex with |B| = N and with a subcomplex A such that |A| = u(M). Choose

β to be a cell of A containing the base-point, as above. Let (ξ, t) be a GF /P̃LF -

bundle over B representing x ∈ [N,GF /P̃LF ]; then (ξ|A, t|E(ξ|A)) represents

u∗(x). Let

E = E(ξ) , D = D(ξ|A) , Q = F ×N , P = F ×M .

Identify W with b(W ) ⊂ D ⊂ E, as above. Let

g : Q,P, ∂Q, ∂P −−→ E,D, ∂E, ∂D

be a homotopy inverse to t× π such that g|W is the identity.

Choose embeddings

g : Q, ∂Q −−→ Dk, Sk−1 , e : E, ∂E −−→ Dk, Sk−1

agreeing on W , as above. Let νQ, νE be normal bundles with νQ|W = νE |W , and
let νP = νQ|P , νD = νE |D. We obtain collapsing maps

η : Qν/∂Qν −−→ P ν/∂P ν , η : Eν/∂Eν −−→ Dν/∂Dν .

Let ν̄Q = g∗(νE), let ν̄P = ν̄Q|P and let h̄ : Eν/∂Eν−−→Qν̄/∂Qν̄ be a homotopy
equivalence covering t× π : E−−→Q, such that γ̄h̄ = γ (where γ, γ̄ are as above).

If

ϕ : Sk −−→ Qν/∂Qν , ψ : Sk −−→ Eν/∂Eν

are collapsing maps for Q, E, then ηϕ, ηψ are collapsing maps for P , D. Let
ϕ̄ = h̄ψ : Sk−−→Qν̄/∂Qν̄ ; the corresponding map for P is h̄ηψ : Sk−−→P ν̄/∂P ν̄ .

Let f̄ : ν̄Q−−→νQ be a fibre homotopy equivalence such that f̄ is the identity on
ν̄Q|W and f̄ ϕ̄ ≃ ϕ.

Now f̃ = f̄ |ν̄P−−→νP is a fibre homotopy such that

f̃(h̄ηψ) = f̃(ηϕ̄) = ηf̄ ϕ̄ ≃ ηϕ
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and f̃ is the identity on ν̄P |W . Therefore T (x), T (u∗(x)) are represented by
(τQ⊕ ν̄Q, 1⊕ f̄), (τP ⊕ ν̄P , 1⊕ f̃) respectively. It follows that T (u∗(x)) = u∗(T (x)),

as required. This proves the Lemma.

Since GF /P̃LF and (G/PL)F have the homotopy type of countable CW com-

plexes, it follows from Lemma 1.7 of [3] that there is a map θ : GF /P̃LF−−→(G/PL)F

such that T = θ∗. Unfortunately, the homotopy class of θ is not uniquely deter-
mined by this condition.

Theorem 5. Let Fn be a closed 1-connected PL manifold with n ≥ 4. Let
F ∗ = F −Dn, and let ρ : (G/PL)F−−→(G/PL)F

∗
be the restriction map. Then

the composite ρθ induces isomorphisms

(ρθ)∗ : πr(GF /P̃LF ) −−→ πr((G/PL)
F∗

)

for r ≥ 1.

Remark. For any based space X let X0 be the component of X containing
the base-point. Then (GF /P̃LF )0 is homotopy equivalent to ((G/PL)F

∗
)0, but

(G/PL)F
∗
usually has more components than GF /P̃LF .

Proof. First we prove that (ρθ)∗ is surjective; we defer the case n = 4, r = 1
until after Theorem 7. Let B be a cell complex with |B| = Sr, and let β be
a principal cell of B. Let f : Sr, β−−→(G/PL)F

∗
, bpt represent an element of

x ∈ πr((G/PL)F
∗
). Let

g : F ∗ × Sr, F ∗ × β −−→ (G/PL), bpt

be the adjoint map. Extend g over (F ∗×Sr)∪(F ×β) by defining g(F ×β) = bpt.
Let Q = F×Sr,W = F×β and let Q∗ be obtained from Q by deleting the interior
of an (n+r)-disc in Q−W . Then Q∗ deformation retracts onto (F ∗×Sr)∪(F×β),
so g defines a homotopy class of maps h : Q∗,W−−→G/PL, bpt.

Let k be large, identify Dk with the northern hemisphere of Sk and identify
2Dk with the closed region to the north of the Antarctic circle. Let q : Q−−→Sk

be an embedding such that q−1(Dk) = W , q−1(2Dk) = Q∗. Let νQ be a normal

bundle of Q in Sk such that νQ|W , νQ|Q∗ are normal bundles of W , Q∗ in Dk,
2Dk respectively. Let ϕ∗ : Sk−−→Q∗ν/∂Q∗ν be the collapsing map.

Choose a piecewise linear bundle ν̄Q∗ over Q∗ and a fibre homotopy equiva-
lence f̄ : ν̄Q∗−−→νQ∗ such that ν̄Q∗ |W = νQ∗ |W , f̄ is the identity on ν̄Q∗ |W and
(τQ∗ ⊕ ν̄Q∗ , 1⊕ f̄) represents h. By the theorem of Wall quoted above, there is a

map ϕ̄ : Sk−−→Q∗ν̄/∂Q∗ν̄ such that f̄ ϕ̄ ≃ ϕ∗. Let η : Q∗ν̄−−→Q∗ν̄/∂Q∗ν̄ be the col-
lapsing map; if k is large enough then there is a map ψ′ : 2Dk, 2Sk−1−−→Q∗ν̄/∂Q∗ν̄

such that ηψ′ and ϕ̄ represent the same element of πk(Q
∗ν̄/∂Q∗ν̄).
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Adjust ψ′ by a homotopy until ψ′|Dk = ϕ|Dk, and ψ′ is transverse regu-
lar on Q∗ ⊂ Q∗ν̄ ; let E′ = ψ′−1(Q∗), so W ⊂ E′. We shall modify E′, ∂E′ by

surgery (keeping W fixed), attempting to make ψ′| : E′, ∂E′−−→Q∗, ∂Q∗ a homo-
topy equivalence of pairs.

Since the inclusion induces an isomorphism π1(∂Q
∗)−−→π1(Q∗ −W ) (in fact

both groups are zero) and n+r ≥ 6, we can use Theorem 3.3 of [17] to the manifold

E′ −W . This has two boundary components, namely ∂W and ∂E′; we wish to
do surgery on Int(E′ −W ) and ∂E′, but not on ∂W .

We obtain a map ψ∗ : 2Dk, 2Sk−1−−→Q∗ν̄ , ∂Q∗ν̄ , which is transverse regular
on Q∗ and is homotopic to ψ′ (rel Dk), with the following property. Let

E∗ = ψ∗−1(Q∗) ;

then

ψ∗| : E′ −W,∂E∗ −−→ Q∗ −W,∂Q∗

is a homotopy equivalence of pairs. It follows that ψ∗| : E∗, ∂E∗−−→Q∗, ∂Q∗ is a
homotopy equivalence of pairs.

Since ∂Q∗ ∼= Sn+r−1 and n + r − 1 ≥ 5, ∂E∗ is homeomorphic to Sn+r−1.

Let E = E∗ ∪∂E∗ Dn+r, and extend the embedding E∗ ⊂ 2Dk to an embedding
E ⊂ Sk. Let νE be a normal bundle of E in Sk such that νE |W , νE |E∗ are
normal bundles of W , E∗ in Dk, 2Dk respectively. Extend ψ∗ : 2Dk−−→Q∗ν̄ to a
map ψ : Sk−−→Qν̄ , transverse regular on Q ⊂ Qν̄ and with E = ψ−1(Q). Then

ψ|E−−→Q is a homotopy equivalence, and ψ|W is the identity.

Recall that B is a cell complex with |B| = Sr, and β is a principal cell of
B. Let γ be an (r − 1)-cell of B contained in ∂β. Choose a PL homeomorphism
k : |∂β − γ| × I−−→|B − β| such that k0 is the inclusion. Recall that Q = F × |B|.
Since n+ r ≥ 6, we can use the relative h-cobordism theorem [12] to extend

ψ−1(1× k)| : F × |∂β − γ| × 0 −−→ ∂E −W

to a homeomorphism H : F × |∂β − γ| × I−−→E −W .

Define a block bundle ξ over B with E(ξ) = E by Eβ(ξ) = W and, for each
cell δ in (B − β), Eδ(ξ) = H(1× k−1)(F × δ). Then ξ satisfies the local triviality
condition in the definition of a block bundle. Let

b(ξ) = 1× bpt : F −−→ F × bpt = Ebpt(ξ) .

Let t = p1ψ : E−−→F ; then (ξ, t) is a GF /P̃LF -bundle over Sr, representing an

element y ∈ πr(GF /P̃LF ). It is easily checked that p∗(T (y)) ∈ πr((G/PL)F
∗
) is

represented by (τQ∗ ⊕ ν̄Q∗ , 1 ⊕ f̄) so p∗(T (y)) = x. Therefore (ρθ)∗(y) = x, so
(ρθ)∗ is surjective, as required (provided n+ r ≥ 6).
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Similar arguments prove that (ρθ)∗ is injective; we have to consider GF /P̃LF -
bundles (ξ0, t0), (ξ1, t1) over S

r× 0, Sr× 1. We prove that they are isomorphic by

extending them to a GF /P̃LF -bundle (ξ, t) over S
r×I. Since n+dim(Sr×I) ≥ 6,

we can always carry out surgery and use the h-cobordism theorem. Thus the

Theorem is established, except for surjectivity of (ρθ)∗ when n = 4, r = 1.

Theorem 6. Let Fn be a compact PL manifold with π1(∂F ) isomorphic to π1(F )

by inclusion and n ≥ 6. Then θ induces isomorphisms

θ∗ : πr(GF /P̃LF ) −−→ πr((G/PL)
F )

for r ≥ 1.

Proof. Since the proof is essentially the same as the proof of Theorem 5, we

shall not give the details. To prove that θ∗ is surjective, let B, β, ξ, Q, W be
as above. Since Q has a boundary ∂Q such that π1(∂Q)−−→π1(Q−W ) is an
isomorphism, it is unnecessary to cut out a disc from Q. We can use Theorem 3.3

of [17] to construct a manifold E ⊃W with boundary ∂E and a simple homotopy
equivalence ψ : E, ∂E−−→Q, ∂Q with ψ|W equal to the identity.

In the construction of the block bundle ξ above, we used the h-cobordism
theorem to construct a homeomorphism F × |B − β|−−→E −W . Here we can use
the s-cobordism theorem [7] twice (first for ∂F × |B − β|, then for F × |B − β|),
since ψ is a simple homotopy equivalence and dim(∂F × |B− β|) ≥ 6. The rest of
the proof proceeds as above.

IV. Periodicity of G/PL

In his thesis, Sullivan interpreted [M,G/PL] in terms of PL structures on
manifolds homotopy equivalent to M . Thus it is useful to have information about

G/PL which facilitates computation of [M,G/PL]. It has been known for some
time that πr(G/PL) ∼= Z , 0,Z 2, 0 according as r ≡ 0, 1, 2, 3 (mod 4); in particular,
πr(G/PL) ∼= πr+4(G/PL).

Theorem 7. There is a map λ : G/PL−−→Ω4(G/PL) such that λ∗ : πr(G/PL)−−→
πr+4(G/PL) is an isomorphism if r ̸= 0, 4 and a monomorphism onto a subgroup
of index 2 if r = 4.

Proof. Let Fn be a closed 1-connected PL manifold with n ≥ 4. If X is a based
space we write X0 for the component of X containing the base-point. Consider
the diagram
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(1) (GF /P̃LF )0
h
h
hhk

θ

4
4
446
ρθ

Ωn(G/PL)0 w
α (G/PL)F0 w

ρ
(G/PL)F

∗

0

where α is induced by a map F−−→Sn of degree 1.

Suppose first that n ≥ 5. Then ρθ is a homotopy equivalence by Theorem 5
(we are not using the unproved case!). Let γ′ be a homotopy inverse to ρθ. Let
γ = θγ′, so ργ ≃ 1 : (G/PL)F

∗

0 −−→(G/PL)F
∗

0 .

The Whitney sum construction gives a multiplication map µ : G/PL ×
G/PL−−→G/PL. If K is a finite CW complex, µ defines Abelian group struc-

tures on

[K,Ωn(G/PL)0] , [K, (G/PL)F0 ] , [K, (G/PL)F
∗

0 ]

such that α∗, ρ∗ are homeomorphisms. Let x ∈ [K, (G/PL)F0 ] and let y = (1 −
γ∗ρ∗)(x), so ρ∗(y) = 0. Therefore y = α∗(z) for some z ∈ [K,Ωn(G/PL)0]. Since
ρ has a right homotopy inverse, α∗ is injective and z is unique. Define a natural
transformation

S : [ , (G/PL)F0 ] −−→ [ ,Ωn(G/PL)0]

on finite CW complexes by S(x) = z. By Lemma 1.7 of [3], there is a map

σ : (G/PL)F0 −−→ Ωn(G/PL)0

with S = σ∗. Observe that

α∗σ∗α∗ = α∗ − γ∗ρ∗α∗ = α∗ ,

since ρα ≃ bpt. Since α∗ is injective, σ∗α∗ = 1.

Let r ≥ 1 and consider the homomorphism

σ : πr((G/PL)
F ) −−→ πn+r(G/PL) .

This is an epimorphism (with right inverse α∗). Let x ∈ πr((G/PL)F ) be repre-
sented by

g : F × Sr, F × β −−→ G/PL, bpt

(where β is a cell of Sr containing the base-point). Let Q = F × Sr, W = F × β,
as above.

Let k be large and identify Dk with the northern hemisphere of Sk. Let
q : Q−−→Sk be an embedding such that q−1(Dk) =W . Let νQ be a normal bundle
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of Q in Sk such that νQ|W is a normal bundle of W in Dk. Let ϕ : Sk−−→Qν be
the collapsing map.

Choose a piecewise linear bundle ν̄Q over Q and a fibre homotopy equivalence

f̄ : ν̄Q−−→νQ such that ν̄Q|W = νQ|W , f̄ is the identity on ν̄Q|W and (τQ ⊕
ν̄Q, 1 ⊕ f̄) represents g. As in Chapter III, there is a map ψ′ : Sk−−→Qν̄ such
that f̄ψ′ ≃ ϕ. Adjust ψ′ by a homotopy until ψ′|Dk = ϕ|Dk and ψ′ is transverse

regular on Q ⊂ Qν̄ ; let E′ = ψ′−1(Q), so W ⊂ E′. We attempt to modify E′ by
surgery (keeping W fixed), to make ψ′|E′−−→Q a homotopy equivalence.

We seek a map ψ : Sk−−→Qν̄ which is transverse regular on Q and is ho-
motopic to ψ′( rel Dk), and with the following property. Let E = ψ−1(Q);
then ψ|E−−→Q is a homotopy equivalence. Let Pr = Z , 0,Z 2, 0 according as

r ≡ 0, 1, 2, 3 (mod 4) (as in [8]). By [14,§4], since Q is 1-connected and dimQ ≥ 5,
there is an obstruction σ̄(x) ∈ Pn+r to performing the surgery. Note that σ̄(x)
depends only on x.

Using the homotopy group addition in πr((G/PL)
F ) (not the H-structure on

G/PL) and the interpretation of σ̄(x) as a signature or Arf invariant, we see that
σ̄ : πr((G/PL)

F )−−→Pn+r is a homomorphism. Consider the homomorphism σ̄α∗ :
πn+r(G/PL)−−→Pn+r. This coincides with the canonical homomorphism obtained

in [13], and is therefore an isomorphism. It follows that σ̄ is an epimorphism.

If x ∈ πr((G/PL)F ), then γ∗ρ∗(x) is represented by ḡ : Q,W−−→G/PL, bpt,
where ḡ agrees with g on Q∗ = Q−Dn+r, and ḡ|Dn+r is chosen so that σ̄(ḡ) = 0
(because the surgery problem for γ∗ρ∗(x) ∈ im(θ∗) is clearly soluble). Since σ̄α∗ is
a monomorphism, these conditions characterise the homotopy class of ḡ. Therefore

x = γ∗ρ∗(x) if and only if σ̄(x) = 0, so kerσ∗ = ker σ̄. If we identify πn+r(G/PL)
with Pn+r via the canonical isomorphism, we see that σ̄(x) = σ∗(x).

Let ϵ : G/PL−−→(G/PL)F be induced by the map F−−→point, and let λF

denote the composite

G/PL
ϵ
−−→ (G/PL)F

σ
−−→ Ωn(G/PL) .

If dimF = n = 4, this construction fails as

(ρθ)∗ : π1(GF /P̃LF ) −−→ π1((G/PL)
F∗

)

is not yet known to be surjective. However, we can construct a map λ̄F : Ω4(G/PL)0
−−→Ωn+4(G/PL)0; simply apply the functor Ω4 to diagram (1) and argue as above.

Let x ∈ πr(G/PL) be represented by g : Sr−−→G/PL. Then ϵ∗(x) is repre-
sented by gp2 : F × Sr−−→G/PL. Note that x = σ̄(x) and

σ̄(ϵ∗(x)) = σ∗ϵ∗(x) = λF∗ (x) .
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Now σ̄(x) is the obstruction to making a certain map ψ′| : V ′−−→Sr a homo-
topy equivalence by surgery (where V ′ is a certain framed r-manifold). Similarly

σ̄(ϵ∗(x)) is the obstruction to making 1 × ψ′| : F × V ′−−→F × Sr a homotopy
equivalence.

Take F = CP 2 × CP 2. Suppose r ≡ 0 (mod 4); then by [14], σ̄(x) =
1
8 (signature of V ′) if r ≥ 8; but σ̄(x) = 1

16 (signature of V ′) if r = 4. Similarly,

σ̄(ϵ∗(x)) = 1
8 (signature of F × V ′ − signature of F × Sr)

= 1
8 (signature of V ′) for all r.

Thus σ̄(ϵ∗(x)) = σ̄(x) unless r = 4, when σ̄(ϵ∗(x)) = 2σ̄(x).

If r ≡ 2(mod 4), then it follows from Theorem 9.9 of [17] that σ̄(x) = σ̄(ϵ∗(x)).
(The theorem is stated for r ≥ 5, but the argument seems to work when r =

2.) Since πr(G/PL) = πr+8(G/PL) = 0 if r is odd, we have proved that λF∗ :
πr(G/PL)−−→πr+8(G/PL) is an isomorphism if r ̸= 0, 4, and a monomorphism
onto a subgroup of index 2 if r = 4.

Similar arguments show that, if F = CP 2 and r ≥ 1, then λ̄F∗ : πr+4(G/PL)
−−→πr+8(G/PL) is an isomorphism. Therefore λ̄F : Ω4(G/PL)0−−→Ω8(G/PL)0
is a homotopy equivalence. Let λ : G/PL−−→Ω4(G/PL) be the composite of
λCP 2×CP 2

with a homotopy inverse to λ̄CP 2

; then λ has the desired properties.

Now we can complete the proof of Theorem 5 by showing that, if dimF = 4,
then

(ρθ)∗ : π1(GF /P̃LF ) −−→ π1((G/PL)
F∗

)

is surjective. Consider the following diagram :

π1((G/PL)
F ) w

ρ∗

u
λ∗

π1((G/PL)
F∗

) w
∂

u
λ∗

π0(Ω
4(G/PL))

u
λ∗

π1((Ω
4(G/PL))F ) w

ρ∗ π1((Ω
4(G/PL))F

∗
) w
∂ π0(Ω

8(G/PL)) .

The rows are taken from the homotopy exact sequences of the Hurewicz fibrations

(G/PL)F −−→ (G/PL)F
∗
, (Ω4(G/PL))F −−→ (Ω4(G/PL))F

∗
.

The proof of Theorem 7 shows that, in the bottom row, ρ∗ is surjective so
∂ = 0. But

λ∗ : π0(Ω
4(G/PL)) −−→ π0(Ω

8(G/PL))
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is injective, so ∂ = 0 in the top row. Therefore

ρ∗ : π1((G/PL)
F ) −−→ π1((G/PL)

F∗
)

is surjective.

Let x ∈ π1((G/PL)F
∗
), and choose an element

x̄ ∈ π1((G/PL)F )

such that ρ∗(x̄) = x. Let β be an interval in S1 containing the base-point, let
Q = F ×S1, W = F ×β. Let νQ, ψ′ be as in the proof of Theorem 7. Since σ̄(x) ∈
P5 = 0, we can do surgery to find a map ψ : Sk−−→Qν̄ which is transverse regular
to ψ′ (rel Dk), with the following property. Let E = ψ−1(Q); then ψ| : E−−→Q is
a homotopy equivalence.

Let b0, b1 be the end-points of β, and letB be the cell complex {b0, b1, β, S1 − β}.
Then E −W is an h-cobordism between F × b0 and F × b1, and the PL home-

omorphism 1 × b1 : F × b0−−→F × b1 is in the preferred homotopy class. By
Barden’s h-cobordism theorem for 5-manifolds [2], there is a PL homeomorphism
H : F × |B − β|−−→E −W with H(F × bi) = F × bi. Now we can define a

block bundle ξ over B with E(ξ) = E, and a map t : E−−→F , as in the proof of

Theorem 5. We obtain a GF /P̃LF -bundle (ξ, t) over B, representing an element

y ∈ π1(GF /P̃LF ) such that θ∗(y) = x̄. Therefore x = (ρθ)∗(y), so

(ρθ)∗ : π1(GF /P̃LF ) −−→ π1((G/PL)
F∗

)

is surjective. This completes the proof of Theorem 5.

V. Topologically Trivial Block Bundles

Let ξ be a block bundle over B with fibre F . A proper trivialisation of ξ
is a proper map

h : E(ξ) −−→ F × |B|
such that

h(Eβ(ξ)) ⊂ F × β for each β ∈ B
(base-points will be irrelevant in this chapter). Two proper trivialisations h0, h1
of ξ are properly homotopic if there is a proper map

H : E(ξ)× I −−→ F × |B|

such that

H(Eβ(ξ)× I) ⊂ F × β
for each β ∈ B and Ht = ht (t = 0, 1). A topological trivialisation of ξ is a
proper trivialisation which is a topological homeomorphism; a PL trivialisation
is defined similarly.
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Theorem 8. Let ξ be a block bundle over B with fibre R q (q ≥ 3). Let h :
E(ξ)−−→R q × |B| be a topological trivialisation of ξ. Then there is an obstruction

w ∈ H3(B;Z 2) which vanishes if and only if h is properly homotopic to a PL
trivialisation of ξ.

Proof. Let V , W be PL manifolds and let N be a compact submanifold of W
with ∂N = N ∩ ∂W . A map ϕ : V−−→W is h-regular on N if it is transverse

regular on N and ϕ| : ϕ−1(N)−−→N is a homotopy equivalence. Let Q denote
C P 2 × C P 2. Our first objective is to construct the following :

(1) A proper map f : E(ξ)×Q−−→R q × |B| ×Q such that, for each β ∈ B,

f | : Eβ(ξ)×Q −−→ R q × β ×Q

is h-regular on 0× β ×Q.
(2) A proper homotopy F from h× 1 to f such that, for each β ∈ B,

F (Eβ(ξ)×Q× I) ⊂ R q × β ×Q .

We shall eventually use f and F to construct a PL trivialisation of ξ. The factor
Q is introduced to avoid difficulties with low-dimensional manifolds.

Let T = ∂∆2 and write T r for the product of r copies of T . Note that
the universal covering space T̃ r of T is PL homeomorphic to R r. Choose a PL
embedding R ×T q−1 ⊂ R q and a PL homeomorphism R q−−→R × T̃ q−1 such that

the composite

e : R q −−→ R × T̃ q−1 −−→ R × T q−1 ⊂ R q

is the identity on a neighbourhood of the origin.

Let A be a subcomplex of B. Let WA,r denote R r × T q−r × |A| ×Q and let

NA,r = 0×T q−r×A×Q ⊂WA,r. We have an embeddingWA,1 ⊂ R q×A×Q and
there is a covering map p : WA,r−−→WA,r−1. Define VA,1 = (h× 1)−1(WA,1) and
let gA,1 = h× 1| : VA,1−−→WA,1. Define VB,r, gB,r (r ≥ 2) inductively as follows.

Let p : VB,r−−→VB,r−1 be the covering map induced from p : WB,r−−→WB,r−1 by
the homeomorphism gB,r−1 : VB,r−1−−→WB,r−1. Let gB,r : VB,r−−→WB,r be a
homeomorphism such that pgB,r = gB,r−1p. Finally let VA,r = p−1(VA,r−1) and

let gA,r = gB,r|VA,r. We write Wn
r , N

n
r , V

n
r , gnr for WBn,r, NBn,r, VBn,r, gBn,r

respectively, and abbreviate WB,r, NB,r, VB,r, gB,r to Wr, Nr, Vr, gr.

Suppose inductively that we have constructed the following, for some integer
n :

(1) A proper map fn−1
1 : V n−1

1 −−→Wn−1
1 such that, for each β ∈ Bn−1, fn−1

1 |Vβ,1
−−→Wβ,1 is h-regular on Nβ,1.

(2) A proper homotopy Fn−1
1 from gn−1

1 to fn−1
1 such that, for each β ∈ Bn−1,

Fn−1
1 (Vβ,1 × I) ⊂Wβ,1.
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Suppose also that fn−1
1 , Fn−1

1 are extensions of fn−2
1 , Fn−2

1 .

Now let β ∈ Bn−Bn−1. Let f∂β,1 = fn−1
1 |V∂β,1 and let F∂β,1 = Fn−1

1 |V∂β,1×
I. The inductive hypothesis ensures that f∂β,1 is transverse regular onN∂β,1. Thus

M∂β,1 = f−1
∂β,1(N∂β,1) is a submanifold of V∂β,1 of codimension 1.

Lemma 10. f∂β,1 is h-regular on N∂β,1.

Proof. Let B be a cell complex. A blocked space E over B consists of a

topological space E and, for each β ∈ B, a subspace Eβ of E such that the
following conditions are satisfied :

(1) {Eβ : β ∈ B} is a locally finite covering of E.

(2) If β, γ ∈ B, then Eβ ∩ Eγ =
∪

δ⊂β∩γ Eδ.
(3) If β is a face of γ ∈ B, then the inclusion Eβ ⊂ Eγ is a homotopy equivalence.
(4) If β ∈ B and E∂β =

∪
γ⊂∂β Eγ , then the pair (Eβ , E∂β) has the absolute

extension property.

If E(1), E(2) are blocked spaces overB, a blocked equivalence ϕ : E(1)−−→E(2)

is a continuous map such that ϕ(E
(1)
β ) ⊂ E(2)

β and ϕ| : E(1)
β −−→E

(2)
β is a homotopy

equivalence for each β ∈ B. Observe that M∂β,1 and N∂β,1 are blocked spaces
over ∂β, and f∂β,1| :M∂β,1−−→N∂β,1 is a blocked equivalence.

Suppose inductively that, if E(1), E(2) are blocked spaces over Bs−1, then

any blocked equivalence ϕ : E(1)−−→E(2) is a homotopy equivalence. Now let
ϕ : E(1)−−→E(2) be a blocked equivalence over Bs.

Let C(i) =
∪

β∈Bs−1 E
(i)
β and let D(i), ∂D(i) be the disjoint unions of

{E(i)
β : β ∈ Bs −Bs−1}, {E(i)

∂β : β ∈ Bs −Bs−1}.

Then ∂D(i) ⊂ D(i) and there are maps λ(i) : ∂D(i)−−→C(i) such that E(i) =
C(i) ∪λ(i) D(i). By induction, ϕ : C(1)−−→C(2) is a homotopy equivalence.

Now ϕ defines a homotopy equivalence ψ : D(1)−−→D(2) such that ϕλ(1) =
λ(2)ψ|∂D(1). By induction, ψ|∂D(1)−−→∂D(2) is a homotopy equivalence. The

pairs (D(i), ∂D(i)) satisfy the absolute extension condition; using a result in ho-
motopy theory we deduce that ϕ : E(1)−−→E(2) is a homotopy equivalence. By
induction, any blocked equivalence over a finite-dimensional complex is a homo-

topy equivalence, and the Lemma follows.

Now the PL manifold Vβ,1 has two tame ends (for definition see [11]) with free

Abelian fundamental groups. Since M∂β,1 ⊂ V∂β,1 is a homotopy equivalence (by
Lemma 10), M∂β,1 bounds collars of the ends of V∂β,1. Since dimVβ,1 ≥ 8, we can
apply Siebenmann’s theorem [11,§5] to construct a compact submanifold Mβ,1 of



62 casson

Vβ,1 with boundary M∂β,1 and such that Mβ,1 ⊂ Vβ,1 is a homotopy equivalence.
As in [16], we can extend f∂β,1 to fβ,1 : Vβ,1−−→Wβ,1, transverse regular on Nβ,1

and with Mβ,1 = f−1
β,1(Nβ,1). We can also extend F∂β,1 to a proper homotopy Fβ,1

from gβ,1 to fβ,1.

Do this for all n-cells β of B to obtain extensions fn1 , F
n
1 of fn−1

1 , Fn−1
1

satisfying the inductive hypotheses. This completes our induction on n; we have

defined the following :

(1) A proper map f1 : V1−−→W1 such that for each β ∈ B, f1| : Vβ,1−−→Wβ,1 is
h-regular on Nβ,1.

(2) A proper homotopy F1 from g1 to f1 such that, for each β ∈ B, F1(Vβ,1×I) ⊂
Wβ,1.

Suppose inductively that we have defined the following, for some integer r ≥
1 :

(1) A proper map fr : Vr−−→Wr such that for each β ∈ B, fr| : Vβ,r−−→Wβ,r is
h-regular on Nβ,r.

(2) A proper homotopy Fr from gr to fr such that, for each β ∈ B, Fr(Vβ,r×I) ⊂
Wβ,r.

Let

Ñr = 0× R × T q−r−1 × |B| ×Q ⊂Wr+1 .

If p : Wr+1−−→Wr is the covering map then Ñr = p−1(Nr). Lift F r to a proper

homotopy F̃r from gr+1 to a map f̃r : Vr+1−−→Wr+1. Let M̃r = f̃−1
r (Ñr) and

let Mr = f−1
r (Nr). Since p| : M̃r−−→Mr is a covering map and fr : Mr−−→Nr

is a homotopy equivalence, f̃r| : M̃r−−→Ñr is a proper homotopy equivalence.
Let A be a subcomplex of B. Let W̃A,r = p−1(NA,r), f̃A,r = f̃r|VA,r+1, F̃A,r =

F̃r|VA,r+1 × I, M̃A,r = M̃r ∩ VA,r+1 and MA,r =Mr ∩ VA,r.

We construct the following :
(1) A proper map ϕr : M̃r−−→Ñr such that for each β ∈ B, ϕr| : M̃β,r−−→Ñβ,r

is h-regular on Nβ,r+1.

(2) A proper homotopy Φr from f̃r|M̃r to ϕr such that, for each β ∈ B, Φr(M̃β,r×
I) ⊂ Ñβ,r.

The construction is exactly the same as the one given above for f1 and F1. We
apply Siebenmann’s theorem to M̃β,r instead of Vβ,1; the details will be omitted.

Using the product structure on a neighbourhood of M̃r in Vr+1, we can con-

struct the following :
(1) A proper map fr+1 : Vr+1−−→Wr+1 such that for each β ∈ B, fr+1| :

Vβ,r+1−−→Wβ,r+1 is h-regular on Nβ,r+1.
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(2) A proper homotopy Fr+1 from gr+1 to fr+1 such that, for each β ∈ B,
Fr+1(Vβ,r+1 × I) ⊂Wβ,r+1.

This completes the induction on r. When r = q we obtain a proper map fq :

Vq−−→Wq = R q × |B| ×Q and a proper homotopy Fq from gq to fq, satisfying the
inductive hypotheses.

Consider the commutative diagram :

Vq w
gq

u
ϵ

Wq

u
ϵ

Rq × |B| ×Q

u
e× 1

E(ξ)×Q w
h× 1 Rq × |B| ×Q Rq × |B| ×Q

where ϵ denotes a covering map followed by an inclusion. Recall that e : R q−−→R q

is the identity on an open disc neighbourhood U of the origin.

