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Preface

These volumes grew out of the conference which we organized at the
Mathematisches Forschungsinstitut Oberwolfach in September, 1993, on the
subject of “Novikov conjectures, index theorems and rigidity.” The aim of
the meeting was to examine the Novikov conjecture, one of the central
problems of the topology of manifolds, along with the vast assortment of
refinements, generalizations, and analogues of the conjecture which have
proliferated over the last 25 years. There were 38 participants, coming from
Australia, Canada, France, Germany, Great Britain, Hong Kong, Poland,
Russia, Switzerland, and the United States, with interests in topology, anal-
ysis, and geometry. What made the meeting unusual were both its interdis-
ciplinary scope and the lively and constructive interaction of experts from
very different fields of mathematics. The success of the meeting led us to
try to capture its spirit in print, and these two volumes are the result.

It was not our intention to produce the usual sort of conference pro-
ceedings volume consisting of research announcements by the participants.
There are enough such tomes gathering dust on library shelves. Instead,
we have hoped to capture a snapshot of the status of work on the Novikov
conjecture and related topics, now that the subject is about 25 years old.
We have also tried to produce volumes which will be helpful to beginners in
the area (especially graduate students), and also to those working in some
aspect of the subject who want to understand the connection between what
they are doing and what is going on in other fields. Accordingly, we have
included here :
(a) a fairly detailed historical survey of the Novikov conjecture, including

an annotated reprint of the original statement (both in the original
Russian and in English translation), and a reasonably complete bibli-
ography of the subsequent developments;

(b) the texts of hitherto unpublished classic papers by Milnor, Browder,
and Kasparov relevant to the Novikov conjecture, which are known to
the experts but hard for the uninitiated to locate;

(c) several papers (Ferry, Ferry-Weinberger, Ranicki, Rosenberg) which,
while they present some new work, also attempt to survey aspects of
the subject; and

(d) research papers which reflect the wide range of current techniques
used to attack the Novikov conjecture: geometry, analysis, topology,
algebra, . . . .

All the research papers have been refereed.
We hope that the reader will find the two volumes worthwhile, not merely

as a technical reference tool, but also as stimulating reading to be browsed



viii

through at leisure.
We should like to thank the Director and staff of the Mathematisches

Institut Oberwolfach for their expert logistical help, for their financial sup-
port, and for the marvellous working environment that made possible the
1993 conference that got this project started. Thanks are due as well to
all the participants at the meeting, to the contributors to the two volumes,
to the referees of the research papers, to the contributors to the problem
list and bibliography, and to Roger Astley and David Tranah of Cambridge
University Press. We thank the National Science Foundation of the U. S. for
its support under grants DMS 90-03746, DMS-93-05758 and DMS 92-25063,
the European Union for its support via the K-theory Initiative under Sci-
ence Plan SCI–CT91–0756, as well as the Centenary Fund of the Edinburgh
Mathematical Society.
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higher signatures
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20.00– Problem session
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9.30–10.00 R. Jung Elliptic homology and the
Novikov conjecture
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1. Precursors of the Novikov Conjecture

Characteristic classes

The Novikov Conjecture has to do with the question of the relationship of
the characteristic classes of manifolds to the underlying bordism and homo-
topy theory. For smooth manifolds, the characteristic classes are by defini-
tion the characteristic classes of the tangent (or normal) bundle, so basic to
this question is another more fundamental one: how much of a vector bun-
dle is determined by its underlying spherical fibration? The Stiefel-Whitney
classes of vector bundles are invariants of the underlying spherical fibration,
and so the Stiefel-Whitney numbers of manifolds are homotopy invariants.
Furthermore, they determine unoriented bordism. The Pontrjagin classes of
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vector bundles are not invariants of the underlying spherical fibration, and
the Pontrjagin numbers of manifolds are not homotopy invariants. However,
together with the Stiefel-Whitney numbers, they do determine oriented bor-
dism. The essential connection between characteristic numbers and bordism
was established by Thom [Th1] in the early 1950’s.

Geometric rigidity

As we shall see later, the Novikov Conjecture is also closely linked to prob-
lems about rigidity of aspherical manifolds. As everyone learns in a first
course in geometric topology, closed 2-manifolds are determined up to home-
omorphism by their fundamental groups. In higher dimensions, of course,
nothing like this is true in general, but one can still ask if aspherical closed
manifolds (closed manifolds having contractible universal cover) are deter-
mined up to homeomorphism by their fundamental groups. That this should
be the case is the Borel Conjecture formulated by Armand Borel in the 50’s
(according to Hsiang in [Hs3]), and communicated to various people in the
60’s. In dimension 2, restricting attention to aspherical manifolds is little
loss of generality, since S2 and RP2 are the only closed 2-manifolds which
are not aspherical. The Mostow Rigidity Theorem was the most dramatic
early evidence for the Borel Conjecture, proving the conjecture for closed
manifolds which are locally symmetric spaces.

The Hirzebruch signature theorem

The actual history of the Novikov Conjecture starts with the Hirzebruch
signature theorem [Hir], which expresses the signature of an oriented closed
4k-dimensional manifold M in terms of characteristic classes:

signature(M) = 〈L(M), [M ]〉 ∈ Z .

Here, L(M) ∈ H4∗(M ; Q) is the L-class of M , a certain formal power
series in the Pontrjagin classes p∗(M) ∈ H4∗(M) with rational coefficients.
The formula is surprising in that the left hand side is an integer which
only depends on the structure of the cohomology ring of M , whereas the
right hand side is a sum of rational numbers which are defined (at least a
priori) in terms of the differentiable structure. The (inhomogeneous) class
L(M) determines all of the rational Pontrjagin classes of M , but only the
component of L(M) in the dimension of M is homotopy invariant – in fact,
the other components are not even bordism invariants. Milnor [Miln1] used
the signature theorem to verify that the homotopy spheres he constructed
do indeed have exotic differentiable structures.
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The converse of the signature theorem (Browder, Novikov)

Following the development of Thom’s bordism theory, Milnor [Miln2] proved
that two manifolds are bordant if and only if they are related by a finite
sequence of surgeries. This was the beginning of the use of surgery as a fun-
damental tool in differential topology. Soon afterwards, Kervaire and Milnor
[KerM] used surgery to classify exotic spheres in dimensions ≥ 7. In 1962,
Browder ([Br1],[Br4]) and Novikov [Nov1], working independently, applied
the same technique to manifolds with more complicated homology. They
used surgery theory to establish a converse to the Hirzebruch signature the-
orem in dimensions ≥ 5: if X is a simply-connected 4k-dimensional Poincaré
space, such that the signature of X is the evaluation on the fundamental
class [X] ∈ H4k(X) of L(−ν) for some vector bundle ν with spherical Thom
class, then X is homotopy equivalent to a smooth closed manifold M with
stable normal bundle pulled back from ν. A consequence of this is that for
simply-connected 4k-dimensional manifolds in high dimensions, the top de-
gree term of the L-class is essentially the only homotopy-invariant rational
characteristic class. Novikov ([Nov1], [Nov2], [Nov3]) extended these ideas
to the study of the uniqueness properties of manifold structures within a
homotopy type. Sullivan [Sul] then combined the Browder-Novikov surgery
theory with homotopy theory to reformulate the surgery classification of
manifolds in terms of the surgery exact sequence of pointed sets, which for
a 4k-dimensional simply-connected manifold M (k > 1) has the form:

0 → S(M) θ−→ [M, G/O] A−→ Z

with S(M) the structure set of M , consisting of the equivalence classes
of pairs (N, f) with N a closed manifold and f : N → M a homotopy
equivalence. Two such pairs (N, f), (N ′, f ′) are equivalent if there exists a
diffeomorphism g : N → N ′ with a homotopy f ′g ' f : N → M . Here G/O
is the homotopy fiber of the forgetful map J from the classifying space BO
for stable vector bundles to the classifying space BG for stable spherical
fibrations, and the map θ sends an element (N, f) of the structure set to
the difference between the stable normal bundle of M and the push-forward
under f of the stable normal bundle of N . (Both are lifts of the same
underlying spherical fibration, the Spivak normal fibration [Spv].) The map
A sends an element of [M, G/O], represented by a vector bundle η over M
with a fiber homotopy trivialization, to

〈L(τM ⊕ η)− L(τM ), [M ]〉,

where τM is the tangent bundle of M .
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Topological invariance of the rational Pontrjagin classes (Novikov)

Around 1957, Thom [Th2] and Rokhlin and Shvarts [RokS], working inde-
pendently, proved that the rational Pontrjagin classes of PL manifolds are
combinatorial invariants. As we have just explained, the work of Browder
showed that the Pontrjagin classes are very far from being homotopy in-
variants of closed differentiable manifolds. Nevertheless, Novikov in 1966
([Nov4], [Nov5], [Nov6]) was able to prove a most remarkable fact: the ra-
tional Pontrjagin classes are topological invariants. An essential feature of
the proof was the use of non-simply-connected compact manifolds with free
abelian fundamental group (e.g., tori), and of their non-compact universal
covers.

Non-simply-connected surgery theory (Novikov, Wall)

While the basic methods used in Browder-Novikov surgery theory make
sense without assuming simple connectivity, it was soon realized that for-
mulating the correct results in the non-simply connected case is not so easy.
For one thing, correctly understanding Poincaré duality in this context re-
quires using homology with local coefficients. In fact, the correct algebraic
approach required developing a theory of quadratic forms defined over an
arbitrary ring with involution, the prototype being the integral group ring
Z[π] of the fundamental group π. This algebra was developed in the even-
dimensional case by Novikov ([Nov8], [Nov10]) and Wall, working indepen-
dently, and in the odd-dimensional case by Wall [Wall1]. Using this algebra,
Wall [Wall2] developed a non-simply connected version of the surgery exact
sequence for a closed n-dimensional manifold M with n ≥ 5:

· · · → Ln+1(Z[π1(M)]) → S(M) θ−→ [M, G/O] A−→ Ln(Z[π1(M)]) .

The L-groups are Witt groups of (−)k-quadratic forms on finitely generated
free modules over the group ring for even n = 2k, and stable automorphism
groups of such forms for odd n = 2k + 1. The L-groups are periodic in n,
with period 4. While S(M) is only a pointed set, not a group, it has an
affine structure: Ln+1(Z[π1(M)]) acts on S(M), and two elements with the
same image under θ lie in the same orbit. Rationally, the map θ : S(M) →
[M, G/O] sends a homotopy equivalence f : N −→ M to the difference
f∗(L(N)) − L(M). Here the push-forward map f∗ can be defined as g∗,
where g is a homotopy inverse to f .

Shortly after the work of Wall, new advances by Kirby and Siebenmann
made it possible to carry surgery theory over from the category of differen-
tiable manifolds to the category of topological manifolds [KirS]. One again
obtained a surgery exact sequence of the same form as before, but with
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G/O replaced by G/TOP . This theory made it possible to reinterpret No-
vikov’s theorem on the topological invariance of rational Pontrjagin classes
as the fact that the forgetful map G/TOP → G/O induces an isomorphism
on rational homology. The classifying spaces G/O and G/TOP both have
rational cohomology rings which are formal power series algebras in the
Pontrjagin classes.

Higher signatures

Let Γ be a discrete group. A rational cohomology class x ∈ H∗(BΓ; Q)
may be interpreted as a characteristic class for manifolds with fundamental
group Γ. If Γ = π1(M) for a manifold M , obstruction theory implies that
one can always find a map u : M → BΓ which induces an isomorphism on
π1. For oriented M the class x defines a (rational) characteristic number,
called a higher signature:

signaturex(M, u) = 〈L(M) ∪ u∗(x), [M ]〉 ∈ Q .

This characteristic number is said to be homotopy invariant if for all orien-
tation-preserving homotopy equivalences f : N → M of closed oriented
manifolds and all maps u : M → BΓ,

signaturex(M, u) = signaturex(N, u ◦ f) ∈ Q .

It is now possible to determine when this is the case. Because of the L-
groups in the surgery sequence, there can be far more homotopy-invariant
characteristic classes than in the simply connected case. Let θ∗(M, u) be the
map sending x ∈ H∗(BΓ; Q) to the functional on structure sets sending

N
f−→ M

u−→ BΓ

to
signaturex(M, u)− signaturex(N, u ◦ f) .

By definition, the homotopy-invariant higher signatures are exactly those
signaturex’s for which x is in the kernel of θ∗(M, u), for all M and u. The
surgery exact sequence shows that these are precisely the x’s in the image
of a certain map

A∗ : Hom (L∗(Z[Γ]), Q) → H∗(BΓ; Q) .

The Novikov Conjecture is that every higher signature is homotopy-invariant,
or equivalently that A∗ is onto, for every discrete group Γ.
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Discovery of special cases of the Novikov Conjecture (Rokhlin,
Novikov)

Novikov’s use of manifolds with free abelian fundamental group in the proof
of the topological invariance of rational Pontrjagin classes led him to the
study of homotopy invariance properties of other characteristic classes as
well. In particular, he studied the mod-p Pontrjagin classes of homotopy
lens spaces ([Nov7], [Nov9]), and the higher signatures of general non-simply
connected manifolds. Novikov himself discovered that the higher signature
(in this case there is essentially only one) of a manifold with infinite cyclic
fundamental group is a homotopy invariant [Nov7], and Rokhlin [Rokh]
studied the case of Γ = Z×Z. These examples led Novikov to the formulation
of the general conjecture.

2. The Original Statement of the Novikov Conjecture

The statement that is now usually known as the Novikov Conjecture
first appears in complete form in §11 of S. P. Novikov’s monumental paper
[Nov10]. A slightly different formulation was given in Novikov’s talk at the
International Congress in Nice in 1970 [Nov8]. More preliminary versions
had appeared in the lectures of Novikov for the de Rham Festschrift [Nov9]
and the Moscow International Congress [Nov7]. Since the name “Novikov
Conjecture” these days seems to mean quite different things to different
people, in the interests of historical accuracy, we quote here the complete
text of Novikov’s original (Izvestia) formulation, both in the original Russian
and in an English translation. As we shall see shortly, Novikov’s original
formulation already includes the three main approaches to the conjecture:
the analytic, the topological, and the algebraic. Here is first the original
Russian (with a few misprints corrected) and then a translation (our own
correction of the printed translation in [Nov10]). The footnote indexed ∗ is
Novikov’s; numbered footnotes in the English version are ours.

O nerexennyh zadaqah

1. Zdes~ my obsudim pervonaqal~no sledu�wiĭ obwiĭ vopros:
qto takoe “obwa� neodnosv�zna� Formula Hircebruha”?

Na �tot vopros mo�no otvetit~ takim obrazom: dol�en suwest-
vovat~ nekotoryĭ gomomorfizm “obobwennyh signatur”

σk : Un
1 (A) → Hn−4k(π1; Q)

takoĭ, qto dl� l�bogo n-mernogo zamknutogo orientirovannogo mno-
goobrazi� Mn s fundamental~noĭ gruppoĭ π1 i estestvennogo oto-
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bra�eni� f : Mn → K(π1, 1) skal�rnoe proizvedenie

〈Lk(Mn), Df∗(x)〉

gomotopiqeski invariantno pri vseh x ∈ H∗(π1; Q), i DLk kak
lineĭna� forma na H∗(π1)—ili �lement H∗(π1; Q)—prinadle�it
obrazcu σk. My �vno postroili takie gomomorfizmy dl� odnoĭ
abelevoĭ gruppy—oni okazalis~ zdes~ da�e izomorfizmami nad
Q (ne�ffektivno �to bylo izvestno v topologii—sm. [HsS], [Sh1],
[Wall1]).

Koneqno, �ta zadaqa mo�et byt~ postavlena i dl� koneqnyh mod-
uleĭ p—po kraĭneĭ mere dl� bol~xih p sravnitel~no s n.

Zametim, qto r�d soobra�eniĭ podskazyvaet, qto, naprimer, dl�
fundamental~nyh grupp “solv” i “nil~”-mnogoobraziĭ takogo roda
gomomorfizm suwestvuet i �vl�ets� �pimorfizmom nad Q, tak qto
dopustimye klassy ciklov—�to ne tol~ko pereseqenie ciklov ko-
razmernosti 1. Zdes~ mo�no vvesti “nekommutativnoe rasxire-
nie” kol~ca A—pribavlenie z, z−1 bez kommutirovani� s A—obob-
wit~ teorn� operatorov tipa Bassa. Odnako obwego voprosa �to
ne pro�sn�et. Razumeets�, bolee prost vopros ob “otnositel~nyh
Formulah Hircebruha”. Otmetim, qto suwestvenno bolee slo�nym
�vl�ets� vopros o vnutrennem vyqislenii skal�rnyh proizvedeniĭ
Lk s ciklami vida Df∗(x) da�e dl� abelevyh π—on ne rexen u�e
dl� π = Z× Z (sm. [Nov6], [Nov7], [Rokh]).*

2. Posmotrim, vo qto perehodit vopros o “neodnosv�znoĭ for-
mule Hircebruha” i postroenii gomomorfizmov “obobwennyh sig-
natur”

σ : U∗
1 (A) → H∗(π; Q)

pri zamene gruppovyh kolec A kol~cami funkciĭ A = C(X).
Esli zamenit~ H∗(π; Q) na H∗(X), to my irihodim k kadaqe ob

abstraktno algebraiqeskom postroenii haraktera Qerna

Ch : U∗(A) = K∗(X) → H∗(X) .

Pri �tom nado ishodit~ iz kaogo-to qisto kol~cevogo algebraiqes-
kogo formalizma v postroenii H∗(X)—ot kol~ca C(X).

*A. S. Miwenko nax�̈l svoeobraznyĭ analog klassiqeskoĭ signa-
tury—mnogoobrazi� gomotopiqeski invariantnym sposobom sopos-
tavl�ets� �lement iz U∗(π1)⊗Z[ 1

2
], qto opredel�et gomomorfizm teo-

rii bordizmov ΩSO∗ (π1) → U∗(π1)⊗ Z[ 1
2
] v �rmitovu K-teori�, sv�zan-

nyĭ, vero�tno, s L-rodom.
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[An English Version:] Unsolved Problems

1. Here we consider first of all the following question: what should be the
“general non-simply connected Hirzebruch formula”?

The question can be answered as follows: there should exist a certain
“generalized signature”1 homomorphism

σk : Un
1 (A) → Hn−4k(π1; Q) 2

such that for any n-dimensional closed oriented manifold Mn with funda-
mental group π1 and for the natural map3 f : Mn → K(π1, 1), the scalar
product 〈Lk(Mn), Df∗(x)〉 4 is homotopy-invariant for any x ∈ H∗(π1; Q);
and DLk as a linear form on H∗(π1)—or regarded as an element of H∗(π1,
Q) 5—belongs to the image of σk. We have explicitly constructed such homo-
morphisms for one class of abelian groups (viz., free abelian groups)—they
turn out to be isomorphisms over Q (this was known non-effectively from
results in topology—cf. [HsS], [Sh1], [Wall1]).

Of course, this problem can be posed for a finite modulus p, at least for
p large compared with n.6

Let us note that a number of considerations suggest that, for example,
for the fundamental groups of “solv-” and “nil-” manifolds, such a homo-
morphism exists and is an epimorphism over Q, such that the allowable
homology classes are not just the intersections of cycles of codimension 1.
Here we can introduce a “non-commutative extension” of the ring A, by
adjoining z and z−1 without assuming that they commute with A, to gen-

1In modern language, perhaps “higher signature” would be more appropriate.
2Here A = Z[π1] is the group ring, and Un

1 (A) is a certain variant of the Wall group
Ln(A); the exact decoration on the surgery group is unimportant since we are ignoring
torsion here anyway. The homomorphisms σ∗ are exactly what one needs to have a
rational splitting of the L-theory assembly map.

3the classifying map for the universal cover of M
4Here Lk is the component of the total Hirzebruch L-class in degree 4k, and D de-

notes the Poincaré dual, or ∩-product with the fundamental class [M ] determined by the
orientation.

5meaning f∗(DLk(Mn))
6It seems that here Novikov is referring back to a problem discussed in §3 of his paper

[Nov9], concerning topological and homotopy invariance of “mod-p” Pontrjagin classes.
While the mod-p Pontrjagin classes are in general not even homeomorphism invariants,
Corollary C in [Nov9, §3] asserts that for any integer n ≥ 2, the tangential homotopy
type of lens spaces obtained as quotients of S2n−1 by linear representations of Z/p on
Cn (free away from the origin) is a topological invariant, provided that p is sufficiently
large compared with n.
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eralize the theory of operators of Bass type.7 However, this does not clarify
the general question. It goes without saying that the question of a “relative
Hirzebruch formula” is simpler.8 Let us note that the question of the in-
trinsic calculation of scalar products of Lk with cycles of the form Df∗(x)
is essentially more complicated even for abelian π—it has not been solved
even for π = Z× Z (see [Nov6], [Nov7], [Rokh]).*9

2. Let us see what the question about a “general non-simply connected
Hirzebruch formula” and the construction of “generalized signature” homo-
morphisms

σk : U∗
1 (A) → H∗(π; Q)

becomes when we replace the group ring A by a ring of functions A =
C(X).10

If we replace H∗(π; Q) by H∗(X) then we arrive at a problem about the
abstract algebraic construction of the Chern character

Ch : U∗(A) = K∗(X) → H∗(X) .

For this it is necessary to start from some purely ring-theoretic formalism
for constructing H∗(X) from the ring C(X).11

7Without saying so, Novikov is sketching here an inductive method of proving the
Novikov Conjecture for poly-Z groups in a purely algebraic way. For the free abelian
case, one needs an analogue in L-theory of the Bass-Heller-Swan decomposition of the
K-theory of a Laurent polynomial ring A[z, z−1] ([BHS]). This was first provided in work
of Shaneson [Sh2]. A similar method will work for poly-Z groups but it is necessary to
work with twisted Laurent rings or crossed products

Aoα Z = Aα[z, z−1] := 〈A, z, z−1 | zaz−1 = α(a), a ∈ A〉

and to prove a “Bass type” theorem for those. Such theorems for twisted Laurent rings
were later provided by Farrell and Hsiang ([FarHs2], [FarHs3]) for algebraic K-theory,
by Cappell [Cap2] and Ranicki [Ran3] for algebraic L-theory, and by Pimsner-Voiculescu
[PimV] for the K-theory of C∗-algebras. Specific applications to the Novikov Conjecture
were provided in [FarHs4], [FarHs5] and in [Ros2], [Ros4].

8Novikov has pointed out to us that he was referring here to (relative) invariants of
degree-one normal maps, which are easier to define than (absolute) invariants for closed
manifolds.

*A. S. Mishchenko has found an analogue of the classical signature—a homotopy-
invariant element of U∗(π1) ⊗ Z[ 1

2
] associated to a manifold, which defines a homomor-

phism from bordism theory ΩSO∗ (π1) → U∗(π1) ⊗ Z[ 1
2
] to hermitian K-theory, related,

apparently, to the L-genus.
9This is the symmetric signature of Mishchenko [Mis1] and Ranicki ([Ran4], [Ran5]).
10Here Novikov is anticipating what later became a major industry, of studying the

Novikov Conjecture in the context of C∗-algebras rather than group rings. A ring of the
form C(X) is exactly the most general commutative (complex) C∗-algebra.

11This is of course exactly what Connes has done with the introduction of cyclic
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3. Work related to the Novikov Conjecture: The First
12 Years or So

Statements of the Novikov and Borel Conjectures

Let Γ be a discrete group.

Novikov Conjecture for Γ. The higher signatures determined by Γ are all
homotopy invariant, i.e. for every rational cohomology class x ∈ H∗(BΓ; Q),
for every orientation-preserving homotopy equivalence f : N → M of closed
oriented manifolds and for every map u : M → BΓ

signaturex(M, u) = signaturex(N, u ◦ f) ∈ Q .

Borel Conjecture for Γ. Every homotopy equivalence f : N → M of
closed aspherical manifolds with π1(M) = Γ is homotopic to a homeomor-
phism. More generally, if f : (N, ∂N) → (M, ∂M) is a homotopy equivalence
of compact manifolds with boundary such that M is aspherical, π1(M) = Γ
and ∂f : ∂N → ∂M is a homeomorphism, then f is homotopic rel boundary
to a homeomorphism.

The first part of the Borel Conjecture only applies to discrete groups Γ
such that the classifying space BΓ is realized by a closed aspherical manifold
M with π1(M) = Γ, πi(M) = 0 for i ≥ 2. The more general part applies to
any discrete group Γ such that BΓ is realized by a finite aspherical polyhe-
dron K, since then any regular neighbourhood of K in a high-dimensional
Euclidean space is a compact manifold with boundary (M, ∂M) such that
M ' K ' BΓ is aspherical. Such Γ are finitely presented, but in a later
section we shall also formulate a version of the Borel Conjecture for non-
compact manifolds, which applies to Γ which need not be finitely generated.

The Novikov and Borel Conjectures are only interesting for infinite groups
Γ.

The h-cobordism version of the Borel Conjecture has the same hypothe-
sis, but it is only required that the homotopy equivalence be h-cobordant to
a homeomorphism. There is also an s-cobordism version of the Borel Con-
jecture in which it is required that the homotopy equivalence be simple: by
the s-cobordism theorem for dimensions ≥ 6 there exists a homotopy to a

homology, though one complication that Novikov seems not to have anticipated is the
need to make a good choice of a dense subalgebra A of the C∗-algebra A = C(X), which
on the one hand has the property that the inclusion A ↪→ A induces an isomorphism on
(topological) K-theory, and on the other hand gives the correct cyclic homology groups.
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homeomorphism if and only if there exists an s-cobordism to a homeomor-
phism. The h- and s-cobordism versions of the Borel Conjecture only differ
from the actual Borel Conjecture in Whitehead torsion considerations. In
particular, if Wh(Γ) = 0 the three versions of the conjecture coincide.

Surgery theory shows that the Borel Conjecture for Γ implies the Novi-
kov Conjecture for Γ, and that in fact the Borel Conjecture is an integral
version of the Novikov Conjecture.

Also at about the same that Novikov’s Izvestia paper appeared in print,
Wall’s monumental book [Wall2] appeared, giving for the first time a com-
plete published account of the theory of non-simply connected surgery.
The appendices to this book, written later than the main body of the
text, contain Wall’s slight reformulation of the Novikov Conjecture. Us-
ing Mishchenko’s work on the symmetric signature (which is described in
the next section) Wall made the first study of what is now :

Integral Novikov Conjecture for Γ. The assembly map in quadratic
L-theory

AΓ : H∗(BΓ;L•(Z)) → L∗(Z[Γ])

is an isomorphism for a torsion-free group Γ.

See the section below on surgery spectra for an account of the quadratic
L-theory assembly map.

For a group Γ which is the fundamental group of an aspherical manifold
M ' BΓ and is such that the Whitehead group of Γ vanishes the Inte-
gral Novikov Conjecture is in fact equivalent to the Borel Conjecture in
dimensions ≥ 5.

Mishchenko and the symmetric signature

As Novikov indicated in a footnote (marked above with an asterisk) to
his Izvestia paper, a useful technical tool, the symmetric signature, was
developed by Mishchenko ([Mis1], [Mis2]) shortly after Novikov was led to
the first version of his conjecture. Mishchenko worked not with quadratic
forms over the integral group ring Z[Γ] of the fundamental group Γ, but
rather with symmetric forms over the rational group ring Q[Γ] (though
for rings containing 1

2 there is no essential difference between quadratic
and symmetric forms), and more generally with chain complexes C over
an arbitrary ring with involution A, with a symmetric Poincaré duality
Cn−∗ ' C. In more modern language, Mishchenko had in effect introduced
the symmetric L-groups Ln(A), as the cobordism groups of n-dimensional
symmetric Poincaré complexes over A. The symmetric signature of an n-
dimensional Poincaré duality space M with π1(M) = Γ is the cobordism
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class σ∗(M) ∈ Ln(Z[Γ]) of the chain complex C(M̃) of the universal cover
M̃ . This is a homotopy invariant of M , which for n ≡ 0(mod 4), Γ = {1},
is just the ordinary signature. The symmetrization maps 1 + T : L∗(A) →
L∗(A) from the Wall quadratic L-groups L∗(A) are isomorphisms modulo
2-primary torsion, for any ring with involution A. The symmetrization of
the surgery obstruction σ∗(f, b) ∈ Ln(Z[Γ]) of an n-dimensional normal map
(f, b) : N → M is the difference of the symmetric signatures

(1 + T )σ∗(f, b) = σ∗(N)− σ∗(M) ∈ Ln(Z[Γ]) .

Mishchenko and Soloviev ([Mis5], [MisS1]) used sheaves of symmetric Poin-
caré complexes to define assembly maps12

A : H∗(M ;L•(Z)) → L∗(Z[Γ]) .

Here, L•(Z) is the spectrum of the symmetric L-theory of Z, and

H∗(M ;L•(Z))⊗Q ∼=
∞∑

k=0

H∗−4k(M ; Q) .

The surgery obstruction of a normal map (f, b) : N → M of closed n-
dimensional manifolds is determined modulo 2-primary torsion by an ele-
ment [f, b]• ∈ Hn(M ;L•(Z))13. If u : M → BΓ is the classifying map for
the universal cover of M , the assembly map A for M factors as

A : Hn(M ;L•(Z)) u∗−→ Hn(BΓ;L•(Z)) AΓ−−→ Ln(Z[Γ])

with AΓ the assembly map for the classifying space BΓ, and

A[f, b]• = AΓu∗[f, b]• = (1 + T )σ∗(f, b) = σ∗(N)− σ∗(M) ∈ Ln(Z[Γ])

is the difference of the symmetric signatures. The torsion-free part

u∗[f, b]• ⊗ 1 ∈ Hn(BΓ;L•(Z))⊗Q
= Hn−4∗(BΓ; Q) = HomQ(Hn−4∗(BΓ; Q),Q)

12This construction of A required M to be a manifold, which is not necessary in the
construction of A due to Ranicki [Ran9]; cf. the section below on surgery spectra.

13The symmetric L-theory homology class [f, b]• does not depend on the bundle map
b, being the difference [f, b]• = f∗[N ]L−[M ]L of absolute invariants with A[M ]L = σ∗(M),
A[N ]L = σ∗(N). See Ranicki ([Ran9],[Ran10]) for the symmetric L-theory orientation of
manifolds. The actual surgery obstruction is the quadratic L-theory assembly σ∗(f, b) =
A[f, b]• ∈ Ln(Z[Γ]) of a quadratic L-theory homology class [f, b]• ∈ Hn(M ;L•) with
(1 + T )[f, b]• = [f, b]•, which is not in general the difference of absolute invariants.
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determines and is determined by the differences of the higher signatures

signaturex(N, u ◦ f)− signaturex(M, u) ∈ Q, x ∈ Hn−4∗(BΓ; Q) .

If f : N → M is a homotopy equivalence of closed manifolds, then σ∗(N) =
σ∗(M) and

u∗[f, b]• ∈ ker
(
AΓ : Hn(BΓ;L•(Z)) → Ln(Z[Γ])

)
.

Thus if AΓ is a rational injection then the higher signatures of M and N
are equal and the Novikov Conjecture on the homotopy invariance of the
higher signatures holds for Γ. In fact, the following is true :

Proposition. The Novikov Conjecture holds for a group Γ if and only if
the assembly map in symmetric L-theory

AΓ : H∗(BΓ;L•(Z)) → L∗(Z[Γ])

is a rational split injection.

Many proofs of the Novikov Conjecture use special properties of some
class of groups Γ to construct (rational) splittings L∗(Z[Γ]) → H∗(BΓ;L•(Z))
of AΓ.

Lusztig and the analytic approach

In his thesis, published in 1972 [Lus], Lusztig made a major contribution to
the theory of the Novikov Conjecture by being the first one to use analysis,
more specifically, index theory, to attack the conjecture. Lusztig’s paper
was in fact the prototype for what was ultimately to be the largest body of
literature related to the conjecture. The basic idea of Lusztig’s work was to
relate the higher signatures of a manifold to a priori homotopy invariants
coming from the de Rham complex with local coefficients in a flat vector
bundle. In the case of an oriented closed manifold M2m with free abelian
fundamental group Zk, the flat line bundles over M are parametrized by a
torus T k, and a choice of a Riemannian metric on M gives rise to a signature
operator D = d + d∗ which can be “twisted” by any of these line bundles.
Twisting by a line bundle does not change the index of D, which is just
signature(M), but viewing all the twists simultaneously gives a family of
elliptic operators on M parametrized by T k. Lusztig showed that the index
of this family, in the sense of the Atiyah-Singer Index Theorem for Families,
is on the one hand a homotopy invariant, but on the other hand related
to the higher signatures. He was thus able to give an analytic proof of
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the Novikov Conjecture for manifolds with free abelian fundamental group.
His methods also gave partial results for other fundamental groups with
“lots” of finite-dimensional representations (for which one can again twist
the signature operator by a family of flat bundles).

Splitting theorems for polynomial extensions

Surgery on codimension 1 submanifolds has been an important feature of the
study of non-simply-connected manifolds in general, and the Novikov Con-
jecture in particular. Browder ([Br2], [Br3]) used surgery on codimension
1 submanifolds to deal with the homotopy properties of simply-connected
open manifolds, and non-simply-connected closed manifolds with π1 = Z.
Novikov used an iteration of codimension 1 surgeries to prove the topological
invariance of the rational Pontrjagin classes. On the algebraic side, codimen-
sion 1 surgery corresponds to the algebraic K- and L-theory properties of
polynomial rings and their generalizations, starting with Z[Z] = Z[z, z−1].
We have already seen (in footnote 7 above) that Novikov in his Izvestia
paper recognized the significance for his conjecture of the “fundamental
theorem of algebraic K-theory” proved by Bass, Heller and Swan [BHS]
and Bass [Bass]: for any ring A

K1(A[z, z−1]) ∼= K1(A)⊕K0(A)⊕ Ñil0(A)⊕ Ñil0(A)

with Ñil0(A) the nilpotent class group. Farrell-Hsiang ([FarHs1], [FarHs3])
gave a geometric interpretation of the fundamental theorem in terms of
splitting homotopy equivalences of manifolds N → M × S1 along the codi-
mension 1 submanifold M × {∗} ⊂ M × S1, with

A = Z[π1(M)] , A[z, z−1] = Z[π1(M × S1)] = Z[π1(M)× Z] .

Shaneson ([Sh1], [Sh2]) used this codimension 1 splitting theorem to give a
geometric proof of the analogous L-theory splitting theorem

Ls
n(Z[Γ× Z]) ∼= Ls

n(Z[Γ])⊕ Lh
n−1(Z[Γ])

for any finitely presented group Γ. Novikov [Nov10] gave an algebraic proof
of the L-theory splitting theorem modulo 2-torsion:

Ln(A[z, z−1])⊗ Z[1/2] ∼= (Ln(A)⊕ Ln−1(A))⊗ Z[1/2]

for any ring with involution A with 1/2 ∈ A, with the involution extended
by z̄ = z−1. This splitting was used to give the algebraic proof of the
Novikov Conjecture for free abelian groups in [Nov10]. Farrell and Hsiang
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[FarHs3] gave the corresponding geometric proof. The 2-torsion restrictions
were removed by Ranicki ([Ran1], [Ran2]), and the splitting theorems

Ls
n(A[z, z−1]) ∼= Ls

n(A)⊕ Lh
n−1(A)

Lh
n(A[z, z−1]) ∼= Lh

n(A)⊕ Lp
n−1(A)

were obtained algebraically for any ring with involution A, with Ls
∗(A) (resp.

Lh
∗(A), Lp

∗(A)) the simple (resp. free, projective) L-groups. The simple L-
groups Ls

∗(A) are the original surgery obstruction groups of Wall [Wall2];
there is only a 2-primary torsion difference between Ls

∗(A), Lh
∗(A) and

Lp
∗(A). The lower K-groups K−i(A) and the lower NK-groups NK−i(A)

were defined by Bass [Bass] for any ring A, to fit into splittings

K−i+1(A[z, z−1]) ∼= K−i+1(A)⊕K−i(A)⊕NK−i+1(A)⊕NK−i+1(A)

for all i ≥ 0, with NK1(A) = Ñil0(A). The analogous lower L-groups
L〈−i〉(A) were defined in [Ran2] for any ring with involution, to fit into
splittings

L〈−i+1〉
n (A[z, z−1]) ∼= L〈−i+1〉

n (A)⊕ L
〈−i〉
n−1(A)

for all i ≥ 0, with L
〈0〉
∗ (A) = Lp

∗(A). The forgetful maps L
〈−i+1〉
n (A) →

L
〈−i〉
n (A) are isomorphisms modulo 2-primary torsion, with the relative

terms the Tate Z2-cohomology of the duality involution on K−i(A).

Cappell and codimension 1 splitting theorems

With the development of surgery theory for non-simply connected mani-
folds, machinery was finally in place that could be used to determine when
a homotopy equivalence f : M ′ → M of closed manifolds “splits” with
respect to submanifold P of M , in other words, when it can be deformed
so as to restrict to a homotopy equivalence P ′ → P . The general splitting
obstruction theory was worked out by Wall [Wall2, §12]. As noted in the
previous section, the case where P is of codimension 1 in M (i.e. a hyper-
surface) is of particular importance for Novikov Conjecture. Suppose P is a
separating hypersurface in M , so that M is the union of two codimension-
zero compact submanifolds, M+ and M−, each with boundary P . Then
assuming that f splits, we get a comparable decomposition of M ′ as the
union of two submanifolds M ′

+ and M ′
−, each with boundary P ′. By Van

Kampen’s Theorem, π1(M) splits as an amalgamated free product:

π1(M) = π1(M+) ∗π1(P ) π1(M−) .
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So the question of whether or not f preserves higher signatures can be
reduced to questions about the restrictions of f to the various pieces of
M ′, and about higher signatures for the groups π1(M+), π1(P ), π1(M−). If
these groups are simpler than π1(M), there is some hope to use this strategy
to give an inductive proof of the Novikov Conjecture for a large class of
groups that can be built up from amalgamated free products. As we saw
above, Novikov was certainly aware that such a strategy might be useful,
especially for studying polycyclic groups, but Cappell ([Cap2], [Cap3]) was
the one to finally work out the applications to the Novikov Conjecture using
both this case of amalgamated free products (corresponding geometrically to
separating hypersurfaces) and the case of HNN extensions (corresponding
geometrically to non-separating hypersurfaces, generalizing the polynomial
extensions considered in the previous section). Cappell’s theory was the
first successful attempt to inductively verify the Novikov Conjecture for
a large class of well-behaved fundamental groups. An unexpected subtlety
which Cappell had to overcome was the “UNil obstruction” to splitting,
involving the L-theoretic analogues of the nilpotent class group Ñil0; since
this involves only 2-torsion it has little impact on the higher signatures, but
it does play an important role in any attempts to correctly formulate an
integral Novikov Conjecture.

Mishchenko and Fredholm representations

Meanwhile, in the wake of Lusztig’s thesis, others hoped to use index the-
ory to attack the Novikov Conjecture for large numbers of fundamental
groups. But Lusztig’s methods required having families of flat vector bun-
dles, which may not be available for non-commutative groups. Mishchenko
([Mis3], [Mis4]) suggested an important idea for overcoming this difficulty,
namely the use of Fredholm representations of the fundamental group. A
Fredholm representation ρ of a group Γ on a (Z/2-graded) Hilbert space
H is a pair (ρ0, ρ1) of unitary representations of Γ on H(0) and on H(1),
respectively, together with a Fredholm operator T : H(0) → H(1) which
intertwines the two representations modulo compact operators. One should
think of ρ as being the formal difference ρ0 − ρ1, which one can think of as
being approximately finite-dimensional, even though ρ0 and ρ1 are them-
selves infinite-dimensional, so that the case where T is a precise intertwiner
is uninteresting. A general discrete group π always has lots of Fredholm
representations, even though it may have very few finite-dimensional repre-
sentations. We can think of these as parameterizing certain generalized flat
vector bundles over manifolds with Γ as fundamental group. Mishchenko’s
idea was to prove the appropriate index theorem for the signature operator
with coefficients in a Fredholm representation of the fundamental group,
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then to substitute these for genuine flat vector bundles in Lusztig’s machin-
ery.

Another of Mishchenko’s major contributions was to notice that this
program works especially well in the presence of a “non-positive curvature
assumption” in a model for BΓ, when for example BΓ is a compact manifold
whose universal cover EΓ is a locally symmetric space of non-compact type.
Then the “outward-pointing vector field” on EΓ “asymptotically commutes”
with covering translations by Γ, and thus gives rise to what Connes later
called the “dual Dirac” operator. By using the machinery of Fredholm rep-
resentations and the dual Dirac (or its analogue in the case of Bruhat-Tits
buildings), Mishchenko and his co-workers ([Mis3], [Mis4], [Mis5], [Mis6],
[MisS2], [MisS3]) were able to verify the Novikov Conjecture for a number
of geometrically interesting fundamental groups.

Farrell-Hsiang and the geometric topology approach

At about the same time, Farrell and Hsiang embarked on a program to
systematically attack not only the Novikov Conjecture but also the Borel
Conjecture for classes of groups of geometric interest, using methods of geo-
metric topology. Farrell and Hsiang began [FarHs3] by proving both con-
jectures for free abelian fundamental groups by purely topological methods,
using splitting machinery growing out of Farrell’s thesis work [Far] on when
a manifold fibers over a circle. Then they went on to study the conjectures
for flat manifolds (Bieberbach groups) ([FarHs4], [FarHs6], [FarHs7]), non-
positively curved manifolds ([FarHs8], [FarHs10]), and almost flat manifolds
(infra-nilpotent groups) [FarHs11]. Of special interest in their work was a
new idea which they applied to the study of the Novikov Conjecture for
Bieberbach groups [FarHs7]: the application of “controlled” topology. The
rough idea of how Farrell and Hsiang applied this, reformulated in terms of
a fundamental theorem of Chapman and Ferry [ChapF],14 is the following.
The Chapman-Ferry “α-approximation theorem” says that given a closed
manifold Mn, with n > 4, there is a constant ε > 0 such that a homotopy
equivalence f : M ′ → M of closed manifolds is homotopic to a homeomor-
phism provided that there is a homotopy inverse g : M → M ′ to f such
that the homotopies from fg and gf to the identity maps don’t move points
more than a distance ε (as measured in M). Suppose one has a homotopy
equivalence f : M ′ → M , and suppose the fundamental group of M is such
that there exist coverings M → M of arbitrarily large degree, which stretch
distances by an arbitrarily large amount. Then lifting f by such coverings,
one can get new homotopy equivalences M ′ → M which are “controlled”

14Farrell and Hsiang actually quoted earlier papers of Chapman and of Ferry that use
some of the same ideas.
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as much as one likes, so that eventually these are homotopic to homeomor-
phisms. This is a major step in proving the Borel Conjecture. For further
discussion of this and other geometric approaches to rigidity, see the subsec-
tions on “Farrell-Hsiang, Ferry-Weinberger and tangentiality” and on “The
Farrell-Jones Program.”

Kasparov and operator-theoretic K-homology

Still another analytic attack on the Novikov Conjecture, motivated both by
Lusztig’s thesis and by ideas of Atiyah and Singer concerning possible refor-
mulations of index theory, was begun by Gennadi Kasparov in the 1970’s.
The idea behind this program was to give a good analytic model for the
homology theory dual to K-theory, so that elliptic operators on manifolds
would naturally give rise to K-homology classes. Then the index of an el-
liptic operator is computed merely by taking the image, in K-homology
of a point, of the corresponding K-homology class. By analyzing the K-
homology class of the signature operator on a non-simply connected mani-
fold, one could hope to redo what Lusztig had done, but in a more powerful
setting. Kasparov’s earliest results in this direction, as well as the first an-
nouncements of his results on the Novikov Conjecture, appeared in [Kas1]
and [Kas2], although the power of his methods did not become clear un-
til the development of the “KK calculus” in [Kas3]. (For more informal
expositions, see also [Black] and [Fack1].) While Mishchenko’s Fredholm
representations were basically equivalent to K-homology classes in the Kas-
parov sense, Kasparov’s “intersection product” in KK gave more powerful
technical tools for overcoming a drawback of Mishchenko’s method pointed
out in [HsR]. In his famous “Conspectus” [Kas4], Kasparov for the first
time was able to sketch a complete analytic proof of a result not yet prov-
able by purely topological methods: that the Novikov Conjecture (in fact,
even an integral version, after localizing away from the prime 2) holds for
groups Γ which are fundamental groups of complete Riemannian manifolds
of non-positive curvature, or which can be realized as discrete subgroups of
connected Lie groups.

Surgery spectra and assembly (Quinn)

The global approach to surgery theory initiated by Sullivan and Wall was
carried forward by Quinn, and has proved useful in attacking the Borel and
Novikov Conjectures using various mixtures of geometry and algebra. Given
an n-dimensional Poincaré duality space M , let STOP (M) be the topological
manifold structure set of M , consisting of the equivalence classes of pairs
(N, f) with N a closed n-dimensional topological manifold and f : N → M
a homotopy equivalence. Two such pairs (N, f), (N ′, f ′) are equivalent
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if there exists an h-cobordism (W ; N, N ′) with a homotopy equivalence
(g; f, f ′) : (W ; N,N ′) → M × (I; {0}, {1}). The Browder-Novikov-Sullivan-
Wall theory provides an obstruction theory for deciding if STOP (M) is
non-empty, and for manifold M there is an exact sequence of pointed sets

· · · → Ln+1(Z[Γ]) −→ STOP (M) θ−→ [M, G/TOP ] A−→ Ln(Z[Γ])

with Γ = π1(M), and G/TOP the homotopy fiber of the forgetful map
J from the classifying space BTOP for stable topological bundles to the
classifying space BG for stable spherical fibrations. For a manifold M the
map θ : STOP (M) → [M, G/TOP ] sends an element (N, f) of the struc-
ture set to the difference between the stable normal bundle of M and
the push-forward under f of the stable normal bundle of N . The map
A : [M, G/TOP ] → Ln(Z[Γ]) sends an element of [M, G/TOP ], repre-
sented by a topological bundle η over M with a fiber homotopy trivial-
ization, to the surgery obstruction σ∗(f, b) ∈ Ln(Z[Γ]) of any normal map
(f, b) : N → M with b : νN → η. The interpretation of G/TOP as a surgery
classifying space came from the work of Casson and Sullivan on the mani-
fold Hauptvermutung, which grew out of Novikov’s proof of the topological
invariance of the rational Pontrjagin classes ([Ran10], [Ran11]).

Quinn ([Q1], [Q2], [Q3]) constructed for each space X a spectrum L•(X)
consisting of normal maps with a reference map to X, such that the homo-
topy groups are the surgery obstruction groups

π∗(L•(X)) = L∗(Z[π1(X)]) ,

and with a homotopy equivalence

L•(pt.)0 ' L0(Z)×G/TOP .

The surgery obstruction map A for an n-dimensional topological manifold
X was interpreted as the abelian group morphism

A : [X, G/TOP ] ⊆ [X,L0(Z)×G/TOP ] = Hn(X;L•(pt.)) A−→ L∗(Z[π1(X)])

defined by the geometric surgery assembly map. Let H •(X;L•(pt.)) be
the spectrum with homotopy groups the generalized homology groups with
L•(pt.)-coefficients

π∗(H •(X;L•(pt.))) = H∗(X;L•(pt.)) .

The surgery assembly map is induced by a map of spectra A : H •(X;L•(pt.))
→ L•(X). For the surgery exact sequence it is necessary to work with the
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1-connective simply-connected surgery spectrum L• = L•〈1〉(pt.) such that
(L•)0 ' G/TOP . The cofibre S•(X) of the spectrum-level 1-connective
surgery assembly map fits into a (co)fibration sequence

H •(X;L•)
A−→ L•(X) → S•(X) ,

and the homotopy groups π∗(S•(X)) = S∗(X) fit into a long exact sequence
of abelian groups

· · · → Sn+1(X) → Hn(X;L•)
A−→ Ln(Z[π1(X)]) → Sn(X) → . . . .

There is such a sequence both for the free L-groups L∗ = Lh
∗ and for the

simple L-groups L∗ = Ls
∗. If M is a closed n-dimensional TOP manifold

then
[M, G/TOP ] ∼= H0(M ;L•) ∼= Hn(M ;L•)

and the structure set
STOP (M) = Sn+1(M)

have abelian group structures, as indeed do all the rel ∂ structure sets

STOP (M ×Dk rel ∂) = Sn+k+1(M) (k ≥ 0) .

Nicas [Ni1] used the abelian group structures to prove induction theorems
for the structure set. If (Mn, ∂M) is an n-dimensional manifold with bound-
ary and π1(M) = Γ, then Siebenmann Periodicity [KirS]15 shows that there
is a monomorphism STOP (Mn) → STOP (Mn ×D4 rel ∂), n ≥ 6, which is
an isomorphism for ∂M 6= ∅.

4. Work related to the Novikov Conjecture: The Last 12
Years or So, I: Homotopy Theory and Algebra

Algebraic surgery theory (Ranicki)

It was already suggested by Wall [Wall2] that a development of chain
complexes with Poincaré duality would be the appropriate formulation for
the ‘whole setup’ of surgery. The symmetric Poincaré complex theory of
Mishchenko [Mis2] was extended by Ranicki ([Ran4], [Ran5], [Ran 7]) to
a comprehensive theory of chain complexes with Poincaré duality, includ-
ing the quadratic structures required for the Wall surgery obstruction. The
surgery obstruction of an n-dimensional normal map (f, b) : M → X was

15See [Ni1] and [CaW1] for a correction.
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expressed as a quadratic Poincaré cobordism class σ∗(f, b) ∈ Ln(Z[π1(X)])
of the quadratic Poincaré duality on the algebraic mapping cone C(f !) of
the Umkehr Z[π1(X)]-module chain map

f ! : C(X̃) ' C(X̃)n−∗ f∗−→ C(M̃)n−∗ ' C(M̃) .

The main application of the theory to the Novikov Conjecture is by way of
the algebraic surgery assembly map, as follows.

Ranicki ([Ran6], [Ran7], [Ran8], [Ran9], [LeRa]) used quadratic Poincaré
complexes to define, for any ring with involution R, an algebraic surgery
spectrum L•(R) such that π∗(L•(R)) = L∗(R), and an algebraic surgery
assembly map

A : H∗(X;L•(Z)) → L∗(Z[π1(X)])

for any space X. These are algebraic versions of Quinn’s geometric construc-
tions, particularly the surgery exact sequence. Taylor and Williams [TW]
determined the homotopy types of the algebraic L-spectra, generalizing Sul-
livan’s determination of the homotopy type of G/TOP .

Proposition. The Novikov Conjecture holds for a group Γ if and only if
the algebraic surgery assembly map AΓ : H∗(BΓ;L•(Z)) → L∗(Z[Γ]) is a
rational split injection.

Proposition. The h-cobordism Borel Conjecture holds for a group Γ if and
only if the algebraic surgery assembly map AΓ : H∗(BΓ;L•(Z)) → Lh

∗(Z[Γ])
is an isomorphism. Similarly for the s-cobordism Borel Conjecture with Ls

∗.

See [Ran10] for a somewhat more detailed account. The algebraic surgery
assembly map is a special case of the universal assembly construction of
Weiss and Williams ([WW3], [WW4]). Study of the assembly map for poly-
nomial extensions and amalgamated free products ([MilgR], [Ran8], [Ran10])
has been used to prove some special cases of the (integral) Novikov Conjec-
ture, extending the method of Cappell.

The homotopy-limit problem, descent (Carlsson)

The homotopy theoretic approach to the Novikov Conjecture is based on
experience with analogous problems arising with finite groups. We first re-
call G. B. Segal’s equivariant stable theory. For any finite group G, Segal
constructs a G-space QG(S0), whose fixed point set is described as

∏
K⊆G

Q(BWG(K)+)
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where Q denotes Ω∞Σ∞, WG(K) denotes the “Weyl group” NG(K)/K,
and “+” denotes disjoint basepoint added. The factor corresponding to the
trivial subgroup is thus Q(BG+). This factor can be seen to be the image
of a certain transfer map, which is formally similar to the assembly in its
definition. The affirmative solution of Segal’s Burnside ring conjecture now
shows that in the case of a finite p-group, this factor includes as a factor in
the homotopy fixed set of the G-action on QG(S0) after p-adic completion.
See [Car1] or [Car2] for a more thorough discussion. Similarly, it follows
from results of Atiyah [At1] that the assembly map for K-theory of the
complex group ring of a finite p-group is split injective, indeed that it is an
equivalence, after p-adic completion. Here it is crucial that we consider the
periodic complex K-theory. In this case, the inverse to the assembly map is
given by the natural map to the homotopy fixed set of the action of G on
BU .

Both these constructions suggest that if one wants to study the assembly
map more generally, one should attempt to construct a splitting map using
the homotopy fixed set of an action of the group Γ in question on the K-
theory of the coefficient ring. In the finite group cases mentioned above,
the existence of the corresponding G-action and homotopy fixed set was
self-evident, arising from the actions of the G by conjugation on symmetric
groups or complex matrix groups. In the case of infinite groups of geometric
interest, the obvious actions on rings of infinite matrices yields nothing,
since the K-theory of infinite matrix rings is trivial by an appropriate use
of the “Eilenberg swindle”. It turns out, though, that the Pedersen-Weibel
bounded K-theory [PeW] gives the right model. For any torsion-free group
Γ, it is possible to construct a bounded K-theory spectrum KΓ on which Γ
acts with fixed point set equal to the algebraic K-theory of the group ring.
Furthermore, it is possible to construct an equivariant assembly map α from
the “locally finite homology” of the universal cover of BΓ to KΓ, whose
induced map on fixed-point sets is the usual assembly. When one can prove
that the map α is an equivalence of spectra, standard facts about homotopy
fixed-point sets allow one to conclude that the usual assembly map is onto a
wedge factor. See [Car3] for an expository discussion of this. Details are done
in [Car5]. There, the bounded K-theory is computed for G/K, where G is a
connected Lie group and K is its maximal compact subgroup. This allows
one to prove the integral form of the Novikov Conjecture for cocompact
torsion-free discrete subgroups of Lie groups. Similar methods work for the
case of cocompact torsion-free discrete subgroups of p-adic Lie groups, as
in the Princeton thesis of P. Mostad.
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The Carlsson-Pedersen approach

An alternative is to observe that one perhaps does not need to compute the
bounded K-theory explicitly, but only to produce a Γ-spectrum to which
the bounded K-theory maps equivariantly, and so that the composite of this
map with the map α above is an equivalence. This is the approach taken
in [CarP], where it is assumed that the universal cover of the classifying
space can be compactified to a contractible space with Γ-action, with cer-
tain hypotheses on the action on the boundary. The method of Carlsson
and Pedersen combines this equivariant homotopy theory with the categor-
ical approach of Pedersen and Weibel [PeW], the continuously controlled
categories of Anderson, Connolly, Ferry and Pedersen [AnCFP], and the
lower L-theory of Ranicki [Ran10]. (See the section below on bounded and
controlled topology for more information.) In particular, Carlsson and Ped-
ersen proved the integral form of the Novikov Conjecture for, e.g., Gromov’s
word-hyperbolic groups. They are currently in the process of extending this
work to the case of groups which are not torsion-free, using analogues of the
Baum-Connes ideas discussed below.

Controlled, continuously controlled and bounded topology

Controlled topology gives geometric methods for approximating homotopy
equivalences by homeomorphisms [ChapF]. As we shall see in the sections
below on the work of Farrell-Jones and Ferry-Weinberger, these methods
can be directly applied to proofs of the Novikov and Borel Conjectures. The
controlled algebra of Quinn [Q3] uses a mixture of algebra and topology
for recognizing certain types of spectra to be generalized homology spectra.
In [Q4], Quinn gave applications to the algebraic K-theory of polycyclic
groups. For certain groups Γ it is possible to show that there is enough
codimension 1 transversality to prove that the surgery spectrum L(Z[Γ])
is a generalized homology spectrum, verifying the Conjectures by show-
ing that the assembly map AΓ : H∗(BΓ;L•(Z)) → L∗(Z[Γ]) is an isomor-
phism. Yamasaki ([Ya1], [Ya2]) applied these methods to the case when Γ
is a crystallographic group. Other results, both positive and negative, on
topological rigidity statements for crystallographic groups may be found
in the work of Connolly and Koźniewski ([CyK1]–[CyK3]). Bounded topol-
ogy also gives methods for recognizing generalized homology spectra, using
the categorical methods initiated by Pedersen and Weibel [PW]. The most
effective results on the Novikov Conjecture obtained algebraically use the
continuously controlled category of Anderson, Connolly, Ferry and Pedersen
[AnCFK] — see the section above on the work of Carlsson and Pedersen.
For more details on how bounded and continuously controlled topology are
related to the Novikov Conjecture, see the papers of Pedersen [Pe2] and
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Ferry-Weinberger [FW2].

K-theoretic analogues of the Novikov and Borel Conjectures

Proposition. If the Borel Conjecture holds for Γ then the Whitehead
group of Γ vanishes, Wh(Γ) = 0.

Proof. Let K be a finite aspherical polyhedron with π1(K) = Γ. Let M be
a regular neighborhood of K in some high-dimensional euclidean space. If
τ ∈ Wh(Γ), then we can build an h-cobordism rel boundary, (W,M, M ′) so
that τ(W,M) = τ . Let f : (W,M, M ′) → (M × [0, 1],M × {0},M × {1})
be a homotopy equivalence with f |M × {0} = id and f |W − M × {0, 1}
a homeomorphism. Since f |M ′ is a homotopy equivalence, the Borel Con-
jecture implies that f |M ′ is homotopic to a homeomorphism rel bound-
ary. By the homotopy extension theorem, we can assume that f |M ′ is a
homeomorphism. Applying the conjecture again, f is homotopic to a home-
omorphism rel ∂W . Since Whitehead torsion is a topological invariant and
τ(M × [0, 1],M × {0}) = 0, τ = 0.

Proposition. The Borel Conjecture holds for a group Γ if and only if
the algebraic surgery assembly map AΓ : H∗(BΓ;L•(Z)) → L∗(Z[Γ]) is an
isomorphism and Wh(Γ) = 0, with L∗ = Lh

∗ = Ls
∗.

Thus if the Borel Conjecture holds for Γ then S∗(BΓ) = 0, and if (M, ∂M)
is an n-dimensional manifold with boundary such that π1(M) = Γ and M
is aspherical then

STOP (M rel ∂) = Sn+1(M) = Sn+1(BΓ) = 0 .

Remark. The “fundamental theorem of K-theory” of Bass-Heller-Swan
([BHS], [Bass]) for the Whitehead group of a product Γ× Z is

Wh(Γ× Z) = Wh(Γ)⊕ K̃0(Z[Γ])⊕ Ñil0(Z[Γ])⊕ Ñil0(Z[Γ]) .

Thus K̃0(Z[Γ]) and Ñil0(Z[Γ]) are direct summands in Wh(Γ × Z), and
these must vanish as well if the conjecture holds for Γ × Z. Similarly, the
conjecture for products of Γ with free abelian groups implies that all the
negative K-groups of Z[Γ] must vanish.

Thus, rigidity for aspherical manifolds with boundary requires that the
Whitehead groups and projective class groups of the fundamental groups
of these manifolds should vanish. Consequently, a number of authors have
proven vanishing theorems for Whitehead groups of fundamental groups of
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aspherical manifolds and polyhedra, beginning with the proof in [Hi] that
Wh(Z) = 0 and in [BHS] that Wh(Zn) = 0. Other efforts along these lines
include [FarHs2], [FarHs9], [FJ3], [FJ12], [Ni2], [Ni3], [Q4] and [Wald1]. A
notable recent effort is the paper [Hu] in which Hu proves that Wh(Γ) =
0 when Γ is the fundamental group of a finite nonpositively curved (≡
CAT(0)) polyhedron. The paper uses a Gromov hyperbolization trick to
reduce the problem to the case of a nonpositively curved PL manifold. This
case is then handled by an extension of the methods of [FJ13]. Hu also proves
that the Whitehead group of Γ vanishes for any Γ which is isomorphic to a
torsion-free cocompact discrete subgroup of SLn(Qp), where Qp is the field
of p-adic numbers.

There is an assembly map in algebraic K-theory, first introduced by Lo-
day [Lod], which is analogous to the one for L-theory:

A : H∗(BΓ;K (Z)) → K∗(Z[Γ]) .

(For further information on how to understand this map, see [Wald1], §15.)
In his address to the 1983 ICM, W.-C. Hsiang, [Hs2], proposed four con-
jectures as K-theory analogues of the Novikov and Borel Conjectures. The
last of these refers to Loday’s assembly map.

Conjecture 1. Let Γ be a finitely presented group. Then K−i(Z[Γ]) = 0
for i ≥ 2. At least, K−i(Z[Γ]) = 0 for i À 0.

Conjecture 2. Let Γ be the fundamental group of a closed K(Γ, 1)-mani-

fold. Then Wh(Γ) = K̃0(Z[Γ]) = K−i(Z[Γ]) = 0, (i ≥ 1).

Conjecture 3. Let Γ be a torsion-free group such that BΓ has the homo-

topy type of a finite CW-complex. Then Wh(Γ) = K̃0(Z[Γ]) = K−i(Z[Γ]) =
0, (i ≥ 1).

Conjecture 4. If Γ is a torsion-free group such that BΓ is of the homotopy
type of a finite complex, then

A⊗ id : H∗(BΓ;K (Z))⊗Q→ K∗(Z[Γ])⊗Q

is an isomorphism.

The first conjecture is somewhat tangential to the concerns of this survey
and will not be discussed here, though it is true for finite groups by work of
Carter [Carter]. The second is the K-theory part of the Borel Conjecture for
closed aspherical manifolds. The third is a generalization of the second to
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the case of finite aspherical polyhedra. As we have seen, this must hold if the
Borel Conjecture mentioned above is true for compact aspherical manifolds.
The fourth conjecture, however, is a true analogue of the classical Novikov
Conjecture, though it is only stated for a restricted class of groups. A still
closer analogue of the classical Novikov Conjecture would be:

Conjecture 5. For any group Γ, the rational K-theory assembly map

A⊗ id : H∗(BΓ;K (Z))⊗Q→ K∗(Z[Γ])⊗Q

is injective.

The integral version of Conjecture 4 is:

Algebraic K-theory Isomorphism Conjecture. If Γ is the fundamen-
tal group of a finite aspherical polyhedron, then the assembly map

A : Hi(BΓ;K (Z)) → Ki(Z[Γ])

is an isomorphism for all i ≥ 0.

For i = 0 this is just the conjecture that K̃0(Z[Γ]) = 0, and for i = 1 that
Wh(Γ) = 0.

Results on the K-theory Isomorphism Conjecture for discrete subgroups
of Lie groups and for groups satisfying non-negative curvature assumptions
may be found in [FJ12] and [Car5]. For various technical reasons, it turns
out that in approaching Conjecture 5, it is best to introduce Waldhausen’s
algebraic K-theory of spaces A(X) [Wald2], a theory which has geometrical
interpretations in terms of pseudo-isotopies of manifolds [Wald3]. There are
analogues of the above conjectures for A-theory as well, results about which
may be found in the papers by Carlsson, Carlsson-Pedersen, and Farrell-
Jones already cited.

In a technical tour de force ([BöHM1], [BöHM2]), Bökstedt, Hsiang, and
Madsen have proved Conjecture 5 for a class of groups including all groups
Γ such that Hi(BΓ) is finitely generated in each dimension. This, of course,
includes all groups of type FP∞ — groups Γ such that BΓ has finite n-
skeleton for all n. Their argument is homotopy-theoretic and relies on both
a topological version of cyclic homology theory and use of Waldhausen’s
A-theory.
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5. Work related to the Novikov Conjecture: The Last 12
Years or So, II: Geometric Topology

Farrell-Hsiang, Ferry-Weinberger and tangentiality

In [FarHs8], Farrell and Hsiang gave a proof of the integral Novikov Con-
jecture for closed Riemannian manifolds of nonpositive curvature. Their
approach was to use Quinn’s geometric description of the L-spectrum, [Q1],
to construct an explicit splitting of the assembly map. An interesting feature
of their construction is that it uses the nonpositive curvature assumption
to produce a suitably nice compactification of the universal cover. The ex-
istence of this compactification is the only aspect of nonpositive curvature
used in the proof.

In [FW1], Ferry and Weinberger extended the Farrell-Hsiang argument
to include the noncompact case. This recovers Kasparov’s theorem and ex-
tends it to include the prime 2. We shall sketch a proof of the Novikov
Conjecture for closed Riemannian manifolds of nonpositive curvature which
blends elements of the Farrell-Hsiang approach with elements of the argu-
ment from [FW1]. One pleasant aspect of this argument is that it shows
that if f : N → M is a homotopy equivalence from a closed n-manifold
N to a closed nonpositively curved n-manifold M , then f is covered by
an unstable equivalence of tangent bundles. This unstable equivalence was
used in [FW1] to show that the A-theory assembly map (see the section on
K-theory above)

W+ ∧A(∗) → A(W )

also splits for W a complete Riemannian manifold of nonpositive curvature.
Let Mn be a closed Riemannian manifold with nonpositive curvature. To

prove that the assembly map

A : Hn(M ;L•) → Ln(Z[π1(M)])

is a monomorphism, it suffices to show that the map STOP (M)→Hn(M ;L•)
is zero. Thus, if f : N → M is a homotopy equivalence, we need to show
that f is normally cobordant to the identity. That is, we must show that
there is a cobordism (W,N, M) and a map F : W → M×I so that F |N = f ,
F |M = id, and so that F is covered by a map of stable normal bundles.

Let f̃ : Ñ → M̃ be the induced map on universal covers and form the
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diagram:

Ñ ×Γ Ñ
f̃×Γf̃−−−−→ M̃ ×Γ M̃

proj1

y
yproj1

N
f−−−−→ M,

where Γ = π1(M) = π1(N) acts diagonally on the product spaces. The fiber-
preserving map f̃ ×Γ f̃ restricts to f̃ on the fibers of the bundle projections
proj1.

Since M is nonpositively curved, M̃ has a natural compactification to a
disk, M ∼= Dn. The action of Γ on M̃ extends to M and we obtain a disk bun-
dle M̃×ΓM → M . This compactification induces a similar compactification
of Ñ by adding an (n−1)-sphere at infinity. By the Černavskii-Seebeck the-
orem (see [Fer1]), the compactified fibers N are disks and an argument using
local contractibility of the homeomorphism group shows that Ñ ×Γ N → N
is a disk bundle. The induced map of boundaries is a homeomorphism on
each fiber, so fiberwise application of the Alexander coning trick shows that
f̃ ×Γ f̃ is homotopic to a fiber-preserving homeomorphism. Making this ho-
motopy transverse to the zero section s(m) = [m̃, m̃], where m ∈ M and
m̃ is any lift of m to M̃ , gives the desired normal cobordism. The twisted
products M̃×ΓM̃ and Ñ×ΓÑ contain copies of the tangent microbundle so,
by Kister’s theorem [Kis], they are isomorphic to the tangent microbundles
of M and N and unstable tangentiality follows. For details, see [FW1].

We shall now show that the above assembly map is split. As we have seen
in the section on surgery spectra (Quinn) the surgery exact sequence is the
long exact homotopy sequence of a (co)fibration of spectra:

H •(M ;L•)
A−→ L•(Z[π1(M)]) → S•(M) .

A spectrum-level version of the vanishing result above shows that the map
S•(M) → ΣH •(M ;L•) is nullhomotopic. Since

L•(Z[π1(M)]) → S•(M) → ΣH •(M ;L•)

is also a (co)fibration sequence, the nullhomotopy allows us to lift a map
homotopic to the identity map S•(M) → S•(M) to L•(Z[π1(M)]), splitting
the homotopy sequence of the (co)fibration. It follows that the assembly
map is split injective.

We begin our discussion of the extension to complete Riemannian man-
ifolds of nonpositive curvature by stating a noncompact Borel Conjecture,
which applies to discrete groups Γ which need not be finitely generated.
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Noncompact Borel Conjecture for Γ. Let (M, ∂M) be an open n-
dimensional noncompact manifold with boundary such that M is aspherical
and π1(M) = Γ. Let f : Nn → Mn be a proper homotopy equivalence which
is a homeomorphism on the union of ∂N with a neighborhood of infinity.
Then f is homotopic to a homeomorphism relative to the boundary and
relative to a (possibly smaller) neighborhood of infinity.

To see how this is related to the Borel Conjecture consider the surgery
exact sequence

· · · → STOP (Mrel ∂M ∪ {nbhd. of infinity})
→ [M, ∂M ∪ {nbhd. of infinity};G/TOP, ∗] → Ln(Z[π1(M)]) .

The middle term is the cohomology of M rel ∂M with compact supports
and coefficients in G/TOP , so that

[M,∂M ∪ {nbhd. of infinity};G/TOP, ∗]
∼= H0

c (M,∂M ;L•) ∼= Hn(M ;L•) ∼= Hn(BΓ;L•) .

As in the compact case considered in the section on “K-theory analogues”
we have :

Proposition. The Noncompact Borel Conjecture holds for a group Γ if and
only if the algebraic surgery assembly map AΓ : H∗(BΓ;L•(Z)) → L∗(Z[Γ])
is an isomorphism and Wh(Γ) = 0.

Here is an analogous Novikov-type result for complete Riemannian man-
ifolds of nonpositive curvature.

Theorem ([FW1]). Let W be a complete Riemannian manifold of nonpos-
itive curvature and dimension ≥ 4. Suppose that f : W → W ′ is a proper
homotopy equivalence and a homeomorphism on the complement of some
compact set. Then f is canonically covered by an isomorphism of unstable
tangent bundles. The isomorphism produced agrees with the isomorphism
given by f outside of a, perhaps larger, compact set.

Instead of compactifying and coning, the proof uses the Chapman-Ferry
α-approximation theorem, a rescaling argument, and local contractibility of
the homeomorphism group to produce a tangent bundle isomorphism cover-
ing f . The advantage is that this construction only sees a finite neighborhood
of the zero-section, so the bundle isomorphism automatically becomes the
given isomorphism near infinity.
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The Farrell-Jones program

In this section, we shall outline the work of Farrell-Jones on topological
rigidity and the Borel Conjecture. This work was a direct continuation of
the work of Farrell-Hsiang discussed above. By the Proposition in the section
on “K-theory analogues,” the Borel Conjecture holds for a discrete group
Γ if and only if Wh(Γ) = 0 and the algebraic surgery assembly map A :
H∗(BΓ;L•) → L∗(Z[Γ]) is an isomorphism.

In [FarHs7], Farrell and Hsiang proved the Borel Conjecture in case
BΓ = Mn, n > 4, is a flat Riemannian manifold with odd order holonomy
group. The argument is an interesting combination of geometry and alge-
bra. By an argument of Epstein-Shub, the manifold M supports expanding
endomorphisms. It follows that given ε > 0 and a homotopy equivalence
f : N → M , a map e : M → M can be chosen so that the pullback fe of f
over e is an ε-controlled homotopy equivalence over (the upper copy of) M
in the sense of [ChF] :

N̂
fe

−−−−→ M
y

ye

N
f−−−−→ M .

It follows from the “α-Approximation” theorem of Chapman-Ferry quoted
above that for small ε, fe is homotopic to a homeomorphism. Farrell and
Hsiang then use Frobenius induction to analyze the surgery exact sequence
and show that the structure given by the original f is trivial. The idea is
that passage to finite covers corresponds to an algebraic transfer map and
that if enough transfers of a structure are trivial, then the original structure
is trivial, as well.

In [FJ5], Farrell and Jones proved the conjecture for closed hyperbolic
manifolds. As in the work of Farrell-Hsiang, the idea is first to use differ-
ential geometry and a transfer argument to show that the transfer of an
obstruction dies, and then to use an algebraic argument to deduce that the
original obstruction is also zero.

In this case, the relevant geometry is the geometry of the geodesic flow on
the unit sphere bundle of a hyperbolic manifold Mn. This flow is Anosov,
which means that the sphere bundle admits a pair of transverse foliations
such that the flow is expanding along one foliation and contracting along the
other. Farrell and Jones show that it is possible to lift a homotopy equiva-
lence f : N → M in such a way that the tracks of the lifted homotopies are
pushed close to flow lines by the geodesic flow. This is the asymptotic trans-
fer. Farrell and Jones use this construction to generalize results of Chapman
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and Ferry [ChF] and Quinn [Q3] to obtain a foliated control theorem. A full
discussion of their results would occupy too much space for this survey, but
we include a few precise statements to give the flavor of their work.

Definition. A path γ in the unit sphere bundle SM is said to be (β, ε)-
controlled if there is a second path φ in SM such that

(1) The image of φ is contained in an arc of length β inside a flow line
of the geodesic flow.

(2) d(γ(t), φ(t)) < ε for all t ∈ [0, 1].

An h-cobordism (W,SM) is said to be (β, ε)-controlled if the tracks of the
strong deformation retractions are (β, ε)-controlled when pushed into SM .

Theorem. Given a closed hyperbolic manifold M with dim M > 2 and a
positive real number β, there exists a number ε > 0 such that the following
is true. Every (β, ε)-controlled h-cobordism (W,SM) is a product.

The key property of the asymptotic transfer is that given positive real
numbers β and ε there is a positive number t0 so that if α is a smooth
path in M of length < β, then the asymptotic lift ᾱ of α to SM becomes
(
√

(2)β, ε)-controlled if we let the geodesic flow act on ᾱ for any time t ≥ t0.
Together, these results show that if (W,M) is an h-cobordism on M , then

its transfer to the unit sphere bundle is a trivial h-cobordism. This is a key
tool in their proof of topological rigidity for closed hyperbolic manifolds. We
should emphasize that by itself this does not prove very much. Even though
the fundamental groups of M and SM are isomorphic, the transfer map on
the Whitehead groups is multiplication by 2 for n odd and multiplication by
0 for n even. Part of the solution is to modify this transfer to get a transfer
to a disk bundle. Here, the transfer is multiplication by 1 and the analogous
foliated control theorem shows that the Whitehead group of M vanishes.
Further effort is required to achieve topological rigidity. See [FJ3], [FJ5],
[FJ7] for details.

In [FJ6], Farrell and Jones announced a proof of topological rigidity for
closed nonpositively curved manifolds. The proof of this result is similar in
outline, but much more complicated in execution. They begin by showing
in [FJ10] that the Whitehead groups of the fundamental groups of these
manifolds vanish. Given this, it suffices to show that if f : N → M is a
homotopy equivalence then f × id : M × S1 → N × S1 is homotopic to
a homeomorphism. Instead of transferring to the unit sphere bundle of M ,
they then transfer to a certain bundle over M×S1 whose fiber is a stratified
space with three strata. The asymptotic transfer, which does nothing in the
nonpositively curved case, is replaced by a focal transfer. See [FJ13] for
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details. The work of Farrell and Jones has also given significant results on
integral versions of the Novikov Conjecture for algebraic K-theory [FJ12];
cf. the section on K-theory above.

Problems about group actions (Weinberger et al.)

Weinberger ([W3]–[W6]) has pointed out a number of interesting connec-
tions between the Novikov Conjecture and group actions. Aside from being
interesting in itself, this work, together with the structure of the proofs of
various versions of the Novikov Conjecture, has led to a study of “equivari-
ant” versions of the Novikov Conjecture for manifolds equipped with group
actions, a subject which is still under active development.

In general, equivariant surgery theory is considerably more complicated
than ordinary surgery theory, both for geometric reasons (a manifold M
equipped with an action of, say, a compact group G is stratified according
to the various orbit types, and the relations between the various strata can
be quite complicated) and for algebraic ones (in general, G does not act on
the fundamental group of M , but only on the fundamental groupoid; also,
the algebra required to keep track of all the strata can be quite complicated).
Weinberger in [W3]–[W5] studied the case where the algebra is as simple as
possible, namely the case of “homologically trivial” actions, and found (this
should not be so surprising, after all) that when M is not simply connected,
the theory of such actions is closely linked to ordinary non-simply connected
surgery. As a result, he was able to prove the following:

Theorem [W4]. Let G be a non-trivial finite group. Then the Novikov
Conjecture is equivalent to the statement that the higher signatures vanish
for any connected oriented manifold M cobordant (by a bordism preserving
the fundamental group) to a manifold N admitting a free homologically
trivial G-action (i.e, to a manifold N admitting a free G-action, such that
π1(N/G) ∼= π1(N)×G, and such that G operates trivially on the homology
of N with local coefficients).

Theorem [W5]. Let p be a prime, G = Z/(p). Suppose G acts on a con-
nected oriented manifold M with non-empty connected fixed set F , with
trivial action on Γ = π1(M) (computed at a basepoint in F ) and on the
homology of M with local coefficients. (Also assume G preserves the orien-
tation if p = 2.) By the G-signature theorem (the equivariant version of the
Hirzebruch signature theorem), there is a rational characteristic class D of
the equivariant normal bundle ν of F , such that

signature(M) = 〈L(F ) ∪ D(ν), [F ]〉 ∈ Z.
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Then the Novikov Conjecture is equivalent to the statement that, in this
context, the higher signatures of M agree with the higher signatures of F
twisted by D(ν), i.e., that if u : M → BΓ is the classifying map for the
universal cover of M , then

signaturex(M, u) = 〈L(F ) ∪ D(ν) ∪ u∗(x), [F ]〉

for each cohomology class x ∈ H∗(BΓ; Q).

Subsequent work by Weinberger, discussed in detail in his book [W9],
deals with applications and analogues of the Novikov Conjecture in much
more complicated situations involving stratified spaces or manifolds with
group actions. We shall discuss just one aspect of this here, the concept of
the equivariant Novikov Conjecture, which is considered in [FRW], [RW1]–
[RW3], and [Gong]. Using Kasparov’s notion of the K-homology class [DM ]
of the signature operator DM on a closed oriented manifold M , and following
[RW2], we may explain this as follows. Suppose f : N → M is an orientation-
preserving homotopy equivalence of closed manifolds. The ordinary Novikov
Conjecture says that if X is an aspherical space and u : M → X,16 then

u∗([DM ]) = (u ◦ f)∗([DN ]),

at least rationally. Now suppose that a compact group G acts on M and N
and that the map f is also G-equivariant (though not necessarily an equivari-
ant homotopy equivalence). A G-space X is called equivariantly aspherical
if for every subgroup H of G (including the trivial subgroup!), every con-
nected component of the fixed set XH is aspherical. For example, it follows
from the Cartan-Hadamard Theorem (see [RW2, Proposition 1.5]) that if
X is a complete Riemannian manifold of nonpositive curvature, and if G
acts on X by isometries, then X is equivariantly aspherical. The equivari-
ant Novikov Conjecture asserts that for suitable equivariantly aspherical
spaces X, where u : M → X is a G-map and f : N → M is as above,
then again u∗([DM ]) = (u ◦ f)∗([DN ]), the equality holding in the equi-
variant K-homology KG

∗ (X). While this is definitely false in some cases, it
seems plausible when X satisfies some equivariant finiteness conditions, and
various cases are proved in the references cited above.

16Any map will do here. Often u is the classifying map for the universal cover, but
this need not be so.
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6. Work related to the Novikov Conjecture: The Last 12
Years or So, III: Elliptic Operators and Operator Alge-
bras

In the last decade and a half, the analytic approach to the Novikov Con-
jecture, first introduced by Lusztig, has led to an explosion of research on
various problems concerning elliptic operators and operator algebras. While
we can only hint at some of these developments, we shall at least try to give
the reader some impression of the various directions in which the subject is
moving.

Further development of Kasparov KK-theory

To understand any of the further analytic developments, one needs to ex-
amine some of the ideas behind the work of Mishchenko and Kasparov, and
in particular, why the K-theory of group C∗-algebras plays such a critical
role in analytic approaches to the Novikov Conjecture. We shall be very
brief; for further details, see the survey [Ros6] elsewhere in this volume.

The following is the basic idea of the analytic approach. Consider, say, a
closed manifold M with fundamental group Γ, equipped with the classifying
map f : M → BΓ for the universal cover. Without great loss of generality,
suppose the dimension n of M is even, n = 2k. We compare a certain ana-
lytic invariant of M , which one can call the analytic higher signature, with
an a priori homotopy invariant, the Mishchenko symmetric signature. The
former is the generalized index of a certain (generalized) elliptic operator;
it plays the role of the index of a family of twisted signature operators in
Lusztig’s proof. Recall that the index of a family of operators parameterized
by a compact space Y is a certain formal difference of vector bundles over
Y , in other words an element of the Grothendieck group of vector bundles,
K0(Y ). By the Serre-Swan Theorem, vector bundles over Y correspond pre-
cisely (via passage to the space of continuous sections) to finitely generated
projective modules over the ring C(Y ) of continuous functions on Y , so
that K0(Y ) may be identified with K0(C(Y )). In Lusztig’s case, Γ was free
abelian, Y is the Pontrjagin dual Γ̂, and by Fourier analysis, C(Y ) may
be identified with a C∗-algebra completion of the group ring C [Γ]. In a
similar fashion, in the general case the analytic higher signature is a for-
mal difference of finitely generated projective modules over the completed
group ring C∗(Γ), and thus takes its values in the K-group K0(C∗(Γ)).
On the other hand, the Mishchenko symmetric signature lives in the Wall
group L2k(C∗(Γ)) = L0(C∗(Γ)). (In this case the symmetric and quadratic
L-groups coincide and are 2-periodic, since we are taking C∗(Γ) to be an
algebra over C .)
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The key idea that makes it possible to compare the two invariants is
an observation originally going back to Gelfand and Mishchenko [GM]: for
complex C∗-algebras, unlike general rings with involution, the functors L0

and K0 are naturally isomorphic. (This is due to the Spectral Theorem
for self-adjoint operators on a Hilbert space, which implies that any non-
singular hermitian form on a C∗-algebra can be split as a direct sum of
a positive-definite form and a negative-definite form.) One can then show
([Kas4], [Kas8], [KM2]) that under this isomorphism, the analytic higher
signature coincides with the Mishchenko symmetric signature, and is thus
homotopy-invariant. On the other hand, one can prove an index theorem,
which implies that the analytic higher signature is the image under a certain
analytic assembly map

A : K∗(BΓ) → K∗(C∗(Γ))

of f∗([DM ]), where [DM ] is the class of the Atiyah-Singer signature operator
on M in Kasparov’s analytic K-homology group. Thus if A is injective,
f∗([DM ]), which under the Chern character corresponds (up to some powers
of 2) to f∗ of the total L-class, is a homotopy invariant of M . In other words,
the higher signatures of M are homotopy invariants.

Thus, just as in the algebraic approaches to the Novikov Conjecture,
the conjecture boils down to the injectivity of a certain assembly map A.
Within the last decade or so, various strategies for proving this injectivity
have been simplified and strengthened. The approach of Kasparov and his
co-workers has basically been to construct a splitting s to the assembly map
using a “generalized elliptic operator” (some variant of “dual Dirac”), and
to prove that s ◦ A = id using the KK-calculus. In fact, this has usually
been done by showing that A and s come from equivariant KK-classes
on the universal cover EΓ of BΓ, and then applying the equivariant KK-
calculus ([Kas4], [Kas7]). This program has by now been extended to quite a
number of situations: discrete subgroups of Lie groups [Kas7], groups acting
on buildings ([JuV], [KS1], [KS2]), hyperbolic or even “bolic” groups ([HilS],
[KS3]), and so on.

The cyclic homology approach (Connes et al.)

One of the most important new developments has been the introduction by
Connes (from the point of view of geometry and analysis, [Con1]–[Con7])
and by Loday-Quillen [LodQ] and Tsygan [Tsy] (from the point of view of
algebra and topology) of cyclic homology and cohomology HC∗ and HC∗,
homology and cohomology theories for algebras which, when specialized to
the algebra C∞(M) of smooth functions on a manifold, recover de Rham
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homology and cohomology theory, based on differential forms and currents.
The fundamental perspective here is that cyclic homology should be viewed
as a “linearized” version of K-theory, and bears the same relationship to the
algebraic K-theory of general algebras that ordinary (co)homology bears to
topological K-theory. Motivated by this relationship, one can construct a
natural transformation, the Chern character, from K-theory to cyclic ho-
mology.

The idea of applying cyclic homology to the Novikov Conjecture is based
on the hope of finding a completion A(Γ) of the group ring C [Γ] so that
C [Γ] ⊆ A(Γ) ⊆ C∗(Γ) 17 and the following two properties hold:

(1) A(Γ) is “big enough” so that the inclusion A(Γ) ↪→ C∗(Γ) induces
an isomorphism on K0, and

(2) A(Γ) is “small enough” so that the inclusion C [Γ] ↪→ A(Γ) induces
an injective map on cyclic homology.

Now there is an analogue of the assembly map A for cyclic homology, and
in the case of the group ring C [Γ], it is quite easy to show this assembly
map is a split injection (for any group Γ) [Bur]. On the other hand, as we
mentioned above, the usual Novikov Conjecture is a consequence of injec-
tivity of the assembly map for K-theory of the group C∗-algebra, because
of the special relationship between L-theory and K-theory for C∗-algebras.
(Knowledge of K0 is all one needs to handle even-dimensional manifolds,
and odd-dimensional manifolds can be handled by crossing with a circle and
replacing Γ by Γ×Z.) The idea of the cyclic homology approach is therefore
to construct a commutative diagram

K∗(BΓ) A−−−−→ K∗(C∗(Γ))
∥∥∥

x
K∗(BΓ) A−−−−→ K∗(A(Γ))

Ch

y
yCh

H∗(BΓ, C) A−−−−→ HC∗(A(Γ))
∥∥∥

x
H∗(BΓ, C) A−−−−→ HC∗(C [Γ]) ,

where the Chern character Ch induces an isomorphism K∗(BΓ) ⊗Z C
∼=−→

17The experts will realize that sometimes one needs to use the reduced group C∗-
algebra here.
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H∗(BΓ, C), and thus to deduce from (1) and (2) that the top assembly map
is rationally injective.

In some cases, this program has been carried out successfully. As notable
successes of the program, we mention in particular [CM1]–[CM2], [CGM2],
[Jo1]–[Jo2], [Ji1]–[Ji3].

K-theory of group C∗-algebras: the Connes-Kasparov and Baum-
Connes Conjectures

As we indicated above, the work of Mishchenko and Kasparov showed that
the Novikov Conjecture for a group Γ is a consequence of something stronger
(now often called the “Strong Novikov Conjecture”), the injectivity of the
assembly map K∗(BΓ) A−→ K∗(C∗(Γ)). Thus the study of the Novikov Con-
jecture naturally leads to the study of the K-theory of group C∗-algebras.
This study has led in turn to a number of related conjectures, which have
been verified in many cases.

To begin with, the classifying space BG and the group C∗-algebra C∗(G)
are defined not only for discrete groups, but also for all locally compact
groups G, and circumstantial evidence [Ros1] suggests a close connection
between the K-theory of the classifying space and of the C∗-algebra for
arbitrary Lie groups.

Secondly, it is useful to try to examine what sort of surjectivity one
should expect for the assembly map. For non-amenable discrete groups Γ,
the “full” C∗-algebra C∗(Γ) turns out to be “too big” (in the sense that even
for nice torsion-free groups, one cannot expect surjectivity), so it seems the
appropriate object of study is the “reduced” C∗-algebra C∗r (Γ). This is a
quotient of C∗(Γ) for which one also has a functorial assembly map A. By
extrapolating from carefully studied examples, Baum and Connes ([BC3],
[BC4], [BCH]) arrived at the conjecture that a certain modified assembly
map

A′ : KΓ
∗ (EΓ) −→ K∗(C∗r (Γ))

should be an isomorphism for any discrete group. Here EΓ is the universal
proper Γ-space, just as BΓ is the quotient of the universal free Γ-space
EΓ by the Γ-action. When Γ is torsion-free, Γ acts freely on EΓ = EΓ, so
the equivariant K-group on the left becomes just K∗(BΓ), and A′ = A.
Hence the Baum-Connes Conjecture predicts that for torsion-free groups,
the assembly map of Mishchenko and Kasparov is an isomorphism if one uses
the reduced C∗-algebra. In general, A factors through A′, and the natural
map

K∗(BΓ) ∼= KΓ
∗ (EΓ) → KΓ

∗ (EΓ)
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is at least rationally injective, so the Baum-Connes Conjecture implies the
Novikov Conjecture.

Various extensions and strengthenings of the Baum-Connes Conjecture
have been proposed. For example, Baum and Connes [BCH] also suggested
that if Γ is replaced by any countably connected Lie group G, acting on a
C∗-algebraA, then there should be a canonical assembly isomorphism from
KG
∗ (EG; A) to K∗(Aor G). Here Aor G, also sometimes written C∗r (G, A),

is the reduced crossed product C∗-algebra. The previous conjecture is just
the special case where A = C and G is discrete. When G is a connected
Lie group with maximal compact subgroup K, then EG = G/K, so if we
take A = C again, the conjecture reduces to the assertion that the “Dirac
induction” map

µ : R(K) = KK
∗ (pt) ∼= KG

∗ (G/K) → K∗(C∗r (G))

(here R(G) is the representation ring of K) should be an isomorphism. This
special case of the generalized Baum-Connes Conjecture is usually known
as the Connes-Kasparov Conjecture, and has been proved for connected
linear reductive Lie groups by Wassermann [Was]. Similar results are known
for some p-adic Lie groups (e.g., [Pl3], [BHP], [BCH]). For arbitrary closed
subgroups G of amenable connected Lie groups, of SO(n, 1), or of SU(n, 1),
the generalized Baum-Connes Conjecture follows from still stronger results
of Kasparov et al. ([Kas4], [Kas5], [Kas7], [JuK]).

Parallels with positive scalar curvature (Gromov-Lawson, Rosen-
berg et al.)

Around 1980, Gromov and Lawson ([GL1], [GL2]) began to notice an in-
teresting parallel between the Novikov Conjecture and a problem in Rie-
mannian geometry, that of determining what smooth manifolds admit Rie-
mannian metrics of positive scalar curvature. They conjectured in particular
that a closed aspherical manifold could not admit such a metric, and that
a general spin manifold (except perhaps in dimensions 3 and 4) should ad-
mit such a metric exactly when certain “higher index invariants” vanish.
Originally, the parallel with the Novikov Conjecture was just phenomeno-
logical: both problems were related to index theory on non-simply connected
manifolds, and in both cases the best results were for aspherical manifolds
homotopy-equivalent to K(Γ, 1)’s satisfying some sort of “non-positive cur-
vature” condition.

In a series of papers [Ros2]–[Ros5], Rosenberg showed that this coinci-
dence was not accidental, and that in fact both problems are closely related
to the Strong Novikov Conjecture. The formal similarity between the two
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problems is explained via the index theory of Mishchenko and Fomenko
[MisF], applied to the canonical flat bundle V = M̃ ×Γ C∗(Γ) over a mani-
fold M , whose fibers are rank-one free modules over the group C∗-algebra
C∗(Γ) of the fundamental group. The main differences between the two
problems are that:
(1) the Novikov Conjecture is related to the signature operator, whereas

the positive scalar curvature problem (on a spin manifold M) is related
to the Dirac operator /DM via the Lichnerowicz identity /D2

M = ∇∗∇+
s
4 , where s is the scalar curvature;

(2) the Novikov Conjecture and the Borel Conjecture are most directly
related to the assembly map for L-theory, whereas the positive scalar
curvature problem is related to the assembly map for KO-theory. In
particular, the two theories behave very differently at the prime 2
[Ros6].

Rosenberg gave [Ros5] a reformulation of the Gromov-Lawson Conjecture
with some hope of being true for arbitrary spin manifolds, and he and Stolz
(whose techniques have proven to be crucial for the problem) have now
verified a “stable” form of the Gromov-Lawson Conjecture for a wide variety
of fundamental groups, including in particular all finite groups [RS1]–[RS3].

Analogues for foliations

Around 1980, A. Connes [Con1] pointed out that one can attach operator
algebras to foliations, and use them to develop index theory for operators
associated with foliated manifolds: at first, operators which are “elliptic
along the leaves,” such as the Dirac and signature operators of the leaves
[CS], and later, certain transversally elliptic operators (i.e., elliptic operators
on the “leaf space”) [Con2]. From these beginnings it was only a small step
to the study of an assembly map

A : K∗(B(M, F)) → K∗(C∗r (M, F))

[BC1] for foliated manifolds (M, F) and to analogues for foliations of the
Novikov, Borel, and Baum-Connes Conjectures. The first formulation of a
Novikov Conjecture for foliations was given by Baum and Connes in [BC2].
The conjecture states that if (M, F), (M ′, F ′) are foliated closed manifolds,
with M and M ′ compact and oriented and with F and F ′ orientable, then if
f : M ′ → M is an orientation-preserving leafwise homotopy equivalence (i.e.,
leaf-preserving map which is a homotopy equivalence in a leaf-preserving
way) and if u : M → Bπ is the canonical map to the classifying space of
the fundamental groupoid of (M, F) along the leaves, then for any x ∈
H∗(Bπ; Q), the “higher signatures”

〈L(M) ∪ u∗(x), [M ]〉 and 〈L(M ′) ∪ (u ◦ f)∗(x), [M ′]〉
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should be equal. As pointed out by Baum and Connes, when M and M ′

each consist of a single leaf, this is the usual Novikov Conjecture, and when
M and M ′ are each foliated by points (i.e., F and F ′ are zero-dimensional),
this reduces to Novikov’s theorem on the homeomorphism invariance of
rational Pontrjagin classes. Using a variant of Kasparov’s methods, Baum
and Connes verified their Conjecture when there is a Riemannian metric
on M for which the sectional curvatures of the leaves are all non-positive.
Other cases of the Novikov Conjecture for foliations and of the analogues
of the Baum-Connes and Gromov-Lawson Conjectures for foliations have
been settled in [Na2], [To], [Mac], [Tak1]–[Tak3], and [Hu4].

Flat and almost flat bundles revisited (Connes-Gromov-Moscovici,
Gromov et al.)

A major theme in analytic work on the Novikov Conjecture, which already
appeared in the pioneering work of Lusztig, has been the use of flat and
almost flat bundles. These have also been used by Gromov [Gr6] within the
last year to give a very slick proof of Novikov’s theorem on the topological
invariance of rational Pontrjagin classes. Since this is a little easier than
the work on the Novikov Conjecture, we mention it first. As is well known,
Novikov’s theorem is essentially equivalent (see [Ran10, §2] for a few more
details) to the statement that if M4k+r is a closed oriented manifold and N4k

is the inverse image of a regular value of a map M → Sr, then the signature
of N is a homeomorphism invariant of M . Since homeomorphisms restrict
on open subsets to proper homotopy equivalences, it is then enough to show
that signature(N) only depends on the proper homotopy type of some open
tubular neighborhood U . One can reduce to the case where r = 2m+1 is odd,
and then embed in Sr a product (Σ2)m ×R, where Σ2 is a closed Riemann
surface of genus > 1. (That such an embedding is possible follows from
the fact that Σ is stably parallelizable.) Gromov then uses the fact that Σ
admits a flat rank-2 real vector bundle X with structure group SL(2, R) and
non-trivial Euler class. Since SL(2, R) ∼= Sp(R2), this bundle comes with a
natural symplectic structure, which gives rise (because of anti-symmetry of
the cup product for odd cohomology classes) to a non-degenerate symmetric
bilinear form on the cohomology with local coefficients, H1(Σ;X). One can
compute that the signature σ of this form turns out to be non-zero. Putting
m copies of X together and pulling back to U , Gromov obtains a twisted
signature invariant for U that can be shown (using the original ideas of Novi-
kov) to be a proper homotopy invariant, but which differs from signature(N)
only by a non-zero constant factor (σm), and so Novikov’s theorem follows.
See [Ran10, §4] for the surgery-theoretic interpretations of Novikov’s and
Gromov’s proofs of the topological invariance of the rational Pontrjagin
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classes.
The application of flat bundles to the Novikov Conjecture similarly orig-

inates from the rather simple observation that if M4k is a closed oriented
manifold and X is a flat vector bundle over M with structure group O(m)
or U(m), then one can define a symmetric or hermitian pairing on the coho-
mology with local coefficients, H2k(M ;X), and thus a “twisted signature”
signatureX(M). It is clear that this signature is an oriented homotopy in-
variant. It is also not hard to show that signatureX(M) coincides with the
higher signature signaturex(M, u), where (since X is flat) the Chern char-
acter x of X is the pull-back under some u : M → BΓ of a cohomology class
x ∈ H∗(BΓ; Q). The only difficulty is that since flat vector bundles with
structure group O(m) or U(m) have trivial rational characteristic classes,
all one gets from this argument is the homotopy invariance of the usual
signature.

Nevertheless, there are several ways of getting around this difficulty to use
this argument to prove results on the Novikov Conjecture. One idea (in effect
the idea of the Mishchenko and Kasparov methods) is to replace the ordinary
vector bundle X by a flat bundle with infinite-dimensional fibers (which
are finitely generated projective modules over C∗(Γ)). Another possibility,
explored by Lusztig [Lus] and Gromov [Gr6], is to use indefinite orthogonal
or unitary groups in place of O(m) or U(m). But an alternative is to use
ordinary finite-dimensional bundles, but which are only “approximately”
flat, yet which come from representations of the fundamental group. It is
this approach which is adopted in [CGM1] and [HilS], and also discussed
in [Gr6]. Here the idea is roughly that since the twisted signature (i.e., the
index of the signature operator with coefficients in a bundle) is a “discrete”
invariant, “small” amounts of non-flatness do not affect that argument that
this is a homotopy invariant.

Index theory on non-compact manifolds (Roe et al.)

The original ideas of Novikov for proving topological invariance of rational
Pontrjagin classes made essential use of non-compact manifolds, so it is not
surprising that analysis on such manifolds is starting to play a bigger and
bigger role in recent work on the Novikov Conjecture. While it would be
impossible to survey here everything that has been done using analysis on
non-compact manifolds that is related to the Novikov Conjecture, we shall
mention a few key themes, especially as found in the work of J. Roe and
his coworkers. Much of the impetus for this work came from an important
paper of Atiyah [At2], which showed how the theory of operator algebras
could be used to study index theory on the universal covers of compact
manifolds. To illustrate how the theory works, we shall begin by discussing
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some results on the Gromov-Lawson Conjecture (see the section above on
positive scalar curvature). The index theory of the Dirac operator /DM

shows via the Lichnerowicz identity that if M is a closed spin manifold with
Â-genus

Â(M) = 〈Â(M), M〉 6= 0

(here Â(M) is a certain formal power series in the rational Pontrjagin classes
of M), then M does not admit a metric of positive scalar curvature. (Pos-
itive scalar curvature would imply /DM is invertible by the Lichnerowicz
identity, whereas the index of /DM is Â(M) 6= 0 by the Atiyah-Singer Theo-
rem.) If M has fundamental group Γ and universal cover M̃ , then one could
similarly argue using Atiyah’s index theorem [At2] that M̃ does not admit a
Γ-invariant metric of positive scalar curvature. However, this argument does
not yet exploit the extra “flexibility” of non-compact manifolds as compared
with closed manifolds, since most metrics on M̃ are not Γ-invariant. A more
powerful result, proved by Roe [Roe1] using a more robust version of index
theory on non-compact manifolds, is that under these circumstances, M̃
does not admit any metric, quasi-isometric to a Γ-invariant metric, whose
scalar curvature function is uniformly positive off a compact set.

Once the technology for proving this result was in place, it became pos-
sible to prove that certain aspherical manifolds M (such as tori, which have
vanishing Â-genus) do not admit Riemannian metrics of positive scalar cur-
vature, by showing that M̃ does not admit any metric of uniformly posi-
tive scalar curvature in the appropriate quasi-isometry class. It is here that
“coarse geometry” and “coarse homology” (also known as “exotic homol-
ogy,” though this is less descriptive) come into play. The Atiyah-Singer
Theorem on a compact manifold computes the index of an elliptic operator,
which is a certain obstruction to its non-invertibility, as a certain character-
istic cohomology class (determined by the symbol of the operator) paired
against the fundamental class in homology. Roe’s index theory in [Roe3]
does something similar for elliptic operators on non-compact manifolds, but
now one is only interested in the asymptotic behavior of the manifold at
infinity, and compact sets can be thrown away. One still finds that there
are homological obstructions to the non-invertibility of the operator, but
they involve the homology of the manifold “at infinity.” This may be made
precise either in terms of the concept of a “corona” (introduced in [Hig2]—
as a prototypical example, the sphere at infinity Sn−1 is a corona for the
Euclidean space Rn) or in terms of Roe’s coarse homology theory [Roe3].

Corresponding to these results on the Gromov-Lawson Conjecture, there
are also results on the Novikov Conjecture itself using the machinery of
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“coarse homology.” For more details, we refer the reader to the paper
[HigR2] in these proceedings. However, the main idea can be stated briefly
as follows. For any “proper metric space” X,18 one can define a coarse
assembly map

Ac : K`f
∗ (X) → K∗(C∗(X)) .

Here K`f
∗ (X) is the locally finite K-homology of X, in other words, the re-

duced Steenrod K-homology of the one-point compactification [Fer2], and
K∗(C∗(X)) is the topological K-theory of the C∗-algebra constructed in
[Roe3] out of “generalized pseudodifferential operators” on X. This as-
sembly map factors through the “coarse K-homology” KX∗(X). In favor-
able cases, one can prove injectivity of this coarse assembly map Ac with
X = EΓ, and then deduce from a commutative diagram the injectivity of
the usual assembly map

A : K∗(BΓ) → C∗r (Γ) ,

in other words, the “strong Novikov Conjecture” for Γ. (See [HigR2], [Yu3]–
[Yu5], [FW2], [PeRW], and [Ros6] for more information.)
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The Problem Session

9 September, 1993

Proposed by M. Gromov

(1) Look at coarse Lipschitz maps from uniformly contractible spaces or
contractible coverings of compact manifolds to euclidean space. One
wants them to have nonzero degree, but we don’t want them to collapse
things too much. Translate to the language of C∗-algebras. When do
you have maps to euclidean space? Points which are far away to begin
with should stay far away.

(2) Can one compute (or express) something like Lp-cohomology by C∗-
techniques or C∗-invariants?

(3) Does an amenable discrete group admit a proper isometric action on
a Hilbert space (in the metric sense of proper)?1 A suitable general-
ization of the notion of almost flat bundles might yield a proof of the
Novikov Conjecture for amenable groups.2

(4) Does every finitely generated or finitely presented group admit a uni-
formly metrically proper Lipschitz embedding into a Hilbert space?
Even such an embedding into a reflexive uniformly convex Banach
space would be interesting. This seems hard.

(5) Can one give a new proof using the above philosophy (of mapping to
Euclidean space or Hilbert space) of the Strong Novikov conjecture
(injectivity of the assembly map for the K-theory of the group C∗-
algebra) or the Baum-Connes Conjecture for discrete subgroups of
SO(n, 1), SU(n, 1).

(6) Is there a discrete group Γ (other than Z) such that BΓ is finite, and
such that some compactification of EΓ, satisfying the “compact sets
become small at infinity” condition,3 maps to a compactification of

1Soon after the conference, this problem was solved. See the paper by Bekka, Cherix,
and Valette in these proceedings for the solution.

2See the paper by Gromov in these proceedings for more details on what was intended
by this question.

3This is the condition assumed in [CP], and also later used in the paper of Hurder in
these proceedings.
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R? A homological version of this would be to ask if there is a finite
BΓ so that the coarse cohomology of Γ is zero in all dimensions.

(7) One can put a “norm” on K0 of a ring R (assuming that the “rank”
of a finitely generated projective R-module is well-defined) by letting

‖x‖ = inf {rankP + rank Q : x = [P ]− [Q], P, Q f. gen. projective} ,

and similarly for L0(R) or L0(R) if R has an involution. These can be
made into actual norms on the vector spaces K0(R)⊗ZR, K0(R)⊗ZR.
Compute the norms in L0(Rπ)⊗ZR or in K0(C∗(π))⊗ZR of the images
of rational homology classes on Bπ under the assembly maps. It seems
that one gets something non-zero for (at least some) manifolds with
strictly negative curvature.

References:

[CP] G. Carlsson and E. K. Pedersen, Controlled algebra and the Novikov
conjectures for K- and L-theory, Topology (to appear).

Proposed by C. Stark

(1) Let X be uniformly contractible open manifold and let C∗(X) be
its Roe C∗-algebra (as defined in [Ro]). How does analysis of C∗(X)
relate to flexibility of X [DFW]? What does uniform contractibility
of X correspond to in C∗(X)? What properties of metrics guarantee
that uniformly contractible Rn’s are boundedly rigid?

(2) Is there a splitting theory for manifolds whose fundamental group
is given by a complex of groups as described by Haefliger [H]? One
hopes that the categorical descriptions of Nil and UNil of Connolly-
Koźniewski [CK] and of Ranicki [R] will generalize.

References:

[CK] F. X. Connolly and T. Koźniewski, Nil groups in K-theory and surgery
theory, Forum Math. 7 (1995), 45–76.

[DFW] A. Dranishnikov, S. Ferry and S. Weinberger, A large Riemannian
manifold which is flexible, preprint.

[H] A. Haefliger, Extension of complexes of groups, Ann. Inst. Fourier,
Grenoble 42 (1992), 275–311.

[R] A. Ranicki, Exact Sequences in the Algebraic Theory of Surgery, Math-
ematical Notes 26, Princeton Univ. Press, Princeton, NJ (1981).
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[Ro] J. Roe Coarse cohomology and index theory on complete Riemannian
manifolds, Mem. Amer. Math. Soc. 497 (1993).

Proposed by A. Ranicki

(1) Translate any solution of the Novikov conjecture (for some group π)
into an effective algorithm for deforming a nonsingular quadratic form
over Zπ to a sheaf over Bπ of nonsingular quadratic forms over Z,
i.e., explain “disassembly” algebraically. In other words, construct an
inverse of the assembly map in L-theory on the level of representatives,
starting from the geometry. This would already be of interest for the
case π = Zk free abelian, if it were possible to do this all at once,
without induction on k.

(2) Similarly for the algebraic K-theory Novikov conjecture and K0 of the
group ring. How do you see that projectives are stably free?

(3) Use the automatic structure on hyperbolic groups [CDP, Ch. 12, Théo-
rème 7.1] to extend solutions of word problems to modules and quadrat-
ic forms over the group rings.

(4) Novikov originally wanted to construct a map (algebraically!) from L-
theory to rational homology. Can one obtain a combinatorial formula
for Pontrjagin classes by a constructing a map of spectra from the al-
gebraic L-spectrum of Q to an Eilenberg-MacLane spectrum realizing
the Hirzebruch L-class? Note that there are papers of Connes-Sullivan-
Teleman [CST] and Moscovici and Wu [MW], giving semi-local for-
mulæ for (dual) Pontrjagin classes as explicit Alexander-Spanier cy-
cles, using Lipschitz analysis and cyclic cohomology machinery.

References:

[CDP] M. Coornaert, T. Delzant and A. Papadopoulos, Géométrie et théorie
des groupes: Les groupes hyperboliques de Gromov, Lecture Notes in Math.
1441, Springer-Verlag, Berlin, Heidelberg, New York (1990).

[CST] A. Connes, D. Sullivan and N. Teleman, Formules locales pour les
classes de Pontrjagin topologiques, C. R. Acad. Sci. Paris (Sér. I) 317 (1993),
521–526.

[MW] H. Moscovici and F. Wu, Localization of Pontrjagin classes via finite
propagation speed, C. R. Acad. Sci. Paris (Sér. I) 317 (1993), 661–665.
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Proposed by S. Ferry and S. Weinberger

(1) Let M be a proper metric space, and let C∗(M) be its Roe C∗-algebra
(as defined in [Ro]). Let Lbdd

M ∗(C) be the L-theory of the M -bounded C-
module category of [FP]. Construct an explicit natural transformation
Lbdd

M ∗ → K∗(C∗(M)).4 Use this to prove an analogue of the Kaminker-
Miller Theorem [KM] in the bounded case.

(2) Let π be a group such that Bπ has the homotopy type of a simple
Poincaré complex. The “existence Borel” conjecture for π asserts the
existence of an aspherical compact ANR homology manifold with fun-
damental group π. Is the conjecture true for word hyperbolic groups? A
compact ANR manifold, however, need not have a topological manifold
resolution. A resolution exists if and only if the local index invariant of
Quinn [Q1, Q2] is 1, but there are cases where it is 6= 1 [BFMW]. (See
the paper by Ferry and Pedersen in these proceedings, as well as [W2],
for more information.) But it is hard to construct aspherical examples
with Quinn invariant 6= 1. Is there a word hyperbolic Poincaré duality
group realizing a nontrivial Quinn invariant?

(3) An open n-manifold is called hyperspherical if it admits a proper Lip-
schitz map to Rn (of degree one). Is every uniformly contractible man-
ifold M hyperspherical? (Compare [DFW].)

(4) Is there a Riemannian metric on Rn so that K`f
∗ (Rn) = K̃∗(Sn) →

K∗(C∗(Rn)) fails to be injective? (See the paper by Higson and Roe
in these proceedings for the construction of the map.)

(5) O. Attie has developed a surgery theory for open manifolds with boun-
ded geometry [A1, A2]. A bounded geometry Novikov conjecture would
assert the injectivity of the assembly map in this theory. Is this true
under reasonable hypotheses?

(6) “Uniformly finite” homology groups of a metric space are defined in
[BW]. Is the “uniformly finite” (homology) L-genus L(M) ∈ Huf

0 (M ;
Z) a bounded geometry homotopy invariant?

(7) To what extent are analogues of the Borel and Novikov conjectures
valid in the context of stratified spaces? See the appendix to Chapter
9 of Weinberger’s book [W1] for preliminary results.
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Proposed by M. Rothenberg

(1) Can one do smoothing theory on C∗-algebras? For example, can one
classify “distinct differentiable structures” on C∗-algebras by operator-
theoretic methods?5

5If X is a compact topological manifold, then a differentiable structure on X amounts



72 9 September, 1993

(2) If the answer to (1) is yes, can one attack a relative version (cor-
responding to the non-commutative analogue of compact manifolds
with boundary)?

References:

[C] A. Connes, Noncommutative Geometry, Academic Press, San Diego
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Proposed by J. Rosenberg

(1) There is a known C∗-analogue of the L-theory assembly map, namely
the assembly map in topological K-theory (for the group C∗-algebra).
However, there is no known C∗-analogue of the surgery exact se-
quence, where each homotopy group of the fiber of the assembly map
has a concrete interpretation as a “structure set.” What is the C∗-
analogue of S(M) or of Sbdd(X)? Consider, for example, the case
where M is a simply connected manifold. Then the assembly map
K∗(M) → K∗(C) = KU∗ or KO∗(M) → KO∗ is the map induced by
the “collapse” map M → point. The kernel of the assembly map con-
sists of classes of “generalized elliptic operators” on M with vanishing
index, just as (modulo 2-torsion) the class in the structure set of M
corresponding to a homotopy equivalence h : M ′ → M of manifolds
can be detected by h∗([DM ′ ]) − [DM ], where DM and DM ′ are the
classes of the signature operators of the manifolds. The analogue of
the “structure set” also seems to appear in the problem of classifying
manifolds of positive scalar curvature, where it measures those classes
in KO∗(Bπ) coming from spin manifolds with fundamental group π
admitting positive scalar curvature. Try to give a purely C∗-algebraic
analogue of the structure set6 and an analogue of the surgery sequence
in more general settings.

(2) Can one give a direct operator-theoretic proof of the homotopy in-
variance, in the bounded category, of the image of the signature class
under the C∗-assembly map? This would help in giving a direct C∗-
proof of “bounded Novikov.” (See also the first question of Ferry of
Weinberger, and the second question of Roe).

(3) What are “good” ways to compute “homology” and “cohomology” of

to a choice of a distinguished dense subalgebra C∞(X) of the commutative C∗-algebra
C(X), satisfying certain natural axioms. Connes has proposed studying analogous dense
subalgebras of non-commutative C∗-algebras [C].

6The paper of Higson and Roe in these proceedings constructs a C∗-analogue of the
bounded structure set.
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C∗-algebras?

Proposed by J. Davis

(1) Let Γ be a discrete group. Is there a sense in which all of K̃0(ZΓ) or of
K̃0(QΓ) comes from the torsion subgroups H ⊂ Γ of Γ? (The answer to
this might involve a rather complicated “induction” procedure, since
for example, if Γ is a product of a finite group H with Z, then K−1(ZH)
shows up as a direct summand in K̃0(ZΓ), even if K̃0(ZH) vanishes.)

(2) Is H∗(EΓ/Γ;K(QΓx)) → K∗(QΓ) an isomorphism for a discrete group
Γ? Here EΓ is the proper Γ-space with EΓH ' ∗ if H torsion, EΓH = ∅
otherwise. This is a version of Baum-Connes. Translate the known
geometry of this problem into algebra.

Proposed by J. Roe

(1) Develop an appropriate index theory for manifolds parametrized by

metric spaces,
M
↓
X

. (See the paper by Pedersen, Roe, and Weinberger in

these proceedings.) Develop a good theory to get an analytic signature
signX(M) ∈ K∗(C∗(X)), where C∗(X) is the C∗-completion of the
locally traceable operators over X with bounded propagation.

(2) Given a unital C∗-algebra A, and a proper metric space X, let Lbdd
∗ (X;

A) be the L-theory of the X-bounded A-module category of [FP].
Find a natural transformation Lbdd

∗ (X; A) → K∗(C∗(X;A)) so that
the diagram

H`f
∗ (X;L(A)) A−−−−→ Lbdd

∗ (X; A)
y

y
H`f
∗ (X;K(A)) A−−−−→ K∗(C∗(X;A))

commutes. (Maybe one needs to invert 2.) Here the maps marked A
are the assembly maps. What are the kernels? (On the spectrum level,
what is the fiber of the assembly map? See also the first question posed
by Rosenberg above.) Here, A is an arbitrary C∗-algebra.

(3) Is there a connection between being able to find a “good” compactifica-
tion X of EΓ and being able to find a good dense subalgebra of C∗(Γ)
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consisting of “rapidly decaying” functions? What is the analogue of
the assumption of contractibility of X?

References:

[FP] S. Ferry and E. K. Pedersen, Epsilon surgery theory, in these proceed-
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Proposed by J. Cuntz and M. Puschnigg

For C∗-algebras A given by generators and relations, characterize
classes of dense subalgebras A such that K∗(A) → K∗(A) is an iso-
morphism and cyclic homology of A is “big enough” to relate to cyclic
homology of the C-algebra generated by the generators, independent
of the algebra in the class.

Example: Let A = C(S1), A = Cα(S1) 0 < α ≤ 1. The cyclic homology
fundamental class of C∞(S1) lives in dim 1, but for Aα lives in degree the
smallest odd integer ≥ 1

2α .

Proposed by A. Valette

(1) Let Γ be a finitely generated group. Connes and Moscovici [CM] have
shown that if Γ satisfies the two following conditions (PC) and (RD)
(with respect to some word length function L on Γ), then the Strong
Novikov conjecture (injectivity of the assembly map for the group C∗-
algebra) holds for Γ:

(PC) (Polynomial cohomology) Any element in H∗(Γ,C) can be represented
by a cocycle with polynomial growth.

(RD) (Rapid decay) There exist constants C > 0, r ≥ 0 such that for any
f ∈ CΓ: ‖λ(f)‖ ≤ C‖f(1 + L)r‖2, where ‖λ(f)‖ is the operator norm
of the operator of left convolution by f on `2(Γ).

We shall focus here on (RD), which is relevant for some problems in
harmonic analysis (see [JoV]). The following is known:
• Any hyperbolic group has (RD) (see [Har], [JoV] for proofs).
• For n ≥ 3, Sln(Z) does not have (RD) (see [Jol]).

Conjecture: If Γ acts properly, cocompactly either on a Riemannian sym-
metric space or on an affine building, then Γ has (RD).
(2) Is RD a quasi-isometry invariant?
(3) (Connes) Suppose there is on Γ a conditionally negative-type function
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φ (i.e.,

φ(g) = ‖α(g)ξ − ξ‖2

for some affine isometric action α of Γ on a Hilbert space) such that
e−tφ is integrable for t big. Is Γ K-amenable?

(4) What is the relationship between uniformly bounded representations
and uniform embedding in a Hilbert space?

References:
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Proposed by S. Hurder

(1) Is there a discrete group Γ with a classifying space BΓ whose universal
cover EΓ admits a good compactification, but not a good Γ-invariant
compactification?

(2) Is there a discrete group Γ with a classifying space BΓ whose universal
cover EΓ has a good compactification, but not a Z-compactification in
the sense of Bestvina-Mess [BM]? (In other words, is it always possible
to arrange for the compactification EΓ of EΓ to have a one-parameter
family ht of self-maps with h0 = id, ht(EΓ) ⊂ EΓ for t > 0?) The
outer automorphism group of a free group is a potential candidate.

References:

[BM] M. Bestvina and G. Mess, The boundary of negatively curved groups,
J. Amer. Math. Soc. 4 (1991), 469–481.

Proposed by F. Connolly

(1) Let Γ be a uniform lattice in a Lie group. Assume Ĥ∗(Γ;Z) is periodic,
but Γ contains no finite dihedral subgroup. Is there a compact M such
that Γ = π1(M) and M̃ = Rm × Sn−1?
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(2) If G is finitely presented and VFL (having a subgroup H of finite index
for which the trivial ZH-module Z has a finite free ZH-resolution)
without elements of order 2, let ε : ZG → F2 be the augmentation,
mod 2. Is ε∗ : UNilhn(ZG; ZG,ZG) → UNiln(Z; Z,Z) an isomorphism
∀n, i.e., are the Connolly-Koźniewski Arf invariants the only splitting
obstructions?

(3) Is 2 · UNilh2n(H;G1, G−1) = 0 for any three finitely presented groups
G1, G−1, and H, where G−1 ⊃ H ⊂ G1?

(4) Let Γ be an arithmetic subgroup of a linear semi-simple Lie group G
with maximal compact subgroup K. Let M be a locally flat Γ manifold.
Let f : M → G/K be a stratified proper Γ-homotopy equivalence.
Assume f is a topologically simple homotopy equivalence. Does the
stratified space Γ\M compactify and Γ\f extend to a simple homotopy
equivalence Γ\f :

(
Γ\M,∂

)
→ (Γ\G/K, ∂), where Γ\G/K denotes

the compactification of (Γ\G/K) due to Borel and Serre [BS]?
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[BS] A. Borel and J.-P. Serre, Corners and arithmetic groups, Comment.
Math. Helv. 48 (1973), 436–491.
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Proposed by T. Koźniewski

Waldhausen [W] defined his Nil groups as K-groups of a category with
endomorphisms. Which endomorphisms represent 0 in the Nil group?
In the usual Nil groups, these are stably triangular. What happens in
fancier Nil groups?

References:

[W] F. Waldhausen, Algebraic K-theory of generalized free products, Ann.
of Math. 108 (1978), 135–256.

Proposed by M. Yan

How does one get the rational symmetric signature of a manifold out
of the de Rham complex of the covering space? The hope would be to
construct an algebraic recipe. Is the real symmetric signature easier?
This is another algorithmic question.
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Proposed by E. Pedersen

How is the C∗-algebra of a foliation related to foliated control? What
are the C∗-analogues of Farrell-Jones type arguments (as in [FJ1,
FJ2])? One may have to extend the foliated theory to an asymptotic
theory. Then one should use this to prove Borel-type isomorphism
results.
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Proposed by B. Williams

(1) Given a fiber bundle
F → E

↓
B

with compact finitely dominated

fiber, are there transfer maps Kn(Zπ1(B)) → Kn(Zπ1(E)) for all n
analogous to the ones for n = 0, 1 and in A-theory? Such a transfer
should be compatible with the A-theory transfer.

(2) If we replace Zπ1(B) by a suitable C∗-algebra, is there an analogous
transfer?

Proposed by W. Lück

(1) There is a paper of Peter Linnell [L] where he proves for a certain class
of groups Γ that there is a division ring D satisfying

CΓ ⊂ D ⊂ U(Γ)

where U(Γ) is the algebra of operators affiliated to the von Neumann
algebra. This implies in particular the zero-divisor conjecture. Can this
be generalized to other torsion-free groups?

(2) Does the isomorphism conjecture for algebraic K-theory imply the
rationality of L2-Betti numbers of compact manifolds and the zero-
divisors conjecture? (The paper of Gromov in these proceedings is
relevant here.)
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(3) (proposed jointly with R. Jung) The elliptic homology E``∗(X) is
obtained [KS] from Ω∗(X) by dividing out CP2-bundles over zero-
bordant bases and then inverting the class of CP2. By composing the
map from oriented bordism to symmetric L-theory given by the sym-
metric signature and the map from symmetric L-theory to quadratic
L-theory given by crossing with a simply connected surgery problem
realizing signature 8, one obtains a natural transformation

s : E``∗(M)[ 12 ] → L∗(Zπ1(M))[ 12 ].

(This is well-defined using, say, the results of [LR].) The map s factors
through the assembly map A as

E``∗(M)[12 ] → H∗(M, L(Z)[ 12 ]) A−→ L∗(Zπ1(M))[ 12 ],

and Rainer Jung has shown that the first map is an isomorphism. Thus
the injectivity of A (after inverting 2) is equivalent to asking how much
of E``∗(Bπ) can be detected by symmetric signatures. Does this shed
any new light on the Novikov conjecture? Does the class of an oriented
manifold in E``∗(Bπ) only depend on its oriented homotopy type?
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On the Steenrod homology theory

John Milnor

In 1940 Steenrod defined homology groups for compact metric spaces
based on “regular cycles”. (See Steenrod [13], [14]). The object of this note
is to give an axiomatic characterization of Steenrod’s homology theory.∗

It is assumed that the reader is familiar with Eilenberg and Steenrod [4],
Foundations of Algebraic Topology.

Let ACM denote the category of compact metric pairs and continuous
maps. Let G be an abelian group, and let p be a point.
Main Theorem. There exists one and only one homology theory∗∗ on ACM

(up to natural equivalence) which satisfies the following two Axioms as well
as the seven Eilenberg-Steenrod Axioms and which satisfies H0(p) = G.

The new axioms are:
Axiom 8. Invariance under relative homeomorphism.
Axiom 9. (Cluster Axiom.) If X is the union of countable many compact
subsets X1, X2, · · · which intersect pairwise at a single point b, and which
have diameters tending to zero; then Hq(X, b) is naturally isomorphic to the
direct product of the groups Hq(Xi, b).

Precise statements will be given in §1.
The Čech homology theory satisfies all of these axioms except number 4,

the Exactness Axiom. In fact, Axioms 1,2,3 and 5 through 8 are proved by
Eilenberg and Steenrod, while Axiom 9 follows easily from the continuity
property of the Čech theory. (See [4, Chapters IX,X]).

Actually, for a wide variety of coefficient groups G, the Čech homology
theory is exact; and therefore coincides with the Steenrod homology theory.
This is the case if G is infinitely divisible, or has finite exponent, or can
be topologized as a compact group. (For G compact this is proved in [4,
pg. 248]. The other cases follow since every infinitely divisible group can be
imbedded as a direct summand of a torus S1 × S1 × · · · ; while every group
with finite exponent can be imbedded as a direct summand of a direct
product of finite groups.)

This paper was originally issued in the form of mimeographed notes at Berkeley, 1961.
∗ We will work with non-reduced homology theory, although Steenrod defined only

reduced homology groups. Furthermore we will shift homology dimension indices by 1.
∗∗ Such a theory is constructed on the category AC of all compact pairs. However, the

uniqueness proof only works in the subcategory ACM . A similar homology theory has

been defined by Borel and Moore [2].
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The singular homology theory does not satisfy either Axiom 8 or Ax-
iom 9. As an example, it is shown in [1] that the singular homology group
H3(S2∨S2∨· · · ;Z) of an infinite cluster of 2-spheres with diameter tending
to zero is non-trivial.

Analogous axioms for cohomology theory are formulated in §3. It turns
out that these axioms uniquely characterize the Čech cohomology theory.

An important tool in working with Steenrod homology groups is a modi-
fied form of the Continuity Axiom, which involves not only the inverse limit
operation (as in the usual Continuity Axiom) but also the first derived func-
tor of inverse limit. (See Theorem 4.) This first derived functor has been
studied by Yeh [15]. Higher derived functors of the inverse limit functor are
defined in an Appendix, but the more general construction is not needed
for this paper.

It is natural to ask whether Steenrod homology groups can be defined
for a wider variety of spaces. Sitnikov [10], [11] has proposed a definition for
metric spaces which amounts to the following.

Define the Steenrod-Sitnikov homology groups of a metric pair (X,
X ′) to be the direct limit of the Steenrod homology groups of all compact
pairs (C,C ′) contained in (X, X ′). That is, define

Hq(X, X ′; G) = lim−→Hq(C,C ′; G) .

More generally, this definition makes sense whenever X is a Hausdorff space.
It is easily verified that this homology theory satisfies the Eilenberg-

Steenrod axioms, including a strong version of the Excision Axiom. (Com-
pare [4, pg. 255].) Another useful property is the following:
Assertion. Every exact coefficient sequence 0−−→G′−−→G−−→G′′−−→0 gives
rise to an exact sequence of Steenrod-Sitnikov homology groups
· · · −−→Hq(X; G′)−−→Hq(X; G)−−→Hq(X; G′′)−−→Hq−1(X; G′)−−→ · · · .

This can be proved using the techniques of §1 or §4. The analogous state-
ment for Čech homology would be false. As a final argument in favor of the
Steenrod-Sitnikov theory we mention the following:
Sitnikov duality theorem. If A is an arbitrary subset of the sphere Sn+1

then for 0 < q < n the Steenrod-Sitnikov homology group Hq(A; G) is iso-
morphic to the Čech cohomology group Hn−q(Sn+1 −A;G).

(For A compact this theorem was proved by Steenrod [13]. A proof is
outlined in §1. The more general case follows using the definition

Hq(A) = lim−→Hq(C) ;

together with the following lemma, due to Sitnikov: The Čech cohomology
group of an arbitrary subset of Euclidean space is equal to the direct limit
of the Čech cohomology groups of its open neighborhoods.)
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§1. The Uniqueness Theorem

Let ACM denote the category of all compact metric pairs, and all con-
tinuous maps between such pairs. Assume that a homology theory is given
on ACM so as to satisfy the seven Eilenberg-Steenrod axioms, as well as the
following two.
Axiom 8. If f : (X, X ′)−−→(Y, Y ′) is a map in ACM which carries X−X ′

homeomorphically onto Y − Y ′, then

f∗ : Hq(X, X ′) −−→ Hq(Y, Y ′)

is an isomorphism.
(This is a strengthened form of the Excision Axiom, number 6.)

Axiom 9. Suppose that the compact metric space X is the union of compact
subsets X1, X2, · · · with diameters tending to zero and suppose that Xi∩Xj =
{b} for i 6= j. Let

ri : (X, b) −−→ (Xi, b)

denote the unique retraction which carries Xj into the base point b for j 6= i.
Then the correspondence

u −−→ ((r1)∗(u), (r2)∗(u), · · ·)
defines an isomorphism of Hq(X, b) onto the direct product of the groups
Hq(Xi, b).

These two axioms can be formulated in a different way, using the lo-
cally compact homology theory associated with H∗. (See [4, pg.271]). Given
any locally compact space Y let Y • = Y ∪ ω denote the one-point com-
pactification of Y . If Y • is metrizable, define the group HLF

q (Y ) to be
equal to Hq(Y •, ω). Here the ‘LF’ is supposed to suggest a theory based
on locally finite chains. (More generally, if Y1 is a closed subset, define
HLF

q (Y, Y1) = Hq(Y •, Y •
1 ).) With this notation we can reformulate as fol-

lows.
Axiom 8LF. For any compact metric pair (X,X ′) the natural homomor-
phism

Hq(X, X ′) −−→ HLF
q (X −X ′)

is an isomorphism.
Axiom 9LF. If Y is the disjoint union of open subsets Y1, Y2, · · ·, then
HLF

q (Y ) is naturally isomorphic to the direct products of the groups HLF
q (Yi).

These are clearly equivalent to Axioms 8 and 9 respectively.
Given any star-finite cell complex K let Cinf

q (K;G) denote the q-th chain
group of K based on infinite chains, with coefficients in G = H0(p). Let |K|
denote the underlying topological space.
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Theorem 1. If K is a countable, locally finite CW complex then HLF
q (|K|)

is naturally isomorphic to the q-th homology group of the chain complex
Cinf
∗ (K; G). A corresponding assertion holds for pairs (K, L).
For the moment we will only be able to give the proof for the special case

in which K is finite dimensional.
Let Kn denote the n-skeleton of K. The difference |Kn| − |Kn−1| is a

disjoint union of n-cells. hence, using Axiom 9LF, it follows that

HLF
q (|Kn|, |Kn−1|) = HLF

q (|Kn| − |Kn−1|)

is zero for q 6= n, and is isomorphic to Cinf
n (K; G) for q = n. (That is, this

group is a direct product of copies of G, one copy for each oriented n-cell.)
Assertion. The boundary operator

∂ : HLF
n (|Kn|, |Kn−1|) −−→ HLF

n−1(|Kn−1|, |Kn−2|)
corresponds under this isomorphism to the usual boundary operator in
Cinf
∗ (K; G), based on incidence numbers between oriented cells.
We will assume that this assertion is known for the case of a finite CW

complex. The more general assertion then follows easily, using the fact that
every cell is contained in a finite subcomplex.
Lemma 1. The group HLF

q (|Kn|) is isomorphic to Hq(C
inf
∗ (K;G)) for n >

q.
This is proved by induction on n. The appropriate induction hypothesis

is that:

HLF
q (|Kn|) =





0 for q > n

Zq(C
inf
∗ (K;G)) for q = n,

Hq(C
inf
∗ (K;G)) for q < n.

This is certainly satisfied for n = 0. Assuming that it is true for n− 1, and
considering the exact sequence of the pair (|Kn|, |Kn−1|) we obtain a proof
for the given integer n.

If K is finite dimensional, then this completes the proof of Theorem 1.
The proof in the general case will be given in §2.

(As a corollary to Theorem 1 we have the Steenrod duality theorem.
Let X be a compact subset of Sn+1. Then Sn+1−X is the underlying space
of a simplicial complex K. Thus

Hq(X) ∼= Hq+1(Sn+1, X) ∼= Hq+1(Cinf
∗ (K; G))

for 0 < q < n. But a standard argument shows that the (q +1)-st homology
group of K based on infinite chains is isomorphic to Hn−q(C∗(K;G)), the
usual cohomology group based on infinite cochains. This is isomorphic to
the (n− q)-th singular or Čech cohomology group of Sn+1 −X.)



On the Steenrod homology theory 83

Theorem 2. Any compact metric pair (X, X ′) can be imbedded in a compact
metric pair (T, T ′) so that
(1) T and T ′ are contractible, and
(2) T −X is the underlying space of a CW complex with subcomplex T ′−

X ′.
Furthermore, any map f : (X, X ′)−−→(X1, X

′
1) can be extended to a map

f : (T, T ′)−−→(T1, T
′
1), which carries the subset T −X into T1 −X1.

The proof will be based on the idea of the “fundamental complex” of a
compact metric space. (Lefschetz [6]). To simplify the notation, consider a
single space X instead of a pair. For any finite open covering α of X the
nerve will be denoted by Xα and the open sets in the covering by αv. Let
β be a refinement of α. A map

p : |Xβ | −−→ |Xα|
will be called a projection if p maps simplexes linearly into simplexes; and if,
for each vertex w of |Xβ |, the image p(w) is a linear combination of vertices
v for which αv ⊃ βw. The basic properties of this concept are:
(1) Projections from |Xβ | to |Xα| exist and any two such projections are

homotopic.
(2) The composition of two projections |Xγ |−−→|Xβ |−−→|Xα| is again a

projection.
Let α(1), α(2), · · · be a sequence of coverings of X with mesh tending to

zero such that each α(i + 1) is a refinement of α(i). Let α(0) denote the
trivial covering consisting of a single set. The abbreviation Xi will be used
for the underlying space Xα(i). Choose projections pi : Xi+1−−→Xi and let
Mi denote the mapping cylinder of pi. We will assume that these mapping
cylinders are disjoint, except that Mi ∩ Mi−1 is equal to Xi. Hence the
infinite union

F = M0 ∪M1 ∪M2 ∪ · · ·
is a well defined locally compact space.
Definition. F is called a fundamental complex for X.

The finite union M0 ∪ M1 ∪ · · · ∪ Mi−1 will be denoted by Fi; and the
base point X0 by F0. Note that F is contractible. This follows since each Fi

is a deformation retract of Fi+1.
Assertion. F is the underlying space of a CW complex.
Proof. The linearity property of pi guarantees that each pi is a cellular map
from Xi+1 to some subdivision of Xi. It follows that Mi is the underlying
space of a CW complex. Now by subdividing the subcomplex Xi+1 of Mi

we can make the CW structure of Mi compatible with that of Mi+1. Hence
the union F has a compatible CW structure.

The fundamental complex F can be “compactified” as follows. Let ri :
Fi+1−−→Fi denote the canonical retraction, and define T as the inverse limit
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of the sequence

F0

r0←−− F1

r1←−− F2

r2←−− · · · .

It is clear that F is imbedded as a dense open subset of T , and that T − F
can be identified with the inverse limit of the sequence

X0

p0←−− X1

p1←−− X2

p2←−− · · · .

Note that T is contractible. A contraction c : T × [0, 1]−−→T is defined
as follows. Let c(t, 0) = t and let c(t, 1/n) denote the image of t under the
projection map T−−→Fn−1 ⊂ T . The deformation retraction of Fn onto

Fn−1 is used to define c(t, u) for
1

n + 1
≤ u ≤ 1

n
. Continuity as u → 0 is

easily verified.
Definition. The sequence of coverings α(i) and projections pi will be called
convergent if:
Condition 1. The mesh of α(i) tends to zero as i →∞, and:
Condition 2. For each i and each ε > 0 there exists j = j(i, ε) so that the
composition

pipi+1 · · · pj−1 : Xj −−→ Xi

carries each simplex into a set of diameter less than ε.
Lemma 2. There exists a convergent sequence of coverings α(i) and pro-
jections pi. If the sequence is convergent then X can be identified with the
inverse limit of the sequence X0

p0←−−X1

p1←−− · · · .

The proof is not difficult. This Lemma, together with the preceding dis-
cussion proves the first part of Theorem 2. The extension to a pair of spaces
is straightforward.

Now consider a map f : X−−→Y . Let {α(i), pi} be a convergent sequence
for X with fundamental complex F (X), and let {β(i), qi} be a convergent
sequence for Y with fundamental complex F (Y ). First suppose that each
α(i) happens to be a refinement of the induced covering f−1β(i). Let

si : Xi −−→ |Xf−1β(i)| ⊂ Yi

be a projection map. Since both sipi and qisi+1 are projection maps, it
follows that they are canonically homotopic. In fact for each x ∈ Xi+1 the
two images sipi(x) and qisi+1(x) lie in a common simplex of Yi.

Extend si and si+1 to a map s′i : M(pi)−−→M(qi) as follows. For each
x ∈ Xi+1 the line segment joining x to pi(x) in M(pi) should map into the
broken line segment joining si+1(x) to qisi+1(x) to sipi(x). Piecing these
maps s′i together we obtain a map s : F (X)−−→F (Y ).
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Next we will prove that s extends to a map T (X)−−→T (Y ). For each
i ≤ j ≤ k consider the diagram

T (X) wr Fk(X) wr′

u
s

Fj(X)

u
s

Fk(Y ) wr′′ Fj(Y ) wr′′′ Fi(Y )

where r, r′, r′′, r′′′ denote canonical retractions. This diagram is “almost”
commutative in the following sense. For each x ∈ Fk(X) the two images
sr′(x) and r′′s(x) are either equal, or lie in a common simplex of Yj .

Now if j ≥ j(i, ε) so that r′′′ carries each simplex of Yj into a set of diam-
eter < ε in Yi, it follows that the two composite maps T (X)−−→Fi(Y ) are
ε-homotopic. Letting j and k tend to infinity, it follows that these composite
maps tend uniformly to a limit

fi : T (X) −−→ Fi(Y ) .

Since each diagram
T (X) wfi

A
A
A
AACfi−1

Fi(Y )

u
Fi−1(Y )

is commutative, it follows that the fi define a map f : T (X)−−→T (Y ). It is
easily verified that f |X = f , f |F (X) = s.

Now consider the more general case where α(i) is not assumed to be a
refinement of f−1β(i). For each i it is still possible to choose j = ji so that
α(ji) is a refinement of f−1β(i). Let T ′(X) denote the compactified fun-
damental complex corresponding to the sequence of coverings α(0), α(j1),
α(j2), · · · and the composite projections p0 · · · pj1−1 · · · . Then it is not diffi-
cult to extend the identity map of X to a map T (X)−−→T ′(X). The above
argument then constructs a map T ′(X)−−→T (Y ).

Again the relative case presents no new difficulty. This completes the
proof of Theorem 2.

Still assuming Theorem 1, we can now prove the Uniqueness Theorem.
Theorem 3. Given two homology theories H and H on the category ACM ,
both satisfying the nine axioms, any coefficient isomorphism H0(b) ∼= H0(b)∼= G extends uniquely to an equivalence e between the two homology theories.
Proof. First consider the case of a single space X. Let t0 = F0 denote the
base point of T . The symbol + will denote topological sum. From the exact
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sequence of the triple (T, X + t0, t0) we see that Hq(X) = Hq(X + t0, t0)
is isomorphic to Hq+1(T, X + t0) = HLF

q+1(T − X, t0). Now T − X is the
underlying space of a CW complex K, hence this last group is isomorphic
to Hq+1C

inf
∗ (K, t0;G). Similar isomorphisms can be constructed for the

homology theory H. Define e as the composite isomorphism

Hq(X) −−→ Hq+1C
inf
∗ (K, t0; G) −−→ Hq(X) .

Using the last part of Theorem 2 it can be verified that e is natural with
respect to mappings. That is, any map f : X−−→Y induces a commutative
diagram

Hq(X) we

u

Hq(X)

u
Hq(Y ) we Hq(Y ) .

It follows that e does not depend on the choice of T .
The proof for a pair (X, X ′) is similar, making use of isomorphisms

Hq(X, X ′) ∼= Hq(X ∪ T ′, T ′) ∼= Hq+1(T, X ∪ T ′)

∼= HLF
q+1(T −X, T ′ −X ′) ∼= Hq+1C

inf
∗ (K, L; G) .

Since e clearly commutes with the boundary homomorphisms

∂ : Hq(X,X ′) −−→ Hq−1(X ′)

this completes the argument.

§2. A continuity property of the Steenrod homology

Again let H be a homology theory satisfying the nine axioms. The object
of this section is to show that H satisfies a modified form of the Continuity
Axiom. (See [4, pg. 260].) This fact will be used to complete the proof of
Theorem 1, and hence of Theorem 3.

It is first necessary to describe the first derived functor of the inverse
limit functor.

Let A1←−−A2←−−A3←−−· · · be an inverse system of abelian groups; briefly
denoted by {Ai}. A homomorphism

h : {Ai} −−→ {Bi}
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will mean a sequence of homomorphisms hi : Ai−−→Bi such that each square

Ai

u
hi

Ai+1u

u
hi+1

Bi Bi+1u

is commutative. The inverse limit functor L assigns to each inverse sequence
{Ai} a group L(Ai), and to each homomorphism h : {Ai}−−→{Bi} a homo-
morphism Lh : L{Ai}−−→L{Bi}.

Both L and its first derived functor L′ can be obtained from the following
construction, which was communicated to the author by Steenrod.

Let Π denote the direct product of the groups Ai and define d : Π−−→Π
by

d(a1, a2, a3, · · ·) = (a1 − p1a2, a2 − p2a3, a3 − p3a4, · · ·) ,

where pi : Ai+1−−→Ai denotes the projection homomorphism. Define L{Ai}
as the kernel of d (this clearly coincides with the usual definition); and
define L′{Ai} as the cokernel Π/dΠ.

The two important properties of the derived functor L′ are:
(1) If each projection pi : Ai+1−−→Ai is an epimorphism, then L′{Ai} = 0.
(2) Every exact sequence 0−−→{Ai}−−→{Bi}−−→{Ci}−−→0 gives rise to an

exact sequence

0 −−→ L{Ai} −−→ L{Bi} −−→ L{Ci}
−−→ L′{Ai} −−→ L′{Bi} −−→ L′{Ci} −−→ 0 .

Proofs are easily supplied.
Theorem 4. Let H be a homology theory satisfying the nine axioms, and
let X1←−−X2←−−X3←−−· · · be an inverse system of compact metric spaces
with inverse limit X. Then there is an exact sequence

0 −−→ L′{Hq+1(Xi)} −−→ Hq(X) −−→ L{Hq(Xi)} −−→ 0

for each integer q. A corresponding assertion holds if each space is replaced
by a pair.

The proof will be based on a construction similar to that used in the proof
of Theorem 2. Let Mi denote the mapping cylinder of the map Xi+1−−→Xi,
and let M0 be the cone over X1 with vertex t0. Then the union

F = M0 ∪M1 ∪ · · ·
can be imbedded in a contractible compact metric space T with T −F = X.
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Using the homology sequence of the triple (T, X + t0, t0) it is seen that

Hq(X) ∼= Hq(X + t0, t0) ∼= Hq+1(T, X + t0) ∼= HLF
q+1(F − t0) .

(The symbol + denotes topological sum.)
Let F1 denote the union M1 +M3 +M5 + · · · and let F0 denote the union

(M0 − t0) + M2 + M4 + · · · . Thus:

F0 ∪ F1 = F − t0 , and F0 ∩ F1 = X1 + X2 + · · · .

Note that:

HLF
q (Mi) = Hq(Mi) = Hq(Xi) , and HLF

q (M0 − t0) = 0 .

Now consider the Mayer-Vietoris sequence of the triad (F − t0;F0, F1),
using the homology theory HLF. The group HLF

q (F0 ∩ F1) is isomorphic to
the direct product

Πq = Hq(X1)×Hq(X2)× · · · ;

and the direct sum HLF
q (F0) ⊕ HLF

q (F1) is isomorphic to this same direct
product. Thus the Mayer-Vietoris sequence reduces to:

· · · −−→ Πq+1

ψ−−→ Πq+1 −−→ Hq(X) −−→ Πq

ψ−−→ Πq −−→ · · · .

The homomorphism ψ can easily be computed. It turns out that

ψ(a1, a2, · · ·) = (−a1 − p1∗a2, a2 + p2∗a3,−a3 − p3∗a4, · · ·) .

Perform an automorphism on the domain of ψ as follows: replace each ai

by (−1)iai. This has the effect of replacing ψ by d, where

d(a1, a2, · · ·) = (a1 − p1∗a2, a2 − p2∗a3, · · ·) .

Thus the cokernel of dq+1 is equal to L′{Hq+1(Xi)} and the kernel of dq is
L{HqXi}. Hence the Mayer-Vietoris sequence reduces to

0 −−→ L′{Hq+1(Xi)} −−→ Hq(X) −−→ L{Hq(Xi)} −−→ 0

as required.
This can be generalized to pairs (Xi, X

′
i) as follows. Using the Relative

Homeomorphism Axiom, it is sufficient to consider the case where X ′
i is a

single point xi. But there is a canonical direct sum decomposition

Hq(X) = Hq(X, x)⊕Hq(x) .
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Since Theorem 4 is known for single spaces, it follows easily for pairs; which
completes the proof.
Proof of Theorem 1, concluded. Let X be the underlying space of a
countable, locally finite CW complex, with n-skeleton Y . For n > q + 1 we
will prove that the inclusion homomorphism

HLF
q (Y ) −−→ HLF

q (X)

is an isomorphism. The corresponding assertion for a pair of CW complexes
then follows from the Five Lemma. This will clearly complete the proof of
Theorem 1.

Let N1 ⊃ N2 ⊃ · · · be a sequence of “neighborhoods of infinity” in X.
Assume that
(1) each Ni is the underlying space of a subcomplex,
(2) each X −Ni contains only finitely many cells, and
(3) ∩Ni is vacuous.

Then the one-point compactification (X ∪ ω, Y ∪ ω) is the inverse limit of
the sequence (X ∪ ω, Y ∪Ni ∪ ω). Hence Theorem 4 can be applied.

But the groups

Hq(X ∪ ω, Y ∪Ni ∪ ω) = HLF
q (X,Y ∪Ni)

are zero for q ≤ n. This follows directly from the portion of Theorem 1
which has already been proved, since X − (Y ∪Ni) is contained in a finite
subcomplex of X, and contains no cells of dimension ≤ n.

Applying Theorem 4 it follows that HLF
q (X,Y ) = 0 for q + 1 ≤ n; and

hence that
HLF

q (Y ) ∼= HLF
q (X)

for q+1 < n. This completes the proof of Theorem 1, and hence of Theorem
3.

§3. Axioms for cohomology

Consider analogous axioms for a cohomology theory on the category ACM

of compact metric pairs. That is, consider the seven Eilenberg-Steenrod
axioms together with:
Axiom 8c. Invariance under relative homeomorphism.
Axiom 9c. The cohomology group Hq(X1 ∨ X2 ∨ · · · , b) of a cluster is
naturally isomorphic to the direct sum of the groups Hq(Xi, b).
Assertion. The Čech cohomology theory satisfies these nine cohomology
axioms. Any other cohomology theory on the category ACM which satisfies
these axioms is naturally isomorphic to the Čech theory.
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Proof. The Čech cohomology theory satisfies all nine axioms, since 8c and
9c are easy consequences of the continuity property of the Čech groups.

In order to prove uniqueness it is sufficient to prove the following conti-
nuity theorem:
Theorem 4c. If X is the inverse limit of an inverse sequence of compact
spaces Xi then HqX is the direct limit of the groups HqXi.

This is proved by an argument similar to that in §2. No derived functors
of direct limits come in, since the direct limit functor is exact.

Theorem 1 can also be dualized. In this case the appropriate statement
is:
Theorem 1c. If K is a locally finite CW complex then H∗(|K| ∪ ω, ω) is
isomorphic to the cohomology ring of the formal complex K based on finite
cochains.

§4. Construction of a homology theory

This section will construct a homology theory on the category AC of all
compact pairs and continuous maps. It will first be shown that the Čech co-
homology groups of a compact space X can be obtained from a free cochain
complex C

∗
X. The desired homology groups Hq(X; G) are then obtained

as the homology groups of the dual chain complex Hom(C
∗
X, G).

Let Sm denote the m-sphere with base point b. For any compact pair
(X,A) let Fm(X, A) denote the function space consisting of all maps

(X, A) −−→ (Sm, b) .

The symbol b will also be used for the constant map, considered as base
point in Fm(X,A). Integer coefficients are to be understood.
Theorem of Moore [9]. There is a canonical homomorphism

φ : Hq(Fm(X, A), b) −−→ Hm−q(X, A)

using singular homology and Čech cohomology groups. If X has finite cov-
ering dimension k, then φ is an isomorphism for q < 2(m− k).
Proof. As Moore remarks, it is sufficient to consider the case when (X, A)
is a triangulable pair. (See Mardešić [8, pg. 221] together with Mardešić
[7, Theorem 6].) First suppose that X is connected, and that A is non-
vacuous. If q ≥ 0 and k < m the assertion follows from [9, Theorem 4].
(Moore excluded the case q = 0 since he worked with the group HqF

m(X, A),
without base point.) If q < 0 or k ≥ m the assertion is trivial, since both
groups are zero. The case A vacuous follows, using [9, pg. 187]. Now if X is
disconnected then (X,A) splits into a topological sum and Fm(X, A) splits
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into a cartesian product. Using the Künneth theorem, the proof can be
completed.

This result can be extended to arbitrary compact pairs as follows. Let S
stand for the reduced suspension operation, and identify the sphere Sm+1

with SSm. Then there is a canonical imbedding

SFm(X,A) ⊂ Fm+1(X,A) ,

and hence a canonical homomorphism

Hm−q(Fm(X,A), b) −−→ Hm+1−q(Fm+1(X,A), b) .

Lemma 3. The direct limit of the singular groups Hm−q(Fm(X,A), b) as
m tends to infinity is canonically isomorphic to the Čech cohomology groups
Hq(X, A), for any compact pair (X,A).
Proof. For X finite dimensional this follows from Moore’s result, since the
homomorphism φ as defined by Moore commutes up to sign with the suspen-
sion homomorphism. In particular, this is the case if (X, A) is triangulable.

Now consider an inverse system of triangulable pairs (Xu, Au) with in-
verse limit (X, A). According to Mardešić [7] we have

H∗Fm(X, A) ∼= lim−→
u

H∗Fm(Xu, Au) .

Therefore

lim−→
m

Hm−q(Fm(X, A), b) ∼= lim−→
m

lim−→
u

Hm−q(Fm(Xu, Au), b)

∼= lim−→
u

lim−→
m

Hm−q(Fm(Xu, Au), b)

∼= lim−→
u

Hq(Xu, Au) ∼= Hq(X, A) .

This completes the proof of Lemma 3.
For any compact space X we will construct a free cochain complex C

∗
X

such that the homology of this cochain complex is just the Čech cohomology
of X.

First observe that there is a canonical imbedding of the singular chain
group Ck(Y, b) into the singular chain group Ck+1(SY, b) of the suspension.[

Given a map f from the standard k-simplex ∆k into Y , extend to the map
f ∗ (identity) of the join ∆k+1 = ∆k ∗ v into the join Y ∗ v, and then project
into

SY = Y ∗ v/(Y ∪ (b ∗ v)) .
]

Hence there is a canonical imbedding

Cm−q(FmX, B) ⊂ Cm+1−q(Fm+1X, b) .
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Define
C

q
X = lim−→

m

Cm−q(FmX, b)

to be the union of these groups. (Caution: q can be positive or negative). It
is clear that:
(1) C

∗
X is a contravariant functor of X,

(2) each C
q
X is a free abelian group, and

(3) Hq(C
∗
X) is isomorphic to the Čech group HqX.