Let A be a subcomplex of B, let XA denote

h−1(U × |A|)×Q− h−1(0× |A|)×Q ⊂ E(ξ)×Q ,

and let X = XB, X
n = XBn . Suppose inductively that we have constructed the

following, for some integer n.

(1) A subset Y n−1 of Xn−1 such that, for each β ∈ Bn−1, Yβ = Y n−1 ∩Xβ is a

compact submanifold of Xβ of codimension one and Yβ ⊂ Xβ is a homotopy
equivalence. Then E(ξ|Bn−1) × Q − Y n−1 has two components; let Zn−1

be the closure of the bounded component. Let (Z ′)n−1 be the component of

ϵ−1(Zn−1) which lies in g−1
q (U × |Bn−1| ×Q), and let (Y ′)n−1 = (Z ′)n−1 ∩

ϵn−1(Y n−1).
(2) PL homeomorphisms

γn−1 : Y n−1 × [0,∞) −−→ E(ξ|Bn−1)×Q− Zn−1 ,

(γ′)n−1 : (Y ′)n−1 × [0,∞) −−→ V n−1
q − (Z ′)n−1

such that γn−1
0 , (γ′)n−1

0 are the inclusions.

Suppose further that γn−1, (γ′)n−1 are extensions of γn−2, (γ′)n−2.

Now let β ∈ Bn −Bn−1. Let

Y∂β = Y n−1 ∩X∂β ,

γ∂β = γn−1|Y∂β × [0,∞) ,

γ′∂β = (γ′)n−1|Y ′
∂β × [0,∞) .

Then Y∂β bounds a collar of the end of E(ξ|∂β) × Q. It follows that Y∂β ⊂ X∂β

is a homotopy equivalence; since dimX∂β ≥ 8, Y∂β bounds a collar of the ends of
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X∂β .

Since the ends of Xβ are tame and have trivial fundamental groups, Sieben-
mann’s theorem shows that there is a compact submanifold Yβ of Xβ with bound-

ary Y∂β and such that Yβ ⊂ Xβ is a homotopy equivalence. It follows that Yβ
bounds a collar of the end of E(ξ|β)×Q. Let

γβ : Yβ × [0,∞) −−→ E(ξ|β)×Q− Zβ

be a PL homeomorphism such that (γβ)0 is the inclusion and γβ |Y∂β × [0,∞) =
γ∂β . Do this for all n-cells β of B to obtain Y n, γn satisfying the inductive
hypotheses.

Define (Z ′)n, (Y ′)n as in (1) above, and note that ϵ : (Z ′)n−−→Zn is a PL
homeomorphism. Then, for each β ∈ Bn − Bn−1, Y ′

β ⊂ Vβ,q − Z ′
β is a homotopy

equivalence, so Y ′
β bounds a collar of the end of Vβ,q. Let

γ′β : Y ′
β × [0,∞) −−→ Vβ,q − Z ′

β

be a PL homeomorphism such that (γ′β)0 is the inclusion and γ′β |Y ′
∂β × [0,∞) =

γ′∂β . Then the γ′β fit together to define an extension (γ′)n of (γ′)n−1 satisfying the
inductive hypotheses. This completes the induction on n.

Let

Y =

∞∪
n=1

Y n , Z =

∞∪
n=1

Zn , γ =

∞∪
n=1

γn , γ′ =

∞∪
n=1

(γ′)n .

Define a PL homeomorphism ψ : E(ξ) × Q−−→Vq by ψ = ϵ−1 on Z and ψ =

γ−1(ϵ−1×1)γ elsewhere. Define a proper homotopy Ψ from gqψ to h×1 as follows.
If x ∈ R q, y ∈ |B|, z ∈ Q and t ∈ [0, 1), let gqψ(h

−1(tx, y), z) = (x′, y′, z′), and
define

Ψ(h−1(x, y), z, t) = (t−1x′, y′, z′) .

Define

Ψ(h−1(x, y), z, 0) = (x, y, z) ;

this makes Ψ continuous since (x′, y′, z′) = (tx, y, z) provided t is sufficiently small.

Now we can define the proper map f : E(ξ)×Q−−→R × |B| ×Q and proper

homotopy F from h × 1 to f , as promised at the beginning of the proof. Let
f = fqψ and let F = Ψ ∗ (Fqψ) be defined by

F (x, t) =

{
Ψ(x, 2t) 0 ≤ t ≤ 1

2

Fqψ(x, 2t− 1) 1
2 ≤ t ≤ 1 .

Then f and F have the required properties (1) and (2).

Suppose inductively that we have constructed the following, for some integer
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n.

(1) A proper trivialisation jn−1 : E(ξ|Bn−1)−−→R q × |Bn−1.
(2) A proper homotopy Jn−1 from hn−1 to jn−1.
(3) A proper homotopy Ln−1 from fn−1 to jn−1×1 such that, for each β ∈ Bn−1,

Ln−1|E(ξ|β)×Q is h-regular on 0× β ×Q.
(4) A proper homotopy Ln−1 from F̄n−1 ∗ (Jn−1×1) to Ln−1 (rel R q×|Bn−1|×

Q× ∂I).

Suppose further that jn−1, Jn−1, Ln−1, Ln−1 are extensions of jn−2, Jn−2, Ln−2,

Ln−2 respectively.

Let β ∈ Bn −Bn−1. If A is a subcomplex of Bn−1, then jA, JA, LA, LA will

have the usual meanings. As in Lemma 10 we see that

L∂β : E(ξ|∂β)×Q× I −−→ R q × ∂β ×Q

is h-regular on 0 × ∂β × Q. Note that L∂β is a proper homotopy from f∂β to
j∂β × 1. Extend L∂β to a proper homotopy Kβ from fβ to a proper map kβ :
Eβ(ξ)×Q−−→R q × β ×Q. We can arrange for Kβ to be h-regular on 0× β ×Q.

Now J∂β is a proper homotopy from h∂β to j∂β . Extend J∂β to a proper
map Iβ from hβ to a proper map iβ : Eβ(ξ)−−→R × β. Using the homotopies

(Iβ×1)∗Fβ∗Kβ and L∂β , we see that iβ×1 is properly homotopic (rel R q×∂β×Q)
to kβ .

The obstruction to deforming iβ properly (rel E(ξ|∂β)) to a PL homeomor-
phism j′β : Eβ(ξ)−−→R q×β is an element x ∈ πn(G/PL). Let λ∗ : πn(G/PL)−−→
πn+8(G/PL) be the periodicity homomorphism discussed in Chapter IV. Then
λ∗(x) is the obstruction to deforming iβ × 1 properly (rel E(ξ|∂β) × Q) to a
map k′β which is h-regular on 0 × β × Q. The previous paragraph shows that
λ∗(x) = 0; since λ∗ is a monomorphism, x = 0. Choose a PL homeomorphism

j′β : Eβ(ξ)−−→R × β and a proper homotopy J ′
β from hβ to j′β extending J∂β .

Now L∂β is a proper homotopy from F̄∂β ∗ (J∂β × 1) to L∂β . Extend L∂β to a
proper homotopy Gβ (rel Eβ(ξ)×Q×∂I) from F̄β ∗ (J ′

β×1) to a proper homotopy
Gβ between fβ and j′β × 1. Let y ∈ πn+9(G/PL) be the obstruction to deforming

Gβ properly (rel ∂(R q × β × Q × I)) to a homotopy G′
β which is h-regular on

0× β ×Q.

If we vary (j′β , J
′
β) by an element z ∈ πn+1(G/PL), we replace y by y+λ∗(z).

If n ̸= 3 then λ∗ is surjective, so we can choose z so that y + λ∗(z) = 0. In other
words, we can replace (j′β , J

′
β) by a pair (jβ , Jβ) for which y vanishes. Then there

is a proper homotopy Lβ from fβ to jβ × 1 which is h-regular on 0× β×Q, and a
proper homotopy Lβ (rel R q × β ×Q× ∂I) from F̄β ∗ (Jβ × 1) to Lβ ; Lβ and Lβ

are extensions of L∂β and L∂β respectively.
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Do this for all n-cells β of B to obtain jn, Jn, Ln, Ln satisfying conditions
(1)–(4). This completes the induction provided n ̸= 3. In case β is a 3-cell of B,

let c(β) ∈ Z 2 be the mod 2 reduction of y ∈ π12(G/PL) = Z . This defines a
cochain c ∈ C3(B;Z 2). The above argument enables us to construct j3, J3, L3,
L3 provided c = 0.

We consider the effect of varying L2. Suppose j1, J1, L1, L1, j2, J2, L2, L2

are constructed, and let β be a 3-cell in B. Observe that, if the cells α ⊂ ∂β are
oriented suitably, then ∂β =

∑
α⊂∂β α ∈ C2(B;Z ). If we vary Lα by an element

uα ∈ π12(G/PL) = Z , it can be seen that c(β) is replaced by c(β)+(
∑

α⊂∂β uα)2.

Let u ∈ C2(B;Z 2) be the cochain defined by u(α) = uα; then we have replaced c

by c+ δu.

Now let γ be a 4-cell of B, so ∂γ =
∑

β⊂∂γ β ∈ C3(B;Z ). For each 3-cell

β ⊂ ∂γ, define j′β , J ′
β as above, and define

J ′
∂γ : E(ξ|∂γ)× I −−→ R q × ∂γ

by J ′
∂γ |E(ξ|β) × I = J ′

β . It is easy to adjust (j′β , J
′
β) on one cell β ⊂ ∂γ until

J ′
∂γ extends to a proper homotopy J ′

γ from hγ to a PL homeomorphism j′γ :
E(ξ|∂γ)−−→R q × ∂γ.

Define

G∂γ : E(ξ|∂γ)×Q× I −−→ R q × ∂γ ×Q

by G∂γ |E(ξ|β) × Q × I = Gβ . Let vγ ∈ π12(G/PL) = Z be the obstruction to
deforming G∂γ properly (rel E(ξ|∂γ)×Q×∂I) to a proper homotopy G′ which is h-

regular on 0×∂γ×Q. Then it can be seen that vγ =
∑

β⊂∂γ yβ , so (δc)(γ) = c(∂γ)
is equal to the mod 2 reduction of vγ .

On the other hand, vγ is the obstruction to deforming F̄∂γ ∗(J ′
∂γ×1) properly

(rel E(ξ|∂γ)×Q×∂I) to a proper homotopy G′
∂γ which is h-regular on 0×∂γ×Q.

But F̄∂γ ∗ (J ′
∂γ × 1) extends to a proper homotopy F̄γ ∗ (J ′

γ × 1) from fγ to j′γ × 1,

both of which are h-regular on 0 × γ × Q. Now it follows from Wall’s surgery
theorem [14] that vγ = 0. Therefore (δc)(γ) = 0, so c is a cocycle.

Let w ∈ H3(B;Z 2) be the cohomology class of c; we have shown that our
construction can be carried out if w = 0. Assume now that w = 0, and let

j =
∪∞

n=1 j
n, J =

∪∞
n=1 J

n. Then j is a PL trivialisation of ξ and J is a proper
homotopy from h to j, as required. It is not hard to see that w = 0 whenever h is
properly homotopic to a PL trivialisation, so Theorem 8 is proved.

Theorem 8 implies a result on the Hauptvermutung by fairly well-known ar-
guments, given in Sullivan’s thesis.
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Corollary. Let Mn, Nn be closed, 1-connected PL manifolds with n ≥ 5 and
let h : M−−→N be a topological homeomorphism. If H3(M ;Z 2) = 0, then h is

homotopic to a PL homeomorphism.
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Triangulating and Smoothing

Homotopy Equivalences and Homeomorphisms.

Geometric Topology Seminar Notes

By D. P. Sullivan

Introduction

We will study the smooth and piecewise linear manifolds within a given homo-

topy equivalence class. In the first part we find an obstruction theory for deforming
a homotopy equivalence between manifolds to a diffeomorphism or a piecewise lin-
ear homeomorphism. In the second part we analyze the piecewise linear case and

characterize the obstructions in terms of a geometric property of the homotopy
equivalence. In the third part we apply this analysis to the Hauptvermutung and
complex projective space.

I. Triangulating and Smoothing Homotopy Equivalences

Definition 1. Let Ai denote the Abelian group of almost framed1 cobordism
classes of almost framed smooth i-manifolds.
Let Pi denote the Abelian group of almost framed cobordism classes of almost
framed piecewise linear i-manifolds.

Theorem 1. (The obstruction theories) Let f : (L, ∂L)−−→(M,∂M) be a

homotopy equivalence between connected piecewise linear n-manifolds. Let Q be
an (n − 1)-dimensional submanifold of ∂L such that f(∂L − Q) ⊆ ∂M − f(Q).
Suppose that n ≥ 6 and that π1(L) = π1(each component of ∂L−Q) = 0.

(a) If f |Q is a PL-homeomorphism, then f may be deformed (mod Q) to
a PL-homeomorphism on all of L iff a sequence of obstructions in Hi(L,Q;Pi)
0 < i < n vanish.

(b) If L and M are smooth, f |Q is a diffeomorphism, and ∂L ̸= Q then f may
be deformed (mod Q) to a diffeomorphism on all of L iff a sequence of obstructions
in Hi(L,Q;Ai) 0 < i < n vanish.

Remark. From the work of Kervaire and Milnor [KM] we can say the following
about the above coefficient groups :

1 almost framed means framed over some (i− 1)-skeleton
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(i) If θi denotes the finite Abelian group of oriented equivalence classes of
differentiable structures on Si, then there is a natural exact sequence

. . . −−→ Pi+1

∂
−−→ θi

i
−−→ Ai

j
−−→ Pi −−→ θi−1 −−→ . . .

with image(∂) = θi∂π = {π-boundaries} ⊆ θi.

(ii) P∗ = P1, P2, P3, . . . , Pi, . . . is just the (period four) sequence

i 1 2 3 4 5 6 7 8
Pi 0 Z2 0 Z 0 Z2 0 Z

9 10 11 12 13 14 15 16
0 Z2 0 Z 0 Z2 0 Z

(iii) For i ≤ 19, Ai may be calculated

i 1 2 3 4 5 6 7
Ai 0 Z2 0 Z 0 Z2 0

8 9 10 11 12 13
Z⊕ Z2 2Z2 Z6 0 Z Z3

14 15 16 17 18 19
2Z2 Z2 Z⊕ Z2 3Z2 Z2 ⊕ Z8 Z2

Note that Theorem 1 is analogous to a fundamental theorem in smoothing
theory. In that case f is a PL-homeomorphism, f |Q is a diffeomorphism, and f

may be deformed by a weak-isotopy (mod Q) to a diffeomorphism iff a sequence
of obstructions in Hi(L,Q; θi) vanish.

These three obstruction theories are related by the exact sequence of coeffi-
cients above.

Proof of Theorem 1 : There are several approaches to Theorem 1. The most
direct method seeks to alter f by a homotopy so that it becomes a diffeomorphism

or a PL-homeomorphism on a larger and larger region containing Q. Suppose for
example that M is obtained from f(Q) by attaching one i-handle with core disk
Di.
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Then f is deformed (mod Q) so that it is transverse regular to the framed manifold
Di. The framed manifold f−1(Di) has a (smooth or PL) sphere boundary and
determines an element in Ai or Pi. If this element is zero, then surgery techniques

may be employed to deform f so that it is a diffeomorphism or PL-homeomorph-
ism on a neighborhood of f−1Di.

Theorem 1 asserts that the cochain with values in Ai or Pi determined by the
f−1Di’s has the properties of an obstruction cochain.

A complete description is given in [S1]. See also [W1].

The obstruction theories of Theorem 1 have the usual complications of an
Eilenberg-Whitney obstruction theory. The kth obstruction in Hk(L,Q;Pk) or

Hk(L,Q;Ak) is defined only when the lower obstructions are zero; and its value
depends on the nature of the deformation of f to a PL-homeomorphism or diffeo-
morphism on a thickened region of L containing the (k − 2)-skeleton of L−Q.

Thus applications of a theory in this form usually treat only the first obstruc-
tion or the case when the appropriate cohomology groups are zero.

For more vigorous applications of the theory one needs to know more precisely

how the obstructions depend on the homotopy equivalence f — for example, is it
possible to describe the higher obstructions and their indeterminacies in terms of
a priori information about f?1

1 I am indebted to Professor Steenrod for suggesting this problem at my Thesis
Defense, January 1966.
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We will concentrate on the PL obstruction theory – where a complete anal-
ysis can be made. We will replace the sequence of conditions in Theorem 1 by

one condition which depends only on the geometrical invariants of f (Theorem
2). These geometrical invariants are the classical surgery obstructions in P∗ ob-
tained by studying the behavior of f on the inverse image of certain characteristic

(singular) submanifolds of M .

It would be very interesting if a similar analysis can be made of the smooth
theories.

The PL Theory

Definition 2. Let M be an oriented PL m-manifold whose oriented boundary is
the disjoint union of n copies of the closed oriented (m − 1)-manifold L. We call

the polyhedron V obtained from M by identifying the copies of L to one another
a Zn-manifold. We denote the subcomplex L ⊆ V by δV , the Bockstein of V .

A finite disjoint union of Zn-manifolds for various n’s and of various dimen-
sions is called a variety.

If X is a polyhedron, a singular variety in X is a piecewise linear map
f : V−−→X of a variety V into X.

Remark. (i) Note that if V is a Zn-manifold of dimension m then V is locally
Euclidean except along points of δV = L. A neighborhood of L in V is PL-

homeomorphic to L× cone (n points).
(ii) A Zn-manifold carries a well-defined fundamental class in Hm(V ;Zn). It is
the nicest geometric model of a Zn-homology class.

(iii) A closed oriented manifold is a (Z0 or Z)-manifold.

We return to the homotopy equivalence f : (L, ∂L)−−→(M,∂M). Let g :
V−−→M be a connected singular Zn-manifold in the interior of M , of dimension
v. The graph of g defines V as a Zn-submanifold of the Zn-manifold M × V .1

Consider f = f × (identity on V ) mapping (L, ∂L) × V to (M,∂M) × V . If
π1(M) = π1(V ) = π1(δV ) = 0, v = 2s, and dim(M) ≥ 3, then we may deform f
so that it has the following properties :

(i) f is transverse regular to (V, δV ) ⊆ M × (V, δV ) with (U, δU) ⊆ L ×
(V, δV ) where U = f−1V .
(∗) (ii) f : δU−−→δV is a homotopy equivalence.2

(iii) f : U−−→V is s-connected where v = dim(V ) = 2s. See [S1] and [W1].

1 Using the graph of g is unnecessary if g is an embedding. Note that this
construction is the Gysin homomorphism for bordism.

2 We assume further that f : δU−−→δV is a PL-homeomorphism in case dim(δU)
= 3. This is possible.
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Let Ks = ker f∗ ⊆ Hs(U ;Z). If s is even Ks admits a symmetric quadratic
form (the intersection pairing) which is even (⟨x, x⟩ is even) and non-singular.

Thus Ks has an index which is divisible by 8. If s is odd, then Ks ⊗ Z2 admits a
symmetric quadratic form which has an Arf-Kervaire invariant in Z2.

We define the splitting obstruction of f : (L, ∂L)−−→(M,∂M) along V by

Of (V ) =


Arf-Kervaire (Ks) ∈ Z2 if s = 2k + 1
1
8 Index(Ks) (modulo n) ∈ Zn if s = 2k > 2
1
8 Index(Ks) (modulo 2n) ∈ Z2n if s = 2.

We claim that Of (V ) only depends on the homotopy class of f . Also for

s ̸= 2, Of (V ) = 0 iff f may be deformed to a map split along V , i.e. f−1(V, δV )
is homotopy equivalent to (V, δV ).

More generally we make the following :

Definition 3. Let f : (L, ∂L)−−→(M,∂M) be a homotopy equivalence and let
g : V−−→M be a singular variety in M . The splitting invariant of f along
the variety V is the function which assigns to each component of V the splitting

obstruction of f along that component.

Now we replace the Eilenberg obstruction theory of Theorem 1 by a first-order
theory. We assume for simplicity that Q is ∅.

Theorem 2. (The Characteristic Variety Theorem)
Let f : (L, ∂L)−−→(M,∂M) be a homotopy equivalence as in Theorem 1. Then
there is a (characteristic) singular variety in M , V−−→M , with the property that

f is homotopic to a piecewise linear homeomorphism iff the splitting invariant of
f along V is identically zero.

For example :

(i) (characteristic variety of QPn) = (QP1 ∪QP2 ∪ . . . ∪QPn−1
inclusion
−−−−−→ QPn)

(ii) (characteristic variety of Sp × Sq × Sr)

= even dimensional components of

(Sp ∪ Sq ∪ Sr ∪ Sp × Sq ∪ Sp × Sr ∪ Sq × Sr
inclusion
−−−−−→ Sp × Sq × Sr)

(iii) (characteristic variety of CPn) = (CP2 ∪ CP3 ∪ . . . ∪ CPn−1
inclusion
−−−−−→ CPn)
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(iv) (characteristic variety of a regular neighborhood M of S4k−1 ∪r e4k)

= (V 4k
degree 1
−−−−→ M)

where V 4k is the Zr-manifold obtained from S4k by removing the r open disks

and identifying the boundaries.

We remark that there is not in general a canonical characteristic variety forM .

We will discuss below conditions that insure that a variety in M is characteristic
and what choices are available.

First we consider the natural question raised by Theorem 2 – what are the rela-
tions on the set of all splitting invariants of homotopy equivalences f : (L, ∂L)−−→
(M,∂M)?

One relation may be seen by example – if f : (L, ∂L)−−→(M,∂M) is a homo-

topy equivalence and S4 ⊆M , then Index f−1(S4) ≡ 0 (mod 16) by a theorem of
Rochlin. Thus the splitting obstruction of f along S4 is always even.

More generally, if V is a singular variety in M , then a four dimensional
component N of V is called a spin component of V in M if :

(i) N is a (Z or Z2r )-manifold,

(ii) ⟨x∪x, [N ]2⟩ = 0 for all x ∈ H2(M ;Z2) where [N ]2 is the orientation class
of N taken mod 2.

Then we can state the following generalization of Theorem 2.

Theorem 2′. Let (M,∂M) be a simply connected piecewise linear manifold pair
with dim(M) ≥ 6. Then there is a characteristic singular variety V in M
with the following properties :

(i) Let gi : (Li, ∂Li)−−→(M,∂M) be homotopy equivalences i = 0, 1. Then there is
a piecewise linear homeomorphism c : L0−−→L1 such that

(L0, ∂L0)������
g0

u

∼= c (M,∂M)

(L1, ∂L1)
''

''
')

g1

is homotopy commutative iff

(Splitting invariant of g0 along V ) = (Splitting invariant of g1 along V ) .
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(ii) A function on the components of V with the proper range is the splitting in-
variant of a homotopy equivalence iff its values on the four dimensional spin com-

ponents are even.

Note that Theorem 2 follows from Theorem 2′ (i) by taking g0 = f and g1 =
identity map of (M,∂M)

(L, ∂L)h
h
h
h
hhj

f

u

∼= c (M,∂M)

(M,∂M)
''
''
')

identity

Proof of Theorem 2 :

The Kervaire Obstruction in H4∗+2(M ;Z2)

There is a very nice geometrical argument proving one half of the character-

istic variety theorem. Namely, assume the homotopy equivalence f : (L, ∂L)−−→
(M,∂M) can be deformed to a PL-homeomorphism on some neighborhood Q of
the (k − 1)-skeleton of L and f(L−Q) ⊆M − f(Q) :

Suppose that k = 4s+ 2 and recall that the obstruction class in

H4s+2(M ;Z2)

is represented by a cochain c calculated by looking at various (f−1Dk)’s – where the
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Dk’s are the core disks of handles attached along ∂f(Q). In fact, for a particular
handle h, c(Dk) is the Kervaire invariant of the framed manifold f−1(Dk) (which

equals the class of f−1(Dk) in P4s+2 = Z2). See Figure 2.

NOW assume that there is a Z2-manifold Nk embedded in f(Q) union the
k-handle h which intersects the k-handle in precisely Dk. Then f−1Nk consists of
two pieces – one is PL homeomorphic to Nk intersect f(Q) and one is just f−1Dk.

Thus it is clear that the obstruction to deforming f on all of M so that f−1Nk is
homotopy equivalent to Nk is precisely c(Dk) = Kervaire Invariant of f−1Dk.

This means that c(Dk) is determined by the splitting obstruction of f along
Nk – it does not depend on the deformation of f to a PL-homeomorphism on Q.

Roughly speaking, the part of Nk in f(Q) binds all possible deformations of
f together.

From cobordism theory [CF1] we know that any homology class in Hk(M ;Z2)
is represented by a possibly singular Z2-manifold Nk in M . So for part of the

characteristic variety1 we choose a collection of singular Z2-manifolds in M of
dimension 4s + 2, 2 ≤ 4s + 2 ≤ dimM . We suppose that these represent a basis
of H4s+2(M ;Z2), 2 ≤ 4s+ 2 ≤ dimM .

The splitting obstructions for f along these Z2-manifolds in M determine

homomorphisms H4s+2(M ;Z2)−−→Z2 which in turn determine cohomology classes
in H4s+2(M ;Z2). The argument above (generalized slightly)2 shows that the
lowest dimensional non-zero class among these is the first non-vanishing Eilenberg

obstruction in dimension 4s+ 2, (if it exists).

This would complete the proof of Theorem 2 if we did not have to cope with

the obstructions in H4i(M ;Z). So now the fun begins.

The Infinite (Index) Obstructions in H4∗(M ;Z)

Of course we can try to apply the argument of Figure 2 to characterize the

Eilenberg obstructions in dimensions 4s.

The attempt succeeds in characterizing the Eilenberg obstructions in H4s(M ;Z)
modulo odd torsion elements.

1 We shall see below that some of the two dimensional components are not
needed and others are replaced by certain four-dimensional (non-spin) components,

e.g. M = CPn.
2 The fact that the submanifolds are singular presents no difficulty – for we

may look at graphs or cross the problem with a high dimensional disk.
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Let Dk, k = 4s be the core disk of a handle h attached along the boundary
of f(Q) which determines an element of infinite order in H4s(M ;Z). Then by

obstruction theory in MSO there is an oriented submanifold Nk of f(Q) ∪ h
which intersects the handle in a certain positive number of oriented copies of Dk.
We can then calculate [ 18 Index of f−1Dk] = [class of f−1Dk in P4s = Z]1 in terms

of Index f−1Nk − Index Nk. The latter integer is determined by the splitting
obstruction of f along Nk. This characterizes the Eilenberg obstructions modulo
torsion elements in H4s(M ;Z).

The 2-Torsion (Index) Obstructions in H4∗(M ;Z)

Now suppose Dk represents a generator of order n in H4s(M ;Z) (k = 4s) and
there is a singular Zn-manifold Nk in f(Q) ∪ h which intersects the handle h in
Dk. Then the argument of Figure 2 again shows that the value of an Eilenberg

obstruction cochain on [Dk] taken mod n is just the splitting invariant of f along
Nk.

From cobordism theory we can show that such an Nk exists if n is a power
of 2.

So now we can characterize the Eilenberg obstructions modulo odd torsion
elements. We add to our characteristic variety the manifolds considered in the

previous two paragraphs – namely :

(i) an appropriate (as above) closed oriented manifold of dimension 4s for

each element of a basis of H4s(M ;Z)/Torsion.2

(ii) an appropriate Z2r -manifold of dimension 4s for each Z2r -summand in

H4s(M ;Z).

All this for 4 ≤ 4s < dimM .

The above applications of cobordism theory are based on the fact that the

Thom spectrum for the special orthogonal group,MSO, has only finite k-invariants
of odd order. (See [CF1]).

We also use the fact that the homotopy theoretical bordism homology with
Zn-coefficients is just the geometric bordism homology theory defined by Zn-

manifolds.

1 Except when 4s = k = 4, in which case we calculate 1
16 Index f−1Dk.

2 We will later impose an additional restriction on these manifolds so that
Theorem 2′ (ii) will hold.
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Now the proof of Theorem 2 would be complete if H4∗(M ;Z) had no odd
torsion.

The Odd Torsion Obstructions in H4∗(M ;Z),
Manifolds With Singularities, and k-Homology.

We have reduced our analysis to the case when the Eilenberg obstructions are
concentrated in the odd torsion subgroup of H4∗(M ;Z).

However, we are stopped at this point by the crucial fact that Zn-manifolds

are not general enough to represent Zn-homology when n is odd. (For example the
generator of H8(K(Z, 3);Z3) is not representable.) Thus the crucial geometrical
ingredient of the “Figure 2” proof is missing.

In the n odd case we can change the format of the proof slightly. Let Dk be
the core disk of a k-handle h representing a generator of odd order n in H4s(M ;Z).
Let Nk be a Zn-manifold in f(Q) ∪ h situated as usual. Then we claim that the
class of f−1Dk in Pk⊗Zn is determined by Index f−1Nk – Index Nk ∈ Zn.

1 (We
can recover the 1

8 factor since n is odd.) But the index of f−1Nk only depends on

the homotopy class of f because of transversality and the cobordism invariance of
the mod n index. ([N2])

Thus we see that the rigidity of the odd torsion Eilenberg obstruction “follows”
from the existence of a geometrical Zn-manifold object which :

(i) is general enough to represent Zn-homology,
(ii) is nice enough to apply transversality,
(iii) has an additive index ∈ Zn which is a cobordism invariant and which

generalizes the usual index.

Finding a reasonable solution of (i) is itself an interesting problem.∗

We proceed as follows. Let C1,C2, . . . denote a set of ring generators for

smooth bordism modulo torsion, Ω∗/Torsion (dimCi = 4i). We say that a poly-
hedron is “like” Sn ∗ C1 (= Sn join C1) if it is of the form W ∪ L × coneC1, W
a PL-manifold, ∂W = L× C1, i.e. has a singularity structure like Sn ∗ C1. More

generally we say that a polyhedron is “like” Q = Sn ∗ Ci1 ∗ Ci2 ∗ . . . ∗ Cir
2 if it

admits a global decomposition “like” Q.

1 The index of a Zn-manifold (N4k, δN) is the index of N/δN taken modulo
n. The index of N/δN is the signature of the (possibly degenerate) cup product
pairing on H2k(N/δN ;Q).

∗ A solution is given by Rourke, Bull. L.M.S. 5 (1973) 257–262
2 We require i1 < i2 < . . . < ir.
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For example, Sn ∗ C1 ∗ C2 may be decomposed as in Figure 3.

These polyhedra play the role of closed “manifolds” in our theory. Part of

their structure is the join-like decomposition of a neighborhood of the singularity
set together with a compatible linear structure on the stable tangent bundle of the
complement of the singular set.

“Manifolds with boundary” and “Zn-manifolds” are easy generalizations.

(i) The bordism homology theory defined by these manifolds with singularities is
usual integral homology theory.

(ii) Also transversality and other geometrical constructions are fairly easy with

these varieties.
(iii) They do not however have a good index. Our mistake came when we intro-

duced the cone on C1 = cone on CP2, say.

If we make the analogous construction using only C2, C3, C4, . . . where Index

Ci = 0 i = 2, 3, 4, . . . then we can define a proper index.

However, we no longer have ordinary homology theory but a theory V∗ such

that V∗(pt.) is a polynomial algebra on one 4-dimensional generator [CP2]. V∗
is in fact a geometric representation of connective k-homology and the natural
transformation Ω∗−−→V∗1 is closely related to the transformation I : Ω∗−−→K∗
constructed below.2

1 This is obtained by regarding a non-singular manifold as a variety.
2 We are working modulo 2-torsion in this paragraph.
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Thus we see that the Eilenberg obstructions in dimension 4k are not well-
defined. Their values may be varied on those Zn-classes whose geometric repre-

sentative requires a CP2-singularity (i.e. does not come from V∗). This may be
seen quite clearly in dimension 8. In fact, from the homotopy theory below we
see that the H4k(M ;Zn) modulo the indeterminacy of the Eilenberg obstructions

(reduced mod n) is precisely dual to the subgroup of V∗ representable elements in
H4k(M ;Zn).

This duality may also be seen geometrically but it is more complicated.

II. The Characteristic Bundle of a Homotopy Equivalence

The proof of Theorem 2 (the Characteristic Variety Theorem) can be com-

pleted by studying the obstruction theory of Theorem 1 from the homotopy the-
oretical point of view.