In particular, this cohomology group is zero for q < 0.
This construction extends to a pair (X, A) as follows :

Lemma 4. For a compact pair (X, A), the natural homomorphism C
q
X−−→

C
q
A is onto. Defining C

q
(X, A) as the kernel of this homomorphism, the

groups HqC
∗
(X,A) are canonically isomorphic to the Čech cohomology

groups of (X, A).
Proof. Any generator of C

q
A is given by a map f : ∆m−q × A−−→Sm.

This is identified with the generator corresponding to a certain map f ′ :
∆m+1−q×A−−→Sm+1. It is easily seen that f ′ is null-homotopic, and hence
can be extended to a map ∆m+1−q ×X−−→Sm+1. Thus every generator of
C

q
A comes from a generator of C

q
X.

To prove the second assertion, note that lim−→
m

Cm−q(Fm(X, A), b) is imbed-

ded as a subgroup of C
q
(X,A). It follows from Lemma 3 that this first chain

complex has homology isomorphic to the Čech cohomology of (X, A). We
must show that the inclusion map induces an isomorphism of homology. But
each homology group fits into an exact sequence:

Hq−1X w

u
∼=

Hq−1A w

u
∼=

Hq(X, A) w

u

HqX w

u
∼=

HqA

u
∼=

Hq−1X w Hq−1A w HqC
∗
(X,A) w HqX w HqA

and it can be verified that the resulting diagram is commutative. Using the
Five Lemma, this completes the proof.
Definition. For any compact pair (X, A) define

Cq(X,A; G) = Hom(C
q
(X,A), G) .

The homology groups of this chain complex will be denoted by Hq(X,A; G),
and called the Steenrod homology groups of (X,A).

Since C
∗

is a free cochain complex we clearly have the following. (See
Eilenberg and MacLane [3, pg. 824].)
Lemma 5. The homology theory H is related to Čech cohomology theory by
a split exact sequence

0−−→ Ext(Hq+1(X, A); G)−−→Hq(X, A; G)−−→Hom(Hq(X, A); G)−−→ 0 .
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Theorem 5. The homology theory H, defined on the category AC of compact
pairs, satisfies the nine axioms of §1.
Proof. For any compact pair (X, A) we have a short exact sequence

0 −−→ Cq(A; G) −−→ Cq(X;G) −−→ Cq(X, A; G) −−→ 0

and therefore an infinite exact sequence of homology groups. Thus Axioms
1,2,3,4 can be verified.

Any map f : (X, A)−−→(Y,B) induces a homomorphism from the exact
sequence of Lemma 5 for the pair (X, A) to the corresponding exact sequence
for (Y, B). Hence if f induces an isomorphism of Čech cohomology groups
it follows that

f∗ : Hq(X,A; G) −−→ Hq(Y, B; G)

is an isomorphism.
In particular this argument applies to the inclusion maps

i0 and i1 : (X,A) −−→ (X × [0, 1], A× [0, 1]) ,

and to the projection map in the opposite direction. The Homotopy Axiom
(number 5) follows immediately.

This argument also applies if f is a relative homeomorphism. This proves
the Excision Axiom (number 6) and the Relative Homeomorphism Axiom
(number 8).

Taking x to be a single point, Lemma 5 implies that

H0(x; G) ∼= G , Hq(x; G) = 0 for q 6= 0

which proves the Dimension Axiom (number 7).
We will prove a version of the Cluster Axiom which involves an uncount-

able cluster. Let X be the union of compact subsets Xu which intersect
pairwise at the point b. Assume that every neighborhood of b contains all
but a finite number of the Xu. Let ru : X−−→Xu denote the canonical re-
traction.

Using the continuity property of Čech cohomology, it is seen that the
homomorphisms

r∗u : Hq(Xu; b) −−→ Hq(X, b)

provide an injection representation of Hq(X, b) as a direct sum. But the
functors Hom( , G) and Ext( , G) carry direct sums into direct products.
Using Lemma 5 it is seen that the homomorphisms

ru∗ : Hq(X, b) −−→ Hq(Xu, b)

provide a projection representation of Hq(X, b) as a direct product. This
proves the Cluster Axiom (number 9), and completes the proof of Theorem
5.
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One embarrassing feature of this homology theory is the possible presence
of negative dimensional homology groups. It follows from Lemma 5 that
Hq(C, A; G) is zero for q ≤ −2. If the Čech cohomology group H0(X,A) is
free abelian, it follows also that H−1(X, A; G) is zero.
Problem 1. Is the Čech cohomology group H0(X,A) of a compact pair
always free abelian?

Spanier has pointed out to me that this question is equivalent to the
following :
Problem 2.∗ Given a set S, is the group of all bounded functions from S
to the integers always free abelian?

In fact this group is just the cohomology group H0(S̃) of the Tychonoff
compactification of S, considered as a discrete space. Conversely H0(X, A)
is a subgroup of the group of all bounded functions X−−→Z.

If the set S is countable, then an affirmative answer to Problem 2 has
been given by Specker [12], assuming the continuum hypothesis. It follows
that H0(X, A) is free abelian whenever X−A has a countable dense subset,
This proves:
Assertion. If X−A has a countable dense subset then Hq(X,A;G) is zero
for q < 0.

Appendix. Derived functors of inverse limits.

For any directed set D let G(D) denote the category of all inverse systems
of abelian groups indexed by D, the concept of homomorphism being defined
as in §2. The inverse limit operation L is a functor from G(D) to the category
G of abelian groups and homomorphisms. This functor is left exact. To
measure the deviation of L from right exactness one introduces derived
functors Lr.

The following trick can be used to define Lr in terms of more familiar
constructions. A subset U of D will be called an initial segment if, when-
ever d1 < d2 with d2 ∈ U it follows that d1 ∈ U . Topologize D by taking
the initial segments as the open sets. (Caution: D will never be a Haus-
dorff space.) Given an initial segment U and an inverse system {Ad} define
LU{Ad} as the subset of the direct product

∏
d∈U

Ad consisting of elements

{ad} such that
πd2

d1
(ad2) = ad1

for all d1 < d2 ∈ U , where πd2
d1

is the projection map in the inverse system.

∗ See the addendum at the end of this paper for references to the solution of this

problem.
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Assertion. The correspondence U−−→LU{Ad} defines a sheaf A of abelian
groups over D. (See Godement [5].) Conversely every sheaf over D comes
in this way from a uniquely defined inverse system. The inverse limit L{Ad}
is just the group of globally defined sections of A.

The proof is straightforward.
Yeh calls an inverse system {Ad} star epimorphic if, for each initial

segment U , the natural homomorphism

L{Ad} −−→ LU{Ad}
is onto. Evidently {Ad} is star epimorphic if and only if the corresponding
sheaf A is flabby.

Now define Lr{Ad} to be the r-th cohomology group of D with coeffi-
cients in A. Evidently:
(1) L0 = L.
(2) Each short exact sequence 0−−→{Ad}−−→{Bd}−−→{Cd}−−→0 gives rise

to an infinite exact sequence

0 −−→ L0{Ad} −−→ L0{Bd} −−→ L0{Cd} −−→ L1{Ad} −−→ · · · .

(3) If {Ad} is star epimorphic then Lr{Ad} = 0 for r > 0.
It can be shown by rather complicated examples that the functors Lr are

all non-trivial in general. However:
Assertion. If D is the directed set of positive integers then the functor Lr

is zero for r > 1, and L1 coincides with the functor L′ defined in §2.
The proof is not difficult.
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[7] S. Mardešić, On inverse limits of compact spaces. Glasnik Mat. 13 (1958),

249–266.



96 John Milnor
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Addendum (May 1995)

I am indebted to K. Kunen for the information that Problem 2 has long
since been answered affirmatively by G. Nöbeling. In fact, more generally:
Any commutative ring which is generated by idempotents, and is torsion free
as an additive group, is necessarily free as an additive group.
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Homotopy type of differentiable
manifolds

William Browder

It is our aim to give some homotopical conditions on a space which are
necessary and sufficient under certain circumstances for it to be the homo-
topy type of a differentiable manifold.

We first mention some necessary conditions :
Let Mn be a closed differentiable manifold.
(1) M satisfies the Poincaré Duality Theorem, i.e. Hn(M) = Z, with

generator g, and ∩g : Hi(M) → Hn−i(M) is an isomorphism.
By a theorem of Whitney, M may be differentiably embedded in a sphere,

say Sn+k. Let ν be the normal bundle which is oriented if M is oriented. A
tubular neighborhood of M in Sn+k is diffeomorphic to a neighborhood of
the zero cross section in E(ν), the total space of ν. If we collapse the exterior
of this neighborhood to a point, we get the Thom complex of ν, T (ν). The
collapsing map c : Sn+k → T (ν) has the property that c∗(ι) = Φ(g), where
ι generates Hn+k(Sn+k) and Φ is the Thom isomorphism Φ : Hj(M) →
Hj+k(T (ν)). Hence we get :

(2) There exists an oriented vector bundle ν over M , such that Φ(g) is
spherical in Hn+k(T (ν)).

It turns out that in some circumstances the conditions (1) and (2) may
be sufficient.

Theorem 1. Let X be a connected finite polyhedron, with π1(X) = 0. Sup-
pose the following two conditions are satisfied :

(1) X satisfies the Poincaré Duality Theorem, i.e. for some n Hn(X) =
Z, and if g is a generator, ∩g : Hi(X) → Hn−i(X) is an isomorphism for
all i.

(2) There exists an oriented vector bundle ξk over X, such that Φ(g) ∈
Hn+k(T (ξ)) is spherical. Then, if n is odd, X is the homotopy type of an
n-dimensional closed differentiable manifold, whose stable normal bundle is
induced from ξ by the homotopy equivalence.

In case Mn is a closed differentiable manifold of dimension n = 4k,
the Hirzebruch Index Theorem is another property. In case n = 4k, this

This paper first appeared in the mimeographed proceedings of the 1962 Århus Confer-

ence.



98 William Browder

condition together with (1) and (2) is sufficient.

Theorem 2. Let X be as in Theorem 1, except that n = 4q 6= 4. In addition,
suppose :

(3) I(X) = 〈Lq(p1, . . . , pq), g〉, where I(X)= index (signature) of the cup
product bilinear form H2q(X;R)×H2q(X;R) → H4q(X;R) = R, Lq is the
Hirzebruch polynomial, and p1, . . . , pq are the dual classes to the Pontrjagin
classes of ξ.
Then X is the homotopy type of an n-dimensional closed differentiable man-
ifold with normal bundle induced from ξ.

In case ξ is the trivial bundle, condition (2) is equivalent to :
(2′) Σk(g) ∈ Hn+k(ΣkX) is spherical, where Σ denotes suspension.

Then the conclusions to Theorems 1 and 2 in this case, give that X is the
homotopy type of a π-manifold.

M. Kervaire [1] has given an example of a 10-dimensional combinatorial
manifold K which is not the homotopy type of a differentiable manifold.
K has properties (1) and (2′). One may deduce from Theorems 1 and 2
then, that K × Sq is the homotopy type of a π-manifold if 4 6 | q, q > 1.
It follows from a theorem of S. Cairns and M. Hirsch that K × Sq is not
itself a differentiable manifold. Similarly K ×K is the homotopy type of a
π-manifold.

(It also follows from Theorems 1 and 2 that if X is a connected polyhedral
H-space, π1(X) = 0, and Hn(X) 6= 0, Hi(X) = 0, i > n, n 6≡ 2(mod 4),
then X is the homotopy type of a π-manifold).

We will sketch the proof of Theorem 1.
By embedding X in an Euclidean space and taking a small neighborhood

of it, we may replace X by a homotopically equivalent space which is an open
manifold. We assume then that X is an open manifold. Let f : Sn+k → T (ξ)
be a map, such that f∗(ι) = Φ(g). By a theorem of Thom [4], f is homotopic
to a map transverse regular on X ⊂ T (ξ), so we may assume that f is
transverse regular on X. Then N = f−1(X) is a closed n-submanifold of
Sn+k with normal bundle induced from ξ.

Lemma 1. f : N → X is of degree 1, i.e. f∗(ι) = g, where ι ∈ Hn(N) is the
canonical generator given by the orientation induced from the orientation of
the normal bundle.

This follows easily from the naturality of the Thom isomorphism with
respect to bundle maps.

Lemma 2. If f : H∗(A) → H∗(B) is a map of degree 1, where A,B are
spaces satisfying (1), then Kernel(f∗) is a direct summand of H∗(A).
Proof. α = PAf∗(PB)−1 is a map α : H∗(B) → H∗(A) such that f∗α = 1,
where PA, PB are the isomorphisms given by Poincaré Duality.
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Note also that Kernel(f∗) is orthogonal to α(H∗(B)) under the intersec-
tion pairing.

We wish that N were connected and simply connected and that Kernel(f∗)
= 0, so that we might apply J. H. C. Whitehead’s Theorem to conclude that
f is a homotopy equivalence. These things are not true, but we may make
them true by changing N by surgery in certain cases. This is where the
extra assumption that n is odd (or the assumption on the index) will come
in.

Surgery is the following process : We have a differentiable embedding
φ : Sp × Dq+1 → Mn, n = p + q + 1. We remove interior φ(Sp × Dq+1)
and replace it by Dp+1 × Sq, which has the same boundary Sp × Sq. This
is again a differentiable manifold.

We should like to do surgery to make N connected, then simply con-
nected, and then kill the Kernel(f∗). At each stage we produce a new man-
ifold, and we must verify that we still have a map of degree 1 of the new
manifold N ′ = χ(N,φ) into X which induces the normal bundle of N ′ from
ξ.

Lemma 3. Let φ : Sp×Dq+1 → Mn be an embedding, and let φ|Sp×0 = φ′.
Suppose that f ◦ φ′ is homotopic to a constant map. Then there is a map
f ′′ : N ′ → X, N ′ = χ(N, φ) of degree 1.
Proof. Sp×0 is a deformation retract of Sp×Dq+1, so that since f ◦φ′ ' ∗,
then f ◦φ ' ∗, f ′(φ(Sp×Dq+1)) = ∗. Then we set f ′′ = f ′ outside Dp+1×Sq

and f ′′(Dp+1 × Sq) = ∗, and f ′′ : N ′ → X is clearly of degree 1 if f was.

It can be shown that by choosing the product structure carefully on
Sp ×Dq+1, the new manifold N ′ still has its normal bundle induced from
ξ, cf. [2,3].

Then by surgery we may make N into a connected manifold, (p = 0
in the surgery) and simply connected, (p = 1). It follows from the rela-
tive Hurewicz Theorem that Kernel(f∗) in the lowest non-zero dimension
consists of spherical classes.

To make sure we can do surgery to kill a spherical class we must first
find an embedding of a sphere representing the class. This we can do by
Whitney’s Theorem in dimensions ≤ 1

2n, if n 6= 4. We must also have the
normal bundle to the embedded sphere trivial.
Lemma 4. Let φ : Sp → Nn with f ◦ φ ' ∗, p < 1

2n. Then the normal
bundle γ to Sp in Nn is trivial.
Proof. φ∗(τ(N)) = τ(Sp) ⊕ γ, and f∗(ξ) = ν, the normal bundle to N in
Sn+k. Then τ(N) ⊕ ν is trivial. Hence φ∗(τ(N) ⊕ ν) = τ(Sp) ⊕ γ ⊕ φ∗(ν)
is trivial. Since ν = f∗(ξ), φ∗(ν) = φ∗f∗ξ = (f ◦ φ)∗(ξ) is trivial. But
τ(Sp) ⊕ ε is trivial if ε is trivial. Hence γ ⊕ ε′ is trivial, where ε′ is trivial,
ε′ = τ(Sp) ⊕ φ∗(ν). Since γ is an (n − p)-dimensional bundle over Sp, and
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n− p > p, this implies that γ is trivial.

If n is odd, we only have to kill Kernel(f∗) in dimensions < 1
2n, and by

Poincaré Duality we have killed the whole kernel. (If n is even, we have also
dimension 1

2n to consider, and here the extra hypothesis on the index is
necessary to take care of questions about triviality of γ).

It remains to show that the surgery can be used to kill all of Kernel(f∗),
particularly around the middle dimension. With the aid of Lemma 2, how-
ever, the techniques of [1], [2], and [3] show that this can be done in the
various cases.
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ment. Math. Helv. 28 (1954), 17–86.

Mathematics Department, Princeton University, Princeton NJ 08544-0001,

USA

email : browder@math.princeton.edu



K-theory, group C*-algebras, and
higher signatures (Conspectus)

G. G. Kasparov

Preface

The text which follows is a preprint version of my paper [0]. I am grateful
to the editors of these Proceedings for their suggestion to publish it. I must
explain here that the published version of the paper [0] differs significantly
from the text of the preprint version. Actually at the time when the preprint
was written (1981) many technical points of this work were still quite cum-
bersome. For this reason I assumed that the length of the proof would not
allow me to publish it in a journal. I was thinking about writing a book.
But to begin with I decided to make a short version (a conspectus), with
only sketches of proofs, and distributed it as a preprint.

Fortunately, at the time when the final version was written (1987), a
number of mathematicians had already contributed much to the subject.
Some essential technical points, especially related to the construction of the
product in KK-theory, were significantly simplified. So I benefited greatly
from the existing publications which allowed me to publish the final text as
a journal paper.

However, I find it reasonable to publish now also the preprint version.
Actually there are two reasons. First of all, the exposition of the published
version contains, in addition to technical improvements, also some general-
izations of the main constructions of the preprint. So some people find it
more difficult to read the published version. Maybe it would be better if a
person interested in the subject could first look at the preprint. Secondly,
some of the results contained in the preprint were not included into the pub-
lished version. This concerns Theorems 3 and 4 of section 6 of the preprint
describing the stable structure of some extensions of group C∗-algebras re-
lated with nilpotent Lie groups, and also the proof of Theorem 2 of section
9 (see Theorem 6.3 of [0] which was given without proof in [0]). I believe it
will be good now to have these results published.

Originally distributed 1981. Preface written in 1994.
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I would like to express my particular gratitude to one of the editors,
Jonathan Rosenberg, who prepared the text in AMS-TEX, made some small
corrections (including some corrections of the language) and provided it with
Editor’s footnotes.

From my part, I also contributed some footnotes containing comments
and additional explanations. In some places I made some minor corrections
in the text in order to improve the language or to clarify the exposition.
Unfortunately, as it was mentioned in [0], in the preprint version there were
some small errors in the proof of the Novikov conjecture. For this reason
I had to include in the text of sections 8 and 9 a couple of Notes added
designed to correct the argument. For the same reason the statement and
the proof of Theorem 1 in section 9 were also a little bit changed. The list of
References of the preprint remains in its original form except that Russian
titles are translated into English and reference [0] is added. Some additional
references are given in footnotes.

Introduction

In the theory of operator algebras, a problem of considerable interest is the
study of group C∗-algebras and covariance algebras. Some new methods for
this are provided now by the theory of extensions of C∗-algebras and by the
operator K-theory. So quite naturally there arises a question of computing
the operator K-functor for a sufficiently large class of group C∗-algebras. In
this paper we compute the K-functor of group C∗-algebras and covariance
algebras of all connected amenable Lie groups and their discrete subgroups.
For general connected Lie groups we compute some distinguished part of
the corresponding K-functor.

As an example of applications of these results we study in detail the stable
structure of some extensions of C∗-algebras associated with extensions of
nilpotent Lie groups. Another application is the problem of the homotopy
invariance of higher signatures of smooth manifolds. We prove the homotopy
invariance of higher signatures for all manifolds having a fundamental group
which can be embedded as a closed discrete subgroup into some connected
Lie group.

The main instrument in obtaining these results is the operator K-bifunc-
tor defined in [15]. In this paper all definitions and results concerning the
K-bifunctor are extended to the category of C∗-algebras with an action of a
separable locally compact group (in [15] only compact groups were allowed).

This paper may be regarded as a continuation of [15], as well as the
second part of the earlier paper [12]. The results concerning C∗-algebras of
simply connected solvable groups were announced in the introduction to [15]
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(p. 574). The results concerning higher signatures for discrete subgroups of
GL(n, C) were announced in [12], §8.

This text is a conspectus containing the results and only sketches of
proofs.

§1. Notation

We will use the notation of [15] (see [15], §§1 and 2). Here we recall some
basic points and make some assumptions.

1. All results are valid for complex and real C∗-algebras. An algebra
with a (norm) continuous action1 of a group G will be called a G-algebra.
All homomorphisms in the category of algebras with the action of G are
assumed to be G-equivariant. In §§1–4 the group G will be fixed. Beginning
with §5 we shall often consider simultaneously the categories of algebras with
actions of different groups (the trivial group also is not excluded). It will be
clear from the context which category is being considered. All groups acting
on C∗-algebras are supposed to be locally compact and separable (i.e. second
countable) and homomorphisms between groups continuous, all subgroups
are assumed to be closed. “Real” C∗-algebras2 will not be considered in this
paper.

2. All algebras, subalgebras, homomorphisms and Hilbert modules that
we consider are Z2-graded ([15], §2). A linear subspace F of an algebra
A is called graded if F = F ∩ A(0) + F ∩ A(1). We always consider ten-
sor products of algebras or modules with the minimal (spacial) C∗-norm
and the group action on a tensor product is supposed to be diagonal , i.e.
∀g ∈ G, g(x1⊗̂x2) = g(x1)⊗̂g(x2). The group action on Hilbert modules
is always assumed to be continuous in norm. Under a homomorphism of
Hilbert B-modules χ : E1 → E2 we understand an element of L(E1, E2)
(see [14], where are also given the definitions of the G-action on L(E1, E2)
and of the subspace of compact homomorphisms K(E1, E2) ⊂ L(E1, E2)).
An isomorphism of B-modules is called isometric if it preserves the scalar
product.

3. An element x of an algebra with a G-action will be called G-continuous
if the function x 7→ g(x) is continuous in norm on G. Quite similarly, one
defines a G-continuous homomorphism χ ∈ L(E1, E2).3

1Editor’s note: Groups are assumed to act on a C∗-algebra A by ∗-automorphisms.
The map G×A → A defined by the action is not always assumed to be continuous but it
will be assumed continuous for all algebras appearing as arguments of the K-bifunctor.

2Editor’s note: in the sense of Atiyah, as generalized to the C∗-algebra context in the
author’s earlier work.

3Editor’s note: Caution: this is a much weaker condition than G-equivariance.
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4. The scalar field (i.e. the algebra R or C) will be denoted by C. Put
H(0) ' H(1) ' ⊕∞

1 L2(G), and ∀x ∈ H(i), put deg x = i. The graded
Hilbert space H(0)⊕H(1) will be denoted by H. The tensor product H⊗B
considered as a (graded) Hilbert B-module will be denoted byHB . A Hilbert
B-module E will be called stable if E ⊕HB ' E.

5. The Clifford algebra of a linear ∗-space V (cf. [15], §2, 11) is denoted
by CV . For a locally compact space X, we denote by C(X) the algebra
of continuous functions on X tending to 0 at ∞. If τ is a vector ∗-bundle
over X (cf. [15], §2, 12), then Cτ (X) is the algebra of continuous sections,
tending to 0 at ∞, of the Clifford bundle associated with τ . In this paper,
until otherwise specified, we shall consider Cτ (X) only in the case when
X is a smooth Riemannian manifold and τ is the cotangent bundle to X
in the real case and the complexification of the cotangent bundle to X in
the complex case. The involution ∗ on τ is trivial in the real case and is
fiberwise complex conjugation in the complex case.

6. The left Haar measure on G is denoted by dg = dGg and the modular
function of G by µ = µG.

7. For a connected group G we denote by Gc its maximal compact sub-
group.4

8. The group C∗-algebra of G is denoted by C∗(G). The covariance C∗-
algebra of a G-algebra A (i.e. the crossed product of G and A) is denoted
by C∗(G, A).

§2. The stabilization of Hilbert modules

The stabilization theorem of [14] (Theorem 2) was used in [15] in several
basic constructions including the product-intersection. We need the follow-
ing generalization of this theorem5 to the case of the actions of non-compact
groups.

Theorem 1. Let E be a countably generated Hilbert B-module. (The G-
action on B and on E is supposed to be continuous.) Then there exists a
G-continuous isometric isomorphism χ : E ⊕HB ' HB of degree 0.

4Editor’s note: This is unique up to conjugacy.
5The stabilization theorem of this section eventually appeared to be unnecessary in

the final version [0] of the paper. (See [0], section 2, where the product was constructed
without ever mentioning this theorem.) However, the main result of this section has some
independent interest. It was later proved in a much simpler way. (See J. A. Mingo and W.
J. Phillips, Equivariant triviality theorems for Hilbert C∗-modules, Proc. Amer. Math.
Soc. 91 (1984), 225–230. The same simple proof was also communicated to me by G.
Skandalis in 1982.)
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(Recall that in the case of a compact group G there existed a G-equivariant
isomorphism χ, i.e. g(χ) = χ, ∀g ∈ G.)

Sketch of proof. The main difficulty in generalizing the proof of Theorem
2 of [14] is the absence of Mostow’s theorem on periodic vectors. We will
indicate a way to get around this difficulty. Let us call an element of a
Hilbert B-module E integrable if

c(x) =
∫

G

‖〈x, g(x)〉‖ · µ(g)−
1
2 dg < ∞.

If this condition is satisfied then ∀f ∈ L2(G), there exists an element y =∫
G

f(g)g(x) dg ∈ E with ‖y‖E ≤
√

c(x)‖f‖L2 .
Choosing f in an appropriate way we can make y close enough to x. The

action of continuous compactly supported functions on y be the formula:
f1 7→

∫
G

f1(g)g(y) dg can be extended to the action of the reduced W ∗-
algebra W ∗

red(G) on y (because W ∗
red(G) acts on L2(G)). In fact we need only

the action of W ∗
red(G1), where G1 is some open, almost connected subgroup

of G. (A group is called almost connected if its factor group by the connected
component of the identity is compact.) We can choose G1 in such a way
that it is generated by a neighbourhood U of the identity in G with a
compact closure Ū = K. From the results of [5] and [7] it follows that
W ∗

red(G1) is injective and semifinite. Using the structure theory of injective
semifinite algebras [5] we can prove the following main lemma (which is the
replacement of Mostow’s theorem in this context):

Lemma 1. For any homogeneous integrable element x of a Hilbert B-
module E, there exists a real number c > 0 such that ∀ε > 0 there is a
homomorphism ϕ ∈ K(HB , E) of degree 0 satisfying the conditions:

(1) ∃z ∈ HB such that ‖z‖ ≤ c, ‖x− ϕ(z)‖ ≤ ε.
(2) ‖ϕ‖ ≤ c.
(3) ∀g ∈ K, ‖g(ϕ)− ϕ‖ ≤ ε. ¤

After that a slightly modified scheme of the proof of Theorem 2 of [14] can
be applied to obtain Theorem 1 from Lemma 1 in the case when the set of
integrable homogeneous elements is dense in E(0) and E(1). The general case
follows from this by an application of the embedding π : E ↪→ L2(G)⊗E =
E1, π(x) = f⊗x , where f ∈ L2(G) is an arbitrary element of norm 1. It is
easily verified that integrable elements of E1 are dense in E

(0)
1 and E

(1)
1 . ¤

§3. The technique of product-intersection

This section is in full analogy with the §3 of [15]. Here is for comparison the
analogue of Theorem 4, §3 of [15].
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Theorem 1. Let E , E1 be subalgebras with strictly positive elements and
E2, F graded separable linear subspaces in the algebra M(D). Assume that
all elements of E , E1, E2, and F are G-continuous, E is an ideal in E1,
E1 · E2 ⊂ E , D ⊂ E1 + E2, [F , E1] ⊂ E1, [F , E ] ⊂ E . Then there exists a
pair of G-continuous elements M , N of degree 0 in M(D) satisfying the
conditions:

(1) M + N = 1, M ≥ 0, N ≥ 0.
(2) M · E1 ⊂ E , N · E2 ⊂ E , N · E1 ⊂ E1.
(3) [F , M ] ⊂ E , [F , N ] ⊂ E .
(4) ∀g ∈ G, g(M)−M ∈ E , g(N)−N ∈ E . ¤

Similar changes, mainly related with the replacement of G-invariant ele-
ments by G-continuous ones, must be made also in Theorem 5, §3 of [15].
In the analogues of Theorems 1, 2, 3 of [15], §3, in addition to the family of
linear maps: ϕx : A → A, ϕx(a) = [Fx, a], x ∈ X, it is necessary to consider
also the family of linear maps: ϕg : A → A, ϕg(a) = β(g) · (g(a)−a), g ∈ G,
where β ∈ C(G). The inequality (1) of §3 of [15] must be replaced by

(1) ϕy(h) · ϕy(h)∗ + ϕy(h)∗ · ϕy(h) ≤ chm,

where y ∈ X ∪G. In the item 3) of Theorem 3 of [15], §3, the commutators
[M, Fx], [N, Fx] must be replaced by ϕy(M) and ϕy(N) with y ∈ X ∪ G.
Proofs of all these theorems need only minor changes.

§4. K-bifunctor

This section is analogous to the §4 in [15], although the main definitions
are slightly different. To avoid unnecessary repetitions we point out here
that only algebras with a continuous G-action and countable approximate
units will be the arguments of the K-bifunctor KK(A, B) = KKG(A, B).
All Hilbert C∗-modules that we consider will be countably generated.

Definition 1. Let A and B be G-algebras. Denote by E(A, B) = EG(A, B)
the collection of triples (E, ϕ, T ), where E is a Hilbert B-module, ϕ : A →
L(E) a homomorphism, and T ∈ L(E) a G-continuous operator6 of degree
1, such that ∀a ∈ A, ∀g ∈ G, the elements

(1) [ϕ(a), T ] ,
(
T 2 − 1

)
ϕ(a), (T − T ∗)ϕ(a), (g(T )− T ) ϕ(a)

6In the Definition 2.2 of [0], we did not impose the condition of G-continuity on the
operator T but only a weaker condition that all elements ϕ(a)T and Tϕ(a), ∀a ∈ A,
should be G-continuous. In fact, the present Definition and the Definition 2.2 of [0] give
isomorphic KK-groups if A has a countable approximate unit. In this case one can easily
construct a G-continuous T in a weaker assumption of [0], 2.2, by applying Theorem 1.4
of [0].
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belong to K(E). By D(A, B) we will denote the collection of degenerate
triples, i.e. those ones for which all elements (1) are equal to 0.

Definition 2.

1◦. The triples (E1, ϕ1, T1) and (E2, ϕ2, T2) ∈ E(A, B) are called unitar-
ily equivalent if there is a G-equivariant isometric isomorphism u : E1 → E2

of degree 0 such that ∀a ∈ A, ϕ2(a) = uϕ1(a)u−1 and T2 = uT1u
−1.

2◦. A triple x = (E, ϕ, T ) ∈ E(A, B[0, 1]) is called a homotopy connect-
ing the triples x0 = (E0, ϕ0, T0) and x1 = (E1, ϕ1, T1) ∈ E(A, B) if the
restrictions of x to the endpoints of [0, 1], i.e. the triples

(
Et = E ⊗B[0, 1] B([t]), (rt)∗ ◦ ϕ, (rt)∗(T )

)
,

where (rt)∗ : L(E) → L(Et) is the restriction homomorphism, for t = 0 and
t = 1 coincide with x0 and x1, respectively.

Definition 3. Let Ē(A, B) be the set of equivalence classes of E(A, B)
modulo unitary equivalence and homotopy, D̄(A, B) the image of D(A, B)
in Ē(A, B). The operation of addition is introduced into Ē(A, B) by the
direct sum:

(E1, ϕ1, T1)⊕ (E2, ϕ2, T2) = (E1 ⊕ E2, ϕ1 ⊕ ϕ2, T1 ⊕ T2).

The factor semigroup Ē(A, B)/D̄(A, B) will be denoted by KK(A, B).

Definition 4. A homomorphism f : A2 → A1 induces a homomorphism
of groups f∗ : KK(A1, B) → KK(A2, B) by f∗(E, ϕ, T ) = (E, ϕ ◦ f, T ).
A homomorphism g : B1 → B2 gives rise to g∗ : L(E) → L(E ⊗B1 B2)
and induces a homomorphism of groups g∗ : KK(A, B1) → KK(A, B2) by
g∗(E, ϕ, T ) = (E⊗B1 B2, g∗ ◦ϕ, g∗(T )). For any algebra D, the homomor-
phism σD : KK(A, B) → KK(A⊗̂D, B⊗̂D) is defined by σD(E, ϕ, T ) =
(E⊗̂D, ϕ⊗̂id, T ⊗̂1). (Note that in [15] this last homomorphism was denoted
by τD.)

Theorem 1. KK(A, B) is a group, homotopy-invariant in A and B. ¤

If the group G is compact then applying the stabilization theorem of
[14] and averaging T over G one can easily verify that the definitions of
KK(A, B) given here and in [15] coincide.

Theorem 2. Let A, B, A1, B1 be algebras with a continuous G-action and
countable approximate units, such that A is an ideal in A1, B an ideal in
B1.
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1◦. The group KK(A, B) will not be changed if in Definitions 1–3 Hilbert
B-modules are replaced by Hilbert B1-modules and the condition that the
elements (1) belong to K(E) is replaced by the condition that they belong
to the ideal K(E ·B) ⊂ K(E).

2◦. The group KK(A, B) will not be changed if in Definitions 1–3 it
is additionally required that the homomorphism ϕ can be extended to A1.
More precisely, we can consider triples (E, ϕ : A1 → L(E), T ) as elements
of E(A, B) if we preserve the list (1) as it is with a ∈ A, but if in the
definition of D(A, B) and in the Definition 2, a ∈ A1.

Both these two changes can be made simultaneously without changing
KK(A, B).

Sketch of proof. The proof of the first part is straightforward. The proof
of the second part goes in the same way as the proof of the second part
of Theorem 2 in §4 of [15]. The main changes are the following ones: HÃ

must be replaced by F = (
⊕∞

1 A)⊕
(⊕∞

1 Ã
)
⊕HÃ and H⊗HB must be

replaced by E1 = F ⊗Ã E. To construct the operator 1 ⊗ T in L(E1), one
applies Theorem 1 of §2 to the Ã-module F . ¤

Theorem 3.

KK(A, B1 ⊕B2) ' KK(A, B1)⊕KK(A, B2),

KK(A1 ⊕A2, B) ' KK(A1, B)⊕KK(A2, B). ¤

Theorem 4 (existence of the product). The statement of this theorem
coincides with the statement of Theorem 4 in §4 of [15].

Sketch of proof. Fix elements x1 = (Ẽ1, ϕ1, T1) ∈ E(A1, B1⊗̂D), x2 =
(Ẽ2, ϕ2, T2) ∈ E(D⊗̂A2, B2). In view of Theorem 2 we may assume that
Ẽ1 is a stable B̃1⊗̂D̃-module, Ẽ2 is a stable B̃2-module, and the homo-
morphisms ϕ1 : Ã1 → L(Ẽ1), ϕ2 : D̃⊗̂Ã2 → L(Ẽ2) are unital. By E1 and
E2 we will denote the closures of Ẽ1 ·

(
B1⊗̂D

)
and Ẽ2 · B2 in Ẽ1 and Ẽ2

respectively. Put

Ẽ12 =
(
Ẽ1⊗̂Ã2

)
⊗̂(B̃1⊗̂D̃⊗̂Ã2)

(
B̃1⊗̂Ẽ2

)
,

E12 = Ẽ12⊗̂(B̃1⊗̂B̃2)
(
B1⊗̂B2

)
, and let

Φ2 : L(Ẽ1)⊗̂Ã2 → L(Ẽ12) → L(E12)
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be the natural homomorphism. Define

ϕ1 ⊗D ϕ2 : A1⊗̂A2 → L(E12)

as the composition Φ2 ◦
(
ϕ1⊗̂id

)
.

According to Theorem 1 of §2, there exists a G-continuous isometric
isomorphism χ : HB̃1⊗̂D̃ ' Ẽ1. Therefore Ẽ12 is G-continuously isomorphic
to

Ẽ′
12 =

(
HB̃1⊗̂D̃⊗̂Ã2

)
⊗̂(B̃1⊗̂D̃⊗̂Ã2)

(
B̃1⊗̂Ẽ2

)

via
(
χ−1⊗̂id

) ⊗̂id. Noticing that Ẽ′
12 can be identified with HB̃1

⊗̂Ẽ2, we
get a G-continuous isomorphism of B̃1⊗̂B̃2-modules ζ : HB̃1

⊗̂Ẽ2
'−→ Ẽ12

The restriction of the G-continuous operator

ζ
(
1⊗̂T2

)
ζ−1 ∈ L(Ẽ12)

to L(E12) will be denoted by T̃2. The operator Φ2

(
T1⊗̂1

)
will be denoted

by T̃1.
We will not repeat Definition 5 of §4 of [15]. Its generalization is quite

obvious: the algebra A1 contains all “irregularities” related with x1 (i.e. with
the elements of the list (1) for x1) and the algebra A2 all “irregularities”
related with x2 as well as with the commutator

[
T̃1, T̃2

]
. (Note here that

the definition of A2 in [15] needs a little correction. All elements of the list
given there must be multiplied by (ϕ1 ⊗D ϕ2)

(
A1⊗̂A2

)
. Otherwise, in the

case of a degenerate x2 one will not get A2 = 0.) The pair of G-continuous
operators M1, M2 ∈ L(E12) of degree 0, in addition to the conditions 1) –
3) of Definition 5, §4, [15], must satisfy also the condition

4) ∀g ∈ G, g(Mi)−Mi ∈ K(E12), i = 1, 2.

The set of such pairs (M1, M2) will be denoted by S(x1, x2; χ).
For (M1, M2) ∈ S(x1, x2; χ), put

T1 ××DT2 =
√

M1 · T1 +
√

M2 · T2.

Define x1⊗D x2 as the triple (E12, ϕ1 ⊗D ϕ2, T1 ××DT2). The independence
of x1 ⊗D x2 of the choice of χ can be established as follows. Put

E1 = Φ2

(K (E1) ⊗̂A2

)
+K(E12).
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If χ′ is another isomorphism then the corresponding operator T̃ ′2 satisfies
the conditions:

E1 ·
(
T̃2 − T̃ ′2

)
⊂ K(E12),

(
T̃2 − T̃ ′2

)
· E1 ⊂ K(E12).

In the construction of the pair (M1, M2) we can use Theorem 1 of §3 and
include

(
T̃2 − T̃ ′2

)
into E2. Then

(M1, M2) ∈ S(x1, x2; χ) ∩ S(x1, x2; χ′)

and

(T1 ××DT2)− (T1 ××DT2)
′ ∈ K(E12).

The remaining part of the proof of Theorem 4, §4, [15], goes through
without essential changes. ¤

Theorem 5. Let H = H(0) ⊕ H(1) be a graded G-Hilbert space and F :
H(0) → H(1) a G-invariant operator with 1 − FF ∗ ∈ K(H(1)), 1 − F ∗F ∈
K(H(0)). Assume that indF = 1 and all elements of kerF and kerF ∗ are

G-invariant. Put T =
(

0 F ∗

F 0

)
∈ L(H) and denote the element (H, T ) ∈

KKG(C, C) by 1. This element does not depend on a particular choice of H
and F and is the identity of the product-intersection, ı.e. ∀x ∈ KKG(A, B),
x⊗C 1 = x, 1⊗C x = x.

Proof is the same as that of Theorem 5, §4, [15]. ¤

Corollary 1. For any separable G-algebra D, the group ΛD = KKG(D, D)
is an associative ring, with multiplication given by the product-intersection.
The element 1D = σD(1) is the unit of the ring ΛD. For any separable
G-algebra A and any G-algebraB, the group KKG(D⊗̂A, B) is a left ΛD-
module and KKG(A, B⊗̂D) is a right ΛD-module. ¤

Next we will need (and use) the definition of the groups Ki(A), Ki(A)
and KKi(A, B) given in §5, [15].7

7However, we have changed the convention about upper and lower indices from the
one used in [15] and in the original version of this preprint to the one in more common
use, so that Ki(A) is covariant in A and Ki(A) is contravariant in A. Note that the
change of the upper position of an index to the lower one or in the opposite direction
results in the change of the sign of the index. See more about notational conventions for
the indices in [0], 2.22.
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Definition 5. Put Ri(G) = KKi
G(C, C). In the complex case, put R∗(G) =⊕1

i=0 Ri(G), and in the real case, put R∗(G) =
⊕7

i=0 Ri(G). The ring
R∗(G) may be called the representation ring of G.

The ring R∗(G) is associative and skew-commutative (cf. Theorem 6, §5,
[15]). The left and right actions of the commutative ring R0(G) on the groups
KKi

G(A, B) coincide. If G is compact then R0(G) is the usual representation
ring of G.8 For a discrete group G, the ring R∗(G) was defined in [12] by
R∗(G) = K∗(C∗(G)). The two definitions obviously coincide. In fact, it is
straightforward from the definitions that for a discrete group G and any G-
algebra A, Ki

G(A) ' Ki(C∗(G, A)) where C∗(G, A) is the crossed product
of G and A.9 The computation of the rings R∗(G) is a problem of great
interest for connected groups, as well as for discrete groups.

The next theorem is a generalization of Theorem 6, §4, [15]. (Note that a
correction is necessary in the statement of Theorem 6, §4, [15]: the algebras
D and E must be separable from the beginning.) For brevity we will restrict
ourselves to the generalization of the statement of only the first part of
Theorem 6, §4, [15].

Theorem 6. Let algebras A, D, E be separable. Assume that there are
elements α ∈ KK(D, E), β ∈ KK(E, D) such that α ⊗E β = 1D. Then
the element γ = β ⊗D α is an idempotent in the ring KK(E, E). The
homomorphism

⊗D α : KK(A, B⊗̂D) → KK(A, B⊗̂E)

is a monomorphism and

Im( ⊗D α) = Im γ
def=

{
x ∈ KK(A, B⊗̂E) | x · γ = x

}
.

The homomorphism

⊗E β : KK(A, B⊗̂E) → KK(A, B⊗̂D)

is an epimorphism and

ker( ⊗E β) = ker γ
def=

{
x ∈ KK(A, B⊗̂E) | x · γ = 0

}
.

The group KK(A, B⊗̂E) is a direct sum Im γ ⊕ ker γ. If γ = 1E , then
⊗D α and ⊗E β are isomorphisms. A similar statement holds for the

groups KK(D⊗̂A, B) and KK(E⊗̂A, B). ¤

8Editor’s note: And in the real case R∗(G) is the graded representation ring computed
in the last section of [1].

9Editor’s note: Dually, when G is compact, KG
i (A) ' Ki(C

∗(G, A)); see P. Julg, K-
théorie équivariante et produits croisés, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981),
629–632.
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Theorem 7. If separable algebras D and E are strongly Morita equiva-
lent10 ([25]) then for any separable algebra A there are isomorphisms:

KK(A⊗̂D, B) ' KK(A⊗̂E, B), KK(A, B⊗̂D) ' KK(A, B⊗̂E).

Sketch of proof. If X is a D-E-imprimitivity bimodule, define α ∈ KK(D,
E) by the triple (H⊗̂X, 1⊗̂id : D → L(H⊗̂X), T ⊗̂1), where T ∈ L(H)
is the operator from Theorem 5. An element β ∈ KK(E, D) is defined
similarly by means of the dual bimodule X∗. Then α⊗E β = 1D, β⊗D α =
1E . ¤

§5. The reduction of G to the maximal compact subgroup

In this section we will consider the functorial properties of the K-bifunctor
with respect to change of the group G.

Definition 1. A homomorphism of groups f : Γ → G induces in an obvious
way the restriction homomorphism rG, Γ : KKG(A, B) → KKΓ(A, B).

Let Γ be a subgroup of G. If Γ acts on a topological space X, then G×ΓX
is the factor space of G×X by the action of Γ: h(g, x) = (gh−1, h(x)) (h ∈ Γ,
g ∈ G, x ∈ X). The group G acts on G×Γ X by g(g1, x) = (gg1, x). If the
space X is locally compact then the G-algebra C(G ×Γ X) can easily be
constructed out of the Γ-algebra C(X). Here is the construction.

Definition 2. Let B be a Γ-algebra. Denote by C(G ×Γ B) the set of
continuous functions f : G → B satisfying the conditions:

(1) ∀h ∈ Γ, f(gh) = h−1(f(g)).
(2) If gΓ →∞ in G/Γ, then ‖f(g)‖ → 0.

This set is a subalgebra of the algebra of all bounded continuous func-
tions Cb(G, B), hence a C∗-algebra. The group G acts on C(G ×Γ B) by
(gf)(g1) = f(g−1g1). If B = C(X) then C(G ×Γ B) ' C(G ×Γ X). Quite
similarly, for a Hilbert B-module E, one can define a Hilbert C(G ×Γ B)-
module C(G×Γ E).

Lemma 1. Let G be a subgroup in G, Γ a subgroup in G, and B and
D Γ-algebras.

(1) If E is a Hilbert B-module then

K(C(G×Γ E)) ' C(G×Γ K(E)).

10Editor’s note: in a G-equivariant way.
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(2) If B1 is a G-algebra then there is an isomorphism:

C(G×ΓB)⊗̂B1 ' C(G×Γ(B⊗̂B1)) :
∑

i

fi(g)⊗̂bi 7→
∑

i

fi(g)⊗̂g−1(bi).

(3)
C(G ×G C(G×Γ B)) ' C(G ×Γ B).

(4) If E is a D-module, F a B-module, then

C(G×Γ (E ⊗D F )) ' C(G×Γ E)⊗C(G×ΓD) C(G×Γ F ). ¤

Lemma 2. Let Γ be a subgroup in G. There exists a non-negative contin-
uous (cut-off) function λ on G satisfying the conditions:

(1)
∫
Γ

λ(gh) dΓh = 1, ∀g ∈ G.
(2) ∀ε > 0 there exists a neighbourhood U of the identity in G such

that ∀g1 ∈ U , ∀g ∈ G,

∫

Γ

|λ(g1gh)− λ(gh)| dΓh < ε. ¤

Theorem 1. Let Γ be a subgroup in G, A and B Γ-algebras. There exists
an induction homomorphism, functorial in A and B:

iΓ, G : KKΓ(A, B) → KKG(C(G×Γ A), C(G×Γ B))

having the following properties:

(1) If A is separable, x ∈ KKΓ(A, D), y ∈ KKΓ(D, B), then

iΓ, G(x⊗D y) = iΓ, G(x)⊗C(G×ΓD) iΓ, G(y);

(2) If A and B are G-algebras, D a Γ-algebra and x ∈ KKG(A, B), then

iΓ, G ◦ σD ◦ rG, Γ(x) = σC(G×ΓD)(x);

(3) If G is a subgroup in G then

iG,G ◦ iΓ, G = iΓ,G ;

(4) If A = B then
iΓ, G(1A) = 1C(G×ΓA).
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Sketch of proof. Let z = (E, ϕ, T ) ∈ EΓ(A, B). The homomorphism ϕ
obviously induces

ψ : C(G×Γ A) → L(C(G×Γ E)).

Put ∀g ∈ G,

S(g) =
∫

Γ

λ(gh) · h(T ) dΓh,

where λ is the function from Lemma 2. It is easily verified that S : G → L(E)
defines an element of L(C(G×Γ E)). The triple (C(G×Γ E), ψ, S) gives the
required element iΓ, G(z) ∈ KKG(C(G ×Γ A), C(G ×Γ B)). This element
does not depend on the choice of λ. The properties (1) – (4) are checked
with the use of Lemma 1. ¤

Definition 3. Let X be a complete Riemannian manifold, G a group
acting on X by isometries. We will construct the canonical element α ∈
K0

G(Cτ (X)). Consider the Hilbert space of L2-forms H = L2(
∧∗(X)) graded

by the usual decomposition
∧∗ =

∧ev⊕∧od. The homomorphism ϕ :
Cτ (X) → L(H) is first defined on 1-forms by ϕ(ω) = λω + λ∗ω∗ , where
λω is exterior multiplication by ω, λ∗ω the operator adjoint to λω (inter-
nal multiplication), and ω∗ the complex conjugate 1-form. After that ϕ is
extended by multiplicativity on Cτ (X). Let d be the operator of exterior
derivation on smooth compactly supported forms on X, δ the operator for-
mally adjoint to d, and ∆ = dδ + δd = (d + δ)2 the Laplace operator. For
complete Riemannian manifolds, it is known that the operator d + δ is es-
sentially self-adjoint on smooth forms with compact support.11 This allows
one to define the operator

d + δ√
1 + ∆

∈ L(H).

The element α is defined as the triple
(
H, ϕ, d+δ√

1+∆

)
.

Definition 4. In the assumptions of the Definition 3, let additionally X
be connected, simply connected and have non-positive sectional curvature.
Under these assumptions we will construct the canonical element

β ∈ KG
0 (Cτ (X)).

11See J. A. Wolf, Essential self-adjointness for the Dirac operator and its square,
Indiana Univ. Math. J. 22 (1973), 611–640.
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Let ρ(x) be the geodesic distance from some fixed point o ∈ X to the point
x ∈ X. The covector field θ(x) on X is defined by

θ =
ρdρ√
1 + ρ2

.

The operator of left (Clifford) multiplication by θ on the Hilbert Cτ (X)-
module E = Cτ (X) will be denoted again by θ. Using the cosine theorem
(1.13.2) of [9] it is not difficult to verify that the pair β = (E, θ) defines an
element of the group KG

0 (Cτ (X)).
The element β ⊗Cτ (X) α ∈ R0(G) will be denoted by γ.

Lemma 3. α⊗C β = γ · 1Cτ (X).
12

Sketch of proof. In analogy with the proof of Theorem 7, §5 of [15], we will
use the method of “rotation.” In this situation however it will be necessary
to construct separately a family of homomorphisms

{
ψt : Cτ (X) →M (

Cτ (X)⊗̂Cτ (X)
)}

and a family of covector fields {θt(x, y)} on X ×X (0 ≤ t ≤ 1). To do this,
consider the map pt : X ×X → X sending a point (x, y) ∈ X ×X into the
point in X which divides the geodesic segment joining x and y ∈ X in the
proportion t : (1−t). After the appropriate normalization we can extend the
corresponding map of covectors p∗t : Ω1(X) → Ω1(X ×X) to the required
homomorphism ψt.

To construct the covector field θt(x, y) note that the fiber of pt over each
point z ∈ X is homeomorphic to X. For t ≤ 1

2 , this homeomorphism is given
by the projection q2 : X×X → X to the second direct factor, and for t ≥ 1

2 ,
by the projection q1 to the first factor. Let t ≤ 1

2 , z ∈ X. Denote by zt the
point dividing the geodesic segment in X joining the fixed point o ∈ X with
the point z in the proportion 2t : (1−2t). Let θzt(x) be the covector field on
X defined in the same way as θ(x) but with the center at zt. Next, define the
covector field θ′t(x, y) on X ×X by putting θ′t(x, y) (ξ) = θzt(y) (q2 (ξ)) for
vectors ξ tangent to the fiber of pt over the point z and θ′t(x, y) (ξ) = 0 for
vectors ξ orthogonal to the fibers of pt. After the appropriate normalization
of θ′t, in order to assure that its length tends to 1 at ∞, we get the required
field θ on X × X for t ≤ 1

2 . For t ≥ 1
2 the construction is similar. The

construction of the pair {Mt}, {Nt} is the same as in Theorem 7, §5 of [15].
(Note here that in the proof of Theorem 7, §5 of [15], conjugation by the
element U is introduced by mistake. It is unnecessary.) ¤

12Under the same assumptions one can prove also that γ · 1Cτ (X) = 1Cτ (X) — see

[0], definition 5.1 and theorem 5.3.
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Lemma 4. Let G be the proper motion group of the Euclidean space Rn,
Gc = SO(n) its maximal compact subgroup, X = G/Gc = Rn. Then one
has the following relations:

γ = β ⊗Cτ (X) α = 1, α⊗C β = 1Cτ (X).

Sketch of proof. 13 The second relation follows from the first one and Lemma
3. To prove the first relation consider for 0 < t ≤ 1 the differential operator

Dt = d + δ + t(λρ dρ + λ∗ρ dρ)

acting on the space Ω∗c(X) of smooth forms with compact support (λω and
λ∗ω here again are the exterior and internal products respectively, ρ the
distance from 0 in Rn). Let H = L2(

∧∗(X)). The operator Dt is essentially
self-adjoint on Ω∗c(X), so Tt = Dt√

t2+D2
t

is a bounded self-adjoint operator

on H. Moreover, T 2
t = 1 − t2

t2+Dt
2 ≤ 1 and 1 − T 2

t ∈ K(H) for any t > 0.
The strong limit T0 = limt→0 Tt is equal to d+δ√

∆
.

We can identify the product of operators

θ ××Cτ (X)
d + δ√
1 + ∆

with T1. If the action of G on H is replaced by the trivial one, the element
(H, T1) ∈ R0(G) becomes equal to 1.14 Denote the space H with the trivial
G-action and the opposite grading by H ′. Consider in the space H ⊕H ′ the
homotopy of operators

St =
(

Tt

√
1− T 2

t√
1− T 2

t −Tt

)
, 0 ≤ t ≤ 1.

In the group R0(G) one has:

(H ⊕H ′, S1) = (H, T1)− 1, (H ⊕H ′, S0) = 0,

because the last pair is obviously degenerate. It appears that

(H ⊕H ′, St)0≤t≤1

13A much simpler proof of this lemma comes from the existence of the retraction of
G onto Gc — see [0], 5.9.

14Editor’s note: ker T1 is one-dimensional and contained in the even-graded part. This
is is proved below.
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is a homotopy in the sense of the Definition 2, §4, and the proof will be
finished after checking this assertion.

The check is quite standard. The only place which is worth mentioning
is the relation:

∀g ∈ G, lim
t→0

‖(g − 1)(1− T 2
t )‖ = 0,

where g denotes both the element of G and the corresponding operator in
L(H). To prove this relation note that according to [10],

∀f ∈ Ωq
c(X),

〈Dt
2f, f

〉
H
≥ 2tq · ‖f‖2H .

The kernel of Dt
2 on L2(X) is spanned by the function e−tx2/2. It follows

from the harmonic oscillator theory that all non-zero eigenvalues of Dt
2 on

L2(X) are not less than 2t. Therefore, on the orthogonal complement to
kerDt

2 in H we have:

1− T 2
t ≤

t2

t2 + 2t
≤ t

2
.

On the other hand,

∀g ∈ G, lim
t→0

∥∥∥∥∥(g − 1)

(
e−tx2/2

‖e−tx2/2‖

)∥∥∥∥∥ = 0. ¤

Lemma 5. Let G be a connected semisimple Lie group, g = k+p a Cartan
decomposition of its Lie algebra, Γ the connected subgroup in G with the
Lie algebra k,15 X = G/Γ. Then one has the relation:

α⊗C β = 1Cτ (X).

Proof. According to [9], X possesses the properties required by Definitions 3
and 4 and the group Γ1 = AdG (Γ) is compact. The action of Γ on X factors
through Γ1. So identifying X with p by exp−1 and applying Theorem 7, §5,
[15], we obtain that β ⊗Cτ (X) α = 1 in R0(Γ), i.e. rG, Γ(γ) = 1 in R0(Γ).
Now let V be the cotangent space to X = G/Γ at the point (Γ). Then
Cτ (X) = C(G×ΓCV ). Applying the relation (2) of Theorem 1 with D = CV

we get

γ · 1Cτ (X) = σCτ (X)(γ) = iΓ, G ◦ σCV ◦ rG, Γ(γ) = 1Cτ (X).

The application of Lemma 3 finishes the proof. ¤

15Editor’s note: Thus AdΓ is maximal compact in the adjoint group AdG. The group
Γ will be maximal compact in G if G is linear.
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Theorem 2. Let G be a connected Lie group, Gc its maximal compact
subgroup, A and B G-algebras, and assume that A is separable.

(1) There exist elements α = αG ∈ K0
G(Cτ (G/Gc)) and β = βG ∈

KG
0 (Cτ (G/Gc)) with the properties:

α⊗C β = 1Cτ (G/Gc), rG, Gc
(β ⊗Cτ (G/Gc) α) = 1;

γ = γG = β ⊗Cτ (G/Gc) α is an idempotent in R0(G), and for any
connected subgroup G1 ⊂ G, rG, G1(γG) = γG1 . If G is amenable
then γ = 1.

(2) If G is amenable then the restriction homomorphism

rG, Gc : KKi
G(A, B) → KKi

Gc
(A, B)

is an isomorphism. In the general case rG, Gc is an epimorphism with

ker rG, Gc = ker γ
def=

{
x ∈ KKi

G(A, B) | γ · x = 0
}

.

The group KKi
G(A, B) is the direct sum of ker γ and the subgroup

Im γ
def=

{
x ∈ KKi

G(A, B) | γ · x = x
}

;

the latter maps isomorphically onto KKi
Gc

(A, B) via rG, Gc .

(3) For any subgroup G1 ⊂ G, the homomorphisms

⊗C α : KKi
G1

(A, B) → KKi
G1

(A⊗̂Cτ (G/Gc), B)

⊗C β : KKi
G1

(A, B) → KKi
G1

(A, B⊗̂Cτ (G/Gc))

are epimorphisms and their kernels coincide with the kernel of the
multiplication by rG, G1(γ). The inverse homomorphisms

(
β ⊗Cτ (G/Gc)

)
and

( ⊗Cτ (G/Gc) α
)

are monomorphisms and their images coincide with the image of the
multiplication by rG, G1(γ). If G is amenable, all these homomorphisms
are isomorphisms.

(4) Let V be the cotangent space to G/Gc at the point (Gc). If the action
of Gc on V is spin16 then there exist elements

α′ ∈ K
dim(G/Gc)
G (C(G/Gc)) and β′ ∈ KG

dim(G/Gc)
(C(G/Gc))

16Editor’s note: i.e., the map Ad∗ : Gc → SO(V ) factors through the double cover
Spin(V ) of SO(V ).
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with the properties analogous to those listed in (1). Moreover,

β′ ⊗C(G/Gc) α′ = γ.

The homomorphisms of product and intersection with α′ and β′ pos-
sess the properties listed in (3).

Sketch of proof. First we shall construct α and β. We begin with finding
a compact normal subgroup Γ in G such that G/Γ is a Lie group. Then
Γ ⊂ Gc because Γ is contained in some maximal compact subgroup of G
and all maximal compact subgroups are conjugate to each other. If α and
β are already constructed for G/Γ then for G they can be obtained by
restriction rG/Γ, G. Therefore we may assume that G is a Lie group. Using
the construction of the maximal compact subgroup given in [30], Ch. 17,
Theorem 6, we will carry out an induction on dimG. If G is not semisimple
then, as shown in [30], G has a normal subgroup Γ isomorphic to a torus
T p or to a Euclidean space Rn.

In the case Γ = T p, again clearly Γ ⊂ Gc. The induction step (from G/Γ
to G) here is performed by restriction rG/Γ, G. In the case Γ = Rn, applying
the homomorphism (iGcΓ, G) ◦ σCW

(where W is the cotangent space to
G/GcΓ at the point (GcΓ)) to the elements

αGcΓ ∈ K0
GcΓ(Cτ (GcΓ/Gc)), βGcΓ ∈ KGcΓ

0 (Cτ (GcΓ/Gc))

we get elements

α′GcΓ ∈ KKG(Cτ (G/Gc), Cτ (G/GcΓ)),

β′GcΓ ∈ KKG(Cτ (G/GcΓ), Cτ (G/Gc)).

The desired α and β are defined by

α = α′GcΓ ⊗Cτ (G/GcΓ) rG/Γ, G(αG/Γ),

β = rG/Γ, G(βG/Γ)⊗Cτ (G/GcΓ) β′GcΓ,

where αG/Γ and αG/Γ exist by the induction hypothesis. If at some step G
is semisimple and non-compact (the case that does not occur if the initial G
was amenable), the induction step can be carried out using Lemma 5. This
finishes the construction of α and β.

Now note that item (3) follows from Theorem 6, §4, and item (4) follows
from (2), (3), and Lemma 1, §5, [15]. It remains to verify (2). Let V be the
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cotangent space to G/Gc at the point (Gc). Denote the algebra Cτ (G/Gc) =
C(G×Gc

CV ) by D. Consider the composition of homomorphisms:

η = (β ⊗D ) ◦ ( ⊗D α) ◦ (iGc, G) ◦ σCV
:

KKGc
(A, B) → KKGc

(A⊗̂CV , B⊗̂CV )

→ KKG(A⊗̂D, B⊗̂D) → KKG(A⊗̂D, B) → KKG(A, B).

It follows from item (2) of Theorem 1 that η ◦ rG, Gc
coincides with the

multiplication by γ. On the other hand, rG, Gc ◦ η = 1. This can be verified
with the use of a Gc-equivariant contraction of G/Gc, which is constructed
by the same induction on dim G as in the first part of the proof. ¤

Theorem 3. Let G be a connected Lie group and let π be a discrete sub-
group of G. Then the subgroup

Im γ =
{
x ∈ Ri(π) | rG, π(γ) · x = x

}

of the group Ri(π) is isomorphic to Ki
Gc

(Cτ (G/π)).

Sketch of proof. All stationary subgroups of the action of G on G/π×G/Gc

are finite. Hence there exists a G-invariant Riemannian metric on G/π ×
G/Gc and Cτ (G/π×G/Gc) is a G-algebra. The restriction of the cotangent
bundle of G/π × G/Gc to the submanifold (π) × G/Gc is a π-bundle over
G/Gc. It will be denoted by ξ, and we will denote by Y a small π-invariant
tubular neighbourhood of the submanifold (π)×G/Gc in G/π ×G/Gc.

Definition 3 gives us an element α1 ∈ K0
G(Cτ (G/π × G/Gc)). Define

the element β′′1 ∈ KKπ(Cτ (G/Gc), Cτ (Y )) as the triple (Cτ (Y ), ϕ1, θ1),
where ϕ1 is left multiplication by elements of Cτ (G/Gc) (lifted to Y via
the projection to G/Gc) and θ1 is left multiplication by the fiberwise radial
covector field17 on Y (orthogonal to G/Gc). Put

β′1 = rG, π(βG)⊗Cτ (G/Gc) β′′1 ∈ Kπ
0 (Cτ (Y )),

and let β1 ∈ Kπ
0 (Cτ (G/π×G/Gc)) be the image of β′1 under the homomor-

phism induced by the inclusion Y ↪→ G/π ×G/Gc.
Consider the composition of homomorphisms:
( ⊗Cτ (G/π×G/Gc) α1

) ◦ (iπ, G) ◦ (
σCξ(G/Gc)

)
:

Ri(π) → KKi
π (Cξ(G/Gc), Cξ(G/Gc))

→ KKi
G (Cτ (G/π ×G/Gc), Cτ (G/π ×G/Gc))

→ Ki
G (Cτ (G/π ×G/Gc)) .

17See the precise formula for a similar covector field θx in the proof of Theorem 2 of
section 8 below.
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Define the inverse homomorphism as the composition

(
β1 ⊗Cτ (G/π×G/Gc)

) ◦ rG, π.

These homomorphisms establish an isomorphism of the subgroup Im γ of
Ri(π) and the group Ki

G(Cτ (G/π × G/Gc)), which itself is isomorphic to
Ki

Gc
(Cτ (G/π)) by Theorem 2. ¤

§6. C∗-algebras of connected groups

In this section, when we consider a connected group18 G with the maximal
compact subgroup Gc, we will denote by V = VG the cotangent space to
G/Gc at the point (Gc). Notation Cc(G, D) will be used for the space of
compactly supported continuous functions on G with values in any Banach
space D.

Definition 1. Let B be a G-algebra, E a Hilbert B-module. We introduce
the right action of Cc(G, B) on Cc(G, E) by the formula:

(eb)(t) =
∫

G

e(s) · s(b(s−1t)) ds,

where e ∈ Cc(G, E), b ∈ Cc(G, B), and we define the scalar product on
Cc(G, E) with values in Cc(G, B) by

(e, f)(t) =
∫

G

s−1(e(s), f(st))E ds,

where e, f ∈ Cc(G, E). The completion of Cc(G, E) in the norm

‖e‖ = ‖(e, e)‖
1
2
C∗(G, B)

is a Hilbert C∗(G, B)-module. We will denote it by C∗(G, E).

Theorem 1. Let A and B be G-algebras. There exists a homomorphism,
functorial in A and B,

jG : KKG(A, B) → KK(C∗(G, A), C∗(G, B))

with the properties:

18Editor’s note: However, for purposes of Definition 1 and Theorem 1, G can be any
separable locally compact group.
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(1) if A is separable, x ∈ KKG(A, D), y ∈ KKG(D, B), then

jG(x⊗D y) = jG(x)⊗C∗(G, D) jG(y);

(2) if A = B then jG(1A) = 1C∗(G, A).

Sketch of proof. Let z = (E, ϕ, T ) ∈ EG(A, B). The homomorphism ϕ
induces ψ : C∗(G, A) → L(C∗(G, E)) by the formula:

(ψ(a)e)(t) =
∫

G

ϕ(a(s)) · s(e(s−1t)) ds,

where a ∈ Cc(G, A), e ∈ Cc(G, E). Define the operator R ∈ L(C∗(G, E))
by (Re)(s) = T (e(s)), where e ∈ Cc(G, E). From the easily verified iso-
morphism K(C∗(G, E)) ' C∗(G, K(E)), it follows that the triple w =
(C∗(G, E), ψ, R) belongs to

E(C∗(G, A), C∗(G, B)).

Put jG(z) = w. ¤

Theorem 2. Let G be a connected group, A a separable G-algebra, B a
separable algebra, γ ∈ R0(G) the element constructed in Theorem 2, §5.
Put

γ̃ = jGσA(γ) ∈ KK(C∗(G, A), C∗(G, A)).

(1) There exist elements

α̃ ∈ KK(C∗(Gc, A⊗̂CV ), C∗(G, A)),

β̃ ∈ KK(C∗(G, A), C∗(Gc, A⊗̂CV ))

with the properties:

α̃⊗C∗(G, A) β̃ = 1C∗(Gc, A⊗̂CV ); β̃ ⊗C∗(Gc, A⊗̂CV ) α̃ = γ̃.

If the action of Gc on V is spin then the algebra C∗(Gc, A⊗̂CV ) can
everywhere be replaced by C∗(Gc, A)⊗̂CV .

(2) For an amenable group G the homomorphisms

α̃⊗C∗(G, A) : KKi(C∗(G, A), B) → KKi(C∗(Gc, A⊗̂CV ), B),

⊗C∗(G, A) β̃ : KKi(B, C∗(G, A)) → KKi(B, C∗(Gc, A⊗̂CV ))
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are isomorphisms. In general they are epimorphisms and their kernels
coincide with the kernels of the left and right intersection with γ̃,
respectively. The inverse homomorphisms

β̃⊗C∗(Gc, A⊗̂CV ) : KKi(C∗(Gc, A⊗̂CV ), B) → KKi(C∗(G, A), B),

⊗C∗(Gc, A⊗̂CV ) α̃ : KKi(B, C∗(Gc, A⊗̂CV )) → KKi(B, C∗(G, A))

are in general monomorphisms with images equal to the subgroups on
which γ̃ acts as the identity. Moreover,

KKi(C∗(G, A), B) ' ker
(
α̃⊗C∗(G, A)

)⊕Im
(
β̃ ⊗C∗(Gc, A⊗̂CV )

)
,

KKi(B, C∗(G, A)) ' ker
(

⊗C∗(G, A) β̃
)
⊕Im

(
⊗C∗(Gc, A⊗̂CV ) α̃

)
.

(3) If the action of Gc on V is spin then in item (2) the groups

KKi(C∗(Gc, A⊗̂CV ), B) and KKi(B, C∗(Gc, A⊗̂CV ))

can everywhere be replaced by

KKi−dim G/Gc(C∗(Gc, A), B) and KKi+dim G/Gc(B, C∗(Gc, A)),

respectively.19

Sketch of proof. Applying the composition of homomorphisms jG ◦ σA to
the elements α and β constructed in Theorem 2, §5, we get elements

α′ ∈ KK(C∗(G, C(G×Gc
(A⊗̂CV ))), C∗(G, A)),

β′ ∈ KK(C∗(G, A), C∗(G, C(G×Gc (A⊗̂CV )))).

According to Theorem (2.13) of [8], the algebras

C∗(G, C(G×Gc (A⊗̂CV ))) and C∗(Gc, A⊗̂CV )

are strongly Morita equivalent. This implies the existence of α̃ and β̃. The
remaining statements follow from Theorem 6, §4 and Lemma 1, §5, [15]. ¤

19The isomorphism Ki(C
∗(R, A)) ' Ki−1(A) constructed by A. Connes in his paper

An analogue of the Thom isomorphism for crossed products of a C∗-algebra by an action
of R, Adv. Math. 39 (1981), 31–55, is a special case of the above isomorphisms.
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Remark 1. For the category of complex algebras, in the statement of Theo-
rem 2, the algebra CV can be everywhere replaced by the algebra of complex
functions C(V ). Indeed, from the Theorem 7, §5 of [15] it follows that there
are canonical elements20

α0 ∈ KKGc
(C(V ), CV ), β0 ∈ KKGc

(CV , C(V )).

Applying the composition of homomorphisms jGc
◦ σA, we get elements

α̃0 ∈ KK(C∗(Gc, A⊗̂C(V )), C∗(Gc, A⊗̂CV )),

β̃0 ∈ KK(C∗(Gc, A⊗̂CV ), C∗(Gc, A⊗̂C(V )))

which are inverses of each other and this according to Theorem 6, §4, allows
one to replace CV by C(V ).

Remark 2. If A = C and β = (E, T ) ∈ KG
0 (Cτ (G/Gc)) is the element

constructed in Theorem 2, §5, then it can be easily verified that the natural
homomorphism C∗(G) → L(C∗(G, E)) factors through the reduced C∗-
algebra C∗red(G). Therefore, β̃ = f∗(β̃1), where

β̃1 ∈ KK(C∗red(G), C∗(Gc, CV ))

and f : C∗(G) → C∗red(G) is the quotient map. Hence, with

γ̃1 = β̃1 ⊗C∗(Gc, CV ) α̃ ∈ KK(C∗red(G), C∗(G))

we have: γ̃ = f∗(γ̃1).
Now we can formulate the following strengthening of the conjecture (4.1)

of [27].

Conjecture. The element f∗(γ̃1) ∈ KK(C∗red(G), C∗red(G)) coincides with
1C∗red(G).

We must note however that if this conjecture is true then the element
γ̃1 defines a cross-section in the exact sequence of the groups K∗ for the
extension

0 → ker f → C∗(G) → C∗red(G) → 0,

which gives the canonical splitting

K∗(C∗(G)) ' K∗(C∗red(G))⊕K∗(ker f).

20Editor’s note: which together with the algebraic periodicity of the Clifford algebras
give rise to Bott periodicity.
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I do not know to what extent this last assertion may be true. In fact, it is
true in the examples where C∗(G) was calculated.21

Theorem 2 can be applied to the study of the discrete series representa-
tions of connected Lie groups, as was suggested in [27]. Besides that, it can
be used in the study of the structure of group C∗-algebras. We will consider
here mainly the case of C∗-algebras of nilpotent Lie groups (announced in
[13] and [15]). Up to the end of this section all C∗-algebras will be complex.

Theorem 3. Let G be a connected amenable group, Γ a normal subgroup
in G. Assume that the action of Gc on VG is spin, and Γ ' R. Then the
natural extension of C∗-algebras

(1) 0 → B → C∗(G) → C∗(G/Γ) → 0

does not split.22

Proof. Applying Theorem 2 we get:

KK(C∗(G/Γ), C∗(G)) = KK1(C∗(G/Γ), C∗(G/Γ)) = 0.

Therefore there is a short exact sequence (in the second variable of the
K-bifunctor):

(2) 0 → KK0(C∗(G/Γ), C∗(G/Γ)) δ−→ KK1(C∗(G/Γ), B)

→ KK1(C∗(G/Γ), C∗(G)) → 0.

Both left- and right-hand KK-groups are isomorphic to

KK0(C∗(Gc), C∗(Gc)) 6= 0.

21For the complex K-theory, the conjecture is proved now for all connected real lin-
ear reductive Lie groups (see A. Wassermann, Une démonstration de la conjecture de
Connes–Kasparov pour les groupes de Lie linéaires connexes réductifs, C. R. Acad. Sci.
Paris, Sér. I Math. 304 (1987), 559–562) and also for the class of K-amenable Lie groups
which is characterized by the property γ = 1 and includes, aside from amenable Lie
groups, also Lorentz groups SO(n, 1) and complex Lorentz groups SU(n, 1). (For the
result that γ = 1 for SU(n, 1) see P. Julg, G. Kasparov, L’anneau KKG(C, C) pour
G = SU(n, 1), C. R. Acad. Sci. Paris, Sér. I Math. 313 (1991), 259–264.)

22The result on the non-splittability of the extension (1) remains true if G is any
almost connected separable locally compact group and Γ solvable and simply connected
(without any assumptions on the spin action); see N. V. Gorbachev and G. G. Kasparov,
On extensions related with group C∗-algebras, Uspekhi Mat. Nauk 40 (1985), no. 2,
173–174; English translation: Russian Math. Surveys 40 (1985), no. 2, 213–214.



126 G. G. Kasparov

According to Lemma 6, §7 of [15], the element of KK1(C∗(G/Γ), B) cor-
responding to the extension (1) is equal to δ(1C∗(G/Γ)), which is obviously
non-zero. ¤

There exists a class of groups G satisfying the conditions of Theorem 3
for which the algebra B admits a simple description. This is the class of
all connected, simply connected nilpotent Lie groups such that the orbits
of the maximal dimension in the coadjoint representation of the group fill
the whole complement to the hyperplane orthogonal to the Lie algebra of
the normal subgroup Γ ' R. In this case by the Kirillov trace formula ([16],
(7.3) and [17], §15), B is a continuous trace algebra. From [6], (10.9.6), and
[4], it follows that B ' K ⊗ C(X), where X is the space of orbits of the
maximal dimension in the coadjoint representation.

Let g be the Lie algebra of G, p the hyperplane in g∗ orthogonal to
the Lie algebra of Γ. Then (g∗ r p) is a fiber bundle over X. Since each
of its fibers is homeomorphic to a Euclidean space, this fiber bundle has
a global cross-section s : X → (g∗ r p). Now notice that there is a vector
bundle ξ over (g∗ r p) whose fiber over an arbitrary point f ∈ (g∗ r p) is
the factor algebra g/gf , where gf is the Lie algebra of the stability subgroup
Gf = {g ∈ G | g(f) = f}. The total space of the vector bundle s∗(ξ) over
X is homeomorphic to (g∗ r p).

The vector bundle ξ has a symplectic structure, with the canonical 2-form

Qf (x, y) = 〈f, [x, y]〉, where f ∈ g∗, , x, y ∈ g.

This symplectic structure defines a complex structure on ξ and, as a con-
sequence, on s∗(ξ). By the Thom isomorphism ([15], §5, Theorem 8), the
K-functors of X and (g∗ r p) are isomorphic:

KK1(C∗(G/Γ), B) ' KK1(C∗(G/Γ), C (g∗ r p)) ' Z⊕ Z.

The isomorphism of KK1(C∗(G/Γ), B) with Z ⊕ Z follows also from (2)
but now it is chosen in such a way that it does not depend of the choice of
splitting in (2).

Next we will calculate the element of KK1(C∗(G/Γ), B) corresponding
to the extension (1). We need to make one more additional assumption on G
(which is possibly always true, but I could not find any information about it
in the literature). Our assumption is related with polarizations. It is known
that for any f ∈ g∗, there exists a Lie subalgebra mf ⊂ g, called polarization,
such that its dimension is 1

2 · (dim g+dim gf ) and f ([mf , mf ]) = 0. We will
assume that for f ∈ (g∗ r p), there is a continuous function f 7→ mf sending
a functional f to a polarization mf .



K-theory, group C*-algebras, and higher signatures (Conspectus) 127

Theorem 4. Assume that G is a connected, simply connected nilpotent Lie
group satisfying the two conditions imposed above: that the orbits of the
maximal dimension fill the complement to the hyperplane p and that there
exists a continuous function f 7→ mf defined on this complement. Denote
by n the maximal dimension of orbits in g∗. Then under the isomorphism
KK1(C∗(G/Γ), B) ' Z⊕Z which was fixed above, the element correspond-
ing to the extension (1) equals ± (

1, (−1)
n
2 +1

)
. (The sign ± depends on the

choice of orientations on G and Γ.)

Proof. Let Mf be the connected subgroup in G with Lie algebra mf . Put
H0 = C. The group Mf acts on H0 via the representation exp(y) 7→ ei〈f, y〉.
Consider the linear fiber bundle ηf = G ×Mf

H0 over G/Mf and the
natural representation of G in the Hilbert space Hf = L2(ηf ). This is
just the irreducible representation corresponding to the orbit containing f .
The family of representations of the group G in the spaces

{
Hs(x)

}
x∈X

,
where s is the cross-section considered above, defines a homomorphism
ψ : C∗(G) → L(HC(X)). And again by the Kirillov trace formula applied
to the function (a∗) ∗ a (where a is any smooth function with compact sup-
port on G), we have: ψ(B) ⊂ KC(X). The homomorphism ϕ : C∗(G/Γ) →
L(HC(X))/KC(X) induced by ψ is precisely the Busby homomorphism for
the extension (1).

The cross-section s can be chosen from the beginning in such a way
that s(−x) = −s(x). Moreover, we can choose the function f 7→ mf so
that m−f = mf . Obviously, η−f = η̄f , the fiber bundle complex conju-
gate to ηf . Given the complex conjugation H0 → H0, we get a fiberwise
antilinear isomorphism ηf → η̄f and an antilinear isometric isomorphism
ωf : L2(ηf ) → L2(η̄f ). Clearly,

ϕ−x(ā) = ωs(x)ϕx(a)ω−1
s(x), where x ∈ X, a ∈ Cc(G),

and ā is the complex conjugate function.
Now consider the following general situation. Assume that the algebras A

and B are complexifications of real algebras (i.e. “real” algebras in the sense
of [14] and [15]). Then there is also a “real” structure on HB and L(HB)
(cf. [14] and [15]). Sending a triple (HB , ϕ, T ) ∈ E(A, B) into (HB , ϕ̄, T̄ ),
where ϕ̄(a) = ϕ(ā) (and the upper line means the “real” involution), we
get an automorphism of KK(A, B) which will be called the complex con-
jugation. Since all Clifford algebras Cp, q are “real,” we get a complex con-
jugation on all KKi(A, B). Returning to our concrete situation, we have
established that the automorphism X → X : x 7→ −x, followed by the com-
plex conjugation on KK1(C∗(G/Γ), B), keeps the element corresponding
to the extension (1) unchanged.
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The automorphism x 7→ −x corresponds on KK1(C∗(G/Γ), B) ' Z⊕Z
to the composition of multiplication by (−1)dim X = (−1)dim G and the
transposition of the two copies of Z. As to the complex conjugation, we first
point out that it commutes with the product-intersection. The elements
α̃ and β̃ from Theorem 2 are “real,” i.e., remain unchanged under com-
plex conjugation. The Clifford periodicity KKp, q+1 → KKp+1, q after the
complex conjugation changes its sign (i.e. anticommutes with the complex
conjugation). Therefore in the composition of isomorphisms

KK1(C∗(G/Γ), B) ' KK1(C∗(G/Γ), C (g∗ r p)) ' Z⊕ Z,

the complex conjugation results in the change of sign by (−1)(dim G−dim X)/2

= (−1)
n
2 at the first stage and by (−1)dim G−1 at the second stage. Conse-

quently, the element of the group Z⊕ Z corresponding to the extension (1)
must be of the type (d, (−1)

n
2 +1d), where d ∈ Z. But in view of the exact

sequence (2), the subgroup of Z ⊕ Z generated by this element is a direct
summand in Z⊕ Z. Hence d = ±1. ¤

Example. For the (2k + 1)-dimensional Heisenberg group G = Γ2k+1 and
its central subgroup Γ = Γ1, the element corresponding to the extension (1)
is equal to (−1, (−1)k) for the natural choice of orientations. This calcula-
tion for Γ2k+1 was first carried out at the request of Professor A. A. Kirillov
in 1976 (even before the product-intersection was constructed and the Bott
periodicity and the isomorphism KK1(C∗(Γ2k+1/Γ), B) ' Z⊕ Z were rig-
orously proved). The result for Γ3 was later announced in [13]. Briefly, the
method we used in that calculation was the following straightforward one.
The canonical generator of the group

K0(C∗(Γ2k+1/Γ)) ' K0(C(R2k)) ' K̃0(C(S2k))

can be precisely written as a projection in MN (C(S2k)) up to stable equiv-
alence (for some N). This projection can be lifted to some element p ∈
MN ( ˜C∗(Γ2k+1)). The element ψ(p) ∈ MN (L(HC(X))), where X = Rr0, de-
fines an element of K−1(C(X)) ' Z⊕Z. By a precise homotopy of (pseudo-
differential) operators this last element can be identified with (−1, (−1)k) ∈
Z⊕ Z.

§7. C∗-algebras of discrete groups

Definition 1. Let A be a Γ-algebra, X a locally compact right Γ-space
with X/Γ locally compact. Define C(X×ΓA) to be the algebra of continuous
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functions f : X → A satisfying the conditions (1) and (2) of Definition 2,
§5 (with G replaced by X). The subspace of functions f ∈ C(X ×Γ A) with
f(x) = 0 when (xΓ) is out of some compact set in X/Γ (depending on f)
will be denoted by Cc(X ×Γ A).

Lemma 1. Assume that Γ1 and Γ2 are subgroups in G such that the left
action of Γ1 on G/Γ2 is free and proper. If A is a Γ2-algebra, then the
algebras C∗(Γ1, C(G ×Γ2 A)) and C ((Γ1\G)×Γ2 A) are strongly Morita
equivalent.

Sketch of proof. (Cf. [26], example 2.) Define on E = Cc(G×Γ2 A) the right
action of

C ((Γ1\G)×Γ2 A)

by pointwise multiplication and the left action of Cc(Γ1, C(G ×Γ2 A)) by
the formula:

(a · e)(t) =
∫

Γ1

a(s, t) e(s−1t) µΓ1(s)
1
2 dΓ1s,

where a ∈ Cc(Γ1, C(G×Γ2 A)), e ∈ E, s ∈ Γ1, t ∈ G. The left scalar product
on E with values in Cc(Γ1, C(G×Γ2 A)) is defined by

〈e1, e2〉 (s, t) = µΓ1(s)
− 1

2 e1(t)e∗2(s
−1t)

and the right scalar product with values in C ((Γ1\G)×Γ2 A) by

〈e1, e2〉 (Γ1t) =
∫

Γ1

e∗1(s
−1t)e2(s−1t) dΓ1s,

where e1, e2 ∈ E, s ∈ Γ1, t ∈ G. Completing E we get the required imprim-
itivity bimodule. ¤

Theorem 1. Assume that G is a connected group, Gc its maximal compact
subgroup, V the cotangent space to G/Gc at the point (Gc), π a discrete
subgroup in G without torsion, A a separable π-algebra, D a separable
algebra, γ ∈ R0(G) the element constructed in Theorem 2, §5. Put

γ̃ = jπ ◦ σA ◦ rG, π(γ) ∈ KK(C∗(π, A), C∗(π, A)).

Then the subgroup

Im γ̃` =
{
x ∈ KKi(C∗(π, A), D) | γ̃ ⊗C∗(π, A) x = x

}
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of the group KKi(C∗(π, A), D) is isomorphic to

KKi(C(G×(π×Gc) (A⊗̂CV )), D)

and the subgroup

Im γ̃ρ =
{
x ∈ KKi(D, C∗(π, A)) | x⊗C∗(π, A) γ̃ = x

}

of the group KKi(D, C∗(π, A)) is isomorphic to

KKi(D, C(G×(π×Gc) (A⊗̂CV ))).

Here the action of (π ×Gc) on (A⊗̂CV ) is defined by (s, t)(a⊗̂c) = s(a)⊗̂t(c)
and the right action of (π ×Gc) on G by (s, t)(g) = s−1gt. If the action of
Gc on V is spin then

Im γ̃` ' KKi−dim G/Gc(C(G×π A), D),

Im γ̃ρ ' KKi+dim G/Gc(D, C(G×π A)).

In the case of an amenable group G, the subgroups Im γ̃` and Im γ̃ρ co-
incide with the whole groups KKi(C∗(π, A), D) and KKi(D, C∗(π, A)),
respectively.

Sketch of proof. In view of [8], (2.13), the algebra C∗(π, A) is strongly
Morita equivalent to C∗(G, C(G ×π A)). By Theorem 2, §6, the “γ̃-part”
of the K-bifunctor of D and C∗(G, C(G ×π A)) is isomorphic to the K-
bifunctor of D and C∗(Gc, C(G×π A)⊗̂CV ). The latter algebra is strongly
Morita equivalent to

C∗
(
G, C (G×π A) ⊗̂C (G×Gc CV )

)

' C∗
(
G, C

(
(G×G)(π×Gc)

(
A⊗̂CV

)))
.

It remains to apply Lemma 1 and to notice that the right (π ×Gc)-space
G\(G×G) is homeomorphic to G via (g1, g2) 7→ g−1

1 g2. ¤

For the next theorem we will fix a separable algebra D and denote by
ki(A) the group KK−i(D, A) and by ki(A) the group KKi(A, D). Let
H∗(π, M) and H∗(π, M) be as usual the homology and cohomology of a
discrete group π with values in a π-module M (cf. [18]). For a π-algebra A,
the groups k∗(A) and k∗(A) are clearly π-modules.
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Theorem 2. Let G be a connected group, π its discrete subgroup with-
out torsion, A a separable π-algebra. If the algebra D is nuclear23 then
there exists a (homological) spectral sequence (Er, dr) with differentials
dr : Er

p, q → Er
p−r, q+r−1 and the term E2

p, q = Hp(π, kq(A)), converging
to the subgroup Im γ̃ρ of k∗(C∗(π, A)). If the algebra A is nuclear then
there exists a (cohomological) spectral sequence (Er, dr) with differentials
dr : Ep, q

r → Ep+r, q−r+1
r and the term Ep, q

2 = Hp(π, kq(A)), converging to
the subgroup Im γ̃` of k∗(C∗(π, A)).

Sketch of proof. In the notation of Theorem 1, the smooth manifold π\G/Gc

may be considered as a classifying space Bπ for the group π (cf. §9 below).
Let

X0 ⊂ X1 ⊂ · · · ⊂ Xn = Bπ

be its filtration by the skeleta of some smooth triangulation (dim Xi = i).
Denote by Y i a small open neighbourhood of Xi such that ∀i, (Y i r Y i−1)
is a disjoint sum

⋃
m

(
Si

m × Int (In−i)
)
, where each Si

m is a closed subset of
Xi homeomorphic to the i-dimensional simplex and Int (In−i) is the interior
of the (n− i)-dimensional cube. Define a filtration

A0 ⊂ A1 ⊂ · · · ⊂ An = C
(
G×(π×Gc)

(
A⊗̂CV

))

by

Ai =
{
f ∈ C

(
G×(π×Gc)

(
A⊗̂CV

)) | f(g) = 0 for πgGc 6∈ Y i
}

.

Now one applies the standard construction of a spectral sequence asso-
ciated with a filtration (cf. [18] or [28]). To identify the term E2 notice

23The condition of nuclearity of D and A was included into the statement of the
Theorem in order to have the exact sequences used in the proof. From this point of view,
the condition of nuclearity of D and A is unnecessary because the exact sequences used
in the proof are available without this assumption – see [0], 6.10. On the other hand, for
the part of the Theorem related with k∗(A) one really needs some additional assumption
concerning D. What is really necessary is countable additivity for k∗ and k∗. Whereas
for k∗ this is automatic, for k∗ this is true, for example, if D is type I with K∗(D)
finitely generated — see J. Rosenberg and C. Schochet, The Künneth theorem and the
universal coefficient theorem for Kasparov’s generalized K-functor, Duke Math. J. 55
(1987), 431–474.
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that

E1
p, q = kp+q(Ap/Ap−1)

= KK−p−q

(
D,

⊕
m

C
(
Sp

m × Int (In−p)
) ⊗̂A⊗̂Cn, 0

)

=
⊕
m

KK−q (D, A)

=
⊕
m

kq(A).

It is easily verified that the differential d1 coincides with the boundary
homomorphism from the p-chains with values in kq(A) to the (p−1)-chains.
The same argument applies to E2 as well. ¤

Remark 1. The exact sequences of [24] for π = Z are immediate conse-
quences of the spectral sequences of Theorem 2. (All differentials in this
case are 0 beginning with the second one.)

§8. Representable K-functor and Poincaré duality

In this section the group Γ will be compact. The representable cohomolog-
ical K-functor of a Γ-space X, as defined by Fredholm complexes in [29], will
be denoted here by RK∗

Γ(X). If X is compact then RK∗
Γ(X) ' KΓ

−∗(C(X)).
Define the representable homological K-functor RKΓ

∗ (X) as the direct limit

lim−→
Y⊂X

K−∗
Γ (C(Y ))

over the inductive system of all compact Γ-subsets Y ⊂ X.
For compact manifolds with boundary, the Poincaré duality can be for-

mulated as follows.

Theorem 1. Assume that M is a smooth compact manifold with the
boundary ∂M , and a compact group Γ acts on M smoothly. Put M =
M r ∂M . Then there exist elements

αM×M ∈ K0
Γ

(
Cτ (M)⊗ C(M)

)
, βM×M ∈ KΓ

0

(
Cτ (M)⊗ C(M)

)

with the properties:

βM×M ⊗Cτ (M) αM×M = 1C(M), βM×M ⊗C(M) αM×M = 1Cτ (M).



K-theory, group C*-algebras, and higher signatures (Conspectus) 133

The homomorphisms

( ⊗Cτ (M) αM×M

)
: KΓ

i (Cτ (M)) → K−i
Γ

(
C(M)

)
,

(
βM×M ⊗Cτ (M)

)
: K−i

Γ (Cτ (M)) → KΓ
i

(
C(M)

)
,(

⊗C(M) αM×M

)
: KΓ

i

(
C(M)

) → K−i
Γ (Cτ (M)) ,

(
βM×M ⊗C(M)

)
: K−i

Γ

(
C(M)

) → KΓ
i (Cτ (M))

are isomorphisms.

Sketch of proof. Choose a Γ-invariant Riemannian metric on M . The ele-
ment αM×M is the image of the element α ∈ K0

Γ (Cτ (M)) constructed in
Definition 3, §5, under the homomorphism induced by the multiplication

Cτ (M)⊗ C(M) → Cτ (M).

To construct βM×M , identify M with

M ∪∂M

(
∂M × [0, 1)

)

and embed M diagonally into M ×M . The conormal bundle to M in
M ×M will be denoted by η. It is isomorphic to the cotangent bundle
τ to M . Denote the total space of η by Y and the lifting of η to Y by
ξ. Let 1M ∈ KΓ

0

(
C(M)

)
be the image of 1 ∈ KΓ

0 (C) under the inclusion
C ↪→ C(M).24 The Thom isomorphism ([15], §5, Theorem 8)

KΓ
0

(
C(M)

) '−→ KΓ
0 (Cξ(Y ))

transfers 1M into some element β′ ∈ KΓ
0 (Cξ(Y )). The required βM×M is

the image of β′ under the inclusion

Cξ(Y ) ↪→ Cτ (M)⊗ C(M). ¤

For the application to higher signatures we need the Poincaré duality for
non-compact manifolds.

24Editor’s note: In other words, 1
M
∈ K0

Γ

�
M
�

is simply the class of the trivial line

bundle over M .
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Theorem 2. Assume that X is a complete Riemannian manifold (without
boundary) and a compact group Γ acts on X isometrically. Then one has
the following natural isomorphisms:

PD∗ : KΓ
i (Cτ (X)) '−→ RKΓ

i (X) ,

PD∗ : Ki
Γ (Cτ (X)) '−→ RKi

Γ (X) .

Sketch of proof. Take in X an exhaustive increasing system of compact
Γ-manifolds with boundaries:

M1 ⊂ M2 ⊂ · · · ⊂ X.

Theorem 1 gives us a concordant system of isomorphisms:

KΓ
i (Cτ (Mp)) → K−i

Γ

(
C(Mp)

)
and K−i

Γ (Cτ (Mp)) → KΓ
i

(
C(Mp)

)
.

The isomorphism PD∗ is obtained as a direct limit isomorphism. To obtain
PD∗, choose a smooth Γ-invariant function ε(x) on X such that ∀x ∈ X,
there is a geodesic coordinate system in the ε(x)-neighbourhood Ux of x.
Define ∀x ∈ X a covector field θx in Ux by

θx(y) =
ρx(y) · dρx(y)

ε(x)
,

where ρx(y) is the geodesic distance from x to y ∈ Ux and d is the exterior
derivative in the y variable.

Given an arbitrary z = (E, ϕ, T ) ∈ K−i
Γ (Cτ (X)), where E = H⊗̂C0,i, it

is not difficult to construct a continuous family of pairs Mx, Nx ∈ L(E) such
that ∀g ∈ Γ, g(Mx) = Mgx, g(Nx) = Ngx, and the family of “intersection
operators”

Fx = θx ××Cτ (Ux)T =
√

Mx · ϕ∗(θx) +
√

Nx · T

forms a Fredholm complex

{Fx} :
(H⊗̂C0, i

)×X → (H⊗̂C0, i

)×X

over X. Put PD∗(z) = {Fx}. Now the statement about PD∗ follows from
Milnor’s lim←−

1 exact sequence [19]. ¤

As a corollary of Theorem 2 and Theorem 3, §5, we get:
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Theorem 3. Let G be a connected Lie group, π a discrete subgroup. Then
the subgroup

Im γ =
{
x ∈ Ri(π) | rG, π(γ) · x = x

}

of the group Ri(π) is isomorphic to RKi
Gc

(G/π). ¤

Note added

As it was pointed out in the Preface, in the preprint distributed in 1981
there were some small errors in the proof of the Novikov conjecture given
in section 9. We indicate here some modification to section 8 that will be
necessary in order to give a correct argument in section 9.

The modification that is needed is the replacement of the integer co-
efficients by rational ones. For this we fix some C∗-algebra D such that
K0(D) ' Q, K1(D) = 0.25 Let us consider this algebra with the trivial
action of any group (G, or π, or Γ). We can define the rational version of
the KK-groups simply by putting

KKG(A,B; Q) = KKG(A, B ⊗D).

The representation ring of G should be replaced by the group

Ri(G; Q) = KKi
G(C, D).

Similarly, one can define the rational representable cohomological K-
functor using complexes of Fredholm operators in Hilbert modules over D
parametrized by a paracompact space X. Alternatively, one can use the
RKK-groups defined in [0]. Then one can put

RK∗
Γ(X; Q) = RKK∗

Γ(X;C, D).

The rational representable homological K-functor RKΓ
∗ (X; Q) is defined as

the direct limit
lim−→

Y⊂X

K−∗
Γ (C(Y ), D)

over the inductive system of all compact Γ-subsets Y ⊂ X.
Both Theorems 1 and 2 remain valid, with their proofs, for the rational

K-theory groups (cf. section 4 of [0]). Theorem 3 also remains valid, together

25Editor’s note: For example, one can use the “universal UHF algebra,” the infinite
tensor product of all finite-dimensional matrix algebras.



136 G. G. Kasparov

with Theorem 3 of section 5, but of course the element γ in the statement of
these theorems should be understood as the element of the usual (integer)
R0(π).

§9. Higher signatures

Let π be an arbitrary topological group, Eπ → Bπ a principal locally trivial
π-bundle with the space Eπ contractible and Bπ paracompact (π acts on
Eπ on the left). Then the space Bπ is called the classifying space26 of the
group π.

Let us fix the discrete group π. Consider a connected oriented closed
smooth manifold Mn. If we fix a homomorphism ι : π1(Mn) → π then
there is a map f : Mn → Bπ inducing the homomorphism ι on fundamental
groups. (f is the classifying map for the π-bundle on Mn associated with
the universal covering via ι.) Denote by [Mn] the fundamental cycle of Mn

in Hn(Mn) and by L∗(Mn) the Pontryagin-Hirzebruch characteristic class
of Mn.

The problem of homotopy invariance of higher signatures [23] may be
formulated as follows. If h : Nn → Mn is an orientation-preserving homo-
topy equivalence of oriented smooth manifolds, then is it true that ∀x ∈
H∗(Bπ; Q) the intersection indices

〈L∗(Mn) · f∗(x), [Mn]〉 and 〈L∗(Nn) · h∗f∗(x), [Nn]〉

are equal? If we consider the homology class

D(L∗(Mn)) = L∗(Mn) ∩ [Mn] ∈ H∗(Mn; Q)

Poincaré dual to L∗(Mn), then the equivalent question is whether

f∗ (D(L∗(Mn))) ∈ H∗(Bπ; Q)

is a homotopy invariant of Mn.
In [11], [21], [22], [12] the author and A. S. Mishchenko independently

have suggested a general method of reducing this problem to another one
dealing with the K-functor of the space Bπ. Following [12], §8, we will prove
here the homotopy invariance of higher signatures for any group π which is
a discrete subgroup of some connected Lie group.

26Editor’s note: One can justify the definite article by the fact that Bπ is unique up
to homotopy equivalence.
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Multiplying Mn by the torus Tn, we can reduce to the case of an even-
dimensional manifold M2n. First we will construct some distinguished el-
ement in the complex homological K-functor K0(M2n). Fix a Riemann-
ian metric on M2n. Put H = L2

(∧∗ (
M2n

))
with the grading defined by

the grading operator ε which on p-forms is equal to ip(p−1)+n · ∗, where
∗ :

∧p (
M2n

) → ∧2n−p (
M2n

)
is the Hodge ∗-operator. Define the homo-

morphism ϕ : C(M2n) → L(H) to be given by multiplication by functions,
and let the operator d+δ√

1+∆
be defined as in §5. Denote the element

(
H, ϕ,

d + δ√
1 + ∆

)
∈ K0(M2n)

by [d + δ]. (In all constructions and statements dealing with the element
[d + δ] we shall confine ourselves to the case of the complex K-functor.)

Now we will apply the Atiyah-Singer index theorem to the signature
operator (d+ δ) (cf. [2], §6) lifted to the vector bundle

∧∗ (
M2n

)⊗ ξ, where
ξ is an arbitrary vector bundle on M2n. As was proved in [12], the analytical
index will be equal to

[ξ]⊗C(M2n) [d + δ] ∈ K0(C) = Z.

The topological index is equal to

2n · 〈ch ξ · L∗(M2n), [M2n]〉,
where L∗(M2n) is the modified Pontryagin-Hirzebruch class (see [2]. §6).
Since the vector bundle ξ is arbitrary and (ch ⊗ Q) is an isomorphism,
the homotopy invariance of f∗ (D(L∗(Mn))) is equivalent to the homotopy
invariance of f∗([d + δ]) ∈ RK0(Bπ)⊗Q.

Definition 1. Let G be an arbitrary locally compact group. We will con-
struct a homomorphism α : Ri(G) → RKi(BG). Given z =

(H⊗̂Ci,0, T
) ∈

Ri(G), consider the family of Fredholm operators

Tx =
∫

G

λ(g−1x) · g(T ) dg ∈ L (H⊗̂Ci,0

)

parameterized by the points x ∈ EG, where λ(x) is a cut-off function on
EG (see [3], Ch. 7, §2, Proposition 8).27 Since ∀g ∈ G, Tgx = g(Tx), the
family {Tx} defines a Fredholm complex

{T̃x} :
((H⊗̂Ci,0

)× EG
)
/G → ((H⊗̂Ci,0

)× EG
)
/G

on BG. (The action of G on
(H⊗̂Ci,0

)×EG is diagonal.) Put α(z) = {T̃x}.

27Editor’s note: This means λ ≥ 0 is continuous, supp λ has compact intersection with
G ·K, for any compact K ⊂ EG, and the integral of λ over G-orbits is identically 1.
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Definition 2. Let π be a discrete group. We will construct a homomor-
phism β : RKi(Bπ) → Ki(C∗(π)). Consider a compact set X ⊂ Bπ. The
inclusion X ↪→ Bπ induces a regular covering X̃ → X with the group π.
Consider the vector space FX of continuous functions µ : X̃ → C∗(π) satis-
fying the condition: ∀x ∈ X̃, ∀g ∈ π, µ(gx) = g ·µ(x). (On the right side we
use the product of the element g and µ(x) ∈ C∗(π).) We introduce on FX

the right action of C(X)⊗C∗(π) as the right multiplication by continuous
functions ν : X → C∗(π) and we define on FX the scalar product with
values in C(X)⊗ C∗(π) by the formula:

〈µ1, µ2〉(x) = µ∗1(x) · µ2(x).

(Clearly, the last product only depends on the class π · x ∈ X̃/π = X and
therefore defines a function X → C∗(π).) Endowed with these structures
FX becomes a Hilbert C(X)⊗C∗(π)-module. It is easily verified that FX is
a finitely generated projective C(X)⊗C∗(π)-module. Hence, it defines some
element [FX ] ∈ K0(C(X)⊗ C∗(π)). Considering the intersection product

[FX ]⊗C(X) : K−i(C(X)) → Ki(C∗(π))

and passing to the direct limit over the inductive system of all compact
subsets X ⊂ Bπ, we obtain the homomorphism β.

Note that the alternative intersection product

[FX ]⊗C(X) : Ki(C∗(π)) → K−i(C(X))

after passing to the inverse limit gives the homomorphism

α̃ : Ri(π) = Ki(C∗(π)) → LKi(Bπ),

where LKi(Bπ) is lim←−
X⊂Bπ

Ki(C(X)) over the same system of all compact

subsets X ⊂ Bπ.28 It is easily verified that α̃ is the composition of α and
the natural restriction RKi(Bπ) → LKi(Bπ). The homomorphisms α̃ and
β are obviously dual to each other in the sense that

α̃(x)⊗Bπ y = x⊗C∗(π) β(y) ∈ K0(C) = Z.

28Editor’s note: However, in general the theory LKi is not well-behaved since the
Mittag-Leffler condition may not be satisfied; see [1].
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Note added

The homomorphisms α, β and α̃ can also be defined for the rational
K-theory groups (see Note added at the end of section 8). Actually for the
application to the Novikov conjecture we will need just these rational homo-
morphisms. Note that for locally finite countable CW -complexes X one has
RK∗(X; Q) ' RK∗(X)⊗Q and RK∗(X; Q) ' Hom(RK∗(X),Q).29 There-
fore, for the rational K-groups, if the image of α̃⊗Q is dense in LK∗(Bπ; Q)
in the projective limit topology, then β ⊗ Q is a monomorphism. For the
integer K-groups this may be wrong. In fact, the pairing between RK∗(Bπ)
and RK∗(Bπ) may be highly degenerate: take, for example, π = Z[ 12 ].

In the next Theorem 1, we changed all K-theory groups to the rational
ones for two reasons: because for the Novikov conjecture we need just the
rational version of this theorem and also because the proof of the integer
version, which was stated in the preprint distributed in 1981, contained a
gap, whereas for the rational version of this result the argument goes well.

Theorem 1. If π is a discrete subgroup of a connected Lie group G, then
∀i the image of

α̃ : Ri(π; Q) → LKi(Bπ; Q)

is dense in the projective limit topology on LKi(Bπ; Q). Moreover, if π has
no torsion, then ∀i

α : Ri(π; Q) → RKi(Bπ; Q)

is an epimorphism.

Sketch of proof. Denote the epimorphism Ri(π; Q) → RKi
Gc

(G/π; Q)
of Theorem 3, §8, by δ. If π has no torsion then Gc\G/π ' Bπ and
RKi

Gc
(G/π; Q) ' RKi(Bπ; Q). It can be proved that α = δ. We omit

this.
In general it is necessary to prove that for any compact subset X ⊂ Bπ,

the images of the homomorphisms

RKi
Gc

(G/π; Q) → RKi
Gc

(G×π X̃; Q)

and
RKi

Gc
(G×π Eπ; Q) → RKi

Gc
(G×π X̃; Q)

29This is essentially the uniqueness theorem for homology and cohomology. See some
more details about this in G. Kasparov and G. Skandalis, Groups acting on buildings,
Operator K-theory, and the Novikov conjecture, K-theory 4 (1991), 303–337, Lemma 3.4
and Remark on pp. 314–315.
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coincide. (Here X̃ is the regular covering of X with the group π induced by
the inclusion X ↪→ Bπ.)

Note that the projection

(Gc\G)×π Eπ → Bπ

is a fiber bundle with contractible fibers (homeomorphic to Gc\G). Hence
there is a cross-section s : Bπ → (Gc\G) ×π Eπ. Let Y → X be the Gc-
bundle over X induced from the Gc-bundle

G×π Eπ → (Gc\G)×π Eπ

via the map s combined with the inclusion X ↪→ Bπ. Clearly the Gc-spaces
G×π X̃ and Y are homotopy equivalent, and Y is compact. Moreover, there
is a homotopy equivalence of Gc-spaces:

G×π Eπ ' G×π EG ' (G/π)× EG ' (G/π)× EGc.

Hence it is sufficient to verify that for any compact Gc-subspace Y ⊂
(G/π)× EGc, the images of the homomorphisms

RK∗
Gc

(G/π; Q) → RK∗
Gc

(Y ; Q)

and
RK∗

Gc
(G/π × EGc; Q) → RK∗

Gc
(Y ; Q)

coincide.
Note that all stability subgroups of the action of Gc on G/π are finite.

Since the rational cohomology of finite groups is trivial, using the G. Segal
spectral sequence,30 it is not difficult to see that the image of

RK∗
Gc

(G/π × EGc; Q) → RK∗
Gc

(Y ; Q)

coincides with the image of

RK∗(Gc\G/π; Q) → RK∗(Gc\Y ; Q).

Since the map

RK∗
Gc

(G/π; Q) → RK∗(Gc\G/π; Q)

is surjective we get the required assertion. ¤

30See G. Segal, Classifying spaces and spectral sequences and Equivariant K-theory,

Publ. Math. Inst. des Hautes Études Scient. 34 (1968), 105–112, 129–151.
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Corollary 1. If π is a discrete subgroup of a connected Lie group G, then

β ⊗Q : RKi(Bπ)⊗Q→ Ki(C∗(π))⊗Q

is a monomorphism. ¤

Remark 1. In the first proof of Theorem 1 (as it was announced in [12]), the
assertion that δ is epimorphic was proved by a straightforward construction
of elliptic (Fredholm) complexes and their homotopies. Because of that the
whole proof was rather cumbersome.

Theorem 2. Assume that M2n is a closed oriented smooth manifold and
f : M2n → Bπ a continuous map. Then the element β (f∗ ([d + δ])) ∈
K0(C∗(π)) is a homotopy invariant of the manifold M2n.

Sketch of proof. Put B = C∗(π) and let M̃ be the regular covering of M2n

with the group π induced by f . Fix a Riemannian metric on M and lift it
also to M̃ . Denote by Ωp(M ; B) the space of smooth forms ω on M̃ with
values in B satisfying ∀g ∈ π, ∀x ∈ M̃ , for any tangent vectors v1, . . . , vp

at the point x the condition

ω(gx)(gv1, . . . , gvp) = g · ω(x)(v1, . . . , vp).

The space Ωp
c(M̃) of C-valued compactly supported smooth forms on M̃ is

a subspace in Ωp(M ; B). The inclusion σ : Ωp
c(M̃) ↪→ Ωp(M ; B) is given by

(1) σ(ωc)(x)(v1, . . . , vp) =
∑
g∈π

ωc(gx)(gv1, . . . , gvp) · g−1,

where g−1 is considered as an element of C∗(π). Define the operator

η : Ωp(M ; B) → Ωp(M ; B) by η(ω) = ip(p−1)+n · ω

and let ∗ : Ωp(M ; B) → Ω2n−p(M ; B) be the Hodge ∗-operator (defined
pointwise by the Riemannian metric). The space

Ω∗(M ; B) =
2n⊕

p=0

Ωp(M ; B),

endowed with the right multiplication by elements of B and the B-scalar
product defined by

(ω1, ω2) =
∫

M2n

∗(ω∗1) ∧ ω2,
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where

ω∗1(x)(v1, . . . , vp) = (ω1(x)(v1, . . . , vp))
∗
,

becomes a pre-Hilbert B-module. The grading on Ω∗(M ; B) is introduced
by the grading operator ε = ∗ · η. Completing Ω∗(M ; B) we get a Hilbert
B-module E.

Operators d, δ = −εdε and ∆ = dδ + δd on Ω∗(M ; B) are defined as
usual. Moreover, there is a norm bounded operator (1+∆)−1 on Ω∗(M ; B).
To define this operator we notice that the equation (1 + ∆)ω1 = ω2 can
be solved in the space of L2-forms on M̃ . By the regularity theorem for
elliptic equations, ω1 is smooth whenever ω2 is smooth. If ω2 ∈ Ω∗c(M̃) then
ω1 defines an element of Ω∗(M ; B) by the same formula (1). (We omit the
proof.31) Now the operator d+δ√

1+∆
can be defined on E, and one has:

β(f∗([d + δ])) =
(

E,
d + δ√
1 + ∆

)
∈ K0(B).

We will apply an analogue of the algebraic surgery technique (cf. [20])
to the Poincaré complex (Ω∗(M ; B), d) in order to reduce the element(
E, d+δ√

1+∆

)
. To make the first surgery we want to find elements x1, . . . , xm ∈

Ω0(M ; B) such that

∆ +
m∑

i=1

θxi, xi ≥ const > 0 on Ω0(M ; B).

(Recall from [15] that θx, y(z) def= x · (y, z).) Put k = (1 + ∆)−1. Since
∆ ≥ 1−k, it is enough to have the above inequality with 1−k instead of ∆.
Denote the completion of Ω0(M ; B) by E0. Since k ∈ K(E0) is positive and
Ω0(M ; B) is dense in E0, one can find elements x1, . . . , xm ∈ Ω0(M ; B)
such that k −∑m

i=1 θxi, xi ≤ 1
2 . Then (1− k) +

∑m
i=1 θxi, xi ≥ 1

2 ; therefore

∆ +
m∑

i=1

θxi, xi ≥
1
2
.

31See Theorem 2 in my article: An index for invariant elliptic operators, K-theory,
and representations of Lie groups, Dokl. Akad. Nauk SSSR 268 (1983), 533–537; English
translation: Soviet Math. Dokl. 27 (1983), 105–109. In this article also the calculus is
described for group invariant pseudodifferential operators, which allows to prove that the
operator (1 + ∆)−1 belongs to K(E).



K-theory, group C*-algebras, and higher signatures (Conspectus) 143

Now consider the new complex Ω̃∗(M ; B) with all Ω̃p the same as before
except for Ω̃1 = Ω1 ⊕Bm and Ω̃2n−1 = Ω2n−1 ⊕Bm. (In the case n = 1 we
put Ω̃1 = Ω1 ⊕Bm ⊕Bm.) The grading operator ε extends to ε̃ : Ω̃∗ → Ω̃∗,
which identifies the first direct summand Bm with the second one. The
operators d̃ : Ω̃0 → Ω̃1 and δ̃ : Ω̃1 → Ω̃0 are defined by the formulas:

d̃(y) = (d(y), (x1, y), . . . , (xm, y)) ,

δ̃(y, b1, . . . , bm) = δ(y) +
m∑

i=1

xibi.

Put d̃ = d ⊕ 0 : Ω̃1 → Ω̃2, δ̃ = δ ⊕ 0 : Ω̃2 → Ω̃1. Define d̃ and δ̃ on Ω̃2n−1

by applying ε̃. Clearly, the equality d̃2 = 0 remains valid. Moreover, the
element

(
E, d+δ√

1+∆

)
∈ K0(B) does not change. Indeed, there is a homotopy

of d̃ → d⊕0 and δ̃ → δ⊕0 which comes from the homotopy of the elements
xi to 0.

In the complex Ω̃∗ the operator ∆̃ on Ω̃0 is equal to ∆+
∑m

i=1 θxi, xi ≥ 1
2 .

Now we can change our complex once more into
≈
Ω∗(M ; B) having

≈
Ω0 = 0

and
≈
Ω2n = 0 and

≈
Ω1 = ker

(
δ̃|eΩ1

)
,

≈
Ω2n−1 = ker

(
d̃|eΩ2n−1

)
.

The remaining
≈
Ωp are equal to Ω̃p. (In the case n = 1 we put

≈
Ω1 = ker

(
δ̃|eΩ1

)
∩ ker

(
d̃|eΩ1

)
.)

From ∆̃ ≥ 1
2 on Ω̃0 it follows that the new element


≈

E,

≈
d +

≈
δ√

1 +
≈
∆


 ∈ K0(B)

coincides with the former one.
One application of the described surgery reduces the length of Ω∗(M ; B)

by 2. As a result of n surgeries we arrive at a complex having only the
middle B-module Ω̄n non-zero. Clearly, in this case d = δ = 0. Completing
Ω̄n, we get a Hilbert B-module F for which the zero operator ∆

1+∆ belongs to
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1−K(F ), i.e., 1 ∈ K(F ). Considering the stabilization F ⊕HB and applying
Lemma 5, §6, [15], we conclude that F is finitely generated and projective.
In particular, it follows that F = Ω̄n. With the grading F = F (0) ⊕ F (1)

defined by ε we have:

β (f∗ ([d + δ])) =
[
F (0)

]
−

[
F (1)

]
∈ K0(C∗(π)).

Now we can give another realization of the same element. Consider a
triangulation of M2n. Integration of differential forms over simplices gives a
homomorphism of the complex (Ω∗(M ; B), d) into the complex of simplicial
cochains

C0(M ; B) ∂−→ . . .
∂−→ C2n(M ; B)

of the manifold M2n with values in the local system of coefficients B. This
homomorphism is an isomorphism on homology. Moreover, the hermitian
from on Ω∗(M ; B) given by

ϕ(ω1, ω2) =
∫

M2n

η̃(ω∗1) ∧ ω2 = (ε(ω1), ω2),

with η̃(ω) = ideg ω(deg ω+1)−nω defines on the homology of Ω∗(M ; B) an
intersection index corresponding to the usual intersection index ϕ̃ on H∗(M ;
B) (which is defined by the product of simplicial cochains with the same
correction factor η̃ = ip(p+1)−n in the dimension p).

Parallel to the sequence of surgeries that we have applied to Ω∗(M ; B),
a sequence of purely algebraic surgeries of C∗(M ; B) (cf. [20]) can be con-
structed. On every step of this sequence there will be a homomorphism
Ω∗(M ; B) → C∗(M ; B) inducing an isomorphism on homology. After n
such surgeries only the middle homology group of C∗(M ; B) will be non-
zero. It will be a finitely generated projective B-module F̃ with a non-
degenerate Hermitian form ϕ̃ given by the intersection index. Let F̃+ and
F̃− be the positive and negative (spectral) submodules of F̃ defined by ϕ̃.
Clearly

β (f∗ ([d + δ])) =
[
F̃+

]
−

[
F̃−

]
∈ K0(C∗(π)).

It follows from [20] that this last element is a homotopy invariant of M2n. ¤

Combining Corollary 1 and Theorem 2 we get:

Theorem 3. Assume that π is a discrete subgroup of a connected Lie
group. Then all higher signatures of smooth manifolds with the group π are
homotopy invariant. ¤
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A coarse approach to the Novikov
Conjecture

Steven C. Ferry and Shmuel Weinberger

Abstract. This is an expository paper explaining coarse analogues of the
Novikov Conjecture and describing how information on the original Novikov
Conjecture can be derived from these. For instance, we will explain how Nov-
ikov’s theorem on the topological invariance of rational Pontrjagin classes is
a consequence of a coarse theorem (whose proof we sketch in an appendix)
that in turn also implies the Novikov Conjecture for nonpositively curved
manifolds. We also formalize the technique so that it can be applied in a
wide variety of other contexts. Thus, besides a few purely geometric results,
we also discuss equivariant, A-theoretic, stratified, and foliated versions of
the higher signature problem. Closely related papers are [GL], [CGM], [CP],
[KaS], [HR], [Hu]. See also the surveys [We1], [FRW], for wider perspectives.

1. Background

Recall that the signature of an oriented 4k-dimensional manifold is the
difference of the dimensions of the maximal positive and negative definite
subspaces of the inner product space given by cup product on the middle-
dimensional cohomology. Hirzebruch’s signature formula describes the sig-
nature of M as a universal polynomial L in the Pontrjagin classes of M :

sign(M) = 〈L(M), [M ]〉 ∈ Q.

The L-polynomial is a graded polynomial with pieces in every fourth dimen-
sion, but only the top-dimensional piece is given a homotopy-theoretic inter-
pretation by Hirzebruch’s formula. For simply-connected manifolds, this top
component is the only homotopy invariant piece of L(M). Novikov’s con-
jecture says that for nonsimply connected manifolds the largest conceivably
homotopy invariant piece of L(M) is in fact homotopy invariant.

Ferry was partially supported by NSF Grants DMS 9003746 and DMS 9305758, and
Weinberger was partially supported by an NSF Grant and a Presidential Young Investi-
gator Award.
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More precisely, let Bπ be the universal space for principal π-bundles,
where π = π1(M), that is, a space with fundamental group π and con-
tractible universal cover. The universal cover of M is a principal π-bundle,
so classification gives a well-defined homotopy class of maps τ : M → Bπ.

For each α ∈ H∗(Bπ;Q), one can form the quantity:

signα(M) = 〈τ∗α ∪ L(M), [M ]〉.

Novikov’s conjecture is the statement that this element is a homotopy invari-
ant of M . In the simply connected case, this is a consequence of Hirzebruch’s
formula.

It is sometimes more convenient to deal with an equivalent dual form of
the conjecture, which is that the higher signature

τ∗(L(M) ∩ [M ]) ∈ H∗(Bπ;Q)

is a homotopy invariant. This version of the conjecture allows us to work
with all of the cohomology of Bπ simultaneously, rather than proceeding
one element at a time.

We remark that the rational version of the conjecture is equivalent in its
smooth, PL, and topological versions. The reader can work exclusively with
smooth manifolds except for one (of two) arguments given for the integral
version in the final section. By that point the reader will have seen a proof
of the topological invariance of rational Pontrjagin classes and should be
willing to believe that there is a knowable theory of topological manifolds!

For topologists, the significance of the conjecture is rooted in surgery
theory, which classifies manifolds within a fixed homotopy type [B], [W].
The first three chapters of [We1] contain a survey of surgery theory which
is more than adequate for the purposes of this paper.

We sketch two arguments showing that the higher signatures are the only
possible homotopy invariant characteristic classes. This result is due to Peter
Kahn [Ka] in the simply connected case and to Mishchenko in general. Our
first argument is bare-handed and conceptual, while the second is quite
simple but assumes a certain amount of machinery.

The first ingredient is Wall’s π-π theorem, which shows that surgery
obstructions are invariant under bordism of the domain and target spaces
over the fundamental group. Here is a statement:

Theorem (Wall [W]). Let f : (M,∂1M, ∂2M) → (X, ∂1X, ∂2X) be
a surgery problem with f | : ∂2M → ∂2X a homotopy equivalence. If
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π1(∂1X) → π1(X) is an isomorphism, then f can be surgered rel ∂2 to
a homotopy equivalence of triples.

Thus, if f : M → X is a surgery problem and F : (W,M, M ′) →
(Z,X, X ′) is a surgery problem with F |M = f and F | : M ′ → X ′ a homo-
topy equivalence, then f can be surgered to a homotopy equivalence. In this
formulation, the π-π theorem can be viewed as a statement of cobordism
invariance of intersection numbers.

The product theorem says that if one crosses a surgery problem with a
simply connected manifold of dimension 4k, the surgery obstruction is mul-
tiplied by the signature. This implies that {signature 0 things} × {arbitrary
bordism classes} arise as differences of bordism classes of homotopy equiv-
alent manifolds. According to [CoF], bordism of manifolds with maps to
X is determined rationally by associating to the pair (M, f) the element
f∗(L(M) ∩ [M ]) of the graded rational homology of X. Furthermore, all
elements of rational cohomology arise. On modding out by the elements of
the form V × (N, g) with sign(V ) = 0, all that one has left is the image of
the top piece of the L-class. As a consequence of this and some elementary
bordism arguments, any element of the kernel of H∗(X) → H∗(Bπ) occurs
as the difference of pushed forward homology L-classes for manifolds with
maps to X, so the only conceivable invariant of cobordism and homotopy
invariance is the homology higher signature.

Here is the second argument: Consider the surgery exact sequence

· · · → S(M) → [M ; G/TOP ] → Ln(Zπ),

where π = π1M and S(M) is the structure set consisting of homotopy equiv-
alences f : M ′ → M modulo the equivalence relation in which f1 : M1 → M
is equivalent to f2 : M2 → M if there is a homeomorphism h : M1 → M2

such that f2 ◦ h is homotopic to f1. The topological case is somewhat eas-
ier than the smooth case, since in that case S(M) and [M ; G/TOP ] are
groups and the maps are homomorphisms. Otherwise, we have only an
exact sequence of sets. Now, [M ; G/CAT ] ⊗ Q ∼= ⊕H4i(M ;Q). The map
S(M) → H4i(M ;Q) sends a structure to the difference of the L-classes of
domain and range. The homomorphism A : H4i(M ;Q) → Ln(Zπ)⊗Q fac-
tors through a universal homomorphism ⊕Hn−4i(Bπ,Q) → Ln(Zπ)⊗Q by
Poincaré dualizing and then pushing forward. Again the upshot is the same
– the variation of characteristic classes is subject only to restrictions deter-
mined by the image in group homology. Novikov’s conjecture says that A is
a monomorphism and that the higher signature is homotopy invariant. The
PL version of this argument works similarly, but the smooth case requires
some more effort. See [We3] for details in the smooth case.
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How does one prove the conjecture? Most recent proofs use a reformu-
lation of the problem due to Mishchenko (or an analytic variant of this).
The basic homotopy invariant of an n-manifold is the equivariant cellu-
lar chain complex of the universal cover of the manifold, together with its
Poincaré duality structure. This is an element of a suitable Grothendieck
group, Ln(Zπ), and is called the symmetric signature of M [Ra1]. Away
from the prime 2, this Ln(Zπ) is the same as the group Ln(Zπ) that occurs
in the surgery exact sequence. The assembly map H∗(Bπ;Q) → Ln(Zπ)⊗Q
sends the higher signature τ∗(L(M) ∩ [M ]) ∈ H∗(Bπ;Q) to the symmetric
signature of M . The image in Ln(Zπ) of the surgery obstruction of a normal
map is the difference of the symmetric signatures of the domain and range.
As a result, surgery theory [Ra2] asserts that the kernel of the composition
of this map with the natural map H∗(M ;Q) → H∗(Bπ;Q) represents the
differences of L-classes of manifolds homotopy equivalent to M . The coker-
nel of the map, with a dimension shift, is related to the manifolds homotopy
equivalent to M which have the same characteristic classes as M .

This strategy of proof can be integralized; that is, we might try to show
that in special cases the map A is integrally injective. The main interesting
point is that the characteristic classes live most naturally in a generalized
homology theory (the domain of an improved A) which is ordinary homology
at 2 and KO theory away from 2. The spectrum representing this theory is
written L(e). This is the surgery spectrum of the trivial group. It is an Ω
spectrum with 0th space Z × G/TOP . The map to KO theory is given by
considering the KO-homology class given by the signature operator. The
integral Novikov Conjecture inverting 2 then is that this signature operator
class is homotopy invariant in KO(Bπ)[12 ]. At 2, it is a homotopy invariance
statement involving the Morgan-Sullivan class [MoS] (see [RW2]). We will
see in the last section that for certain torsion-free π this is a homotopy
invariant.

2. The bounded category

The category of manifolds bounded over a metric space X is defined
as follows: Objects are manifolds M with not-necessarily continuous maps
p : M → X such that closures of inverse images of balls are compact. A
morphism (M1, p1) → (M2, p2) is a continuous map f : M1 → M2 which is
bounded over X in the sense that there is a k > 0 for which d(p1(m), p2 ◦
f1(m)) < k for all m ∈ M1. In particular, we take as understood that one
can form the (bounded) homotopy category over X where all maps and
homotopies are bounded over X.
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For X = pt, this is the usual category of compact manifolds and con-
tinuous maps. We shall see that there are other interesting examples. An
example to keep in mind is that a homotopy equivalence between finite
polyhedra lifts to a bounded homotopy equivalence of universal covers (over
either universal cover) where the covers are given path metrics so that each
1-simplex has length 1. It is possible to redo topology (or differential ge-
ometry and analysis) in this setting using appropriate metrics. This is not
entirely straightforward, but most of what one needs has been established
for suitably nice control spaces X.

Definition 2.1. We will say that X is uniformly contractible if there is a
function f : (0,∞) → (0,∞) so that for each x ∈ X and t > 0, the ball of
radius t centered at x contracts to a point in the concentric ball of radius
f(t).

In this situation, Ferry and Pedersen [FP] have shown that the Product
Theorem and the π-π Theorem – the two basic principles of surgery theory
discussed in §1 – still hold. Note that some care is needed in formulating the
bounded π-π condition. Nonetheless, not much will be lost in this section by
assuming that all manifolds are simply connected over X. In light of this,
we formulate a bounded Novikov conjecture.

Bounded Novikov Conjecture. If X is uniformly contractible and M

is a manifold over X, then f∗(L(M) ∩ [M ]) ∈ H`f
∗ (X;Q) is a bounded

homotopy invariant, where H`f
∗ (X;Q) is locally finite homology.

The same reasoning as above shows that this is the most general bounded-
homotopy invariant piece of the L polynomial in the simply-connected case.
In general, one would need to take into account the fundamental group
system over X.

This conjecture is true in many cases. If X = cP , the open cone on a
finite polyhedron, this is verified in [FP]. If X has a nice compactification,
this is verified in [FW2]. These proofs are extensions of the original splitting
proof of the Novikov Conjecture for Zn given by Farrell-Hsiang in [FH1] or
via the formula of Shaneson in [Sh].1 See also [Ca], where Cappell gave
an extension of the splitting method to prove the Novikov Conjecture for
a wide class of groups. Of course, many of the other proofs of Novikov for
particular groups apply to particular metric spaces. Much of the book [We2]
is devoted to applications of these ideas.

Another approach which is often quite useful (see [Car], [CP], [FW2],

1which is also proved by splitting.
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[Hu]) is to compactify the metric space X (i.e. embed it into a compact
space Z) in such a way that sequences that are a bounded distance apart in
X have the same limit points in Z −X. Then one can embed the bounded
category of X into the continuously controlled theory of Z: one simply
adds on to all objects the ideal set and insists that the map so given be
continuous! This theory is simpler in many ways. See [ACFP] for the case of
K-theory. If Z is contractible, then the assembly map maps isomorphically
to the continuously controlled theory and one has split the assembly map.

Remark 2.2. The correct context for defining assembly maps in the boun-
ded setting is exotic homology with coefficients in the relevant spectra.
Often, but not always, this coincides with the locally finite homology of X
with coefficients in the spectrum and is conceivably always isomorphic to the
bounded K- or L- theory. For related material, see [BW], [DFW], and the
Hurder and Higson-Roe papers in these proceedings. For more information
on the Novikov and Borel conjectures, see the discussion in [We1].

3. Topological invariance of rational Pontrjagin classes

We show that the bounded Novikov Conjecture over X = Rn implies
Novikov’s celebrated theorem on topological invariance of rational Pontrja-
gin classes. In [We4] this approach is applied in an analytic context. (See
also [PRW]).

We will use the definition of the L-class and, equivalently, the rational
Pontrjagin classes, given by Thom and Milnor. To evaluate the L-class on
a homology class, dualize the homology class and represent it, if possible,
by an embedded submanifold with trivial normal bundle. The value of the
L-class on the given homology class is the signature of the submanifold.
Replacing M by M×T for some torus T guarantees that there will be enough
submanifolds with trivial normal bundle to generate the cohomology, so the
collection of signatures determines the L-class and therefore the rational
Pontrjagin classes. This is explained in §20 of [MS].

The topological invariance of rational Pontrjagin classes says that if f :
M ′ → M is a topological homeomorphism between smooth manifolds, then
f∗(L(M)) = L(M ′). If α ∈ H∗(M ′;Q) is a homology class, 〈f∗(L(M)), α〉 =
〈L(M), f∗(α)〉. If V × Rk ⊂ M is a framed submanifold dual to f∗(α),
f̃−1(V ×{0}) is a framed submanifold of M ′ dual to α, where f̃ is a smooth
approximation to f transverse to V × {0}. Interpreting the L-classes as
signatures, the topological invariance of rational Pontrjagin classes follows
from the claim below.
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Claim. If W ′ → W = V × Rk is a homeomorphism between smooth man-
ifolds, V compact, then the signature of the transverse inverse image of V
is that of V . By the “transverse inverse image of V ,” we mean the manifold
obtained by approximating W ′ → W by a smooth map which is transverse
to V × {0}.

Change the metric to make the Euclidean direction genuinely flat and
complete, rather than just a small normal ball to V in W . Choosing the
smooth approximation f̃ to be a bounded homotopy equivalence in the new
metric, the claim follows from the bounded homotopy invariance property
in the bounded Novikov conjecture for the case X = Rk, as the homeomor-
phism is certainly a bounded homotopy equivalence. The bounded homotopy
invariance of the codimension n signature is explained in the appendix at
the end of this paper.

4. Application of the principle of descent to the Novikov
Conjecture

In this section, we show how to use the bounded Novikov Conjecture on
the universal cover of a manifold M to deduce the usual Novikov Conjecture
on the manifold itself. We first describe the method in a purely geometric
form, following [FW1], where we use a reformulation of bounded simply con-
nected surgery to prove that certain homotopy equivalences are tangential.
Next, we rewrite the argument more algebraically so that it applies to more
fundamental groups, functors besides L-theory, etc.

Let E′ be a complete simply connected manifold of nonpositive curvature,
and let Γ be a group acting on E′ with compact2 manifold quotient. In the
geometric version of our method, we assume that f : E′/Γ → E/Γ is a
homotopy equivalence of closed aspherical manifolds and try to show that
f is tangential. Knowing this, surgical machinery shows that the assembly
map is injective and that the Novikov Conjecture is true (integrally!!). In a
somewhat disguised form, the strategy goes back to [FH2].

Consider the diagram given via covering space theory:

E′ ×Γ E′ //f̂=f×Γf

²²
proj2

E ×Γ E

²²
proj2

E′/Γ //f
E/Γ

2Compactness is not essential in this argument, as was shown in [FW1]. However, the
algebraic reformulation given below becomes more complicated without this assumption.
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Note that the vertical arrows are equivalent to the tangent bundle. There is
a zero section given by [e] → [e, e] and proj2 maps a neighborhood of [e, e]
homeomorphically to a neighborhood of [e]. The restriction of f̂ to each
fiber is a lift of f to the universal cover, so we have a family of (uniformly)
bounded homotopy equivalences of the fibers parameterized over E′/Γ. If
we could continuously change these bounded homotopy equivalences into
homeomorphisms, we would be done, since the resulting fiber-preserving
homeomorphism would exhibit the desired equivalence of tangent bundles.

In light of bounded surgery theory, the statement that parameterized3

families of uniformly bounded homotopy equivalences can be turned into
families of homeomorphisms is equivalent to the assertion that the “bounded
assembly map” is an isomorphism. This is essentially proved for compact
nonpositively curved manifolds in [FH2], [FW2], [HTW]. In [FW1], we de-
duce a slightly weaker fact directly from the α-approximation theorem of
[CF]. A little extra care, see [FW1], enabled us to use this method to handle
noncompact complete manifolds of nonpositive curvature.

We extend the utility of this method with an algebraic formulation. We
begin by constructing a diagram:

H∗(BΓ;L(e)) //A

²²
∼=

L∗(ZΓ)

²²
FBT

H0(BΓ;H`f
∗ (EΓ;L(e))) //Abdd

²²
∼=

H0(BΓ;Lbdd(EΓ))

²²
H0(BΓ;H∗(Rn;L(e))) // H0(BΓ;Lbdd(Rn))

The first line is the assembly map in the form relevant to surgery theory
for pure classification problems mentioned at the end of §1. The second is
the map on the level of the space of sections of assembly maps associated to
the fibration E×Γ E → BΓ. The right side is therefore “twisted generalized
cohomology.” The bottom line is the same sequence after identifying E
with Rn via the logarithm map. The first set of vertical arrows are “family
bounded transfers.” Geometrically, a chain or surgery problem with target
BΓ gives rise, for each point of BΓ, to the transfer of that chain or problem
to the copy of E = EΓ based at a BΓ-lift at that point.

3Unlike [FW1], here “parameterized families” will mean “blocked families” which
suffice for these problems. The reader should probably just ignore this point. For some
of the discussion in §5, though, parameterization must be taken literally.
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The fact that the left hand vertical arrows are equivalences when BΓ is
a finite complex is due to a form of Spanier-Whitehead duality and the fact
that EΓ → Rn is a proper homotopy equivalence.

Putting together the maps

L∗(ZΓ) → H0(BΓ;Lbdd(EΓ)) → H0(BΓ;Lbdd(Rn))

→ H0(BΓ;H`f
∗ (Rn;L(e))) → H∗(BΓ;L(e))

we have split the assembly map.
There are several possible extensions of the argument. First, we would

not need to compare to euclidean space if we knew that H∗(EΓ;L(e)) →
Lbdd(EΓ) were a homotopy equivalence. Alternatively, it would suffice to
know that this map was split injective in a Γ-equivariant fashion. If we had
an equivariant compactification, for instance, the continuously controlled
theory would provide this. Without the equivariance, this is the Bounded
Novikov Conjecture of §2.

Remark 4.1. It is worth noting that the paper [GL] already implicitly
contains a version of the descent argument. The index theorem for Dirac
operators with coefficients in almost flat bundles is used to prove the ana-
log of the bounded Novikov conjecture for Euclidean space for the positive
scalar curvature problem, and then deduces the “Gromov-Lawson conjec-
ture” for fundamental groups of nonpositively curved manifolds by a families
(relative) index theorem argument.

In any case, this approach can be carried out for groups which admit
suitable compactifications. This includes fundamental groups of complete
manifolds of nonpositive curvature [K], groups that act on Tits buildings
[Sk], CAT 0 groups, torsion-free word hyperbolic groups [CM], etc. The
method applies to many other functors, such as the K- and A- functors. In
other words, the assembly map with coefficients in K(R) or A(X) is split
injective for an arbitrary ring R or space X for all of the groups just men-
tioned. The method applies, in addition, to extensions of one such group
by another and the results are integral. Considering groups acting properly
discontinuously on such metric spaces gives integral results of a more com-
plicated nature for groups which are not necessarily torsion-free (relating
the value of the functor for a group to its homology and the placement
of the torsion elements within it). This last is closely connected to results
announced in [FRW] and comes out of considerations of the next section.
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5. Remarks on extensions

The abstract reformulation of the tangentiality argument as descent,
while powerful and of wide applicability, does lose some geometric flavor
which is useful for other applications. We will follow the train of thought
underlying [FRW]. Some, but not all, of the following considerations can
be rephrased algebraically as before, but for us they arise most naturally
geometrically.

Terminology. We will say that M is good if the tangentiality argument
applies to it. In particular, the classes of manifolds mentioned in the last
paragraph of §4 are all “good.”

Observation. If M is good and smooth and M ′ → M is a homotopy
equivalence, then M ′ is smoothable.

This follows from everything we’ve said so far. If M is good, the the
surgery exact sequence for M splits and therefore M ′ is normally cobordant
to M ′, i.e., the corresponding structure lies in the image of Ln+1. Conse-
quently, if M is smooth, then M ′ will be as well – compare with the smooth
surgery exact sequence and use the fact that the surgery obstruction groups
are the same in all categories.4

However, there is a more perspicacious and logically simpler (smoothing
theory is almost a prerequisite for topological surgery) way to go about
proving this observation, and that is by smoothing theory. The main result
of smoothing theory is that isotopy classes of smoothings of a manifold cor-
respond in a 1-1 fashion to smooth vector bundle reductions of the tangent
microbundle. In particular, there are no such reductions unless the manifold
is smoothable. Since we know that the tangent bundle of M ′ is the pull-
back of the tangent bundle of the smooth manifold M , we see that M ′ is
smoothable.

This argument is very adaptable. By carefully arguing using families of
smooth manifolds, we obtain:

Theorem 5.1. If M is good enough, then there is a natural splitting of

G(M)/Diff (M) → G(M)/Homeo(M)

which can be taken as close to the identity as you like. Here G(M) denotes
the space of homotopy automorphisms of M .

4With some interpretations, this statement is false in the equivariant setting.
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Corollary 5.2. (Smooth approximation of homeomorphisms) If M is an ir-
reducible compact locally symmetric space of non-compact type, then there
are continuous sections of Diff (M) → Homeo(M) arbitrarily close to the
identity.

Note the irony of this result. While there are point set theoretically more
homeomorphisms, the space Diff (M) breaks up as Homeo(M)×?. One can
show that ? has a very rich rational homotopy theory and typically infinitely
generated homotopy groups. As far as we know, Homeo(M) is rationally
contractible (though this seems unlikely). It does have rich homotopy theory,
but this is taking us far afield.

Remark 5.3. The tangentiality method is the only one we know for prov-
ing the above approximation theorem. The main difficulty with other ap-
proaches is that we have no machinery available for the analysis of unstable
homeomorphism and diffeomorphism groups.

However, Diff (M) and Homeo(M) are difficult to visualize. A simpler
way to probe the geometry here is to consider M with a G-action. Here
there are phenomena which are plainly observed at the level of objects
(components) rather than involving the higher homotopy of function spaces.

In the equivariant situation, the h-cobordism theorem takes a different
form in the smooth and topological categories. There are many smoothly
nontrivial h-cobordisms which are topological products and there are nons-
moothable h-cobordisms. However, there is no essential difficulty (see [SW])
in repeating the tangentiality argument we gave in §3 equivariantly.

Proposition 5.4. (announced in [FRW]) If G × M → M is an action
of a compact group by isometries on (say) a nonpositively curved closed5

manifold and φ : M → M ′ is an equivariant map which is a homotopy
equivalence, then φ is topologically tangential.

Not so relevant for the remaining part of our discussion, but interesting
nonetheless, is that the tangential representations at corresponding points
of fixed points of M and M ′ are topologically conjugate. It is not true that
they are necessarily differentiably conjugate, even if the actions are smooth.
More relevant is the following:

Corollary 5.5. M ′ is equivariantly smoothable.

5Of course, noncompact manifolds are also allowed with appropriate conditions at
infinity.
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For equivariant smoothing theory, see [LR]. Now, using a relative ver-
sion of the theorem, which is in any case necessary for the infinite volume
applications, we obtain:

Corollary 5.6. Any equivariant h-cobordism on a nonpositively curved
G-manifold is smoothable.

We remark that they are not all necessarily products because of Nil prob-
lems. See [SW], [Q]. In other words, the natural map

Whdiff(M) → Whtop(M)

is split surjective. The G-action is subsumed in the notation here – M is a
G-manifold. Of course, this can be rephrased purely algebraically and this
is done in in [FRW]. It is tantalizingly similar to the terms arising in the
Baum-Connes Conjecture for the orbifold fundamental group of M .6 Indeed,
it was the K-theoretic reformulation of this result that led us to the proof
of the splitting of the A-theory assembly map (via smooth approximation
of homeomorphisms) given above. Of course, the modern approach to the
A-theory result would be by directly applying descent to A-theory. See [CP].
The nonpositively curved cases here are subsumed in [FJ], but the method
here has advantages of generality (substantial functor independence), sim-
plicity, and unstability.

Moreover, the same train of thought also takes one quite close to the
L-theory version of the same phenomenon. Topologically equivariantly tan-
gential maps preserve the symbol of the equivariant signature operator,
aside from 2-local phenomena. See [MR], [RW1], [RW2], [CSW]. In light of
the equivariant surgery theory of [We2], this says that the L-group of the
orbifold π1 must contain H∗(M/G;L(π0(Gm))), or away from 2 for G finite,
KG(M).

Aside. For G positive dimensional, the topological normal invariant term

H∗(M/G;L(π0(Gm)))

is quite different from what one obtains by thinking along more conventional
terms KG(M). For some more discussion, see [We2]. It can be viewed as
the simplest explanation of the failures of equivariant Novikov discussed in
the introduction to [RW1].

6Needless to say, everything we’ve said is equally transparently correct for proper
actions of a group on an appropriate manifold. This point has been emphasized, in a
slightly different context, by [BDO].
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The geometric view can be pushed further in these directions. One recog-
nizes that orbifolds are just special stratified spaces and one can repeat the
whole game for nonpositively curved strata of a stratified space – this works
even better when the whole space has such properties. One can apply strat-
ified surgery and/or the generalized triangulation theory of [AH] to analyze
what the implications of these results are. The type of result subsumed by
this is that, say, the K- or L-theory of an amalgamated free product contains
as a direct summand the thing predicted by the Mayer-Vietoris sequence.
See [W], [Ca] (and [PP] for the C∗-algebraic version). The results of that
announcement which come from examining just the bottom stratum follow
from descent, so we will not belabor the point here.

The analysts have taken the lead in applying these ideas to foliations. See
[BC], [Hu]. The difficulty for the algebraic versions of descent is again that
there is not yet a convenient foliated version of all of these theories, though
analytically this has long ago been dealt with. Indeed, the parameterized
algebraic versions are still under vigorous investigation. The following is a
mild generalization of the pretty interpolation between Novikov’s theorem
and conjecture in [BC].

Theorem 5.7. If φ : M ′ → M is a foliated homotopy equivalence where
M is foliated by nonpositively curved leaves, then φ is topologically foliated
tangential.

This shows the homotopy invariance in this setting of any characteristic
classes that are topological characteristic classes of foliations. Unfortunately,
at present not so much seems to be known about which classes are of this
form.

6. Appendix

As some kind of service, we outline one approach to the bounded Novikov
conjecture over Rk which will complete a sketch of Novikov’s theorem. We
use the time-honored technique of splitting.

Recall Browder’s M×R theorem which says that if a manifold N is proper
homotopy equivalent to M ×R, M simply connected and high-dimensional,
then N is diffeomorphic to M ′ × R for some M ′. In case V is simply con-
nected, we use a bounded version of the M ×R theorem to show that W ′ is
diffeomorphic to W ′′ × R where W ′′ is bounded homotopy equivalent over
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Rk−1 to V × Rk−1 and where the diagram

W ′ //∼=

&&MMMMMMMMMMM W ′′ × R

wwnnnnnnnnnnnn

Rk = Rk−1 × R

boundedly commutes.
Continuing this process shows that W ′ is boundedly diffeomorphic to V ′×

Rk where V ′ is a closed smooth manifold homotopy equivalent to V . Since
V ′ is a transverse inverse image of V ×{0} under a bounded approximation
to the original map, the result follows from homotopy invariance of the
signature.

In case V is not simply connected, we can do smooth surgery on circles
in V to make it simply connected. Doing surgery on S1×Rk’s in the domain
reduces us to the simply connected case without altering signatures. The
reader worried about approximating topologically embedded S1 × Rk’s by
smooth ones in the domain can cross with CP` for some large ` in both the
domain and range to get back into the trivial range.
Remark.

(1) The splitting argument given above is taken from the calculation of the
the bounded L-group of Rn given in [FP], where it is shown that the
bounded simply-connected surgery obstruction over Rk is Z, where the
Z is the codimension k signature. In the presence of bounded surgery
theory, this special case implies the bounded Novikov Conjecture over
Rk. The bounded splitting theorem needed is a rather special case of
Quinn’s End Theorem and is used in [FP]. A short proof of the bounded
h-cobordism theorem parameterized over Rn is given in [P]. The knowl-
edgable reader should have little difficult modifying the argument in
[P] to prove the required bounded M × R theorem.

(2) Chapman [Ch] uses a similar controlled splitting theorem to deduce the
topological invariance of Whitehead torsion. The idea is to show that a
sufficiently controlled homotopy equivalence between PL manifolds can
be split into controlled homotopy equivalences between PL manifolds
with fewer handles. The result then follows by induction from the sum
theorem for Whitehead torsion.

(3) These bounded/controlled arguments are based on ideas similar to
Novikov’s and Chapman’s original arguments. The bounded/controlled
versions are simpler technically than the originals in part because
a smooth or PL approximation to a bounded/controlled homotopy
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equivalence is still bounded or controlled, while an approximation to
a homeomorphism is no longer a homeomorphism. In fact, the α-
approximation theorem of [CF] says that every sufficiently controlled
homotopy equivalence between high-dimensional manifolds is close to a
homeomorphism, so in the end a controlled approximation to a home-
omorphism loses no essential information.

References

[ACFP] D. R. Anderson, F. X. Connolly, S. C. Ferry, and E. K. Pedersen, Algebraic
K-theory with continuous control at infinity, J. of Pure and Appl. Alg. (1994),
25–47.

[AH] D. R. Anderson and W.-C. Hsiang, Extending combinatorial piecewise linear
structures on stratified spaces II, Trans. Amer. Math. Soc. 260 (1980), 223–253.

[BC] P. Baum and A. Connes, Leafwise homotopy equivalence and rational Pontrjagin
classes, Foliations (Tokyo 1983), Adv. Stud. Pure Math., vol. 5, 1985, pp. 1–14.

[BDO] P. Baum, M. Davis, and C. Ogle, Novikov conjecture for proper actions of discrete
groups (1990 preprint).

[B] W. Browder, Surgery on Simply Connected Manifolds, Springer-Verlag, Berlin-
New York, 1970.

[BW] J. Block and S. Weinberger, Large scale homology theories and geometry, (in
preparation).

[Ca] S. Cappell, Mayer-Vietoris sequences in Hermitian K-theory, Algebraic K-Theo-
ry, III, Lecture Notes in Math., vol. 343, Springer-Verlag, Berlin-New York, 1972,
pp. 478–512.

[CSW] S. Cappell, J. Shaneson, and S. Weinberger, Classes topologiques caractéristiques
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exposé no. 739, Astérisque 201–203 (1992), 299–320.

[St] M. Steinberger, The equivariant topological s-cobordism theorem,, Invent. Math.
91 (1988), 61–104.

[SW] M. Steinberger and J. West, Approximation by equivariant homeomorphisms,
Trans. Amer. Math. Soc. 302 (1987), 297–317.

[Wa] F. Waldhausen, Algebraic K-theory of amalgamated free products, Ann of Math
108 (1978), 135-256.

[W] C. T.C. Wall, Surgery on Compact Manifolds, Academic Press, New York, 1971.

[We1] S. Weinberger, Aspects of the Novikov conjecture, Geometric invariants of elliptic
operators, Contemp. Math., vol. 105, Amer. Math. Soc., Providence, RI, 1990,
pp. 281–297.

[We2] , The Topological Classification of Stratified Spaces, U. of Chicago Press,
Chicago, 1994.

[We3] , On smooth surgery, Comm. Pure and Appl. Math. 43 (1990), 695–696.

[We4] , An analytic proof of the topological invariance of rational Pontrjagin
classes, preprint.

Department of Mathematical Sciences, SUNY at Binghamton, Binghamton,
NY 13901, USA

email : steve@math.binghamton.edu

Department of Mathematics, University of Pennsylvania, Philadelphia, PA
19104, USA

email : shmuel@archimedes.math.upenn.edu



Geometric Reflections on the
Novikov conjecture

Mikhael Gromov

Abstract. The simplest manifestation of rough geometry in the Novikov
conjecture appears when one looks at a fiberwise rough (coarse) equivalence
between two vector bundles over a given base, where the fibers are equipped
with metrics of negative curvature. Such an equivalence induces a fiberwise
homeomorphism of the associated sphere bundles and hence, by Novikov’s
theorem, an isomorphism of the rational Pontrjagin classes of the bundles.

What is relevant of the negative curvature, as we see it nowadays, is a
certain largeness of such spaces. More generally, if Xn is a contractible man-
ifold admitting a cocompact group of isometries (or more general uniformly
contractible space) one expects it to be rather large in many cases, e.g. ad-
mitting a proper Lipschitz map into Rn of non-zero degree. An example of
an X without such maps to Rn may eventually lead to a counterexample to
the Novikov conjecture. On the other hand, there is a growing list of spaces
where such a map is available.

A purely analytico-geometric counterpart of the Novikov conjecture for X
is the claim that the non-reduced L2-cohomology L2H∗(X) does not vanish.
A similar conjecture can be stated for the Dirac operator (instead of the
de Rham complex): the square of the Dirac operator on X contains zero in its
spectrum. Both properties express the idea of the “spectral largeness” of X,
and the latter is closely related to the non-existence of a metric with positive
scalar curvature quasi-isometric to X. The non-existence of a positive-scalar-
curvature metric on X is yet another version of the Novikov conjecture
which is often somewhat easier than the original Novikov conjecture, as one
can combine here operator-theoretic techniques with the minimal surface
approach of Schoen and Yau.