Definition. (F/PL-bundle, F/O-bundle). An F/PL)n-bundle over a finite com-
plex X is a (proper) homotopy equivalence θ : E−−→X ×Rn where π : E−−→X is
a piecewise linear Rn-bundle and

E w
θ

u
π

X × Rn

u
p1

X w
identity

X
is homotopy commutative.

Two F/PL)n-bundles θ0 and θ1 are equivalent iff there is a piecewise linear

bundle equivalence b : E0−−→E1 so that

E0�����
θ0

u

b X × Rn

E1

''
''
')

θ1

is properly homotopy commutative.

An F/O)n-bundle is the corresponding linear notion.1

1 These bundle theories are classified [B1] by the homotopy classes of maps
into certain CW complexes F/PL)n and F/O)n. The correspondence θ−−→θ ×
identityR defines stabilization maps F/PL)n−−→F/PL)n+1, F/O)n−−→F/O)n+1.

The stable limits are denoted by F/PL and F/O respectively. Using a “Whitney
sum” operation F/O and F/PL become homotopy associative, homotopy commu-
tative H-spaces.
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Let g : (L, ∂L)−−→(M,∂M) be a homotopy equivalence of compact piecewise
linear manifolds with homotopy inverse g : (M,∂M)−−→(L, ∂L).

A characteristic F/PL)n-bundle of g is any composition θg, given by

E
c =PL-homeomorphism
−−−−−−−−−−−−−−−−−−→∼=

L× Rn
g×identity
−−−−−−−−→ M × Rn ,

where E is the normal bundle of an embedding M ⊂ L×Rn (n≫ dimL) approx-

imating g× 0. c is any identification (homotopic to g) of the total space of E with
all of L×Rn. (c may be constructed for example á lá Mazur using the “half-open”
h-cobordism theorem.)

Notice that θg is transverse regular to M × 0 with inverse image PL-homeo-

morphic to L

The characteristic bundle of the homotopy equivalence g : (L, ∂L)−−→
(M,∂M) is the stable equivalence class of θg considered as a homotopy class of

maps

θg : M −−→ F/PL .

If L and M are smooth, E is a vector bundle, c will be a diffeomorphism,
and we obtain the characteristic F/O-bundle of a homotopy equivalence between

smooth manifolds

ηg : M −−→ F/O .

The Classification of h-Triangulations and h-Smoothings

To state the homotopy theoretical analogue of Theorem 1 we consider a homo-
topy equivalence of a PL-manifold pair with (M,∂M) as defining a “homotopy-
triangulation” of (M,∂M). Two h-triangulations g0 : (L0, ∂L0)−−→(M,∂M)
and g1 : (L1, ∂L1)−−→(M,∂M) are “concordant” iff there is a PL-homeomorphism
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c : (L0, ∂L0)−−→(L1, ∂L1) so that

(L0, ∂L0)������
g0

u

∼= c (M,∂M)

(L1, ∂L1)
''

''
')

g1

is homotopy commutative. We denote the set of concordance classes of h-triangulat-

ions of M by hT (M).

Note that the characteristic variety theorem asserts that the concordance

class of an h-triangulation g : (L, ∂L)−−→(M,∂M) is completely determined by
the splitting invariant of g.

In a similar fashion we obtain the set of concordance classes of h-smoothings
of M , hS(M).

The zero element in hT (M) or hS(M) is the class of id. :M−−→M . The char-
acteristic bundle construction for a homotopy equivalence defines transformations

θ : hT (M) −−→ (M,F/PL)

η : hS(M) −−→ (M,F/O)

where (X,Y ) means the set of homotopy classes of maps from X to Y .

Assume π1(M) = π1(∂M) = 0, n = dimM ≥ 6.

Theorem 3. If ∂M ̸= ∅, then

θ : hT (M) =

{
concordance classes of

h-triangulations of M

}
−−→ (M,F/PL)

and

η : hS(M) =

{
concordance classes of

h-smoothings of M

}
−−→ (M,F/O)

are isomorphisms.
If ∂M = ∅, we have the exact sequences (of based sets)

(i) 0 −−→ hT (M)
θ
−−→ (M,F/PL)

S
−−→ Pn

(ii) θn∂π
#
−−→ hS(M)

η
−−→ (M,F/O)

S
−−→ Pn .

Proof. See [S1].

Here S is the surgery obstruction for an F/PL or F/O bundle over a closed
(even dimensional) manifold; and # is obtained from the action of θn on hS(M),
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(g : L−−→M) 7→ (g : L#Σ−−→M).

S will be discussed in more detail below. We remark that the exactness of (ii)
at hS(M) is stronger, namely

{orbits of θn∂π} ∼= image η .

Also (i) may be used to show that ∂M = ∅ implies the :

Corollary. If M is closed then θ : hT (M) ∼= (M − pt., F/PL).

Easy transversality arguments show that

πi(F/PL) = Pi , πi(F/O) = Ai .

Thus the Theorem 1 obstructions in

Hi(M ;Ai) or Hi(M ;Pi)

for deforming g : (L, ∂L)−−→(M,∂M) to a diffeomorphism or a PL-homeomorphism
become the homotopy theoretical obstructions in

Hi(M ;πi(F/O)) or Hi(M ;πi(F/PL))

for deforming ηg or θg to the point map.

In fact using naturality properties of θ and η we can precisely recover the

obstruction theory of Theorem 1 from statements about the “kernels” of θ and η
given in Theorem 3.

We obtain new information from the statements about the “cokernels” of θ
and η given in Theorem 3. For example, if we consider the map

CP4 − pt. ∼= CP3
deg 1
−−−−−→ S6

gen π6−−−−−→ F/PL

we obtain an interesting h-triangulation of CP4, M8−−→CP4.

Now we may study the obstruction theory of Theorem 1 by studying the

homotopy theory of F/O and F/PL.

For example using the fact that F/O and F/PL are H-spaces (Whitney sum)

(and thus have trivial k-invariants over the rationals) one sees immediately that
the triangulating and smoothing obstructions for a homotopy equivalence f are
torsion cohomology classes iff f is a correspondence of rational Pontrjagin classes.
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To describe the obstructions completely we must again restrict to the piece-
wise linear case.

The Homotopy Theory of F/PL

We have already seen that the homotopy groups of F/PL are very nice :

i 1 2 3 4 5 6 7 8 . . .
πi(F/PL) 0 Z2 0 Z 0 Z2 0 Z . . .

This regularity is also found in the global homotopy structure of the space.

For describing this structure we will localize F/PL at the prime 2 and then
away from the prime 2.

If X is a homotopy associative homotopy commutative H-space, then

“X localized at 2” ≡ X(2) is the H-space which represents the functor

( , X)⊗ Z(2)

where Z(2) = Z[
1

3
,
1

5
, . . . ,

1

pi
, . . .], pi the i

th odd prime.

“X localized away from 2” ≡ X(odd) is the H-space which represents the functor

( , X)⊗ Z(odd)

where Z(odd) = Z[
1

2
].

Note that there are natural projections p(2) and p(odd)

X(2)

Y = CW -complex w
f

X
''
''
')p(2)

������p(odd)
X(odd)

Also f : Y−−→X is homotopic to zero iff p(2) ◦ f and p(odd) ◦ f are homotopic to
zero. Thus it suffices to study X(2) and X(odd).

Let BO denote the classifying space for stable equivalence classes of vector
bundles over finite complexes.

Let K(π, n) denote the Eilenberg-MacLane space, having one non-zero homo-
topy group π in dimension n.
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Let δSq2 denote the unique element of order 2 in H5(K(Z2, 2);Z(2)), and
K(Z2, 2) ×δSq2 K(Z(2), 4) the total space of the principal fibration over K(Z2, 2)

with K(Z(2), 4) as fibre and principal obstruction (k-invariant) δSq2.

Then we have the following :

Theorem 4. (i) F/PL(2) is homotopy equivalent to∏
= K(Z2, 2)×δSq2 K(Z(2), 4)×

∞∏
i=1

K(Z2, 4i+ 2)×K(Z(2), 4i+ 4) .

(ii) F/PL(odd) is homotopy equivalent to BO(odd).

(iii) F/PL is homotopy equivalent to the fibre product of i and ph in the diagram∏
A
A
A
AAC
i = natural inclusion1

F/PL
[
[
[
[
[]

p(2)

[
[
[
[]p(odd)

∞∏
i=1

K(Q, 4i)

BO(odd)

h
h
hhj

ph = Pontrjagin character

Corollary. H∗(F/PL;Z) has no odd torsion and the 2-torsion may be calculated.

Corollary. Z× F/PL is an infinite loop space. In fact it is homotopy equivalent

to the 0th space in the Ω-spectrum of a multiplicative cohomology theory.

Corollary. If O = Ω(F/PL) = loop space of F/PL, then O satisfies a Bott
periodicity of length four, namely

Ω4O ∼= O , as H-spaces .

We use the notation O because O(odd)
∼= O(odd) where O is the infinite orthogonal

group.

Bordism, Homology Theory, and K-Theory.

In order to prove and apply Theorem 4 we need to study the relationship

between smooth bordism and ordinary homology on the one hand (for the prime
2) and smooth bordism and K-theory on the other hand (for odd primes). Recall
that Ω∗(X) is a module over Ω∗ = Ω∗(pt) by the operation

(f :M−−→X,N) −−→ (fp2 : N ×M−−→X) .

1 On π4 i∗ is twice the natural embedding Z(2)−−→Q.
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Z is a module over Ω∗ by Index : Ω∗−−→Z.
Then we can form Ω∗(X)⊗Ω∗ Z, and obtain a Z4-graded functor.

Let K∗(X) denote the Z4-graded homology theory defined by KO∗(X) ⊗ Z(odd).
KO∗ is the homology theory dual to real K-theory, KO∗(X).

Theorem 5. There are natural equivalences of functors :

(i) Ω∗(X)⊗ Z(2)
∼= H∗(X; Ω∗ ⊗ Z(2)) as Z-graded Ω∗-modules,

(ii) Ω∗(X)⊗Ω∗ Z(odd)
∼= KO∗(X)⊗ Z(odd) ≡ K∗(X) as Z4-graded Z-modules .

Proof. (i) can be found in [CF1]. (ii) is analogous to [CF2] but different (and
simpler) because the module structure on the left is different. ([CF2] uses the Â

genus and the first cobordism Pontrjagin class.)

Proof of (ii) : We construct a (multiplicative) transformation

I : Ω∗(X) −−→ K∗(X)

which on the point is essentially the index.

I was first constructed by introducing the singularities described above into
cobordism theory and then taking a direct limit.

It can also be constructed by first producing an element in K0(BSO) whose

Pontrjagin character is

Â

L
=

Â-genus

Hirzebruch L-genus

(this is a calculation), and then applying the usual Thom isomorphism to obtain
the correct element in K0(MSO).

I induces a transformation

I : Ω0(X) −−→ K0(X)

which is in turn induced by a map of universal spaces

I : Ω∞MSO(odd) −−→ Z×BO(odd) .

I is onto in homotopy (since there are manifolds of index 1 in each dim 4k),

thus the fibre of I only has homotopy in dimensions 4k. Obstruction theory implies
that I has a cross section. Therefore the transformation induced by I

I : Ω∗(X)⊗Ω∗ Z(odd) −−→ K∗(X)

is onto for dimension zero cohomology.

When X = MSO, I is easily seen to be an isomorphism. This fact together
with the cross section above implies that I is injective for dimension zero. (ii) now
follows by Alexander duality and the suspension isomorphism.

The point of Theorem 5 is the following – the theories on the left have a
nice geometrical significance for our problems while those on the right are nice
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algebraically.

Of course H∗(X; Ω∗) is constructed from a chain complex. We thus have the
classical duality theorems (universal coefficient theorems) relating H∗ and H∗.

These results are also true for K∗ and K∗. For example, the multiplicative
structure (see [A]) in K∗ defines homomorphisms

e : K0(X) −−→ Hom(K0(X),Z(odd))

=

en : K0(X) −−→ Hom(K0(X;Zn),Zn) , n odd .

Theorem 6. If X is finite
(i) e is onto,
(ii) if σ ∈ K0(X), then σ = 0 iff en(σ) = 0 for all odd integers n,

(iii) any compatible (w.r.t. Zn−−→Zn′) set of homomorphisms (f, fn) determines
an element σ in K0(X) such that en(σ) = fn, e(σ) = f .

(i) and (ii) were first proved by the author using intersection theory and the
geometrical interpretation of I. (The hard part was to construct e and en.)

However, using the multiplication in K0(X) coming from the tensor product
of vector bundles (plus the extension to Zn-coefficients in [AT]) (i), (ii), and (iii)

follow immediately from Bott periodicity and general nonsense.

The duality theorems for K∗ and K∗ were first proved by Anderson [A1]. We
denote by Ω∗(X;Zn) the homology theory defined by bordism of Zn-manifolds.
We make P∗ = 0,Z2, 0,Z, . . . into a Ω∗-module by Index : Ω∗−−→P∗. Then we
have :

Theorem 7. (The splitting obstruction of an F/PL bundle)

There are onto Ω∗-module homomorphisms S and Sn so that the following square
commutes

Ω∗(F/PL) w
S

u
natural inclusion

P∗

u
reduction mod n

Ω∗(F/PL;Zn) w
Sn P∗ ⊗ Zn

The composition

π∗(F/PL)
Hurewicz
−−−−−−→ Ω∗(F/PL)

S
−−→ P∗

is an isomorphism if ∗ ̸= 4, and multiplication by 2 if ∗ = 4.
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Using Theorem 5 (i) and S2 : Ω4∗+2(F/PL;Z2)−−→Z2 which is more generally
a Ω∗(pt;Z2)-module homomorphism1 we obtain :

Corollary 1. (A Formula for the Kervaire Invariant of an F/PL-bundle

over a Z2-manifold). There is a unique class

K = k2 + k6 + k10 + . . . ∈ H4∗+2(F/PL;Z2)

such that for any Z2-manifold in F/PL

f : M4k+2 −−→ F/PL

we have

S2(M
4k+2, f) = W (M) · f∗K[M ] .

Using Theorem 5 (i) and S : Ω4∗(F/PL)−−→Z and working modulo torsion

we obtain :

Corollary 2. There is a class

L = ℓ4 + ℓ8 + ℓ12 + . . . ∈ H4∗(F/PL;Z(2))

which is unique modulo torsion, such that

S(M4k, f) = L(M) · f∗L[M ] .

Here W (M) and L(M) are respectively the total Stiefel Whitney class and
total Hirzebruch class.

The point of Corollary 2 is that L is a class with Z(2)-coefficients. L regarded

as a class with rational coefficients is familiar, namely

L = ℓ4 + ℓ8 + . . . =
1

8
j∗(L1 + L2 + . . .)

where j : F/PL−−→BPL is the natural map and Li is the universal Hirzebruch

class in H4i(BPL;Q).

Now use

Ω∗(F/PL)
�

�
�

���

natural projection

A
A
A
AAC

S

K0(F/PL) w
S⊗Ω∗ Z(odd) Z(odd)

(with K0(F/PL) ∼= Ω4∗(F/PL)⊗Ω∗ Z(odd)) and Theorem 6 (i) to obtain :

1 Via the mod 2 Euler characteristic Ω∗(pt,Z2)−−→Z2.
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Corollary 3. There is a unique element σ ∈ K̃0(F/PL) such that the Pontrjagin
character of σ = L in H4∗(F/PL;Q).

Uniqueness follows from existence – which implies that K̃0(F/PL) is a free

Z(odd)-module.

Proof of Theorem 7. If θ : E−−→M × Rn is an F/PL-bundle over a Zn-

manifold M2s, then suppose θ−1(M, δM) has the properties of (U, δU) in (∗) (in
the construction of the splitting obstruction in Section I) and define S(M,f) by

S(M,f) =


1
8

{
Index(U, δU)− Index(M, δM)

}
(mod n)

s even1

Kervaire invariant of θ : (U, δU)−−→(M, δM)

s odd .

Remark. The fact that S : Ω4(F/PL)−−→Z is onto2 while π4(F/PL)−−→Ω4(F/PL)
S
−−→ Z is multiplication by 2 implies the first k-invariant of F/PL inH5(K(Z2, 2);Z)
= Z4 is non-zero.

Since F/PL is an H-space the reduction of the k-invariant to Z2-coefficients

must be primitive and have Sq1 zero. It is therefore zero (by an easy calculation
– pointed out to me by Milnor). This singles out δSq2 = “integral Bockstein of
square two” as the first k-invariant of F/PL (= first k-invariant of BSO, F/O,

BSPL etc.)

Proof of Theorem 4 :

I. The σ ∈ K̃0(F/PL) of Corollary 3 determines

p(odd) : F/PL −−→ BO(odd) .

II. Using K and L of Corollaries 1 and 2 and the remark above we construct3

p(2) : F/PL −−→
∏

,

1 If dimM = 4 S(M,f) is well-defined (modulo 2n) if cobordisms of δM are
restricted to spin manifolds.

2 24 times the canonical complex line bundle over CP2 is fibre homotopically
trivial.

3 i is onto in homotopy except in dimension 4 where it has index 2



90 sullivan

so that

�
�

�
�

��

w
L

∞∏
i=1

K(Z(2), 4i)

F/PL w
p(2) ∏




�

i
best possible projection1

N
N
N
NNP

natural projection

[
[

[
[

[[

w
K

∞∏
i=0

K(Z2, 4i+ 2)

is homotopy commutative.

A calculation shows that p(odd) and p(2) are correct in homotopy. It is clear
from the construction that ∏

'
'
'
'
'')

i = inclusion

F/PL
A
A
A
A
A
AACp(2)

'
'
'
'
'')p(odd)

∞∏
i=1

K(Q, 4i)

BO(odd)

A
A
A
A
AAC

Pontrjagin character

is homotopy commutative, so (iii) is proven.

Remark. The only part of the construction of the localizing projections p(2)
and p(odd) which is not completely canonical is the construction of L used in the
definition of p(2). L was only determined modulo torsion (this can be improved to

“modulo torsion elements divisible by 2”). This difficulty arises from the lack of a
nice geometrical description of the product of two Zn-manifolds (as a Zn-manifold).

We can make this aspect of F/PL-homotopy theory more intrinsic by formu-
lating the results in terms of a characteristic variety.

IfX is a finite complex and g : V−−→X is a singular variety inX, then for each
F/PL-bundle over X we can by restriction to V associate a splitting obstruction

on each component of V . We use the splitting invariant defined in the proof of
Theorem 7 (with the refinement in dimension 4). We obtain a “function on V ”
for each F/PL-bundle over X.
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Notice that no fundamental group hypothesis need be made to define the
“splitting invariant along V ” because every element in Ω2∗(F/PL;Zn) is repre-

sented by a simply connected pair (M, δM).

Theorem 4′. (The characteristic variety theorem for F/PL).
Let X be a finite complex. Then there is a characteristic variety in X, g : V−−→
X with the property that :

(i) two F/PL-bundles over X are equivalent iff their “splitting invariants along
V ” are equal.

(ii) a “function on V ” is the splitting invariant of a bundle iff its values on the

4-dimensional spin components1 of V are even.

Remark. It is easy to see that if h : (M,∂M)−−→(L, ∂L) is a homotopy equiva-

lence then the splitting invariant of h along a singular variety V in M is the same
as the splitting invariant of θh along V . Thus Theorems 3 and 4′ imply Theorem
2′.

Proof of Theorem 4′. We first describe a suitable characteristic variety.

(i) Choose a collection of (4i + 2)-dimensional Z2-manifolds in X, f : ∪
i
Ki−−→

X, so that {f∗(fundamental class Ki)} is a basis of A ⊕
i>0

H4i+2(X;Z2) where A ⊆

H2(X;Z2) is a subgroup dual to ker(Sq2 : H2(X;Z2)−−→H4(X;Z2)).

(ii) Choose a collection of 4i-dimensional Z2r -manifolds f : ∪
j
Nj−−→X such that

{f∗(δNj)} is a basis of [2-torsion ⊕
i
H4i−1(M ;Z)].

(iii) Choose a collection {Vα} of 4N -dimensional Zpr -manifolds for each odd prime

p, {fα : Vα−−→X} such that {fα : δVα−−→X} form a basis of the odd torsion
subgroup of

Ω4∗−1(X)⊗Ω∗ Z(odd)
∼= K−1(X) .

(iv) Choose a collection C of singular closed oriented 4i-dimensional manifolds
{gs :Ms−−→X} such that in

1 For definition see remarks before Theorem 2′.
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Ω4∗(X) w
S∗ = fund. class

u

I∗ = natural projection

⊕
i>0

H4i(X;Z(2))/Torsion

u

inclusion

Ω4∗(X)⊗Ω∗ Z(odd)/Torsion w
ph∗ ⊕

i>0

H4i(X;Q)

S∗C and I∗C form bases.

I. If we assign “splitting obstructions” in Zpr or Z to each manifold in group (iii)
or (iv) we define a collection of homomorphisms

ϕn : K0(X;Zn) −−→ Zn , n odd or zero .

The collection {ϕn} defines a unique element in σ ∈ K0(X), σ : X−−→BO(odd).

The commutativity1 of

K0(BO(odd);Zn)

u

p(odd) ∼=

w
en(id)

eval. of id.
Zn

K0(X;Zn)

N
NNQ

σ∗
A
A
A
A
AAC

ϕn

K0(F/PL;Zn) w
∼= Ω4∗(F/PL;Zn)⊗Ω∗ Z(odd)

u

S⊗

implies any lifting of σ

F/PL

u

p(odd)

X
[
[
[
[
[]

σ

wσ BO(odd)

will have the desired splitting obstructions on these components.

II. If we give splitting obstructions for the 2 and 4 dimensional components, we
can construct a homomorphism H2(M ;Z2)−−→Z2 using the given values on A and
the values (reduced mod 2) on the non-spin components of dimension 4 to obtain

a cohomology class u ∈ H2(M ;Z2) such that δSq2u = 0.

1 The outer commutativity is clear since for Y = F/PL(odd) or BO(odd) we
have K0(Y ;Zn) = K0(Y )⊗ Zn.
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u defines a mapX−−→K(Z2, 2) which may be lifted toK(Z2, 2)×δSq2K(Z(2), 4).
We alter this lifting by a map f : X−−→K(Z(2), 4) to obtain the desired splitting

invariants in dimension 2 and 4.

The splitting obstructions in the other dimensions may be obtained by map-
ping into the appropriate K(Z(2), 4i) or K(Z2, 4i+ 2) independently. We obtain

β : X −−→
∏

.

σ and β determine a unique map f : X−−→F/PL with the desired splitting ob-
structions.

Discussion of the characteristic variety

We can replace any component g : N−−→X of the characteristic variety con-
structed for Theorem 4′ by gp2 : C ×N−−→X if IndexC = ±1 and N is not a Z
or Z2r manifold of dimension 4. The new variety is still characteristic for X.

For determining whether two F/PL-bundles are the same we may further

replace the four dimensional Z-components N by C×N . (The realization property
is then disturbed however).

We cannot replace the 4-dimensional Z2r -components by higher dimensional
components because we thereby lose the delicate property that the splitting in-

variant is well defined modulo 2r+1 on these components.

Thus in either case the characteristic variety has two “parts” – one of dimen-

sion four and one of infinite (or stable) dimension.

The ability to stabilize is the real reason why only Zn-manifolds appear in
Theorem 4′ and not varieties of the more complicated type discussed earlier (for
the study of odd torsion). Such a variety ×CPn is cobordant to a non-singular

manifold.

The Zn-manifolds with singularities can be used to describe F/PL-bundles

over X together with filtrations (the highest skeleton over which the bundle is
trivial).

III. The Hauptvermutung

We can apply the first part of the characteristic variety theorem for F/PL to
study homeomorphisms.

Theorem H. Let h : (L, ∂L)−−→(M,∂M) be a homeomorphism and θh : M−−→
F/PL be the characteristic F/PL-bundle for h. Then there is only one possible
non-zero obstruction to the triviality of θh, an element of order 2 in H4(M ;Z).
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Then if H3(M ;Z) has no 2-torsion we have :

Corollary 1. If π1(M) = π1(each component of ∂M) = 0 and dimM ≥ 6, then
h : (L, ∂L)−−→(M,∂M) is homotopic to a PL-homeomorphism.

Corollary 2. In the non-simply-connected case, any dimension, we have that

h× idRN : (L, ∂L)× RN −−→ (M,∂M)× RN

is properly homotopic to a PL-homeomorphism. We may take N = 3.

Corollary 3. The localizing projections for the natural map H : TOP/PL−−→F/PL
satisfy

(∗) w
Pt (F/PL)(odd)

TOP/PL

u

Pt

w
H

u
Θ

F/PL

u

podd

u

p(2)

K(Z(2), 4) w
inclusion

(F/PL)(2)

where Θ is an h-map and has order 2.
(Z(2) = Z[ 13 ,

1
5 , . . . ,

1
pi
, . . .], pi the i

th odd prime).1

Corollary 4. Let M be as in Corollary 1. The subgroup of hT (M) generated
by homeomorphisms h : (L, ∂L)−−→(M,∂M) is a Z2-module of dimension not

exceeding the dimension of [2-torsionH3(M ;Z)]⊗ Z2.

Proof of Theorem H.

Let V be a characteristic variety for M . Replace each component N of V by

CP4×N . If M is simply connected, we may use the splitting theorem of Novikov
[N1] to see that the splitting invariant of h along CP4 × V equals zero.2 This
proves Theorem H in the simply connected case.

If M is a general manifold we use a strengthened version of Novikov’s split-
ting theorem (originally proved to treat the manifolds with singularities described

1 We are considering the spaces of Corollary 3 as being defined by functors on
the category of finite CW complexes.

2 V may be chosen in this case so that π1(V ) = π1(δV ) = 0.
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above).

Definition. A manifold complex is a polyhedron constructed inductively by
attaching an n-dimensional PL-manifold to the previously constructed (n − 1)-

dimensional polyhedron along the boundary of the manifold which is embedded.
The components of the n-manifold are the n-cells of the manifold complex.

Splitting Lemma. Let K be a manifold complex whose “cells” have dimension
≥ 5 and free abelian fundamental group. Let t : E−−→K × Rn be a topological
trivialization of the piecewise linear Rn-bundle E over K. Then t is properly

homotopic to a map which is transverse regular to K × 0 ⊂ K ×Rn and such that

t| : t−1(K × 0) −−→ K × 0

is a cell-wise homotopy equivalence of manifold complexes.

Proof of Splitting Lemma. Assume first that K has one cell. Consider

Tn−1 = S1 × . . .× S1 (n− 1 factors) ⊂ Rn

and let

W = t−1(K × Tn−1 × R) .

Then t0 :W−−→K × Tn−1 ×R is a proper homotopy equivalence.1 We may apply
Siebenmann’s Thesis [S] to split t0, namely we find a PL-homeomorphism W ∼=
W1 × R and a map t1 :W−−→K × Tn−1 so that

W w
t0

u
∼=

K × Tn−1 × R

W1 × R
N
N
N
NNP

t1 × idR

is properly homotopy commutative.

We then apply Farrell’s fibring theorem [F] to deform

W1

t1
−−→ K × Tn−1

last factor
−−−−−−−→ S1

1 This is the only place “homeomorphism” is used in the proof of the Haupt-
vermutung.
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to a fibration and thus split t1. Then we have a diagram

W2 w
t2

u
⊂

K × Tn−2

u
⊂

W1 w
t′1

�
�
���

K × Tn−1

N
N
NNQ

S1

where t′1 is transverse regular to K × Tn−2 and t2 is a homotopy equivalence.

We similarly split t2 and find a t3, etc. Finally, after n steps we obtain the
desired splitting of t.

Now each of the above steps is relative (Siebenmann’s M × R theorem and
Farrell’s Fibring Theorem).

The desired splitting over a manifold complex may then be constructed in-

ductively over the “cells”. The only (and very crucial) requirement is that each
manifold encountered has dimension ≥ 5 and free abelian π1.

Proof of Theorem H (contd.)

We may assume that θh : E−−→M × Rn is a topological bundle map (by
increasing n if necessary).

Now notice that (any Zn-manifold)×CP4 has the structure of a manifold
complex satisfying the hypotheses of the Splitting Lemma. Thus the splitting
invariant of θh along (characteristic variety)×CP4 is zero.

Proof of Corollaries.

Corollary 1 follows from Theorem 3.

Corollary 2 follows from the definition of θh.

Corollary 3 follows from Theorem 4.

Corollary 4 follows from Theorems 5, 3 and 4.

Lashof and Rothenberg [LR] have proved the Hauptvermutung for 3–connected
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manifolds by deforming the 3–connective covering of

H : TOP/PL −−→ F/PL

to zero. The argument is somewhat like that of the splitting lemma.

Application to complex projective space

We will apply the general theory to the special case of complex projective
space. We choose this example because (a) the results have immediate applica-
tions to the theory of free S1-actions on homotopy spheres, (b) CPn is interesting

enough to illustrate certain complications in the theory, and finally (c) certain
simplifications occur to make the theory especially effective in this case.

We illustrate the last point first. We assume n > 2 throughout.

Theorem 8. (i) Any self-homotopy equivalence of CPn is homotopic to the iden-
tity or the conjugation.
(ii) Any self-piecewise linear homeomorphism of CPn is weakly isotopic to the

identity or the conjugation.

Definition 5. If M is homotopy equivalent to CPn, we call a generator of
H2(M ;Z) a c-orientation of M .

Corollary 1. The group of concordance classes of h-triangulations of CPn is
canonically isomorphic to the set of PL-homeomorphism classes of piecewise linear
homotopy CPn’s.

Corollary 2. The set of concordance classes of h-smoothings of CPn is canoni-

cally isomorphic to the set of c-oriented diffeomorphism classes of smooth homo-
topy CPn’s.

Corollary 3. The group of concordance classes of smoothings of CPn is canon-
ically isomorphic to the set of c-oriented diffeomorphism classes of smooth mani-
folds homeomorphic (or PL-homeomorphic) to CPn.

Proof of Theorem 8.

(i) Theorem 8 (i) follows from the fact that CPn is the (2n + 1)-skeleton of
K(Z, 2) = CP∞.

(ii) Any PL-homeomorphism P : CPn−−→CPn is homotopic to the identity or the

conjugation by (i). Choose (mod CPn× I) such a homotopy H and try to deform
it to a weak isotopy (mod CPn × ∂I)

H : CPn × I −−→ CPn × I .
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Such a deformation is obstructed (according to Theorem 1) by cohomology classes
in

H∗(CPn × (I, ∂I);P∗) .

But these groups are all zero. This proves Theorem 8 (ii).

Proof of Corollaries.

Corollaries 2 and 3 follow immediately from Theorem 8 (i) and (ii) and the
definitions.

Corollary 1 follows from the additional fact that

CPn
h
h
h
hhj

f

u

conjugation F/PL

CPn
''

''
')

f

is homotopy commutative for any f . The corollaries show that the three groups

(CPn, PL/O) , (CPn, F/O) , and (CPn, F/PL)

solve the correct problems.

Theorem 9. The characteristic variety of CPn may be taken to be

V = CP2 ∪ CP3 ∪ . . . ∪ CPn−1 −−→ CPn .

Thus any PL-manifoldM homotopy equivalent to CPn is determined uniquely by
choosing any homotopy equivalence g : M−−→CPn and calculating the splitting
invariant of g along V . Furthermore all such invariants are realizable.

The set of PL-homeomorphism classes of such M is therefore canonically
isomorphic to

Z for CP3

Z⊕ Z2 for CP4

Z⊕ Z2 ⊕ Z for CP5

Z⊕ Z2 ⊕ Z⊕ Z2 for CP6

...
...

...

etc.

Remark. Any CPn admits a c-orientation reversing PL-homeomorphism, i.e. a
piecewise linear conjugation. This follows from Corollary 1.
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Remark. The characteristic variety V does not contain CP1 because A =
kerSq2 ⊆ H2(CPn;Z2) = 0. In fact, the splitting obstruction of g along CP1

(i.e. Kervaire invariant of g−1(CP1)) is just the splitting obstruction of g along
CP2 taken modulo 2 (i.e. 1

8 (Index (g−1CP2)− 1)(modulo 2)).

Remark. hT (CPn) has another group structure coming from the isomorphism

hT (CPn) ∼= (CPn − {pt}, F/PL) ∼= (CPn−1, F/PL) .