Most of the work on the Novikov conjecture (see [FRR]) is an outgrowth
of the original ideas of Lusztig [Lu] and Mishchenko [M] when they first
started working on the problem. In its usual formulation, the Novikov con-
jecture is a problem about the topology of compact manifolds with large
fundamental group, but one is inevitably led to the study of certain aspects

Notes by Jonathan Rosenberg of a lecture given at the Oberwolfach meeting on “No-
vikov conjectures, index theorems and rigidity,” 8 September, 1993. An expanded version
of these remarks will be found in [Gr3].
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of the geometry of the (non-compact) universal cover. There are many dif-
ferent code-words for these ideas: asymptotic geometry, coarse geometry,
quasi-isometry, pseudo-isometry, etc. We begin by indicating (through a
representative example, similar to that treated in [FH], and not as compli-
cated as the most general ones for which one can verify the conjecture) how
these ideas come into play. Suppose M ′ h−→ M is a homotopy equivalence
of compact (necessarily aspherical) hyperbolic manifolds (without bound-
ary). Let Γ be the common fundamental group. Then associated to h is the
commutative diagram

M̃ ′ ×Γ M̃ ′ h̃−−−−→ M̃ ×Γ M̃

p′
y

yp

M ′ h−−−−→ M,

which can be viewed as a map of bundles where the fibers are copies of
hyperbolic space Hn. These bundles are equivalent to the (topological) tan-
gent bundles of M ′ and of M , respectively. Thus a strong version of the
Novikov conjecture is equivalent to the statement that p′ and h∗p have the
same rational Pontrjagin classes. One way of proving this is to first use the
fact that the exponential map Rn → Hn is a diffeomorphism, whose inverse
log : Hn → Rn is a Lipschitz map to Euclidean space. One can use this
to compactify the fibers of the bundles by adding spheres at infinity, and
h̃ extends to a fiberwise homeomorphism of the sphere bundles. Now apply
to the sphere bundles Novikov’s theorem on the topological invariance of
rational Pontrjagin classes. We conclude that the sphere bundles of p′ and
h∗p have the same rational Pontrjagin classes, and thus p′ and h∗p have
the same rational Pontrjagin classes. (For further discussion of the relation-
ship between Novikov’s theorem on the topological invariance of rational
Pontrjagin classs and the Novikov conjecture, see [FW].) A similar idea can
be used in a combinatorial or discrete setting: if X1 and X2 are hyperbolic
spaces (in the sense of [GdlH, Ch. 1]) on which a group Γ acts freely and
properly with compact quotients, and if h : X1/Γ → X2/Γ is a homotopy
equivalence, then h lifts to a quasi-isometry h̃ : X1 → X2 of the universal
covers, sending some ε1-dense net in X1 to an ε2-dense net in X2, and by
extending to the boundary (constructed in [GdlH, Ch. 7]), one sees h̃ gives
a homeomorphism “at infinity.”

In discussions with Blaine Lawson a number of years ago (see [GrL]),
we realized there is a close parallel between the Novikov conjecture and
the positive scalar curvature problem. We pause now to discuss the lat-
ter and then we will return to the subject of the Novikov conjecture. A
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conjecture parallel to the Novikov conjecture (see [GrL]) is that a closed
aspherical manifold V = X/Γ should not admit a Riemannian metric of
positive scalar curvature. In the Novikov conjecture we (ostensibly) study
properties of the group Γ, but here it’s really the coarse geometry of the
simply connected open manifold X that is immediately relevant. If we can
show that the Dirac operator on X is non-invertible, this will imply (for
reasons to be explained in a moment) that X cannot have a Riemannian
metric of uniformly positive scalar curvature, and thus that V cannot have
a Riemannian metric of positive scalar curvature. A similar conjecture is
that the non-reduced L2 cohomology of X must be non-zero. (The non-
reduced L2 cohomology L2H∗(X) is the quotient of the L2 closed forms by
the L2 exact forms which are exterior derivatives of L2 forms. The reduced
L2 cohomology is defined similarly, but dividing out by the closure of the
L2 exact forms which are exterior derivatives of L2 forms. These are in gen-
eral different; for example, X = R has vanishing reduced L2 cohomology
but non-vanishing non-reduced L2 cohomology in degree 1, since not ev-
ery function in L2(R) has an antiderivative in L2(R).) As pointed out by
Lott [Lo, §8 in the preprint version], this conjecture about non-reduced L2

cohomology can be deduced from a suitable strengthening of the Novikov
conjecture.1 But these conjectures about spectral geometry of X (say for X
an open, uniformly contractible Riemannian manifold) are still valid even
when there is no group around, or if the group has no non-trivial homology
(so that there are no higher signatures to discuss).

The connection between the Dirac operator and positive scalar curvature

1Here is a quick version of the argument. Indeed, the non-reduced L2 cohomology on
any complete Riemannian manifold X is non-zero if and only if the signature operator
d + d∗ on X has 0 in its spectrum (for its action on L2 forms with respect to the
Riemannian metric). (The “only if” direction is clear, and the “if” direction follows from
the fact that if 0 is in the spectrum, then either 0 is an eigenvalue, in which case even the
reduced L2 cohomology is non-zero, or else d+d∗ does not have a gap in its spectrum near
zero, and the non-reduced L2 cohomology is non-Hausdorff and thus infinite dimensional.)

Now suppose that X is the universal cover of a compact aspherical manifold V = X/Γ
and that the “Strong Novikov Conjecture” (SNC) holds for Γ in the sense of [R]. For
simplicity assume V is oriented. Arguing as in [R], but with the signature operator in
place of the Dirac operator, we see that if 0 is not in the spectrum of the signature
operator on X, then its generalized index in K∗(C∗r (Γ)) must vanish. But then the SNC
gives as in [R, §2]:

〈L(V ) ∪ id∗(x), [V ]〉 = 0

for any cohomology class x on BΓ = V . Taking x 6= 0 in the top-degree cohomology, we
get a contradiction. The orientability condition can be removed as in [R, §3].



Geometric Reflections on the Novikov conjecture 167

comes from the simple formula

(Lichn) D2 = ∆ +
1
4
S,

first discovered by Lichnerowicz [Li] (see also [LaM, Theorem 8.8]), valid on
any Riemannian spin manifold. Here D is the Dirac operator acting on the
spinor bundle, S is the scalar curvature, and ∆ is a non-negative elliptic
operator that in local coordinates looks like the Laplacian. Thus if S is
bounded below by a positive constant s > 0, D2 ≥ s

4 > 0, and so D has a
bounded inverse. If S is strictly positive but not uniformly so, then at least
we immediately see from (Lichn) that D cannot have a non-zero kernel in
the L2 spinors.

There are basically two known approaches to proving non-existence of
positive scalar curvature metrics: the Dirac operator method and the min-
imal hypersurface method . (For a complete survey of these and of some of
the results one can obtain from them, see [RS].) The minimal hypersurface
method of [SY] is in some sense parallel to the codimension-one splitting
methods for attacking the Novikov conjecture (see notably [C]), whereas
the Dirac operator method parallels the work on the Novikov conjecture
using higher index theory of the signature operator. The idea of the min-
imal hypersurface method is based on the fact that one can show, using
the stability condition, that a stable minimal hypersurface in a manifold of
positive scalar curvature can be given a new metric (conformally equiva-
lent to the induced metric) in which it has positive scalar curvature. Thus
sometimes a manifold with suitable codimension-one submanifolds which do
not admit metrics of positive scalar curvature cannot admit such a metric,
either. This method has the advantage that it applies even in the absence
of a spin structure, but big technical problems arise from the fact that min-
imal currents in high-dimensional manifolds usually have singularities, so
that when one tries to represent a homology class in codimension one by a
stable minimal current, one often does not get a smooth submanifold. It is
for this reason that many results obtained from the minimal hypersurface
method are stated in the literature only for manifolds of dimension ≤ 7.
While Schoen and Yau ([S], [Y]) have announced that they can get around
the dimensional restriction in the method, no details have appeared yet.

Let us return again to the operator-theoretic approach. To show that a
spin manifold cannot have a Riemannian metric of positive scalar curvature,
we need to show that the Dirac operator is non-invertible, and to do this
one usually needs to perturb the operator a bit by adding a suitable “vector
potential.” How to make this idea precise is suggested by a theorem of
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Vafa and Witten [VW]. We briefly review their result and then discuss how
similar techniques can be applied to non-compact manifolds.

Theorem (Vafa and Witten [VW]). Let V be a compact even-dimen-
sional Riemannian spin manifold (without boundary), let S be the spinor
bundle on V (with its usual connection coming from the Riemannian met-
ric), and let D denote the Dirac operator of V (acting on sections of S).
Then there is a constant ε(V ), depending only on V and its Riemannian
metric, with the property that if E is an arbitrary vector bundle on V with
a connection and a metric, and if DE denotes the twisted Dirac operator
acting on sections of S ⊗E, then DE has an eigenvalue with absolute value
≤ ε(V ).

Proof (Quick sketch). Recall that since we’re assuming that V is even-
dimensional, the spinor bundle has a canonical splitting S = S+ ⊕ S−

into “half-spinor bundles,” and that D sends sections of S+ to sections of
S− and vice versa. Also, the Dirac operator is self-adjoint and elliptic, and
so has a good spectral decomposition. (For details of all these facts, see
[LaM, Chapter II].) The Atiyah-Singer Index Theorem gives a formula for
the index of DE (as an operator from sections of S+ ⊗ E to sections of
S− ⊗ E):

(A-S) indDE = 〈Â(V ) ∪ Ch[E], [V ]〉.

If this quantity is non-zero, then DE must have zero as an eigenvalue and
we’re done. However, there will be some bundles E for which the formula (A-
S) gives 0, in which case there is no reason why DE should have a non-zero
kernel. It’s for these bundles that we need an estimate on the spectrum.

The idea for getting this estimate is that if a differential operator has
spectrum far away from zero, then a small perturbation in the operator can-
not suddenly create a non-zero kernel. Therefore, assuming that indDE = 0,
we first find another bundle E′ such that

〈Â(V ) ∪ Ch[E] ∪ Ch[E′], [V ]〉 6= 0.

Because of (A-S), this means that indDE⊗E′ 6= 0, so that DE⊗E′ has zero as
an eigenvalue. Now if the bundle E′ were topologically trivial, E⊗E′ would
just be a direct sum of dim E′ copies of E, but with a different connection
(since we’re not assuming E′ is flat). So DE⊗E′ would be a perturbation of a
direct sum of dim E′ copies of DE by lower-order terms. Thus, since DE⊗E′

has zero as an eigenvalue, DE cannot have too large a gap in its spectrum
around zero.
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Of course, we’ve oversimplified too much, since if indDE = 0 and ind
DE⊗E′ 6= 0, then E′ could not be topologically trivial. However, we can
always find another bundle E′′ such that E ⊕ E′′ is topologically trivial,
and then

DE⊗(E′⊕E′′) = DE⊗E′ ⊕DE⊗E′′ .

So giving E⊕E′′ the direct sum of the connection on E′ with a connection
on E′′, we see that DE⊗(E′⊕E′′) has zero as an eigenvalue, and we can argue
as before. ¤

Now let’s discuss how we could apply the same ideas to open manifolds.
(For an example of an application of these ideas in the different context
of Kähler geometry, see [Gr2].) The same philosophy ought to apply, but
since an elliptic operator on a non-compact manifold need not have discrete
spectrum, we need to be much more careful about what constitutes a “small”
perturbation of an operator. Before we get to this, we’ll pursue some more
consequences of these ideas with respect to compact manifolds. Suppose that
V = X/Γ is compact and aspherical, with fundamental group Γ. Intuitively,
if we had a bundle E on V which were “almost flat,” and for which we
could compute by (A-S) that indDE 6= 0, then DE would have to have
non-zero kernel. On the other hand, since E is “almost flat,” the formula
(Lichn) (with D replaced by DE) would not be off by very much, and also
DE would be only a small perturbation of dim E copies of D. So if V had a
Riemannian metric of positive scalar curvature, we could conclude that D
would have to have an eigenvalue very close to 0, contradicting the estimate
coming from (Lichn). So V could not have a positive scalar curvature metric
after all.

This argument can indeed often be made to work, but the correct notion
of “almost flat bundle” [CGM] is not really a single vector bundle but rather
a sequence of Z/2-graded vector bundles Ei = E0

i ⊕E1
i , such that the formal

differences [E0
i ] − [E1

i ] all represent the same element of K0(V ), and such
that all the bundles are equipped with connections whose curvatures tend to
0 in the right sense as i →∞. One will also usually have dimEi →∞ if this
is the case, since there is a limit on how flat we can make a representative of
bounded dimension of a fixed K-theory class. (This limitation comes from
Chern-Weil theory, which relates the curvature of the bundle to the Chern
classes. Thus if any of the Chern classes is non-zero, the curvature must be
non-zero.)

As an example of how to make this precise, suppose the fundamental
group Γ of a compact non-positively curved manifold V 2n is residually fi-
nite (i.e., Γ has a faithful family of homomorphisms to finite groups). This
condition is satisfied, for example, by arithmetic groups. Then we can use
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the finite quotients of Γ to construct a tower of finite coverings Vi of V which
“converge” in some sense to the universal covering X. Pull the non-positively
curved Riemannian metric on V back to each Vi, so that diamVi → ∞.
Choose smooth degree-one maps Vi → S2n which have Lipschitz constants
tending to 0 on bigger and bigger balls. (One can do this because of the
non-positive curvature condition, since the inverse of the exponential map
at a basepoint is well-defined and has Lipschitz constant 1 on bigger and
bigger balls as i →∞. See for example [GL, §5].) Then we can pull back a
fixed non-trivial bundle on S2n by means of these maps, and we get a se-
quence of bundles (of course each defined on a different manifold Vi) whose
curvatures tend to 0 in the operator norm (on L2 sections). Pushing the
bundles back down by means of the covering maps Vi → V , we get an al-
most flat sequence of bundles (now with ranks tending to infinity) on V ,
which show that V cannot also admit a metric of positive scalar curvature.
In fact, if one does this argument carefully, one can get an estimate on the
Novikov-Shubin invariants of V , in other words, of the spectral density near
0 of the Dirac operator or Laplacian on the universal cover.2

Heuristically, we would expect a similar argument to prove the Novikov
conjecture in similar cases, by using the analogue of (A-S) for the signature
operator with coefficients in E:

indDsign
E = 〈L(V ) ∪ Ch[E], [V ]〉

and controlling the error terms in the expansion of (Dsign
E )2 coming from

the curvature of E. Some arguments of this sort are carried out in [HiS].
However, there are complications in carrying out the details—one needs the
connection, and not just the curvature, to be small, and one needs some
“spectral purity” condition in order to define “almost Betti numbers.”

In fact, if one generalizes the notion of an almost flat K-theory class,3 one
can show that the class of any complex line bundle over BΓ is almost flat.
This implies the Novikov conjecture for any higher signature coming from a
2-dimensional cohomology class. (Of course, Novikov himself [N] proved the
homotopy invariance of any higher signature coming from a 1-dimensional
cohomology class.) To prove this, consider a compact manifold V with a map
to BΓ. The line bundle pulls back on the non-compact universal cover X of

2The possible width of a spectral gap is estimated by the norm of an index-changing
perturbation. Similar ideas appear in the study of the “non-commutative isoperimetric
function” in [Hu], and in §3 of [Lü].

3See the comment in [CGM]: “il est d’ailleurs nécessaire dans les applications . . .
de reformuler cette notion [de fibré presque plat] en l’adaptant aux fibrés de dimension
infinie munis d’une superconnexion en un sens convenable.”
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V to a topologically trivial line bundle L, and thus we can take arbitrary
“roots” L

1
n of L which provide the necessary approximating sequence (L

1
n )n.

See [Gr].
In the final analysis, then, the Novikov conjecture seems to be a state-

ment about the “largeness” of the universal covers X of compact aspherical
manifolds V . It seems to be important to quantify this; in particular to de-
termine in what sense X “dominates” Euclidean space. The best situation
would be if we could always show that X is strongly hyper-Euclidean, i.e.,
that X admits a Lipschitz map to a Euclidean space of the same dimension.4

One very weak partial result in this direction is that if X is both complete
and uniformly contractible in some Riemannian metric, then it has to have
infinite volume. But it’s hard to quantify its “growth” without additional
assumptions. See [Gr1] for a discussion of different notions of “largeness.”

What would be the way to construct a counterexample to the Novikov
conjecture? Evidently we would need a rather pathological group. Most
of the standard group-theoretical constructions rely on amalgamated free
products and HNN extensions, which would lead to strange geometry in
dimensions 1 and 2. But we know that the Novikov conjecture is by its
nature a high-dimensional problem (the conjecture is true for cohomology
classes on BΓ in dimensions 1 and 2), so quite different techniques are
needed.

We could try to measure the rate of contractibility of EΓ in various
dimensions, that is, to see how big a chain is needed to bound a given
cycle. In dimension 1, this question is related to the solvability of the word
problem in Γ; however, we’re interested in this problem in higher dimensions.
In most cases for which one can compute anything, the contractibility rate
seems to grow exponentially. Perhaps to get a counterexample to the No-
vikov conjecture one should look for a case of very non-uniform growth in
different directions.
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[Gr1] M. Gromov, Large Riemannian manifolds, Curvature and Topology of Riemann-
ian Manifolds, Proc., Katata, 1985 (K. Shiohama, T. Sakai and T. Sunada, eds.),
Lecture Notes in Math., vol. 1201, 1986, pp. 108–121.

[Gr2] M. Gromov, Kähler hyperbolicity and L2-Hodge theory, J. Diff. Geometry 33
(1991), 263–292.

[Gr3] M. Gromov, Positive curvature, macroscopic dimension, spectral gaps and higher
signatures, Functional Analysis on the Eve of the 21st Century (Proc. conf. in
honor of I. M. Gelfand’s 80th birthday) (S. Gindikin, J. Lepowsky and R. Wilson,
eds.), Progress in Math., Birkhäuser, Boston, 1995 (to appear).
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Controlled Fredholm
representations

Alexander S. Mishchenko 1

Abstract

A notion of family of Fredholm representations controlled at infin-
ity and a new topology of the space of Fredholm representations which
differs from the Kasparov one are introduced. These are used to ob-
tain a new proof of Novikov’s conjecture on the homotopy invariance
of higher signatures for complete non-positively curved Riemannian
manifolds. The conjecture is proved for a class of manifolds larger
than the class of special manifolds considered by H. D. Rees.

1 Introduction

One of the most significant concepts that describes the smooth structure
of manifolds is that of the characteristic classes of a manifold. From the
moment it was introduced the following problem was posed and taken up:
to what extent do particular characteristic classes depend on the smooth
structure of the manifold by means of which they are determined?

In particular one of the questions is: which characteristic classes are
homotopy invariant? For which characteristic classes α do we have the
equality

α(X) = f∗(α(Y ))

for every homotopy equivalence of manifolds f : X → Y ?
It is well known that the Stiefel-Whitney classes are homotopy invari-

ant for any smooth compact closed manifold. The proof is based on the
expression of the characteristic Stiefel-Whitney classes in terms of the fun-
damental cycle of the manifolds, by means of cohomology operations (the
Steenrod squares).

The problem of the homotopy invariance of the Pontrjagin classes turns
out to be more difficult and, accordingly, more significant from the stand-
point of application to various problems of algebraic and differential topol-
ogy. Numerous attempts to solve the problem have led to new interesting
relations among topology, representation theory, discrete groups, C∗-algebra

1Partially supported by SFB No. 343, Bielefeld, Germany, and a Visiting Professorship
at Brown University, Providence, R.I., USA.
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and others. The importance of this problem stems, in particular, from the
fact that in the problem of classifying smooth structures on a manifold it
is necessary to have a description of all the homotopy invariant Pontrjagin
classes.

I shall recall that the Pontrjagin class pi(X) of a manifold X is a coho-
mology class

pi(X) ∈ H4i(X;Z).

Here we shall consider only rational Pontrjagin classes, that is, we shall
assume that Pontrjagin classes are cohomology classes with rational coeffi-
cients or even with real coefficients:

pi(X) ∈ H4i(X;R).

Each rational characteristic class can be represented as a polynomial in the
classes pi(X).

Let L(X) denote the Hirzebruch L-genus of the manifold X, which is
described in terms of the Wu generators tk as the symmetric polynomial

L(X) =
∏

k

tk/2
tanh(tk/2)

.

The first result obtained along these lines was the formula for computing
the signature of a 4-dimensional manifold (Rokhlin, [28], 1952) in terms of
the characteristic classes. Subsequently, F. Hirzebruch ([8], 1953) estab-
lished a similar formula for the signature of a 4k-dimensional manifold:

sign M4k = 22k〈L(M4k), [M4k]〉. (1.1)

Here sign M4k means the signature of the quadratic form which is de-
termined on the cohomology group of the middle dimension H2k(M4k;Q) .
Therefore the signature is a homotopy invariant, and hence the Hirzebruch
number 〈L(M4k), [M4k]〉 is also homotopy invariant.

The relationship of homotopy-invariant Pontrjagin classes to the problem
of classification of smooth structures on a manifold involves the following.
Assume that

f : X → Y

is a smooth mapping of degree 1 of oriented manifolds. The map f will be
bordant to a homotopy equivalence if and only if a number of conditions are
met. For simply connected manifolds these conditions include, in particular,
the requirement that the signatures of manifolds X and Y coincide. Due
to results on the classification of smooth structures on simply connected
manifolds (W. Browder [2], 1962, S. Novikov [24], 1964), it follows that for
simply connected manifolds the Hirzebruch number is (up to a constant)
the unique homotopy-invariant rational characteristic number.
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For nonsimply connected manifolds the problem of surgering f to a ho-
motopy equivalence turns out to be less trivial; it can be reduced to a
surgery obstruction which is an element of an analog of algebraic K-theory
(so-called Hermitian K-theory). The groups of Hermitian K-theory were
constructed in stable algebra using nondegenerate quadratic forms on free
modules. In 1970, the author ([16]) expressed the surgery obstruction for f
modulo 2-primary torsion as the difference of generalized symmetric signa-
tures of the manifolds X and Y , and showed that symmetric signatures are
analogs of the signature of manifolds and can be represented by nondegen-
erate Hermitian forms on free modules over the rational group ring of the
fundamental group.

As a particular consequence, if some rational characteristic Pontrjagin
number is a homotopy invariant then it necessarily has the form

σx(X) = 〈L(X)g∗(x), [X]〉, (1.2)

where g : X → Bπ1(X) is the characteristic mapping of the manifold X
into the Eilenberg-MacLane complex, while x ∈ H∗(Bπ1(X);Q) is some
cohomology class. Numbers of this form were called higher signatures.

Thus, the problem was reduced to the determination of homotopy in-
variance of higher signatures. The problem has yet to be fully solved, al-
though it has attracted the attention of topologists for the last 25 years.
In 1965, S. Novikov ([25], [26]) established the homotopy invariance of
higher signatures in dimension 1, and then V. Rokhlin ([29], 1966) estab-
lished it in dimension 2 for decomposable cohomology classes. Subsequently,
G. G. Kasparov ([10], 1970) established the homotopy invariance of higher
signatures for cohomology classes that are decomposable into a product of
one-dimensional classes. This result is essentially equivalent to the homo-
topy invariance of all higher signatures for free abelian groups. S. E. Cappell
([3], 1974) employed the same method of surgery on codimension 1 sub-
manifolds to expand the class of fundamental groups for which all higher
signatures are homotopy-invariant.

Another approach to the solution of the problem of homotopy invari-
ance of higher signature involves the use of representation theory, by means
of which higher signatures can be represented in manifestly homotopy-
invariant terms. For example, if

ρ : π1(X) → U(n)

is a unitary representation, then cohomology with respect to the local sys-
tem of coefficients generated by the representation ρ admits a nondegenerate
quadratic form, and the signature signρ(X) is defined. One can verify that

signρ M4k = 22k〈ch ρL(M4k), [M4k]〉 = σch ρ(M
4k), (1.3)
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where chρ is the Chern character of representation ρ. Since signρ M4k is
a homotopy invariant, the right side of the equality, σchρ(M

4k), is also
homotopy-invariant. Unfortunately the Chern character ch ρ is trivial for
any unitary representation ρ. In 1972 G. Lusztig ([15]) generalized this
formula for representations

ρ : π1(X) → U(p, q),

where U(p, q) is the unitary group for an indefinite metric of type (p, q).
But in the case considered by G. Lusztig the set

{ch ρ} ⊂ H∗(Bπ1(X);Q)

does not cover all higher signatures. The next approach was to expand the
class of representations of fundamental group π1(X) to a class of infinite-
dimensional representations, the so-called Fredholm representations.

In [17], [18], Novikov’s conjecture on the homotopy invariance of higher
signatures

signx(M) = 〈L∗(M) · f∗(x), [X]〉
of non-simply connected manifolds M was proven in the case when the fun-
damental group π1(M) of the compact smooth (oriented) manifold M has a
classifying space Bπ (that is the Eilenberg-MacLane complex K(π, 1)) that
is a compact Riemannian manifold with non-positive sectional curvature.
In [18] it was also claimed that the proof is valid for all fundamental groups
π whose classifying space Bπ is a (noncompact) complete non-positively
curved manifold. In [7] the proof of Novikov’s conjecture was extended to
the case where the Bπ is a complete Riemannian manifold of finite volume
and with sectional curvature strongly negative. In [11] G. G. Kasparov pre-
sented a proof of Novikov’s conjecture for all complete non-positive curved
manifolds. This last proof was provided by the method of representation of
special elements in Kasparov KK-theory and based on the hard technique
of intersection theory in KK-theory.

The class of fundamental groups for which the Novikov conjecture holds
was enlarged in the papers of A. Connes and H. Moscovici ([6]) and A. Conn-
es, M. Gromov and H. Moscovici ([4], [5]). In the first paper [6] the authors
presented new methods of description of higher signatures via the index
of an elliptic operator on the universal covering of non-simply connected
manifolds, and reduced the problem to the description of an arbitrary co-
homology class of the fundamental group by means of cyclic cohomology
of suitable subalgebras of the C∗-algebra C∗[π] obtained by completing the
group algebra C[π]. This gives a proof of the Novikov conjecture for hyper-
bolic groups π.

The second paper [4] was devoted to the development of the technique of
so-called almost flat bundles and the related notion of semi-representations
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of groups. In some cases when a semi-representation has small norm it
is possible to construct in a natural way both a vector bundle over the
classifying space Bπ and a signature of a quadratic form over the group
algebra C[π]. The authors stated that their methods apply in all the cases
for which the Novikov conjectures are known to hold.

In the third paper ([5]) the authors introduced a notion of Lipschitz co-
homology classes of the group π, which are detected by a family of Lipschitz
maps from the group π to a Euclidean space RN . It seems that this con-
struction is a generalization of a vector field from the paper of H. Rees ([27]).
In any case in [5] the theorem about the homotopy invariance of higher sig-
natures which are represented by Lipschitz cohomology classes is proved.
This means in particular that yet a third proof of the Novikov conjecture
for hyperbolic groups was presented.

Therefore it is interesting to clarify how much one can obtain in this
direction using Fredholm representations. In 1982 in [9] it was shown that
the method of Fredholm representations is valid at least for groups π such
that the classifying space Bπ is a complete non-positive curved manifold,
that can be compactified to a manifold with boundary. It was proved there
that, in this case, Novikov’s conjecture is true for all cohomology classes
x ∈ Image (i∗) where

i∗ : H∗(M+;Q)−→H∗(M ;Q)

is the natural homomorphism generated by the inclusion

i : M−→M+

of M into its one point compactification M+. Moreover in [9] it was claimed
that the method of Fredholm representation yields only the homotopy in-
variance of the higher signatures signx(M) with x ∈ Image(i∗).

We shall show that a good notion of trivial elements for Fredholm repre-
sentations yields the proof of Novikov’s conjecture for all cohomology classes
of complete non-positively curved manifolds without requiring the existence
of a compactification to a manifold with boundary. It seems useful to ana-
lyze the Fredholm representation method to see if it is possible to avoid the
difficult techniques of Kasparov KK-theory.

2 Scheme of application of Fredholm repre-
sentations controlled at infinity

Let M be a closed oriented non simply connected manifold with fundamental
group π. Let Bπ be the classifying space for the group π and let

fM : M−→Bπ,
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be a map inducing the isomorphism of fundamental groups.
Let Ω∗(Bπ) denote the bordism group of pairs (M, fM ). Recall that

Ω∗(Bπ) is a module over the ring Ω∗ = Ω∗( pt ).
In [16] a homomorphism was constructed

σ : Ω∗(Bπ)−→L∗(Cπ) (2.1)

which for every manifold (M, fM ) assigns the element σ(M) ∈ L∗(Cπ),
where L∗(Cπ) is the Wall group for the group ring Cπ.

The homomorphism σ satisfies the following conditions:
(a) σ is homotopy invariant,
(b) if N is a simply connected manifold and τ(N) is its signature then

σ(M ×N) = σ(M)τ(N) ∈ L∗(Cπ).

We shall be interested only in the groups after tensor multiplication with
the field Q, in other words in the homomorphism

σ : Ω∗(Bπ)⊗Q−→L∗(Cπ)⊗Q.

However
Ω∗(Bπ)⊗Q ≈ H∗(Bπ;Q)⊗ Ω∗.

Hence one has
σ : H∗(Bπ;Q)−→L∗(Cπ)⊗Q.

Therefore the homomorphism σ represents the cohomology class

σ̄ ∈ H∗(Bπ;L∗(Cπ)⊗Q).

Then for any manifold (M, fM ) one has

σ(M,fM ) = 〈L(M)f∗M (σ̄), [M ]〉 ∈ L∗(Cπ)⊗Q. (2.2)

Hence if α : L∗(Cπ) ⊗ Q−→Q is an additive functional and α(σ̄) = x ∈
H∗(Bπ;Q) then

signx(M,fM ) = 〈L(M)f∗M (x), [M ]〉 ∈ Q

should be a homotopy-invariant higher signature. This gives a description
of the family of all homotopy-invariant higher signatures. Therefore one
should study the cohomology class

σ̄ ∈ H∗(Bπ;L∗(Cπ)⊗Q) = H∗(Bπ;Q)⊗ L∗(Cπ)⊗Q.
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2.1 The first step

The first step consists in changing from the group algebra Cπ to the (re-
duced) C∗-algebra C∗[π]. The natural inclusion generates the homomor-
phism

ˆ: L∗(Cπ)⊗Q−→L∗(C∗[π])⊗Q = K∗(C∗[π])⊗Q.

Then using ˆ one can obtain the new formula

σ̂(M, fM ) = 〈L(M)f∗M (ˆ̄σ), [M ]〉 ∈ K∗(C∗[π]).

The left side turns out to be homotopy-invariant. The right side loses a part
of the information about the higher signatures. But at the crucial moment,
it is possible to write a new formula

σ̂(M, fM ) = 〈L(M)f∗M (chAξA), [M ]〉 ∈ K∗(C∗[π]) (2.3)

where ξA is the canonical A-bundle over Bπ which is determined by the
natural representation of the fundamental group

π−→Cπ−→C∗[π] = A,

K∗
A = K∗

A(pt) = K∗(A),

chA : K∗
A(X)−→H∗(X; K∗

A ⊗Q).

The formula (2.3) is called the Hirzebruch formula for non-simply con-
nected manifolds. It was proved in [23].

I do not know if it is possible to write a formula similar to (2.3) in any
sense for the algebra Cπ. If so then one could use the technique due to
A. Connes and H. Moscovici ([6]).

2.2 The second step

The second step consists of natural representations of the algebra A. The
first example of the representation of commutative algebras as functions on
the character group was considered by G. Lusztig ([15]). The most effective
way proved to be considering the Fredholm representations.

A Fredholm representation means a pair

ρ = (F, T ),

where
T : π−→B(H)

is a (unitary) representation into the algebra of bounded operators of the
Hilbert space H, and

F : H−→H
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is a Fredholm operator such that for any g ∈ π

T (g)F − FT (g) ∈ C(H),

where C(H) denotes the family of compact operators. It is useful to consider
all objects in a graded category. The representation T can be extended to
a symmetric representation

T : C∗[π]−→B(H)

with the same condition on F . Any Fredholm representation gives a well-
defined homomorphism

ρ∗ : K∗
A(X)−→K∗(X)

such that the following diagram commutes:

K∗
A(X)

ρ∗−→ K∗(X)ychA

ych
H∗(X; K∗

A ⊗Q)
H(ρ∗)−→ H∗(X;Q)

Hence if one has a family of Fredholm representations

ρ = (Fy, Ty), y ∈ Y,

which is continuous in the uniform norm, then it induces a homomorphism

ρ∗ : K∗
A(X)−→K∗(X × Y ) (2.4)

giving the commutative diagram

K∗
A(X)

ρ∗−→ K∗(X × Y )ychA

ych
H∗

A(X;K∗
A ⊗Q) H∗(X × Y ;Q)yH(ρ∗)

x∪
H∗(X; K∗(Y )⊗Q) ch−→ H∗(X; H∗(Y )⊗Q).

Applying the homomorphism (2.4) to (2.3), one has

ch ρ∗(σ̂(M,fM )) ∈ H∗(Y ;Q),

ch ρ∗〈L(M)f∗M (chAξA), [M ]〉 =
= 〈L(M)f∗M (chρ∗(ξA), [M ]〉 ∈ H∗(Y ;Q).

Let {yα}α∈Λ be a basis in H∗(Y ;Q). Then

f∗M (ch ρ∗(ξA)) ∈ H∗(M × Y ;Q) = H∗(M ;Q)⊗H∗(Y ;Q)
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and we can decompose

f∗M (ch ρ∗(ξA)) =
∑

i∈Λ0

ui ⊗ yi

where Λ0 ⊂ Λ is a finite subset, ui ∈ H∗(M ;Q), yi ∈ H∗(Y ;Q). Therefore

ch ρ∗(σ̂(M, fM )) =
∑

i∈Λ0

〈L(M)ui, [M ]〉yi ∈ H∗(Y ;Q).

Hence 〈L(M)ui, [M ]〉 is a homotopy invariant for any i. It is not difficult
to show that ui = f∗M (ui

∞) for some ui
∞ ∈ H∗(Bπ;Q).

2.3 The third step

The third step consists of defining a family of Fredholm representations with
compact supports.

Definition 1 Let Y be a locally compact space, and let π be a group. A
family ρ = (Fy, Ty), y ∈ Y is called a family of Fredholm representations
with compact supports if

(a) for each y ∈ Y , (Fy, Ty) is a Fredholm representation of π, and the
maps y 7→ Fy and y 7→ Ty(g) (for any g ∈ π) are continuous in the operator
norm;

(b) there exists a compact K ⊂ Y and a constant C such that for any
y ∈ Y \K the operator Fy is invertible and

‖Fy‖ < C, ‖F−1
y ‖ < C;

(c) for any g ∈ π and ε > 0 there exists a compact set K = K(ε, g) ⊂ Y
such that for any y ∈ Y \K

‖FyTy(g)− Ty(g)Fy‖ < ε.

One can construct a well-defined homomorphism

ρ∗ : K∗
A(X)−→K∗

comp(X × Y )

for any finite CW -complex X. Let ξ = {E−→X} be a locally trivial vector
bundle, the fiber of which is a finitely generated Hilbert A-module V and
the structure group of which is AutA(V ). Let {Uα} be a finite covering and

ϕαβ : Uαβ−→AutA(V ), Uαβ = Uα ∩ Uβ ,

be the transition functions,
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ϕαβ(x)ϕβγ(x)ϕγα(x) = 1, x ∈ Uαβγ = Uα ∩ Uβ ∩ Uγ .

The representation Ty determines the homomorphism

T ∗y : AutA(V )−→B(H̄), H̄ = V ⊗A H

and therefore determines the Hilbert bundle H associated with ξ over the
base space X×Y , H = E⊗AH. Then one should consider a homomorphism

Φ : H−→H

as a family of maps

Φα(x, y) : H̄−→H̄, x ∈ Uα, y ∈ Y

such that

T ∗y (ϕαβ(x))Φα(x, y) = Φβ(x, y)T ∗y (ϕαβ(x)), x ∈ Uαβ , y ∈ Y. (2.5)

We say that the homomorphism

Φ : H−→H

is a realization of the representation ρ∗ on the element ξ, [ξ] ∈ K∗
A(X) if

(a) Φα(x, y)− 1V ⊗ Fy ∈ C(H̄), x ∈ Uα, y ∈ Y ; (2.6)

(b) For any ε > 0 there exists a compact K ⊂ Y, such that for any
x ∈ Uα, y ∈ Y \K one has

‖Φα(x, y)− 1V ⊗ Fy‖ < ε. (2.7)

Theorem 1 Let X0 ⊂ X and Φ0(x, y), x ∈ X0, be a realization of the
representation ρ∗ on the bundle ξ over the subspace X0 ⊂ X. Then there
exists a realization Φ(x, y), x ∈ X, such that

Φ(x, y)|X0 = Φ0(x, y).

Corollary 1 If Φ0 and Φ1 are two realizations of the representation ρ∗ on
the bundle ξ then there exists a homotopy Φt, 0 ≤ t ≤ 1, in the class of
realizations of the representation ρ∗ which extends Φ0 and Φ1.

Corollary 2 The correspondence

ξ 7→ [Φ] ∈ K0
comp(X × Y )
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is a well-defined homomorphism

ρ∗ : KA(X) −→ K0
comp(X × Y )

for any finite CW -complex X.

Corollary 3 If X is a non-compact CW -complex then ρ∗ can be extended
to a homomorphism

ρ∗ : KA(X)−→K0(X × Y +, X × (+)) (2.8)

where Y + is one point compactification of Y . Moreover, the diagram

K∗
A(X)

ρ∗−→ K∗(X × Y +, X × (+))ychA

ych
H∗

A(X;K∗
A ⊗Q) H∗(X × Y +, X × (+);Q)yH(ρ∗)

x∪
H∗(X; K∗(Y +, (+))⊗Q)

H(ch)−→ H∗(X;H∗(Y +, (+);Q))

is commutative.

Therefore one can repeat the technique in the absolute case.

2.4 The fourth step

The fourth step is standard (see [18]). Let Bπ be a finite-dimensional com-
plete Riemannian manifold with nonpositive sectional curvature. Let

Y = T ∗Bπ
p−→Bπ

be the cotangent bundle and let

Ỹ
p̃−→B̃π

be its universal covering. Consider the bundle Λ∗(Ỹ ), the bundle of differen-
tial forms over Ỹ , which is a complex vector bundle. The complex structure
corresponds to the natural almost complex structure in the tangent bundle
of the manifold Y . Fix a basepoint ỹ0 in Ỹ . Define the homomorphism

F̃ : Λ∗(Ỹ )−→Λ∗(Ỹ ), ỹ ∈ Ỹ ,

F̃ỹ(ω) = ω ∧ dcϕ(ỹ),
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where dc is the complex differential of the function

ϕ(ỹ) =
√

d2(p̃(ỹ0), p̃(ỹ)) + ‖ỹ‖2 + 1.

The differential dc is defined by

dc = d− idI

where I determines the complex structure in the bundle T (T ∗B̃π). Let
y ∈ Y and

Hy = q!(Λ∗(Ỹ )) = ⊕ỹ∈q−1(y)Λ∗ỹ,

Fy = q!(F̃ )y, y ∈ Y,

where q : Ỹ−→Y is the covering map. It is clear that Fy +F ∗y is a Fredholm
operator. Let g : Ỹ−→Ỹ be the diffeomorphism representing the action of
the element g of the monodromy group π, and let Λ∗dg be its differential.
Put

Ty(g) = (q!(Λ∗dg))y.

Then the family ρ∗ = (Fy, Ty), y ∈ Ỹ satisfies the conditions of a Fredholm
representation with compact supports.

The realization of ρ∗ on the bundle ξA can be determined by the following.
In this case V = A, AutA(A) = A, and the transition functions are given
by right multiplication by the elements of group π.

Put
Φ̃(x̃, ỹ)(ω) = ω ∧ dcϕ̃(ỹ, x̃),

where
ϕ̃(ỹ, x̃) =

√
d2(p̃(x̃), p̃(ỹ)) + ‖ỹ‖2 + 1.

Then
Φ̄(x̃, y) = q!(Φ̃)x̃,y, x̃ ∈ Ỹ , y ∈ Y.

is an equivariant family of operators such that for any ε > 0 and compact
set K1 ⊂ Y there exist a compact K2 ⊂ Y such that

‖Φ̄(x̃, y)− Fy‖ < ε

for any x̃ ∈ q−1(K1), y ∈ Y \K2. This means that the element

ρ∗(ξA) ∈ K(Y × Y +, Y × (+))

is represented by the family of operators

Φ(x, y) = Φ̄(x̃, y)/π.
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In fact the family Φ(x, y) is an isomorphism for x 6= y ∈ Y . Hence the
element ρ∗(ξA) lies in the image of the homomorphism

K(Y × Y, Y × Y \∆) = K(Y × Y +, Y × Y +\∆)−→K(Y × Y +, Y × (+)).

This last condition means that for any ζ ∈ K(Y ), one has

(1⊗ ζ)ρ∗(ξA) = (ζ ⊗ 1)ρ∗(ξA).

Thus we should consider the class

f∗M (chρ∗(ξA)) =
∑

ui ⊗ yi ∈ H∗(M ;Q)⊗H∗(Y +, (+);Q)

such that for any x ∈ H∗(Y ;Q) one has
∑

i∈Λ0

(f∗M (x)ui)⊗ yi =
∑

i∈Λ0

ui ⊗ (yix). (2.9)

Let
V = Im(H∗(Y ;Q) → H∗(M ;Q)).

Then there exists a compact Y α ⊂ Y such that

V = Im(H∗(Y α;Q) → H∗(M ;Q)),

and therefore ui ∈ V for all i ∈ Λ0. One can easily show that the yi are in-
dependent. This concludes the proof of the Novikov conjecture for complete
non-positively curved Riemannian manifolds, assuming Theorem 1 and its
Corollaries (which will be proved below).

3 Subsidiary considerations

3.1

All spaces below are considered to be finite or infinite CW -complexes with
smooth simplicial divisions on smooth manifolds. If a CW -complex X is
infinite, then the topology on X is considered to be the direct limit of the
topologies of the family of all its finite subcomplexes. The subspace Y ⊂ X
is considered as a simplicial subcomplex of X or one of its simplicial subdi-
visions. A compact subspace Y ⊂ X means that Y is a finite subcomplex.

The cohomology groups H∗(X; G) are considered as the homology groups
of the simplicial cochain complex, whose cochain groups consist of all func-
tions from the family of all simplexes (of a given dimension) to the coefficient
group G. For our purposes, it will be sufficient to consider the case where
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G is a vector space over Q. Therefore if X is an infinite CW -complex, then
the cohomology group H∗(X;G) is the inverse limit

H∗(X; G) = lim
←−

(H∗(Xα; G))

where Xα runs over the family of all finite subcomplexes of X. (This would
not necessarily be true if we didn’t use rational coefficients.) Moreover, the
family {H∗(Xα;G)} satisfies the Mittag-Leffler condition for stabilization
of images, that is, for any α, there exists β0 > α, such that for any β > β0,
one has

Image{H∗(Xβ ; G)−→H∗(Xα; G)} = Image{H∗(Xβ0 ;G)−→H∗(Xα; G)}.

Respectively H∗
comp(X;G) denotes the homology groups of the simplicial

cochain complex consisting of all cochains which vanish everywhere with the
exception of a finite number of simplexes. Recall that there exists a graded
pairing

H∗(X; G1)⊗H∗
comp(X;G2) → H∗

comp(X;G1 ⊗G2)

which is determined by the cup-product of the cochains.
In the case where X is a finite complex the topological K-theory that we

prefer to use is complex Z2-graded K-cohomology theory. If the space X is
an infinite CW -complex, then it is convenient to deal with the inverse limit

K∗(X) = lim
←

(K∗(Y ))

where Y runs over the directed set of all finite subcomplexes Y ⊂ X. Cer-
tainly any locally trivial complex vector bundle ξ determines an element
[ξ] ∈ K0(X). Also the elements of the group K∗(X) are represented by
continuous families of Fredholm operators Fx, x ∈ X acting on a Hilbert
space. Moreover if we have two locally trivial Hilbert bundles H̃1 and H̃2

whose fibers are the Hilbert spaces H1 and H2 and, if F is a continuous
homomorphism of the bundles

F : H̃1 → H̃2

such that over an arbitrary point x ∈ X the bounded operator

Fx : (H̃1)x → (H̃2)x

is a Fredholm operator then the triple ξ = (H̃1, F, H̃2) determines an ele-
ment [ξ] ∈ K0(X). Recall that the Chern character is a mapping

ch : K∗(X) → H∗(X;Q)

where Q is the rational number field.
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Let X be an (infinite) CW -complex and let ξ and η be two locally trivial
vector bundles over X. Let

ϕ : ξ → η

be a homomorphism such that there exists a compact subset K ⊂ X, such
that for any x ∈ X\K, the fiber homomorphism

ϕx : ξx → ηx

is an isomorphism. It is known (see for example [1]) that the family of
triples (ξ, ϕ, η) with the property mentioned above is determined by the
group K0

comp(X) of virtual vector bundles with compact supports. The
elements of the group K0

comp can be represented by triples (ξ, ϕ, η) such
that the vector bundles ξ and η are Hilbert bundles and ϕ is a Fredholm
homomorphism, such that for any point x ∈ X\K the fiber homomorphism
ϕx is an invertible bounded operator. The group K0

comp(X) extends to a
Z2-graded cohomology theory K∗

comp(X) and there exists a pairing

K∗(X)⊗K∗
comp(X) → K∗

comp(X)

which is generated by the tensor product of bundles. Then the Chern char-
acter homomorphism is defined as a multiplicative map

ch : K∗
comp(X) → H∗

comp(X;Q).

3.2

Let M be a connected non-simply connected manifold with fundamental
group π. Let Bπ = K(π, 1) be the Eilenberg-Maclane complex, that is a
CW -complex whose all homotopy groups are trivial with the exception of
π1(Bπ) = π. Then there exists a map, unique up to homotopy

fM : M → Bπ

inducing the given isomorphism of the fundamental groups

(fM )∗ : π1(M) → π1(Bπ) = π.

It will be convenient to consider the pairs (M, fM ), considering h : M1 →
M2 to be a homotopy equivalence of the non-simply connected manifolds
(more explicitly of the pairs (M1, fM1) and (M2, fM2)) if h is a homotopy
equivalence and the diagram

M1

fM1−→ Bπyh ↗ fM2

M2
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is homotopy-commutative. When M1 and M2 are oriented we require h to
preserve orientations.

Similarly two (oriented) non-simply connected manifolds

(M1, fM1) and (M2, fM2)

are called bordant if there exists an (oriented) manifold with boundary
(W, fW ) with the same fundamental group such that the boundary (∂W,
fW |∂W ) = (∂W, f∂W ) is diffeomorphic to disjoint union (M1, fM1)∪ (−M2,
fM2), where the sign −M2 denotes the exchange of orientation. Then
the family of bordism classes forms the oriented bordism ring Ω∗(Bπ) =∑

n≥0 Ωn(Bπ), which is a module over the bordism ring of a point Ω∗ =
Ω∗(pt). Multiplication by elements of the ring Ω∗ is defined by the Cartesian
product of the corresponding representatives:

{(M, fM ), N} 7→ (M ×N, fM ◦ pr)

where pr : M × N → M is the projection, the manifold N being simply
connected.

Remark . One can of course allow the manifolds representing the elements
of the bordism group Ω∗(Bπ) to have fundamental groups which differ from
π. But the restriction imposed above does not restrict generality (except in
dimensions < 4) and it is useful for us for reasons of geometric clarity.

3.3

Let Cπ denote the involutive group algebra of the group π over the complex
number field, and let L2(π) denote the Hilbert space of functions f on the
group π for which ∑

g∈π

|f(g)|2 < ∞.

Then left translation operation generates the symmetric representation

ϕπ : Cπ → B(L2(π))

where B(L2(π)) is the algebra of bounded operators. The completion of
the subalgebra ϕπ(Cπ) under the operator norm we shall denote by C∗[π].
Then C∗[π] is a C∗-algebra and the homomorphism of the algebra Cπ into
C∗[π] generated by the representation ϕπ we shall denote with the same
symbol ϕπ (as well its restriction ϕπ : π → C∗[π]).

Let Λ be an involutive algebra over the complex number field. Denote
by K∗(Λ) =

∑3
i=0 Ki(Λ) the 4-periodic Hermitian K-theory which is iso-

morphic to the Wall groups L∗(Cπ) (see [18]). It is shown in [18] that one
can associate with the manifold (M, fM ) the symmetric signature defined
as the element σ(M) ∈ K∗(Cπ).
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The construction of the element σ(M) is based on the simplicial (co)chain
group for the universal covering of the manifold M . Namely let C∗(M,Cπ)
be the group of the cochains with value in the local coefficient system Cπ
corresponding to the natural representation of π in Cπ. Let

D : C∗(M,Cπ)−→C∗(M,Cπ) = (C∗(M,Cπ))∗

be the intersection operator with the open fundamental cycle, that is,

Dx = x ∩ [M̃ ]

(more accurately, by its self-conjugate part 1
2 (D + D∗)). It is evident that

Dd + d∗D = 0 under suitable choice of signs. If dim M = n is even one can
obtain the commutative diagram

Cev d−→ CoddyD
yD

(Cev)∗ d∗−→ (Codd)∗

which generates the isomorphism

Cev ⊕ (Codd)∗
d+d∗+D+D∗

−−−−−−−→ (Cev ⊕ (Codd)∗)∗

which is a quadratic form, that is an element of Lev(Cπ). If dim M = n is
odd one can obtain an element of Lodd(Cπ) in a similar way.

The element σ(M) is both a bordism invariant and a homotopy equiva-
lence invariant. The first means that the correspondence (M, f) 7→ σ(M)
gives a homomorphism

σ : Ω∗(Bπ) → K∗(Cπ). (3.1)

Moreover, if x ∈ Ω∗(Bπ), y ∈ Ω∗ then

σ(x⊗ y) = σ(x)τ(y), (3.2)

where τ(y) is the classical signature of the oriented manifold that repre-
sents the element y ∈ Ω∗. Consider (3.1) after tensor multiplication by the
rational number field Q:

σ : Ω∗(Bπ)⊗Q → K∗(Cπ)⊗Q. (3.3)

The group Ω∗(Bπ) ⊗ Q can be expressed in terms of the usual homology
groups of the space Bπ. In fact let Ωf

∗(X) denote the framed bordism ring.
Let h be the natural Hurewicz homomorphism

h : Ωf
∗(X) → H∗(X;Z)
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that for any singular (framed) manifold (M, f):

f : M → X

associates the homology class

h(M, f) = f∗([M ]) ∈ H∗(X;Z)

where [M ] is the fundamental cycle. Since Ωf
∗ ⊗ Q = Ωf

0 ⊗ Q = Q, the
homomorphism

h : Ωf
∗(X)⊗Q → H∗(X;Q)

is an isomorphism. Consider the natural ‘forgetful map’ of the bordism
groups

j : Ωf
∗(X) → Ω∗(X)

and extend it to the homomorphism

j∗ : Ωf
∗(X)⊗ Ω∗ ⊗Q → Ω∗(X)⊗Q

according to the formula

j∗((M,f)⊗N) = (M ×N, f ◦ pr) ∈ Ω∗(X),

(M, f) ∈ Ωf
∗(X), N ∈ Ω∗.

It is evident that j∗ is an isomorphism. Hence the following homomorphism
is an isomorphism as well:

j∗(h−1 ⊗ 1) : H∗(X;Q)⊗ Ω∗
h−1⊗1−→ Ωf

∗(X)⊗Q⊗ Ω∗
j∗−→Ω∗(X)⊗Q.

Let L be the multiplicative Hirzebruch genus, that is the invertible char-
acteristic class such that

a) L(ξ ⊕ η) = L(ξ)L(η) for any oriented vector bundles ξ, η;
b) for any oriented manifold X, its signature is expressed by the formula

τ(X) = 22k〈L(X), [X]〉.

Then the homomorphism (3.3) can be interpreted as the following. Con-
sider the composition mapping

σ ◦ (j∗ ◦ (h−1⊗1)) : H∗(Bπ;Q)⊗Ω∗ → Ω∗(Bπ)⊗Q → K∗(Cπ)⊗Q. (3.4)

According to (3.2) if x ∈ H∗(Bπ;Q), y ∈ Ω∗ then

σ ◦ j∗ ◦ (h−1 ⊗ 1)(x⊗ y) = (σ ◦ j∗ ◦ (h−1 ⊗ 1)(x⊗ 1))τ(y), (3.5)
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hence
σ ◦ j∗ ◦ (h−1 ⊗ 1) = σ ⊗ τ, (3.6)

where

σ = (σ ◦ j∗ ◦ (h−1 ⊗ 1))|H∗(X;Q)⊗1 : H∗(Bπ;Q) → K∗(Cπ)⊗Q. (3.7)

Therefore the homomorphism σ can be considered as the cohomology class

[σ] ∈ H∗(Bπ;K∗(Cπ)⊗Q). (3.8)

Then the following formula is true:

σ(M, fM ) = 〈L(M)f∗M ([σ]), [M ]〉 ∈ K∗(Cπ)⊗Q. (3.9)

In fact the element [M, fM ] ∈ Ω∗(X)⊗Q can be decomposed as the sum

[M, fM ] =
∑
α

[Mα, fMα ]⊗ [Nα],

where [Mα, fMα ] ∈ Ωf
∗(Bπ), [Nα] ∈ Ω∗. Then the lefthand part of (3.9) has

the form
σ(M,fM ) =

∑
α

σ(MαfMα)τ(Nα).

The righthand part of (3.9) can be calculated in the following way:

〈L(M)f∗M ([σ]), [M ]〉 =
=

∑
α〈L(Mα ×Nα)f∗Mα×Nα

([σ]), [Mα ×Nα]〉 =
=

∑
α〈(1⊗ L(Nα))(f∗Mα

([σ]⊗ 1), [Mα ×Nα]〉 =
=

∑
α〈f∗Mα

([σ]), [Mα]〉〈L(Nα), [Nα]〉 =
=

∑
α〈[σ], (fMα)∗[Mα]〉τ [Nα] =

=
∑

α〈[σ], h(Mα, fMα)〉τ [Nα] =
=

∑
α σ(Mα, fMα)τ [Nα] .

The formula (3.9) gives the whole family of higher signatures which are
homotopy invariant.

4 Fredholm representations controlled at in-
finity

Let H1,H2, · · · ,Hn be a sequence of Hilbert spaces connected by bounded
operators F1, · · · , Fn−1 giving the Fredholm complex

0−→H1
F1−→H2

F2−→H3−→· · ·−→Hn−1
Fn−1−→Hn−→0. (4.1)
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This means that the composition of the operators Fi+1 ◦ Fi is a compact
operator:

Fi+1 ◦ Fi ∈ C(Hi,Hi+2) (4.2)

and there exist ‘adjoint’ operators

0←−H1
G2←−H2

G3←−H3←−· · ·←−Hn−1
Gn←−Hn←−0 (4.3)

such that
Fj−1Gj + Gj+1Fj − 1 ∈ C(Hj). (4.4)

It is convenient to represent the definition (4.1)–(4.4) of the Fredholm
complex in graded form. Let H = ⊕Hi be a graded Hilbert space, let

F : H−→H (4.5)

be a homogeneous (of degree 1) bounded operator such that

F ◦ F ∈ C(H), (4.6)

there exists a homogeneous bounded operator (of degree −1)

G : H−→H (4.7)

such that
F ◦G + G ◦ F − 1 ∈ C(H). (4.8)

The operator G can be chosen in different ways, but it can always be chosen
so that

G ◦G ∈ C(H). (4.9)

From conditions (4.5)–(4.9) it follows that the operator

F̃ = (F + G) : H → H (4.10)

is a Fredholm operator homogeneous of degree one under the Z2-grading of
the space H. In other words

(F + G)(Hev) ⊂ Hodd,

(F + G)(Hodd) ⊂ Hev,

where
Hev = ⊕H2i, Hodd = ⊕H2i+1.

Denote
F̃ ev = (F + G)|Hev , F̃ odd = (F + G)|Hodd . (4.11)
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Let T be a unitary graded representation (of degree 0) of the group π in
the Hilbert space H. Then the pair (F, T ) is called a Fredholm representation
if the operator F satisfies the conditions (4.5)–(4.8) and additionally if the
following condition holds

FT (g)− T (g)F ∈ C(H) (4.12)

for any element g ∈ π.
The condition (4.12) implies that

F̃ T (g)− T (g)F̃ ∈ C(H). (4.13)

The pair (F̃ ev, T ) is a Fredholm representation (on a short exact sequence
of Hilbert spaces), and as well it satisfies

F̃ evT (g)− T (g)F̃ ev ∈ C(Hev,Hodd). (4.14)

Therefore we shall focus our attention on the operators (4.10) and (4.11).
We need to consider the notion of a trivial Fredholm representation.

At first, it seems sufficient to substitute zero for the algebra C(H) in the
conditions (4.8) and (4.12):

F ◦G + G ◦ F − 1 = 0. (4.15)

F̃ T (g)− T (g)F̃ = 0. (4.16)

Conditions (4.15, 4.16) were used to define trivial elements in the KK-
theory of G. Kasparov. But really this modification will not be sufficient.

Indeed, in [9] there is an attempt to use some weaker conditions than
(4.15), (4.16). There the conditions (4.8, 4.12) were replaced by the stronger
condition (4.15). But the class of Fredholm representations which satisfy
the condition (4.15) cannot be considered as trivial elements in KK-theory,
because there are no reasons which lead to the triviality of the homomor-
phism

ρ∗ : K∗
A(X)−→K∗

comp(X × Y ).

In particular, in [9] on page 86 the following is written: “...if τ = τ(Y, B)
then A is exact (mod C) and it is easily seen that Ā(j) must also be exact
over B.” This statement seems not to be true. As a counterexample consider
the splitting ([9], p. 85)

Y × (H(1)
0 ⊕H

(2)
0 ) Ā−→Y × (H(1)

1 ⊕H
(2)
1 )

with index Ā = 0, index A(1) 6= 0, index A(2) 6= 0. Then there exists a
compact operator K ∈ C such that Ā + K is invertible but A(1) + K(1) will
never be invertible.
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The right way is to change not only condition (4.8) but also condition
(4.12) as it was formulated in the Definition 1.

Now we shall give a proof of Theorem 1 by induction on the cardinality of
the covering family {Uα} of X. Without loss of generality one can assume
that the covering {Uα} consists of the stars of vertices of some simplicial
division on X. Let Φα(x, y) be constructed for all α < α0 and satisfy the
conditions (2.5), (2.6), (2.7). The set Uα0\(∪α<α0Uα ∪ X0) is covered by
some simplices whose some faces lie in ∪α<α0Uα and there, due to (2.5), Φα0

is defined. Therefore there exists an extension of Φα0 from Uα0 ∩ ∪α<α0Uα

to Uα0 satisfying (2.6). Moreover for any ε > 0 there exists a compact K
such that for any x ∈ (∪α<α0Uα ∪ X0), y ∈ Y \K the condition (2.7) is
holds. Hence there exists an extension Φα0 to Uα0 such that condition (2.7)
is true (for some sufficiently small ε′ > 0).

Remarks.
1. If ϕ

′
αβ are other transition functions, that is if

ϕ
′
αβ(x) = hβ(x)ϕαβ(x)h−1

α ,

where
hα : Uα−→AutA(V ),

then the operators

Φ
′
α(x, y) = T ∗y (hα(x))Φα(x, y)T ∗y (h−1

y (x))

are a realization of the same representation ρ∗ on the same bundle ξ.
2. Let G be a discrete group acting on X̃ and let X = X̃/G. Let ξ̃ =

(Ẽ−→X̃) be an equivariant bundle and

Φ̃ : ẼA ⊗H−→ẼA ⊗H

be an equivariant homomorphism satisfying (2.5), (2.6), (2.7). Then

Φ/G : EA ⊗H−→EA ⊗H,

where E = Ẽ/G satisfies the conditions (2.5), (2.6), (2.7) as well.

5 Remarks

1. The notion of a family of Fredholm representations with compact sup-
ports one can interpret as a continuous family of Fredholm representa-
tions in some new topology on the space of Fredholm representations.
Namely a neighborhood of the trivial element consists of not only of
the Fredholm representations which are near the trivial element with
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respect to the uniform norm but also the elements (F, T ) which satisfy
the conditions

‖F‖ ≤ C, ‖F−1‖ ≤ C, ‖FT (g)− T (g)F‖ < ε, g ∈ π0 ⊂ π (5.1)

where π0 is a finite subset of π. The family O(C, ε, π0) of all Fredholm
representations which satisfy the conditions (5.1) is a neighborhood
of the trivial element in the space of all Fredholm representations.

Therefore the family of the Fredholm representations with compact
supports is a continuous family from the one point compactification
Y + to the space of the Fredholm representations with new topology.

2. The topology defined above is not homogeneous. It would be inter-
esting to give similar definition of neighborhoods for arbitrary point
of the space of Fredholm representations.

3. One can extend the notion of special manifold which was considered in
[27] to the class of non-compact manifolds which satisfy similar condi-
tions with slight modifications. Namely, call a complete Riemannian
manifold M special if:

(1) The universal cover M̃ is diffeomorphic to Rn and

(2) There is a point x̃0 ∈ M̃ and a vector field ω such that ω is
nontrivial away from some compact K ⊂ M̃ and index ω = +1, and
there exist constants C1, C2 such that

0 < C1 < ‖ω(x)‖ < C2, x ∈ (M̃\K),

and for all g ∈ π1(M)

limx−→∞‖g∗ω(x)− ω(gx)‖ = 0.

It is clear that for this larger class of manifolds the theorem on homo-
topy invariance of the higher signatures holds.

4. The construction of a new topology on the space of Fredholm repre-
sentations shows that in a similar way one can introduce a notion of
quasi-representation of a discrete group π. In [4] the notion of almost
flat bundles on a manifold M was introduced.

Namely, let α ∈ K0(M) be an element of the K-theory on a (com-
pact) Riemannian manifold M , and let α = (E+,∇+) − (E−,∇−),
where E+, E− are hermitian complex vector bundles with connec-
tions ∇+,∇−. One can say that the element α is almost flat if for any
ε > 0 there exists a representation α = (E+,∇+) − (E−,∇−) such
that

‖(E+,∇+)‖ ≤ ε, ‖(E−,∇−)‖ ≤ ε,
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where

‖(E,∇)‖ = Supx∈M

{‖θx(X ∧ Y )‖ : ‖X ∧ Y ‖ ≤ 1
}
,

and θ = ∇2 is the curvature.

Then for an almost flat element α ∈ K0(M) and any ε > 0 and a finite
subset F ⊂ π there exists a representation α = (E+,∇+)− (E−,∇−)
with

‖(E+,∇+)‖ ≤ ε, ‖(E−,∇−)‖ ≤ ε,

such that corresponding quasi-representations

σ+ : π−→U(N+), σ− : π−→U(N−)

have the following property:

‖σ+‖F ≤ ε, ‖σ−‖F ≤ ε,

where
‖σ‖F = Sup

{‖σ(ab)− σ(a)σ(b)‖ : a, b ∈ F
}
.

This notion has a shortcoming because the choice of quasi-represen-
tation depends on the property of almost flatness, which in its turn
depends on the smooth structure on the manifold M . It would be
interesting to construct a natural inverse correspondence from the
family of quasi-representations of a discrete group to the family of
almost flat bundles. I suggest a new definition of quasi-representation
of a discrete group π, such that there is a natural map from the family
R(π) of such quasi-representations to K(Bπ).

Definition. Let

σ = {σn : π−→U(Nn) ⊂ U(∞)}
be a sequence of maps (here we think of all the finite unitary groups
as embedded in in the inductive limit U(∞) = lim→ U(N)) such that
for any ε > 0 and finite subset F ⊂ π there exists a number N0 such
that if n1, n2 > N0 then

‖σn1(a)− σn2(a)‖ ≤ ε, a ∈ F,

‖σn1‖F ≤ ε.

Then one can construct a natural homomorphism

φ : R(π)−→K(Bπ)

and a pairing
L∗(Cπ)⊗R(π)−→Z,
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such that one has the following formula

ρ(σ(M)) = 〈L(M)ch(φ(ρ)), [M ]〉 = σx(M),

where x = ch(φ(ρ)). Therefore the numbers σx(M) are homotopy
invariant for all x ∈ Im ch ◦ φ ⊂ H∗(Bπ). It seems that the family
of quasi-representations gives more homotopy invariant higher signa-
tures.

One can extend the notion of quasi-representations to Fredholm quasi-
representations and construct a corresponding Kasparov KK-theory.
It is interesting to compare the Kasparov KK-theory with this gen-
eralization.

References

[1] M. F. Atiyah, K-Theory , Benjamin, New York, 1967.

[2] W. Browder, Homotopy type of differential manifolds, Colloquium
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Assembly maps in bordism-type
theories

Frank Quinn

Preface

This paper is designed to give a careful treatment of some ideas which
have been in use in casual and imprecise ways for quite some time, partic-
ularly some introduced in my thesis. The paper was written in the period
1984–1990, so does not refer to recent applications of these ideas.

The basic point is that a simple property of manifolds gives rise to an
elaborate and rich structure including bordism, homology, and “assembly
maps.” The essential property holds in many constructs with a bordism fla-
vor, so these all immediately receive versions of this rich structure. Not ev-
erything works this way. In particular, while bundle-type theories (including
algebraic K-theory) also have assembly maps and similar structures, they
have them for somewhat different reasons.

One key idea is the use of spaces instead of sequences of groups to orga-
nize invariants and obstructions. I first saw this idea in 1968 lecture notes
by Colin Rourke on Dennis Sullivan’s work on the Hauptvermutung ([21]).
The idea was expanded in my thesis [14] and article [15], where “assembly
maps” were introduced to study the question of when PL maps are ho-
motopic to block bundle projections. This question was first considered by
Andrew Casson, in the special case of bundles over a sphere. The use of ob-
struction spaces instead of groups was the major ingredient of the extension
to more general base spaces. The space ideas were expanded in a different
direction by Buoncristiano, Rourke, and Sanderson [4], to provide a setting
for generalized cohomology theories.

Another application of these ideas was a “homological” description of the
surgery sequence. The classical formulation of this sequence describes “nor-
mal maps” as a cohomology group—in particular contravariant—while the
surgery obstruction is covariant. Applying duality in generalized homology
describes the normal map set as a homology group and relates the classical
surgery obstruction to an assembly map. This idea was made precise and
useful by Andrew Ranicki [19].
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The careful development of the material in the generality given here was
largely motivated by the work of Lowell Jones [10], [11]. He developed an
approach to the classification of piecewise linear actions of cyclic groups
as a profound application of surgery theory. This material allows direct
recognition of one of Jones’ obstructions as a generalized homology class
with coefficients in the “fiber of the transfer.” The relation to Jones’ work
is sketched in section 6.4.

I would like to thank Andrew Ranicki for his encouragement over the
years to bring this work into the light.

0: Introduction

Let Jn represent a group-valued functor of spaces, for example bordism
groups, or Wall surgery groups, or algebraic K-groups (of the fundamen-
tal group). In these examples there is an associated generalized homology
theory H∗(X;J) and a natural homomorphism

H∗(X;J) −→ J∗(X)

called the “assembly.” These homomorphisms are important for two reasons;
they offer a first step in the computation of the functors J∗(X), and some
of them arise in geometric situations. For example the assembly map for
surgery groups is closely related to surgery obstructions, and the “Novikov
conjecture” is equivalent to rational injectivity of the assembly when X is
a K(π, 1).

The objective is to give two descriptions of these homomorphisms. The
first description is very general, in the context of homology with coefficients
in a spectrum-valued functor. This yields a wealth of naturality proper-
ties and useful elaborations. However it is difficult to see specific elements,
particularly homology classes, from this point of view.

The second description is complementary to this. For certain types of
theories homology classes can be described explicitly in terms of “cycles.”
Assembly maps are directly defined by “glueing” (assembling) the pieces in
a cycle. This gives an explicit element-by-element view which is good for
specific calculations and recognizing homology classes when they occur as
obstructions. But the naturality properties become obscure.

The main result is that these two constructions do in fact describe the
same groups, spaces, maps, etc. Special cases been used in calculations of
surgery groups and obstructions [14], [15], [5], [28], [8]. With this description
the assembly map is seen to describe obstructions for certain block bundle
problems [15], and constructions of PL regular neighborhoods [10], [11]. The
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cycle description is well adapted to constructions divided into blocks, like
PL regular neighborhoods of polyhedra.

This paper begins with definitions of various types of homology; gener-
alized, twisted, Čech, and spectral sheaf. This logically comes first, but the
reader may find it more interesting to begin with the bordism material of
section 3.

The second section defines homology with coefficients in a spectrum-
valued functor. Assembly maps are part of the functorial structure of these
homology theories. The idea is to begin with a map p : E −→ X, apply the
functor fiberwise to point inverses of p to get a “spectral sheaf” over X,
and take the homology of this. In this setting the usual assembly appears
as a morphism induced by a map of data: the constant coefficient homology
H∗(X;J) is the J-coefficient homology of the identity map X −→ X, the
groups J∗(X) are the homology of the point map X −→ pt, and the assembly
is induced by the diagram

X
=−−−−→ X

y=

y
X −−−−→ pt

regarded as a morphism from the identity to the point map.
From this point of view the usual assembly is a small part of a rich

structure: there are lots of maps more interesting than the identity and
the point map. Special cases were defined by D. W. Anderson [2], and in
algebraic K-theory by Loday [12] and Waldhausen [24].

Bordism-type theories are described in section 3. This is a fairly primi-
tive notion, designed so the conditions can be easily verified in examples.
These have associated bordism groups, and bordism spectra. The spectrum
construction is used to define functors which satisfy the conditions of the
second section, so homology with coefficients in these spectra are defined.

This description applies naturally to surgery groups, and bordism groups
defined using manifolds, Poincaré spaces, normal spaces, or chain complexes.
There is an existence theorem in 3.7 which asserts that one can contrive
to obtain any homology theory from a bordism-type theory. However we
regard it as a conceptual error to use this result: the theory is designed to
take advantage of special structure in a class of examples, and has no special
benefits as an approach to general theory.

Roughly speaking the approach applies to theories with classifying spaces
which are simplicial complexes satisfying the Kan condition. There is a
general-nonsense construction which replaces a space with a Kan complex
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of the same weak homotopy type, and this gives the existence theorem.
However, for example, the natural classifying spaces for algebraic K-theory
do not satisfy the Kan condition, so the approach does not naturally or
usefully apply to K-theory.

In section 4 “cycles” are introduced as representatives for homology
classes in bordism-type theories. These are defined on covers of the space,
and associate to an element of the cover a “fragment” of an object, with
various “faces.” The prototypical example of such a fragment is a mani-
fold, with its boundary subdivided into submanifolds (this example leads
to bordism, hence the title of the paper). The pieces of a cycle fit together;
over an intersection of two elements of the cover corresponding faces of the
fragments are equal. Over three-fold intersections certain “edges” agree, etc.
The assembly map simply glues (assembles) the pieces together using these
identifications to get a single object.

Another way to view cycles is in terms of transversality. Suppose X is
a finite simplicial complex. The dual cone (or cell) decomposition of X de-
scribes X as being assembled from pieces, each a cone on a union of smaller
pieces. The boundaries of largest cones are bicollared in X; boundaries of
smaller cones are bicollared as subsets of the boundary of the next larger
cones. A manifold could therefore be made transverse to all these cones.
This breaks the manifold into pieces over each maximal cone, intersecting
in faces over the next smaller cones, etc. A cycle is an abstraction of this
pattern. Thus a J-cycle may be thought of as a J-object which is transverse
to a dual cone decomposition.

There is an associated description of cocycles, representing cohomology
classes, given in 4.7. These associate to each simplex of a complex an object
with the same pattern of faces as the simplex. Since there is a correspondence
between simplices and dual cones, a cycle also associates an object to each
simplex. But the objects in a cycle have faces corresponding to faces of the
cone dual to the simplex, rather than the simplex itself. So for example in
a cocycle dimensions of associated objects increase with dimension of the
simplex, while in a cycle the dimension decreases.

Section 5 contains the proof of the main theorem, that cycles represent
homology classes.

The final sections presents examples of bordism-type theories, and appli-
cations of the representation theorem. In section 6.1 manifolds are shown
to form a bordism-type theory. Details are included as a model for verifica-
tions in other contexts. In 6.2 this is extended to manifolds with a map to
a space. This construction defines a manifold-type theory depending func-
torially on a space, so leads to a full array of functor-coefficient homology
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groups, assembly maps, etc.
Transversality is used to show that the assembly maps in the manifold

theories are isomorphisms. This is an analog of the classical Pontrjagin-
Thom theorem that the bordism groups form a homology theory represented
by the Thom spectrum.

This suggests thinking of assemblies in general bordism-type theories in
terms of transversality. The fiber of the assembly map, which measures the
deviation from isomorphism, then classifies obstructions to transversality.

Poincaré chain complexes are considered in 6.3, and the relation of this
development to the work of Ranicki [20] and Weiss [26] is briefly described.

Finally in section 6.4 we sketch a sophisticated application. This begins
with the observation that in some circumstances PL regular neighborhoods
are equivalent to PL manifold cycles. Then a formulation of surgery in
these terms gives a classification of manifold structures on Poincaré cycles.
Putting these observations together gives a way to construct PL regular
neighborhoods. In particular an obstruction encountered by Jones [10], [11]
in the construction of PL group actions is reformulated as a generalized
homology class.

Important topics not covered here are applications to surgery classifica-
tion problems, product structures and duality, and computational aids like
spectral sequences.

We mention that there is another class of theories with a description of
homology classes and the assembly. These are the controlled theories, which
deal with objects with a naturally associated “size,” over a metric space.
The representation theorem asserts that objects with sufficiently small size
represent homology classes. The assembly map simply forgets the size re-
striction. These theories are well adapted to problems where things cannot
be broken into blocks, for example in the study of purely topological neigh-
borhoods [18]. The methods are more those of sheaf theory with things
given on overlapping open sets, rather than the articulated fragments of the
bordism-type theories.

This paper can be considered a completed version of the author’s thesis,
where some limited assembly maps for surgery were described, and the term
“assembly” was introduced.

1: Homology

Generalized homology spectra (with coefficients in a spectrum) are de-
fined in 1.1, and extended in 1.2 to homology with spectral sheaf coefficients.
Twisted homology is discussed in 1.3 as a special case. Finally in 1.4 there
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is a description of Čech (or “shape”) homology, which will be the setting
for the general theory.

1.1 Spectra

A “spectrum” is a sequence of based spaces Jn together with based maps
jn : Jn ∧ S1 → Jn+1; see Whitehead [27] The spaces in a spectrum will be
understood to be compactly generated space with the homotopy type of a
CW complex.

We usually require these to be Ω-spectra in the sense that the adjoint
of the structure map Jn → ΩJn+1 is a homotopy equivalence. An arbi-
trary spectrum has a canonically associated Ω-spectrum with nth space
holimi→∞ ΩiJn+i. Generally the homotopy limits used here will be those

defined by Bousfield and Kan [3]. In this particular case (a countable or-
dered direct system) it is just the mapping telescope (union of the mapping
cylinders). An Ω-spectrum will be denoted by a boldface character; J.

Given a spectrum J and a pair (X, Y ), the homology spectrum H•(X, Y ;J)
is defined to be the Ω-spectrum associated to the spectrum (X/Y ) ∧ J∗.

Referring to the definition just above of “associated Ω-spectrum” we see
that the nth space in the homology spectrum is given by

holim
i→∞

Ωi−n(X/Y ∧ Ji).

Homology groups are defined (by Whitehead [27]) to be the homotopy
groups of the homology spectrum.

We can at this point describe the simplest example of an assembly (see
also [2]). Suppose J is a functor from spaces to spectra. Then there is a
natural transformation

X = maps(pt, X) −→ maps(J(pt),J(X)).

The adjoint of this is a map X+ ∧ J(pt) −→ J(X). But the left side of this
gives the homology spectrum, so this is a map from the homology of X
to J(X).

1.2 Spectral sheaf homology

We think of the homology H•(X,Y ;J) as homology with coefficients in the
constant coefficient system given by J over each point in X. The twisted
coefficient construction extends this to coefficient systems which are “lo-
cally constant”; fibered over X. The next step is to generalize to coefficient
systems which vary almost arbitrarily. This construction is based on Quinn
[16, §8].
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The description takes place in the category of “spaces over X” described
by James [9]. Fix a base space X, then a space over X is E together with
maps i : X −→ E and p : E −→ X whose composition is the identity. Maps in
the category are continuous maps E −→ F which commute with the inclusion
of, and projection to, X.