If we denote the F/PL-structure by ⊗ and the characteristic variety group
structure by + then the operation a ◦ b = (a⊗ b)− (a+ b) is a multiplication.

The operations ◦ and + make hT (CPn) into a commutative associative ring.

The ring hT (CPn) ⊗ Z(odd) has one generator η obtained by suspending

the additive generator of hT (CP3) = Z. The elements η, η2, . . . , η[
n−1
2 ] span

hT (CPn)⊗ Zodd additively.

Remark. A suspension map Σ : hT (CPn)−−→hT (CPn+1) is defined by

(g :M−−→CPn) 7−→

(g : g∗ (line bundle) ∪ cone on boundary−−→CPn+1) .

If H denotes the total space of the canonical D2-bundle over CPn then we
have the diagram

hT (CPn) w
∗

u

θ

A
A
AAC
Σ

hT (H)
[

[
[
[[̂

∼=

u

θH ∼=hT (CPn+1)

hT (CPn) w
∗
∼= (H,F/PL)

with ∗ given by the induced bundle.1

Thus the image of Σ is isomorphic to

image(θ) = ker(S : [CPn, F/PL]−−→Pn)

by Theorem 3.

Corollary. An element in hT (CPn+1) is a suspension iff its top splitting invariant

is zero.

1 θH is an isomorphism because π1(H) = π1(∂H) = 0.
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(Note : When we suspend elements of hT (CPn) we merely add zeroes to the string
of splitting invariants.)

Smoothing elements of hT (CPn)

One interesting problem is to determine which elements of hT (CPn) are de-

termined by smoothable manifolds.

For example,

(0, 1) ∈ hT (CP4) ,

(0, 0, 0, 0, 0, 1) ∈ hT (CP8) , and

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) ∈ hT (CP16) are.

In fact, these manifolds are stably PL-homeomorphic to the corresponding pro-
jective spaces.

A non-smoothable example is provided by

(0, 0, 0, 0, 1) ∈ hT (CP6) .

In fact any element of hT (CPn) with fifth invariant non-zero is non-smooth-

able.1

Also any suspension of a non-smoothable homotopy CPn is likewise.

Understanding which (4K + 2)-invariants are realizable by smooth manifolds

is quite hard in general.

The corresponding problem for the 4K-invariants is theoretically possible be-
cause of Adams’ work on J(CPn).

This problem is further complicated by the fact that the set hS(CPn) has
no natural group structure when n is even. Theorem 3 asserts there are exact
sequences

0 −−→ hS(CP2n+1) −−→ (CP2n+1, F/O)
S1−−→ Z2

0 −−→ hS(CP2n) −−→ (CP2n, F/O)
S2−−→ Z .

S1 is a homomorphism, but S2 is not.

If we consider homotopy almost smoothings of CPn we do get a group

h+S(CPn) ∼= (CPn−1, F/O) ,

1 This follows from the fact that the 10-dimensional Kervaire manifold is not a
PL-boundary (mod 2).
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and

h+S(CPn)
natural
−−−−−→ hT (CPn)

hS(CPn)
natural
−−−−−→ hT (CPn)

are homomorphisms with the ⊗ structure on hT (CPn).

It would be interesting to describe all these group structures geometrically for
CPn.

Corollary 3 asserts that the set of c-oriented equivalence classes of differen-
tiable structures on CPn is isomorphic to [CPn, PL/O], a finite group.

We can calculate this group in another way if we ignore 2-torsion.

Proposition. [CPn, PL/O] is isomorphic to the zeroth stable cohomotopy group
of CPn modulo 2-torsion.

Proof. We apply (CPn, )⊗ Z[ 12 ] to the diagram

A
A

A
A
AA

�
N

N
N
NN

������

Ω(F/PL) PL/O BO

PL

���
��

�

N
N
N
NNP

O
N
N
N
NNP

F

���
��

�

F/PL

��
��

�

N
N
N
N
NP

'
'

'
''

N
N
N
NNP

and obtain
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4444444

�
N

N
N
NN

������
0

0 (CPn, PL/O)(odd) torsion free group

(CPn, PL)(odd)

���
��

��

N
N
N
NNP

O
N
N
N
NNP

(CPn, F )(odd)

���
��

�

torsion free group

��
��

��

A
A
A
A
AAC

��
��

�

[
[
[
[[]

0

Thus

(CPn, PL/O)(odd) ∼= (CPn, PL)(odd)

∼= (CPn, F )(odd) ≡ π0
s(CPn)(odd) .
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The Princeton notes on the Hauptvermutung

by M.A.Armstrong, C.P.Rourke, G.E.Cooke

Preface

The homotopy Hauptvermutung is the conjecture that a (topological) home-
omorphism between two PL (= piecewise linear) manifolds may be continuously
deformed to a PL homeomorphism.

These notes contain a proof, due to Casson and Sullivan, of the homotopy

Hauptvermutung for simply connected manifolds under the hypothesis of ‘no 2-
torsion in H4’. They were written in 1968 at the Institute for Advanced Study,
Princeton and reissued in the Warwick Lecture Note Series in 1972. Nearly 25 years

later there is still no other complete account available, hence their appearance in
a more permanent form in this volume.

The connection with the subsequent solution of the isotopy Hauptvermutung
by Kirby and Siebenmann [2, 3] is outlined in a coda. The two theories combine
to give a fibration

K(Z2, 3) ≃ TOP/PL −−→ G/PL −−→ G/TOP ≃ Ω4n(G/PL)

and the following theorem.

Theorem. Suppose that h : Q−−→M is a (topological) homeomorphism between
PL manifolds of dimension at least five, whose restriction to ∂M is PL. Then
there is an obstruction θ ∈ H3(M,∂M ;Z2) which vanishes if and only if h is iso-

topic to a PL homeomorphism keeping ∂M fixed. If in addition M is 1–connected
then h is homotopic to a PL homeomorphism if and only if δθ ∈ H4(M,∂M ;Z)
is zero.

When M is not 1–connected the solution to the homotopy Hauptvermutung
is bound to be more complicated (see the final remark in the coda).

More detail on the relationship of the results proved here with later results is

to be found in the paper of Ranicki at the start of this volume.

The Princeton notes consist of three papers written by Armstrong, Rourke
and Cooke, presented as three chapters, and a coda. The first chapter, written
by Armstrong, gives an account of the Lashof-Rothenberg proof for 4–connected
manifolds, and includes the ‘canonical’ Novikov splitting theorem used in the main

argument. The second, by Rourke, contains the geometry of the main proof, and
deals with simply connected manifolds which satisfy H3(M ;Z2) = 0. The treat-
ment follows closely work of Casson on the global formulation of Sullivan theory.
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This approach to the Hauptvermutung was the kernel of Casson’s fellowship disser-
tation [1] and a sketch of this approach was communicated to Rourke by Sullivan

in the Autumn of 1967. The remainder of the chapter contains an outline of
an extension of the proof to the weakest hypothesis (M simply connected and
H4(M ;Z) has no elements of order 2), and some side material on block bundles

and relative Sullivan theory. The final chapter, written by Cooke, gives the details
of the extension mentioned above. It contains part of Sullivan’s analysis of the
homotopy type of G/PL and its application in this context. (The other part of

this analysis is the verification that G/PL and BO have the same homotopy type
‘at odd primes’, see [5]). Sullivan’s original arguments (outlined in [4, 5]) were
based on his ‘Characteristic Variety Theorem’, and the present proof represents a

considerable simplification on that approach.

Sadly George Cooke is no longer with us. We recall his friendship and this
collaboration with much pleasure, and dedicate these notes to his memory.

M.A.A. (Durham), C.P.R. (Warwick)
January, 1996
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CHAPTER I

The Hauptvermutung according to

Lashof and Rothenberg

By M. A. Armstrong

§1. Introduction

The aim of Chapter I is to prove the following result.

(1.1) Theorem. Let h : Q−−→M be a topological homeomorphism between two

closed PL manifolds of dimension at least five. If M is 4–connected, then h is
homotopic to a PL homeomorphism.

The approach is due to Lashof and Rothenberg [11]. Our treatment differs
only in that we write with the specialist less in mind, and prefer to emphasise the
geometry throughout rather than enter a semi-simplicial setting. The theorem can

be refined, but we shall examine only the version given above. Stronger results,
due to Casson and Sullivan, are presented in Chapters II and III written by Rourke
and Cooke.

In this introduction we shall present a bird’s eye view of the proof of (1.1),

referring the reader to later sections for more detail. Suppose then that M and Q
are PL manifolds, and that we are presented with a (topological) homeomorphism
h from Q to M . We shall assume throughout that our manifolds are closed (com-

pact without boundary) and 4–connected. The first step is to use h to construct
a PL Rk-bundle over Q, and a topological trivialization of this bundle. Second,
by reference to Browder-Novikov theory, we show that if the given trivialization

is properly homotopic to a PL trivialization, then h is homotopic to a PL home-
omorphism. The problem of homotoping the topological trivialization to a PL
trivialization will then occupy the remainder of the argument. Use of Browder-

Novikov surgery necessitates the simple connectivity of our manifolds; the solution
of the trivialization problem will require that the manifolds be 4–connected.

Identify M with M × {0} ⊆ M × Rn for some large integer n, and think of
h as a (topological) embedding of Q in M × Rn. If we are in the stable range, in
other words if n is at least m+2, a result of Gluck [6] provides an ambient isotopy

{Ht} of M × Rn which moves h to a PL embedding

e = H1h : Q −−→ M × Rn .

Further, in this range, work of Haefliger andWall [7] shows that the new embedding
has a PL normal disc bundle. Taking the pullback gives a PL n-disc bundle over
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Q and an extension of e to a PL embedding e : E−−→M × Rn of its total space

onto a regular neighbourhood V of e(Q) in M × Rn. Let E
π
−−→Q denote the

associated Rn-bundle. Choose a closed n-dimensional disc D ⊆ Rn centred on the
origin, and of sufficiently large radius so that V is contained in the interior of the
‘tube’ M ×D. Then M ×D\int(V ) is an h-cobordism between M × ∂D and ∂V

and, by the h-cobordism theorem, this region is PL homeomorphic to the product
∂V × [0, 1]. Therefore we may assume that e : E−−→M × Rn is onto.

So far we have produced the following diagram

E w
e

u
π

M × Rn

u
p1

Q w
h M

which commutes up to homotopy, with e : E−−→M × Rn a PL homeomorphism,

and π : E−−→Q a PL Rn-bundle. We claim that e is stably isotopic to a topological
bundle equivalence. Certainly the composition

H−1
1 e : E −−→ M × Rn

provides a topological normal bundle for the embedding h : Q−−→M × Rn . On
the other hand this embedding has a natural normal bundle given by

h× 1 : Q× Rn −−→ M × Rn .

These two are stably isotopic (see for example Hirsch [8] combined with Kister [9]).

More precisely, if r is at least (m+ 1)2 − 1 then the associated normal bundles of

h : Q −−→ M × Rn × Rr

are isotopic. Therefore

e× 1 : E × Rr −−→ M × Rn × Rr

is isotopic to a topological bundle equivalence. Let g denote this equivalence, write

E′ = E × Rr (k = n+ r) ,

and consider

g
A
A

�

E′ w
e× 1

u

πp1

M × Rk

u

p1

u h× 1
Q× Rk

u
p1

Q w
h M u h Q
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The composite

t = (h−1 × 1)g : E′ −−→ Q× Rk

is topological trivialization of the PL Rk-bundle πp1 : E′−−→Q.

Assume for the moment that t is properly homotopic to a PL trivialization.
(We remind the reader that a proper map is one for which the inverse image of
each compact set is always compact.) Then the inverse of this new trivialization

followed by e× 1 gives a PL homeomorphism

f : Q× Rk −−→ M × Rk

which is properly homotopic to

h× 1 : Q× Rk −−→ M × Rk .

Now let λ :M−−→Q be a PL map which is homotopic to h−1, so that the compo-

sition

Q× Rk
f
−−→ M × Rk

λ×1
−−→ Q× Rk

is homotopic to the identity via a proper homotopy

F : Q× Rk × I −−→ Rk .

Notice that both F0 = (λ × 1)f and F1 = id : Q × Rk−−→Rk are PL and trans-
verse regular to the submanifold Q × {0} of Q × Rk. Also F−1

0 (Q × {0}) is PL

homeomorphic to M , and F−1
1 (Q × {0}) is the submanifold Q × {0} × {1} of

Q×Rk×{1}. Using the relative simplicial approximation theorem of Zeeman [22]
and the transverse regularity theorem of Williamson [20], we may assume without

loss of generality that F is itself PL and transverse regular to Q× {0} ⊆ Q×Rk.
Let W denote the compact manifold F−1(Q×{0}). Then W is a proper subman-
ifold of Q×Rk × I which has a trivial normal bundle (the pullback of the natural

normal bundle of Q×{0} ⊆ Q×Rk under F |W ). Embed Q×Rk in a sphere SN of
high dimension, and extend this embedding in the obvious way to an embedding
of Q × Rk × I in SN+1. If νQ denotes the normal bundle of Q × {0} in SN , and

νW that of W in SN+1, then our map F |W : W−−→Q × {0} extend to a bundle
map νW−−→νQ.

Summarizing, we have produced a PL manifold W , whose boundary consists
of the disjoint union of M and Q, and a PL map F :W−−→Q such that :

(i) F |Q is the identity;
(ii) F |M is a homotopy equivalence;

(iii) F pulls back the stable PL normal bundle of Q to that of W .

In this situation we may apply the surgery results of Browder and Novikov [2, 3, 4, 14]

to alter W and F , though not ∂W or F |∂W , until F becomes a homotopy equiv-
alence. The net result is an h-cobordism W ′ between M and Q, together with a
deformation retraction F ′ : W ′−−→Q. The h-cobordism theorem provides a PL
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homeomorphism G :M × I−−→W ′, and F ′G is then a PL homotopy between the
maps

F0G0 , F1G1 : M −−→ Q .

Now F0 : M−−→Q consists of a PL automorphism of M , followed by a PL map

from M to Q that is homotopic to h −1. Also, F1 : Q−−→Q is the identity map,
and both of G0, G1 are PL homeomorphisms. Therefore h−1 is homotopic to a
PL homeomorphism. Consequently h is also homotopic to a PL homeomorphism.

This completes our outline of the proof of Theorem 1.1.

Remarks. 1. If the dimension of Q is even there is no obstruction to performing
surgery. However, when the dimension is odd, there is an obstruction which must
be killed and which, in the corresponding smooth situation, would only allow us

to produce an h-cobordism betweenM and the connected sum of Q with an exotic
sphere. Lack of exotic PL spheres means that, in the PL case, killing the surgery
obstruction does not alter the boundary components of W .

2. In the terminology of Sullivan [18, 19] the PL bundle π : E−−→Q together with
the fibre homotopy equivalence

E w
(h−1 × 1)e

u
π

Q× Rn

u
p1

Q Q

is a characteristic (F/PL)n-bundle for h−1, and is classified by a homotopy class

of maps from Q to F/PL. Our work in stably moving e to a topological bundle
equivalence can be reinterpreted as factoring this class through TOP/PL. The
final step (deforming the topological trivialization through fibre homotopy equiv-

alences to a PL trivialization) amounts to proving that the associated composite
map

Q −−→ TOP/PL −−→ F/PL

is homotopically trivial. This will be the setting in the Chapters II, III by Rourke
and Cooke.

Conversations with Colin Rourke were invaluable during the preparation of
these notes, and I would like to thank him for his help.

§2. Splitting theorems

At the end of §1 we were left with a PL Rk-bundle E′−−→Q, a topological
trivialization t : E′−−→Q× Rk and the problem of exhibiting a proper homotopy
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between t and a PL trivialization. Triangulate Q in some way. We can now
examine the restriction of the bundle to each simplex and try to push through an

inductive argument. More precisely, let ∆ be a simplex of the triangulation and
E′(∆) the part of the bundle over ∆. Our problem reduces to that of constructing,
inductively, a proper homotopy between t|E′(∂∆) and a PL bundle equivalence

E′(∂∆)−−→∂∆×Rk, in such a way that it extends to one that moves t|E′(∆) to a
PL bundle equivalence E′(∆)−−→∆×Rk. This is the motivation for the ‘splitting
theorems’ below.

Maps between bounded manifolds will, without further mention, be assumed

to be maps of pairs (that is to say, they should carry boundary to boundary).
Let M be a compact topological manifold of dimension m, W a PL manifold of
dimension m+ k, and h :W−−→M × Rk a proper homotopy equivalence.

Definition. A splitting for h :W−−→M×Rk consists of a compact PL manifold
N , a PL homeomorphism s : N × Rk−−→W and a proper homotopy ϕ from

hs : N × Rk−−→M × Rk to λ× 1 : N × Rk−−→M × Rk, where λ is the homotopy
equivalence given by the composition

N
×0
−−−→ N × Rk

hs
−−−→ M × Rk

proj.
−−−→ M .

The splitting will be denoted by the ordered triple (N, s, ϕ). Remember, under
our convention, h, s, and the proper homotopy ϕ all preserve boundaries. When

h has a splitting we shall simply say that h splits. A splitting (N ′, s′, ϕ′) of
h| : ∂W−−→∂M × Rk extends to one for h if there is a splitting (N, s, ϕ) for
h :W−−→M × Rk such that ∂N = N ′, s|∂N×Rk = s′ and ϕ|∂N×Rk×I = ϕ′.

(2.1) Splitting theorem. Let W be a PL manifold, M a compact topological
manifold and h :W−−→M×Rk a homeomorphism. Then h splits if M is simply

connected, and is either a closed manifold of dimension at least five, or has a
simply connected boundary and dimension at least six.

The proof of this theorem will occupy §4. We shall construct the splitting of
h using a very concrete construction due to Novikov, and we shall call a splitting

a Novikov splitting if it arises in this way. There is a relative version of the
theorem for Novikov splittings.

(2.2) Relative splitting theorem. Let W be a PL manifold, M a compact sim-
ply connected topological manifold of dimension at least five, and h :W−−→M×Rk

a homeomorphism. Then any Novikov splitting for h|∂W extends to a Novikov

splitting for h.

A proof of this relative version is given in §5.

Remarks. (1) In our applications to the trivialization problem, the relative split-
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ting theorem (2.2) will be applied in situations whereM is either a cell of dimension
at least six, orM is a cell of dimension five which is already supplied with a rather

special splitting over the boundary. The Poincaré Conjecture will then tell us that
the associated manifold N is a PL cell. Our hypothesis of 4–connectivity will
enable us to avoid any reference to the splitting theorem over cells of dimension

less than five.
(2) For k = 1 both theorems come directly from work of Siebenmann [16]. His
arguments will not be repeated here, though his results are summarized in the

next section. The manifold N will occur in a very natural way as the boundary
of a collar neighbourhood of an end of M × R. For higher values of k, ideas of
Novikov allow us to produce a situation which is ripe for induction. Siebenmann’s

results are applied a second time in the inductive step.

§3. Siebenmann’s collaring theorems

In later sections we shall rely heavily on results from Siebenmann’s thesis [16].

For completeness we sketch the necessary definitions and theorems. We remark
that Siebenmann works entirely in the smooth category, however (as he notes)
there are analogous PL techniques, and we shall interpret all the results in PL

fashion.

An end E of a Hausdorff space X is a collection of subsets which is maximal
under the properties :

(i) Each member of E is a non-empty open connected set with compact frontier
and non-compact closure;

(ii) If A1, A2 ∈ E then there exists A3 ∈ E such that A3 ⊆ A1 ∩A2.

(iii) The intersection of the closures of all the sets in E is empty.
A subset U of X is a neighbourhood of E if it contains some member of E .

Our spaces are at worst locally finite simplicial complexes. For these one can
show:

(i) The number of ends of X is the least upper bound of the number of compo-
nents of X\K, where K ranges over all finite subcomplexes of X.

(ii) The number of ends of X is an invariant of the proper homotopy type of X.

A compact space has no ends; R has two ends and Rn has one end when
n ≥ 2; if X is compact then X × R has two ends; the universal covering space of
the wedge of two circles has uncountably many ends. Think of a compact manifold
with non-empty boundary. Removing a boundary component M creates one end,

and this end has neighbourhoods which are homeomorphic to M × [0, 1). Indeed
the end has ‘arbitrary small’ neighbourhoods of this type, in the sense that every
neighbourhood contains one of these so called collar neighbourhoods.
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Let W be a non-compact PL manifold. A collar for an end E of W is a
connected PL submanifold V of W which is a neighbourhood of E , has compact

boundary, and is PL homeomorphic to ∂V × [0, 1). In what follows we look for
conditions on an end which guarantee the existence of a collar.

Given an end E of W , let {Xn} be a sequence of path connected neighbour-
hoods of E whose closures have empty intersection. By selecting a base point xn
from each Xn, and a path which joins xn to xn+1 in Xn, we obtain an inverse
system

S : π1(X1, x1)
f1
←−− π1(X2, x2)

f2
←−− · · · .

Following Siebenmann, we say that π1 is stable at E if there is a sequence of
neighbourhoods of this type for which the associated inverse system induces iso-

morphisms

im(f1)
∼=
←−− im(f2)

∼=
←−− · · · .

When π1 is stable at E , define π1(E) to be the inverse limit of an inverse system S
constructed as above. One must of course check that this definition is independent

of all the choices involved.

Recall that a topological space X is dominated by a finite complex K if

there are maps

K
f

−−−−−→←−−−−−
g

X

together with a homotopy

fg ≃ 1 : X −−→ X .

Let D be the collection of all those spaces which are of the homotopy type of a
CW complex and dominated by a finite complex.

Definition. An end E of W is tame if π1 is stable at E and, in addition, there
exist arbitrarily small neighbourhoods of E that lie in D.

The reduced projective class group K̃0(Z[G]) is the abelian group of
stable isomorphism classes of finitely generated projective Z[G]-modules.

(3.1) The collaring theorem. Let E be a tame end of a PL manifold which

has compact boundary and dimension at least six. There is an obstruction in
K̃0(Z[π1(E)]) which vanishes if and only if E has a collar.

The corresponding relative version involves the ends of a PL manifold W
whose boundary is PL homeomorphic to the interior of a compact PL manifold.
(So in particular the ends of its boundary all have collars.) A collar for an end E
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of W is now connected PL submanifold neighbourhood V of E such that :

(i) The frontier bV of V in W is a compact PL submanifold of W (this frontier

may itself have a boundary); and
(ii) V is PL homeomorphic to bV × [0, 1).

(3.2) Relative collaring theorem. Let E be a tame end of a PL manifold
which has dimension at least six, and whose boundary is PL homeomorphic to the
interior of a compact PL manifold. Then E has a collar provided an obstruction

in K̃0(Z[π1(E)]) vanishes. Further, the collar of E can be chosen to agree with any
preassigned collars of those ends of ∂W which are ‘contained’ in E.

Remarks on the proof of (3.1). A tame end is always isolated (in the sense
that it has a neighbourhood which is not a neighbourhood of any other end), and

its fundamental group is finitely presented. Given a tame end E of W , it is easy
to produce a neighbourhood V of E which is a connected PL manifold having
compact boundary and only one end. The idea is then to modify V so that the

inclusion of ∂V in V becomes a homotopy equivalence, when V must be a collar
by Stallings [17]. Preliminary modifications ensure that :

(i) ∂V is connected,
(ii) the homomorphisms π1(E)−−→π1(V ), and π1(∂V )−−→π1(V ) induced by in-

clusion are isomorphisms and
(iii) the homology groups Hi(Ṽ , ∂̃V ) are zero for i ̸= n− 2, where n = dim(W ).

Here Ṽ denotes the universal covering space of V and, by (ii), the part of

Ṽ which sits over ∂V is precisely the universal cover ∂̃V of ∂V . At this stage
Hn−2(Ṽ , ∂̃V ) turns out to be a finitely generated projective Z[π1(E)]-module. The
class of this module in K̃0(Z[π1(E)]) is the obstruction mentioned in the state-

ment of (3.1). When this module is stably free we can modify V further so that

H∗(Ṽ , ∂̃V ) is zero, and the inclusion of ∂V in V is then a homotopy equivalence.

The following result will be needed later. Let M be a compact topological

manifold of dimensionm,W a PLmanifold of dimensionm+1, and h :W−−→M×
R a proper homotopy equivalence of pairs.

(3.3) Theorem. The ends of W are tame.

Proof. Since h is a proper homotopy equivalence W has exactly two ends. Let g
be a proper homotopy inverse for h, and E the end whose neighbourhoods contain
sets of the form g(M × [t,∞)).

(a) Given a path connected neighbourhoodX of E , choose t so that g(M×[t,∞)) is
contained in X. Write α(X) for the homomorphism from π1(M) to π1(X) induced
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by the composite map

M
×t
−−→ M × [t,∞)

g
−−→ X ,

and note that α(X) is a monomorphism because hg is homotopic to the identity

map of M × R.

Begin with a path connected neighbourhood X1 of E . If F is a proper ho-

motopy from gh to the identity map of W , choose a path connected neighbour-
hood X2 of E which lies in the interior of X1 and satisfies F (X2 × I) ⊆ X1. If
f1 : π1(X2)−−→π1(X1) is induced by inclusion we have a commutative diagram

π1(X2)��
�
��α(X2)

w
f1 π1(X1)

π1(M)

N
N
NNP
α(X1)

We claim that im(α(X1)) = im(f1), so that α(X1) is an isomorphism from
π1(M) to im(f1) ⊆ im(α(X1)). We now select X3 in the interior of X2 with the
property F (X3 × I) ⊆ X2, and so on. The inverse system

S : X1

f1
←−− X2

f2
←−− X3 ←−− · · ·

then shows that π1 is stable at E , and that π1(E) is isomorphic to π1(M).

(b) We quote the following lemma from Siebenmann [16].

Lemma. Let Z be connected CW complex which is the union of two connected
sub-complexes Z1, Z2. If Z1 ∩ Z2, Z ∈ D, and if both π1(Z1), π1(Z2) are retracts

of π1(Z), then Z1, Z2 ∈ D.

From part (a) we know that π1 is stable at E , and that π1(E) is finitely pre-
sented. To see the latter, remember that π1(E) ∼= π1(M) and that M is a compact
topological manifold, and therefore dominated by a finite complex. Hence π1(M)

is a retract of a finitely presented group and is itself finitely presented. Assume
for simplicity that M is closed. Given a neighbourhood X of E , Siebenmann’s
methods allow us to construct a connected PL submanifold neighbourhood V in-

side X such that the homomorphisms π1(E)−−→π1(V ), π1(∂V )−−→π1(V ) induced
by inclusion are both isomorphisms. Then π1(V ) and π1(W\int(V )) are both iso-
morphic to π1(W ). To complete the proof of (3.3) we simply apply the lemma,

taking Z =W , Z1 = V and Z2 =W\int(W ).

One can define πr to be stable at E in exactly the same way as for π1. Having
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done this the first part of the above proof is easily modified to give :

(3.4) Addendum. If E is an end of W then, for each r, πr is stable at E and

πr(E) ∼= πr(M) ∼= πr(W ) .

§4. Proof of the splitting theorem

We consider the splitting theorem (2.1) in its simplest form. As before let W
be a PL manifold, M a closed simply connected topological manifold of dimension

at least five and h :W−−→M×Rk a homeomorphism. We must show that h splits.

Let T k denote the k-dimensional torus (the cartesian product of k copies of
the circle), and let

D = {(x1, x2, . . . , xk) ∈ Rk ∥ |xj | ≤ 1, 1 ≤ j ≤ k} .

Starting from an embedding of S1×R in R2 we can inductively define embeddings

T k−1 × R ⊆ Rk

for which the universal covering projection

e = exp× 1 : Rk−1 × R −−→ T k−1 × R

is the identity on a neighbourhood of D. We leave the details to the reader.

If P denotes h−1(M×T k−1×R), then P is an open subset ofW and therefore
inherits a PL structure fromW . Write h1 for the restriction of h to P , and consider

the pullback from :

P̃ w
h̃1

u

p

M × Rk

u
1× e

P w
h1 M × T k−1 × R

SinceM is simply connected, P̃ is just the universal cover of P , and p the associated
covering projection. Let i denote the inclusion map of P in W .

(4.1) Theorem. There is a PL homeomorphism d : P̃−−→W such that :

(i) d = ip on a neighbourhood of h̃−1
1 (M ×D), and

(ii) hd is isotopic to h̃1 keeping a neighbourhood of h̃−1
1 (M ×D) fixed.

Remark. In view of (4.1) we shall be able to restrict ourselves to the problem of
splitting h̃1 : P̃−−→M × Rk.
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Proof of 4.1. Diagramatically we have

Wh
h
h
h
h
h
h
h
h
hhj

h

*'
'
'
'
'
'
'
''

i

75
5
5
55
d

P̃ w
h̃1

u

p

M × Rk

u
1× e

P w
h1 M × T k−1 × R

The map 1 × e : M × Rk−−→M × T k−1 × R is the identity on M ×Dϵ, for some

ϵ > 1, where

Dϵ = {(x1, x2, . . . , xk) ∈ Rk ∥ |xj | ≤ ϵ, 1 ≤ j ≤ k} .

Therefore ip PL embeds h̃−1
1 (M × Dϵ) in W . Now h̃−1

1 (M × Dϵ) has only one

end; it is clearly tame and its fundamental group is trivial because M is simply
connected. The collaring theorem provides a compact PL submanifold B of P̃
such that

h̃−1
1 (M × int(Dϵ)) = B ∪ ∂B × [0, 1) , h̃−1

1 (M ×D) ⊆ int(B) .

Consider the PL manifold P̃\int(B). Again we have one simply connected end
and, if V is a collar of this end, the region P̃\(int(B)∪ int(V )) is an h-cobordism.

Hence by Stallings [17] there is a PL homeomorphism γ : P̃−−→B ∪ ∂B × [1, 0)
which is the identity on B. At this stage ipγ : P̃−−→W is a PL embedding that
agrees with ip on B. By the same trick, applied this time in W , we can ‘expand’

ipγ to provide a PL homeomorphism d : P̃−−→W which satisfies (i).
To deal with property (ii) it is sufficient to show that

ψ = hdh̃−1
1 : M × Rk −−→ M × Rk

is isotopic to the identity keeping a neighbourhood of M ×D fixed. Write

ψ(m,x) = (ψ1(m,x), ψ2(m,x))

and use the ‘Alexander isotopy’ defined by

ψ0 = identity ,

ψt(m,x) =
(
ψ1(m, tx),

1

t
ψ2(m, tx)

)
(0 < t ≤ 1) .

This completes the proof of (4.1).

We make a couple of assertions concerning proper maps, leaving the reader

to fill in the details.

(4.2) Assertion. Let A and B be compact spaces. A map f : A×Rn−−→B ×Rn
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is proper if and only if given an arbitrarily large positive real number ϵ there is a
positive δ such that |p2f(a, x)| > ϵ, for all a ∈ A and x ∈ Rn with |x| > δ.

(4.3) Assertion. A bundle map between two bundles which have locally compact

base spaces and a locally compact fibre is proper if and only if the corresponding
map of base spaces is proper.

(4.4) Theorem. Let P be a PL manifold of dimension m+r+1 and h : P−−→M×
T r × R a proper homotopy equivalence. Then h splits.

Proof. Since h is a proper homotopy equivalence, P has exactly two ends. Both
are tame by (3.3), and their fundamental groups are free abelian of rank r. There

is no obstruction to collaring because K̃0(Z[Zr]) is the trivial group (see [1]). Let
U and V be disjoint collars of the two ends. Addendum (3.4) can be used to see

that P\(int(U) ∪ int(V )) is an h-cobordism, and therefore P\(int(U) ∪ V ) is PL
homeomorphic to ∂U × [0, 1). But P\(int(U) ∪ V ) is also PL homeomorphic to
P\int(U). Collecting together this information we find there is a PL homeomor-

phism s : ∂U × R−−→P . Let

g = hs : ∂U × R −−→ M × T r × R ,

and write

g(u, x) =
(
g1(u, x), g2(u, x)

)
where g2(u, x) ∈ R. As g is a proper map, the limit of g2(u, x) as x tends to +∞
is either +∞ or −∞ simultaneously for all u ∈ U. We assume s chosen so as to
give the positive limit. The map

ϕ : ∂U × R× [0, 1] −−→ M × T r × R ;

(u, x, t) −−→
(
g1(u, tx), (1− t)x+ tg2(u, x)

)
is a homotopy between g and λ× idR, where λ(u) = g1(u, 0). Using (4.2) one easily
checks that ϕ is a proper map. Therefore (∂U, s, ϕ) splits h.

Returning to the terminology of 4.1 we obtain the next step in the proof of
the splitting theorem (2.1) :

(4.5) Theorem. The homeomorphism h̃1 : P̃−−→M×Rk splits.

Proof. Apply (4.4) repeatedly to construct a tower for h1 : P−−→M × T k−1 ×R
as illustrated below.
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P k × R w
hk M × R

u
M × S1

· · · · · · · · · · · · · · ·

P 2 × R w
s2 P2 w

h2 M × T k−2 × R w

u

M × T k−2

P 1 × R w
s1 P w

h1 M × T k−1 × R w M × T k−1

We say a few words in case the reader starts operating at the wrong end of the
diagram. Start with the homeomorphism h1 : P−−→M × T k−1 × R. Split this
using (4.4) to obtain a compact PL manifold P 1, a PL homeomorphism s1 :

P 1 × R−−→P and a proper homotopy ϕ1 from h1s1 to λ1 × 1, where λ1 is the
homotopy equivalence given by the composite

P 1

×0
−−−→ P 1 × R

h1s1
−−−→ M × T k−1 × R

proj.
−−−→ M × T k−1 .

Now induce h2 : P2−−→M × T k−2 × R as the pullback

P2 w
h2

u

M × T k−2 × R

u
idM×Tk−2 × exp

P 1 w
λ1 M × T k−1

Then h2 is a proper homotopy equivalence by Assertion (4.3). Split again using
(4.4) to produce (P 2, s2, ϕ

2), and so on. The process terminates after k steps.

For each r let P̃r denote the universal covering space of Pr. There are induced
bundle maps
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P̃r+1 w
s̃r

u

P̃r w
h̃r

u

M × Rk−r+1

u
1× exp× 1

P r × R w
sr Pr w

hr M × T k−r × R

Note that

P̃k+1 = P k , P̃k = Pk , s̃k = sk , h̃k = hk .

Let

N = P k = P̃k+1 ,

and let s̃ denote the composition

N × Rk
s̃k×1
−−−→ P̃k × Rk−1

s̃k−1×1
−−−−→ · · ·

s̃2×1
−−−→ P̃2 × R

s̃1
−−−→ P̃

where s̃r × 1 stands for s̃r × idRr−1 . Then N is a compact PL manifold and

s̃ : N × Rk −−→ P̃

is a PL homeomorphism. We are left to construct a proper homotopy ϕ̃ between
h̃1s̃ and the usual product λ̃× idRk . For each r the tower construction provides a
proper homotopy ϕr from hrsr to λr × idR. These lift to proper homotopies (use

(4.3) again) from h̃r s̃r to h̃r+1 × idR, which in turn induce proper homotopies

h̃1s̃ = h̃1s̃1(s̃2 × 1) · · · (s̃k × 1) ≃ (h̃2s̃2 × 1) · · · (s̃k × 1)

≃ · · ·

≃ h̃ks̃k × 1

≃ λ̃× 1 .

If ϕ̃ denotes the composite proper homotopy from h̃1s̃ to λ̃×1, then (N, s̃, ϕ̃) splits
h̃1. This completes the proof of (4.4).
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Proof of the splitting theorem (2.1). By (4.1) and (4.4) we have the following
situation

N × Rk
s̃
−−→ P̃

d
−−→ W

h
−−→ M × Rk

where hd is isotopic to h̃1 : P̃−−→M × Rk. Let

s = ds̃ : N × Rk −−→ W ,

and construct a proper homotopy ϕ from hs to λ× idRk as the composition

hs = hds̃ ≃ h̃1s̃ ≃ λ̃× idRk ≃ λ× idRk .

The triple (N, s, ϕ) is a splitting for h :W−−→M × Rk, as required.

We have proved the splitting theorem when M is a closed simply connected

manifold of dimension at least five. Exactly the same process goes through for
compact, simply connected, manifolds of dimension at least six which have a simply
connected boundary. All maps and homotopies must now preserve boundaries, and

the relative collaring theorem is needed for the bounded analogues of (4.1) and
(4.4).

§5. Proof of the relative splitting theorem

LetW be a PL manifold,M a compact topological manifold (which may have
boundary), and h :W−−→M × Rk a homeomorphism.

Definition. A splitting of h is a Novikov splitting if it can be obtained by the
construction presented in §4.

More precisely, a splitting (N, s, ϕ) of h is a Novikov splitting if (keeping the
previous notation) we can find a PL homeomorphism d : P̃−−→W satisfying the

hypotheses of (4.1), plus a tower for h1 : P−−→M × T k−1 ×R, such that N = P k,
s = ds̃ and ϕ can be constructed from the tower homotopies and the isotopy of
(4.1) in the manner described earlier.

Note that it makes sense to speak of a Novikov splitting for h :W−−→M ×Rk

even when M is not simply connected. Of course, in this case, the covering spaces
involved are no longer universal coverings. For example, P̃ becomes the cover of
P which corresponds to the subgroup π1(M)▹ π1(M × T k−1 × R).

In the special case whereM is a PL manifold, and h is a PL homeomorphism,
then (M,h−1, h−1×1) is a splitting for h and will be called the natural splitting.



122 armstrong

It is a Novikov splitting. Just take d = h−1h̃1 : P̃−−→W and use

P 1 = M × T k−1 , s1 = h−1
1 ,

Pr = M × T k−r × R , P r = M × T k−r ,

hr = sr = identity (r > 1) ,

as a tower for h1 : P−−→M × T k−1 × R.

For the remainder of this section we shall assume that M is simply connected
and has dimension at least five. Given a Novikov splitting for h|∂W , we must show
that it extends to a Novikov splitting for h. There are two essential ingredients

in the construction of a Novikov splitting, namely a suitable PL homeomorphism
d : P̃−−→W and a tower for h1 : P−−→M × T k−1 × R. We therefore need relative
versions of (4.1) and (4.4).

(5.1) Theorem. Suppose that d′ : ∂P̃−−→∂W is a PL homeomorphism which
satisfies :

(i) d′ = ip|
∂P̃

on a neighbourhood of h̃−1
1 (∂M×D), and

(ii) (h|∂W )d′ is isotopic to h̃1|∂P̃ keeping a neighbourhood of h̃−1
1 (∂M×D) fixed.

Then there is a PL homeomorphism d : P̃−−→W which satisfies (i) and (ii) of
(4.1), such that d|

∂P̃
= d′ and the isotopy of hd extends that of (h|∂W )d′.

Proof. Proceeding essentially as in (4.1) we use the relative collaring theorem
(3.2) to construct a PL homeomorphism d : P̃−−→W such that d = ip on a

neighbourhood of h−1
1 (M ×D), and hd is isotopic to h̃1 keeping a neighbourhood

of h̃−1
1 (M ×D) fixed. Along the way we write

P̃ = B ∪ bB × [0, 1) , ∂P̃ = B′ ∪ ∂B′ × [0, 1)

where B is a compact PL submanifold of P̃ which meets ∂P̃ transversally, B′ =
B ∩ ∂P̃ , bB is the frontier of B in P̃ , and :

h̃−1
1 (M ×D) ⊆ int(B) ,

d = ip on a neighbourhood of B ,

d|
∂P̃

= d′ on a neighbourhood of B′ .

Since d|∂B′×[0,1) , d′|∂B′×[0,1) are collars of d′(∂B′) in ∂W\d′(int(B′)), there is a
PL ambient isotopy of ∂W which moves d|

∂P̃
so as to agree with d′ whilst keeping

d′(B′) fixed. Extend this ambient isotopy to an ambient isotopy H of all of W
which keeps d(B) fixed, and let

d = H1d : P̃ −−→ W .

Then by construction we have d|
∂P̃

= d′ and d = ip on a neighbourhood of

h̃−1
1 (M ×D).
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Take the given isotopy from (h|∂W )d′ to h̃1|∂P̃ and extend it over P̃ , keeping

a neighbourhood of h̃−1
1 (M ×D) fixed, to an isotopy from hd to a PL homeomor-

phism g : P̃−−→M × Rk. Then

ψ = gh̃−1
1 : M × Rk −−→ M × Rk

is the identity on ∂M × Rk and on a neighbourhood of M × D. The Alexander
isotopy constructed for (4.1) slides ψ to the identity, keeping ∂M × Rk and a
neighbourhood of M × D fixed. Therefore g is isotopic to h̃1 leaving ∂P̃ and a

neighbourhood of h̃−1
1 (M ×D) fixed. Combining this isotopy with that from hd

to g gives the required result.

(5.2) Theorem. Let P be a PL manifold of dimension m+r+1 and h : P−−→M×
T r×R a proper homotopy equivalence of pairs. Then any splitting of h|∂P extends
to a splitting of h.

Proof. Let (N ′, s′, ϕ′) be a splitting of h|∂P . Clearly P has two ends, and

s′|N ′×[1,∞) provides a collar of those ends of ∂P contained by one of the ends
of P . Using the relative collaring theorem (3.2) we can extend this collar to
a collar of the whole end. If N denotes the base of the extended collar, then

∂N = N ′. In exactly the same way we can produce a (disjoint) collar of the other
end which is compatible with s′|N ′×[−1,−∞). As in (4.4) we have an h-cobordism
(this time between manifolds with boundary) sandwiched by the two collars. A

version of Stallings [17] for manifolds with boundary provides a PL homeomor-
phism s : N ×R−−→P such that s|N ′×R = s′. If we can find a proper homotopy ϕ
between hs and the usual product λ× idR which extends ϕ′, then (N, s, ϕ) is the

required splitting of h. We can certainly extend ϕ′ to a proper homotopy between
hs and some map g : N × R−−→M × T r × R. Then, proceeding as in (4.4), we
can construct a proper homotopy from g to λ × idR which fixes N ′ × R. The

composition of the two homotopies gives ϕ.

A proof of our relative splitting theorem (2.2) may now be obtained simply

by reworking the material of §4, allowingM to have boundary and using (5.1) and
(5.2) in place of (4.1) and (4.4).

We end this section with the observation that in the special case whenM and
h are both PL, we can extend the natural splitting of h|∂W to a splitting of h.

§6. The trivialization problem

This final section will be devoted to a proof of the following result.

(6.1) Theorem. Let X be a compact 4–connected polyhedron of dimension m,
π : E−−→X a PL Rk-bundle with k ≥ m + 2, and t : E−−→X × Rk a topological
trivialization. Then t is properly homotopic to a PL trivialization.



124 armstrong

As a direct corollary we have a solution to the bundle trivialization problem
proposed in §1. A proof of (6.1) will therefore complete our arguments.

Proof of (6.1). Triangulate X in some way, let K denote the 4–skeleton of the

triangulation, and CK the cone on K. Since X is 4–connected, the inclusion map
of K into X extends to a map d from all of CK to X. Using d we can pull back
the diagram

E w
t

u

X × Rk

u
X X

to give a bundle over CK and trivialization

E∗ w
t∗

u

CK × Rk

u
CK CK

As CK is contractible, we can find a PL bundle equivalence

f : E∗ −−→ CK × Rk .

Now let E(K) denote the part of E which lies over K, and extend

K × Rk
t−1

−−−→ E(K)
f
−−−→ K × Rk

to a map g : X × Rk−−→X × Rk as follows. Use the contractibility of CK again

to produce a map r : X−−→CK which extends the identity on K, and define

g(x, u) = (x, p2ft
∗−1(r(x), u)) .

Then g is a bundle equivalence and is homotopic to the identity via a proper
homotopy. Therefore gt : E−−→X×Rk is a topological trivialization of our bundle
which is properly homotopic to t and which, by construction, is PL over K.

We now apply the splitting process over each simplex ∆ of X, in other words
we split t : E(∆)−−→∆ × Rk, taking care that the splittings fit together to give

a splitting of t : E−−→X × Rk. Since t is already PL over the 4–skeleton of X,
we may use the natural splitting over each simplex of K. These splittings are of
course compatible, in the sense that the natural splitting over a simplex restricts
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to the natural splitting over any face. Having rid ourselves of low dimensional
problems in this way, we work on the remaining simplexes inductively in order

of increasing dimension. The relative splitting theorem allows us to construct a
Novikov splitting over each simplex which, when restricted to a face is the splitting
constructed earlier. Suppose (B, s, ϕ) is the splitting over ∆. We observe that B

is PL homeomorphic to ∆. If ∆ ∈ K, then B = ∆, and for the other simplexes we
can use the Poincaré Conjecture noting that, in the special case of a 5-simplex, we
know the boundary is already standard. Therefore we have a compatible system

of PL homeomorphisms

s : ∆× Rk −−→ E(∆) (∆ ∈ X)

and a compatible family of proper homotopies ϕ : ∆ × Rk−−→∆ × Rk from ts to

λ× idRk .

A homeomorphism from a ball to itself, which is the identity on the boundary,

is isotopic to the identity keeping the boundary fixed. Therefore, again taking the
simplexes in some order of increasing dimension, we can inductively homotope the
λ’s to the identity. Combining all these homeomorphisms and homotopies gives a

PL homeomorphism

s : X × Rk −−→ E

together with a proper homotopy from ts to the identity. Hence t is homotopic to
s−1 via a proper homotopy that is fixed over K. Although s−1 sends ∆ × Rk to
E(∆), for each ∆ ∈ X, it is not at this stage a bundle map. If Γ is a PL section of

E π−−→ X there is an ambient isotopy H of E such that H1s
−1(∆× {0}) = Γ(∆)

for every simplex ∆ of X. To construct H we use the Unknotting Theorem [21]
inductively. For the inductive step we have a situation where s−1(∆ × {0}) and

Γ(∆) are two embeddings of ∆ into E(∆) which agree on ∂∆, and which are
therefore ambient isotopic keeping ∂∆ fixed. The section Γ now has two normal
bundles in E, namely the bundle structure of E itself, and that given by s−1. The

stable range uniqueness theorem for PL normal bundles [7] provides a PL ambient
isotopy G of E such that

G1H1s
−1 : X × Rk −−→ E

is fibre preserving. Therefore G1H1s
−1 is a PL trivialization of E π−−→ X which

is properly homotopic to t, and the proof of (6.1) is complete.
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CHAPTER II

The Hauptvermutung according to

Casson and Sullivan

By C. P. Rourke

§1. Introduction

SupposeM and Q are PL manifolds and h : Q−−→M is a (topological) home-

omorphism. The Hauptvermutung asserts that in this situation there is a PL
isomorphism g : Q−−→M . The purpose of Chapter II is to give a proof of the
Hauptvermutung for a large class of manifolds :

(1.1) Main theorem. Let M,Q, h be as above. Suppose :
(1) M and Q are closed of dimension ≥ 5 or bounded of dimension ≥ 6.

(2) π1(M) = π1(∂M) = 0. (Assumed for each component of M and ∂M .)
(3) H3(M ;Z2) = 0.

Then h is homotopic to a PL isomorphism.

We shall also indicate a proof that condition (3) can be weakened to the

following :

(3′) H4(M ;Z) has no elements of order 2.

Various refinements of the theorem are possible. One can weaken condition

(2) to π1(M) = π1(∂M) if ∂M is connected and non-empty and h is a simple
homotopy equivalence. One can keep submanifolds, on which h is already a PL
isomorphism, fixed during the homotopy. Precise statements of these refinements

are given in §7.

The rest of the introduction consists of a broad outline of the proof of the

main theorem followed by a guide to the rest of the chapter.

Outline of the Proof. According to Sullivan [41], h is homotopic to a PL
isomorphism if and only if a certain map qh : M0−−→G/PL is null-homotopic
(where M0 = M if ∂M ̸= ∅ and M\{pt.} if ∂M = ∅) and from the definition of

qh if follows that qh factors via TOP/PL.

TOP/PLh
h
hji

M0

�
�
��

w
qh G/PL

The spaces PL, TOP and G will be defined in §2 and an account of the result from
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[41] which we use is given in §3, where a more general result is proved. The main
tools here are Browder-Novikov-Wall style surgery and the h-cobordism theorem.

From the above diagram we can assert that qh is null-homotopic if we know

that i is null-homotopic. In fact we prove that i factors via K(Z2, 3)

K(Z2, 3)h
h
hj

TOP/PL

�
�
��

w
i G/PL

From this factoring it follows that the obstruction to homotoping qh to zero is an

element of H3(M0;Z2) and, using condition (3), the result follows.

The proof of the factorization of i has two main steps :

Step 1. Construct a periodicity map

µ : G/PL −−→ Ω4n(G/PL)

where Ωn(X) denotes the n-th loop space on X. µ is defined to be the composite

G/PL
α
−−→ (G/PL)CP2n σ

−−→ Ω4n(G/PL)

where XY is the space of maps Y−−→X, and α is defined by αx(y) = x for all
y ∈ CP2n (complex projective 2n-space) and σ is a canonically defined surgery ob-

struction (see §4). The periodicity map µ has the property that µ∗ : πk(G/PL)−−→
πk+4n(G/PL) is an isomorphism for k ̸= 4 and multiplies by 2 for k = 4. (Recall
that πn(G/PL) = 0 for n odd, Z if n = 4k and Z2 if n = 4k + 2, essentially

Kervaire and Milnor [19], see §4). The proof that µ∗ has these properties follows
from a product formula for surgery obstructions which is proved by Rourke and
Sullivan [36]. It follows that the homotopy-theoretic fibre of µ is a K(Z2, 3).

Step 2. Prove that the composite

σ′ : (TOP/PL)CP2n

−−→ (G/PL)CP2n σ
−−→ Ω4n(G/PL)

is null-homotopic. This result can be elucidated as follows : the surgery obstruction

for a map CP2n−−→G/PL is an “index” obstruction (see §4) and can be measured
in terms of the Pontrjagin numbers of a certain bundle over CP2n. Using the fact
that the map comes from a map of CP2n−−→TOP/PL, it follows from Novikov
[27] that the obstruction is zero. Thus to prove the result it is only necessary to

prove Novikov’s result in a canonical form, and this is done by using Siebenmann’s
thesis [37]. In fact we never mention Pontrjagin classes but prove the result directly
using Siebenmann. Details are in §5.
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Now consider the diagram

TOP/PL

u
α′

w
i G/PL

u
α

(TOP/PL)CP2n

4
4
4
446σ′

w (G/PL)CP2n

u
σ

Ω4n(G/PL)

σ′α′ ≃ ∗, consequently i factors via the fibre of σα which is K(Z2, 3), as required.

Guide to the rest of Chapter II

§2 collects most of the notation and basic definitions which we use. Two
important definitions here are the semi-simplicial complexesHT (M) andNM(M).
These are (roughly) the space of homotopy triangulations of M and the space of

“normal maps” onto M . A normal map is a degree 1 map f : M1−−→M covered
by a bundle map from the normal bundle of M1 to some bundle over M (the
terminology “normal map” is Browder’s). HT (M) should not be confused with

the set of PL equivalence classes of homotopy triangulations of M , which we
denote Ht(M). (This set was called PL(M) by Sullivan [41] – a notation which
we consider should be reserved for the space of PL isomorphisms of M .)

In §3 we prove two basic homotopy equivalences :

NM(M) ≃ (G/PL)M

(which is true in general) and

HT (M) ≃ NM(M)

if M is bounded of dimension ≥ 6 and π1(M) = π1(∂M) = 0. The classification
of homotopy triangulations

Ht(M) ∼= [M0, G/PL]

follows at once. We conclude §3 by defining the characteristic map qh :M0−−→G/PL
(see sketch above) and proving that it factors via TOP/PL if h is a homeomor-
phism.

The main result of §4 is the homotopy equivalence

(G/PL)M ≃ (G/PL)M0 × Ωn(G/PL)

in case M is closed of dimension ≥ 6. The “canonical surgery obstruction” map

σ : (G/PL)M −−→ Ωn(G/PL)
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is then projection on the second factor. We deduce the properties of µ mentioned
earlier.

§5 completes the proof of proving Step 2 above. We start from a refined

version of the Novikov–Siebenmann splitting theorem and construct a map

λ : (TOP/PL)M −−→ HT (M)

which commutes with maps of both spaces into (G/PL)M – the first induced

by inclusion, the second defined in §3. The result then follows easily from the
definition of σ.

In the remaining sections, we consider improvements to the main theorem. In
§6 we sketch the proof of the weakening of condition (3).

In §7 three refinements are proved :
(a) Replace condition (2) (simple connectivity) by the condition that π1(∂M)

−−→π1(M) is an isomorphism and h is a simple homotopy equivalence. A
corollary (using Connell and Hollingsworth [7]) is that the Hauptvermutung
holds for manifolds with 2-dimensional spines.

(b) Assume, instead of a topological homeomorphism h : Q−−→M , that M and
Q are (topologically) h-cobordant.

(c) Assume that h : Q−−→M is a cell-like map (cf. Lacher [21]) rather than a

homeomorphism.

In §8 we prove a theorem on homotopy triangulations of a block bundle. Two

corollaries are :
1. A relative Hauptvermutung; that is, if h : (M1, Q1)−−→(M,Q) is a homeo-

morphism of pairs and Q is a submanifold either of codim 0 or codim ≥ 3,

then h is homotopic to a PL isomorphism of pairs.
2. The embedding theorem first proved by Casson-Sullivan and independently

by Haefliger [11] and Wall.

I am indebted to Chris Lacher for pointing out §7(b) and a crucial step in §7(c),
and to Greg Brumfiel and George Cooke for patiently explaining §6 . Chapter III
by Cooke supplies more detail for §6.

§2. Notation and basic definitions

We refer to Rourke and Sanderson [35] for the definition of the PL category.
Objects and maps in this category will be prefixed “PL”.

The following are standard objects in the category. Rn = R1 × · · · × R1,
Euclidean n-space. ∆n, vertices {v0, · · ·, vn}, the standard n-simplex. The face
map ∂ni : ∆n−1−−→∆n is the simplicial embedding which preserves order and
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fails to cover vi and Λn,i = cℓ (∂∆n\∂i∆n−1). The n-cube In = [−1,+1]n and
I = [0, 1], the unit interval.

Semi-simplicial objects.

We work always without degeneracies – by Rourke and Sanderson [33] they
are irrelevant to our purposes, and we shall not then have to make arbitrary choices

to define them.

Let ∆ denote the category whose objects are ∆n, n = 0, 1, . . . and morphisms
generated by ∂ni . A ∆-set, pointed ∆-set, ∆-group is a contravariant functor
from ∆ to the category of sets, pointed sets, groups.

∆-maps, ∆-homomorphisms, etc. are natural transformations of functors. Or-
dered simplicial complexes are regarded as ∆-sets in the obvious way. A ∆-set X

satisfies the (Kan) extension condition if every ∆-map Λ(n,i)−−→X possesses
an extension to ∆n.

We now define the various ∆-groups and ∆-monoids that we need :

PLq : typical k-simplex is a zero and fibre preserving PL isomorphism

σ : ∆k × Rq −−→ ∆k × Rq

(i.e σ|∆k×{0} = id. and σ commutes with projection on Rq).

P̃Lq : typical k-simplex is a zero and block preserving PL isomorphism

σ : ∆k × Rq −−→ ∆k × Rq

(i.e. σ|∆k×{0} = id and σ(K × Rq) = K × Rq for each subcomplex K ⊂ ∆k).

Face maps are defined by restriction and PLq, P̃Lq form ∆-groups by com-
position.

Gq : typical k-simplex is a zero and fibre preserving homotopy equivalence of pairs

σ : (∆k × Rq,∆k × {0}) −−→ (∆k × Rq,∆k × {0})

(i.e. σ−1(∆k × {0})=∆k × {0} and σ|∆k×(Rq\{0}) has degree ±1).

G̃q : typical k-simplex is a zero and block preserving homotopy equivalence of
pairs

σ : (∆k × Rq,∆k × {0}) −−→ (∆k × Rq,∆k × {0}) .

Again face maps are defined by restriction and Gq, G̃q form ∆-monoids by com-
position.



134 rourke

Inclusions i : PLq ⊂ PLq+1 etc. are defined by i(σ) = σ× id. (write Rq+1 =

Rq × R1) and the direct limits are denoted PL, P̃L,G, G̃.

The notation used here differs from that used in Rourke and Sanderson [32],
where these complexes were called PLq(R) etc. However, as we never use the other
complexes, no confusion should arise.

G/PLq and G̃q/P̃Lq are the complexes of right cosets (i.e. a k-simplex of Gq/PLq

is an equivalence class of k-simplexes of Gq under σ1 ∼ σ2 iff σ1 = σ3 ◦ σ2 where

σ3 ∈ PLq).

The following basic properties of the complexes defined so far will be used (cf.
Rourke and Sanderson [33] for notions of homotopy equivalence, etc.).

(2.1) Proposition.
(a) Gq ⊂ G̃q is a homotopy equivalence for all q.

(b) The inclusions PLq ⊂ P̃Lq, PLq ⊂ PL, P̃Lq ⊂ P̃L and Gq ⊂ G are all
(q − 1)-connected.

(c) PL ⊂ P̃L is a homotopy equivalence.

(d) The map G̃q/P̃Lq−−→G̃/P̃L induced by inclusion is a homotopy equivalence
for q > 2.

(e) The complexes Gq/PLq (resp. G̃q/P̃Lq) are classifying for PL bundles with

fibre (Rq, {0}) and with a fibre homotopy trivialization (resp. open block bun-
dles with a block homotopy trivialization – i.e. a trivialization of the associ-
ated fibre space).

Remark. A “PL bundle with a fibre homotopy trivialization” means a pair (ξq, h)
where ξq/K is a PL fibre bundle with base K and fibre (Rq, {0}), and

h : E0(ξ
q) = E(ξ)\K −−→ K × (Rq\{0})

is a fibre map with degree ±1 on each fibre (cf. Dold [9]). Such pairs form a
bundle theory with the obvious definitions of induced bundle, Whitney sum, etc.

(see Sullivan [41]). A PL block bundle with a block homotopy trivialization can
be defined in a similar way.

Proof of 2.1. Parts (a) to (d) were all proved in Rourke and Sanderson [32], the
following notes will help the reader understand the status of these results :

(a) is proved by an easy “straight line” homotopy.
(b) the first two parts depend on Haefliger and Poenaru [13] – the second part is

explicit in Haefliger and Wall [14] and the first part is a translation of their
main result. The third part is a straight analogue of the smooth stability

theorem and the fourth part is classical homotopy theory (James [17]).
(c) follows from (b).
(d) is a translation of the stability theorem of Levine [23] using the transverse
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regularity of Rourke and Sanderson [31] and Williamson [45] – special argu-
ments are necessary in low dimension – see §7.

(e) follows from the fibrations

Gq/PLq−−→BPLq−−→BGq ,

G̃q/P̃Lq−−→BP̃Lq−−→BG̃q

(see Rourke and Sanderson [34]) and can also be proved by a simple direct argu-
ment analogous to Rourke and Sanderson [30; §5].

TOPq is the topological analogue of PLq i.e. a k-simplex is a zero and fibre
preserving homeomorphism ∆k × Rq−−→∆k × Rq. TOP is the direct limit of

i : TOPq ⊂ TOPq+1 ⊂ . . . .

The stability theorem for TOPq is for weaker than 2.1(b), but one can define a
stable K-theory of topological bundles (see Milnor [26]).

(2.2) Proposition. The complex TOPq/PLq classifies PL bundles with a topo-
logical trivialization.

The proof is the same as 2.1(e).

All the complexes defined so far satisfy the extension condition – this follows
easily from the existence of a PL isomorphism Λk,i × I−−→∆k.

Function spaces.

Let X be a ∆-set with the extension condition and P a polyhedron. A map
of P in X is an ordered triangulation K of P and a ∆-map K−−→X. A typical

k-simplex of the ∆-set XP is a map P ×∆k−−→X where the triangulation K of
P ×∆k contains P ×∂i∆k−1 as a subcomplex, each i. Face maps are then defined
by restriction. For connections with other definitions see Rourke and Sanderson

[33].

When X is pointed, denote by ∗ ⊂ X the subset consisting of base simplexes
(or the identity simplexes in case X is a ∆-group or monoid). XP is then pointed
in the obvious way.

Relative function spaces are defined in a similar way. In particular the nth
loop space of X is defined by

Ωn(X) = (X, ∗)(I
n,∂In) .
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(∆k, n)-manifolds.

Let M denote the category with objects : PL manifolds; morphisms : inclu-
sions of one PL manifold in the boundary of another. A (∆k, n)-manifold is a

lattice inM isomorphic to (and indexed by) the lattice of faces of ∆k, where the
isomorphism is graded and decreases dimension by n. (I.e. each s-face of ∆k in-
dexes an (n+s)-manifold.) IfMn,k is a (∆k, n)-manifold then the element indexed

by σ ∈ ∆k is denoted Mσ.

Examples.

(1) If Mn is an n-manifold then Mn ×∆k is a (∆k, n)-manifold in the obvious
way, with Mσ =M × σ.

(2) A (∆0, n)-manifold is an n-manifold.

(3) A (∆1, n)-manifold is a cobordism of n-manifolds, possibly with boundary.
(4) If Mn,k is a (∆k, n)-manifold then the (∆k, n−1)-manifold ∂Mn,k is defined

by

(∂M)∆k = cℓ
(
∂(M∆k)\

∪
i

M∂i∆k−1

)
,

(∂M)σ = (∂M)∆k ∩Mσ .

Thus, in example (3), ∂Mn,1 is the corresponding cobordism between the bound-
aries.

Now we come to two basic definitions :

The ∆-set HT (M).

A map of (∆k, n)-manifolds f : Mn,k−−→Qn,k is a map f : M∆k−−→Q∆k

such that f(Mσ) ⊂ Qσ for each σ ∈ ∆k. A homotopy equivalence of (∆k, n)-
manifolds is a map h such that h|Mσ : Mσ−−→Qσ is a homotopy equivalence for

each σ ∈ ∆k.

LetMn be a PL manifold (possibly with boundary). A k-simplex of the ∆-set

HT (M) (“homotopy triangulations of M”) is a homotopy equivalence of pairs

h : (Qn,k, ∂Qn,k) −−→ (Mn ×∆k, ∂Mn ×∆k)

where Qn,k is some (∆k, n)-manifold. (I.e. h(∂Q)∆k ⊂ ∂Mn ×∆k and h|∂Qn,k is
also a homotopy equivalence.)

Face maps are defined by restriction and it is easy to prove that HT (M)
satisfies the extension condition.
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The ∆-set NM(M).

A typical k-simplex is a normal map f : Qn,k−−→M × ∆k. I.e. f is a
(∆k, n)-map, has degree 1 on each pair (Qσ, ∂Qσ)−−→(M × σ, ∂M × σ), and is

covered by a map of PL bundles :

E(νQ) w
f̂

u

E(ξ)

u
Q w

f
M ×∆k

where νQ is the (stable) normal bundle of Q and ξ is some PL bundle on M ×∆k.
Face maps are defined by restriction and it is again easy to check that NM(M)
satisfies the extension condition.

The (stable) normal bundle of Qn,k is the normal bundle of an embedding
Qn,k ⊂ In+N × ∆k (N large) of (∆k, n)-manifolds. The normal bundle of Qn,k

restricts to the normal bundle of Qσ ⊆ In+N×σ for each σ. To find such a bundle,
use general position to embed, and apply Haefliger and Wall [14].

Reducibility.

Let ξN/Qn,k be a bundle. T (ξ), the Thom space, is said to be reducible if
there is a map f : In+N × ∆k−−→T (ξ) which respects the lattice structure and
such that

f | : (In+N × σ, ∂(In+N × σ)) −−→ (T (ξ|Mσ), T (ξ|∂Mσ))

has degree 1 for each σ. Thus f gives a simultaneous reduction of all the Thom

spaces in the lattice.

For example, the Thom construction shows T (νQ) is reducible, in fact has a

canonical choice of reduction map.

Notice that, in the definition ofNM(M), T (ξ) is reducible. This is because the
Thom isomorphism is natural and f has degree 1. Indeed T (f̂) and the canonical
reduction of T (νQ) give a reduction of T (ξ).

The ∆-sets (G/PL)M and (TOP/PL)M .

Finally we define two ∆-sets which, although essentially the same as the
function spaces (G/PL)M and (TOP/PL)M , have certain advantages for some of

our constructions.