The “suspension” of a space over X is given by Sk
XE = Sk × E/ ∼,

where the equivalence relation ∼ identifies each Sk × p−1(x) to a point,
and i : X −→ Sk

XE takes x to this identification point. A spectrum in this
category is therefore a sequence En of spaces over X together with maps
En −→ S1

XEn+1. Note that over each point the sequence of spaces p−1
n (x)

form an ordinary spectrum (except they might violate our convention about
having the homotopy type of CW complexes).

We refer to spectra in the category of spaces over X as spectral sheaves
over X. There are technical connection with ordinary sheaves, but at this
point the name is primarily intended to be suggestive.

The simplest examples of these spectral sheaves are products J × X.
Then come the twisted products J ×G X̂ described in the next section.
More elaborate examples will be constructed in section 2.3.

We now define homology with coefficients in a spectral sheaf. As motiva-
tion note that in the constant coefficient case we begin with the total space
of the product sheaf J×X, divide out X to get an ordinary spectrum, and
pass to the associated Ω-spectrum. More generally, note that identifying the
image of X to a point in a suspension over X gives the ordinary suspen-
sion; S1

XE/i(X) = S1E. Therefore if {En} is a spectral sheaf over X then
an ordinary spectrum is obtained by dividing out X. The homology is the
Ω-spectrum associated to this ordinary spectrum:

H•(X; E) = holim
n−→∞

Ωn(En/i(X)).

Similarly if Y ⊂ X then the relative homology is defined by dividing out
both X and the inverse image of Y ; En

/
(i(X) ∪ p−1(Y )).

We caution that we have not included the hypothesis that these “spectra”
should have the homotopy type of CW complexes. To ensure the smooth
functioning of the machinery of homotopy theory it is important to restrict
to cases where this can be verified.

1.3 Twisted homology

This is defined to give a class of examples of the general theory. It will not
be used here, so can be skipped by the purposeful reader. This construction
does occur in spectral sequences describing general spectral sheaf homology
in terms of simpler objects.
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Suppose that G is a discrete group (see below for a non-discrete version)
which acts on the spectrum J, and ω : π1X → G is a homomorphism. We
use this data to define a spectrum denoted H•(X;J, ω). Let X̂ → X denote
the covering space with G action associated to ω. Then define twisted ho-
mology to be the Ω-spectrum associated to the spectrum (X̂/Ŷ )∧G J. More
explicitly this means take (X̂/Ŷ )×Jn, divide by the diagonal G action, and
identify the invariant subset (X̂/Ŷ ) ∨ Jn to a point.

In the terms of the previous section, X̂ ×G J is a spectral sheaf over X,
and the twisted homology is the homology with coefficients in this sheaf;
H•(X, Y ; X̂ ×G J).

We give another description of this which has better space-level functo-
riality properties. First, the G action on J determines fibrations over the
classifying space BG by Jn ×G EG −→ BG, where EG denotes the universal
cover of BG. (This is a fibered spectral sheaf over BG.) The homomorphism
π1X → G determines, up to homotopy, a map ν : X → BG. The G-product
X ×G Jn is then obtained from the pullback of these two maps to BG. The
G-smash X ∧G Jn is obtained from this by identifying to a point the 0-
section and the inverse image of the basepoint in X. The twisted homology
is therefore the Ω-spectrum associated to these quotiented pullbacks.

The difference between a map X −→ BG and a homomorphism π1X −→ G
is that the first specifies a particular covering space (by pulling back the uni-
versal cover of BG) whereas the second only specifies a cover up to isomor-
phism. There are also problems with basepoints and disconnected spaces.
These are not important for single spaces since changes in basepoints, cov-
ers, etc. only change the homology spectrum by homotopy equivalence. The
differences become more significant when we consider families of spaces, in
section 2.

This point of view is also more general, since BG can be replaced by the
classifying space of a topological monoid (or anything else). We describe
an interesting example which can be expressed in these terms. Suppose ν
is an oriented vector bundle over X, and let Ωn(X, ν) denote the bordism
group of smooth n-manifolds together with a bundle map from the stable
normal bundle to ν. These groups occur in the study of intersections and
singularities. They have also been used to study surgery normal maps.

To describe this as a twisted theory, let Ωfr be the spectrum classifying
framed bordism. The infinite orthogonal group SO acts on this by changing
the framing, so defines a bundle over BSO with fiber Ωfr. The oriented vector
bundle determines a map X −→ BSO. The bordism groups defined above are
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then the SO-twisted homology groups defined by this data;

Ωn(X, ν) ' Hn(X; Ωfr, ν).

1.4 Čech homology

Finally we define Čech, or “shape” homology spectra. This is usually thought
of as a way to extend homology in a reasonable way to pathological spaces
(eg. not locally connected). This is not the motivation here; Čech homology
coincides with the usual notion for all the spaces we really care about. In-
stead, both the definition and the the transversality view of the assembly
naturally take place in Čech homology. It can be avoided, but only at the
cost of some technical awkwardness.

The discussion here is for constant coefficients. In section 2.3 we will use a
Čech version of spectral sheaf homology, which is a straightforward mixture
of this section and 1.2.

Suppose U is a collection of subsets of a space X. We usually think of
U as an open covering, though it is technically convenient to work with
more general collections. Also suppose U has a partial ordering such that
any finite number of elements with nonempty common intersection is totally
ordered. Then the nerve of the collection, denoted nerve(U), is a simplicial
complex with k-simplices the sets of k + 1 elements from U with nonempty
intersection. We do not (at this point) require these elements to be distinct,
so these sets are partially ordered, and fail to be totally ordered only as a
result of duplications. The face operator ∂j is defined by omission of the
jth element, and the degeneracy sj duplicates the jth entry. (Note that the
results are well defined even though the “jth entry” may not be well defined
because of the duplications.)

If Y ⊂ X and U is a collection of subsets of X, then U ∩Y is a collection
of subsets of Y . The nerve of this is a subcomplex; nerve(U∩Y ) ⊂ nerve(U).

Given a spectrum J and a collection U , we can form the homology of the
nerve; H•( nerve(U);J). Strictly speaking this should be the homology of
the realization, and denoted H•( ‖nerve(U)‖;J), but the simpler notation
seems to be clear. More generally if (X, Y ) is a pair then we can form the
relative homology H•( nerve(U), nerve(U ∩ Y );J), as an approximation to
the homology of (X, Y ).

A morphism of collections of subsets θ : U → V is a function compatible
with the partial orders, and such that U ⊂ θ(U). (So U is a refinement of V.)
A morphism induces a simplicial map of nerves nerve(U) −→ nerve(V ), which
in turn induces a map of geometric realizations and a map of homology



210 Frank Quinn

spectra. Note that if U and V are two partially ordered collections then the
collection obtained from intersections U ∩V has natural morphisms to both
U and V.

The partially ordered open covers of X form an inverse system. We define
the Čech, or “shape” homology spectrum of (X, Y ) to be the homotopy
inverse limit of homologies of nerves of this inverse system:

Ȟ•(X, Y ;J) = holim←−U H•( nerve(U), nerve(U ∩ Y );J).

We are primarily interested in this as an alternative description of the
definition of 1.1, so we show

1.5 Lemma. If (X, Y ) is a metric pair with the homotopy type of a CW
pair (K, L), then there is a natural equivalence Ȟ•(X, Y ;J) ' H•(K, L;J).

Proof. The realization ‖K‖ of a simplicial complex K has a canonical open
collection of subsets consisting of stars of vertices. If v is a vertex the star ,
denoted star(v), is the union of all open simplices whose closures contain
v. An ordered simplicial complex comes equipped with a partial ordering of
its vertices so that the vertices of every simplex are totally ordered. This
induces a partial ordering of the covering. Further, a finite collection of
sets in the cover intersect if and only if the corresponding vertices span
a simplex, so this ordering satisfies the hypotheses above. This partially
ordered covering of ‖K‖ is denoted stars(K).

Now suppose X is a metric space, and U is a partially ordered open
cover. A partition of unity subordinate to U can be used to construct a map
f : X −→ ‖nerve(U)‖. Specifically, suppose hU : X −→ [0, 1] are functions
with locally finite support, and that the support of hU is contained in U .
Let x ∈ X, and let hUi for i = 0, . . . , n denote the functions which are
nonzero on x. Then x ∈ ⋂n

i=0 Ui, so (U0, . . . , Un) defines an n-simplex in
the nerve. Represent the simplex ∆n as the points in real (n+1)-space with
nonnegative entries with sum 1, then f takes the point x is to the point
(U0, . . . , Un)× {hU0(x), . . . , hUn(x))} ∈ nerve(U)n ×∆n ⊂ ‖nerve(U)‖.

This map induces a morphism from the inverse image of the open star
cover of the nerve to the original cover: θf : f−1(stars(nerve(U))) −→ U . It
follows that the inverse system of inverse images of star covers of complexes
is cofinal in the system of all covers. Therefore the homotopy inverse limit
over maps to complexes is homotopy equivalent to the limit over covers.
Explicitly, if X is metric then

Ȟ•(X,Y ;J) ' holim
(K,L)−→(X,Y )

H•(K,L;J)
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where (K, L) is a complex pair.
Note there is an analogous definition of “singular” homology obtained

by taking the homotopy direct limit of homology of complexes mapping to
(X,Y ).

If (X, Y ) has the homotopy type of a CW pair then there is a homotopy
equivalence to the realization of a pair of simplicial complexes, (X,Y ) −→
(K,L). The simplicial approximation theorem implies that the subdivisions
of (K,L) are cofinal up to homotopy in the inverse system of complexes to
which (X, Y ) map. Therefore the homotopy inverse limit over the subsystem
is homotopy equivalent to the limit over the full system. But homology of the
realization of a complex is independent of subdivisions, so the homology is
constant on this subsystem. Therefore the inverse limit of the whole system
(the Čech homology) is equivalent to H•(K,L;J) as required. ¤

2: Functor coefficient homology

In this section we define the homology of a map with coefficients in a
spectrum-valued functor. The functors are discussed in 2.1. A simple special
case of the construction, which gives the constant coefficient assembly maps,
is described in 2.2. The full construction is then given in detail in 2.3. This
construction takes place in Čech homology, which involves a homotopy in-
verse limit. Proposition 2.4 shows that these limits are unnecessary in some
cases.

2.1 Spectrum-valued functors

Suppose that J(X) is a covariant functor which assigns an Ω-spectrum to
a space. In detail this means each space is functorially assigned a sequence
of pointed spaces Jn(X), with natural maps Jn(X) ∧ S1 −→ Jn+1(X).

A functor is homotopy invariant if a homotopy equivalence X −→ Y
induces a homotopy equivalence J(X) −→ J(Y ). Alternative descriptions
of this property are that homotopic maps induce homotopic morphisms
of spectra, or that the inclusion X × {0} −→ X × I induces a homotopy
equivalence of J spectra.

A homotopy invariant functor induces a functor on the associated ho-
motopy categories, but we will not use this. For our purposes it is quite
important that J be a functor on maps, and take values in morphisms of
spectra, not just homotopy classes.

A slight extension will be required in the applications. Consider the cat-
egory of pairs (X, ω) where ω : X −→ B, for some fixed B (= BZ/2 in the
applications). Morphisms in this category are X −→ Y which commute with
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the maps of B. Then our functors will be defined on this category; J(X,ω).
In this context “homotopy invariant” means J(X,ω) −→ J(Y, ν) is a homo-
topy equivalence if X −→ Y is a homotopy equivalence. Note this require-
ment on X −→ Y is weaker than homotopy equivalence in the category of
spaces over B, since the homotopies are not required to commute with maps
to B.

The results of this chapter can be extended to this setting simply by
including ω in the notation. Since it plays no essential role we have simplified
the notation by omitting it.

2.2 Constant coefficient assembly

Now suppose that J is a homotopy invariant spectrum-valued functor of
pairs. We will define a natural (up to homotopy) morphism of spectra
H•(X,J(pt)) −→ J(X).

Heuristically the construction is described as follows: Think of X×J(pt)
as obtained by applying J fiberwise to the identity map X −→ X. Similarly
we can obtain J(X) by applying J fiberwise to the projection X −→ pt. Then
the commutative diagram

X
=−−−−→ X

y=

y
X −−−−→ pt

maps the first construction into the second. Dividing out X in the first
construction and passing to associated Ω-spectra gives H•(X;J(pt)) −→
J(X), as desired.

Rather than literally applying J fiberwise we do an analogous simplicial
construction.

Suppose X = ‖K‖ is the realization of a simplicial complex K. Regard K
as a category, with one objects for each simplex σ and morphisms generated
by the face and degeneracy maps ∂j , sj . If F is a covariant functor from
K to spaces, then

∐
σ∈K F (σ) is a simplicial space. In particular it has a

“geometric realization,” defined by:

‖F‖ =
( ∐

k,σ∈Kk

F (σ)×∆k
)
/∼

where ∼ is the equivalence relation generated by: if x ∈ F (∂σ), t ∈ ∆k−1,
and u ∈ ∆k+1 then (x, ∂∗j t) ∈ F (σ)×∆k is equivalent to (∂jx, t) ∈ F (∂jσ)×
∆k−1, and (x, s∗ju) is equivalent to (sjx, u). The following properties of the
realization are immediate:
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2.2A Lemma.

(1) Realization is natural in K and F ,
(2) the constant functor F (σ) = X has realization ‖K‖ ×X, and
(3) suppose ‖F‖ −→ ‖K‖ is defined using the natural transformation

F −→ pt and statements (1), (2). If σ is a nondegenerate simplex of
K then the inverse image of int‖σ‖ ⊂ ‖K‖ is F (σ)× int‖σ‖. ¤

We use this to construct a simplicial version of the assembly.
Consider the covariant functor from K to spaces which takes a simplex

to its open star; σk 7→ star(σ). Compose this functor with the nth space
functor in Jn, to get a functor σ 7→ Jn(star(σ)). Denote the realization of
this functor by Jn(I‖K‖). Substituting in the definition above this is

Jn(I‖K‖) =
( ∐

k,σ∈Kk

Jn(star(σ))×∆k
)
/∼ .

Next define maps by realizing natural transformations, as in the lemma. The
natural transformation Jn(star(σ)) −→ pt gives a projection Jn(I‖K‖) −→
‖K‖. Next, begin with the transformation from star to the point functor.
Apply Jn to this and realize to get a map Jn(I‖K‖) −→ ‖K‖ × Jn(pt). This
fits with the previous construction to give a commutative diagram

Jn(I‖K‖) −−−−→ ‖K‖ × Jn(pt)
y

y
‖K‖ =−−−−→ ‖K‖.

It follows from the homotopy invariance of J that this is a fiber homotopy
equivalence over ‖K‖; according to (3) of the lemma the inverse image of the
interior of a nondegenerate simplex σ is Jn(star(σ))×int‖σ‖ on the left, and
Jn(pt) × int‖σ‖ on the right. But star(σ) is contractible, so Jn(star(σ)) '
Jn(pt). Thus Jn(I‖K‖) −→ ‖K‖ × Jn(pt) is a homotopy equivalence.

In the other direction, the inclusion star(σ) ⊂ ‖K‖ gives a natural trans-
formation from the star functor to the constant functor with value ‖K‖.
Applying Jn and realizing gives Jn(I‖K‖) −→ ‖K‖ × Jn(‖K‖). Compose
this with the projection to Jn(‖K‖).

Now consider the spectrum structure of Jn. The spectrum maps give
maps Jn(I‖K‖)×S1 −→ Jn+1(I‖K‖), which in fact give J(I‖K‖)the structure
of a spectral sheaf over ‖K‖. Divide by the 0-section i : ‖K‖ −→ Jn(I‖K‖) to
get a spectrum, and pass to the associated Ω-spectrum, to get the homology
with coefficients in the spectral sheaf. The analogous construction on ‖K‖×
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Jn(pt) gives the constant coefficient homology. J(‖K‖) is already an Ω-
spectrum so this construction gives

H•( ‖K‖;J(pt)) ←− H•( ‖K‖;J(I‖K‖)) −→ J(‖K |).

We have shown that the left of these maps comes from a sequence of homo-
topy equivalences, so is a homotopy equivalence. Composing with a homo-
topy inverse gives the desired map H•( ‖K‖;J(pt)) −→ J(‖K‖).
2.3 Functor coefficient homology

In this section we begin with a spectrum-valued functor J, and a map
p : E −→ X. Roughly, a spectral sheaf J(p) −→ X is constructed by applying
J fiberwise to p, generalizing the construction of the previous section. Ho-
mology with coefficients in this sheaf is then defined. As pointed out in the
introduction, when the construction is done in this generality the assembly
does not have to be treated separately; it is functorially induced by the
morphism from p to the map which projects E to a point.

The definition takes place in Čech homology. This gives a definition for
arbitrary maps, which is useful in naturality arguments. The maps encoun-
tered in applications are essentially simplicial, and the definition is shown
(in 2.4) to simplify in this case.

Now suppose p : E −→ X is given. If U is a partially ordered open cover
we define a covariant functor from nerve(U) to spaces, by σ 7→ p−1(∩σ).
Recall that a simplex of the nerve is given by a monotone sequence of
elements of U , σ = (U0, . . . , Uk), and ∩σ denotes the intersection ∩σ =
∩iUi. Compose this functor with J to obtain a functor from nerve(U) to Ω-
spectra. Geometric realization, as in the previous section, defines a spectral
sheaf J(p,U) −→ ‖nerve(U)‖. The spectra associated with this spectral sheaf
have the homotopy type of CW complexes since the total space of the sheaf
is defined by geometric realization. We therefore get a homology spectrum
H•( nerve(U);J(p,U)).

Next suppose θ : U −→ V is a morphism of partially ordered covers, as con-
sidered in 1.4 (U “refines” V). This induces a simplicial map nerve(U) −→
nerve(V), and a natural transformation of inverse image functors σ 7→
p−1(∩σ). Composing with J gives a natural transformation of spectrum-
valued functors. Realizing defines a morphism of spectral sheaves J(p,U) −→
J(p,V) covering the map ‖nerve(U)‖ −→ ‖nerve(V)‖. This in turn induces a
morphism of homology spectra;

H•( nerve(U);J(p,U)) −→ H•( nerve(V);J(p,V)).
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These maps give the homology spectra the structure of an inverse system
indexed by the partially ordered covers. We define the (J coefficient, Čech)
homology to be the homotopy inverse limit:

Ȟ•(X;J(p)) = holim←−U H•( nerve(U);J(p,U)).

We caution that this homology may not actually be obtained from some
spectral sheaf J(p) on X itself, as the notation suggests. Proposition 2.4
below does imply this when the map p is simplicial.

As an aside we remark that the construction can be simplified to involve
only sheaves over simplices, rather than over nerves. If the non-empty in-
tersection requirement is dropped in the definition of the nerve we get a
simplex with vertices U . The spectral sheaf J(p,U) extends to a sheaf over
this by the same formula: σ 7→ J(p−1(∩σ)) = J(φ) if σ is not in the nerve. If
J(φ) is contractible—and J can always be redefined so this is the case—then
the spectral sheaf over the simplex has the same homology as the sheaf over
the nerve. This point will be developed further in section 5.3.

2.4 Naturality

Naturality for this definition follows from the naturality of all the ingredi-
ents. Specifically, suppose

F
f̂−−−−→ E

q

y
yp

Y
f−−−−→ X

commutes. If U is a partially ordered cover of X then f−1(U) is a cover of
Y . There is an induced simplicial map (an inclusion in fact) nerve(f−1U) −→
nerve(U). Covering this is a natural transformation of inverse image func-
tors; f̂ : q−1(∩f−1(σ)) −→ p−1(∩σ). Compose with J to get a natural trans-
formation of spectrum-valued functors, and realize to get a morphism of
spectral sheaves J(q, f−1U) −→ J(p,U) covering the map of realizations of
nerves. This induces a morphism of homology spectra,

H•( nerve(f−1U);J(q, f−1U)) −→ H•( nerve(U);J(p,U)).

Now take homotopy inverse limits. These are both indexed by the inverse
system of covers of X, so there is a natural induced map between the limits.
On the right we get homology of X. The homology of Y is obtained by
taking the limit of spectra on the left over the larger inverse system of all
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covers of Y . But there is a natural map from the inverse limit over the larger
system to the inverse limit over the subsystem. Composition with the map
above gives

Ȟ•(Y ;J(q)) −→ Ȟ•(X;J(p)).

We define this to be the morphism functorially associated to (f, f̂). The
Čech homology is thus a functor of X and p (and J).

Definition

Suppose J and p : E −→ X are as above. Then the total assembly map is
defined to be the map Ȟ•(X;J(p)) −→ J(E) induced by the commutative
diagram

E
=−−−−→ E

p

y
y

X −−−−→ pt.

2.5 The long exact sequence of a pair

We can define the relative homology spectrum Ȟ•(X, Y ;J(p)) to be the
cofiber (in the category of spectra) of the natural map Ȟ•(Y ;J(q)) −→
Ȟ•(X;J(p)) induced by the inclusion Y ⊂ X. Applying π∗ then gives the
usual long exact sequence of homology groups.

The same spectrum can be obtained less trivially by taking the homotopy
inverse limit of relative homology spectra of nerves:

Ȟ•(X, Y ;J(p)) ' holim←−U H•( ‖nerve(U)‖, ‖nerve(U ∩ Y )‖;J(p,U)).

The reason these two constructions agree is that the relative homology spec-
tra for nerves was also defined by taking the cofiber, and homotopy inverse
limits preserve cofibers, up to homotopy.

To see this last point, note that cofibers in the category of spectra can
also be described as deloopings of homotopy fibers of maps of spaces. But
it follows from Bousfield and Kan [3, XI 5.5] that homotopy inverse limits
preserve homotopy fibrations.

As an application of the long exact sequence we get a description of the
cofiber of the total assembly map defined just above. Let p̂ : E×I −→ coneX
denote the map obtained from p× 1 by dividing out X ×{0} ⊂ X × I. The
map p̂ fiberwise deformation retracts to E −→ pt, so the homology of the
cone is just J(E). The homotopy fibration for the pair (coneX, X) therefore
gives a homotopy fibration

Ȟ•(X,J(p)) −→ J(E) −→ Ȟ•(coneX, X;J(p̂)).
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The long exact sequence of homotopy groups of this homotopy fibration
therefore give

· · · −→ Ȟn(X,J(p)) −→ Jn(E) −→ Ȟn(coneX, X;J(p̂))

−→ Ȟn−1(X,J(p)) −→ · · · .

2.6 Simplicial maps

The point here is that when the coefficient map is simplicial, the functor
coefficient Čech homology is equivalent to one of the terms in the inverse
limit which defines it. This will be used to avoid homotopy inverse limits.

Proposition. Suppose p : E −→ X, Y is relatively fiber homotopy equiv-
alent to the realization of a simplicial map q : A −→ K, L, with L ⊂ K a
subcomplex. Then the Čech homology is equivalent to the homology of the
open cover of (‖K‖, ‖L‖) by stars:

Ȟ•(X, Y ;J(p)) '−→ H•(K, L;J(q, stars(K))).

A “fiber homotopy” of a map between maps p and ‖q‖ is a commutative
diagram

E × I −−−−→ ‖A‖
P×1

y
y‖q‖

X × I −−−−→ ‖K‖
such that P restricts to p on E×{0} and ‖q‖ on E×{1}. Such a homotopy
is “relative” if the image of Y × I is contained in ‖L‖. Accordingly two
maps are fiber homotopy equivalent if there are maps both ways between
them and fiber homotopies of the compositions to the identities. Note that
this notion of homotopy equivalence preserves the homotopy type of point
inverses.

We recall the definition of the star cover (see the proof of 1.5). The star
of a vertex v ∈ K is the union of all open simplices in the realization ‖K‖
whose closures contain v. More generally, if σ is a simplex of K, then star(σ)
is the intersection of the stars of the vertices. Note such intersections also
define simplices in the nerve, and in fact the function σ 7→ star(σ) defines
an isomorphism of simplicial complexes K −→ nerve(stars(K)).

Proof. First, the homology is homotopy invariant so

Ȟ•(X;J(p)) −→ Ȟ•(K;J(q)))
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is a homotopy equivalence. Next, the star covers of subdivisions of K are
cofinal in the system of all covers of ‖K‖ so it is sufficient to consider
the inverse limit over this subsystem. We show that H• is constant (up to
homotopy) on this subsystem, so they are all homotopy equivalent to the
limit.

It is sufficient to consider a subdivision obtained by adding a single vertex;
let K ′ be obtained by adding v′. The choice of ordering for the new vertex
determines a simplicial map K ′ −→ K. This is covered by a map of spectral
sheaves J(p, stars(K ′)) −→ J(p, stars(K)). We will show that this map is
a homology equivalence in each degree. This implies that the associated
map of homology spectra (obtained by dividing by the bases and passing to
associated Ω-spectra) is a homotopy equivalence.

Next suppose σ ∈ K is a nondegenerate simplex, and consider the interior
of the realization int(‖σ‖) ⊂ ‖K‖. It is sufficient to show that the inverse
image of this in J(p, stars(K ′)) maps by homology equivalence to the inverse
image in J(p, stars(K)). To see this is sufficient, consider the filtration of the
realization of K by skeleta, and show by induction that the restriction of the
spectral sheaves to the skeleta are homotopy equivalent. The induction step
follows from the long exact sequence relating skeleta of adjacent dimensions,
and the homology equivalence fact for individual simplices.

Now consider inverses of int(‖σ‖), first in the subdivision K ′. If σ does
not contain the new vertex v′ then the inverse is again the simplex σ. If σ
contains both v′ and its image v under the simplicial map, then the inverse
image of the interior is an open simplex in the interior of ‖σ‖. Finally
suppose σ contains v but not v′. Then the inverse image is a (k+1)-simplex
γ of K ′ with σ as a face and v′ as additional vertex. Let σ′ denote the face
of γ with the same vertices as σ except with v′ substituted for v. The map
‖γ‖ −→ ‖σ‖ is the linear projection which is the identity on ‖σ‖ and takes v′

to v. The inverse image of the interior is therefore the interior of ‖γ‖ union
with the interiors of the two faces ‖σ′‖ and ‖σ‖.

To complete the proof we consider inverses in the spectral sheaves. Since
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σ is nondegenerate the inverse image of its interior in J(p, stars(K)) is
J(p−1(star(σ))) × int‖σ‖. (This follows directly from the definition of the
spectral sheaf as the realization of a functor; see the lemma in 2.2.) If σ
does not contain the new vertex, then the inverse image in J(p, stars(K ′))
is the same, so the condition is satisfied.

Suppose next that σ contains both v′ and v. Then the inverse image in
K ′ is a simplex τ in the subdivision of σ, whose realization is taken home-
omorphically to the realization of σ. Further, the map star(τ) −→ star(σ)
is a homeomorphism. In the spectral sheaves the inverses are given by this
homeomorphism times the morphism of spectra induced by the inclusion
q−1(star(τ)) ⊂ q−1(star(σ)). For any simplex α the set q−1(star(α)) defor-
mation retracts to q−1(t) for any t ∈ int‖α‖. This implies that the inverses
of the stars of both σ and τ deformation retract to the inverse of any point
in int(‖τ‖), so the inclusion is a homotopy equivalence. According to the
homotopy invariance the morphism induced on J is also a homotopy equiv-
alence, so inverses of σ satisfy the homology equivalence property.

Finally suppose σ contains v but not v′. According to the above, the
inverse image of the interior in ‖K ′‖ is the union int‖γ‖∪ int‖σ‖∪‖σ′‖. The
inverse image in J(q, stars(K ′)) thus has the homotopy type of the union of
the mapping cylinders of the morphisms of J induced by the inclusions

q−1(star(σ)) ←− q−1(star(γ)) −→ q−1(star(σ′)).

The rightmost map is a homotopy equivalence: both inverses deformation
retract to point inverses in the interior of the respective simplices, but these
point inverses are homotopy equivalent since int‖σ‖ ∪ int‖γ‖ lies in the
interior of one of the simplices of K. From this we conclude that the union
of mapping cylinders deformation retracts to the left end, J(q−1(star(σ))).
Thus the preimage of int‖σ‖ in J(q, stars(K ′)) has the homotopy type of
the preimage in J(q, stars(K)), as required. ¤

3: Bordism-type theories

A “bordism-type theory” consists of a class of objects with faces, indexed
by arbitrary sets. The prototype example of oriented manifolds, with faces
codimension 0 submanifolds of the boundary, is presented in 3.1. The defi-
nition itself is given in 3.2. Bordism groups and spectra are defined in 3.3
and 3.4. Morphisms of these theories are defined in 3.5; these are necessary
to define functors taking values in the category of bordism-type theories.
The relative theory associated to a morphism is defined in 3.6. Finally in
3.7 the existence theorem is given, which asserts that up to weak homotopy
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any spectrum can be obtained as a bordism spectrum of some bordism-type
theory.

3.1 An example

Before giving the abstraction we describe an example which displays the
essential features. This example leads to the bordism theory of oriented
manifolds; further examples are given in section 6.

Suppose A is a set. A manifold A-ad is a manifold with subsets ∂aM ⊂
∂M for each a ∈ A. We require the union to be ∂M , and allow only finitely
many of these to be nonempty. Finally we require each ∂aM together with
the subsets ∂bM ∩ ∂aM to be a manifold A− {a}-ad.

Logically speaking this is an inductive definition: we should define A-ads
with at most k nonempty faces inductively in k, so that the requirement that
the faces be “-ads” is well defined. In any case the faces are codimension 0
submanifolds of ∂M , which intersect in codimension 0 submanifolds of their
boundaries, etc.

For example the n-simplex ∆n with its faces ∂i∆n is a manifold [n]-ad
of dimension n. Here we use the notation [n] for the set {0, 1, . . . , n}.

The “bordism theory” consists of the collection of all manifold -ads, to-
gether with some operations on them. More specifically,

(1) for all sets A and integers n, the collections of compact oriented
manifold A-ads of dimension n;

(2) face operations ∂a which take n-dimensional A-ads to (n−1)-dimen-
sional (A− {a})-ads;

(3) reindexing operations which change the labels on the faces and add
empty faces;

(4) an involution obtained by reversing the orientations; and
(5) a “Kan” condition wherein a collection of -ads with appropriate

incidence relations are assembled to form a single manifold.

The only odd thing which occurs is a sign change in iterated boundaries:
when a 6= b then ∂a∂bM = −∂b∂aM , due to the way boundaries work in
homology.

Note that the finiteness condition on faces and the reindexing of (3) imply
that an arbitrary A-ad is obtained by reindexing a [k]-ad, for some [k] and
injection [k] −→ A. It follows that it is logically sufficient to define [k]-ads,
for each k. However direct definition of general A-ads is no more difficult,
and saves a lot of trouble with reindexing.

The thing which gives these theories their characteristic flavor is the
addition of empty boundaries in reindexing, i.e. reindexing using injections
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rather than only bijections.
We now abstract this. The symbol “J ” is a script “J”, representing a

generic theory just as J represented a generic functor in the previous section.

3.2 Definition

A bordism-type theory , J , consists of :

(1) For every set A a collection J n
A of “A-ads of dimension n,” with a

basepoint denoted φ ∈ J n
A ;

(2) for each a ∈ A a function ∂a : J n
A −→ J n−1

A−a such that ∂aφ = φ, and
if M ∈ J n

A then ∂aM = φ for all but finitely many a;
(3) corresponding to each injection θ : A −→ B a basepoint-preserving

function `θ : J n
A −→ J n

B which is natural in θ. Further this satisfies
∂θ(a)(`θM) = `θ(∂aM) and `θ is a bijection onto {M ∈ J n

B | ∂bM =
φ for all b ∈ B − θ(A)};

(4) there is an involution (−1) on each J n
A which commutes with `θ

and ∂a, and leaves φ fixed. Further, if a 6= b in A then ∂a∂bM =
−∂b∂aM ; and

(5) these satisfy the Kan condition described below.

The most restrictive aspects of this are the bijection hypothesis in (3),
and the Kan condition. In manifolds the bijection hypothesis is obvious,
and the Kan condition follows from glueing together manifolds along faces
in their boundaries. To see these axioms verified in a non-geometric situation
look at the proof in 3.7.

Suppose A is a set and a ∈ A is a fixed element. Then define an n-
dimensional Kan (A, a)-cycle in J to be a function N : A − {a} −→ J so
that N(b) ∈ J n

A−{b}, and if b 6= c are in A − {a} then ∂bN(c) = −∂cN(b).
Also assume only finitely many of the N(b) are different from φ,=. Note no
object is assigned to a. The principal example is: if M is an object in J n+1

A

then the function b 7→ ∂bM for b 6= a is an n-dimensional Kan (A, a)-cycle.
The Kan condition asserts that all Kan cycles arise in this way: if N is

an n-dimensional (A, a)-cycle then there is an (n + 1)-dimensional object
M so that N(b) = ∂bM , for all b 6= a.

The name is by analogy with the Kan condition for simplicial sets, which
requires that a simplicial map defined on all but one of the faces of a simplex,
extends to a simplicial map of the whole simplex.

3.3 Bordism groups

Suppose J is a bordism-type theory. Define ΩJ
n to be the set of equivalence

classes of n-dimensional φ-ads (no faces), where the equivalence is defined
by M ∼ N if there is an (n + 1)-dimensional [1]-ad W with ∂0W = M ,
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and ∂1W = −N . (The symbol “Ω” is a slanted version of Ω, used to try to
distinguish between bordism groups and loop spaces.)

Proposition. ∼ is an equivalence relation, and the set of equivalence classes
ΩJ

n has a natural abelian group structure.

“Naturality” will not make sense until we have defined morphisms of
bordism-type theories in 3.5.

Proof. The direct proof is elementary but long; we sketch a few pieces of it.
The most efficient proof comes from the recognition as homotopy groups of
a spectrum, in the next proposition.

We show that ∼ is transitive. Suppose W0 expresses the equivalence M ∼
N and W1 expresses the equivalence N ∼ P . Then the function i 7→ Wi for
i = 0, 1 defines a ([2], {2})-cycle, in the sense defined in the Kan condition.
The Kan condition therefore asserts there is an (n+2)-dimensional [2]-ad V
such that ∂0V = W0 and ∂1V = W1. Then ∂2V is an (n+1)-dimensional [1]-
ad. Calculations using the axioms reveal that ∂0∂2V = −M and ∂1∂2V = P .
Thus −∂2V expresses an equivalence M ∼ P , and ∼ is transitive.

The group structure is defined by: if W is a [2]-ad with ∂0W = M and
∂1W = N , then [M ] + [N ] = [−∂2W ]. The Kan condition can be used to
show that given M and N such a W exists, and that the equivalence class of
∂2W is independent of the choice. This implies the operation is well defined.

The identity element is the equivalence class of the basepoint, [φ], and
inverses come from the involution: −[M ] = [−M ]. To see the inverses, con-
sider M as a ([1], {1})-cycle and apply the Kan condition to get a [1]-ad V
with ∂0V = M . Now define a ([2], {0})-cycle by 2 7→ V and 1 goes to −V
reindexed so ∂1 = −∂1V and ∂2 = −M . Then apply the Kan condition to
get a [2]-ad W with these as faces. The new face, ∂1W , has faces M and
−M . Reindex to introduce φ as a third face, then it expresses the relation
[M ] + [−M ] = [φ].

The fact that the group is abelian comes directly from reindexing: let W
be as above, expressing [M ] + [N ] = [∂2W ]. Let θ be the bijection [2] −→ [2]
which interchanges 0 and 1. Then ∂0`θW = M and ∂1`θW = N , showing
[N ] + [M ] = [∂2W ] and therefore [M ] + [N ] = [N ] + [M ]. ¤

For example if SDiff is the theory of oriented smooth manifolds defined as
in example 3.1, the bordism groups ΩSDiff

n are the classical smooth oriented
bordism groups.
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3.4 Bordism spectra

The next step is the construction of spectra which serve as classifying spaces
for these theories.

We work with ∆-sets, in the sense of Rourke and Sanderson [22]. A ∆-set
K is like a simplicial set in having sets K(i) of “i-simplices,” the 0-simplices
are appropriately partially ordered, and face operators bj : K(i) → K(i−1)

are given for 0 ≤ j ≤ i. (We sometimes denote face operators in ∆-sets
by ∂i, but this conflicts somewhat with face operators in the bordism-type
theory.) ∆-sets do not have the degeneracy operators of a simplicial set.
Geometric realizations are defined for ∆-sets in essentially the same way as
for simplicial sets.

Define the ∆-set ΩJ
n to have k-simplices the J -[k]-ads of dimension k+n.

We also require that the “total intersection” of all faces ∂0∂1 · · · ∂nM is the
basepoint φ. The face operator biM is defined by reindexing the (n−{i})-ad
(−1)i∂iM using the order-preserving bijection [n− 1] −→ [n]− {i}.

The notation for this ∆-set is the same as for the bordism group. This
doubling up of notation seems to be relatively harmless since the group is
π0 of the ∆-set. At any rate it is less harmful than introducing yet another
notation. The boldface analog ΩJ is reserved for the associated Ω-spectrum.

We define the Ω-spectrum ΩJ by geometrically realizing the ∆-set: ΩJn =
‖ΩJ

−n‖. Note the minus sign in the index on the ∆-set: this results from an
incompatibility in the indexing conventions for bordism and spectra.

Proposition. The spaces ΩJ∗ have a natural Ω-spectrum structure with
homotopy groups the bordism groups defined above; πnΩJ = ΩJ

n .

As with bordism groups, the naturality will be considered after mor-
phisms of bordism-type theories are defined.

Proof. First we verify that the simplices described above do in fact give a
∆-set, namely that the face identities bjbi = bibj+1 (if j ≥ i) hold. The
only interesting thing about this is is the role of the sign (−1)i. The point
is that when ∂iM is reindexed to define biM the previous faces with index i
or higher are all shifted down by one. This shift, with the (−1)∗, gives a net
change of −1 on these faces. This cancels the −1 in the iterated boundary
formula in definition 3.2(3).

Next we observe that the ∆-sets ΩJ
n satisfy the Kan condition. Let Λk

j

denote the subcomplex of the k-simplex which consists of all but the jth

face. The Kan condition asserts that any ∆-map Λk
j −→ ΩJ

n extends to a
∆-map ∆k −→ ΩJ

n . A ∆-map Λk
j −→ ΩJ

n defines a ([k], {j})-cycle in the
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sense of 3.2, so the Kan condition in 3.2(4) implies the Kan condition for
the ∆-set.

The Kan condition implies a simplicial approximation theorem ([22, §5])
which in turn implies that the homotopy groups are the bordism groups:
elements in the homotopy group πk are represented by maps ∆k −→ ‖ΩJ

n ‖
which take ∂∆k to the basepoint. Simplicial approximation asserts that this
is homotopic to the realization of a ∆-map, which is exactly a k-simplex with
all faces are φ. This in turn is obtained by reindexing a k + n dimensional
φ-ad to get a [k]-ad. This φ-ad defines an element in the bordism group
ΩJ

n+k. Similarly homotopies can be interpreted as maps of ∆k+1 which take
all but two faces to the basepoint. These can be approximated by ∆-maps
which can be interpreted as bordisms.

Now we describe the spectrum structure. The cone on a ∆-set K can be
described as a ∆-set with k-simplices Kk ∪ {coneσ | σ ∈ Kk−1}. The cone
point is put last in the partial ordering, so if σ is a k-simplex ∂icone(σ) =
cone(∂iσ) if i ≤ k, and ∂k+1cone(σ) = σ.

Now define a ∆-map cone(ΩJ
n ) −→ ΩJ

n−1 by taking both ΩJ
n and the

cone point to the basepoints, and cone(M) 7→ `k(M). Here `θ reindexes
the [k]-ad M to be a [k + 1]-ad using the inclusion [k] ⊂ [k + 1]. Taking
geometric realizations, and dividing out the end ‖ΩJ

n ‖ of the cone gives a
map ‖ΩJ

n ‖ ∧ S1 → ‖ΩJ
n−1‖. This defines a spectrum structure.

To see this is an Ω-spectrum we show that the adjoint ‖ΩJ
n ‖ → Ω(‖ΩJ

n−1‖)
is a homotopy equivalence. For this we use the model of the loop space of
a based Kan ∆-set given in [4, p. 36]; the k-simplices of ΩK are defined to
be (k + 1)-simplices σ ∈ K with bk+1σ = φ = vk+1σ. Here vk+1 denotes the
k+1 vertex, and is obtained by applying all the face maps except bk+1. It is
shown in [4] that there is a natural homotopy equivalence ‖ΩK‖ ' Ω‖K‖.
The adjoint of the spectrum structure maps defined above are homotopic
to the realizations of ΩJ

n → Ω(ΩJ
n−1) defined by `k on k-simplices. But ac-

cording to condition (3) of the definition, this is an isomorphism of ∆-sets.
It therefore induces a homotopy equivalence on realizations. ¤

3.5 Morphisms and naturality

Suppose J and K are bordism-type theories. A morphism J −→ K is a
collection of basepoint-preserving functions J n

A −→ Kn
A for all n and sets A,

which commute with face functions, the involutions −1, and the reindexing
functions. Clearly these can be composed, and form a category.

3.5A Example

If X is a space, define the oriented manifold bordism theory of X to have A-
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ads (M, f), where M is an oriented manifold A-ad as in 3.1, and f : M −→ X.
The same operations as defined in 3.1 give this the structure of a bordism-
type theory. A map of spaces X −→ Y induces, by composition, a morphism
from the bordism theory of X to that of Y .

3.5B Lemma. The bordism groups of 3.3 and the bordism spectrum of 3.4
are natural with respect to morphisms of bordism-type theories. Further,
for a morphism F : J −→ K the following are equivalent:

(1) F induces isomorphisms of bordism groups,
(2) F induces homotopy equivalence of bordism spectra, or
(3) for every [0]-ad M in K such that ∂0M = F (N1) for N1 ∈ J , there

is a [1]-ad W in K such that ∂1W = M and a {1}-ad N ∈ J with
∂1N = N1 and ∂0W = F (N).

We say that a morphism which satisfies the conditions of the lemma is
a “homotopy equivalence” of theories. The last condition is the one which
will be checked in practice; it can be paraphrased as saying a pair in K with
boundary from J deforms rel boundary into J . It is also equivalent to the
vanishing of the relative bordism groups defined in the next section.

Define a functor from spaces to bordism-type theories to be “homotopy
invariant” if homotopy equivalences of spaces induce homotopy equivalences
of theories. Then the following is immediate from the lemma.

3.5C Corollary. If J is a homotopy invariant functor from spaces to
bordism-type theories then the associated bordism spectra ΩJ define a ho-
motopy invariant spectrum-valued functor in the sense of 2.1.

Proof of the lemma. The naturality is evident from the definitions. The
equivalence of (1) and (2) follows from the fact that the bordism groups are
the homotopy groups of the spectrum. It remains to show that conditions
(1) and (3) are equivalent. We give a direct proof here; a much slicker one
comes from the relative bordism groups of 3.6.

Suppose (3) holds. Let [M ] represent an element in the group ΩK
n , and

reindex M as a [0]-ad with ∂0M = φ. Since φ = F (φ) we can apply (3) to
find a [1]-ad W with ∂1W = M , ∂0W = F (N), and ∂1N = φ. This is a
bordism showing [M ] = F∗(−[N ]), so F∗ : ΩJ

n −→ ΩK
n is onto.

Similarly we show F∗ is injective by showing F∗([N1]) = 0 implies [N1] =
0, for [N ] ∈ ΩJ

n . The hypothesis implies there is a [0]-ad in K with ∂0M =
F (N1). Condition (3) implies there is a bordism from M to F (N). But
∂1N = N1, so [N ] = 0. Thus (3) implies (1). The other direction is simi-
lar. ¤
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4: Cycles

In this section we describe “cycles” which represent functor-coefficient
homology classes, when the coefficient functor is obtained from bordism-
type theories. Fix a homotopy invariant functor (in the sense of 3.5) J from
spaces to bordism-type theories. The associated spectrum-valued functor is
denoted ΩJ (X). The homology to be described is Hn(nerve(U); ΩJ (p,U)),
where p : E −→ X is a map and U is a cover of X.

Cycles are described in 4.2, and induced morphisms in 4.3. Groundwork
for the main theorem is laid in 4.4 with the development of a bordism-type
theory whose objects are themselves cycles. The proof is given in section 5,
where the bordism spectrum of this theory is shown to be equivalent to the
homology spectrum.

4.1 ∆-nerves

Cycles will be defined using the nerve of a covering. For ease and efficiency
we use a more compact model for the nerve than the simplicial complex
described in 1.4.

Suppose U is a set of subsets of a space X, partially ordered as in 1.4.
The ∆-nerve, denoted nerve∆(U), is defined to be the ∆-set with k-simplices
the collections of k + 1 distinct elements of U with nonempty intersection.
(We caution that this distinctness is in U , and does not imply that the
corresponding subsets of X are distinct.) The face operator bj is defined by
omitting the jth set; this is well defined since a collection with nonempty
intersection is totally ordered.

The ∆-nerve is exactly the set of nondegenerate simplices in the simplicial
nerve (the degenerate simplices are ones in which some set is repeated). It
follows (see [22]) that the geometric realizations of the two nerves are equal.

Some notations are needed involving a k-simplex σ = (U0, . . . , Uk) of the
nerve. ∩σ denotes, as before, the intersection ∩k

i=0Ui. The complement of σ
in U is denoted U − σ. And as indicated above ∂jσ = {Ui | i 6= j}.
4.2 Cycles

Suppose U is a partially ordered cover of X, and p : E −→ X is given. Then
a J -n-cycle in (X, p;U) is a function N : nerve∆(U) −→ J , specifically

(1) if σ is a k-simplex of nerve∆(U) then N(σ) is an (n−k)-dimensional
(U − σ)-ad in J (p−1(∩σ)),

(2) let incl∗ : J (p−1(∩σ)) −→ J (p−1(∩bjσ)) denote the morphism in-
duced by the inclusion, then incl∗(N(σ)) = (−1)j∂Uj N(bjσ), and

(3) all but finitely many of the N(σ) are φ.
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For a source of geometric examples, suppose X is the realization of a
simplicial complex and U is the covering by stars, as in 1.5. The dual cones
provide a refinement of this cover in which the faces of the cones have collars.
Suppose M −→ X is a map from a manifold, then M can be made transverse
to the cones. This breaks M into pieces which are manifolds with boundary
faces indexed by the cones. The function (simplex) 7→ (inverse image of cone
dual to the simplex) defines a cycle in the manifold bordism-type theory.
The incidence relations in (2) record how these pieces fit together inside M .

Next define a “homology” between two cycles. This is a function

H : nerve∆(U) −→ J

which takes σ to an (n−k +1)-dimensional (U −σ)q [1]-ad in J (p−1(∩σ)).
The disjoint union means H(σ) is an -ad with faces ∂U for U not in σ,
and in addition faces ∂0 and ∂1. These are required to satisfy the cycle
conditions above on the ∂U faces, and also ∂0∂1H = φ. It follows that ∂0H
and ∂1H are n-dimensional cycles in the sense above. We then say that ∂0H
is homologous to −∂1H.

In these terms the main theorem can be stated as:

4.2A Theorem. Suppose U is a partially ordered cover of X, and p : E −→
X is given. Then there is a canonical isomorphism from the group of ho-
mology classes of J -n-cycles in (X, p;U) and the homology group

Hn(nerve∆(U); ΩJ (p,U))

defined in 2.3.

This isomorphism is also natural with respect to the functorially induced
functions of cycles defined in section 4.5. This statement will follow from
Theorem 5.1.

There is also a relative version of the theorem, and for that we define a
relative version of cycles. The idea is that a cycle as defined above is “closed”
in the sense that all (n− 1)-dimensional pieces correspond to intersections
U ∩ V , and consequently occur as faces of the two n-dimensional pieces
lying over U and V . We obtain “free boundary” which occurs only once as
a face simply by failing to define pieces corresponding to certain subsets.
Specifically, if Y ∈ U then a relative cycle over (U , Y ) is defined to be a
function (nerve∆(U)− {Y }) −→ J satisfying the conditions (1)–(3) above.

The “Kan cycles” used in the definition of the Kan condition in 3.2 are
relative cycles in this sense, taking values in a constant functor. To see these
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as cycles in a covering, embed the set A as a linearly independent set in a
real vector space, and let X be the convex hull. Then X is covered by sets
Ua consisting of all points with nonzero a coordinate when expressed as a
convex linear combination. An (A, a)-cycle in the sense of the Kan condition
is a relative cycle over ({Ub | b ∈ A}, Ua).

If N is a relative J -n-cycle in (X, p;U , Y ), then there is a boundary
∂Y N defined. This is the (n− 1)-cycle in (Y, p; (U −{Y })∩ Y ), specified by
(∂Y N)(σ) = ∂Y (N(σ ∪ {Y })).

4.2B Proposition. There is a canonical isomorphism from the group of
homology classes of relative J -n-cycles in (X, Y, p;U ∪ {Y }) to the relative
homology Hn(X, Y ; ΩJ (p,U)). The homomorphism of cycles induced by
the boundary operation ∂Y agrees with the boundary homomorphism in
homology.

4.3 Naturality of cycles

In this section we construct functions of cycles induced by morphisms of
data. According to the representation theorem, cycles represent homology
classes. According to the general construction in section 2, morphisms of
data induce homomorphisms of homology groups, including assembly maps.
The objective here is to give cycle-level descriptions of these natural homo-
morphisms.

The simplest case is the total assembly corresponding to the map X −→ pt,
and this is considered first. For this the construction is a simple application
of the Kan condition. In general the functoriality of J is applied to get from
a cycle on a cover of X a “multivalued” cycle on a cover of Y . The Kan
condition is used to assemble the multiple pieces to get an honest cycle on
Y .

Suppose p : E −→ X and U is a cover of X, as usual, and M is a J -n-cycle
in (X, p;U). Let incl∗ : J (p−1(U)) −→ J (E) denote the morphism induced
by the inclusion. Then incl∗(M) is a function from U into J (E). (Note that
once we are in a single theory J (E) the values of M on higher simplices of
the nerve are determined by values on U , so are unnecessary.)

If we add a disjoint element a and reindex the M(∗) to add ∂aM = φ,
then this defines a (U ∪ {a}, a)-cycle in the sense of the Kan condition.
Apply the Kan condition to obtain a (U ∪ {a})-ad N with ∂UN = M(U)
for U ∈ U . Then define A(M) = ∂aN . Since ∂U∂aN = φ this is a reindexed
n-dimensional φ-ad in J (E).

We can now state the following, which is a special case of 4.3B.
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4.3A Proposition. This construction induces a homomorphism from ho-
mology classes of J -n-cycles in (X, p,U) to ΩJ

n (E). Under the canonical
isomorphism with homology this corresponds to the total assembly

Hn(nerve∆(U); ΩJ (p,U)) −→ Hn(pt; ΩJ (E)) ' ΩJ
n (E) .

Now begin the general construction. Suppose (f, f̂) is a map between
maps p, q, ie. there is a commutative diagram

E
f̂−−−−→ F

yp

yq

X
f−−−−→ Y.

Suppose U is a cover of X, V a cover of Y , and θ : U −→ V is a morphism.
By this last we mean an order-preserving function so that f(U) ⊂ θ(U) for
every U ∈ U .

The construction will be in two parts; first a function from cycles in
(X, p,U) to cycles in (Y, q,Vθ), where Vθ is a cover of Y obtained by intro-
ducing multiple copies of the elements of V indexed by U . The second part
goes from cycles in (Y, q,Vθ) to cycles in (Y, q,V), by assembling pieces over
multiple copies using the Kan condition as above.

Define Vθ to be the collection of subsets of Y isomorphic as a partially
ordered set with U , by the correspondence U 7→ VU = θ(U). This may not
be a cover of Y . There are morphisms of covers (or perhaps just collections
of subsets) U −→ Vθ −→ V, the first defined by U 7→ VU and the second by
VU 7→ θ(U). Since the first is an isomorphism of partially ordered sets it
induces an injective ∆-map nerve∆(U) −→ nerve∆(Vθ). The second induces
a simplicial map of simplicial nerves, as does any morphism, but usually not
a ∆-map.

Next suppose M is an n-cycle in (X, p,U), so for σ a k-simplex in
nerve∆(U) we get an (n − k)-dimensional U − σ-ad M(σ) ∈ J (p−1(∩σ).
Let Vσ denote the image of σ in nerve∆(Vθ). Then f̂ induces a function
f̂∗ : J (p−1(∩σ)) −→ J (q−1(∩Vσ)). Therefore we can define a function

f̂∗M : nerve∆(Vθ) −→ J

by: if τ is the image of a simplex in nerve∆(U), so τ = Vσ, then f̂∗M(τ) =
f̂∗(M(σ)). If τ is not in the image define f̂∗M(τ) = φ.
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It is immediate that this f̂∗M is an n-cycle in (Y, q,Vθ), and further that
the same procedure defines a function on homologies. This therefore defines
a function on homology classes of cycles.

Now we begin the second step; the passage from Vθ to V. This is broken
into simpler pieces by a relative version of the θ-construction: suppose V ′ ⊂
V, then define (V,V ′)θ to be the collection V ′ ∪{VU | θ(U) 6∈ V ′}. There are
morphisms Vθ −→ (V,V ′)θ −→ V. By using a sequence of V ′ which differ by
single sets we get a factorization of Vθ −→ V into a sequence of morphisms
which are bijections except over a single set. It is therefore sufficient to do
the construction for such morphisms. Note that the finiteness requirement
on cycles implies that for a given cycle only a finite number of such special
morphisms are required, even if V is infinite.

Suppose then that V is a cover of Y , V1 ∈ V, and V2, . . . , Vr are additional
copies of V1. Given an n-cycle in (Y, q,V ∪ {V2, . . . , Vr}) we construct an
n-cycle in (Y, q,V), by constructing a type of “homology” in which the cover
changes. For a given simplex the construction depends on whether or not
the simplex contains V1.

Let M be the n-cycle over V∪{V2, . . . , Vr}, and let a, b, c be elements (to
be used for indices) not in the cover. On simplices of nerve∆(V) containing
V1, say σ ∪ {V1}, we think of M(σ ∪ {V∗}) as a ({V∗, a}, a)-cycle and fill in
using the Kan condition. Specifically we want a function N so that N(σ ∪
{V1}) is an (n− k +1)-dimensional (V −σ∪{V∗}∪{a})-ad in J (q−1(∩(σ∪
{V1}))) which is finite, satisfies the face relations as in (2) of the definition
of cycles, and ∂ViN(σ ∪ {V1}) = M(σ ∪ {Vi}) for 1 ≤ i ≤ r.

The function N is constructed by induction on dimension, beginning
with large dimensions and working down. M(τ) = φ for all but finitely
many τ ∈ nerve∆(V ∪ {Vi}), so there is a dimension above which M = φ
and above this dimension we can set N = φ. Now suppose N is defined for
simplices of dimension greater than k, and suppose σ ∪ {V1} has dimension
k. Then a Kan-type cycle over (V−σ∪{V∗}∪{a}, a) in J (q−1(∩(σ∪{V1}))
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is defined by U 7→ N(σ ∪ {V1, U}) and Vi 7→ N(σ ∪ {Vi}) for 1 ≤ i ≤ r.
Apply the Kan condition to obtain N(σ ∪ {V1}).

We would like to continue applying the Kan condition to extend N over
simplices which do not contain V1. However the pieces M(σ) and N(σ∪{V1})
do not fit together correctly; the intersection is the cycle Vi 7→ M(σ ∪{Vi})
rather than a single face. To fix this we introduce some new pieces, which
should be thought of as subdividing a collar neighborhood of ∪M(σ∪{V∗})
in M(σ).

Let C be a homology from ∂aC = M to some other cycle ∂bC. (We think
of C as a collar M × I, but construct it by inductive application of the Kan
condition as in the construction of N above.) Next we construct a function
W on simplices of nerve∆(V) which do not contain V1. We want W (σ) to
be a (V − σ ∪ {V∗} ∪ {a, b, c})-ad in the same theory as M(σ) satisfying

(1) ∂UW (σ) = W (σ ∪ {U}) if U 6= V1, and U /∈ σ;
(2) ∂ViW (σ) = C(σ ∪ {Vi}); and
(3) ∂bW (σ) = ∂bC(σ) and ∂cW (σ) = N(σ ∪ {V1}).

As with N we define W to be φ on high-dimensional simplices and work
down by induction. If σ has dimension k and W is defined on higher di-
mensional simplices then all the faces specified above are defined and form
a (V − σ ∪ {V∗} ∪ {a, b, c}, a)-cycle. Applying the Kan condition yields an
-ad which we define to be W (σ).

Now define a function on nerve∆(V) by σ 7→ ∂aN(σ) if V1 ∈ σ, and
σ 7→ ∂aW (σ) if V1 /∈ σ. This defines a J -n-cycle in (Y, q,V), which is
defined to be the functorial image of M .

4.3B Proposition. This construction induces a homomorphism from ho-
mology classes of J -n-cycles in (X, p,U) to J -n-cycles in (Y, q,V). Under
the canonical isomorphism with homology this corresponds to the induced
homomorphism

Hn(‖nerve(U)‖; ΩJ (p,U)) −→ Hn(‖nerve(V)‖; ΩJ (q,V)).
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4.4 The bordism-type theory of cycles

Fix p : E −→ X and a cover U of X. In this section we define a bordism-type
theory denoted CyclesJ (X, p,U) whose φ-ads are J -cycles in (X, p,U).

Suppose A is a set. An A-ad of dimension n in CyclesJ (X, p,U) is a
function N : nerve∆(U) −→ J satisfying exactly the definition of cycles given
above, except that it takes values in A-ads. Explicitly,

(1) if σ is a k-simplex of nerve∆(U) then N(σ) is an (n−k)-dimensional
(U − σ ∪A)-ad in J (p−1(∩σ)),

(2) let incl∗ : J (p−1(∩σ)) −→ J (p−1(∩bjσ)) denote the morphism in-
duced by the inclusion, then incl∗(N(σ)) = (−1)j∂Uj N(bjσ), and

(3) all but finitely many of the N(σ) are φ.

In (2), Uj is the jth element of σ with respect to the partial ordering, as
in 4.2.

4.4A Proposition. CyclesJ (X, p,U) has the structure of a bordism-type
theory. The n-dimensional bordism group of this theory is exactly the set
of homology classes of J -n-cycles in (X, p,U).

Proof. The homologies defined in 4.2 are exactly the type of [1]-ads used to
define the equivalence relation in the bordism group, in 2.3, so the assertion
that the bordism group is homology classes of cycles is just the definition.

We describe the bordism-type theory structure. The n-dimensional A-
ads have been defined. Face operators are defined by (∂aN)(σ)) = ∂a(N(σ).
The reindexing operations `θ are defined by reindexing all the pieces, and
the bijectivity condition in 3.2(3) is immediate. Similarly the involution −1
is defined by applying the involution in J to each piece.

The remaining ingredient is to see that the Kan condition holds. This
construction is similar to a step in the construction of induced maps of
cycles in 4.3.

Suppose M is an n-dimensional (A, a)-cycle. This is a function from A−
{a} to cycles so that M(b) is an n-dimensional (A− {b})-ad in

CyclesJ (X, p,U).

Unraveling a little further, this is a function M : (A−{a})×nerve∆(U) −→ J
so that M(b, σ) is a (A−{b})∪(U−σ)-ad of dimension n−k in J (p−1(∩σ)),
where k is the dimension of σ. We can think of this as a cycle of (A, a)-cycles,
over U .

What we want is a cycle of A-ads over U , so that for each σ the (A, a)-
cycle N(∗, σ) is obtained from it by taking faces. In more detail this is a
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function N : nerve∆(U) −→ J so that N(σ) is a A∪ (U −σ)-ad of dimension
n − k + 1 in J (p−1(∩σ)). This should satisfy M(b, σ) = ∂bN(σ), and the
cycle face relation 4.4(2) relating N(σ) and N(bjσ).

We construct N by induction downward on dimensions of simplices in
nerve∆(U). Since M(b, σ) = φ for all but finitely many (b, σ), there is a
dimension for σ above which M = φ and we can set N(σ) = φ.

Now suppose M is defined on simplices of dimensions greater than k, and
consider a k-simplex σ. Define a Kan-type (A∪U−σ, a)-cycle in J (p−1(∩σ))
by: take b ∈ A−{a} to M(b, σ). Take V ∈ U − σ to incl∗N(σ ∪ V ), if σ ∪ V
is a simplex in the nerve (ie. ∩σ ∩ V 6= 0), and take it to φ otherwise. Note
N(σ ∪ V ) is defined since σ ∪ V is a simplex of dimension greater than k.
This formula does in fact form a cycle, so the Kan condition in J (p−1(∩σ))
implies there is a (A∪U − σ)-ad which has this cycle as faces. Select one of
these to be N(σ), then this satisfies the conditions required for the induction
step. ¤

4.5 Naturality of theories

The constructions of 4.3 give homomorphisms of homology groups of cycles,
corresponding to appropriate morphisms of data. The definitions of 4.4 ex-
tends the homology groups to entire bordism-type theories. It would be nice
to similarly extend the homomorphism construction to give morphisms of
bordism-type theories. Such morphisms would by naturality induce maps of
the associated bordism spectra. The constructions of 4.3 are not canonical
enough to give morphisms of theories, but they do extend directly to the
bordism spectra.

Proposition. Suppose (f, f̂) : p −→ q is a morphism of maps and θ : U −→ V
is a morphism of covers, as in 4.3. Then there is an associated morphism of
bordism spectra

(f, f̂ , θ)∗ : Ω(Cycles(X, p,U)) −→ Ω(Cycles(Y, q,V))

which is natural up to homotopy, and on homotopy groups induces the
homomorphism defined in 4.3.

Proof. We will not give the proof in detail. It is primarily an elaboration on
the construction in 4.3, and although the idea behind it can be described
easily, the indexing on the various -ads considered gets too complex to be
informative. Also relatively little use is made of it here; it is primarily used
to replace the word “canonical” in Theorem 4.2A with the word “natural”
in the final result (however, see 4.6).
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The spaces Ω(Cycles(X, p,U)) and Ω(Cycles(Y, q,V)) are geometric re-
alizations of ∆-sets (see 3.4), so we get a map between them by realizing
∆-maps.

A k-simplex of Ωn(Cycles(X, p,U)) is by definition a [k]-ad in the bordism-
type theory Cycles(X, p,U), which in turn is a function nerve∆(U) −→
([k]-ads in J ). If θ is an injection then it induces a ∆-injection of nerves
nerve∆(U) −→ nerve∆(V). In this case we get a k-simplex of

Ωn(Cycles(Y, q,V))

by applying morphisms induced in J by (f, f̂), and then extending the
function to nerve∆(V) simply by defining it to be φ on the complement of
nerve∆(U).

As for single cycles this reduces the construction to X = Y and θ a
morphism which eliminates duplicate copies of a single set V1. In this case
we define the map by induction on skeleta of Ωn(Cycles(X, p,U)). If M

is a 0-simplex then it is a cycle, and we define (f, f̂ , θ)(M) as in 4.3A.
Suppose the map is defined on the (k − 1)-skeleton and M is a k-simplex.
The construction from this point is essentially the same as that of 4.3A,
except there are more faces. As in 4.3A we proceed by induction downwards
on dimension of simplices of nerve∆(V). The induction is started by setting
the values to be φ for simplices of sufficiently high dimension.

On simplices containing V1 we basically want a cycle of solutions to Kan
extension problems. For a given simplex we get a Kan cycle with three
types of pieces: from the construction on higher simplices, ones of the form
M(σ ∪ {Vi}), as before, and also pieces from the construction on bjM .
According to the induction hypotheses all these are already defined, so the
Kan condition can be used to extend the construction to (σ ∪ {V1}).

On simplices not containing V1 the construction involves first construct-
ing a “collar” to introduce more faces, then finding a cycle of solutions to
the resulting Kan problems. Again if this has been done for higher simplices
of nerve∆(V) and also for faces bjM then we get extension problems whose
solutions extend the construction over the simplex.

Finally we indicate why this is well-defined and natural up to homotopy.
To see it is well-defined suppose there are two such constructions, and think
of these as defined on nerve∆(V)×{0, 1}. Then use the same proceedure to
fill in between these to get a homotopy defined on nerve∆(V) × [0, 1]. The
only difference is that there are yet more faces, coming from the ends of the
homotopy where the construction is already given.

This, together with the ∆-set model for the loop space used in 3.4, also
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shows that these maps of spaces fit together (up to homotopy) to give maps
of spectra.

The proof of naturality is straightforward except for changing covers. For
this we need to see that if V is obtained from U by eliminating duplicates of
two different sets, then the compositions are independent (up to homotopy)
of the order in which this is done. Filling in a homotopy between the two
compositions proceeds by double induction as before, but the proceedure for
each piece is substantially more complicated. It separates into four cases,
depending on whether or not the sets being changed are contained in the
simplex. The worst case, when the simplex contains neither, seems to require
four different applications of the Kan condition. It is not too difficult to
guess what to do, but it does seem to be a lot of trouble to verify that the
resulting formulae do in fact give Kan-type cycles. ¤

4.6 Nonsimplicial situations

Cycles are associated with a covering, and describe homology of the nerve
of that cover. A homotopy inverse limit is used to define general homology,
and although this can be avoided if the situation is simplicial (by 2.6) it
is necessary in general. The maps in the inverse system are induced by
morphisms of the data, so the proposition gives a description of the system
in terms of cycles. This leads to a cycle description of general homology
classes.

When the space is reasonable, for example metric, the description of such
homotopy inverse limits in terms of arcs can be employed. In these terms a
homology class is represented by a half-open arc of cycles: a triangulation of
[0,∞) is given, the vertices are mapped to (X, p,U)-cycles, where U depends
on the vertex. Edges are mapped to homologies of the type considered in 4.3
which change the covering. Finally we require that the covers have diameters
which go to 0 as we go toward ∞.

Carrying out this algorithm using the constructions as given results in
an unpleasantly complicated mess, so we will not do it here. For this to
work better it would be helpful to have a direct description of homologies
which change covers arbitrarily, not just by duplicating a single subset. Also
better naturality constructions would be needed. For this it might be useful
to consider more elaborate forms of the Kan condition, for example allowing
pieces to intersect in cycles instead of just faces.

4.7 Cocycles and cohomology

There is a representation result for cohomology which is easier than cycles
and homology, and we describe this here. They are particularly useful in
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descriptions of products and duality, but these will not be discussed here.
We restrict to the constant coefficient case. The reader who needs the functor
coefficient analog should not have trouble working it out.

These representative are basically the same as the unfortunately named
“mock bundles” of [4].

Cohomology with coefficients in a spectrum J is defined, dually to ho-
mology, by maps:

Hn(X;J) = π0(maps(X,Jn)).

When J is an Ω-spectrum this involves the single space Jn, as written. For
general spectra it has to be interpreted in terms of maps of spectra.

Now suppose X = ‖K‖ is the realization of a ∆-set, and Jn = ΩJn
is the bordism spectrum of a bordism-type theory J . According to the
simplicial approximation theorem a map of realizations is homotopic to the
realization of a ∆-map f : K −→ ΩJ

−n. (Note, as in 3.4, the sign difference on
the subscripts on the spectrum and ∆-set.) Thus to obtain representatives
for cohomology classes we have only to refer to the definition of ΩJ

−n and
spell out what such a ∆-map looks like. The result is:

Proposition. Classes in Hn(‖K‖; ΩJ ) are represented by functions f from
simplices of K to -ads in J such that

(1) if σ is an k-simplex then f(σ) is an [k]-ad of dimension k − n, and
(2) f(bjσ) is obtained from (−1)j∂jf(σ) by reindexing by the order-

preserving bijection [k − 1] −→ [k]− {j}. ¤

To contrast this with the definition of a cycle we make explicit some of
the differences. For this consider an n-cycle M in the star cover associated
to the triangulation of ‖K‖. Since the simplices of the nerve of this cover are
indexed by simplices in K, the n-cycle M is also a function from simplices
of K to -ads in J . However

(1) the dimension of M(σ) is the negative of the dimension of f(σ). In
particular the dimension of f(σ) increases with the dimension of σ
while the dimension of M(σ) decreases.

(2) the face structures are also dual: f(σ) has faces corresponding to
the faces of σ, while roughly speaking M(σ) has faces corresponding
to simplices disjoint from σ.

In its face and dimension structure a cocycle behaves like a product K×F ,
or more generally like a bundle over K. It can be thought of as a sort of
block bundle over K in which the fibers are allowed to change from point
to point (hence the term “mock bundle” in [4]).
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5: Proof of the representation theorem

We now show that cycles represent homology. This is done on the spec-
trum level; the bordism spectrum of cycles is equivalent to the homology
spectrum.

5.1 Theorem. Suppose U is a cover of X, and p : E −→ X. Then there is
a homotopy equivalence of spectra,

Ω
(
CyclesJ (X, p,U)

) −→ H•
(
nerve(U); ΩJ (p,U)

)

which is natural up to homotopy.

Before giving the formal proof we describe the idea. Given a cycle we want
to construct a point in one of the loop spaces in the direct limit defining
the homology space. So we seek a map Sk −→ Ω(p,U)/nerve∆(U), where
Ω(p,U) −→ nerve∆(U) is the spectral sheaf constructed as in 2.3, and the
quotient indicates dividing out the 0-section.

A cycle is a function M : nerve∆(U) −→ J , but not any sort of ∆-map;
M(σ) has the wrong face structure to be a simplex which is an image of σ.
However, assume U is finite with n+1 elements. There is a natural simplicial
embedding nerve∆(U) ⊂ ∆n+1, and we can associate to each simplex a dual
simplex Dn(σ). The cycle has the correct face structure to define a ∆-map
M(σ) : Dn(σ) −→ ΩJ (p−1(∩σ)).

Geometric realization of this ∆-map gives a map of spaces ‖Dn(σ)‖ −→
ΩJ (p−1(∩σ). This is natural in σ, so defines a natural transformation of
functors. Here both ‖Dn(σ)‖ and ΩJ are regarded as functors from

nerve∆(U)

into spaces. The geometric realization of the functor σ 7→ ΩJ (p−1(∩σ)
gives the spectral sheaf ΩJ (p,U). The central geometric fact in the argu-
ment is that the geometric realization of the dual simplex functor σ 7→
‖Dn(σ)‖ can be canonically identified with Sn. The realization of the nat-
ural transformation gives a map between these spaces, and therefore Sn −→
Ω(p,U)/nerve∆(U), as required.

To reverse the process begin with a map f : Sj −→ Ω(p,U)/nerve∆(U).
First f is deformed to be transverse with respect to the simplex coordinates
of Ω(p,U) coming from the construction as a realization. This describes f
as coming from the realization of a natural transformation of functors, but
defined on some manifold-valued functor usually different from the dual sim-
plex functor. After stabilizing to get into the stable range (for embeddings)
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we can embed this functor in the dual simplex functor. Extension of the
natural transformation to the whole dual simplex functor corresponds to
suspension in the spectrum structure. Therefore after suspension the map
becomes homotopic to a realization of the desired kind.

5.2 Functors on ∆-sets

Functors on simplicial nerves, regarded as categories, are used in 2.3 to
define functor-coefficient homology. Since we are now using the ∆-nerve, we
need a ∆-set version of this.

Suppose K is a ∆-set, and regard it as a category with morphisms gener-
ated by identity maps and the face operators ∂j . If F is a covariant functor
from K to spaces, then

∐
σ∈K F (σ) is a ∆-space. The geometric realization

of this is defined by:

‖F‖ =
( ∐

k,σ∈Kk

F (σ)×∆k
)
/∼

where ∼ is the equivalence relation generated by: if x ∈ F (∂σ), t ∈ ∆k−1,
and u ∈ ∆k+1 then (x, ∂∗j t) ∈ F (σ)×∆k is equivalent to (∂jx, t) ∈ F (∂jσ)×
∆k−1.

This construction is natural, with the same properties as the simplicial
version in 2.2A. The reason, by the way, that we did not use the ∆ version
from the beginning is that morphisms of covers defines simplicial maps of
simplicial nerves, but not ∆-maps of ∆-nerves. This makes changing covers
awkward in the ∆ version, and is part of the difficulty encountered in the
naturality constructions in section 4.

Now we relate this to the simplicial version. If K is a simplicial set then
coreK ⊂ K is the ∆-set of nondegenerate simplices; the example of partic-
ular concern is nerve∆(U) ⊂ nerve(U).) Then core K is a subcategory of K.
If F is a functor from K to spaces, in the sense of 2.2 then the restriction
to core K is a functor in the sense above. The inclusion coreK ⊂ K induces
a map of realizations.

5.2A Lemma. Suppose K is a simplicial set and F is a functor from K to
spaces. The natural map, from the ∆-realization of the restriction of F to
coreK, to the simplicial realization of F , is a homeomorphism.

This is straightforward, basically the same argument as the proof that the
∆-realization of the core is the same as the simplicial realization of K. ¤
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5.3 Extensions to simplices

For convenience we extend both cycles and the spectral sheaves over a sim-
plex containing the nerve. When the cover is finite we will actually work
with the extension over K = ∂∆U , rather than over the whole simplex.

Suppose U is a totally ordered collection of subsets of X. Define a ∆-set
∆U with k-simplices all collections of k + 1 distinct elements of U . If U is
finite this is a simplex. With this notation the simplex ∆n is ∆[n]. The nerve
is a sub-∆-set of this; nerve∆(U) ⊂ ∆U .

Now suppose J is a bordism-theory valued functor of spaces, which on
the empty set consists only of basepoints. A J -n-cycle over (X, p,U) is
defined to be a function from nerve∆(U) into J which takes a simplex σ
to a U − σ-ad in J (p−1(∩σ)). We can consider cycles defined on all of
∆U satisfying the same conditions. The value on the additional simplices is
determined: if σ /∈ nerve∆(U) then ∩σ = φ so J (p−1(∩σ)) = J (φ), which
consists only of basepoints. We formalize this as a lemma.

5.3A Lemma. Suppose J (φ) consists only of basepoints, and K is a ∆-set,
nerve∆(U) ⊂ K ⊂ ∆U . Then restriction defines a bijection from J cycles
defined on K to cycles defined on nerve∆(U). ¤

Spectral sheaves extend in a similar fashion. Suppose J is a spectrum-
valued functor of spaces. The spectral sheaf over ‖nerve∆(U)‖ is defined by
realizing the functor σ 7→ J(p−1(∩σ)). This functor is evidently defined on
all of ∆U , not just nerve∆(U). Realization of the extended functor defines
a sheaf over ‖∆U‖, which we continue to denote by J(p,U).

5.3B Lemma. Suppose J is a spectrum-valued functor such that J(φ) is
contractible, and K is a ∆-set nerve∆(U) ⊂ K ⊂ ∆U . Then the induced
inclusion of homology spectra

H•(nerve∆(U);J(p,U)) −→ H•(K;J(p,U))

is a homotopy equivalence.