A k-simplex of the ∆-set (G/PL)M (resp. (TOP/PL)M ) is a stable PL bun-
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dle ξN/M ×∆k together with a fibre homotopy trivialization (resp. a topological
trivialization). Face maps are defined by restriction and the extension condition

is easily verified.

(2.3) Proposition. There are homotopy equivalences

κ : (G/PL)M −−→ (G/PL)M ,

κ′ : (TOP/PL)M −−→ (TOP/PL)M

which commute with the natural maps

(TOP/PL)M
i∗
−−→ (G/PL)M , (TOP/PL)M

j
−−→ (G/PL)M .

This follows at once from 2.1(e) and 2.2, commutativity being obvious. One

of the advantages of the new sets is that they have an easily described H-space
structure. For example, the map

m : (G/PL)M × (G/PL)M −−→ (G/PL)M ;

(ξN1
1 , t1; ξ

N2
2 , t2) 7−→ (ξN1

1 ⊕ ξN2
2 , t1 ⊕ t2)

endows (G/PL)M with a homotopy commutative H-space structure with homo-
topy unit. [To make precise sense of t1 ⊕ t2, when ξ1 and ξ2 are stable bun-
dles, regard the range of each as M × ∆k × R∞ and choose a homeomorphism

R∞ × R∞−−→R∞ by alternating coordinates.]

“×”, in the displayed formula above, means categorical direct product (as

always when we are dealing with ∆-sets). For sets with the extension condition
X × Y has the same homotopy type as X ⊗ Y (cf. Rourke and Sanderson [33]).

§3. An account of Sullivan theory

In this section we prove the following results :

(3.1) Theorem. If Mn is any PL manifold (with or without boundary) then there
is a homotopy equivalence

r : NM(Mn) −−→ (G/PL)M
n

.

(3.2) Theorem. If Mn, n ≥ 6 is a PL manifold with non-empty boundary, and

π1(M) = π1(∂M) = 0, then there is a homotopy equivalence

i : HT (M) −−→ NM(M) .

Theorem 3.1 is proved by transverse regularity (the usual argument) while
Theorem 3.2 is proved by surgery. This breaks the usual Browder-Novikov argu-
ment into its two basic components. Combining the two results we have :
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(3.3) Corollary. If M is as in Theorem 3.2 then there is a homotopy equivalence

q : HT (M) −−→ (G/PL)M .

To obtain a theorem for closed manifolds, suppose M is closed and let M0 =

M\{disc}, with n ≥ 6. Define a ∆-map

c : HT (M0) −−→ HT (M)

by adding a cone over the boundary. (The Poincaré theorem is used here).

(3.4) Theorem. c is a homotopy equivalence.

(3.5) Corollary. If M is closed of dimension ≥6 and π1(M) = 0, then there is

a homotopy equivalence HT (M)−−→(G/PL)M0 .

Classification of homotopy equivalences.

Now let Mn (n ≥ 5) be a PL manifold, π1(M) = π1(∂M) = 0 (and if n = 5
assume ∂M = ∅). Define the set Ht(M) (homotopy triangulations of M) as
follows :

A representative is a homotopy equivalence h : (Qn, ∂Qn)−−→(Mn, ∂Mn)
where Qn is some PLmanifold. h1 ∼ h2 if there is a PL isomorphism g : Q1−−→Q2

such that

Q1 w
g

h
h
hhj
h1

Q2

'
'

''*

h2

M

is homotopy commutative. If follows immediately from the h-cobordism theorem
that Ht(M) = π0(HT (M)).

(3.6) Corollary. Let n ≥ 6 and write Mn
0 =Mn if ∂M ̸= ∅ and Mn

0 =M\{disc}
if ∂M = ∅. (π1(M) = π1(∂M) = 0, as usual.) Then there is a bijection

q∗ : Ht(M) −−→ [M0, G/PL]

where [ , ] denotes homotopy classes.

This follows immediately from 3.3 and 3.4. For the case n = 5 of the main
theorem we need

(3.7) Addendum. If n = 5 and ∂M = ∅ then there is an injection

q∗ : Ht(M) −−→ [M,G/PL] .
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This will be proved using methods similar to those used for 3.2 - 3.4. Following
these proofs, we shall make two remarks about q∗ which clarify the properties

needed for the main theorem.

Proof of Theorem 3.1. We define homotopy inverses r1 : NM(M)−−→(G/PL)M
and −r2 : (G/PL)M−−→NM(M). Then r = κ ◦ r1 is the required equivalence.

Definition of r1.

0-simplexes.

Let f : Qn−−→Mn be a degree 1 map covered by a bundle map :

E(νQ) w
f̂

u

E(ξ)

u
Qn,k w

f
M

Then, as remarked earlier, T (ξ) has a prescribed reduction. Let

u : (In+N , ∂In+N ) −−→ (T (ξ), T (ξ|∂M))

be this reduction. Then the uniqueness theorem of Spivak [38] (see the proof given
in Wall [43]) says that there is a fibre homotopy equivalence g : ξ−−→νM such that

(3.8)

(In+N , ∂In+N )

h
h
hhk

u

4
4
446
u′

(T (ξ), T (ξ|∂M )) w
T (g)

(T (νM ), T (ν∂M ))

is homotopy commutative, where u′ is the canonical reduction of νM . This diagram
determines g up to fibre homotopy, see Wall [43].

Now g determines a stable fibre homotopy trivialization of [νM ]− [ξ] (where
[ξ] denotes the element of the K-theory corresponding to ξ, etc.). This defines r1
on 0-simplexes.

In general r1 is defined by induction and the fact that all the choices made
above were only within prescribed homotopy classes implies that a choice over the
(k − 1)-skeleton extends to the k-skeleton.

Definition of r2 : (G/PL)M−−→NM(M). We now define a map r2. r1 and
−r2 are homotopy inverses (−r2 means r2 composed with inversion in (G/PL)M ,
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which, as an H-space, possesses a homotopy inverse.) It will be easy to verify
that r1 and −r2 are in fact homotopy inverses and we leave this verification to the

reader.

0–simplexes.

Let (ζ, g1) be a 0-simplex of (G/PL)M , meaning that ζ/M is a PL bundle

and g1 : ζ/M−−→M × RN is a fibre homotopy trivialization. Adding νM to both
sides we have a fibre homotopy equivalence g : ξ−−→νM , where ξ = νM ⊕ ζ,
and hence a homotopy equivalence T (g) : T (ξ)−−→T (νM ). Thus the canonical

reduction t′ : In+N−−→T (νM ) determines a reduction t of T (ξ). By Rourke and
Sanderson [31] and Williamson [45] we may assume that t is transverse regular to
M and hence t−1(M) is a PL manifold Q and t|Q : Q−−→M is covered by a map

t| : νQ−−→ξ of bundles. This defines a 0-simplex of NM(M).

In general the same argument applies to define r2 on k-simplexes extending
a given definition on (k − 1)-simplexes. The only change needed is that one uses
the relative transverse regularity theorem.

Proof of Theorem 3.2.

Definition of i.

0-simplexes. Let h : (Q, ∂Q)−−→(M,∂M) be a homotopy equivalence and let νQ
denote the normal bundle of Q. Let h′ be a homotopy inverse of h and let ξ/M
be (h′)∗νQ then h is covered by a bundle map ĥ : E(νQ)−−→E(ξ). This defines a

0-simplex of NM(M).

Again, since all choices were within canonical classes, this definition on 0-
simplexes yields an inductive definition on k-simplexes. Notice that i is an em-
bedding. Thus to prove i is a homotopy equivalence we only have to prove that

NM(M) deformation retracts on HT (M). We prove the following assertion :

Assertion. Suppose f : Qn,k−−→Mn × ∆k is a degree 1 map (covered by the

usual bundle map, as always) and suppose f |Qσ is a homotopy equivalence for
each proper face σ < ∆k. Then f is bordant rel

∪
σ∈∂∆k Qσ to a homotopy

equivalence, (and the bordism is covered by the usual bundle map, extending the

given map over Qn,k).

The assertion implies that a typical relative homotopy element is zero and
hence the result (for more detail see Rourke and Sanderson [33]).

Proof of the assertion. The bordism is constructed as the trace of a finite
number of surgeries of (Q∆k , (∂Q)∆k) (each surgery being covered by a map of
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bundles). The construction here is familiar (see Browder [1], Novikov [28], Wall
[42]) so we shall not repeat it. Here is a lemma, proved in Wall [44, 1.1] which

allows one to do the surgery.

(3.9) Lemma. Every element α ∈ ker(πi(Q∆k)−−→πi(M × ∆k)) gives rise to a
well-defined regular homotopy class of immersions of T = Si ×Dn+k−i in Q. We
can use an embedding of T in Q to perform surgery on α iff the embedding lies in

this class.

By 3.9 we can immediately perform surgery up to just below the middle

dimension. To kill middle-dimensional classes use the method of surgery of relative
classes in Wall [42, 44]. (For a direct proof that surgery obstructions are zero on a
boundary see Rourke and Sullivan [36].) This completes 3.2.

Proof of 3.4. Observe that c is an embedding and so we have to construct a

deformation retract of HT (M) on c(HT (M)). To construct this on 0-simplexes
one has to prove that any homotopy triangulation is homotopic to one which is a
PL homeomorphism on the inverse image of a disc Dn ⊂ Mn. This is easy. In

general we have to prove the following assertion, which follows from the splitting
theorem of Browder [2].

Assertion. Suppose f : Qn,k−−→Mn × ∆k is a (∆k, n)-homotopy equivalence
and Mn is closed. Suppose f |f−1(Dn×∂∆k) is a PL homeomorphism. Then f is
homotopic rel

∪
σ∈∂∆kQσ to a map which is a PL homeomorphism on f−1(Dn ×

∆k).

Proof of 3.7. q : HT (M)−−→(G/PL)M is defined as before. Suppose h1 :
M1−−→M and h2 : M2−−→M are vertices in HT (M) which map into the same
component of (G/PL)M . Then the proof of 3.1 yields a cobordism between M1

andM2 (covered by the usual map of bundles). By taking bounded connected sum
with a suitable Kervaire manifold (cf. Browder and Hirsch [5]) we may assume
that the surgery obstruction vanishes and hence this cobordism may be replaced

by an h-cobordism. So h1 and h2 lie in the same component of HT (M).

Two remarks on q∗.

(1) HT (M) and (G/PL)M0 are both based sets and, examining the proofs of 3.1

and 3.2, we see that both r and i can be chosen to preserve base-points. So q∗ is
base-point preserving and we can rephrase 3.6 and 3.7, as follows.
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(3.10) Corollary. Given a homotopy equivalence h : M1−−→M there is defined,
up to homotopy, a map qh : M0−−→G/PL with the property that qh ≃ ∗ iff h is

homotopic to a PL isomorphism (in case n=5, interpret M0 as M).

(2) Suppose h :M1−−→M is a (topological) homeomorphism then h determines a
topological isomorphism ν(h) : νM1−−→νM . This can be seen as follows. RegardM
as imbedded in a large-dimensional cube IN+n. Use Gluck [10] to ambient isotope

h to a PL embedding; reversing this isotopy and using the (stable) uniqueness
theorem for topological normal bundles (Hirsch [15] and Milnor [26]) we obtain
the required isomorphism of νM1 with νM .

Now ν(h) determines a topological trivialization t(h) of [νM ]− [(h−1)∗(νM1)]
and hence a map th :M−−→TOP/PL by 2.2.

Proposition 3.11. The diagram

M w
th

h
h
hjqh

TOP/PL

'
'
'*

i

G/PL

commutes up to homotopy.

Proof. From the definition of ν(h) is clear that

(In+N , ∂In+N )

N
N
NNQ

u1

�
�
���
u

(T (νM1), T (ν∂M1)) w
T (νh)

(T (νM ), T (ν∂M ))

commutes up to homotopy, where u1 and u are the canonical reductions.

Comparing with diagram 3.8 we see that ν(h) coincides, up to fibre homotopy,

with g and hence the fibre homotopy trivialization of [νM ]− [(h−1)∗(νM1)] which
determines qh (see below 3.8) coincides up to fibre homotopy with t(h), as required.

§4. Surgery obstructions

In this section we define the “canonical surgery obstruction”

σ : (G/PL)M −−→ Ωn(G/PL)



144 rourke

and the periodicity map

µ : (G/PL) −−→ Ω4n(G/PL)

mentioned in the introduction.

Throughout the section M denotes a closed PL n-manifold, n ≥ 6, and M0 =
M\{disc}.

(4.1) Proposition. The restriction map p : (G/PL)M−−→(G/PL)M0 is a fibra-
tion with fibre Ωn(G/PL).

Proof. To prove that p has the homotopy lifting property one has to prove that a

map ofM×In∪M0×In×I−−→G/PL extends toM×In×I (see §2 for the notion
of a map of a polyhedron in a ∆-set) and this follows at once from the generalized
extension condition proved in Rourke and Sanderson [33]. Thus the result will

follow if we know that p is onto, it is clear that the fibre will be Ωn(G/PL).

Consider the diagram

HT (M) w
q′

(G/PL)M

u
p

HT (M0)

u

≃ c

w
q
≃ (G/PL)M0

u

s

c and q were defined in §3 and q′ is defined exactly as q. Then q ≃ pq′c straight

from the definitions. Let s = q′cq−1 where q−1 is a (homotopy) inverse to q, then
ps ≃ id and the result follows.

(4.2) Theorem. (G/PL)M is homotopy equivalent to the product Ωn(G/PL) ×
(G/PL)M0 .

Proof. Regard Ωn(G/PL) as a subset of (G/PL)M by inclusion as the fibre.

Define

d : Ωn(G/PL)× (G/PL)M0 −−→ (G/PL)M ; (x, y) 7−→ κm(κ−1x, κ−1sy)

where κ−1 is a homotopy inverse of κ and m, κ are as defined in §2 (below 2.3).
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We assert that the diagram

Ωn(G/PL)[
[
[[]
⊆�

�
���

⊆

Ωn(G/PL)× (G/PL)M0[
[
[[]
π2

w
d (G/PL)M

�
�

���
p

(G/PL)M0

commutes up to homotopy. The result follows by comparing the two exact homo-

topy sequences, using the five-lemma.

The top triangle commutes since m( , ∗) ≃ id. To prove that the bottom
triangle commutes, let xk ∈ Ωn(G/PL) be a k-simplex. Then κ−1x is a pair (ξ, t),
where ξ/M ×∆k is a PL bundle and t is a fibre homotopy trivialization. Since x

lies in Ωn(G/PL), t is the identity on ξ|M0×∆k . Now m(κ−1x, κ−1sy) is the pair
(ξ ⊕ ξ1, t⊕ t1) where ξ1/M ×∆k is another bundle. Moreover

p1m(κ−1x, κ−1sy) = p1m(∗k, κ−1sy) ,

where p1 : (G/PL)M−−→(G/PL)M0 is induced by restriction. Since it is clear that
p, p1 commute with κ, the result follows.

Definition. The composite

σ : (G/PL)M
d−1

−−−→ Ωn(G/PL)× (G/PL)M0
π1−−−→ Ωn(G/PL)

is the canonical surgery obstruction, where d−1 is some homotopy inverse to
d.

We now recall the more usual surgery obstructions. The connection with σ
will be established in 4.4.

The surgery obstruction of a class α ∈ [M,G/PL].

According to 3.1 α can be interpreted as a bordism class of normal maps :

E(νM1) w
f̂

u

E(ξ)

u
Mn

1 w
f

Mn



146 rourke

One can then associate to α a surgery obstruction in the following groups :

s(α) =


I(M)− I(M1) ∈ 8Z n = 4k

0 if n is odd

K(f) ∈ Z2 if n = 4k + 2 .

Here I( ) denotes index and K( ) the Kervaire obstruction. Direct definitions
of K(f) are given by Browder [4] and Rourke and Sullivan [36]. The methods of
Browder [1] and Novikov [28], translated into the PL category, imply that s(α) = 0

iff the bordism class of (f, f̂) contains a homotopy equivalence, n ≥ 5.

Computation of πn(G/PL).

If Mn is the sphere Sn, then ξ0 = ξ|Sn\{disc} is trivial and so νM1 |M1\{disc}
is trivial and in fact has, up to equivalence, a well-defined trivialization given by
trivializing ξ0. This recovers the theorem (see also Rourke and Sanderson [32] and
Sullivan [41]) :

(4.3) Theorem. πn(G/PL) ∼= Pn, the group of almost framed cobordism classes
of almost framed PL n-manifolds.

The surgery obstruction give maps s : πn(G/PL)−−→8Z, 0, or Z2 which are

injective for n ≥ 5 by the Browder-Novikov theorem quoted above (using the
Poincaré theorem). Moreover in this range s is surjective, since all obstructions
are realized by suitable Kervaire or Milnor manifolds (see Kervaire [18] and Milnor

[25]). So we have

πn(G/PL) =


8Z if n = 4k

0 if n is odd

Z2 if n = 4k + 2.

To compute πn(G/PL) for n < 5 it is necessary to use the braid of the triple O ⊂
PL ⊂ G (see Levine [23], also Rourke and Sanderson [32]) and known homotopy

groups. Then the above formulae hold for n < 5 as well. However there is a
distinct singularity because the generator of P4 has index 16 (Rohlin [29]) instead
of 8 for P4k, k > 1 (cf. Milnor [26]).

We now prove :

(4.4) Theorem. The map σ : (G/PL)M−−→Ωn(G/PL) induces the surgery ob-
struction function

σ∗ = s : [M,G/PL] = π0(G/PL)
M −−→ π0(Ω

n(G/PL)) = πn(G/PL) = Pn

for n ≥ 5.
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Proof. We first make two observations.
(1) The surgery obstruction is additive (under connected sums). The con-

nected sum of normal maps f : M1−−→M, g : Q1−−→Q is a normal map f#g :
M1#Q1−−→M#Q with surgery obstruction

s(f#g) = s(f) + s(g) .

(2) The action of an element in π0(Ω
n(G/PL)) on an element in [M,G/PL]

given by multiplication in (G/PL)M corresponds to taking connected sum of

the associated normal maps. (For the normal map corresponding to a vertex
in Ωn(G/PL) – after inclusion in (G/PL)M – is the identity outside a disc in M ,
and we can assume that the other situation is the identity in this disc.)

Now let f :M−−→G/PL be a vertex of (G/PL)M and let α ∈ πn(G/PL) be
the class −s(f). Let α0 ∈ Ωn(G/PL) be a corresponding vertex. Then

σ∗[m1(α
0, f)] = [m2(σα

0, σf)] = σ∗[α
0] + σ∗[f ] ,

with m1 and m2 the multiplications in (G/PL)M and Ωn(G/PL) respectively.
But

[m1(α
0, f)] = [∗]

by choice of α and observations (1) and (2), so that σ∗[f ] = −σ∗[α0]. The com-

posite

Ωn(G/PL) ⊂ (G/PL)M
σ
−−→ Ωn(G/PL)

is the identity (by definition); hence σ∗[α
0] = α and the result follows.

Remarks. (1) 4.4 fails for n = 4 (we cannot even define σ in this case). Indeed if
one considers the composition

π4(G/PL)
i∗−−−→ [M4, G/PL]

s
−−−→ Z

(s denotes the surgery obstruction) then si∗(π4(G/PL)) = 16Z, as remarked

above, while s maps onto 8Z for suitable choice of M . This follows from the
fact that 24µ/CP2 is fibre homotopy trivial, where µ is the normal bundle of
CP2 in CP3. Then the surgery obstruction of the corresponding map of CP2 into

G/PL is 24(Hirzebruch index of µ) = 24.
(2) It has been obvious for some time that πn(G/PL)−−→ΩPL

n (G/PL), where
ΩPL

n ( ) denotes PL bordism, is a monomorphism (see e.g. observation (2) above).

In fact it follows at once from 4.4 (and the fact that surgery obstructions are bor-
dism invariants) that πn(G/PL) splits as a direct summand of ΩPL

n (G/PL) for
n ≥ 5 (see also Sullivan [41]). This remark also fails for n = 4 for the same reasons

as remark (1).

The periodicity map.

We now define the periodicity map mentioned in the introduction.
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Definition. µ is the composite

µ : G/PL
α
−−−→ (G/PL)CP2n σ

−−−→ Ω4n(G/PL)

where α is a semi-simplicial approximation to the map (of spaces) defined in the

introduction (see Rourke and Sanderson [33]).

(4.5) Theorem. The map µ∗ : πi(G/PL)−−→πi(Ω4n(G/PL)) = πi+4n(G/PL) is
an isomorphism for i ̸= 4 and is the inclusion 16Z−−→8Z for i = 4.

Proof. By Theorem 4.4 we have to consider the composition

[Si, G/PL]
α∗−−−→ [Si × CP2n, G/PL]

s
−−−→ πi+4n(G/PL)

As mentioned earlier, an element β ∈ [Si, G/PL] is represented by a normal map

E(νM ) w
f̂

u

E(ξ)

u
M i w

f
Si

and then α∗(β) is represented by the normal map

E(νM × νCP2n) w
f̂ × 1

u

E(ξ × νCP2n)

u
M i × CP2n w

f × 1
Si × CP2n

(this is easily checked from the proof of 3.1). So it is necessary to know how surgery
obstructions behave under cartesian product. A complete answer is provided by

Rourke and Sullivan [36]. Using the fact that I(CP2n) = 1 the required result
follows.

§5. The ‘canonical Novikov homotopy’

We now complete the proof of the Main Theorem (1.1) by proving :

(5.1) Theorem. The composite

(TOP/PL)M
i∗−−−→ (G/PL)M

σ
−−−→ Ωn(G/PL)
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is null-homotopic, assuming M is closed of dimension n ≥ 5 .

Proof. We construct a map λ : (TOP/PL)M−−→HT (M) such that

(TOP/PL)M w
i∗

�
�
���λ

(G/PL)M

HT (M)

N
N
NNP
q′ (5.2)

is homotopy commutative. But by the definition of σ we have

HT (M)

u

(σ−1q′)× ∗

w
q′

(G/PL)M

u

σ

(G/PL)M0 × Ωn(G/PL) w
π2 Ωn(G/PL)

homotopy commutative, so that σq′ ≃ ∗ and the theorem follows.

Construction of λ. In fact we shall construct a map λ1 : (TOP/PL)M−−→
HT (M) so that

(TOP/PL)M w
j

�
�
���λ1

(G/PL)M

HT (M)

N
N
NNP
q1 (5.3)

commutes up to homotopy, where q1 = r1 ◦ i (see §3). The result then follows by
2.3.

The main tool in the construction of λ1 is a refined version of the Novikov-

Siebenmann splitting theorem. In what follows all maps of bounded manifolds are
assumed to carry boundary to boundary.

Definition. Suppose h :W−−→M ×Rk is a topological homeomorphism, W and
M being PL manifolds. We say h splits if there is a PL isomorphism g :M1×Rk

−−→W such that the composite hg : M1 × Rk−−→M × Rk is properly homotopic

to f × idRk , where f is the composite

M1 ⊂M1 × Rk
hg
−−−→ M × Rk

π1−−−→ M .

A splitting of h is a triple (M1, g,H) where M1, g are as above and H is a proper
homotopy between hg and f × idRk . Two splittings (M1, g,H) and (M ′

1, g
′,H ′)
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are equivalent if there is a PL isomorphism e : M1−−→M ′
1 such that diagrams

(a) and (b) commute up to isotopy and proper homotopy respectively:

M1 × Rk w
g

'
'
'
')e× {id}

W

M ′
1 × Rk

[
[
[
[]

g′

(a)

M1 × Rk × I w
H

'
'
'
')e× {id}

M × Rk

M ′
1 × Rk × I

[
[
[
[]

H ′

(b)

(5.4) Theorem. Suppose given h as above and M is closed of dimension ≥ 5
or bounded of dimension ≥ 6 with π1(M) = π1(∂M) = 0. Then there is a well-
defined equivalence class of splittings of h which we call ‘Novikov splittings’. If

M is bounded then the restriction of a Novikov splitting of h to ∂M is a Novikov
splitting of h|∂M .

Remark. The second half of 5.4 implies that any Novikov splitting of h|∂W
extends to a Novikov splitting of h.

Theorem 5.4 is proved by constructing a tower of interpolating manifolds for

h| : h−1(M × T k−1 × R) −−→ M × T k−1 × R

(cf. Novikov [27]), and applying inductively Siebenmann’s 1-dimensional splitting

theorem [37] (translated into the PL category using the techniques of Rourke and
Sanderson [30, 31]). Full details are to be found in Lashof and Rothenberg [22] or
Chapter I of these notes.

Definition of λ1 on 0-simplexes.

Suppose σ0 ∈ (TOP/PL)M is a 0-simplex. Then σ0 is a pair (ξ, h) where
ξk/M is a PL bundle and h : E(ξk)−−→M ×Rk is a topological trivialization. Let
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g :M1×Rk−−→E(ξ) be a Novikov splitting for h. Then the composite f :M1−−→
M (as in the definition above) is a homotopy equivalence and hence a 0-simplex

λ1(σ
0) ∈ HT (M).

In general λ1 is defined by induction on dimension. The general definition is
similar to that for 0-simplexes except that one uses the relative version of 5.4.

Commutativity of 5.3.

In §3 q1 = r1 ◦ i was only defined up to homotopy. We shall prove that the
definition of q1 could have been chosen so that (5.3) commutes precisely. We prove
this for 0-simplexes. The general proof is similar.

Let σ0 ∈ (TOP/PL)M as above. Then we have :

(5.5)

M1 × Rk
�
�
���f × {id}

w
g
∼= E(ξ)

N
N
NNQ
h

M × Rk

commuting up to proper homotopy. Add the (stable) bundle νM1 to all the terms
in (5.5) and observe that (g−1)∗(νM1)⊕ ξ is the stable normal bundle of M since
its total space (which is the same as the total space of νM1) is embedded in a

sphere. We obtain

E(νM1)�
�
���f̂

w
g1
∼= E(νM )

N
N
NNQ
ĥ

E((f−1)∗νM1)

The pair (f |M1 , f̂) is a normal map of M1 to M which we can take to be i(σ0)
(see definition of i in §3).

Now it is clear that g1 commutes (up to homotopy) with the canonical reduc-
tions of T (νM1) and T (νM ). Consequently ĥ can be taken to be the fibre homotopy
equivalence νM−−→(f−1)∗(νM1

) determined by f̂ . (Cf. diagram (3.8) et seq.) ĥ

determines a fibre homotopy trivialization of [ξ] = [νM ]− [(f−1)∗(νM1)] which we
may take to be h itself. So we may take q1(σ

0) = (ξ, h), as required.

§6. Weaker hypotheses

Here we sketch a proof that the condition (3) in the Main Theorem (1.1) can
be weakened to

(3′) H4(M ;Z) has no elements of order 2.
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Full details of the proof are contained in chapter III of these notes.

The idea of the proof is this. We proved that the Sullivan obstruction qh :M0

−−→G/PL corresponding to the homeomorphism h : Q−−→M factored via the

fibre K(Z2, 3) of µ : G/PL−−→Ω4n(G/PL). This factoring is not unique, it can
be altered by multiplication (in K(Z2, 3)) with any map of M0 into the fibre of
K(Z2, 3)−−→G/PL which is Ωm(G/PL), m = 4n + 1. We shall show that a

suitable map ofM0 can be chosen so that the obstruction is changed by the mod 2
reduction of any class in H3(M,Z). Then consider the exact coefficient sequence :

H3(M ;Z)
mod 2
−−−→ H3(M ;Z2)

β
−−−→ H4(M ;Z)

× 2
−−−→ H4(M ;Z) .

If condition (3′) holds, β is zero, and the entire obstruction can be killed.

To prove that a suitable map of M0 into Ωm(G/PL) can be found, it is

necessary to examine the structure of G/PL for the prime 2.

Definition. Suppose X is an H-space and R is a subring of the rationals. X ⊗R
is a CW complex which classifies the generalized cohomology theory [ , X] ⊗ R
(see Brown [6]).

The ring Z(2) of integers localized at 2 is the subring of the rationals generated
by 1

pi
with pi the odd primes. We write X(2) = X ⊗ Z(2).

(6.1) Theorem. The k-invariants of (G/PL)(2) are all trivial in dimension ≥ 5.

Assume 6.1 for the moment. To prove our main assertion we deduce :

(6.2) Corollary. Ωm(G/PL)(2) (m = 4n + 1, n > 0) is homotopy equivalent to
the cartesian product of K(Z2, 4i+ 1) and K(Z(2), 4i− 1), i = 1, 2, . . ..

Next we assert that the composite

K(Z(2), 3) ⊂ Ωm(G/PL)(2) −−→ K(Z2, 3)

is “reduction mod 2”. This follows from the observation that, from the ho-

motopy properties of µ, the map Ωm(G/PL)−−→K(Z2, 3) is essential. Now let
α ∈ H3(M ;Z) be any class and let α1 ∈ H3(M ;Z(2)) be the corresponding class.
Let α2 ∈ H3(M ;Z2) be the reduction mod 2 of α1 (and α). α1 is realized by

a map f : M0−−→K(Z(2), 3) ⊂ Ωm(G/PL)(2) and some odd multiple rf lifts to
Ωm(G/PL). But, on composition into K(Z2, 3), rf also represents α2, and so we
can indeed alter the original obstruction by the mod 2 reduction of α, as asserted.

Proof of 6.1. The main step is the construction of cohomology classes inH4∗(G/PL;
Z(2)) and H

4∗+2(G/PL;Z2) which determine the surgery obstructions :
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(6.3) Theorem. There are classes

K = k2 + k6 + . . . ∈ H4∗+2(G/PL;Z2)

and

L = ℓ4 + ℓ8 + . . . ∈ H4∗(G/PL;Z(2))

with the following property. If f :Mn−−→G/PL is a map then

s(f) =

{
⟨W (M) ∪ f∗K, [M ]⟩ ∈ Z2 if n = 4k + 2

8⟨L(M) ∪ f∗L, [M ]⟩ ∈ 8Z if n = 4k

where W (M) is the total Stiefel-Whitney class and L(M) is the Hirzebruch L-

genus.

Remark L( ) is a rational class (obtained from the equivalence BO⊗Q ≃ BPL⊗
Q, which follows from the finiteness of the exotic sphere groups Θi = πi(PL/O)
(Kervaire and Milnor [19]). The second formula must the therefore be interpreted

in rational cohomology.

(6.4) Corollary If f : Sm−−→G/PL represents the generator of π4n (resp. π4n+2),

n > 1, then

⟨f∗(ℓ4n), [S4n]⟩ = 1 (resp. ⟨f∗(k4n+2), [S
4n+2]⟩ = 1 ) .

It follows from 6.4 that the Hurewicz map for (G/PL)(2) is indivisible in di-
mensions 4n, n > 1, and that the mod 2 Hurewicz map is non-trivial in dimensions

4n+ 2. From these facts, 6.1 follows by an exact sequence argument.

We now prove 6.3.

Definition of K. Assuming that

Kr−1 = k2 + k6 + . . .+ k4r−2

has already been defined we define k4r+2. By Thom (see Conner and Floyd [8])
we have that

Ω4r+2(G/PL;Z2) −−→ H4r+2(G/PL;Z2)

is onto (where Ω∗( ) denotes oriented bordism), with kernel generated by decom-

posables. Let x ∈ H4r+2(G/PL;Z2) and f :M−−→G/PL represent x. Define

k(x) = K(f)− ⟨f∗Kr−1 ∪W (M), [M ]⟩ ∈ Z2 .

Then from the multiplicative formulae for the Kervaire obstruction (Rourke and
Sullivan [36]) and the multiplicative property of W ( ), it is easy to check that k( )
vanishes on decomposables and therefore defines a cohomology class k4r+2 with
the required properties.
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Definition of L. The definition is very similar to K. One uses instead the fact
(also due to Thom) that

Ω4r(G/PL) −−→ H4r(G/PL;Z(2))

is onto, and the multiplicative properties of L( ) and the index obstruction.

This completes the proof of 6.3.

Remark. We have described as little of the homotopy type of G/PL as we
needed. Sullivan has in fact completely determined the homotopy type of G/PL.
We summarize these results :

At the prime 2. (G/PL)(2) has one non-zero k-invariant (in dimension 4) which

is δSq2 (this follows from 6.3 and the remarks below 4.4).

At odd primes. (G/PL)(odd) has the same homotopy type as (BO)(odd) (the

proof of this is considerably deeper). [X(odd) means X ⊗ Z[ 12 ]. ]

§7. Refinements of the Main Theorem

We consider three refinements :

(a) Relaxing the π1-condition (2) in Theorem 1.1. No really satisfactory
results are available here since one immediately meets the problem of topological
invariance of Whitehead torsion.∗ However, if one is willing to bypass this problem

and assume that h is a simple homotopy equivalence, then one can relax condition
(2) considerably in the bounded case.

(b) and (c) Relaxing the condition that h is a homeomorphism. The two

conditions we replace this by are :
(b) There is a topological h-cobordism between M and Q.
(c) h is a cell-like map (cf. Lacher [21]).

With both these replacements, the Main Theorem (1.1) holds good.

We first consider condition (a), assuming that Mn is connected with non-
empty connected boundary, n ≥ 6, and π1(∂M)−−→π1(M) (induced by inclusion)
is an isomorphism.

Let SHT (M) denote the ∆-set of simple homotopy triangulations of M , i.e.
a typical k-simplex is a simple homotopy equivalence of pairs

(Qn,k, ∂Qn,k) −−→ (M ×∆k, ∂M ×∆k) .

(7.1) Theorem. i : SHT (M)−−→NM(M) is a homotopy equivalence.

∗ Solved by Chapman in 1974.
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Proof. The proof is the same as for 3.2, except that one deals with non-simply-
connected surgery in the bounded case with the same fundamental group in the

interior and on the boundary, so that the π-π theorem of Wall [44] applies.

Combining 7.1 with 3.1 we have :

(7.2) Corollary. q : SHT (M)−−→(G/PL)M is a homotopy equivalence.

Now define Sht(M) to be the set of PL equivalence classes of simple homotopy

triangulations of M . Then from the s-cobordism theorem we have

(7.3) Corollary. q ∗ : Sht(M)−−→[M,G/PL] is a bijection.

Using 7.3 we now have precisely the same analysis as in the simply connected

case and can deduce

(7.4) Theorem. Suppose h : Q−−→M is a homeomorphism and a simple homo-

topy equivalence. Suppose that H3(M ;Z) has no 2-torsion. Then h is homotopic
to a PL isomorphism.

(7.5) Corollary. If h : Q−−→Mn is a topological homeomorphism, n ≥ 6, and
M ↘ K2 then h is homotopic to a PL isomorphism.

Proof. The dimension condition ensures that π1(∂M)−−→π1(M) is an isomor-
phism and Connell and Hollingsworth [7] show that h must be a simple homotopy

equivalence.

We now move on to condition (b).

(7.6) Theorem. Suppose M satisfies the conditions of the main theorem 1.1 with

(2) replaced by the existence of a (topological) h-cobordism W between M and Q.
Then the homotopy equivalence h : Q−−→M determined by W is homotopic to a
PL isomorphism.

Proof. We only need to show that qh factors via TOP/PL. By Gluck [10]

we may assume that W is embedded properly in SN × I with PL embeddings
M ⊂ SN × {0}, Q ⊂ SN × {1} . By (stable) existence and uniqueness of normal
bundles, we may assume that W ⊂ SN × I has a normal bundle ξ which restricts

to PL normal bundles νM and νQ on M ⊂ SN × {0}, Q ⊂ SN × {1}.

Since W deformation retracts on M and Q, ξ is determined by each of νM
and νQ, therefore (f

−1)∗νQ is topologically equivalent to νM . But this equivalence
clearly commutes with the standard reductions of Thom spaces and hence (cf.
§3) coincides, up to fibre homotopy, with the fibre homotopy equivalence which
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determines qh. Thus qh factors via TOP/PL, as required.

We now move on to condition (c).

Definition. A map f : Q−−→M of manifolds is cell-like (CL) if :
(1) f is proper, i.e. f−1(∂M) = ∂Q and f−1 (compact)=compact; and one of

the following holds :

(2)1 f−1(x) has the Čech homotopy type of a point, for each x ∈M ,
(2)2 f | : f−1(U)−−→U is a proper homotopy equivalence, for each open set U ⊂M

or ∂M .

Lacher [21] proves equivalence of (2)1 and (2)2.

(7.7) Theorem. Suppose M satisfies the conditions of the main theorem and
f : Q−−→M is a cell-like map. Then f is homotopic to a PL isomorphism.

To prove 7.7 we shall define a ∆-monoid CL (analogous to TOP ) and check

that the same analysis holds.

Definition of CLq. A typical k-simplex is a CL fibre map f : ∆k × Rq−−→
∆k ×Rq, i.e. f commutes with projection on ∆k and f | : {x}×Rq−−→{x}×Rq is
cell-like for each x ∈ ∆k.

The inclusion CLq ⊂ CLq+1 is defined by identifying f with f × id and the
stable limit is CL.

Now redefine Gq to consist of proper homotopy equivalences Rq−−→Rq (clearly
homotopy equivalent to our original definition) then we have CLq ⊂ Gq and

CLq/PLq ⊂ Gq/PLq.

Theorem 7.7 follows in the same way as the main theorem from the following
three propositions :

(7.8) Proposition. CL/PL classifies stable PL bundles with a CL-trivialization
(a CL-trivialization of ξ/K is a fibre map E(ξ)−−→K × Rq which is cell-like on
fibres).

(7.9) Proposition. qf factors via CL/PL.

(7.10) Proposition. There is a map λ1 : (CL/PL)M−−→HT (M) (M closed,
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simply connected and n ≥ 6) which makes

(CL/PL)M w
j

�
�
���λ1

(G/PL)M

HT (M)

N
N
NNP
q1

homotopy commutative.

Proposition 7.8 is best proved directly (an easy argument) rather than as the

fibre of BPL−−→BCL, since it is not clear what BCL classifies. We leave this to
the reader. For 7.10 notice that the only fact used in defining λ1 (cf. proof of 5.4) is
that h : E(ξ)−−→M×Rk is a proper homotopy equivalence on h−1(M×T k−1×R),
which is certainly implied if h is cell-like. It remains to prove 7.9. For this we
associate to f : Q−−→M a CL fibre map f̂ : τQ−−→τM . Since the definition of f̂
is natural (induced by f × f : M ×M−−→Q×Q) it is easily proved that the CL

trivialization of τM⊕(f−1)∗νQ which f̂ determines, coincides up to fibre homotopy,
with the fibre homotopy trivialization determined by f as a homotopy equivalence
(cf. §3 – one only needs to prove (3.8) commutative.).

Construct f̂ as follows : let

M
∆
−−−→ M ×M

π1

−−−→ M

be the tangent microbundle of M . By Kuiper and Lashof [20], π1 contains a PL
fibre bundle τM with zero section ∆M . Let

EQ = (f × f)−1E(τM ) ⊂ Q×Q .

We assert that EQ is the total space of a PL fibre bundle, fibre Rn, projection π1
and zero-section ∆Q. To see this observe that

V = EQ ∩ π−1
1 (x) ∼= f−1(U)

where U = π2(π
−1
1 (fx) ∩ E(τM )) ⊂ M , which is ∼= Rn. Now f | : V−−→U is a

proper homotopy equivalence, since f is cell-like, so V ∼= Rn by Stallings [39].
Hence EQ is an Rn-bundle; ∆Q is a section since EQ is a neighborhood of ∆Q in
Q×Q and we can take it as zero section. By the uniqueness part of [20], EQ

∼= τQ
and (f × f)|EQ

is the required CL bundle map f̂ .

In the bounded case, one first extends f to a cell-like map of open manifolds
(by adding an open collar to M and Q and extending f productwise), then the

above procedure works on restricting again to Q.

§8. Block bundles and homotopy equivalences

We refer the reader to Rourke and Sanderson [30] for notions of block bundle
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etc. A block homotopy equivalence h : E(η)−−→E(ξ), where ξq, ηq/K are
q-block bundles, is a map satisfying :

(1) h|K = id ,
(2) h preserves blocks ,
(3) h(E(∂η)) ⊂ E(∂ξ) (∂ξ, ∂η denote associated sphere block bundles)

(4) h| : E(∂η|σ)−−→E(∂ξ|σ) has degree ± 1 each σ ∈ K.

Condition (3) makes sense since both sides have the homotopy type of Sq−1.

The proof of the following is left to the reader (cf. Dold [9]) :

(8.1) Proposition. There is an “inverse” block homotopy equivalence g : E(ξ)

−−→E(η) such that hg and gh are homotopic to the identity via block homotopy
equivalences.

The associated G̃q/P̃Lq-bundle.

Define ∆-sets G̃q, P̃Lq to consist of b.h.e.’s ∆k × Iq−−→∆k × Iq and block
bundle isomorphisms ∆k × Iq−−→∆k × Iq. These sets have the same homotopy

type as the sets defined in §2 (cf. Rourke and Sanderson [32]). We associate to
ξq a ∆-fibration with base K and fibre G̃q by taking as typical k-simplex a b.h.e.

f : ∆k × Iq−−→E(ξ|σ), σk ∈ K, and a ∆-fibration fibre G̃q/P̃Lq by factoring by

P̃Lq on the left. I.e. f1 ∼ f2 if there is g ∈ P̃L
(k)

q such that f1 = f2 ◦ g.

Now say b.h.e.’s h1 : E(η1)−−→E(ξ), h2 : E(η2)−−→E(ξ) are isomorphic
(resp. homotopic) if there is a block bundle isomorphism g : η1−−→η2 such that

h2g = h1 (resp. h2g is homotopic to h1 via b.h.e.’s). The following is easily proved
(cf. Rourke and Sanderson [30]) :

(8.2) Proposition. Isomorphism classes (resp. homotopy classes) of b.h.e.’s
E(η)−−→E(ξ) correspond bijectively to cross-sections (resp. homotopy classes of

cross-sections) of the associated G̃q/P̃Lq-bundle to ξ.

Now write Ht(ξ), “homotopy triangulations of ξ”, for the set of homotopy
classes of b.h.e.’s η−−→ξ.

(8.3) Corollary. If q ≥ 3, Ht(ξ) ∼= [K,G/PL].

Proof. This follows from 8.2 and 2.1(d), from the fact that G/PL is an H-space,
and from the existence of one cross-section (determined by id : ξ−−→ξ).

More generally define a ∆-set HT (ξ) with π0(HT (ξ)) = Ht(ξ) by taking as
typical k-simplex an isomorphism class of b.h.e.’s η−−→ξ × ∆k (see Rourke and
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Sanderson [30] for the cartesian product of block bundles), then one has similarly :

(8.4) Corollary. If q ≥ 3, HT (ξ) ≃ (G/PL)K .

Now suppose |K| =Mn then E(ξ) is a manifold and a block homotopy equiva-
lence η−−→ξ gives a simple homotopy equivalence (E(η), E(∂η))−−→(E(ξ), E(∂ξ)),
so we have a ∆-map j : HT (ξ)−−→SHT (E(ξ)).

(8.5) Theorem. If q ≥ 3, n+ q ≥ 6 then j is homotopy equivalence.

Proof. By 8.4 and 7.2, both sides have the homotopy type of (G/PL)M , so one
only needs to check that the diagram

HT (ξ) w
j

�
�
���8.4

SHT (E(ξ))

N
N
NNQ
q

(G/PL)M

commutes up to homotopy. Now 8.4 was defined by comparing ξ and η as (stable)
block bundles and q was defined (cf. §3) by comparing τ(E(ξ)) and τ(E(η)) as
stable bundles. But τ(E(ξ)) ∼ ξ ⊕ τM and τ(E(η)) ∼ η ⊕ τM (see Rourke and

Sanderson [31]) and it follows that the diagram commutes up to inversion inG/PL.

Relative Sullivan theory.

Suppose Q ⊂ M is a codimension 0 submanifold and consider homotopy

triangulations h : M1−−→M which are PL isomorphisms on Q1 = f−1(Q) ⊂ M1.
Denote the resulting ∆-set HT (M/Q), cf. §2.

The following is proved exactly as 3.3 and 3.5 :

(8.6) Theorem. There is a homotopy equivalence

HT (M/Q) ≃ (G/PL)M0/Q

if n ≥ 6, π1(M\Q) = π1(∂M\∂Q) = 0 and M0 =M if ∂M\∂Q is non-empty, and
M0 =M\{pt /∈ Q} if ∂M\∂Q = ∅.

From 8.6 one has a Hauptvermutung relative to a codimension 0 submanifold,

which we leave the reader to formulate precisely.

Now suppose Q ⊂M is a codimension q proper submanifold and ξ/Q a normal



160 rourke

block bundle. Let HT (M, ξ) denote the ∆-set of homotopy triangulations which
are block homotopy equivalences on E(η) = h−1(E(ξ)) (and hence in particular a

PL isomorphism on Q1 = zero-section of η).

(8.7) Corollary. The natural inclusion defines a homotopy equivalence

HT (M, ξ) ≃ HT (M)

if n ≥ 6, q ≥ 3 and π1(M) = π1(∂M) = 0.

Proof. Consider the diagram

HT (M |E(ξ)) w
≃ 8.6

u

(G/PL)M0/Q

u
HT (M, ξ) w

inc.

u
restriction

HT (M) w
≃ 3.3-5 (G/PL)M0

u
restriction

HT (ξ) w
≃ 8.4 (G/PL)Q

The outside vertical maps are fibrations, commutativity of the top square is clear
and of the bottom square (up to sign) follows from the proof of 8.5. The result
now follows from the 5-lemma.

Relative Hauptvermutung.

We apply 8.7 to give a Hauptvermutung relative to a submanifold of codi-
mension ≥ 3.

(8.8) Theorem. Suppose M satisfies the conditions of the Hauptvermutung and
Q ⊂ M is a proper codimension ≥ 3 submanifold. Then any homeomorphism

h : (M1, Q1)−−→(M,Q), which is a PL isomorphism on Q1, is homotopic mod Q1

to a PL isomorphism.

(8.9) Theorem. Suppose M and Q both satisfy the conditions of the Hauptver-
mutung and Q ⊂ M is a proper codimension ≥ 3 submanifold. Then any homeo-

morphism of pairs h : (M1, Q1)−−→(M,Q) is homotopic to a PL isomorphism of
pairs.

Proofs. In 8.8 it is easy to homotope h to be a b.h.e. on some block neighborhood
η of Q1 in M . h ≃ PL isomorphism by the main theorem and it is homotopic via
maps which are b.h.e.’s on η by Corollary 8.7.
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In 8.9 one first homotopes h|Q1 to a PL isomorphism and extends to give a
homotopy equivalence h1 : M1−−→Q1. It is again easy to make h1 a b.h.e. on η

and then the proof of 8.8 works.

The embedding theorem.

(8.10) Theorem. Suppose f : Mn−−→Qn+q is a simple homotopy equivalence,

M closed and q ≥ 3. Then f is homotopic to a PL embedding.

(8.11) Corollary. Suppose f : Mn−−→Qn+q is (n − q + 1)-connected, then f is
homotopic to a PL embedding.

Proof. This follows at once from 8.10 and Stallings [40].

Proof of 8.10. If n + q < 6 the theorem is trivial, so assume n + q ≥ 6. Let
g : ∂Q−−→M be the homotopy inverse of f restricted to ∂Q.

Assertion 1. As a fibration, g is fibre homotopy equivalent to the projection of
a sphere block bundle g1 : E(∂η)−−→M .

The theorem then follows by replacing g and g1 by their mapping cylinders
to obtain (up to homotopy type) :

Q

u

h ≃

h
h
h
h
hj

f−1

M

E(η)
''

''
')

π = projection

where h is a homotopy equivalence (Q, ∂Q)−−→(E(η), E(∂η)). But f−1 and π are

both simple homotopy equivalences so h is a simple homotopy triangulation of
E(η) and hence by 8.5 homotopic to a b.h.e. Therefore Q is PL isomorphic to a
block bundle over M and M is embedded in Q (by a map homotopic to f).

Instead of Assertion 1, we prove :

Assertion 2. Some large suspension (along the fibres) of g : ∂Q−−→M is fibre
homotopy equivalent to the projection of a sphere block bundle over M .

From this it follows that the fibre of g suspends to a homology sphere (and
being simply connected) must be a homotopy sphere. Assertion 1 then follows at
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once from the classifying space version of 2.1(d) which asserts that

BP̃Lq w

u

BG̃q ≃ BGq

u
BP̃L w BG̃ ≃ BG

is a pushout for q ≥ 3, i.e. “a spherical fibre space stably equivalent to a sphere

block bundle is already equivalent to one”.

Now to prove Assertion 2 we only have to notice that f × id : M−−→Q× IN
(N large) is homotopic to the inclusion of the zero section of a block bundle. First
shift to an embedding f1, then choose a normal block bundle ξ/f1M and observe

(cf. Mazur [24]) that cℓ(Q× IN\E(ξ)) is an s-cobordism and hence a product. So
we may assume E(ξ) = Q× IN , as required.

Now f−1
1 |∂(Q×IN ) is the projection of a sphere block bundle and the suspension

along the fibres of g.

Remarks. (1) There is a similarly proved relative version of 8.10 in case M and
Q are bounded and f |∂M is an embedding in ∂Q. Hence using Hudson [16] one

has that any two embeddings homotopic to f are isotopic.
(2) 8.10 (and the above remark) reduce the embedding and knot problems to
“homotopy theory” – one only has to embed up to homotopy type. The reduction

of the problem to homotopy theory by Browder [3] follows easily from this one –
for Browder’s smooth theorems, one combines the PL theorems with smoothing
theory using Haefliger [12] and Rourke and Sanderson [32].
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CHAPTER III

The Hauptvermutung according to

Casson and Sullivan

By G. E. Cooke

§1. Introduction

Chapter II contains a proof, due to Casson and Sullivan, of the Hauptvermu-

tung for a PL manifold M which satisfies :

(1) M is either closed of dimension at least five, or bounded of dimension at least

six;
(2) each component of both M and ∂M is simply connected;
(3) H3(M ;Z2) = 0.

In this chapter we give a proof that condition (3) can be weakened to :

(3)′ H4(M ;Z) has no 2-torsion.

This stronger result was stated in Sullivan [18]. An outline of the original proof
may be found in Sullivan [17]. The argument presented here was sketched in §6 of

Chapter II.

The main result is conveniently stated in terms of the obstructions to de-

forming a homotopy equivalence to a homeomorphism introduced by Sullivan in
his thesis [16]. Assume that h : Q−−→M is a topological homeomorphism. Write
M0 = M if ∂M is non-empty, and M0 = M\{disc} when ∂M is empty. The i-th

obstruction to deforming h to a PL homeomorphism is denoted by oi(h). It lies
in Hi(M0;πi(G/PL)). We shall prove that :

(a) o4(h) ∈ H4(M0;π4(G/PL)) = H4(M0;Z) is defined (all earlier obstructions
are zero) and is an element of order at most two;

(b) if o4(h) = 0 then all higher obstructions vanish.

Our method is to use information about the bordism groups of G/PL to yield

results on the k-invariants of G/PL. The following auxiliary result, which was
originally stated in Sullivan [17] and which implies that the 4i-th k-invariants are
of odd order for i > 1, is of independent interest :

(4.4) Theorem. There exist classes ℓi ∈ H4i(G/PL;Z(2)) for each i ≥ 0 such
that if we write

L = ℓ0 + ℓ1 + ℓ2 + · · · ∈ H4∗(G/PL;Z(2))
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then for any map f :M4k−−→G/PL of a smooth manifold the surgery obstruction
of the map f (see §4 of Chapter II) is given by

s(f) = 8
⟨
L(M) ∪ f∗L, [M ]

⟩
,

where L(M) is the Hirzebruch L-genus, and Z(2) denotes the integers localized at

2.

We reproduce a proof given by Sullivan in his thesis that the (4i + 2)-nd k-
invariants of G/PL are zero, and explicitly calculate the 4th k-invariant (Theorem
4.6).

§2 contains two elementary results on principal fibrations. We follow the
treatment of Spanier [14] so closely that proofs are unnecessary. In §3 various

results on Postnikov systems are stated. The literature on Postnikov system is
scattered. 2-stage Postnikov systems were discussed by Eilenberg and MacLane
[4]; in particular, the notation k-invariant is due to them. Postnikov’s fundamental

papers appeared in 1951; see [10] for an English translation. Other basic references
are Moore [8, 9]; recent treatments are in Spanier [14] and Thomas [20]. In §3 I
give proofs of two well-known elementary results (3.7 and 3.8) which I was unable

to find in the literature. I also quote a result of Kahn’s [6] on Postnikov systems of
H-spaces because of its general interest. In §4 the desired results on the homotopy
properties of G/PL are obtained and applied to the Hauptvermutung.

I am happy to acknowledge the substantial help of several people in the prepa-

ration of this chapter. I wish to thank Colin Rourke for arousing my interest in
the problem and for explaining much of the needed geometry such as Sullivan’s
thesis. I am grateful to Greg Brumfiel for outlining Sullivan’s proof of the main

result to me, and for showing me how to extend Theorem 4.3 to PL-manifolds.
And I thank Bob Stong for patiently explaining the necessary results in cobordism
theory – especially Theorem 4.5.

§2. Principal fibrations

Let B be a space with base point b0. Let PB denote the space of paths in B
starting at b0. The evaluation map

p : PB −−→ B ; λ −−→ λ(1)

is the projection of the path-space fibration (see Spanier [14]). The fibre of p

is the space of loops in B based at b0, which is denoted ΩB. If f : X−−→B is a
map, the induced fibration over X is called the principal ΩB-fibration induced by
f . The total space E is defined by

E = {(x, λ) ∈ X × PB | f(x) = λ(1)}

and the projection E
π
−−→X is defined by π(x, λ) = x. (E is often called the fibre
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of the map f .) Suppose that x0 ∈ X is a base point and that f(x0) = b0. Then we
stipulate that c0 = (x0, λ0) is the base point of E, where λ0 is the constant path.

We have an inclusion ΩB π−−→ E given by j(λ) = (x0, λ). Let Y be a space with
base point y0. In the following theorem [Y, ·] denotes the functor “homotopy-rel-
base point classes of base-point preserving maps from Y to ·”.

(2.1) Theorem. The following sequence of pointed sets is exact :

[Y,ΩB]
j∗−−−→ [Y,E]

π∗−−−→ [Y,X]
f∗−−−→ [Y,B] .

We define an action

m : ΩB × E −−→ E ; (λ, (x, λ′)) −−→ (x, λ ∗ λ′) ,

where λ ∗ λ′ denotes, as usual, the path

(λ ∗ λ′)(t) =

{
λ(2t) t ≤ 1

2

λ′(2t− 1) t ≥ 1
2 .

The action m is consistent with the inclusion j : ΩB−−→E and the multiplication
in ΩB since

m(λ, j(λ′)) = m(λ, (x0, λ
′))

= (x0, λ ∗ λ′)

= j(λ ∗ λ′) .

The map m induces an action

m∗ : [Y,ΩB]× [Y,E] −−→ [Y,E]

where [Y,ΩB] inherits a group structure from the multiplication in ΩB.

(2.2) Theorem. If u, v are elements of [Y,E], then π∗u = π∗v if and only if there
exists w in [Y,ΩB] such that

v = m∗(w, u) .

§3. Postnikov systems

Let X be a topological space. A cofiltration of X is a collection of spaces
{Xi} indexed on the non-negative integers and maps

fi : X −−→ Xi , gi : Xi −−→ Xi−1

such that the composition gifi is homotopic to fi−1. A cofiltration is usually
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assembled in a diagram as below :

...

u
gi+1

X w
fi

��������
fi−1

�
�
�
�
�
�
�
�
�
�
��

f0

Xi

u
gi

Xi−1

u
gi−1

...

u
g1

X0

A cofiltration is called convergent if for any integer N there is an M such that

for all m > M , fm : X−−→Xm is N -connected. The notion of convergent cofil-
tration has many applications. For example, a very general problem in topology
is to determine the homotopy classes of maps of a finite complex K to a space

X (denoted [K,X]). If {Xi}, {fi}, {gi} is a convergent cofiltration of X, then the
problem of calculating [K,X] is split up into a finite sequence of problems : given
that [K,Xi] is known, calculate [K,Xi+1]. Since the cofiltration is assumed con-

vergent, (fi)∗ : [K,X]−−→[K,Xi] is a bijection for large i and so the sets [K,Xi]
converge after a finite number of steps to a solution of the problem.

Naturally one would like to concentrate on cofiltrations where each step of
the above process (calculate [K,Xi+1] given [K,Xi]) is as simple as possible. Ob-

struction theory leads to the following requirement for simplifying the problem :
that each map gi : Xi−−→Xi−1 be a fibration with fibre an Eilenberg-MacLane
space. The precise definition is given in the following way.

First note that the space of loops in a K(π, n + 1) is a K(π, n), and so it
makes sense to speak of a principal K(π, n)-fibration. Such a fibration is induced

by a map of the base space into K(π, n+ 1).

(3.1) Definition. A Postnikov system for a path-connected space X is a
convergent cofiltration

{Xi} , {fi : X−−→Xi} , {gi : Xi−−→Xi−1}

of X such that X0 is contractible, each Xi has the homotopy type of a CW

complex, and gi : Xi−−→Xi−1 (i > 0) is a principal K(π, i)-fibration for some π.

Suppose that X is a path-connected space, and that {Xi}, {fi : X−−→Xi},
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{gi : Xi−−→Xi−1} is a Postnikov system for X. Then it follows that :
(a) For each i, the map fi : X−−→Xi induces isomorphisms of homotopy

groups in dimensions ≤ i, and πj(Xi) = 0 for j > i;
(b) for each i > 0, the map gi : Xi−−→Xi−1 is actually a principal K(πi(X), i)

fibration, induced by a map

ki : Xi−1 −−→ K(πi(X), i+ 1) .

The class ki ∈ Hi+1(Xi−1;πi(X)) is called the i-th k-invariant of the given Post-
nikov system. Furthermore, the inclusion of the fibre of gi, j : K(πi(X), i)−−→Xi,
induces a homology homomorphism equivalent to the Hurewicz homomorphism hi
in the space X, in that the diagram below is commutative :

Hi(K(πi(X), i)) w
j∗

u

≃

Hi(Xi)

πi(X) w
hi Hi(X)

u

(fi)∗

(c) X is a simple space; that is to say, π1(X) acts trivially on πn(X) for each
n, or equivalently, any map of the wedge S1 ∨ Sn−−→X extends over the product
S1 × Sn. In particular, π1(X) is abelian.

On the other hand, if X is simple then there exists a Postnikov system for
X. See Spanier [14, Corollary 8.3.1, p.444]. For a discussion of the uniqueness of

Postnikov systems, see Barcus and Meyer [1].

The following facts about Postnikov systems are presented without proofs
except in cases where I do not know of an appropriate reference :

(3.2) Maps of Postnikov systems. Let X and X ′ be spaces, with Postnikov
systems {Xi, fi, gi}, {X ′

i, f
′
i , g

′
i}. If h : X−−→X ′ is a map, then there exists a map

of Postnikov systems consistent with the map h; that is, there is a collection of
maps {hi : Xi−−→X ′

i} such that hifi ≃ f ′ih and hi−1gi ≃ g′ihi for all i. (See Kahn
[6].)

(3.3) Cohomology suspension. If B is a space with base point ∗, and PB p−−→
B is the path space fibration, then for i > 1 the composition

Hi(B;G)
≈
←−− Hi(B, ∗;G)

p∗

←−− Hi(PB,ΩB;G)
δ
←−−
≈

Hi−1(ΩB;G)

−−→ Hi−1(ΩB;G)

(with G an arbitrary coefficient group) is called the cohomology suspension
and is denoted by σ : Hi(B;G)−−→Hi−1(ΩB;G). For i ≤ 1 σ is set equal to zero.
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(3.4) Postnikov system of a loop space. (See Suzuki [19] for a study of the case
of 2 non-vanishing homotopy groups.) Let X be a path-connected space with base

point. Let ΩX denote the component of the loop space of X consisting of those
loops which are homotopic to a constant. If {Xi}, {fi : X−−→Xi} {gi : Xi−−→
Xi−1} is a Postnikov system for X, then a Postnikov system for ΩX is obtained

by applying the loop space functor. That is, set

Yi = ΩXi+1 ,

f ′i = Ωfi+1 : ΩX −−→ ΩXi+1 ,

g′i = Ωgi+1 : ΩXi+1 −−→ ΩXi

and then {Yi, f ′i , g′i} is a Postnikov system for ΩX. The k-invariants of this Post-
nikov system for ΩX are just the cohomology suspensions of the k-invariants of

the Postnikov system {Xi, fi, gi}.

(3.5) Definition. For any space Y , the set [Y,ΩB] inherits a group structure

from the multiplication on ΩB. We shall often use the fact that if u ∈ Hi(B;G)
then σu ∈ Hi−1(ΩB;G) is primitive with respect to the multiplication on ΩB;
this means that for any space Y and for any two maps f, g ∈ [Y,ΩB],

(f · g)∗σu = f∗σu+ g∗σu ,

where f · g denotes the product of f and g. (See Whitehead [22].)

(3.6) Postnikov system of an H-space. Let X be an H-space. Then X is
equipped with a multiplication h : X ×X−−→X such that the base point acts as
a unit. If X and Y are H-spaces, then a map f : X−−→Y is called an H-map if

fhX ≃ hY (f×f). It is proved by Kahn [6] that if X is an H-space and {Xi, fi, gi}
is a Postnikov system for X, then each Xi can be given an H-space structure in
such a way that :

(a) for all i, fi and gi are H-maps,
(b) for all i, the k-invariant ki ∈ Hi+1(Xi−1;πi(X)) is primitive with respect

to the multiplication on Xi−1.

(3.7) Vanishing of k-invariant. If X is a space and

Xi

u

gi

Xi−1 w
ki K(πi(X), i+ 1)

is the i-th stage of a Postnikov system for X, then ki = 0 if and only if the

Hurewicz map h : πi(X)−−→Hi(X) is a monomorphism onto a direct summand.

Proof. Serre [12] constructs for any fibre space such that the fundamental group of
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the base acts trivially on the homology of the fibre an exact sequence of homology
groups. In the case of the fibration gi : Xi−−→Xi−1, with coefficient group πi(X),

we obtain

. . . −−−→Hi(Xi;πi(X))
j∗
−−−→ Hi(K(πi(X), i);πi(X))

τ
−−−→ Hi+1(Xi−1;πi(X)) .

Here j : K(πi(X), i)−−→Xi is the inclusion of the fibre and τ is the transgression.
The fundamental group of Xi−1 acts trivially on the homology of the fibre because

the fibre space is induced from the path-space fibration over K(πi(X), i+1). The
sequence is exact in the range needed even if Xi−1 is not simply-connected, as a
simple argument using the Serre spectral sequence will show.

Let ı ∈ Hi(K(πi(X), i);πi(X)) denote the fundamental class. The natural
isomorphism

Hi(K(πi(X), i);πi(X)) ∼= Hom(πi(X), πi(X))

sends ı to the identity map. Consider the square below :

Xi w

u

K(πi(X), i)

PK(πi(X), i+ 1)

u

K(πi(X), i)

Xi−1 w K(πi(X), i+ 1)

In the path-space fibration the fundamental classes of the fibre and base space

correspond under transgression; the k-invariant ki ∈ Hi+1(Xi−1;πi(X)) is by
definition the pull-back of the fundamental class of the base space K(πi(X), i+1).
It follows that τ(ı) = ki.

First suppose ki = 0. Then by Serre’s exact sequence there is a class x ∈
Hi(Xi;πi(X)) such that j∗x = ı. The action of x on the homology of Xi gives a
map such that the diagram below is commutative :

πi(X)

u

∼=Hi(Xi)
��

��
����x

Hi(K(πi(X), i))

h
h
h

hhk j∗

But j∗ is essentially the Hurewicz homomorphism h : πi(X)−−→Hi(X) by remark

(b) above, so x gives a splitting map and h is a monomorphism onto a direct
summand.

Now assume that h is a monomorphism onto a direct summand. Then so is

j∗, and we may choose a splitting map

p : Hi(Xi) −−→ πi(X)

such that the diagram above is commutative with p in place of x. The universal
coefficient theorem implies that there is a class x ∈ Hi(Xi;πi(X)) whose action on
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Hi(Xi) is the map p. It follows that j∗x = ı, since K(πi(X), i) has no homology
in dimension i− 1. Thus ki = 0 and the proof is complete.