Proof. The homology of nerve∆(U) comes from the sheaf over nerve∆(U),
divided by nerve∆(U). Similarly the homology of K comes from the sheaf
over K, divided by K. The cofiber of the inclusion is the sheaf over K,
divided by K and the sheaf over nerve∆(U). This is homeomorphic to (K×
J(φ))/(nerve∆(U)×J(φ)∪K×∗), which is contractible because J(φ) is. Since
the cofiber is contractible, the inclusion is a homotopy equivalence. ¤

Note that if J is a bordism-theory valued functor as in 5.4A then the
associated bordism spectrum is a spectrum-valued functor which satisfies



240 Frank Quinn

the hypotheses of 5.4B. The bordism spectrum of the empty set is the
realization of the ∆-set {φ} with a single simplex in each dimension. This
realization is easily seen to be contractible (the fundamental group and
homology groups are trivial).

5.4 Dual simplices

Fix an integer n. The “dual simplex functor” is a function Dn : ∂∆n+1 −→
∂∆n+1, where ∂∆n+1 denotes the ∆-set. If σ is a simplex of ∂∆n+1 then
Dn(σ) is defined to be the simplex spanned by the vertices of ∆n+1 not in
σ.

So for example ∆n+1 is the join σ ∗Dn(σ).

Lemma.

(1) The function σ 7→ ‖Dn‖ defines a functor from ∂∆n+1 to spaces,
and

(2) there is a canonical homeomorphism from the realization of this
functor to Sn.

Proof. Dn is contravariant in σ, in the sense that if τ ⊂ σ then Dn(τ) ⊃
Dn(σ). The face maps are contravariant with respect to inclusion, so Dn is
a covariant functor on the category with morphisms generated by the ∂∗.

The realization of this functor is built of pieces ‖σ‖×‖Dn(σ)‖. Geometri-
cally we think of this as a tubular neighborhood of σ. The homeomorphism
to Sn gives the handlebody structure obtained by thickening up the cell
decomposition of ∂∆n+1.

The proof uses some spherical geometry, so we understand Sn to mean
the sphere with its usual Riemannian metric. Suppose X ⊂ Sn is contained
in the interior of some hemisphere. Then we define the convex hull of X,
denoted hull(X), to be the smallest set containing X, contained in the
hemisphere, and intersecting each geodesic in a connected set. The hull
is also the intersection of all hemispheres containing X, so in particular is
independent of any particular hemisphere.

The fact we will use is that certain convex hulls are naturally homeo-
morphic to simplices. There is, for each set of points V = (v0, . . . , vj) in Sn

which are equidistant from each other, and lie in the interior of a hemisphere,
a homeomorphism fV : ∆j −→ hullV . This is continuous in V and natural
with respect to faces and isometries; the restriction to the face obtained
by omitting the ith vertex is the function associated to the set obtained by
omitting vi, and if g : Sn −→ Sn is an isometry then fV g is fg(V ).

Choose points x0, . . . , xn in Sn which are equidistant and the maximal
distance apart; these are the vertices of an inscribed regular simplex. To
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make the construction canonical these points should be chosen in some
canonical way. The point −xk is the barycenter of the simplex determined
by {xi | i 6= k}. Define the point yi,k for i 6= k to be the midpoint of the
shortest geodesic between xi and −xk.

Note that given i, j there is an isometry of Sn (in fact a reflection)
which interchanges xi and xj and leaves the other x∗ fixed. Since isome-
tries preserve geodesics this reflection also interchanges yi,k and yj,k, and
interchanges yk,i and yk,j

Next we define, for each σ ∈ ∂∆n+1, a map Fσ : ‖σ‖ × ‖Dn(σ)‖ −→ Sn.
This will be natural in σ and a homeomorphism onto the convex hull of
the points {yi,k | i ∈ σ, and k /∈ σ} (here we have written i ∈ σ if the ith

vertex of ∆n+1 is in σ). These facts will imply the lemma: the naturality
implies these fit together to define a map from the realization of the functor
‖Dn(∗)‖ to Sn, and the homeomorphism statement implies this map is a
homeomorphism.

Suppose (s, t) ∈ ‖σ‖ × ‖Dn(σ)‖. For any fixed k /∈ σ the points in the
set yσ,k = {yi,k | i ∈ σ} are equidistant from each other. This is because the
reflections which interchange the {xi | i ∈ σ} also interchange these points,
and reflections preserve distances. Therefore the functions fyσ,k

are defined.
Let V = {vk} denote the set obtained by applying these functions to the
point s.

The points in the set V are also equidistant from one another. This is
because the reflections which interchange xk with i /∈ σ interchange the sets
yσ,k and therefore—by naturality with respect to isometry—the functions
fyσ,k

. This implies the reflections also interchange images of a specific point,
in this case s. From this we conclude the function fV is defined, and we define
Fσ(s, t) = fV (t).

The function Fσ is continuous because the f∗ are continuous in ∗. It is
natural in σ because the f∗ are. It therefore remains to verify that it is a
homeomorphism.

Consider the function fV again. The image of this intersects σ in a single
point, and is perpendicular to σ at that point. This is because the reflections
which interchange points of V leave σ invariant; if w is a vector in σ it makes
the same angle with each of the geodesics from the intersection point to a
vertex of the image of fV . This angle must therefore be 0. This identifies
fV as the intersection of the linear sphere perpendicular to σ, and the hull
of {yi,k | i ∈ σ, and k /∈ σ}.

We can now reverse the construction. If z is a point in the hull then it lies
in some sphere perpendicular to σ. Let V = {Vk} denote the intersection
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of this sphere with the hull of yσ,k, where k /∈ σ. The sphere is invariant
under isometries which fix σ, so invariant under the reflections used above.
Since these interchange elements of V the same argument used above implies
these are equidistant. The point z is therefore fV (t) for some t ∈ ‖Dn(σ)‖.
Further for each k /∈ σ the point zk is fyσ,k

(sk), for some sk ∈ ‖σ‖. Using
the symmetry again we see that all the sk are equal. This identifies z as
Fσ(sk, t).

Explicitly we have explained why Fσ is onto. But the points s and t are
easily seen to be uniquely defined, so it is also injective. Therefore it is a
homeomorphism. ¤

5.5 From cycles to homology

Suppose U is a finite collection of subsets of X. In this section we describe
the map, from the bordism spaces of cycles to the homology spaces, both
over U . We verify this is a map of spectra in the next section, and consider
infinite collections in the section 5.7.

Denote the elements of U by U0, . . . , Un+1, so the simplex spanned by
this is canonically ∆n+1. Suppose that U0 is empty. This assumption implies
that nerve∆(U) ⊂ ∂0∆n+1, and in particular nerve∆(U) ⊂ ∂∆n+1.

Suppose M is a J -r-cycle in (X, p,U), extended trivially to ∂∆n+1 as
in the previous section. Then M(σ) is a (U − σ)-ad of dimension r − j in
J (p−1(∩σ)), where j is the dimension of σ. Using the canonical bijection
[n− j] −→ U − σ we can regard M(σ) as an (n− j)-dimensional simplex of
the bordism ∆-set ΩJ

r−n(p−1(∩σ)). Or, since Dn(σ) is the simplex spanned
by U − σ, this can be regarded as a ∆-map Dn(σ) −→ ΩJ

r−n(p−1(∩σ))
The geometric realization of this ∆-map defines a map of spaces

‖Dn(σ)‖ −→ ΩJn−r(p
−1(∩σ)).

(Remember that indices are reversed in forming the bordism spectrum Ω.)
This is a natural transformation of functors defined on ∂∆n+1, in other
words

‖Dn(∂iσ)‖ −−−−→ ΩJn−r(p
−1(∩∂iσ))

y
y

‖Dn(σ)‖ −−−−→ ΩJn−r(p
−1(∩σ))

commutes. This is condition (2) in the definition of cycles in 4.2. This natural
transformation induces a map of realizations of these functors. According
to 5.4 the realization of σ 7→ ‖Dn(σ)‖ is Sn. The other realization is the
spectral sheaf (over ∂∆n+1) so we get a map Sn −→ ΩJn−r(p,U).



Assembly maps in bordism-type theories 243

The initial hypothesis that U0 = φ implies that the basepoint of Sn (the
0th vertex of ∂∆n+1) maps to the basepoint. Thus this map defines a point
in the loop space Ωn(ΩJn−r(p,U)). Divide by ∂∆n+1 and include into the
homology spectrum to get a point in H−r(∂∆n+1; ΩJ (p,U)).

This defines a function from the vertices of the bordism spectrum of J -
cycles on (X, p,U) to the homology spectrum of ∂∆n+1. Next we extend this
to a map of the whole space of cycles, essentially by adding a ∆i coordinate
to the construction above.

Let M be an i-simplex of the bordism space of r-dimensional cycles. This
takes a j-simplex σ of ∂∆n+1 to a ((U − σ) ∪ [i])-ad of dimension r − j + i
in J (p−1(∩σ)). Regard M(σ) as an (n− j + i+1)-simplex of the associated
bordism space. More precisely regard it as a ∆-map of the join simplex
Dn(σ) ∗ ∆i into ΩJ

r−n−1(p
−1(∩σ)). Realize this to get ‖Dn(σ)‖ ∗ ‖∆i‖ −→

ΩJn−r+1(p
−1(∩σ)).

Again this is a natural transformation of functors of σ, so induces a map
of realizations of functors. The realization of the left side is Sn ∗ ‖∆i‖, and
that of the right side is the spectral sheaf, so this gives a map Sn ∗ ‖∆i‖ −→
ΩJn−r+1(p,U). Note ‖Dn(σ)‖ and ‖∆i‖ are taken to the basepoint: The
image of Dn(σ) corresponds to ∂[i]M(σ), which is φ by definition of simplices
of the bordism space. The image of ∆i corresponds to ∂(U−σ)M(σ) which
is φ by condition (3) in the definition of cycles.

Regard the join as Sn × ‖∆i‖ × I with identifications at the ends of the
I coordinate. Then the realization of M(σ) defines a map Sn×‖∆i‖× I −→
ΩJn−r+1(p,U). Let Sn× I ⊂ Sn+1 denote the standard embedding, then the
map extends by the point map on the complement to give Sn+1 × ‖∆i‖ −→
ΩJn−r+1(p,U).

Regard this map as a simplex in the ∆-set of maps from Sn+1 to ΩJn−r+1(p,
U). These also preserve basepoints, so this is a simplex in the loop space.
We denote the loop space by maps(Sn+1, ΩJn−r+1(p,U)), using “maps” to
avoid another Ω. We get one of these for each i-simplex M of the bordism
∆-set of cycles. The naturality of the construction implies these fit together
to define a ∆-map

R0 : Ωr

(
Cycles(X, p,U)

) −→ maps
(
Sn+1,ΩJn−r+1(p,U)

)
.

Homology is obtained from the geometric realization of the right side of this
by dividing by the image of the 0-section, including into

maps(Sn+j ,Ωn−r+j),
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and taking the limit as j −→ ∞. Therefore realizing R0 and including the
right side in this limit defines maps

R : Ω−r(Cycles(X, p,U)) −→ H−r(∂∆n+1; ΩJ (p,U)).

(Again we note the reversal of the index on the left upon realization of
the bordism ∆-set.) The right side of this is equivalent to the homology of
nerve∆(U) by lemma 5.3B, so this gives the desired maps from cycles to
homology.

5.6 The spectrum structure

For each r ∈ Z we have a map from the space of r-cycles to the rth homology
space. The next step is to show these form a map of spectra, ie. commute
up to homotopy with the spectrum structure maps.

It is sufficient to show that the ∆-map R0 homotopy commutes with
appropriate spectrum structure maps. The appropriate diagram is

Ωr

(
Cycles(X, p,U)

) R0−−−−→ maps
(
Sn+1, ΩJn−r+1(p,U)

)

`

y
y

Ω
(
Ωr−1

(
Cycles(X, p,U)

)) ΩR0−−−−→ Ω
(

maps
(
Sn+1, ΩJn−r+2(p,U)

))
.

The outer Ωs in the bottom row denote loop spaces. The right vertical map is
induced by the structure map in the spectral sheaf, which roughly speaking
is the fiberwise union of the structure maps over points in ‖∂∆n+1‖. We
refine the diagram so we can use a ∆-model for this.

The map R0 is defined by realizing functors, so we factor it through a ∆-
set of functors. Suppose F and G are functors from ∂∆n+1 to ∆-sets. Then
nat(F, G) will be a space of natural transformations between these (actually
we define something closer to the natural transformations from F to the
loopspace ΩG). An i-simplex of this space associates to each σ ∈ ∂∆n+1 a
∆-map F (σ)∗∆i −→ G(σ), compatible with the maps induced from the face
maps in ∂∆n+1. We also require that F (σ) ∗ {φ} and {φ} ∗∆i are taken to
the basepoint of G(σ). Here K ∗∆i is the ∆-set with simplices τ ∗ σ where
τ ∈ K and σ ∈ ∆i. τ ∗ σ denotes a simplex with vertices the union of the
vertices of τ and σ, ordered so that those of σ are last.

The construction of the map R0 proceeds by constructing such natu-
ral transformations, from Dn(σ) to ΩJ

r−n−1(p
−1(∩σ)), then geometrically

realizing. R0 therefore factors as

Ωr

(
Cycles(X, p,U)

) R1−−→ nat
(
Dn(∗), ΩJ

r−n−1(p
−1(∩∗)))

−→ maps
(
Sn

n+1Ω
J
n−r+1(p,U)

)
.
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The second map is obtained by realization (twice; the ∆-sets to get space-
valued functors, and then the functors). In fact unraveling all the definitions
will show that R1 is an isomorphism.

Realization preserves spectrum structures, so the part we are concerned
with is R1. It is sufficient to show the following diagram commutes:

Ωr

(
Cycles(X, p,U)

) R1−−−−→ nat
(
Dn(∗), ΩJ

r−n(p−1(∩∗)))

`

y
y

Ω
(
Ωr−1

(
Cycles(X, p,U)

)) −−−−→ nat
(
Dn(∗), ΩΩJ

r−n−2(p
−1(∩∗))).

In these terms we can be more explicit about the right vertical map; this
is induced by composition with the natural transformation

` : ΩJ
r−n−1(p

−1(∩σ)) −→ ΩΩJ
r−n−2(p

−1(∩∗)).

As in the definition of the spectrum structure in 3.4 we will use the ∆-set
model for the loop space: the k-simplices of ΩK are the (k + 1)-simplices
of K with ∂k+1 and the opposite vertex both equal to basepoints. (And we
denote this opposite vertex by ∂k+1

0 σ.) In this model the map ` is defined
by reindexing a [k]-ad (= a k-simplex) to a [k + 1]-ad using the natural
inclusion [k] ⊂ [k + 1].

We now describe the lower horizontal map. This is a composition of two
maps, first

ΩR1 : Ω
(
Ωr−1

(
Cycles(X, p,U)

)) −→ Ω
(
nat(Dn(∗), ΩJ

r−n−1(p
−1(∩∗)))

obtained by restricting R1 to the models of loopspaces as subsets with face
restrictions. Then there is the identification

Ω
(
nat(Dn(∗), ΩJ

r−n−1(p
−1(∩∗))) ' nat

(
Dn(∗), ΩΩJ

r−n−2(p
−1(∩∗))).

We discuss this identification.
A k-simplex of Ω

(
nat

(
Dn(∗), ΩJ

r−n−1(p
−1(∩∗)))) is a (k + 1)-simplex

of nat
(
Dn(∗), ΩJ

r−n−1(p
−1(∩∗))) with ∂k+1 = φ = ∂k+1

0 . This is a natu-
ral transformation Dn(σ) ∗∆k+1 −→ ΩJ

r−n−1(p
−1(∩∗)), so associates to an

(n−j)-simplex σ ∈ ∂∆n+1 a (j+k+2)-simplex of ΩJ
r−n−1(p

−1(∩∗)). By defi-
nition of “nat” the restrictions to ∆j∗{φ} = ∂k+2

j+1 , and to {φ}∗∆k+1 = ∂j+1
0

are both φ. Further, the restriction imposed to get the ∆ loopspace is
∂j+k+2 = φ = ∂k+1

j+1 .
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Similarly a k-simplex of nat
(
Dn(∗),ΩΩJ

r−n−2(p
−1(∩∗))) is a natural

transformation which takes an (n− j)-simplex σ ∈ ∂∆n+1 to a (j + k + 1)-
simplex of ΩΩJ

r−n−2(p
−1(∩∗)), again with ∂k+1

j+1 = φ = ∂j+1
0 . This is a

j + k + 2-simplex of ΩJ
r−n−2(p

−1(∩∗)) with face restrictions ∂j+k+2 = φ =
∂j+k+2
0 . These are the same conditions as in the previous paragraph, so the

two sets are equal.
It is now straightforward to verify that the diagram commutes. Let M be

a k-simplex of bordisms of cycles, so it assigns to σ ∈ ∂∆n+1 a (U−σ∪[k])-ad
in J (p−1(∩σ)). Both compositions take this to the natural transformation
which takes Dn(σ)∗∆k to the (j+k+2)-simplex of ΩJ

r−n−2(p
−1(∩∗)) defined

by `j+k+2M(σ), where `j+k+2 reindexes by the inclusion (U − σ ∪ [k]) ⊂
(U − σ ∪ [k + 1]).

This completes the verification that the maps defined in the previous
section give a map of spectra, from the bordism spectrum of cycles, to
homology. ¤

5.7 Reduction to finite collections

Elsewhere in this section we assume the collection U of subsets of X is finite.
In this section we show this is sufficient for most purposes, and indicate the
modifications necessary in the others.

The finiteness condition on cycles implies that any finite subcomplex
of the bordism space Ω(CyclesJ (X, p,U)) is contained in the image of
Ω(CyclesJ (X, p,V)) for some finite V ⊂ U . In particular homology classes
of cycles can be defined solely in terms of finite subsets.

Similarly the homology spectrum is obtained from loop spaces of a quo-
tient ΩJ (p,U)/nerve(U). A map of a finite complex into this deforms into
the inverse image of a finite subcomplex of nerve(U) under the projection
ΩJ (p,U) −→ nerve(U). But this corresponds to the homology spectrum of a
finite subset of U . The conclusion is that maps of spheres and homotopies
between them lie in homology spaces of finite V ⊂ U .

It follows from this and naturality that if the passage from cycles to ho-
mology is a homotopy isomorphism for finite U then it is an isomorphism
in general. Also, to define this passage on the group level it is sufficient to
consider finite collections. The only ingredient for which this is not suffi-
cient is the definition of the map on the spectrum level, when U is infinite.
Therefore we discuss the construction of the map in this case.

Suppose V is a finite subset of U . Denote by ∆V the simplex with vertices
V. In these terms the construction of 5.5 defines a map

Ω(CyclesJ (X, p,V)) −→ maps(‖∂∆V‖, ΩJ (p,V)/‖∂∆V‖).
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This construction is natural in V, so forms a direct system of maps.
Suppose V is enlarged by addition of a copy of the empty set. This does

not change the cycles and on the mapping space is equivalent to the sus-
pension (since ∂∆U∪{φ} ∼ S1 ∧ ∂∆U ). This means the direct limit used to
define the homology can also be obtained as the mapping spaces associated
to the sequence of inclusions · · · ⊂ V ∪ n{φ} ⊂ V ∪ (n + 1){φ} ⊂ · · · .

In general expand U by adding infinitely many copies of the empty set,
and take the direct limit over all finite subsets V of the map above;

lim
V→

Ω(CyclesJ (X, p,V)) −→ lim
V→

maps(‖∂∆V‖,ΩJ (p,V)/‖∂∆V‖).

It follows from the discussion above that the left side of this is equivalent
to the cycle space for U , and the right side is equivalent to the homology
space. This therefore defines the desired map when U is infinite.

5.8 Completion of the proof

Again assume U is a collection of n+2 subsets of X, with the first one empty.
The objective is to show that the map defined above, from the bordism
spectrum of cycles over U to the homology with coefficients in the spectral
sheaf ΩJ (p,U) is a homotopy equivalence.

In the previous part of the proof the cycle spectrum has been identified
with the ∆-set of natural transformations nat(Dn(σ), ΩJ

r−n+1(p
−1(∩σ))),

so it is sufficient to show the map from this to homology is a homotopy
equivalence.

The first step is to compare the ∆-natural transformations with topo-
logical ones. Suppose F and G are topological functors on ∂∆n+1. Define
nat∗(F, G) to be the ∆-set with k-simplices the topological natural trans-
formations F (σ) ∗ ∆k −→ G(σ) which take F (σ) and ∆k to the basepoint.
The subscript ∗ indicates the use of the join to define the simplex structure
(there will be a product version below).

5.8A Lemma. Realization defines a map of ∆-sets

nat(Dn(σ), ΩJ
r−n+1(p

−1(∩σ))) −→ nat∗(‖Dn(σ)‖,ΩJ−r+n−1(p
−1(∩σ))).

As usual note the reversal of the index upon realization; ΩJ−r+n−1 =
‖ΩJ

r−n+1‖.

Proof. It is sufficient to show the map induces an isomorphism of homotopy
groups. These are both Kan ∆-sets so we can work with single simplices.
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Specifically suppose M is a k-simplex of the topological version, ∂0M is
the realization of N0, a (k − 1)-simplex of the ∆ version, and ∂jM = φ for
j > 0. Then it is sufficient to construct a (k-simplex N of the ∆ version
with ∂0N = N0 and a homotopy rel ∂0 of ‖N‖ to M . This N is to be a
functor on ∂∆n+1, and will be constructed by induction downward on the
dimension of σ.

Suppose N(σ) is defined for σ ∈ ∂∆n+1 of dimension greater than j,
and suppose τ is a j-simplex. Then N is defined on Dn(∂τ) ∗∆k ∪Dn(τ) ∗
∂∆k = ∂∆n−j+k+1. Realize this, then the induction hypothesis provides a
homotopy of this realization to the restriction of M to ‖∂∆n−j+k+1‖. Regard
this homotopy as an extension of ‖N‖ over a collar of ‖∂∆n−j+k+1‖, then
M provides an extension over the rest of ‖∆n−j+k+1‖.

Now apply the simplicial approximation theorem, [22, Theorem 5.3]. This
asserts that a map of a realization into the realization of a Kan ∆-set is
homotopic to the realization of a ∆-map. Further, it can be held fixed
where it is already a realization. Applying this to the map of ‖∆n−j+k+1‖
constructed above gives an (n − j + k + 1)-simplex which we define to be
N(τ), together with an extension of the previous homotopies to a homotopy
of ‖N(τ)‖ to M(τ). This completes the induction step, and therefore the
proof of the lemma. ¤

The next step is a minor modification, replacing the join by the product
in the definition of the spaces “nat.” If F , G are topological functors as
above, define nat×(F, G) to have k-simplices the natural transformations
F (σ)×∆k −→ G(σ).

Recall the definition of the join F (σ) ∗ ∆k as the product F (σ) × I ×
∆k with identification of the subset with I coordinate 0 with F (σ), and
identification with ∆k when the I coordinate is 1. A map of the join defines
F (σ)×I×∆k −→ G(σ). Use adjointness to shift the I coordinate to G, then
this gives a map to the loopspace F (σ) ×∆k −→ ΩG(σ). This construction
defines an isomorphism of ∆-sets nat∗(F, G) ' nat×(F, ΩG).

When we set G to be a bordism spectrum the loopspace is obtained by
shifting the index by one. Putting these definitions and remarks together
we get

5.8B Lemma. The natural morphism

Ωr(CyclesJ (X, p,U)) −→ nat×(‖Dn(σ)‖, ΩJr−n(p−1(∩σ)))

is a homotopy equivalence of spectra. ¤

The task is now to show the nat× spectrum is equivalent to homology.
The realization of a natural transformation Dn(σ)×∆k → ΩJr−n(p−1(∩σ))
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defines a k-simplex of the space of pointed maps maps(Sn, ΩJr−n(p,U)).
The mapping space then maps into the homology, which is defined to be
the limit limj→∞ maps(Sn+j ,ΩJr−n−j(p,U)/Sn).

To see this is a homotopy equivalence it is sufficient to see it induces an
isomorphism on homotopy. Since these are Kan ∆-set it is sufficient to see
that a k-simplex of homology deforms rel boundary to a k-simplex of the
natural transformation space. In what follows we do this for 0-simplices, ie.
set k = 0. The reason this is sufficient is that these are Ω-spectra, so any
homotopy group appears as a 0th homotopy group by adjusting the index
r. Or we could note that the proof for k-simplices is obtained simply by
multiplying everything by ∆k. In any case this will usefully simplify the
notation.

The first step is to deform a point in the homology space to the realization
of a natural transformation of functors, but not quite the right functors.

Let f : Sj −→ ΩJr−j(p,U)/Sn represent a point in the homology space
Hr(X; ΩJ (p,U)). Think of dividing by Sn as adding the cone on Sn, then
make f transverse to the 1

2 level in the cone. This gives a codimension
0 submanifold W ⊂ Sj and a map f : (W,∂W ) −→ (ΩJr−j(p,U), Sn). The
original f is obtained up to homotopy by dividing ΩJ by Sn and extending
the map to all of Sj by taking Sj −W to the basepoint.

We now will use a transversality construction on W , f to produce

(1) a functor σ 7→ (W (σ), ∂αW (σ)) from ∂∆n+1 to pairs of spaces, and
a homeomorphism of the realization ‖W (∗)‖ ' W taking ‖∂αW (∗)‖
to ∂W ,

(2) a natural transformation F : (W (σ), ∂αW (σ)) −→ (ΩJr−j(p
−1(∩σ), pt)

of functors of σ, and
(3) a homotopy of maps of pairs from the realization of the transfor-

mation ‖F‖ to the map f .

This construction proceeds by downward induction on dimensions of sim-
plices in ∂∆n+1. To describe this we need some notation for realization of
functors defined on part of ∂∆n+1.

Suppose W (σ) is defined for r-simplices. with r ≥ k. Define the realiza-
tion, as in 5.2, to be

‖W (∗)‖k =
(∐

W (σ)× ‖σ‖)/∼

where the union is over simplices of dimension ≥ k, and ∼ is the equiva-
lence relation generated by: (x, ∂∗r (t)) ∼ (W (∂r)(x), t). Here ∂∗ denotes the
inclusion of the realization of a face in the realization of the whole simplex,
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and W (∂r) denotes the map functorially associated by W to the face map
∂r. Finally, denote by ∂β‖W (∗)‖k the part of this coming from simplices of
dimension less than k; the image of W (σ)× ‖∂rσ‖, where σ is a k-simplex.

The induction hypothesis for the construction is, for given k,

(1) a functor (W (σ), ∂αW (σ)) defined for r-simplices, r ≥ k, and a
homeomorphism ‖W (∗)‖k −→ W onto a codimension 0 submanifold
so that ‖∂αW (∗)‖k is taken to the intersection of the image with
∂W and ∂β‖W (∗)‖k is taken to the interface (intersection of the
image with the closure of its complement),

(2) a natural transformation F : (W (σ), ∂αW (σ)) −→ (ΩJr−j(p
−1(∩σ), pt),

and
(3) a homotopy of maps of pairs from f to fk, whose restriction to

‖W (∗)‖k is the realization of ‖F‖, and which takes the complement
to the part of ΩJr−j(p,U) lying over the (k − 1)-skeleton of ∂∆n+1.

For the induction step we split off a piece of the complement suitable to be
the realization over the (k − 1)-simplices.

Define Wk to be the closure of the complement of the realization ‖W (∗)‖k.
This has boundary ∂β‖W (∗)‖k∪∂αWk, where the second piece is defined to
be Wk∩∂W . According to (3) the map fk restricts to a map of this into the
part of the spectral sheaf lying over the (k − 1)-skeleton of ∂∆n+1, namely
∪{σr|r<k}ΩJr−j(p

−1(∩σ))× ‖σ‖.
Consider the barycenters of the simplices of dimension k − 1; bσ. Since

the restriction to ∂β‖W (∗)‖k comes from the realization of a natural trans-
formation, this restriction is transverse to ΩJr−j(p

−1(∩σ)) × bσ. Modify fk

by homotopy fixed on ∂β‖W (∗)‖k to make it transverse to these barycenters
on all of Wk. Define the preimage of σk−1 to be W (σ).

There is a normal bundle for W (σk−1) whose fibers project to concentric
copies of ‖σ‖ about bσ. By a small additional homotopy we may also arrange
that on this normal bundle fk composed with the projection

ΩJr−j(p
−1(∩σ))× ‖σ‖ −→ ΩJr−j(p

−1(∩σ))

is constant on fibers. Finally since both these conditions are already satisfied
on ∂β (since it is a realization there) we may assume this normal bundle
extends the one given in ∂β by the realization structure. Then use radial
expansion in ‖σ‖ to stretch each fiber out to a homeomorphism to ‖σ‖.
This gives a homotopy of fk to fk−1 which takes the complement of these
normal bundles to the part of the spectral sheaf lying over the (k − 2)-
skeleton, and is a product over each k − 1 simplex. This map satisfies the
induction hypothesis for k − 1, and so completes the induction step.
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This construction produces manifold-valued functors, specifically W (σ)
is a manifold (U − σ ∪ {α})-ad of dimension j − k, when σ is a k-simplex.
Strictly speaking this should have been included in the induction hypothesis,
since it was used (for transversality) and does not quite follow from the other
hypotheses.

Recall that the original goal was to construct a cycle representing a par-
ticular homology class. At this point we can describe the cycle corresponding
to the class represented by f . We will not actually use this; after a brief de-
scription we return to the more technical goal of constructing an appropriate
natural transformation.

Corresponding to a simplex σ ∈ nerve∆(U) we have a map W (σ) −→
ΩJr−j(p

−1(∩σ)). Triangulate W (σ) and approximate this map by a ∆-map
into the ∆-set ΩJ

j−r(p
−1(∩σ)). This can be interpreted as a Kan-type cycle

and totally assembled to give a single J object. Since W (σ) is a manifold
(U − σ ∪ {α})-ad, with ∂αW (σ) = φ, the assembly can be arranged to yield
a (U −σ)-ad in J . By doing this inductively downwards with respect to the
dimension of σ these can be arranged to fit together. The result is a J -cycle
in (p,U).

The final step in the proof is to modify the construction to yield a natural
transformation defined on the dual simplex functor, and therefore a cycle.

Enlarge the collection U by adding m copies of the empty set put at the
end in the ordering; we denote the result by U ∪m{φ}. This does not affect
the homotopy type of either the homology spectrum or the cycles. There is
a natural inclusion ΩJr−j(p,U) ⊂ ΩJr−j(p,U ∪m{φ}) covering the inclusion
∂∆n+1 ⊂ ∂∆n+1+m. The homology class represented by the map f is also
represented by the composition with this inclusion, (W,∂W ) −→ (ΩJr−j(p,U∪
m{φ}), ∂∆n+1+m). Further, the functor and natural transformation W (∗)
and F constructed above for f also gives the composition. The point is that
by this construction we can adjust n to be arbitrarily large. In particular
we can assume n > 2j.

There is a natural transformation of topological functors on ∂∆n+1, from
W (∗) to Dn(∗). This is constructed by induction downwards on dimensions
of simplices, using collars of boundaries in W (∗) and the contractibility of
Dn(∗). Further for each σ this can be arranged to be an embedding with
natural trivial normal bundle W (σ) × Dn−j ⊂ Dn(σ). Again we proceed
downwards on dimension of σ, using the facts that the dimension of Dn(σ)
is greater than twice that of W (σ). The triviality of the normal bundle
comes from the fact that W (σ) has trivial normal bundle in Sj .
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Next we use the Ω-spectrum structure

ΩJr−j(p
−1(∩σ)) ∼ maps0(Dn−j ,ΩJr−n(p−1(∩σ))).

Here we are using maps0 to indicate maps of the disk which take the
boundary to the basepoint; the (n− j)-fold loop space. The adjoints of the
maps W (σ) −→ maps0(Dn−j , ΩJr−n(p−1(∩σ))) define natural maps W (σ)×
Dn−j −→ ΩJr−n(p−1(∩σ)).

These maps take W (σ)×∂Dn−j ∪∂αW (σ)×Dn−j to the basepoint. But
this is the interface between the embedding in Dn(σ) and its complement, so
these extend by the basepoint on the complement to give maps F̂ : Dn(σ) −→
ΩJr−n(p−1(∩σ)). These form a natural transformation of the type equivalent
to a cycle, so if we show these extended maps represent the same homology
class as f then the proof is complete.

Let Sj ×Dn−j ⊂ Sn denote the standard embedding. Part of the direct
limit used to define homology is the suspension operation: composition with
the spectrum structure map

Sj −→ ΩJr−j(p,U)/∂∆n+1 −→ maps0(Dn−j ,ΩJr−n(p,U))/∂∆n+1

followed by adjunction to Sj × Dn−j −→ ΩJr−n(p,U)/∂∆n+1, extended by
the point map to give f̃ : Sn −→ ΩJr−n(p,U)/∂∆n+1. Since this is part of the
limit, the maps f and f̃ represent the same homology class.

Recall that the realization of the functor W (∗) is Sj , and the realization
of Dn(∗) gives Sn. The embeddings W (σ) × Dn−j ⊂ Dn(σ) thus realize
to give an embedding Sj × Dn−j ⊂ Sn. Since n > 2j this embedding is
isotopic to the standard embedding. The adjunction construction on the
functor level realizes to give the adjunction of maps. Therefore the isotopy
between the embeddings defines a homotopy from ‖F̂‖ to f̃ .

This represents the homology class of f by the realization of a transfor-
mation from the functor Dn(∗), and therefore completes the proof of the
representation theorem. ¤

6: Examples

A few of the main examples of bordism-type theories are described here,
along with their special features. In section 6.1 the prototype examples of
manifolds are described. Then in 6.2 these are extended to functors from
spaces to bordism-type theories, by including a map in the data. From these
the general machinery developed earlier gives bordism spectra, functor-
coefficient homology, and assembly maps.
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Applying the representation theorem gives manifold cycles which rep-
resent homology classes in these theories. Cycles are identified with maps
transverse to dual cones, so the total assembly is seen to be just a matter
of forgetting that a map is transverse. The fact that maps of manifolds can
be made transverse to bicollared subsets is then used to reverse this: an
arbitrary map can be made transverse to dual cones, thus can be realized
as a cycle. This shows that assembly maps are isomorphisms for these cat-
egories. This is an analog of the classical Pontrjagin-Thom theorem which
asserts that manifold bordism is a homology theory with coefficients the
appropriate Thom spectra.

The second class of examples are constructed from chain complexes. The
Poincaré chain complexes developed by Mishchenko, Ranicki, Weiss, and
others fit into this framework, giving assembly maps described by glueing
cycles. This is related to the papers of Ranicki [20] and Weiss [26] on alge-
braic assemblies.

6.1 Manifolds

We begin with the definition of manifold A-ads, adding precision to the
sketch in 3.1. Let SM denote one of the categories of oriented manifolds,
TOP, DIFF or PL.

The definition is inductive in the number of elements in A, or equivalently
after reindexing, the number of nonempty faces. To begin the induction,
suppose A is empty and define an A-ad to be a compact oriented SM
manifold without boundary. Define the involution by letting −M be the
same manifold with the opposite orientation. The basepoint is the empty
manifold φ.

An -ad has an underlying manifold (forgetting the face structure) which
for the purposes of the definition we denote by |M |. If A is empty define
|M | = M .

Now suppose -ads with k faces have been defined, and A has k + 1 ele-
ments. Then a manifold A-ad is a compact oriented manifold with boundary
|M | together with an (A− a)-ad ∂aM for each a ∈ A such that

(1) |∂aM | ⊂ ∂M as an oriented codimension 0 submanifold, and ∪a|∂aM |
= ∂M ,

(2) if a 6= b then |∂a∂bM | = |∂aM | ∩ |∂bM |, and further
(3) ∂a∂bM = −∂b∂bM as (A− a− b)-ads.

The involution−M is defined to have underlying manifold |M | with opposite
orientation, and face structure ∂a(−M) = −∂aM .

By induction this defines A-ads for all finite A. If A is infinite then an
A-ad is defined to be a B-ad for some finite subset B ⊂ A, and ∂aM = φ if
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a /∈ B.
A manifold -ad has dimension n if its underlying manifold has dimension

n. In the notation of section 3 this completes the definition of classes SMn
A,

of A-ads of dimension n. These objects can be reindexed via an injection
θ : A −→ B simply by defining ∂θ(a)`θM = ∂aM , and ∂b`θM = φ if b is not
in the image of θ.

This definition needs to be refined in the smooth category. Strictly speak-
ing we need manifolds with “corners” so that three or more can fit together
around lower-dimensional face to give a smooth structure. The iterated
codimension-1 approach used here can be made to work in the smooth cat-
egory using the “straightening the angle” device to change face angles when
necessary. We have chosen this approach because it requires less detail on
the structure of cone complexes, and it emphasizes that only the simplest
type of transversality—to trivial 1-dimensional bundles —is needed. The
more direct approach would be required if we were considering more rigid
objects, like manifolds with a Riemannian metric, or a conformal or affine
structure.

We briefly describe the more direct approach, which gives a technically
better way to approach the topic in any category. The basic idea is to con-
sider -ads as objects modeled on specific examples of -ads, just as manifolds
with boundary are modeled on disks.

To get an appropriate model suppose A is a collection of points in Rn

equidistant from each other (so the number of points is no greater than
n + 1). Let Ra denote the points in the space whose distance from a is less
than or equal to the distance to the other points. This has faces Ra ∩ Rb

lying in the (n − 1)-plane orthogonal to the center of the edges joining a
and b. Similarly an iterated intersection ∩a∈SRa lies in the affine subspace
orthogonal to the center of the simplex spanned by S.

A smooth manifold -ad of dimension n should have coordinate charts
modeled on open sets in some Ra, so that faces in the -ad correspond to
faces of Ra. The model establishes particular angles at which faces meet.
This particular model is chosen so that when pieces of a Kan cycle of smooth
-ads are glued together the result has an obvious natural smooth structure.

Lemma. The collections SMn
A together with the reindexing operations

form a bordism-type theory.

Proof. The reindexing hypothesis is clear, that reindexing defines a bijection
from SMn

A to {M ∈ SMn
B | ∂b = φ if b /∈ θ(A)}.

The other thing to check is the Kan condition. Suppose N : (A − a) −→
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SM is a Kan cycle, in the sense of 3.2. Let ∪bN(b) denote the union of
these, then this is a manifold (assuming the interiors are disjoint; see the
appendix) with boundary ∪b∂aN(b). The fact it is a manifold can be seen
by inductively adding one piece at a time to the union, and observing that
the union is over codimension 0 submanifolds of the boundary. Or, thinking
of the pieces N(b) as locally modeled on convex regions Rb ⊂ Rn as above,
then the union is a manifold because the union of the model regions is a
manifold.

We define an A-ad M of dimension n + 1 by: the underlying manifold is
∪bN(b)×I, and the faces are ∂bM = N(b)×{0} for b 6= a. Finally ∂aM has
underlying manifold (∪N)×{1}∪ ∂(∪N)× I. The face structure of ∂aM is
specified by ∂b∂aM = ∂aN(b)× {0}.

This A-ad satisfies the conclusion of the Kan condition, so the SM are
bordism-type theories. ¤

The bordism groups associated to these theories by 3.3 are exactly the
classical manifold bordism groups (see [23]). The bordism spectrum of 3.4
is similarly homotopy equivalent to the Thom spectrum, whose homotopy
groups are identified with bordism groups by the Pontrjagin-Thom con-
struction.

6.2 Manifolds over spaces

We augment the construction above with a map to a space, to obtain a
(bordism-type theory) valued functor. Then we show that assembly maps
in the associated homology theory are isomorphisms.

If SM is a category of oriented manifolds as in the previous section,
and X is a topological space, then define SMn

A(X) to be the collection of
(M, f), where M is an n-dimensional A-ads in SM, and f : M −→ X. Define
∂a(M, f) to be (∂aM,f |∂aM), and define the involution and reindexing
using these operations on M , without changing f .

6.2A Lemma. The collections SMn
A(X) together with these operations

are bordism-type theories, natural in X. The resulting (bordism-type
theory)-valued functors of spaces are homotopy invariant, in the sense of 3.5.

Proof. The only part of the bordism-type theory structure which might need
comment is the Kan condition. Since the maps are part of the structure,
the maps on pieces of a Kan cycle N fit together to define a map on the
union used in the previous proof, ∪bN(b) −→ X. A suitable map M −→ X
for the solution to the problem is obtained by projecting on the first factor
M = ∪bN(b)× I −→ ∪bN(b), and composing with the map on the union.
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To check the homotopy invariance we use the criterion in Lemma 3.5B
(3). Also, rather than general homotopy equivalences it is sufficient to check
invariance under inclusions Y ⊂ X which are deformation retracts. (Because
both spaces in a homotopy equivalence embed as deformation retracts in a
mapping cylinder.)

Suppose, then, that X deformation retracts to Y by a deformation H : X×
I −→ X. Suppose M is a [0]-ad in SM(X), so a pair (M, f) with M a mani-
fold with boundary, which is the face ∂0M , and f/ : M −→ X. Suppose ∂0M
comes from SM(Y ), which means f(∂M) ⊂ Y . We deform M into SM(Y )
rel ∂0M . Define W = M × I as a [1]-ad with ∂1W = M ×{0} and ∂0W the
rest of the boundary. Define a map to X by H(f × id). Then since H is a
deformation retraction the restriction of this to M × {0} is f , and the rest
of the boundary maps into Y . Therefore ∂0W is an element of SM(Y ), as
required. ¤

According to Corollary 3.5C the bordism spectra of these theories de-
fine homotopy invariant spectrum-valued functors of spaces. The notation
established in Section 3 for these spectra is ΩSM(X). The constructions of
section 2 define homology with coefficients in these functors.

6.2 B Proposition. Suppose SM is one of the manifold theory func-
tors defined above, and p : E −→ X is fiber homotopy equivalent to the
realization of a simplicial map. Then the assembly Hn(X; ΩSM(p)) −→
Hn(pt, ΩSM(E)) = ΩSM

n (E) is an isomorphism.

This is a version of the classical result that bordism groups form a ho-
mology theory. It also identifies the coefficient spectrum of the theory as
the bordism spectrum of a point, which is therefore equivalent to the ap-
propriate Thom spectrum.

Proof. The proof uses the transversality to dual cones referred to several
times, and here we describe the process in some detail. There are three stages
to the discussion: first define the dual cone decomposition and transversality
to it, second observe that manifold cycles are exactly manifolds transverse to
the dual cones, and finally show that any manifold can be made transverse.

Suppose K is a simplicial complex. Take the first barycentric subdivision
of the realization. If σ is a simplex of K define the dual D(σ) to be the
union of all simplices of the subdivision which intersect σ in exactly the
barycenter. The dual of a vertex is the closure of the star used in 1.5.

It is not hard to see (eg. in [6]) that

(1) D(σ) is the cone on ∪D(τ), where the union is over τ which contain
σ as a face, and
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(2) the boundary of D(σ) is bicollared in the boundary of D(∂iσ) (or
in ‖K‖ if σ is a vertex).

(3) the boundary of D(σ) is naturally equivalent as a union of cones to
the dual cone decomposition of the link of σ.

For example we give a picture of a complex K and its dual cones:

A little more information about the collaring in (2) is necessary. ∂D(σ)
separates ∂D(∂iσ) (or |K| if σ is a vertex) into two pieces: the cone and
the exterior. There is an obvious collar on the cone side given by the cone
parameter. On the outside the collar is also radial. In consequence it re-
spects intersections with other cones: if ∂D(σ) ∩ D(τ) = ∂D(τ) then the
intersection of D(τ) with the collar is a collar on ∂D(τ). Further, the collar
mapping is transverse to the interior of D(τ).

Now if M is a manifold then we say f : M −→ |K| is transverse to the
cone structure (or “trans-simplicial” [6]) if for each σ the restriction of f
to f−1(D(∂iσ)) −→ D(∂iσ) (or −→ |K| if σ is a vertex) is transverse to the
bicollared subset ∂D(σ).

This should be understood inductively: if v is a vertex then f is transverse
to the bicollared subset ∂D(v) ⊂ K. Therefore f−1(∂D(v)) −→ ∂D(v) is a
manifold. Next, if τ is an edge with vertex v then f−1(∂D(v)) is transverse to
the bicollared subset ∂D(τ) ⊂ ∂D(v), and so on. Note this is all codimension
1 transversality (to trivial line bundles) so no sophisticated theory of normal
bundles is necessary.

Finally some technical adjustments should be made in the smooth case,
along the lines of the comments following the definition of -ads. Namely,
rather than iterated codimension 1 situations the local structure around
∂D(σ) should be recognized as a product with some Rs, which the other
cones intersect in the pattern described in the earlier comment. Smooth
transversality to this gives -ads with face structure with the correct angles,
etc.

The next step identifies cycles and transverse maps as being essentially
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the same. More precisely we show a transverse map naturally determines a
cycle, and that any cycle is homotopic to one obtained this way.

6.2C Lemma. Suppose p : |E| −→ |K| is the realization of a simplicial map,
and f : M −→ |E| is a map such that pf is transverse to the dual cones in
|K|. Then the function σ 7→ pf−1(D(σ)) defines an SM cycle in E in the
inverse of the star cover of |K|. Conversely, any such cycle is homotopic to
one obtained in this way.

There is an important space version of this, namely there is a ∆-set,
and even a bordism-type theory, of transverse maps defined similarly to
the cycle theory in 4.4. In this language the lemma asserts that there is a
natural inclusion of theories from the transverse maps into cycles, and the
corresponding inclusion of bordism spectra is a deformation retraction.

Proof. Recall that a cycle is a function on the nerve of the cover, and the
nerve of the star cover is K. The cover itself is indexed by the vertices
of K, which we denote K0. Similarly denote the vertices of σ by σ0, then
the vertices of K not in σ are K0 − σ0. With this notation the definition
4.2 becomes: a ΩSM-cycle of dimension n in (|K|, p, stars(K)) is a function
N : K −→ ΩSM such that

(1) if σ is a k-simplex then N(σ) is an (n−k)-dimensional (K0−σ0)-ad
in ΩSM(p−1(σ)),

(2) let incl∗ : ΩSM(p−1(σ)) −→ ΩSM(p−1(bjσ)) denote the morphism
induced by the inclusion, then incl∗(N(σ)) = (−1)j∂Uj N(bjσ), and

(3) all but finitely many of the N(σ) are empty.

The function σ 7→ pf−1(D(σ)) does satisfy these conditions. If σ is a k-
simplex then pf−1(D(σ)) is the result of k layers of codimension-1 transver-
sality, so has codimension k in M , therefore dimension n− k. The faces of
pf−1(D(σ)) correspond to the faces of D(σ), therefore to simplices τ which
have σ as a face. Such simplices are determined by their vertices not in σ0,
so pf−1(D(σ)) is naturally a (K0−σ0)-ad. Finally, since M is compact only
finitely many of these inverse images can be nonempty.

Now for the converse suppose N is a cycle. N(σ) is a SM-ad with a map
to p−1(starσ), and its faces N(τ) map to subsets p−1(star τ) ⊂ p−1(star σ).
But the inclusions p−1(D(σ)) ⊂ p−1(starσ) are homotopy equivalences
(both spaces deformation retract to the inverse image of the barycenter
of σ). Therefore the reference maps are (coherently) homotopic to maps
N(σ) −→ p−1(D(σ)).

Next take the union of the pieces N(σ) to get a manifold M with a map
f : M −→ |E|. (See the proof of the Kan condition to see that this is a mani-
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fold. (M, f) also represents the total assembly of the cycle N , in ΩSM
n (|E|).)

This map has the property that the inverse images f−1(D(σ)) = N(σ) are
manifolds, but may need a little modification to actually be transverse.

Since p : |E| −→ |K| is transverse to the dual cones, the inverse image
p−1(∂D(σ)) is collared in p−1(D(σ)). But N(∂σ) = fp−1(∂D(σ)) is the
boundary of the manifold fp−1(D(σ)) so is also collared. Thus the map
from the second to the first can be change by homotopy rel boundary to
preserve collars. f is then “transverse on one side” to p−1(∂D(σ)).

To arrange transversality use this construction inductively beginning with
the largest simplices (smallest dual cones) over which N is nonempty. Sup-
pose S is a collection of cones, so that for each D(σ) ∈ S the map

pf−1(∂D(σ)) −→ p−1(∂D(σ))

is transverse to the inverse images of the cones in ∂D(σ). Change f rel
all these boundaries so that it preserves collars of boundaries of D(τ) for
D(τ) ∈ S. Then f is transverse with respect to the larger collection obtained
by adding to S the c ones whose boundaries lie in S.

In the smooth category a little more precision is appropriate. The interior
of each cone in |K|, thus the inverses in |E|, have neighborhoods canonically
isomorphic to the cone crossed with one of the smooth models described in
6.1. Neighborhoods of pieces of cycles also have such structures. Rather
than working with collars inductively one works directly with the models,
arranging the maps to be the identity on the model coordinate near the
center stratum. ¤

Since transverse maps are the same as cycles, we can complete the proof
of the proposition by showing that any map f : M −→ E with M a manifold,
is homotopic to one such that pf is transverse to the dual cones in |K|.

The basic idea is that since the boundaries of duals of vertices are bicol-
lared in |K|, ordinary transversality can be used to make f transverse to
them. The inverse image f−1(∂D(v)) −→ ∂D(v) is again a map of a mani-
fold to a complex with dual cones, but the dimension (of both the manifold
and the complex) is smaller. Therefore this serves as the induction step in
obtaining transversality by induction on dimension.

In more detail first note that since p : |E| −→ |K| is transverse to the dual
cones, the inverse images p−1(∂D(σ)) have the same collaring properties
as the boundaries themselves. Next suppose f is transverse over an open
set U ⊂ |K|, and let v be a vertex. Then there is a homotopy fixed over
a closed set slightly smaller than U to a new f which is also transverse to
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p−1(∂D(v)). Then pf−1(∂D(v)) −→ p−1(∂D(v)) is a map of a manifold to a
complex over the dual cone decomposition of the link of v.

By induction on dimension we can assume this is homotopic, fixed over
a closed set slightly smaller than U ∩ ∂D(v), to a map transverse to the
inverse images of the cones. Use this homotopy to modify f to a map which
restricts to the new one on the inverse image. Since the collar on p−1(∂D(v))
is transverse to the inverse images of the other cones, this new f is transverse
to all the cones over a neighborhood of ∂D(v). Add this to the set U . By
induction the links of all vertices of K can be added to U , at which point f
is transverse to all cones.

This completes the proof of Proposition 6.2B. ¤

6.3 Chain complexes

A chain complex together with a chain equivalence with its dual serves as
an algebraic analog of a manifold. This idea and elaborations have been
developed by Mishchenko, Ranicki, Weiss, and others as a powerful tool for
the investigation of surgery theory.

Assembly maps have been important in the algebraic theory: we mention
particularly the total surgery obstruction of Ranicki [19], [20] which lies in
a fiber of an assembly map, and the visible theory of Weiss [26], for which
an assembly map is an isomorphism and provides a calculation.

In this section we describe the constructions of Ranicki and Weiss, roughly
and with little detail, and relate them to the approach taken in this paper.
Specifically the first subsection describes the theory, and the way in which
cycles appear in it. Section 6.3B describes how chain A-ads are defined,
thereby giving bordism-type theories to which this paper applies. Then
6.3C extends additive and algebraic bordism categories to be functors of
spaces, thereby defining (bordism-type theory)-valued functors. This leads
to functor-coefficient assembly maps, etc. resulting from the general the-
ory. Finally in 3.6D there are some remarks about an analog for “bounded”
chain complexes over a metric space.

6.3A Ranicki’s construction

These constructions take place in an additive category, rather than the usual
setting of modules over a ring. There are substantial benefits to working in
this generality, as will be pointed out later.

An algebraic bordism category Λ is defined by Ranicki [20, §3] to be a
triple Λ = (A,B,C). In this A is an additive category with chain duality [20,
1.1]: the model is the category of modules over a commutative ring, with the
functor which takes a module to its hom dual. (Make this a “chain” duality
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by thinking of M∗ as a very short chain complex.) C ⊂ B are subcategories
of the chain complexes in A. The models for these are: B is finitely generated
free chain complexes, with morphisms chain homotopy equivalences, and C
is the full subcategory of contractible complexes.

We describe the way this data is used. Consider complexes from B to-
gether with a duality structure, roughly a chain map C −→ C∗, whose map-
ping cone is in C. Depending on the type of duality structure used one gets
symmetric or quadratic Poincaré complexes, with bordism groups denoted
by Ln(Λ) and Ln(Λ). Adjusting B gives variations: finitely generated projec-
tive complexes gives the Lp

n groups, finitely generated free with homotopy
equivalences the Lh

n, and free based complexes with simple equivalences
gives Ls

n. In all these cases C consists of the contractible complexes. Other
variations are obtained by changing this: contractible over some other ring
gives the Cappell-Shaneson Γ-groups, and C = B gives the “normal” bor-
dism groups.

Ranicki’s next step is to construct new bordism categories Λ∗(K) and
Λ∗(K) depending on the original bordism category and a simplicial com-
plex K ([20, §5]). The two versions, distinguished by the position of the ∗,
correspond to cycles and cocycles in K. Applying the previous construction
gives symmetric or quadratic Poincaré objects in these categories. These, it
turns out, represent homology or cohomology classes of K , with coefficients
in an appropriate spectrum L(Λ).

When Λ is the bordism category of modules over a ring R, then a glue-
ing construction called “universal assembly” defines a morphism from the
bordism category Λ∗(K) to the bordism category of modules over the ring
R[π1K]. Naturality then gives morphisms of L-groups,

L(Λ∗(K)) −→ L(R[π1K]).

Using the identification of the L-groups of Λ∗(K) as homology then gives
an assembly map

Hn(|K|;L(R)) −→ Ln(R[π1|K|]).

6.3B Poincaré chain -ads

In order to engage the machinery of this paper in the chain complex con-
text we need -ads, and there are two ways to approach this. The low-tech
way is to observe that Poincaré pairs are defined, and appropriate glueings
are possible. Thus a definition of Λ-Poincaré A-ads can be pieced together
inductively as was done with manifolds in 6.1. The high-tech approach is to
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use Ranicki’s machinery, and obtain n-ads of dimension m as Poincaré ob-
jects of dimension m−n in the algebraic bordism category associated to the
n-simplex, Λ∗(∆n) (see [20, 5.4]). Then reindex the faces to get arbitrary
A-ads.

These -ads can be reindexed in obvious ways, and they satisfy the Kan
condition (Weiss [26,1.10]), so they form bordism-type theories in the sense
of §3. Denote by L∗(Λ) and L∗(Λ) respectively the bordism-type theory
of quadratic and symmetric -ads in Λ. There are then bordism spectra,
homology, cycles, etc. associated to this theory. We extend this to a functor
of spaces to get a full version in the next section, but first explain how this
is related to the Ranicki constructions.

The theory of Poincaré chain complexes may be thought of as being ob-
tained in three stages: first one has the category of modules over a ring
R, with the duality functor which sends a module to its dual. Next one
forms the category of chain complexes over R, again with a duality opera-
tion. Finally symmetric, quadratic, etc. Poincaré complexes are obtained as
chain complexes together with some sort of elaboration of a chain homotopy
equivalence with the dual complex. The L-groups appear as bordism groups
of these Poincaré complexes.

We could think of the formation of cycles as a fourth stage in this devel-
opment, using Poincaré chain A-ads. However the cycle construction “com-
mutes” with the other constructions. If A is an additive category one can
basically think of Ranicki’s category A∗(K) as the category of cycles of
A-objects. Chain complexes in this cycle category are cycles of A-chain
complexes. The duality operation becomes a little more complex, which is
why “chain duality” is introduced [20, 1.1]. Finally given a bordism cate-
gory the formal approach defines Poincaré objects in the chains-of-cycles
category, and these are exactly cycles of Poincaré complexes. Therefore by
doing the Poincaré chain constructions in general additive categories with
chain duality, cycles are obtained as a special case.

From our point of view the key to being able to see assemblies by this
approach is the functoriality of glueing. In the bordism-type theories of
section 3, pieces are glued together by application of the Kan condition: the
result is known to exist but not naturally or canonically. In the algebra it is
given by a natural formula (for manifolds too; see the proof of the lemma
in 6.1). Thus it works out that (in a sense) glueings of modules lead to
glueings of chain complexes, and glueings of the chain complexes underlying
Poincaré complexes lead to glueings of the Poincaré complexes. Because of
this, assemblies of Poincaré complexes can be obtained by naturality from
module-level assemblies.
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6.3C Categories over spaces

Our machinery is set up to produce functor-coefficient homology and as-
semblies from functors of spaces. Accordingly we extend the algebra along
the lines of [17] to incorporate a space.

Suppose A is an additive category, and X a space. Define a new additive
category AX with objects (M, S, i), where

(1) S is a set, and i : S −→ X a function which is locally finite,
(2) M : S −→ objectsA is a function.

Morphisms in this category are equivalence classes of paths in X together
with morphisms in A. Specifically a morphism (M, S, i) −→ (M ′, S′, i′) is a
collection (ρj , 0j , 1j , fj), where

(1) 0j ∈ S, 1j ∈ S′, and ρj is a path in X from i(0j) to i′(1j),
(2) fj : M(0j) −→ M ′(1j) is a morphism in A, and
(3) j runs over some index set, and each elem ent of S (respectively S′)

occurs only finitely many times as 0j , (respectively 1j).

The equivalence relation on morphisms is generated by:

(1) the paths can be changed by homotopy in X holding the ends fixed,
(2) if for indices j, k the endpoints and paths are the same, then

the data for these indices can be replaced in the collection by
(ρj , 0j , 1j , fj + fk), and

(3) if fj = 0 then the datum (ρj , 0j , 1j , fj) can be deleted from the
collection.

For example, if R is a ring and A is the category of finitely generated
free R-modules, and X is compact, then AX is equivalent to the category
of free finitely generated R[π1X] modules [17].

If X is a space then at least for the standard choices of subcategories
B, C there are standard ways to lift to subcategories BX , CX of chain
complexes in the category AX . (We will not try to mechanize this in general).
Therefore given an appropriate algebraic bordism category Λ there is a
functor from the category of spaces to the category of algebraic bordism
categories; X 7→ ΛX . The definition of Poincaré -ads in an algebraic bordism
category functorially associates bordism-type theories L∗(ΛX) and L∗(ΛX),
as explained above.

This now makes contact with the earlier development. Applying the bor-
dism spectrum functor gives spectrum-valued functors X 7→ Ω(L∗(ΛX))
and X 7→ Ω(L∗(ΛX)). Denote these functors more compactly by LΛ

∗ (X)
and L∗Λ(X). Associated to these functors are functor coefficient homology,
assembly maps, etc. For example taking p : E −→ X to the point map gives
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the total assembly

H•(X;LΛ
∗ (p)) −→ LΛ

∗ (E)

(and similarly for the symmetric case L∗.)
The main theorems of this paper identify the functor-coefficient homol-

ogy as represented by cycles, and describe assembly maps in terms of glueing
cycles together. If p is the identity map of K then unraveling the definitions
shows that cycles over the star cover of |K| are the same as Poincaré objects
in Ranicki’s category Λ∗(K). Further the algebraic assembly described in
[20, §9] is the same as the glueing via the Kan condition used here, since
the algebraic assembly is the mechanism by which the Kan condition is ver-
ified. Putting these together, we see that the algebraic assembly of Ranicki
coincides with the constant coefficient spectrum assembly. More generally
the straightforward generalization of Ranicki’s construction to variable co-
efficients using the algebraic bordism categories Λp−1(∗) coincides with the
associated spectrum-functor assembly.

Weiss [26] shows that the assembly for “visible hyperquadratic” Poincaré
complexes is an isomorphism. These occur as the relative theory relating
quadratic and finite, or “visible” symmetric complexes. The isomorphism
theorem provides a calculation, particularly as the coefficient spectrum is
a product of Eilenberg-MacLane spectra of 8-torsion groups. It also has
important theoretical consequences for example in the structure of Ranicki’s
total surgery obstruction [20,§17].

6.3D Bounded algebra

Ferry and Pedersen [7] have described a bounded version of surgery, ex-
panding on analogous K-theory work by Pedersen and Weibel [13] , and
controlled surgery by Yamasaki [2]. The constructions in this section are so
formal that much of it can be applied to the bounded theory.

The constructions of categories over spaces in the previous section can
easily be modified to give additive categories of bounded homomorphisms
over metric spaces, see [17]. Then using the machinery of Ranicki one can
consider chain complexes in these categories. Bordism groups of Poincaré
quadratic chain complexes in these categories give the obstruction groups for
bounded surgery. These Poincaré complexes also define algebraic bordism
categories, so bordism-type theories, cycles, assemblies, etc.

In some significant special cases an assembly map from homology into
bounded surgery groups is an isomorphism. This occurs for the L−∞ over
control space an open cone. On the chain complex level it is proved using
a transversality theorem of Yamasaki [28], beginning with a global object
and using transversality to divide it up into a cycle in exactly the same way
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as was done with manifolds in section 6.2. See also the second appendix in
[20].

6.4 An application to group actions

In this section we briefly sketch an application to the construction of PL
group actions, slightly reformulating work by Lowell Jones. We begin with
an outline of Jones’ construction, then use the machinery of this paper to
formulate the obstruction.

The problem is: given K ⊂ U a subcomplex of a PL manifold, and a
prime p, when is there a PL Z/p action on U with K as fixed set? This
breaks into two pieces: construction of an action on a neighborhood of K,
and the extension to the rest of U . Our focus is on the first part, so we will
assume U is a regular neighborhood of K. For the next step we note (see
6.4D, below) that a regular neighborhood is the “mapping cylinder” of a
PL manifold cycle over K. The problem is therefore to construct a free Z/p
action on such a cycle. More precisely, let M denote the cycle corresponding
to the boundary of the regular neighborhood. Suppose N is another manifold
cycle over K with a homomorphism from π1 of the assembly (glued up total
space) to Z/p, and suppose there is an isomorphism of cycles from M to
the associated Z/p cover N̂ of N . This gives an isomorphism of mapping
cylinders. The mapping cylinder of N̂ has an action of Z/p with fixed set
exactly K. Since the mapping cylinder of M is U this provides the desired
action on U .

This reformulates the problem to: construct a free Z/p action on a PL
manifold cycle M over K. The next step in Jones’ program is to construct
a homotopy action. This is a cycle of Poincaré spaces, together with a ho-
momorphism from π1 of the assembly to Z/p, and a homotopy equivalence
of cycles from M to the associated Z/p cover. There are obstructions to
this. The first come from Smith theory: K must be a mod p homology man-
ifold. The solution of the “homotopy fixed point conjecture” shows that
the remaining obstructions to finding a homotopy action are rational. Jones
avoids them by assuming that a PL action is already given on the cycle over
∂0K ⊂ K, and the rational homology H∗(K, ∂0K; Q) is trivial. This is a
very important special case, and under these conditions there is a unique
homotopy action on M extending the PL action given on ∂0M . Another
obstruction argument gives a normal structure on this Poincaré cycle. This
is a reduction of the stable normal bundle to the structure group PL, whose
Z/p cover agrees with the PL normal bundle of M .

6.4A The standard situation

The data is now close to a surgery situation. We have a Poincaré cycle X
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over K, together with a manifold structure on the restriction to ∂0K and a
PL structure on the stable normal bundle. There is a homomorphism from
the total fundamental group of X to Z/p, an equivalence of the Z/p cover
with a manifold cycle M , and a PL isomorphism of normal bundles covering
this equivalence. The problem is to extend the manifold structure over ∂0K
to a manifold structure on X with the specified normal bundle and Z/p
cover.

The objective is to extract an obstruction from this, whose vanishing
implies that there is a solution to the “problem” and therefore a Z/p action
on the cycle M .

We review some surgery theory. A “surgery problem” is a Poincaré space
Y with a manifold structure on part of it’s boundary, say ∂0Y , and an
extension of the PL normal bundle of ∂0Y to a PL bundle structure on the
stable normal bundle of Y . If we are given a homomorphism π′ → π then
the surgery obstruction group L(π, π′) is the bordism group of such surgery
problems together with homomorphisms

π1(∂1Y ) −−−−→ π′
y

y
π1(Y ) −−−−→ π

Here ∂1Y denotes the (closure of) the complement of ∂0Y in ∂Y . The
fundamental theorem of surgery states that if the obstruction is trivial in
L(π1Y, π1∂1Y ) (and the dimension is at least 6) then there is a “solution” to
the surgery problem: a manifold homotopy equivalent to Y with the given
∂0 and PL normal bundle.

We modify the definition of “surgery problem” to include the cover-
ing information in the standard situation. Suppose (A,B) is a pair with
a homomorphism ρ : π1A → Z/p. A “standard problem” over (A,B) is
a Poincaré triad (Y, ∂0Y, ∂1Y ) with ∂0Y a PL manifold, an extension of
the normal bundle of ∂0Y to a PL structure on the stable normal bun-
dle of Y , a map (Y, ∂1Y ) → (A,B), and a homotopy equivalence of triads
(M, ∂0M, ∂1M) → (Ŷ , ∂0Ŷ , ∂1Ŷ ). Here Ŷ is the Z/p cover of Y induced by
the homomorphism ρ, M is a PL manifold, the equivalence is a PL isomor-
phism on ∂0, and the resulting isomorphism of PL normal bundles over ∂0

extends to a PL isomorphism over Y refining the natural bundle homotopy
equivalence.

This is a lot of data, but it can be managed by recalling where it came
from. There is an empty standard problem, and it is straightforward—if
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tedious—to define ads of standard problems and verify that the Kan con-
dition is satisfied. This therefore forms a bordism-type theory which we
denote by L. This theory has bordism groups, spaces, etc. The bordism
spaces can be described in terms of traditional surgery problems. Recall that
ΩL(A, B, ρ) denotes the bordism space of standard problems over (A,B, ρ).
Then there is a homotopy fibration

ΩL(A,B, ρ) → L(A,B) → L(Â, B̂)

where (Â, B̂) is the cover induced by the homomorphism ρ, L is the surgery
space (the bordism space of surgery problems) and the second map is the
transfer. (The transfer is defined on the simplex level by taking induced
covers). As a consequence of this description the space ΩL is often called
“the fiber of the transfer.”

Now return to the standard situation in 6.4A. Assembling the cycle X
over K gives a map p : |X| → K. The rest of the data gives a cycle of “stan-
dard problems” mapping to |X|, subordinate to the cover of K by stars of
simplices. This cycle is constructed from the boundary of a regular neigh-
borhood in the original manifold M , so the dimension is m−1. Applying the
main theorem 4.2A identifies the homology class of this cycle as an element
in the functor-coefficient homology group defined in 2.3,

Hm−1(K, ∂0K; ΩL(p, star (K))).

In brief, this is a homology class with coefficients in the the “fiber of the
transfer.”

Again according to the main theorem this homology class vanishes if and
only if the cycle is homologous to the empty cycle. Applying the fundamental
theorem of surgery to a nullhomology shows that the original problem can
be “solved” and there is a Z/p action.

6.4B Vague Proposition. In the “standard situation” of 6.4A there is
an obstruction in the (m − 1)-dimensional homology of (K, ∂K) with co-
efficients in the fiber of the transfer, applied fiberwise to p : |X| → K, ie.
ΩL(p, star (K)). If the dimensions are sufficiently high then there is a Z/p
action on M with K as fixed set and link quotient in the quotient homotopic
to X, if and only if this homology class vanishes.

6.4C More precision

“Dimensions sufficiently high” means that no manifold encountered in the
cycle should have dimension less than 5. This happens if the codimension of
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K in M at least 6, and can be arranged if (K, ∂0K) is 6-connected. We have
neglected several issues in the discussion. One is orientation, though that
is easily incorporated by making the notation more complicated. A more
significant omission is discussion of simple homotopy issues. Since a PL
isomorphism is desired at the end, and this has to come from application of
the s-cobordism theorem, we want to work with Poincaré spaces, homotopy
equivalences, etc. with torsions lying in the kernel of the transfer to the
fundamental group of the fragments of the cycle M . This is only really a
problem if the embedding is “locally knotted,” and this can only happen in
codimensions 1 and 2.

In fact it is usual in this problem to assume that the embedding K ⊂ M
has codimension at least 4, so it is locally 1-connected. This simplifies the
situation a great deal: the coefficient functor becomes constant, and equal
to the fiber of the transfer Lh(Z/p) → L(1). The obstruction therefore lies
in an standard constant-coefficient homology group. In Jones’ treatment
the obstruction is not directly recognized as a homology class. Rather the
characteristic variety theorem is used to derive invariants from it, and these
derived classes are shown to characterize the obstruction and also define a
homology class. Directly recognizing the obstruction as a homology class
allows a simpler treatment of parts of the construction.

6.4D Cycles and regular neighborhoods

This section explains the equivalence between PL cycles and PL regular
neighborhoods. For more detail on this construction see Akin [1].

Suppose U is a regular neighborhood of a polyhedron K, and suppose
it is compact to avoid finiteness and subdivision problems. Then U can be
described as the mapping cylinder of a map ∂U → K which is simplicial with
respect to an appropriate triangulation. This map is transverse to the dual
cones of the triangulation of K, so it defines a function on the nerve of the
covering, as in 4.2. Assume in addition that U −K is a PL n-manifold, then
this function defines a PL manifold (n− 1)-cycle. This gives a construction
going from regular neighborhoods with U −K a manifold, to PL manifold
cycles over K. More precisely the output is a (K, id, star (K)) cycle in the
sense of 4.2.

There is a converse to this construction. If we begin with a PL manifold
cycle over the star cover of a triangulation of K then there is an associated
map from the pieces of the cycle to the dual cones. This is not well-defined,
but there is a standard construction which is well-defined up to PL cell-
like automorphisms of the cycle. The mapping cylinder of this map gives a
regular neighborhood U of K, with U−K a manifold, and this neighborhood
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is well-defined up to isomorphism rel K by the original cycle.
These constructions are inverses:

6.4E Proposition. Fix a triangulation of K in which stars of simplices
are contractible. These constructions give a bijection between isomorphism
classes of PL manifold cycles over the dual cells of the triangulation of K,
and isomorphism classes rel K of regular neighborhoods K ⊂ U with U−K
a manifold, and with embedding simplicial with respect to the triangulation.

A proof can be extracted from Akin [1] in a reasonably straightforward
way, though it is not stated explicitly. Here “isomorphism” of cycles means
the following: cycles are functions from the nerve of the star cover to PL
manifolds. Two such are isomorphic if for each simplex in the nerve there is a
PL isomorphism of the corresponding manifolds, and all these isomorphisms
commute with the boundary relations in the definition of a cycle. Note that
isomorphism is a much stronger relation than homology, and the associated
regular neighborhood is definitely not an invariant of the homology class of
the cycle.

The notion of “isomorphism” of cycles over K can be elaborated to allow
for subdivision of the triangulation. This gives a statement that isomorphism
classes of cycles correspond to isomorphism classes of regular neighborhoods,
with no reference to a particular triangulation. This refinement is not needed
here.
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Introduction

Signatures of quadratic forms play a central role in the classification the-
ory of manifolds. The Hirzebruch theorem expresses the signature σ(N) ∈
Z of a 4k-dimensional manifold N4k in terms of the L-genus L(N) ∈
H4∗(N ;Q). The ‘higher signatures’ of a manifold M with fundamental group
π1(M) = π are the signatures of the submanifolds N4k ⊂ M which are de-
termined by the cohomology H∗(Bπ;Q). The Novikov conjecture on the
homotopy invariance of the higher signatures is of great importance in un-
derstanding the connection between the algebraic and geometric topology
of high-dimensional manifolds. Progress in the field is measured by the class
of groups π for which the conjecture has been verified. A wide variety of
methods has been used to attack the conjecture, such as surgery theory,
elliptic operators, C∗-algebras, differential geometry, hyperbolic geometry,
bounded/controlled topology, and algebra.

The diffeomorphism class of a closed differentiable m-dimensional man-
ifold Mm is distinguished in its homotopy type up to a finite number of
possibilities by the rational Pontrjagin classes p∗(M) ∈ H4∗(M ;Q). Thom
and Rokhlin-Shvartz proved that the rational Pontrjagin classes p∗(M) are

This is an expanded version of talks delivered at the Oberwolfach meetings ‘Alge-

braic K-theory’, 28 June, 1993 and ‘Novikov conjectures, index theory and rigidity’, 6

September, 1993.
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combinatorial invariants by showing that they determine and are determined
by the signatures of closed 4k-dimensional submanifolds N4k ⊂ M × Rj (j
large) with trivial normal bundle. A homotopy equivalence of manifolds only
preserves the global algebraic topology, and so need not preserve the local
algebraic topology given by the Pontrjagin classes. The Browder-Novikov-
Sullivan-Wall surgery theory shows that modulo torsion invariants for m ≥ 5
a homotopy equivalence of closed differentiable m-dimensional manifolds is
homotopic to a diffeomorphism if and only if it preserves the signatures of
submanifolds and the non-simply-connected surgery obstruction is in the
image of the assembly map; this map is onto in the simply-connected case.
(Here, torsion means both Whitehead groups and finite groups). Novikov
proved the topological invariance of the rational Pontrjagin classes by show-
ing that a homeomorphism preserves signatures of submanifolds with trivial
normal bundles, using the fundamental group and non-compact manifold
topology.

The object of this largely expository paper is to outline the relation-
ship between the Novikov conjecture, the exotic spheres, the topological
invariance of the rational Pontrjagin classes, surgery theory, codimension
1 splitting obstructions, the bounded/controlled topology of non-compact
manifolds, the algebraic theory of Ranicki [47], [50], [51], and the method
used by by Carlsson and Pedersen [14] to prove the conjecture for a geo-
metrically defined class of infinite torsion-free groups π with Bπ a finite
complex and Eπ a non-compact space with a sufficiently nice compactifica-
tion. See Ferry, Ranicki and Rosenberg [19] for a wider historical survey of
the Novikov conjecture.

The surgery obstruction groups Lm(Z[π]) of Wall [58] are defined for
any group π and m(mod 4), to be the Witt group of (−)k-quadratic forms
over the group ring Z[π] for m = 2k, and a stable automorphism group
of such forms for m = 2k + 1. In [58] the groups L∗(Z[π]) were under-
stood to be the simple quadratic L-groups Ls

∗(Z[π]), the obstruction groups
for surgery to simple homotopy equivalence, involving based f.g. free Z[π]-
modules and simple isomorphisms. Here, L∗(Z[π]) are understood to be
the free quadratic L-groups Lh

∗(Z[π]), the obstruction groups for surgery
to homotopy equivalence, involving unbased f.g. free Z[π]-modules and all
isomorphisms. The simple and free L-groups differ in 2-torsion only, being
related by the Rothenberg exact sequence

. . . −−→Ls
m(Z[π])−−→Lm(Z[π])−−→ Ĥm(Z2; Wh(π))−−→Ls

m−1(Z[π])−−→ . . .

with Ĥ∗(Z2;Wh(π)) the (2-torsion) Tate Z2-cohomology groups of the du-
ality involution on the Whitehead group Wh(π). A normal map (f, b) :
M−−→N from an m-dimensional manifold M to an m-dimensional geo-
metric Poincaré complex N with π1(N) = π has a surgery obstruction
σ∗(f, b) ∈ Lm(Z[π]) such that σ∗(f, b) = 0 if (and for m ≥ 5 only if) (f, b) is
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normal bordant to a homotopy equivalence. The original treatment in [58]
using forms and automorphisms was extended in Ranicki [47] to quadratic
Poincaré complexes (= chain complexes with Poincaré duality). The surgery
obstruction groups L∗(Z[π]) were expressed in [47] as the cobordism groups
of quadratic Poincaré complexes over Z[π].