(3.8) Order of k-invariant. Let X be a space such that πi(X) = Z for some

i. Then the i-th k-invariant ki in any Postnikov system for X is of finite order
if and only if there is a cohomology class in Hi(X) which takes a non-zero value
on the generator of πi(X). The order of ki is equal to the least positive integer

d such that there is a cohomology class in Hi(X) which takes the value d on the
generator of πi(X).

Proof. Let

Xi

u

K(Z, i)

Xi−1 w K(Z, i+ 1)

be the i-th stage of a Postnikov system for X. We have as in 3.7 an exact sequence

. . . −−−→ Hi(Xi)
j∗
−−−→ Hi(K(Z, i))

τ
−−−→ Hi+1(Xi−1)

and the fundamental class ı ∈ Hi(K(Z, i)) transgresses to ki. It follows from
remark (b) above that after identifying Hi(X) with Hi(Xi) the map j∗ can be
regarded as evaluation of Hi(X) on πi(X). In other words

Hi(Xi) w
j∗

u

(fi)
∗

Hi(K(Z, i))

u

∼=

Hi(X) w
eval. Hom(πi(X),Z)

is commutative. Thus to prove the first part of (3.8) we have

ki is of infinite order ⇐⇒ τ is a monomorphism

⇐⇒ j∗ = 0

⇐⇒ every cohomology class in Hi(X)

takes the value 0 on πi(X) .

To prove the second statement of (3.8) we have

the order of ki divides d ⇐⇒ j∗x = dı for some x ∈ Hi(Xi)

⇐⇒ some cohomology class in

Hi(X) takes the value d on

the generator of πi(X) .
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§4. Application to G/PL and the Hauptvermutung

Recall that in Chapter II it is proved that the periodicity map

µ : G/PL −−→ Ω
4n
(G/PL)

has fibre an Eilenberg-MacLane space K(Z2, 3). Furthermore, the composition

TOP/PL
i

−−−→ G/PL
µ
−−−→ Ω

4n
(G/PL)

is null-homotopic. Now let M and Q be PL manifolds, and assume that

h : Q −−→ M

is a topological homeomorphism. Associated to h is a map

qh : M0 −−→ G/PL

(where M0 = M\{disc} if ∂M = ∅, M0 = M if ∂M ̸= ∅) and, under certain
conditions on M , h is homotopic to a PL homeomorphism if and only if qh is

homotopic to a constant. (For example, it is enough to assume :
(1) M and Q are closed of dimension ≥ 5 or bounded of dim ≥ 6
(2) π1(M) = π1(∂M) = 0 .)

In this section we study the question of whether the map qh is null-homotopic.

By Chapter II the map qh factors through TOP/PL :

TOP/PL

�i

M0

(
(
()

w
qh G/PL

and so the composition µqh : M0−−→Ω
4n
G/PL is null-homotopic. By Theorems

2.1 and 2.2, this means that

(a) qh lifts to a map into the total space of the ΩΩ
4n
(G/PL) fibration induced

by µ. This total space is just the fibre of the map µ and so we denote it by

K(Z2, 3),

(b) different liftings of qh are related via the action of ΩΩ
4n
(G/PL) on K(Z2, 3).

Now any lifting of qh to a map into K(Z2, 3) defines a cohomology class in

H3(M0;Z2). We shall prove :

(4.1) Theorem. The collection of cohomology classes defined by liftings of qh
is a coset of the subgroup of mod 2 reductions of integral classes in M0 and so
determines an element Vh ∈ H4(M0;Z) of order 2. The map qh is null-homotopic

if and only if Vh = 0.

The theorem above can be restated in terms of the obstruction theory defined
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by Sullivan [16]. Let

oi(qh) ∈ Hi(M0;πi(G/PL))

denote the i-th obstruction to deforming qh to a constant. The theorem just stated

implies that in our case (where h is a topological homeomorphism) :
(a) o2(qh) = 0,
(b) o4(qh) ∈ H4(M0;Z) is equal to Vh and is an element of order 2,

(c) if o4(qh) = 0 then all the higher obstructions vanish.

We begin with a study of the k-invariants of G/PL. Let

{Xi} , {fi : G/PL−−→Xi} , {gi : Xi−−→Xi−1}

be a Postnikov system for G/PL. Let

xi ∈ Hi+1(Xi−1;πi(G/PL))

denote the i-th k-invariant. Recall that π4i+2(G/PL) = Z2, π4i(G/PL) = Z, and
the odd groups are zero.

(4.2) Theorem. For all i, x4i+2 = 0.

Proof. This theorem was proved in Sullivan’s thesis [16], and we reproduce the

proof here. By 3.7 it is sufficient to show that the Hurewicz homomorphism

h : Z2 = π4i+2(G/PL) −−→ H4i+2(G/PL)

is a monomorphism onto a direct summand. But that is true if and only if the

mod 2 Hurewicz homomorphism

h2 : Z2 = π4i+2(G/PL) −−→ H4i+2(G/PL)

mod 2 reduction
−−−−−−−−−→ H4i+2(G/PL;Z2)

is a monomorphism.

Consider the following diagram :

Ω4i+2(G/PL)

u

×2

Ω4i+2(G/PL) w

u

H4i+2(G/PL)

u

π4i+2(G/PL)
44

446h0

�h1

N4i+2(G/PL) w H4i+2(G/PL;Z2)

Here Ω and N denote oriented and unoriented smooth bordism respectively. The
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column in the middle is exact by a result of Conner and Floyd [3]. The surgery
obstruction gives a splitting

O
OOQ

���

π4i+2(G/PL) w Ω4i+2(G/PL)

and so h0 is onto a direct summand Z2. By the exactness of the middle column,
h1 is non-zero. Thus the generator f : S4i+2−−→G/PL of π4i+2 does not bound

a singular manifold in G/PL. According to Theorem 17.2 of [3], at least one of
the Whitney numbers associated to the singular manifold [S4i+2, f ]2 must be non-
zero. Since all of the Stiefel-Whitney classes of S4i+2 vanish (except w0 which is 1),

this implies that f∗[S
4i+2] is non-zero in Z2-homology. Thus the mod 2 Hurewicz

homomorphism is a monomorphism and Theorem 4.2 is proved.

(4.3) Theorem. For all i > 1, x4i ∈ H4i+1(X4i−1;Z) is of odd order.

Proof. By 3.8 it is sufficient to find a cohomology class in H4i(G/PL) which
takes an odd value on the generator of π4i(G/PL).

We shall prove that such cohomology classes exist as follows : we construct,

for each i, a cohomology class

ℓi ∈ H4i(G/PL;Z(2)) ,

where Z(2) = integers localized at 2 = the ring of rationals with odd denominators.

The classes ℓi shall be constructed so that ℓi takes the value 1 on the generator
of π4i(G/PL) for i > 1. Since the homology of G/PL is finitely generated, a
sufficiently large odd multiple of ℓi is then the reduction of an integral class which

takes an odd value on the generator of π4i(G/PL).

(4.4) Theorem. There exist classes ℓi ∈ H4i(G/PL;Z(2)) for each i ≥ 0 such
that if we write

L = ℓ0 + ℓ1 + ℓ2 + · · · ∈ H4∗(G/PL;Z(2))

then for any map f :M4k−−→G/PL of a smooth manifold the surgery obstruction
of the map f (see Chapter II) is given by

(1) s(f) = 8⟨L(M) ∪ f∗L, [M ]⟩
where L(M) is the L-genus of Hirzebruch [5, II §8] applied to the Pontrjagin classes
of M .

Now if αi ∈ π4i(G/PL) is a generator then the surgery obstruction of the
map αi : S

4i−−→G/PL is 16 if i = 1 and 8 if i > 1. Since the Pontrjagin classes

of S4i are trivial, Theorem 4.4 implies that

⟨ℓi, αi⟩ =

{
2 if i = 1

1 if i > 1

and so Theorem 4.3 follows.
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We now prove Theorem 4.1, postponing the proof of Theorem 4.4. Consider
the diagram below

K(Z2, 3)

u
π

M0

i
i
i
iij

w
qh G/PL

Let ı3 ∈ H3(K(Z2, 3);Z2) be the fundamental class. Choose a lifting f1 : M0−−→
K(Z2, 3). We prove first that given any other lifting f2 : M0−−→K(Z2, 3) of qh,
we have

(a) f∗2 ı3 − f∗1 ı3 = reduction of an integral cohomology class.

Proof of (a). By Theorem 2.2, there is a map g :M0−−→ΩΩ
4n
(G/PL) such that

the composition

M0 w
g × f1 ΩΩ

4n
(G/PL)×K(Z2, 3)

u
m

K(Z2, 3)

is homotopic to f2. We have

m∗ı3 = j∗ı3 × 1 + 1× ı3

(where j : ΩΩ
4n
(G/PL)−−→K(Z2, 3) is the inclusion of the fibre) for dimension

reasons. We evaluate j∗ı3. Since

π1(ΩΩ
4n
(G/PL)) = Z2 , π3(ΩΩ

4n
(G/PL)) = Z

and the even groups are zero, a Postnikov system for ΩΩ
4n
(G/PL) looks like

ΩΩ
4n
(G/PL)NNNNNNP






�

E3

u
K(Z, 3)

K(Z2, 1)

in low dimensions. The k-invariant k3 ∈ H4(K(Z2, 1);Z) is the (4n+1)-st suspen-
sion of the k-invariant x4n+4 of G/PL, by 3.4. Since x4n+4 is of odd order, so is
k3 (here we assume n ≥ 1 and apply Theorem 4.3) and since k3 lies in a 2-primary

group it must be zero. Thus E3 is a product. Hence

H3(E3;Z2) ∼= Z2 ⊕ Z2 ,
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generated by ı31 and ı, where ı1 ∈ H1(K(Z2, 1);Z2) is the fundamental class
and ı ∈ H3(K(Z, 3);Z2) is the mod2 reduction of the fundamental class ı ∈
H3(K(Z, 3);Z). Thus we may write

j∗ı3 = aı31 + bı (a, b ∈ Z2) .

Now π3(ΩΩ
4n
(G/PL)) ∼= Z maps onto π3(K(Z2, 3)) ∼= Z2 since π3(G/PL) = 0.

It follows that b = 1. To evaluate a, we consider the fibre of the map j, which has
the homotopy type of Ω(G/PL). We obtain a sequence of spaces :

Ω(G/PL)
j′
−−−→ ΩΩ

4n
(G/PL)

j
−−−→ K(Z2, 3)

π
−−−→ G/PL .

We shall show that (j′)∗ı31 ̸= 0, (j′)∗ı = 0. Then, since jj′ ≃ ∗, it follows that
a = 0. Let

Ω(G/PL)NNNNNNP





�

E′
3

u
K(Z, 3)

K(Z2, 1)

be a section of a Postnikov system for Ω(G/PL) obtained by looping the corre-
sponding section of a Postnikov system for G/PL. The k-invariant k3 ∈ H4(K(Z2,

1);Z) is then the suspension σx4 of the k-invariant x4 ∈ H5(K(Z2, 2);Z) forG/PL.
We shall prove later (Theorem 4.6) that x4 = δSq2ı2, where ı2 is the fundamental
class and δ is the Bockstein operation associated to the coefficient sequence

Z
×2
−−−→ Z −−−→ Z2 .

Since δ and Sq2 commute with suspension,

k3 = σx4 = δSq2ı1 = 0 .

Thus E′
3 is a product. Now associated to the map j is a map E′

3−−→E3 by 3.2.
This map multiples by 2 in π3 and is an isomorphism on π1, so a calculation gives

(j′)∗ı1 = ı1 , (j′)∗ı31 ̸= 0 , (j′)∗ı = 0 .

This completes the proof that a = 0, and we may write

m∗ı3 = ı× 1 + 1× ı3 .

Then since f2 ≃ m(g × f1) we have

f∗2 ı3 = (g × f1)∗(ı× 1 + 1× ı3)

= g∗ı+ f∗1 ı3 .
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The difference f∗2 ı3 − f∗1 ı3 is thus the reduction of the integral class g∗ı, and (a)
is proved.

We complete the proof of Theorem 4.1 by showing that given any lifting f1
of qh and any class u ∈ H3(M0;Z2) such that u = v, v ∈ H3(M0;Z), then

(b) there is a lifting f2 of qh such that

f∗2 ı3 − f∗1 ı3 = u .

Proof of (b). Since m∗ı3 = ı⊗ 1 + 1⊗ ı3 we need only find a map

g : M0 −−→ ΩΩ
4n
(G/PL)

such that g∗ı = (2c + 1)v for some integer c. For then the map f2 = m(g × f1)
satisfies

f∗2 ı3 = g∗ı+ f∗1 ı3

= (2c+ 1)v + f∗1 ı3

= u+ f∗1 ı3 .

Construction of the map g. Let {Ei} denote the stages of a Postnikov system

for ΩΩ
4n
(G/PL). It was shown above that E3 is a product, and so there exists a

map

g3 : M0 −−→ E3

such that g∗3ı = v. Now each Ei is assumed to be a loop space, and so for any

i, [M0, Ei] is a group. The map g3 is constructed by lifting odd multiplies of g3
to successively higher stages Ei. Suppose we have obtained a map gi :M0−−→Ei.
The obstruction to lifting gi

Ei+1

u
M0

i
i
i
iij

w
gi Ei

is equal to g∗i k
i, where ki is the i-th k-invariant. Now the k-invariants are either

zero or of odd order. In a case where ki = 0, there is no obstruction and gi lifts. If
ki ̸= 0 and is of odd order 2d+1, then the map (2d+1)gi obtained by multiplying

gi with itself (2d+ 1) times in the group [M0, Ei] satisfies

((2d+ 1)gi)
∗ki = (2d+ 1)g∗i k

i = 0

since ki is primitive (see 3.5). Since M0 is finite dimensional the obstructions
vanish after a finite number of iterations of this procedure. It follows that an odd
multiple of g3, say (2c+ 1)g3, lifts to a map

g : M0 −−→ ΩΩ
4n
(G/PL)

Now the class ı ∈ H3(ΩΩ
4n
(G/PL)) is primitive. This is true because it is actually

a suspension; we argued previously that the third k-invariant k3 ∈ H4(K(Z2, 1);Z)



4. application to g/pl and the hauptvermutung 179

is trivial because it is of odd order and 2-primary. The same is true of the fourth k-

invariant in H5(K(Z2, 2);Z) of Ω
4n
(G/PL). Thus the fourth stage of a Postnikov

system for Ω
4n
(G/PL) splits as a productK(Z2, 2)×K(Z, 4), and the fundamental

class of K(Z, 4) suspends to ı ∈ H3(E3). Since ı is primitive we have

g∗ı = (2c+ 1)g∗3 ı = (2c+ 1)v

and the proof of (b) is complete.

Proof of Theorem 4.4. We first recall some results on the smooth oriented

bordism groups Ω∗(X) of a space X. The reader is referred to Conner and Floyd
[3] or Stong [15, Chapter IX] for definitions.

LetMSOk denote the Thom complex of the universal oriented k-plane bundle
over BSOk. The spectrum MSO = {MSOk} classifies the bordism groups of a
space X in that

Ω∗(X) = π∗(X+ ∧MSO) ,

with X+ = X ∪ {pt.}. Let K (Z, 0) denote the Eilenberg-MacLane spectrum with

k-th space K(Z, k). For any connected space X we have

π∗(X+ ∧K (Z, 0)) = H∗(X) .

The Thom class U ∈ H0(MSO) induces a map MSO−−→K (Z, 0) which on any

space X yields the Hurewicz homomorphism h : Ω∗(X)−−→H∗(X). Now Ω∗(X)
is an Ω∗(pt)-module. An element in Ω∗(X) is decomposable if it is a linear
combination of elements of the form

N1 ×N2

p2−−−→ N2

g
−−−→ X

where dimN1 > 0. We need the following result, writing

G = G/torsion⊗ Z(2)

for any group G.

Theorem 4.5. For any space X the Hurewicz homomorphism h : Ω∗(X)−−→
H∗(X) induces an epimorphism

h : Ω∗(X) −−→ H∗(X)

with kernel generated by decomposables.

Proof. According to Stong [15, p.209] the Hurewicz homomorphism in MSO

induces a monomorphic map of graded rings

h : π∗(MSO)/torsion −−→ H∗(MSO)/torsion

with finite odd order cokernel in each dimension, so that

h : π∗(MSO) −−→ H∗(MSO)
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is an isomorphism of graded rings. For any space X we have a commutative
diagram :

Ω∗(X) w
h

u
≈

H∗(X)

u

≈

π∗(X+ ∧MSO)

u
≈

H∗(X+ ∧MSO)

u
≈

H∗(X)⊗H∗(MSO) w
1⊗ U

H∗(X)⊗H∗(K(Z, 0))

The vertical maps on the left are isomorphisms of π∗(MSO) (or H∗(MSO))-
modules. The kernel of 1⊗ U consists of decomposables, and so the same is true

of the kernel of h.

The classes ℓi ∈ H4i(G/PL;Z(2)) are constructed inductively. Set ℓ0 = 0.

Then the conclusion (1) of Theorem 4.4 holds for manifolds of dimension zero.
Suppose that ℓ0, · · · , ℓi−1 have been defined in such a way that the conclusion of
Theorem 4.4 holds for manifolds of dimension 4k, k < i. We define the cohomology

class ℓi as follows. The formula (1) forces the action of ℓi on the 4i-th bordism
group of G/PL; ℓi must map Ω4i(G/PL) to Z(2) by the homomorphism ℓ′ which
is defined by

ℓ′[M4i, f ] =
s(f)

8
− ⟨L(M) ∪ f∗

∑
j<i

ℓj , [M ]⟩

for any [M4i, f ] ∈ Ω4i(G/PL). The values taken by ℓ′ lie in Z(2) because the

Hirzebruch polynomials have coefficients in Z(2). Now suppose that [M4i, f ] is a
boundary. Then there is a smooth manifold W 4i+1 with boundary ∂W 4i+1 =M4i

and a map F :W 4i+1−−→G/PL such that F |∂W = f . Now the surgery obstruction

s(f) vanishes because it is a cobordism invariant. Let i : M ⊆ W denote the
inclusion. Then

⟨L(M) ∪ f∗
∑
j<i

ℓj , [M ]⟩ = ⟨i∗L(W ) ∪ i∗F ∗
∑
j<i

ℓj , [M ]⟩

= ⟨L(W ) ∪ F ∗
∑
j<i

ℓj , i∗[M ]⟩

= 0 (since i∗[M ] = 0) .
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Thus ℓ′ vanishes on boundaries and is well-defined on Ω4i(G/PL). Since ℓ′ must
map torsion to zero it induces a homomorphism

ℓ′ : Ω4i(G/PL) −−→ Z(2) .

Theorem 4.5 states that ℓ′ induces a map

ℓ : H4i(G/PL) −−→ Z(2)

if and only if ℓ′ vanishes on decomposables. We assume for the moment that

ℓ′ vanishes on decomposables. The universal coefficient theorem states that the
evaluation map

(2) H4i(G/PL;Z(2)) −−→ Hom(H4i(G/PL);Z(2))

is onto. Thus there exists a cohomology class ℓi whose action on H4i(G/PL) is

the composition

H4i(G/PL) −−→ H4i(G/PL)
ℓ
−−→ Z(2) .

The action of ℓi on Ω4i(G/PL) is then exactly what is needed to satisfy (1) for

manifolds of dimension 4k, k ≤ i.

Proof that ℓ′ vanishes on decomposables. The decomposables of Ω4i(G/PL;
Z(2)) are linear combinations of elements of the form

N4i−n
1 ×Nn

2

p2−−−→ Nn
2

g
−−−→ G/PL

where n < 4i and p2 is projection onto the second coordinate. To evaluate ℓ′

on [N1 × N2, gp2], we note that the L-genus is multiplicative and the Pontrjagin
classes satisfy a Whitney sum formula modulo 2-torsion and so

L(N1 ×N2) = L(N1)× L(N2)

modulo 2-torsion. Thus

(3)

ℓ′[N1 ×N2, gp2] =
s(gp2)

8
− ⟨L(N1)× (L(N2) ∪ g∗

∑
j<i

ℓj), [N1]× [N2]⟩

=
s(gp2)

8
− ⟨L(N1), [N1]⟩ · ⟨L(N2) ∪ g∗

∑
j<i

ℓj , [N2]⟩ .

First assume that n ̸≡ 0(mod 4). Then s(gp2) = 0 by the product formula
for the index surgery obstruction of Rourke and Sullivan [11, Theorem 2.1]. Also,

⟨L(N1), [N1]⟩ = I(N1) = 0, so that both terms of (3) vanish and ℓ′[N1×N2, gp2] =
0.

Next assume n ≡ 0(mod 4). If n = 0 then both terms of (3) are obviously

zero. If n > 0 then
s(gp2)

8
= I(N1) ·

s(g)

8
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by the product formula and

⟨L(N1), [N1]⟩ · ⟨L(N2) ∪ g∗
∑
j<i

ℓj , [N2]⟩ = I(N1) ·
s(g)

8

by the inductive hypothesis (N2 is a manifold of dimension 4j for some j < i). Thus
ℓ′[N1×N2, gp2] = 0, and ℓ′ vanishes on decomposables. The proof of Theorem 4.4

is complete.

Remarks on Theorem 4.4. (i) Since the evaluation map (2) has kernel a torsion

group, the ℓi are unique up to the addition of torsion elements.
(ii) There are classes LPL

i ∈ H4i(BPL;Q) which pull back to the L-genus in BO.
(See Milnor and Stasheff [7].) The natural map π : G/PL−−→BPL then satisfies

(4) π∗(LPL − 1) = 8L (Sullivan [17], p.29)

where L denotes the image of L in H∗(G/PL;Q).

Proof of (4). By our first remark we only need to verify that π∗(LPL−1) can be
used to calculate the surgery obstruction for smooth manifolds. Let M4k be a PL
manifold, f : M4k−−→G/PL a map. The composition πf is a stable PL bundle

over M . Then let νM be the stable normal bundle. We obtain a stable bundle
νM − πf over M and the fibre homotopy trivialization of πf determines a normal
invariant in π∗(T (νM − πf)). The resulting surgery problem is the normal map

associated to the map f . (See Chapter II.) The surgery obstruction of the map f
is thus equal to [I(νM − πf)− I(M)]. The “index” of a stable bundle ξ over M4k

is defined by

I(ξ) = ⟨LPL
k (−ξ), [M4k]⟩ .

Thus

s(f) = ⟨LPL
k (τM + πf), [M4k]⟩ − I(M)

= ⟨LPL(τM ) ∪ LPL(πf), [M4k]⟩ − I(M)

= ⟨LPL(M) ∪ (LPL(πf)− 1), [M4k]⟩

since ⟨LPL(τM ), [M ]⟩ = I(M). But LPL(πf) − 1 = f∗π∗(LPL − 1), so we have
proved the desired formula for the surgery obstruction. We have also proved that

Theorem 4.4 holds for PL manifolds.
(iii) Let M4k be a manifold, smooth or PL. Then [M,G/PL] forms a group via
Whitney sum, and so it is natural to ask whether the surgery obstruction

s : [M,G/PL] −−→ Z

is a homomorphism. The answer is in general no. Since LPL ∈ H∗(BPL;Q) is
multiplicative it follows from (4) that

h∗(L) = L × 1 + 1× L+ L × L

where h : G/PL × G/PL−−→G/PL is the multiplication in G/PL induced by
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Whitney sum. Thus if f, g ∈ [M,G/PL],

s(f · g) = s(f) + s(g) + 8⟨L(M) ∪ f∗L ∪ g∗L, [M ]⟩ .

(iv) By 3.8 the order of x4i ∈ H4i+1(X4i−1;Z) divides ⟨u, αi⟩ for any integral class
u ∈ H4i(G/PL). Let νi denote the least positive integer such that νiℓi is integral.

Then νi is of course always odd. We obtain a bound on νi as follows. By (ii) above
π∗(LPL − 1) = 8L. Let µi denote the least positive integer such that µiL

PL
i is

integral. Brumfiel [2] has proved that

µi =
∏
p

[ 4i

2(p− 1)

]
where the product is taken over all odd primes p ≤ 2i + 1. Since νi divides µi

we have : the order of x4i is a divisor of µi. (The precise order of x4i can be
computed using a result due to Dennis Sullivan, that G/PL and BO have the

same homotopy type in the world of odd primes. It follows that the order of x4i

is the odd part of (2i− 1)!, for i > 1 .)

We conclude with a calculation of the fourth k-invariant x4 ∈ H5(K(Z2, 2);Z)
of G/PL. The following theorem is due to Sullivan [17].

(4.6) Theorem. x4 = δSq2ı2, where ı2 ∈ H2(K(Z2, 2);Z2) is the fundamental
class and δ is the Bockstein operation associated to the coefficient sequence

Z
×2
−−→ Z −−→ Z2 .

Proof. Consider a section of the Postnikov system for G/PL

G/PL w X4

u
K(Z, 4)

X2 = K(Z2, 2)

By 3.8 the order of x4 is the smallest positive integer d such that there exists a

cohomology class u ∈ H4(G/PL) satisfying ⟨u, α1⟩ = d , where α1 ∈ π4(G/PL)
is a generator. By Theorem 4.4 there is a class ℓ1 ∈ H4(G/PL;Z(2)) such that
⟨ℓ1, α1⟩ = 2. Since there is an odd multiple of ℓ1 which is the reduction of an

integral class, the order of x4 divides an odd multiple of 2. But x4 is in a 2-
primary group. Thus 2x4 = 0. By the exactness of the sequence

H4(K(Z2, 2);Z2)
δ
−−→ H5(K(Z2, 2);Z)

×2
−−→ H5(K(Z2, 2);Z)

there is a class y ∈ H4(K(Z2, 2);Z2) such that δy = x4. But H4(K(Z2, 2);Z2) ∼=
Z2 generated by ı22 = Sq2ı2 (Serre [13]), and so x4 = aδSq2ı2 for some a ∈ Z2. We
complete the proof of Theorem 4.6 by showing that x4 ̸= 0.
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The inclusion of the base point i : ∗ ⊆ G/PL induces a monomorphism

i∗ : Ω4(∗) −−→ Ω4(G/PL)

and since the image of i∗ is in the kernel of the Hurewicz homomorphism, there is
a diagram

π4(G/PL)A
A
A
AACh′

w Ω4(G/PL)

u

w H4(G/PL)

cok i∗

h
h
h
hhj

We have Ω4(G/PL)/torsion = Z ⊕ Z, and so cok i∗ ∼= Z⊕ finite group. Now the
surgery obstruction s : Ω4(G/PL)−−→Z vanishes on im i∗ and so induces a map

s′ : cok i∗−−→Z such that

π4(G/PL) w
h′

�
�
���s

cok i∗
N
N
NNQ
s′

Z
In order to prove that x4 ̸= 0, we show that h′ : π4(G/PL)−−→cok i∗ is not an
isomorphism onto a direct summand and apply 3.7. Since cok i∗ ̸= Z⊕ finite group,

we need only show that im s′ properly contains im s. Now s(α1) = 16, so that im s
consists of multiples of 16. Thus it suffices to show

(∗) there exists a map f : CP2−−→G/PL such that s(f) = −8.

Proof of (∗). Let γ denote the canonical complex line bundle over CP2. The total

Chern class of γ is 1 + x, x a generator of H2(CP2), and so the first Pontrjagin
class p1(rγ) of the realification of γ is −x2. (The reader is referred to Milnor and
Stasheff [7] for details.)

We show first that 24rγ is fibre homotopically trivial. The cofibration se-
quence

S3
η
−−−→ S2 −−−→ CP2 −−−→ S4

Ση
−−−→ S3

induces an exact sequence

[S3, BG]
(Ση)∗

−−−→ [S4, BG] −−−→ [CP2, BG] −−−→ [S2, BG]
η∗

−−−→ [S3, BG] .

We have

[S3, BG] ∼= π2(G) ∼= πS
2 = Z2 (generated by η2) ,

[S4, BG] ∼= π3(G) ∼= πS
3 = Z24 (generated by ν) .

Since η3 = 12ν (for example, see Toda [21]) the cokernel of (Ση)∗ is isomorphic to
Z12. We also have

[S2, BG] ∼= π1(G) ∼= πS
1 = Z2 generated by η ,
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so that [S2, BG] is generated by the Hopf bundle. Since the pullback of the Hopf
bundle

E w

u
η∗(η)

S3

u
η

S3 w
η

S2

is trivial, η∗ : [S2, BG]−−→[S3, BG] is the zero map and there is an exact sequence

0 −−→ Z12 −−→ [CP2, BG] −−→ Z2 −−→ 0 .

Thus [CP2, BG] is a group of 24 elements and 24rγ is fibre homotopically trivial.

The composite

CP2
24rγ
−−−→ BO −−−→ BPL −−−→ BG

is trivial and so the associated PL bundle

ξ : CP2 −−→ BPL

factors through G/PL :

CP2 w
24rγ

u
f

BO

u
G/PL w

π BPL

We calculate s(f) using the remarks following Theorem 4.4

s(f) = ⟨L(CP2) ∪ (LPL(πf)− 1), [CP2]⟩

= ⟨(1 + L1(CP2)) ∪ LPL
1 (πf), [CP2]⟩

= ⟨LPL
1 (πf), [CP2]⟩

= ⟨p1(24rγ)
3

, [CP2]⟩

= ⟨−24x
2

3
, [CP2]⟩

= −8 .
This completes the proof of (∗) and Theorem 4.6 follows.
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Coda: connection with the results of Kirby and Siebenmann

By C. P. Rourke

We have shown that TOP/PL−−→G/PL factors via

K(Z2, 3) = fibre(G/PL−−→Ω4n(G/PL)) .

Now Kirby and Siebenmann have shown [2, 3, 4] that TOP/PL is also a K(Z2, 3),
and that the map qh :M−−→TOP/PL is the obstruction to an isotopy from h to
a PL homeomorphism. There are two possibilities :

(1) TOP/PL−−→K(Z2, 3) is null-homotopic;

(2) TOP/PL−−→K(Z2, 3) is a homotopy equivalence.

We shall eliminate (1). Both the fibration and the theorem mentioned in the

introduction then follow if we combine the Kirby-Siebenmann result with the main
theorem of Chapter III. In order to eliminate (1) it is necessary to consider the
structure sequence for the torus T r. There is a fibration onto its image

HT (T r) −−→ (G/PL)T
r

−−→ Lr+4n(Zr)

due to Casson and Quinn [5]. Now Lr+4n(Zr) consists of (∆k, r + 4n)-oriented
normal maps (which are homotopy equivalences on boundaries) together with a

reference map to a K(Zr, 1), which we can take to be T r itself. Consequently there
is a map

α : L4n({1})T
r

−−→ Lr+4n(Zr)

defined as follows. Let f : T r−−→L4n({1}) be given; then f determines an (i+4n)-

normal map for each i-simplex of T r and, glueing together, we obtain an (r+4n)-
normal map over T r, in other words a simplex of Lr+4n(Zr). Using the Splitting
Theorem of Farrell [1] we can convert any normal map (homotopy equivalence on

boundary) over T r into an assemblage of normal maps (homotopy equivalences on
boundaries) over simplexes of T r. This argument generalizes to show that α is a
homotopy equivalence. Now L4n({1}) and Ω4n(G/PL) have the same homotopy

type, by considering the structure sequence for D4n rel ∂, and we can rewrite our
fibration as

HT (T r) −−→ (G/PL)T
r

−−→ (Ω4n(G/PL))T
r

.

It follows that HT (T r) and (K(Z2, 3))
T r

have the same homotopy type. Now if
the map TOP/PL−−→K(Z2, 3) is null-homotopic, then any self-homeomorphism

of T r is homotopic to a PL homeomorphism. However Siebenmann [2, 3, 4] has
constructed a self-homeomorphism of T 6 which is not homotopic to a PL home-
omorphism. Hence

TOP/PL −−→ K(Z2, 3)

must be a homotopy equivalence.

It is clear from the above discussion that any homotopy equivalence onto T r
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is homotopic to a homeomorphism, and that the obstructions to the homotopy
and isotopy Hauptvermutung coincide for Q = T r. This contrasts with the simply

connected case and shows that the general solution is bound to be somewhat
complicated.
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