The assembly maps in quadratic L-theory

A : H∗(X;L•(Z)) −−→ L∗(Z[π1(X)])

are defined in Ranicki [51] for any topological space X, abstracting a geomet-
ric construction of Quinn. The generalized homology groups H∗(X;L•(Z))
with coefficients in the simply-connected surgery spectrum L•(Z) are the
cobordism groups of sheaves Γ over X of quadratic Poincaré complexes
over Z. Here, X is taken to be a simplicial complex, and the ‘sheaf’ Γ is
taken to be a quadratic Poincaré cycle in the sense of [51], i.e. a contravari-
ant functor on the category with objects the simplices of X and morphisms
the face inclusions*. The assembly map A sends a quadratic Poincaré cycle
Γ over X to the quadratic Poincaré complex over Z[π1(X)]

A(Γ) = q !p
!Γ

with p ! the pullback along the universal covering projection p : X̃−−→X
and q ! the pushforward along the unique map q : X̃−−→{pt.}.
Novikov conjecture for a group π
The assembly maps for the classifying space Bπ

A : H∗(Bπ;L•(Z)) −−→ L∗(Z[π])

are rational split injections.

This will be called the rational Novikov conjecture, to distinguish it
from :

Integral Novikov conjecture for a group π
The assembly maps A : H∗(Bπ;L•(Z))−−→L∗(Z[π]) are split injections.

The rational Novikov conjecture is trivially true for finite groups π; it has
been verified for infinite groups which have strong geometric properties. In
principle, it is possible that the conjecture is true for all groups, although
Gromov [21] suggests there may be a counterexample.

* The simplicial method applies to an arbitrary space by considering algebraic Poincaré

cycles over the simplicial complexes defined by the nerves of open covers. Hutt [26] has

developed the actual sheaf theory of algebraic Poincaré complexes over an arbitrary space.
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The integral Novikov conjecture is known to be false for finite groups π;
it has been verified for many torsion-free infinite groups which have strong
geometric properties.

The verification of the integral Novikov conjecture π requires the con-
struction of a ‘disassembly’ map

B : Lm(Z[π]) −−→ Hm(Bπ;L•(Z)) ; C −−→ B(C)

such that BA = 1. Such a map B has to send a quadratic Poincaré complex
C over Z[π] to a sheaf B(C) over Bπ of quadratic Poincaré complexes
over Z, with BA(Γ) cobordant to Γ for any sheaf Γ over Bπ of quadratic
Poincaré complexes over Z. It is possible to construct such B for any group
π which has sufficient geometry that manifolds with fundamental group
π have rigidity, meaning that homotopy equivalences can be deformed to
homeomorphisms. Novikov [39] constructed B algebraically in the case of a
free abelian group π = Zn, when Bπ = Tn and A is an isomorphism. See
Farrell and Jones [17] for a geometric construction of B in the case when
Bπ is realized by a compact aspherical Riemannian manifold all of whose
sectional curvatures are nonpositive (when A is also an isomorphism), and
the connection with the original Mostow rigidity theorem for hyperbolic
manifolds.

The locally finite assembly maps in quadratic L-theory

Alf : H lf
∗ (X;L•(Z)) −−→ L∗(CX(Z))

are defined in Ranicki [51] for any metric space X, using the X-graded
Z-module category CX(Z) of Pedersen and Weibel [43]. The locally finite
generalized homology groups H lf

∗ (X;L•(Z)) are the cobordism groups of
locally finite sheaves Γ over X of quadratic Poincaré complexes over Z. It
was shown in Ranicki [50] that Alf is an isomorphism for X = O(K) ⊆
RN+1 the open cone of a compact polyhedron K ⊆ SN , which can be
used to prove the topological invariance of the rational Pontrjagin classes
(see 9.13 below). It is easier to establish that the locally finite assembly
maps Alf are isomorphisms than the ordinary assembly maps A. This is an
algebraic reflection of the observed fact that rigidity theorems deforming
homotopy equivalences to homeomorphisms are easier to prove for non-
compact manifolds than for compact manifolds.

Carlsson and Pedersen [14] prove the integral Novikov conjecture for
groups π with Bπ a finite complex realized by a compact metric space
such that the universal cover E = Eπ admits a contractible π-equivariant
compactification E with a metric such that compact sets in E become small
when translated under π near the boundary ∂E = E\E. Bounded/controlled
algebra is used to prove that Alf is an isomorphism for X = E, and equivari-
ant topology is used to construct an algebraic disassembly map B by means
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of (Alf )−1. The conditions on the compactification allow E-bounded alge-
bra/topology to be deformed to ∂E-controlled algebra/topology, i.e. to pass
from homotopy equivalences to homeomorphisms. See Ferry and Weinberger
[20] for a more geometric approach. The computation Wh−∗({1}) = 0 of
Bass, Heller and Swan [4] is an essential ingredient of both [14] and [20],
since the lower K-groups of Z are potential obstructions to the disassembly
of quadratic Poincaré complexes over Z in bounded algebra, or equivalently
to compactifying simply-connected open manifolds in bounded topology.

In dealing with vector bundles, manifolds, homotopy equivalences, etc.,
only the oriented and orientation-preserving cases are considered. Manifolds
are understood to be compact and differentiable, unless specified otherwise.
Also, except for classifying spaces, only topological spaces which are finite-
dimensional locally finite polyhedra or topological manifolds are considered.

§1. Pontrjagin classes and the L-genus

The Pontrjagin classes of an m-plane bundle η : X−−→BO(m) over a
space X are integral characteristic classes

p∗(η) ∈ H4∗(X) .

The rational Pontrjagin character defines an isomorphism

ph : KO(X)⊗Q = [X,Z×BO]⊗Q '−−→ H4∗(X;Q) .

The L-genus of an m-plane bundle η : X−−→BO(m) is a rational coho-
mology class

L(η) ∈ H4∗(X;Q)

whose components Lk(η) ∈ H4k(X;Q) can be expressed as polynomials
in the Pontrjagin classes p1, p2, . . . with rational coefficients. The L-genus
determines and is determined by the rational Pontrjagin classes pk(η) ∈
H4k(X;Q). The first two L-polynomials are given by

L1 =
1
3
p1 , L2 =

1
45

(7p2 − (p1)2) .

See Hirzebruch [24] and Milnor and Stasheff [34] for the textbook ac-
counts of the Pontrjagin classes and the L-genus.

The Pontrjagin classes and the L-genus of an m-dimensional differen-
tiable manifold M are the Pontrjagin classes and the L-genus of the tangent
m-plane bundle τM : M−−→BO(m)

p∗(M) = p∗(τM ) ∈ H4∗(M) ,

L(M) = L(τM ) ∈ H4∗(M ;Q) .
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By construction, the Pontrjagin classes and L-genus are invariants of the
differentiable structure of M : if h : M ′−−→M is a diffeomorphism then

τM ′ = h∗τM : M ′ −−→ BO(m) ,

p∗(M ′) = h∗p∗(M) ∈ H4∗(M ′) ,

L(M ′) = h∗L(M) ∈ H4∗(M ′;Q) .

§2. Signature

Definition 2.1 The intersection form of a closed 4k-dimensional mani-
fold N4k is the nondegenerate symmetric form

φ : H2k(N ;Q)×H2k(N ;Q) −−→ Q ; (x, y) −−→ 〈x ∪ y, [N ]〉
on the finite-dimensional Q-vector space H2k(N ;Q). The signature of N4k

is
σ(N) = signature(H2k(N ;Q), φ) ∈ Z .

Remarks 2.2 (i) An m-dimensional geometric Poincaré complex X is a
finite CW complex with a fundamental class [X] ∈ Hm(X) inducing iso-
morphisms

[X] ∩ − : H∗(X)
'−−→ Hm−∗(X) .

Closed topological manifolds are the prime examples of geometric Poincaré
complexes. The intersection form (H2k(X;Q), φ) and the signature σ(X) ∈
Z are defined for any 4k-dimensional geometric Poincaré complex X, and
are homotopy invariants of X.
(ii) The intersection form and signature are also defined for any 4k-dimen-
sional geometric Poincaré pair (X, ∂X), such as a manifold with boundary
(M, ∂M).

Signature Theorem 2.3 (Hirzebruch) The signature of a closed differen-
tiable manifold N4k is the evaluation of the L-genus L(N) ∈ H4∗(N ;Q) on
[N ] ∈ H4k(N ;Q)

σ(N) = 〈L(N), [N ]〉 ∈ Z .

Transversality Theorem 2.4 A continuous map h : M ′m−−→Mm of dif-
ferentiable m-dimensional manifolds is homotopic to a differentiable map.
Given an n-dimensional submanifold Nn ⊂ Mm it is possible to choose the
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homotopy in such a way that the differentiable map (also denoted by h) is
transverse regular at N , with the restriction

f = h| : N ′n = h−1(N) −−→ Nn

a degree 1 map of n-dimensional manifolds which is covered by a map of the
normal (m− n)-plane bundles b : νN ′⊂M ′−−→νN⊂M .

Definition 2.5 A submanifold Nn ⊂ Mm × Rj is special if it is closed,
n = 4k and the normal bundle is trivial

νN⊂M = εi : N −−→ BSO(i) (i = m + j − 4k) .

Proposition 2.6 (Thom) The rational Pontrjagin classes and the L-genus
of a manifold M are determined by the signatures of the special submanifolds
N4k ⊂ M × Rj.
Proof The Pontrjagin classes and the L-genus of a special submanifold
N4k ⊂ Mm×Rj are the images in H4∗(N ;Q) of the Pontrjagin classes and
the L-genus of M , that is

p∗(N) = e∗p∗(M) , L(N) = e∗L(M)

with
e : N −−→ M × Rj −−→ M .

The signature of N thus depends only on the homology class e∗[N ] ∈
H4k(M ;Q) represented by N

σ(N) = 〈L(N), [N ]〉
= 〈e∗L(M), [N ]〉 = 〈L(M), e∗[N ]〉 ∈ Z .

From now on, we shall write e∗[N ] ∈ H4k(M ;Q) as [N ]. The cobordism
classes of special submanifolds N4k ⊂ Mm × Rj are in one-one correspon-
dence with the proper homotopy classes of proper maps

f : M × Rj −−→ Ri (i = m + j − 4k)

with N = f−1(0) (assuming transverse regularity at 0 ∈ Ri). The set of
proper homotopy classes is in one-one correspondence with the cohomotopy
group πi(ΣjM+) of homotopy classes of maps ΣjM+−−→Si, with ΣjM+ the
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j-fold suspension of M+ = M ∪ {pt.}. By the Serre finiteness of the stable
homotopy groups of spheres and Poincaré duality

πi(ΣjM+)⊗Q = Hm−4k(M ;Q) = H4k(M ;Q) .

The Q-vector space H4k(M ;Q) is thus spanned by the homology classes [N ]
of special submanifolds N4k ⊂ M × Rj , and

L(M) ∈ H4k(M ;Q) = HomQ(H4k(M ;Q),Q)

is given by

L(M) : H4k(M ;Q) −−→ Q ;

[N ] −−→ 〈L(M), [N ]〉 = 〈L(N), [N ]〉 = σ(N) .

A PL homeomorphism of differentiable manifolds cannot in general be
approximated by a diffeomorphism, by virtue of the exotic spheres of Milnor
[33].

Theorem 2.7 (Thom, Rokhlin-Shvarts) The rational Pontrjagin classes
and the L-genus are combinatorial invariants.
Proof Transversality also works in the PL category, so that the character-
ization (2.6) of the L-genus in terms of signatures of special submanifolds
N4k ⊂ M × Rj can be carried out in the PL category. In particular, if
h : M ′−−→M is a PL homeomorphism then

p∗(M ′) = h∗p∗(M) , L(M ′) = h∗L(M) .

Remark 2.8 Thom used PL transversality and the Hirzebruch signature
theorem to define rational Pontrjagin classes p∗(M) and the L-genus L(M) ∈
H4∗(M ;Q) for a PL manifold M . It is not possible to prove the topological
invariance of the rational Pontrjagin classes by a mimicry of Thom’s PL
transversality argument: on the contrary, topological invariance is required
for topological transversality.

Proposition 2.9 (Dold, Milnor) The rational Pontrjagin classes and the
L-genus are not homotopy invariants.
Proof The stable classifying space G/O for fibre homotopy trivialized vector
bundles is such that there is defined a fibration

G/O −−→ BO −−→ BG
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with an exact sequence

. . . −−→ πn+1(BG) −−→ πn(G/O) −−→ πn(BO) −−→ πn(BG) −−→ . . . .

The homotopy groups of the stable classifying space BG for spherical fibra-
tions are the stable homotopy groups of spheres

π∗(BG) = πS
∗−1 ,

so that by Serre’s finiteness theorem

π∗(BG)⊗Q = πS
∗−1 ⊗Q = 0 (∗ > 1) .

By Bott periodicity π4k(BO) = Z, detected by the kth Pontrjagin class pk.
For any k ≥ 1 there exists a fibre homotopy trivial (j + 1)-plane bundle
η : S4k−−→BO(j + 1) (j large) over S4k with

pk(η) 6= 0 ∈ H4k(S4k) = Z .

The sphere bundle S(η) is a closed (4k + j)-dimensional manifold which is
homotopy equivalent to S(εj+1) = S4k × Sj , such that

pk(S(η)) = −pk(η) 6= pk(εj+1) = 0 ,

Lk(S(η)) = skpk(S(η)) 6= Lk(S(εj+1)) = 0

∈ H4k(S4k × Sj) = Z

with sk 6= 0 ∈ Z the coefficient of pk in Lk. See 2.10 for a more detailed
account.

Remark 2.10 Let Θm be the group of m-dimensional exotic differentiable
spheres, and let bPm+1 ⊆ Θm be the subgroup of the exotic spheres Σm

which occur as the boundary ∂W of a framed (m+1)-dimensional manifold
W , as in Kervaire and Milnor [27]. For m ≥ 5

Θm = πm(PL/O)

is a finite group. The classifying space PL/O for PL trivialized vector bun-
dles fits into a fibration

PL/O −−→ TOP/O −−→ TOP/PL ' K(Z2, 3) .

(See Ranicki [52] for information on TOP/PL ' K(Z2, 3).) Thus for m ≥ 5

Θm = πm(PL/O) = πm(TOP/O) ,
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and the subgroup

bPm+1 = im(πm+1(G/TOP )−−→πm(TOP/O))

= im(Lm+1(Z)−−→Θm) ⊆ Θm

is cyclic if m is odd, and is zero if m is even. The class [Σm] ∈ bPm+1 of
an exotic sphere Σm such that Σm = ∂W for a framed (m + 1)-dimensional
manifold W is the image of the surgery obstruction

σ∗(f, b) ∈ πm+1(G/TOP ) = Lm+1(Z)

of the corresponding normal map (f, b) : (W,∂W )−−→(Dm+1, Sm) with ∂f :
∂W−−→Sm a homotopy equivalence. We only consider the case m = 4k− 1
here, with k ≥ 2 ; the subgroup bP4k ⊆ Θ4k−1 is cyclic of order

tk = ak22k−2(22k−1 − 1) num(Bk/4k)

with Bk the kth Bernoulli number and ak = 1 (resp. 2) if k is even (resp.
odd). Let (W 4k,Σ4k−1) be the framed (2k − 1)-connected 4k-dimensional
manifold with homotopy (4k − 1)-sphere boundary obtained by the E8-
plumbing of 8 copies of τS2k : S2k−−→BSO(2k), so that [Σ4k−1] ∈ bP4k is a
generator. Let

Q4k = W 4k ∪ cΣ4k−1

be the framed (2k − 1)-connected 4k-dimensional PL manifold with signa-
ture σ(Q) = 8 obtained from (W 4k, Σ4k−1) by coning off the boundary. The
tk-fold connected sum #tk

Σ4k−1 is diffeomorphic to the standard (4k − 1)-
sphere S4k−1, so that #tk

Q4k has a differentiable structure. The topological
K-group of isomorphism classes of stable vector bundles over S4k

K̃O(S4k) = π4k(BO) = π4k(BO(j + 1)) (j large)

is such that there is defined an isomorphism

π4k(BO)
'−−→ Z ; η −−→ 〈pk(η), [S4k]〉/ak(2k − 1)! ,

by the Bott integrality theorem. The subgroup of fibre homotopy trivial
bundles

im(π4k(G/O)−−→π4k(BO)) = ker(J : π4k(BO)−−→π4k(BG)) ⊆ π4k(BO)

is the infinite cyclic subgroup of index

jk = den(Bk/4k)
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with the generator η : S4k−−→BO(j + 1) such that

pk(η) = akjk(2k − 1)! ∈ H4k(S4k) = Z .

For any fibre homotopy trivialization

h : Jη ' Jεj+1 : S4k −−→ BG(j + 1)

the corresponding homotopy equivalence

S(h) : S(η)
'−−→ S(εj+1) = S4k × Sj

is such that the inverse image of S4k × {∗} ⊂ S4k × Sj is a submanifold of
the type

N4k = #tk
Q4k ⊂ S(η) ,

and S(h) restricts to a normal map

(f, b) = S(h)| : N4k −−→ S4k

with b : νN−−→− η. Moreover,

τN = f∗(η) : N −−→ BO(4k) ,

pk(N) = f∗pk(η) = akjk(2k − 1)! ∈ H4k(N) = Z ,

σ(N) = skpk(N) = skakjk(2k − 1)! = 8tk ∈ Z ,

with

sk =
8tk

akjk(2k − 1)!
=

22k(22k−1 − 1)Bk

(2k)!

the coefficient of pk in Lk. The homotopy equivalence S(h) : S(η)−−→S4k ×
Sj does not preserve the L-genus, since

〈Lk(S(η)), [N ]〉 = σ(N) = 8tk

6= 〈Lk(S4k × Sj), [S4k]〉 = σ(S4k) = 0 ∈ Z .

(See 3.3 for more details in the special case k = 2.) The homotopy equiva-
lence S(h) : S(η)−−→S4k × Sj is not homotopic to a diffeomorphism since
the surgery obstruction of (f, b) is

σ∗(f, b) =
1
8
(σ(N)− σ(S4k))

= tk 6= 0 ∈ L4k(Z) = Z .
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These were the original examples due to Novikov [36] of homotopy equiv-
alences of high-dimensional simply-connected manifolds which are not ho-
motopic to diffeomorphisms. By the topological invariance of the rational
Pontrjagin classes these homotopy equivalences are not homotopic to home-
omorphisms.

§3. Splitting homotopy equivalences

Let Mm be an m-dimensional manifold, and let Nn ⊂ Mm be an n-
dimensional submanifold. Every map of m-dimensional manifolds h : M ′−−→
M is homotopic to a map (also denoted by h) which is transverse regular
at N ⊂ M , with the restriction

f = h| : N ′ = h−1(N) −−→ N

a degree 1 map of n-dimensional manifolds such that the normal (m − n)-
plane bundle of N ′ in M ′ is the pullback along f of the normal (m−n)-plane
bundle of N in M

νN ′⊂M ′ : N ′ f−−→ N
νN⊂M−−−→ BSO(m− n) .

Let i : N−−→M , i′ : N ′−−→M ′ be the inclusions. For any embedding M ′ ⊂
Sm+k (k large) define a map of (m− n + k)-plane bundles covering f

b : νN ′⊂Sm+k = νN ′⊂M ′ ⊕ i′∗(νM ′⊂Sm+k)

−−→ η = νN⊂M ⊕ (h−1i)∗(νM ′⊂Sm+k) ,

so that (f, b) : N ′−−→N is a normal map. If h : M ′−−→M is a homotopy
equivalence it need not be the case that (f, b) is a homotopy equivalence.

Definition 3.1 (i) A homotopy equivalence h : M ′−−→M of manifolds
splits along a submanifold N ⊂ M if h is homotopic to a map (also denoted
h) which is transverse regular along N ⊂ M , and such that the restriction
h| : N ′ = h−1(N)−−→N is a homotopy equivalence.
(ii) A homotopy equivalence h : M ′−−→M of manifolds h-splits along a
submanifold N ⊂ M if there exists an extension of h : M ′−−→M to a
homotopy equivalence

(g; h, h′) : (W ; M ′,M ′′) −−→ M × ([0, 1]; {0}, {1})

with (W ; M ′,M ′′) an h-cobordism and h′ : M ′′−−→M split along N ⊂ M .
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For m ≥ 5 a homotopy equivalence h : M ′−−→M of m-dimensional man-
ifolds splits along a submanifold Nn ⊂ Mm if and only if h : M ′−−→M
h-splits with τ(M ′−−→W ) = 0 ∈ Wh(π1(M)), by the s-cobordism theorem.

See Chapter 23 of Ranicki [51] for an account of the Browder-Wall surgery
obstruction theory for splitting homotopy equivalences along submanifolds.
Here is a brief summary :

Proposition 3.2 (i) If a homotopy equivalence of manifolds h : M ′−−→M
is homotopic to a diffeomorphism then h splits along every submanifold
N ⊂ M and τ(h) = 0 ∈ Wh(π1(M)). A homotopy equivalence which does
not split along a submanifold or is such that τ(h) 6= 0 cannot be homotopic
to a diffeomorphism.
(ii) The (free) LS-groups LS∗ of Wall [58, §11] are defined for a manifold
Mm and a submanifold Nn ⊂ Mm with normal bundle

ξ = νN⊂M : N −−→ BO(q) (q = m− n)

to fit into a commutative braid of exact sequences

[[[[A
'
'
'')

[[[[
'
'
'')

Hi(M ;L•) Li(Z[π1(M)]) LSi−q−1

Li(ξ !)

)'
''

[[[]
Si(M)

)'
''

[[[]

LSi−q

[[[]
Si(ξ !)

)'
''

[[[]
Hi−1(M ;L•)

)'
''

A
A

AA

�
�
���

A
A
AA

�
�
���

with A the algebraic L-theory assembly map (§7), L∗(ξ!) the relative L-
groups in the transfer exact sequence

. . . −−→ Li(Z[π1(M\N)]) −−→ Li(ξ!) −−→ Li−q(Z[π1(N)])

−−→ Li−1(Z[π1(M\N)]) −−→ Li−1(ξ!) −−→

and similarly for S∗(ξ!). The structure invariant s(h) ∈ Sm+1(M) (7.1)
of a homotopy equivalence h : M ′−−→M of m-dimensional manifolds has
image [s(h)] ∈ LSn, which has image σ∗(f, b) ∈ Ln(Z[π1(N)]) the surgery
obstruction of the n-dimensional normal map given by transversality

(f, b) = h| : N ′ = h−1(N) −−→ N .
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For n ≥ 5, q ≥ 1 h : M ′−−→M h-splits along N ⊂ M if and only if
[s(h)] = 0 ∈ LSn. For q ≥ 3

π1(M) = π1(N) = π1(M\N) ,

L∗(ξ!) = L∗(Z[π1(M)])⊕ L∗−q(Z[π1(M)]) ,

LS∗ = L∗(Z[π1(M)])

and
[s(h)] = σ∗(f, b) ∈ LSn = Ln(Z[π1(M)])

so that for n ≥ 5 h : M ′−−→M h-splits if and only if σ∗(f, b) = 0 ∈
Ln(Z[π1(M)]).

The lens spaces give rise to homotopy equivalences h : M ′−−→M of man-
ifolds in dimensions ≥ 3 with τ(h) 6= 0 ∈ Wh(π1(M)).

The exotic spheres give rise to homotopy equivalences h : M ′−−→M of
manifolds which do not split along submanifolds. The following example
gives an explicit homotopy equivalence h : M ′m−−→Mm which does not
split along a special submanifold N4k ⊂ Mm in the simply-connected case
π1(N) = π1(M) = {1}.
Example 3.3 Take k = 2 in 2.10, with

a2 = 1 , B2 =
1
30

, j2 = 240 , s2 =
7
45

, t2 = 56 .

Let (W 8, Σ7) be the framed 3-connected 8-dimensional differentiable man-
ifold with signature σ(W ) = 8 obtained by the E8-plumbing of 8 copies
of τS4 : S4−−→BO(4), with boundary ∂W = Σ7 the homotopy 7-sphere
generating the exotic sphere group Θ7 = Z28. The 28-fold connected sum
#28Σ7 is diffeomorphic to the standard 7-sphere S7. Let η : S8−−→BO(q+1)
(q large) be a fibre homotopy trivial (q + 1)-plane bundle over S8 such that

η ∈ ker(J : π8(BO)−−→π7
S) = 240Z ⊂ π8(BO) = Z

is the generator with

p2(η) = −1440 ∈ H8(S8) = Z .

The sphere bundle is a closed (8 + q)-dimensional differentiable manifold
M ′ = S(η) with a homotopy equivalence

h : M ′ = S(η) −−→ M = S(εq+1) = S8 × Sq
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which does not split along the special submanifold

N8 = S8 × {pt.} ⊂ M8+q = S8 × Sq .

The inverse image of N is the special submanifold

N ′ 8 = h−1(N) = #28W ∪D8 ⊂ M ′ 8+j

with

L2(M ′) = σ(N ′) =
7
45
〈−p2(η), [S8]〉 = 28 · σ(W ) = 224

6= h∗L2(M) = σ(N) = 0 ∈ H8(M ′;Q) = Q ,

p2(M ′) = 1440 6= h∗p2(M) = 0 ∈ H8(M ′) = Z .

The codimension q splitting obstruction of h along N ⊂ M is the surgery
obstruction of the 8-dimensional normal map

(f, b) = h| : N ′ −−→ N ,

which is
[s(h)] = σ∗(f, b) =

1
8
(σ(N ′)− σ(N))

= 28 ∈ LS8 = L8(Z) = Z .

Example 3.4 If m−4k ≥ 3 and k ≥ 2 a homotopy equivalence h : M ′−−→M
of simply-connected m-dimensional manifolds splits along a simply-conn-
ected 4k-dimensional submanifold N4k ⊂ M if and only if the surgery ob-
struction

σ∗(f, b) =
1
8
(σ(N ′)− σ(N)) ∈ LS4k = L4k(Z) = Z

is 0, which for special N ⊂ M is equivalent to

〈(h−1)∗Lk(M ′)− Lk(M), [N ]〉 = 0 ∈ Q .

Codimension 1 splitting obstruction theory is particularly significant for
the topological invariance of the rational Pontrjagin classes and the Novikov
conjectures. See §8 below for an account of the codimension 1 theory for
homotopy equivalences of compact manifolds. In §10 there is a corresponding
account for proper homotopy equivalences of open manifolds, making use of
the evident modification of Definition 3.1 :
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Definition 3.5 (i) A proper homotopy equivalence h : W ′−−→W of open
manifolds splits along a closed submanifold N ⊂ W if h is proper homotopic
to a map (also denoted h) which is transverse regular along N ⊂ W , and
such that the restriction h| : N ′ = h−1(N)−−→N is a homotopy equivalence.
(ii) A proper homotopy equivalence h : W ′−−→W of open manifolds h-
splits along a closed submanifold N ⊂ W if there exists an extension of
h : W ′−−→W to a proper homotopy equivalence

(g; h, h′) : (V ; W ′, W ′′) −−→ W × ([0, 1]; {0}, {1})
with (V ;W ′,W ′′) a proper h-cobordism and h′ : W ′′−−→W split along N ⊂
W .

See Ranicki [44] for an algebraic development of the projective L-groups
Lp
∗(Z[π]), which are related to the free L-groups L∗(Z[π]) by a Rothenberg-

type exact sequence

. . . −−→ Lm(Z[π]) −−→ Lp
m(Z[π]) −−→ Ĥm(Z2; K̃0(Z[π]))

−−→ Lm−1(Z[π]) −−→ . . . .

See Pedersen and Ranicki [42] for a geometric interpretation of projective
L-theory in terms of normal maps from compact manifolds to finitely dom-
inated geometric Poincaré complexes.

Proposition 3.6 Let h : W ′−−→W = N × R be a proper homotopy equiva-
lence of open m-dimensional manifolds, with N a closed (m−1)-dimensional
manifold. Let

(f, b) = h| : N ′ = h−1(N × {0}) −−→ N

be the normal map of closed (m − 1)-dimensional manifolds obtained by
transversality, with

W ′+ = h−1(N × R+) , W ′− = h−1(N × R−) ⊂ W ′

such that

h = h+∪fh− : W ′ = W ′+∪N ′W ′− −−→ W = (N×R+)∪N×{0}(N×R−)

and
π1(N) = π1(N ′) = π1(W ′+) = π1(W ′−) (= π say) .

(i) The spaces W ′+, W ′− are finitely dominated, and the Wall finiteness
obstruction

[W ′+] = −[W ′−] = (−)m[W ′+]∗ ∈ K̃0(Z[π])
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is the splitting obstruction, such that [W ′+] = 0 if (and for m ≥ 6) only if
h splits along N × {0} ⊂ W = N × R.
(ii) The Tate Z2-cohomology class

[W ′+] ∈ Ĥm(Z2; K̃0(Z[π]))

is the proper h-splitting obstruction, such that [W ′+] = 0 if (and for m ≥ 6)
only if h : W ′−−→W h-splits along N × {0} ⊂ W = N × R.
(iii) The surgery obstruction of (f, b) is the image of the Tate Z2-cohomology
class of [W ′+]

σ∗(f, b) = [W ′+] ∈ im(Ĥm(Z2; K̃0(Z[π]))−−→Lm−1(Z[π]))

= ker(Lm−1(Z[π])−−→Lp
m−1(Z[π])) .

In particular, the projective surgery obstruction of (f, b) is

σp
∗(f, b) = 0 ∈ Lp

m−1(Z[π]) .

Proof (i)+(ii) The finiteness obstruction for arbitrary π1(N) is just the end
invariant of Siebenmann [55], and is the obstruction to killing π∗(W ′+, N ′)
by handle exchanges (= ambient surgeries).
(iii) Let W̃ ′+, W̃ ′−, Ñ , Ñ ′ be the universal covers of W ′+,W ′−, N, N ′ re-
spectively. The homology Z[π]-modules are such that

H∗(Ñ ′) = H∗(Ñ)⊕H∗+1(W̃ ′+, Ñ ′)⊕H∗+1(W̃ ′−, Ñ ′)

and the quadratic Poincaré kernel of (f, b) (Ranicki [47]) is the hyperbolic
(m− 1)-dimensional quadratic Poincaré complex on

C(W̃ ′+, Ñ ′)∗+1 ⊕ C(W̃ ′−, Ñ ′)∗+1 ' C(W̃ ′+, Ñ ′)∗+1 ⊕ C(W̃ ′+, Ñ ′)m−∗

which is equipped with a projective null-cobordism.

Remarks 3.7 (i) 3.6 (i) is a special case of the codimension 1 bounded
splitting Theorem 10.1. The unobstructed case π = {1} is the splitting
result of Browder [6].
(ii) The projective L-groups are such that

Lm(Z[π][z, z−1]) = Lm(Z[π])⊕ Lp
m−1(Z[π])

with

σ∗((f, b)× 1S1) = (0, σp
∗(f, b))

∈ Lm(Z[π][z, z−1]) = Lm(Z[π])⊕ Lp
m−1(Z[π])
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for any normal map (f, b) of finitely dominated (m − 1)-dimensional geo-
metric Poincaré complexes with fundamental group π (Ranicki [45]).
(iii) The vanishing of the projective surgery obstruction σp

∗(f, b) = 0 in 3.6
(iii) corresponds to the vanishing of the free surgery obstruction

σ∗((f, b)× 1S1) = 0 ∈ Lm(Z[π][z, z−1]) .

For m ≥ 5 this is realized by the geometric wrapping up construction
(Hughes and Ranicki [25]) of an (m + 1)-dimensional normal bordism

(F, B) : (L;N ′ × S1, ∂+L) −−→ N × S1 × ([0, 1]; {0}, {1})

with ∂+F = F | : ∂+L−−→N × S1 a homotopy equivalence and

(F, B)| = (f, b)× 1S1 : N ′ × S1 −−→ N × S1 ,

(L\∂+L,N ′ × S1) = (W ′+, N ′)× S1 ,

τ(∂+F ) = [W ′+] ∈ im(K̃0(Z[π])−−→Wh(π × Z))

with

K̃0(Z[π]) −−→ Wh(π × Z) ; [P ] −−→ τ(−z : P [z, z−1]−−→P [z, z−1])

the geometrically significant variant of the injection of Bass [3, XII]. The in-
finite cyclic covering of (F, B) induced from the universal covering R−−→S1

(F , B) : (L;N ′ × R, ∂+L) −−→ N × R× ([0, 1]; {0}, {1})

is homotopy equivalent to an extension of (f, b) to a finitely dominated
m-dimensional geometric Poincaré bordism

(F1, B1) : (W ′+; N ′, N) −−→ N × ([0, 1]; {0}, {1})

with (F1, B1)| = 1 : N−−→N .
(iv) By the codimension 1 splitting theorem of Farrell and Hsiang [15] (8.1)
the Whitehead torsion τ(h) ∈ Wh(π × Z) of a homotopy equivalence h :
M ′−−→M = N × S1 of closed m-dimensional manifolds is such that

τ(h) ∈ im(Wh(π)−−→Wh(π × Z)) (π = π1(N))

if (and for m ≥ 6 only if) h splits along N × {∗} ⊂ N × S1. The projection
Wh(π×Z)−−→K̃0(Z[π]) of Bass [3, XII] sends the Whitehead torsion τ(h) ∈
Wh(π × Z) to the splitting obstruction of 3.6

[τ(h)] = [M
′+

] ∈ K̃0(Z[π])



290 Andrew Ranicki

for the proper homotopy equivalence h : M
′−−→M = N × R obtained from

h by pullback from the universal cover R−−→S1. The h-splitting obstruction
of h : M ′−−→M is the Tate Z2-cohomology class

[τ(h)] = [M
′+

] ∈ LSm−1 = Ĥm(Z2; K̃0(Z[π])) .

(The identification LSm−1 = Ĥm(Z2; K̃0(Z[π])) is the h-version of the iden-
tification LSs

m−1 = Ĥm(Z2; Wh(π)) obtained by Wall [58, Thm. 12.5] for
the corresponding codimension 1 s-splitting obstruction group).

§4. Topological invariance

A homeomorphism of differentiable manifolds cannot in general be ap-
proximated by a diffeomorphism, by virtue of the exotic spheres. Thus it is
not at all obvious that the L-genus L(M) and the rational Pontrjagin classes
p∗(M) are topological invariants of a differentiable manifold M . Surgery the-
ory for simply-connected compact manifolds is adequate for the construction
and classification of exotic spheres. The topological invariance of the ratio-
nal Pontrjagin classes requires surgery on non-simply-connected compact
manifolds and/or simply-connected non-compact manifolds. The original
proof due to Novikov [25] made use of the torus, as subsequently formalized
in Ranicki [39, Appendix C16] using bounded L-theory : if h : M ′−−→M is
a homeomorphism of manifolds then for any j ≥ 1 the homeomorphism
h × 1 : M ′ × Rj−−→M × Rj can be approximated by a differentiable Rj-
bounded homotopy equivalence, and the signatures of special submanifolds
are Rj-bounded homotopy invariants. (See §9 for a brief account of bounded
surgery theory). Recently, Gromov [22] obtained a new proof of the topo-
logical invariance using the non-multiplicativity of the signature on surface
bundles instead of torus geometry and the algebraic K- and L-theory of the
group rings of the free abelian groups. I am grateful to Gromov for sending
me a copy of [22]. In 4.1 the two methods are related to each other using
algebraic surgery theory.

Theorem 4.1 (Novikov [38]) The rational Pontrjagin classes and the L-
genus are topological invariants.
Proof By 2.6 it suffices to prove that the signatures of special submanifolds
are homeomorphism invariant, i.e. that if h : M ′m−−→Mm is a homeomor-
phism of differentiable (or PL) manifolds then

σ(N) = σ(N ′) ∈ L4k(Z) = Z

for any special submanifold N4k ⊂ Mm × Rj , with

N ′ = h′−1(N) ⊂ M ′ × Rj
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the transverse inverse image of any differentiable (or PL) approximation
h′ : M ′×Rj−−→M ×Rj to h× 1R j . Every special submanifold is (ambient)
cobordant to a simply-connected one, so it may be assumed that N is simply-
connected, π1(N) = {1}. The surgery obstruction of the 4k-dimensional
normal map

(f, b) = h′| : N ′ −−→ N

is
σ∗(f, b) =

1
8
(σ(N ′)− σ(N)) ∈ L4k(Z) = Z

which is a codimension i splitting obstruction, with i = m + j − 4k. There
are at least four distinct ways of showing that σ∗(f, b) = 0 :

1. use Ri-bounded L-theory as in Ranicki [50], [51], and the computation
L∗(CR i(Z)) = L∗−i(Z),

2. as in the original proof of Novikov [38] use T i−1 ⊂ Ri and the compu-
tation K̃0(Z[Zi−1]) = 0,

3. use T i−1 ⊂ Ri and the computation L∗(Z[Zi−1]) = H∗(T i−1;L•(Z))
of Novikov [39] and Ranicki [45]∗,

4. follow Gromov [22] and use a hypersurface Bi−1 ⊂ Ri (assuming i is
odd) with a fibre bundle F i−1−−→E−−→Bi−1 such that the total space
has signature σ(E) 6= 0.

For 1. note that the homeomorphism

h0 = (h× 1R j )| : (h× 1R j )−1(N × Ri) −−→ N × Ri

can be approximated by a differentiable Ri-bounded homotopy equivalence
which is normal bordant to the Ri-bounded normal map

(f, b)× 1R i : N ′ × Ri −−→ N × Ri ,

so that

σ∗(f, b) = σ∗((f, b)× 1R i) = σ∗(h0) = 0

∈ L4k(Z) = L4k+i(CR i(Z)) = Z

∗ The full L-theoretic computation L∗(Z[Zi−1]) = H∗(T i−1;L•(Z)) re-
quires the K-theoretic computation K̃0(Z[Zi−1]) = 0, but for the topological
invariance of the rational Pontrjagin classes it suffices to know that the map
−⊗σ∗(T i−1) : L4∗(Z) = Z−−→L4∗+i−1(Z[Zi−1]) is a rational injection – this
is a formal consequence of the splitting theorem Lh

∗(A[z, z−1]) = Lh
∗(A) ⊕

Lp
∗−1(A) of [39] and [45] applied inductively to Z[Zi−1] = Z[Zi−2][z, z−1],

and the identity Lh
∗(A)[1/2] = Lp

∗(A)[1/2] given by the Rothenberg-type
sequence relating the projective and free L-groups of a ring with involution
A.
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– see 9.14 for a (somewhat) more detailed account.
For 2. proceed as in [38], making repeated use of codimension 1 splitting
(3.6). To start with, approximate the homeomorphism

h1 = (h× 1R j )| : W1 = (h× 1R j )−1(N × T i−1 ×R) −−→ N × T i−1 ×R
by a differentiable proper homotopy equivalence h′1 : W1−−→N × T i−1 ×R.
Since K̃0(Z[Zi−1]) = 0 it is possible to split h′1 along N × T i−1 × {0} ⊂
N × T i−1 × R, with the restriction

f1 = h′1| : N1 = h′−1
1 (N × T i−1 × {0}) −−→ N × T i−1

a homotopy equivalence normal bordant to

(f, b)× 1T i−1 : N ′ × T i−1 −−→ N × T i−1 .

Pass to the infinite cyclic cover T
i−1

= T i−2 × R of T i−1 = T i−2 × S1 and
apply the same procedure to the proper homotopy equivalence

h2 = f1 : W2 = N1 −−→ N × T
i−1

= N × T i−2 × R .

After i− 1 applications of 3.6 there is obtained a homotopy equivalence of
4k-dimensional manifolds fi : Ni−−→N normal bordant to (f, b) : N ′−−→N ,
so that

σ∗(f, b) = σ∗(fi) = 0 ∈ L4k(Z) .

(Alternatively, apply the splitting theorem of Farrell and Hsiang [15] i times
– cf. 3.7 (iii)).
For 3. and 4. suppose given a closed hypersurface U i−1 ⊂ Ri with a neigh-
bourhood U × R ⊂ Ri, regard N × U × R as a codimension 0 submanifold
of M × Rj by

N × U × R ⊂ N × Ri ⊂ M × Rj ,

and define the codimension 0 submanifold of M ′ × Rj

W 4k+i = (h× 1R j )−1(N × U × R) ⊂ M ′ × Rj .

The restriction
(h× 1R j )| : W −−→ N × U × R

is a homeomorphism. Let

V 4k+i−1 = h′′−1(N × U × {0}) ⊂ W 4k+i

be the codimension 1 transverse inverse image of any differentiable (or PL)
approximation h′′ : W−−→N × U × R to (h × 1R j )|. The (4k + i − 1)-
dimensional normal map

(g, c) = h′′| : V −−→ N × U
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is normal bordant to (f, b)×1U : N ′×U−−→N×U . The surgery obstruction
of (g, c) is thus given by the surgery product formula of Ranicki [47]

σ∗(g, c) = σ∗((f, b)× 1U ) = σ∗(f, b)⊗ σ∗(U)

∈ im(L4k(Z)⊗ Li−1(Z[π1(U)])−−→L4k+i−1(Z[π1(U)])) ,

with σ∗(U) ∈ Li−1(Z[π1(U)]) the symmetric signature of U – see §6 for a
brief account of the symmetric signature. Also, by 3.6 (ii)

σ∗(g, c) = [W+] ∈ im(Ĥ4k+i(Z2; K̃0(Z[π1(U)]))−−→L4k+i−1(Z[π1(U)]))

= ker(L4k+i−1(Z[π1(U)])−−→Lp
4k+i−1(Z[π1(U)])) .

For 3. take U = T i−1 ⊂ Ri. It follows from K̃0(Z[Zi−1]) = 0 that σ∗(g, c) =
0. The map

−⊗ σ∗(T i−1) : L4k(Z) −−→ L4k+i−1(Z[Zi−1])

is a (split) injection which sends σ∗(f, b) to

σ∗(f, b)⊗ σ∗(T i−1) = σ∗(g, c) = 0 ∈ L4k+i−1(Z[Zi−1])

so that σ∗(f, b) = 0.
For 4. assume that i is odd, say i = 2n + 1, and let U = B2n ⊂ R2n+1 be a
hypersurface for which there exists a fibre bundle

F 2n −−→ E4n
p−−→ B2n

such that the total space E is a 4n-dimensional manifold with signature

σ(E) 6= 0 ∈ L4n(Z) = Z .

(Any such B bounds a simply-connected manifold, so that the simply-
connected symmetric signature is σ(B) = 0 ∈ L2n(Z), but σ∗(B) 6= 0 ∈
L2n(Z[π1(B)]).) For example, take the n-fold cartesian product

F = F
(n)
1 −−→ E = E

(n)
1

p=p
(n)
1−−−→ B = B

(n)
1

of one of the surface bundles over a surface

F 2
1 −−→ E4

1

p1−−→ B2
1

with σ(E1) 6= 0 ∈ L4(Z) = Z constructed by Atiyah [2], using an embedding
B1 × R ⊂ R3 to define an embedding

B
(n)
1 =

n∏
1

B1 ⊂ R2n+1
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by

B
(n)
1 ⊂ B

(n−1)
1 ×R3 = B

(n−2)
1 ×(B1×R)×R2 ⊂ B

(n−2)
1 ×R5 ⊂ . . . ⊂ R2n+1 .

Let
F 2n −−→ Q4k+4n+1 −−→ W 4k+2n+1

be the induced fibre bundle over W . The algebraic surgery transfer map
induced by p

p ! : L4k+2n(Z[π1(B)]) −−→ L4k+4n(Z[π1(E)])

sends σ∗(g, c) to

p !σ∗(g, c) = [Q+]

∈ im(Ĥ4k+4n+1(Z2; K̃0(Z[π1(E)]))−−→L4k+4n(Z[π1(E)]))

= ker(L4k+4n(Z[π1(E)])−−→Lp
4k+4n(Z[π1(E)]))

with signature

σ∗(f, b)σ(E) = 0 ∈ L4k+4n(Z) = Z

(Lück and Ranicki [29]), so that σ∗(f, b) = 0.

Remarks 4.2 (i) Novikov’s proof of the topological invariance of the ra-
tional Pontrjagin classes was in the differentiable category, but it applies
equally well in the PL category. In fact, the proof led to the disproof of
the manifold Hauptvermutung by Casson and Sullivan — see Ranicki [52].
A homeomorphism of PL manifolds cannot in general be approximated by
a PL homeomorphism. The proof also led to the subsequent development
by Kirby and Siebenmann [28] of the classification theory of high-dimen-
sional topological manifolds. It is now possible to define the L-genus and the
rational Pontrjagin classes for a topological manifold, and the Hirzebruch
signature theorem σ(N) = 〈L(N), [N ]〉 also holds for topological manifolds
N4k.
(ii) Let W be an open (4k + 1)-dimensional manifold with a proper map
g : W−−→R transverse regular at 0 ∈ R, so that

V 4k = g−1(0) ⊂ W 4k+1

is a closed 4k-dimensional submanifold. Novikov [37] defined the signature
of (W, g) by

σ(W, g) = signature(H2k(W )/H2k(W )⊥, [φ]) ∈ Z
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with

φ : H2k(W )×H2k(W ) −−→ Z ; (x, y) −−→ 〈x ∪ y, [V ]〉 ,

H2k(W )⊥ = {x ∈ H2k(W ) |φ(x, y) = 0 for all y ∈ H2k(W )} ,

and identified
σ(W, g) = σ(V ) ∈ L4k(Z) = Z ,

thus proving that σ(V ) is a proper homotopy invariant of (W, g). (In the
context of the bounded L-theory of Ranicki [50] this is immediate from the
computation L4k+1(CR(Z)) = L4k(Z).) This signature invariant was used
in [37] to prove that Lk(M) ∈ H4k(M ;Q) is a homotopy invariant for any
closed (4k + 1)-dimensional manifold M , as follows. Lk(M) is detected by
the signatures of special 4k-dimensional submanifolds N4k ⊂ M4k+1 × Rj

with
σ(N) = 〈L(N), [N ]〉

= 〈Lk(M), [N ]〉 ∈ L4k(Z) = Z .

The Poincaré dual [N ]∗ ∈ H1(M) of [N ] ∈ H4k(M) is represented by a
map f : M−−→S1 with a lift to a proper map f : M−−→R such that the
transverse inverse image

V 4k
N = f−1(1) ⊂ M

is diffeomorphic to f
−1

(0) ⊂ M and cobordant to N , so that

σ(N) = σ(VN ) = σ(M, f) ∈ L4k(Z) = Z

is a homotopy invariant of (M,f). A homotopy equivalence h : M ′−−→M

induces a proper homotopy equivalence h : M
′−−→M , so that

Lk(M ′) = h∗Lk(M) ∈ H4k(M ′;Q) .

For any map f : M−−→S1 with transverse inverse image

V 4k = f−1(1) ⊂ M4k+1

the ‘higher signature’ of (M,f)

f∗(Lk(M) ∩ [M ]) = 〈L(V ), [V ]〉
= σ(V ) ∈ H1(S1) = Z ⊂ H1(S1;Q) = Q

is thus a homotopy invariant of (M, f), verifying the Novikov conjecture for
π = Z (5.2). The proof of topological invariance of the rational Pontrjagin
classes in Novikov [38] grew out of this, leading on to the formulation of the
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general conjecture and the verification for free abelian π in Novikov [39].
(iii) Gromov’s proof of topological invariance does not use surgery theory :
the actual method of [22] extends the symmetric form defined by Novikov
[37] for open (4k + 1)-dimensional manifolds to the context of cohomology
with coefficients in a flat hermitian bundle (as used by Lusztig [30] and
Meyer [31]).
(iv) The topological invariance of Whitehead torsion (originally proved by
Chapman) was proved in Ranicki and Yamasaki [54] using controlled K-
theory. The parallel development of controlled L-theory will give yet another
proof of the topological invariance of the rational Pontrjagin classes.

§5. Homotopy invariance

Definition 5.1 The higher L-genus of an m-dimensional manifold M
with fundamental group π1(M) = π is

Lπ(M) = f∗(L(M) ∩ [M ]) ∈ Hm−4∗(Bπ;Q) ,

with f : M−−→Bπ classifying the universal cover M̃ and L(M) ∩ [M ] ∈
Hm−4∗(M ;Q) the Poincaré dual of the L-genus L(M) ∈ H4∗(M ;Q).

Conjecture 5.2 (Novikov [39, §11]) The higher L-genus is a homotopy
invariant: if h : M ′m−−→Mm is a homotopy equivalence of m-dimensional
manifolds then

Lπ(M) = Lπ(M ′) ∈ Hm−4∗(Bπ;Q) .

Definition 5.3 A submanifold N4k ⊂ Mm×Rj is π-special if it is special
and the Poincaré dual [N ]∗ ∈ Hm−4k(M ;Q) of [N ] ∈ H4k(M ;Q) is such
that

[N ]∗ ∈ im(f∗ : Hm−4k(Bπ;Q)−−→Hm−4k(M ;Q)) .

The higher signatures of M are the signatures σ(N) ∈ Z of the π-special
manifolds N ⊂ M × Rj .

Remarks 5.4 (i) The higher L-genus of an m-dimensional manifold M with
π1(M) = π is detected by the higher signatures. As before, let f : M−−→Bπ

classify the universal cover M̃ of M . The Q-vector space Hm−4k(Bπ;Q) is
spanned by the elements of type x = e∗(1) for a proper map

e : Bπ × Rj −−→ Ri (i = m + j − 4k)
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with large j. (It is convenient to assume here that Bπ is compact). For any
such x, e the composite

e(f × 1) : M × Rj
f×1−−−−→ Bπ × Rj

e−−→ Ri

can be made transverse regular at 0 ∈ Ri, with

N4k = (e(f × 1))−1(0) ⊂ M × Rj

a π-special submanifold. The higher L-genus of M is such that

Lπ(M) : Hm−4k(Bπ;Q) −−→ Q ;

x −−→ 〈x,Lπ(M)〉 = 〈L(M) ∪ f∗(x), [M ]〉 = 〈L(N), [N ]〉 = σ(N) .

(ii) The Novikov conjecture is equivalent to the homotopy invariance of the
higher signatures: if h : M ′m−−→Mm is a homotopy equivalence then

σ(N) = σ(N ′) ∈ Z

for any π-special submanifold N4k ⊂ Mm × Rj , with the inverse image

N ′ = (h× 1)−1(N) ⊂ M ′ × Rj

also a π-special submanifold.

See Chapter 24 of Ranicki [51] for a more detailed account of the higher
signatures.

§6. Cobordism invariance

Very early on in the history of the Novikov conjecture (essentially already
in [39]) it was recognized that the conjecture is equivalent to the algebraic
Poincaré cobordism invariance of the higher L-genus, and also to the injec-
tivity of the rational assembly map Aπ : Hm−4∗(Bπ;Q)−−→Lm(Z[π])⊗Q.

See Ranicki [47] for the symmetric (resp. quadratic) L-groups Lm(R)
(resp. Lm(R)) of a ring with involution R, which are the cobordism groups
of m-dimensional symmetric (resp. quadratic) Poincaré complexes (C, φ)
consisting of an m-dimensional f.g. free R-module chain complex C with
a symmetric (resp. quadratic) Poincaré duality φ : Cm−∗ ' C. The sym-
metrization maps 1 + T : Lm(R)−−→Lm(R) are isomorphisms modulo 8-
torsion. The quadratic L-groups L∗(R) are the Wall surgery obstruction
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groups, and depend only on m(mod4). The symmetric L-groups are not
4-periodic in general. The L-groups of Z are given by

Lm(Z) =




Z if m ≡ 0(mod 4)
Z2 if m ≡ 1(mod 4)
0 otherwise

, Lm(Z) =




Z if m ≡ 0(mod 4)
Z2 if m ≡ 2(mod 4)
0 otherwise .

The symmetric L-groups L∗(R) and the symmetric signature were intro-
duced by Mishchenko [35].

Definition 6.1 The symmetric signature of an m-dimensional geomet-
ric Poincaré complex X with universal cover X̃ is the symmetric Poincaré
cobordism class

σ∗(X) = (C(X̃), φ) ∈ Lm(Z[π1(X)])

with φ the m-dimensional symmetric structure of the Poincaré duality chain
equivalence [X] ∩ − : C(X̃)m−∗−−→C(X̃).

The standard algebraic mapping cylinder argument shows:

Proposition 6.2 The symmetric signature is both a cobordism and a ho-
motopy invariant of a geometric Poincaré complex.

The symmetric signature is a non-simply-connected generalization of the
signature; for m = 4k the natural map Lm(Z[π1(X)])−−→Lm(Z) = Z sends
σ∗(X) to the signature σ(X).

Definition 6.3 The quadratic signature of a normal map of m-dimen-
sional manifolds with boundary (f, b) : (M ′, ∂M ′)−−→(M, ∂M) and with
∂f : ∂M ′−−→∂M a homotopy equivalence is the cobordism class of the
quadratic Poincaré complex kernel

σ∗(f, b) = (C(f !), ψ) ∈ Lm(Z[π1(M)]) ,

with ψ the quadratic structure on the algebraic mapping cone C(f !) of the
Umkehr Z[π1(M)]-module chain map

f ! : C(M̃) ' C(M̃, ∂M̃)m−∗ f̃∗−−→ C(M̃ ′, ∂M̃ ′)m−∗ ' C(M̃ ′) .

Proposition 6.4 (Ranicki [47])
(i) The quadratic signature σ∗(f, b) ∈ Lm(Z[π1(M)]) of an m-dimensional
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normal map (f, b) : (M ′, ∂M ′)−−→(M,∂M) is the surgery obstruction of
Wall [58], such that σ∗(f, b) = 0 if (and for m ≥ 5 only if) (f, b) is normal
bordant to a homotopy equivalence.
(ii) The symmetrization of the quadratic signature is the symmetric signa-
ture of Mishchenko [35]

(1 + T )σ∗(f, b) = σ∗(M ′ ∪∂f −M) ∈ Lm(Z[π1(M)])

where −M refers to M with the opposite orientation [−M ] = −[M ].

The rational surgery obstruction of a normal map (f, b) : M ′−−→M of
closed m-dimensional manifolds with fundamental group π

σ∗(f, b)⊗Q ∈ Lm(Z[π])⊗Q
depends only on the difference of the higher L-genera

Lπ(M ′)− Lπ(M) ∈ Hm−4∗(Bπ;Q) .

For any finitely presented group π the Q-vector space Hm−4∗(Bπ;Q) is
spanned by the differences Lπ(M ′)−Lπ(M) for normal maps (f, b) : M ′−−→
M of closed m-dimensional manifolds with fundamental group π.

Definition 6.5 The rational assembly map in quadratic L-theory is

Aπ : Hm−4∗(Bπ;Q) −−→ Lm(Z[π])⊗Q ;

Lπ(M ′)− Lπ(M) −−→ σ∗(f, b)⊗Q =
1
8
(σ∗(M ′)− σ∗(M)) ,

with

AπLπ(M) =
1
8
σ∗(M) ∈ Lm(Z[π])⊗Q = Lm(Z[π])⊗Q .

The L-genus L(M) ∈ H4∗(M ;Q) is not in general a homotopy invariant
of an m-dimensional manifold M , except for the 4k-dimensional component
Lk(M) ∈ H4k(M ;Q) in the case m = 4k – this is a homotopy invariant by
virtue of the signature theorem

σ(M) = 〈Lk(M), [M ]〉 ∈ Z .

The simply-connected surgery exact sequence (§7) shows that if M is a
simply-connected m-dimensional manifold and m− 4k ≥ 1, m ≥ 5 then the
Q-vector space H4k(M ;Q) is spanned by the differences

(h−1)∗Lk(M ′)− Lk(M) ∈ H4k(M ;Q)
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for homotopy equivalences h : M ′−−→M .

Proposition 6.6 The Novikov conjecture holds for π if and only if the
rational assembly map

Aπ : Hm−4∗(Bπ;Q) −−→ Lm(Z[π])⊗Q

is injective for each m(mod 4).
Proof The rational assembly map

A : H4∗(M ;Q) = Hm−4∗(M ;Q)
f∗−−→ Hm−4∗(Bπ;Q)

Aπ−−→ Lm(Z[π])⊗Q

is such that

A((h−1)∗L(M ′)− L(M)) = Aπ(Lπ(M ′)− Lπ(M)) ∈ Lm(Z[π])⊗Q

for any homotopy equivalence h : M ′−−→M of m-dimensional manifolds
with π1(M) = π, and f : M−−→Bπ the classifying map. The Q-vector
space Hm−4∗(Bπ;Q) is spanned by the differences Lπ(M ′) − Lπ(M). The
non-simply-connected surgery exact sequence (§7) identifies the subspace of
H4∗(M ;Q) spanned by the differences

(h−1)∗L(M ′)− L(M) ∈ H4∗(M ;Q)

with the kernel of A, and

ker(f∗ : Hm−4∗(M ;Q)−−→Hm−4∗(Bπ;Q)) ⊆ ker(A) .

The Novikov conjecture predicts that for all m-dimensional manifolds M
with π1(M) = π

f∗(ker(A)) = {0} ⊆ Hm−4∗(Bπ;Q) ,

or equivalently that ker(f∗) = ker(A). In turn, this is equivalent to the
injectivity of Aπ : Hm−4∗(Bπ;Q) −−→ Lm(Z[π])⊗Q.

§7. The algebraic L-theory assembly map

The integral versions of the topological invariance of the rational Pon-
trjagin classes and of the Novikov conjecture on the homotopy invariance
of the higher signatures involve the algebraic L-spectra and the algebraic
L-theory assembly map defined in Ranicki [51].
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The symmetric L-spectrum L•(R) of a ring with involution R is de-
fined in [51] using n-ads of symmetric forms over R, with homotopy groups

π∗(L•(R)) = L∗(R) .

The generalized homology spectrum H •(X;L•(R)) of a topological
space X is defined in [51] using sheaves over X of symmetric Poincaré
complexes over R, with homotopy groups

π∗(H •(X;L•(R))) = H∗(X;L•(R))

the cobordism groups of such sheaves. The assembly map

A : H •(X;L•(R)) −−→ L•(R[π1(X)])

is defined by pulling back a symmetric Poincaré sheaf over X to the universal
cover X̃, and then assembling the stalks to obtain a symmetric Poincaré
complex over R[π1(X)]. Similarly for the quadratic L-spectrum L•(R).

The 0th space of the quadratic L-spectrum L•(Z) is such that

L0(Z) ' L0(Z)×G/TOP .

As usual, G/TOP is the classifying space for fibre homotopy trivialized
topological bundles, with a fibration sequence

G/TOP −−→ BTOP −−→ BG .

Let L• = L•〈1〉(Z) be the 1-connective cover of L•(Z), with 0th space such
that

L0 ' G/TOP .

For any space X define the structure spectrum

S•(X) = homotopy cofibre(A : H •(X;L•)−−→L•(Z[π1(X)])) ,

to fit into a cofibration sequence of spectra

H •(X;L•)
A−−→ L•(Z[π1(X)]) −−→ S•(X) ,

with A the spectrum level assembly map. The structure groups

S∗(X) = π∗(S•(X))

are the cobordism groups of sheaves over X of quadratic Poincaré complexes
over Z such that the assembly quadratic Poincaré complex over Z[π1(X)] is
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contractible. The structure groups are the relative groups in the algebraic
surgery exact sequence

. . . −−→ Sm+1(X)−−→Hm(X;L•)
A−−→ Lm(Z[π1(X)])−−→ Sm(X)−−→ . . . .

If X is an m-dimensional CW complex then H∗(X;L•) = H∗(X;L•(Z)) for
∗ > m and S∗(X) = S∗+4(X) for ∗ > m + 1.

Proposition 7.1 (Ranicki [51]) (i) An m-dimensional geometric Poincaré
complex X has a total surgery obstruction

s(X) ∈ Sm(X)

such that s(X) = 0 if (and for m ≥ 5 only if) X is homotopy equivalent to
a closed m-dimensional topological manifold.
(ii) A closed m-dimensional topological manifold M has a symmetric L-
theory orientation

[M ]L ∈ Hm(M ;L•(Z))

which is represented by the symmetric Poincaré orientation sheaf, with as-
sembly the symmetric signature

A([M ]L) = σ∗(M) ∈ Lm(Z[π1(M)]) .

(iii) A normal map (f, b) : M ′−−→M of closed m-dimensional topological
manifolds has a normal invariant

[f, b]L ∈ Hm(M ;L•) = [M, G/TOP ]

which is represented by the sheaf over M of the quadratic Poincaré complex
kernels over Z of the normal maps

(f, b) = h| : N ′ = h−1(N) −−→ N (Nn ⊂ Mm) ,

with assembly the surgery obstruction

A([f, b]L) = σ∗(f, b) ∈ Lm(Z[π1(M)]) .

The symmetrization of the normal invariant is the difference of the sym-
metric L-theory orientations

(1 + T )[f, b]L = f∗[M ′]L − [M ]L ∈ Hm(M ;L•(Z)) .

(iv) A homotopy equivalence h : M ′−−→M of closed m-dimensional topolog-
ical manifolds has a structure invariant

s(h) ∈ Sm+1(M)
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which is represented by the Z[π1(M)]-contractible quadratic Poincaré kernel
sheaf of (iii) and is such that s(h) = 0 if (and for m ≥ 5 only if) h is
h-cobordant to a homeomorphism. Moreover, for m ≥ 5 every element x ∈
Sm+1(M) is the structure invariant x = s(h) of a homotopy equivalence
h : M ′−−→M . The structure group Sm+1(M) is thus the topological manifold
structure set of the Browder-Novikov-Sullivan-Wall surgery theory

Sm+1(M) = STOP (M) ,

with a surgery exact sequence

. . . −−→ Lm+1(Z[π1(M)]) −−→ STOP (M) −−→ [M,G/TOP ]

−−→ Lm(Z[π1(M)]) .

Remarks 7.2 (i) The symmetric and quadratic L-spectra of Z are given
rationally by

L•(Z)⊗Q = L•(Z)⊗Q =
∨

k

K(Q, 4k) ,

so that for any space X

Hm(X;L•(Z))⊗Q = Hm(X;L•(Z))⊗Q = Hm−4∗(X;Q) .

(ii) The symmetric L-theory orientation [M ]L ∈ Hm(M ;L•(Z)) of a closed
m-dimensional topological manifold M is an integral refinement of the L-
genus, with

[M ]L ⊗Q = [M ] ∩ L(M) ∈ Hm(M ;L•(Z))⊗Q = Hm−4∗(M ;Q)

detected by the signatures σ(N) of special submanifolds N4k ⊂ M × Rj .
As before, let π1(M) = π and let f : M−−→Bπ be the classifying map of
the universal cover M̃ . The image f∗[M ]L ∈ Hm(Bπ;L•(Z)) is an integral
refinement of the higher L-genus, with

f∗[M ]L ⊗Q = Lπ(M) ∈ Hm(Bπ;L•(Z))⊗Q = Hm−4∗(Bπ;Q)

detected by the signatures σ(N) of π-special submanifolds N4k ⊂ M ×Rj .
(iii) The normal invariant [f, b]L ∈ Hm(M ;L•) of an m-dimensional normal
map (f, b) : M ′−−→M is given rationally by the difference of the Poincaré
duals of the L-genera

[f, b]L ⊗Q = f∗(L(M ′) ∩ [M ′])− (L(M) ∩ [M ])

∈ Hm(M ;L•(Z))⊗Q = Hm−4∗(M ;Q) .
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(iv) The construction and the verification of the combinatorial invariance of
the symmetric L-theory orientation [M ]L ∈ Hm(M ;L•(Z)) is quite straight-
forward for a PL manifold M . The construction and topological invariance
of [M ]L for a topological manifold M is much more complicated — see §9
below.
(v) For m ≥ 5 an m-dimensional geometric Poincaré complex X is homo-
topy equivalent to a closed m-dimensional manifold M if and only if there
exists a symmetric L-theory orientation [X]L ∈ Hm(X;L•(Z)) such that
A([X]L) = σ∗(X) ∈ Lm(Z[π1(X)]), modulo 2-primary torsion invariants.

Integral Novikov conjecture 7.3 The assembly map in quadratic L-
theory

A : H∗(Bπ;L•(Z)) −−→ L∗(Z[π])

is a split injection.

The algebraic surgery exact sequence for the classifying space Bπ of a
group π

. . . −−→ Sm+1(Bπ) −−→ Hm(Bπ;L•)
A−−→ Lm(Z[π]) −−→ Sm(Bπ) −−→ . . .

is such that

im(Sm+1(Bπ)−−→Hm(Bπ;L•))

= ker(A : Hm(Bπ;L•)−−→Lm(Z[π])) ⊆ Lm(Z[π])

consists of the images of the normal invariants

f∗[s(h)] = f∗[h, b]L ∈ Hm(Bπ;L•)

of all homotopy equivalences h : M ′−−→M of m-dimensional topological
manifolds with π1(M) = π, and with f : M−−→Bπ classifying the universal
cover.

Remarks 7.4 (i) The integral Novikov conjecture for π implies the original
Novikov conjecture for π, since the integral assembly map A induces the
rational assembly map

A⊗ 1 : Hm(Bπ;L•(Z))⊗Q = Hm−4∗(Bπ;Q) −−→ Lm(Z[π])⊗Q .

(ii) The integral Novikov conjecture is generally false if π has torsion, e.g.
if π = Z2.
(iii) The integral Novikov conjecture has been verified for many torsion-
free groups π using codimension 1 splitting methods, starting with the free
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abelian case π = Zi (when A is an isomorphism) — see §§8,10 below for
further discussion.
(iv) The integral Novikov conjecture has been verified geometrically for
many groups π such that the classifying space Bπ is realized by an aspherical
Riemannian manifold with sufficient symmetry to ensure geometric rigidity,
so that homotopy equivalences of manifolds with fundamental group π can
be deformed to homeomorphisms — see Farrell and Hsiang [16], Farrell and
Jones [17] for example.

Here is how algebraic surgery theory translates rigidity results in geom-
etry into verifications of the integral Novikov conjecture :

Proposition 7.5 If π is a finitely presented group such that (at least for
m ≥ 5) there is a systematic procedure for deforming every homotopy equiv-
alence h0 : M0−−→N of closed m-dimensional manifolds with π1(N) = π
to a homeomorphism h1 : M1−−→N , via an (m + 1)-dimensional normal
bordism

(g, c) : (W ;M0,M1) −−→ N × ([0, 1]; {0}, {1})
with g|Mi = hi : Mi−−→N (i = 0, 1), then the integral Novikov conjecture
holds for π.
Proof The realization theorem of Wall [58] identifies Lm+1(Z[π]) with the
bordism group of normal maps (f, b) : (K, ∂K)−−→(L, ∂L) of compact
(m + 1)-dimensional manifolds with boundary which restrict to a homo-
topy equivalence ∂f = f | : ∂K−−→∂L on the boundary, with π1(L) = π.
The generalized homology group Hm+1(Bπ;L•) has a similar description,
with the added condition that ∂f : ∂K−−→∂L be a homeomorphism (in-
cluding ∂K = ∂L = ∅ as a special case). Given systematic deformations
of homotopy equivalences to homeomorphisms as in the statement there is
defined a direct sum system

Hm+1(Bπ;L•)
A−−−−−−−→←−−−−−−−
B

Lm+1(Z[π])
C−−−−−−−→←−−−−−−−
D

Sm+1(Bπ)

verifying the integral Novikov conjecture for π, with

B : Lm+1(Z[π]) −−→ Hm+1(Bπ;L•) ; (f, b) −−→ (f, b) ∪ (g, c)

(h0 = ∂f : M = ∂K−−→N = ∂L) ,

C : Lm+1(Z[π]) −−→ Sm+1(Bπ) ;

σ∗((f, b) : (K, ∂K)−−→(L, ∂L)) −−→ s(∂f : ∂K−−→∂L) ,

D : Sm+1(Bπ) −−→ Lm+1(Z[π]) ; s(h0) −−→ σ∗(g, c) .
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The chain complex treatment in Ranicki [47], [51] of the surgery obstruc-
tion of Wall [58] associates a quadratic Poincaré complex σ∗(f, b) over Z[π]
(resp. a sheaf over Bπ of quadratic Poincaré complexes over Z) to any
normal map (f, b) : (M, ∂M)−−→(N, ∂N) with ∂f a homotopy equivalence
(resp. a homeomorphism) and π1(N) = π. In principle, this allows the trans-
lation into algebra of any geometric construction of a disassembly map B.

§8. Codimension 1 splitting for compact manifolds

The primary obstructions to deforming a homotopy equivalence of high-
dimensional manifolds h : M ′−−→M with π1(M) torsion-free to a homeo-
morphism are the splitting obstructions along codimension 1 submanifolds
N ⊂ M . The method was initiated by Browder [7], where manifolds with
fundamental group π1 = Z were studied by considering surgery on codimen-
sion 1 simply-connected manifolds.

Codimension 1 Splitting Theorem 8.1 (Farrell and Hsiang [15]) Let
Mm be an m-dimensional manifold, and let Nm−1 ⊂ Mm be a codimension
1 submanifold with trivial normal bundle, such that

π1(M) = π × Z , π1(N) = π .

The Whitehead torsion of a homotopy equivalence h : M ′−−→M of m-
dimensional manifolds is such that τ(h) ∈ im(Wh(π)−−→Wh(π × Z)) if
(and for m ≥ 6 only if) h splits along N ⊂ M .
K-theoretic proof. This was the original proof in [15]. Let M̃ be the
universal cover of M . The infinite cyclic cover M = M̃/π of M can be
constructed from M by cutting along N , with

M = M
+ ∪N M

−

for two ends M
+
, M

−
with

π1(M
+
) = π1(M

−
) = π1(N) = π

and similarly for M ′, N ′ = h−1(N) ⊂ M ′. The Z-equivariant homotopy
equivalence h : M

′−−→M has a decomposition

h = h
+ ∪g h

−
: M

′
= M

′+ ∪N ′ M
′ − −−→ M = M

+ ∪N M
−

with the restriction

(g, c) = h| = h| : N ′ = h−1(N) = h
−1

(N) −−→ N
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a normal map. Since h is a homotopy equivalence the natural Z[π]-module
chain map of the relative cellular Z[π]-module chain complexes

C(Ñ ′, Ñ) ' C(M̃ ′+, M̃ +)⊕ C(M̃ ′ −, M̃ −)

is a chain equivalence. Now C(Ñ ′, Ñ) is a finite f.g. free Z[π]-module chain
complex, so that C(M̃ ′+, M̃ +) and C(M̃ ′ −, M̃ −) are finitely dominated
(i.e. chain equivalent to a finite f.g. projective Z[π]-module chain complex).
The reduced projective class

[C(M̃ ′+, M̃ +)] = −[C(M̃ ′ −, M̃ −)] ∈ K̃0(Z[π])

is the K̃0-component of τ(h) ∈ Wh(π × Z) in the decomposition

Wh(π × Z) = Wh(π)⊕ K̃0(Z[π])⊕ Ñil0(Z[π])⊕ Ñil0(Z[π])

of Bass [3, XII]. The Z[π]-module Poincaré duality chain equivalence

C(Ñ ′, Ñ)m−1−∗ ' C(Ñ ′, Ñ)

on the chain complex kernel

C(Ñ ′, Ñ) = C(g! : C(Ñ)−−→C(Ñ ′))

restricts to a chain equivalence

C(M̃ ′+, M̃ +)m−1−∗ ' C(M̃ ′ −, M̃ −) .

Thus h : M ′−−→M splits along N ⊂ M (i.e. (g, c) : N ′−−→N is a homotopy
equivalence) if and only if C(M̃ ′+, M̃ +) is chain contractible. For m ≥ 6
the K̃0-component is 0 if and only if it is possible to modify N ′ by handle
exchanges inside M

′
in the style of Browder [6] and Siebenmann [55] until

(g, c) : N ′−−→N is a homotopy equivalence, if and only if the R-bounded ho-
motopy equivalence f : M

′−−→M splits along N ⊂ M . The Ñil0-components
(which are Poincaré dual to each other) are the obstructions to such modi-
fications inside a fundamental domain of the infinite cyclic cover M

′
of M ′.

L-theoretic proof. The surgery obstruction theory of Wall [58] can be
used to give an L-theoretic proof of the splitting theorem, at least in the
unobstructed case τ(h) ∈ im(Wh(π)). The surgery exact sequence for the
appropriately decorated topological manifold structure set of M

. . . −−→ L
im(Wh(π))
m+1 (Z[π × Z]) −−→ Sim(Wh(π))

m+1 (M)

−−→ Hm(M ;L•) −−→ Lim(Wh(π))
m (Z[π × Z]) −−→ . . .
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combined with the algebraic computation of Ranicki [45]

Lim(Wh(π))
m (Z[π × Z]) = Lm(Z[π])⊕ Lm−1(Z[π])

(or the geometric winding tricks of [58, 12.9] or Cappell [10]) give an exact
sequence

. . . −−→ Sm+1(M\N) −−→ Sim(Wh(π))
m+1 (M) −−→ Sm(N)

−−→ Sm(M\N) −−→ . . . .

The codimension 1 h-splitting obstruction of [58, §11] is the Tate Z2-cohomo-
logy class

[s(h)] = [C(M̃ ′+, M̃)] ∈ LSm−1 = Ĥm(Z2; K̃0(Z[π])) .

The structure set Sim(Wh(π))
m+1 (M) of homotopy equivalences of m-dimensional

manifolds h : M ′−−→M such that τ(h) ∈ im(Wh(π)) is thus identified with
the structure set Sm+1(N−−→M\N) of homotopy equivalences h : M ′−−→M
which split along N ⊂ M

Sim(Wh(π))
m+1 (M) = Sm+1(N−−→M\N) .

(The relative S-group Sm+1(N−−→M\N) is denoted Sm+1(ξ!) in the termi-
nology of 3.2).

Example 8.2 For m ≥ 6 a homotopy equivalence of m-dimensional mani-
folds of the type

h : M ′m −−→ Mm = Nm−1 × S1

is homotopic to

g × idS1 : M ′ = N ′ × S1 −−→ M = N × S1

for a homotopy equivalence of (m − 1)-dimensional manifolds g : N ′−−→N
if and only if τ(h) ∈ im(Wh(π)−−→Wh(π×Z)) (π = π1(N)). The structure
set of homotopy equivalences h : M ′−−→M which split along N ⊂ M is
given in this case by

Sim(Wh(π))
m+1 (M) = Sm+1(N)⊕ Sm(N) .
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For the remainder of §8 we shall assume that M is a connected manifold
and that N ⊂ M is a connected codimension 1 submanifold with trivial
normal bundle

νN⊂M = ε : N −−→ BO(1)

and such that π1(N)−−→π1(M) is injective. As in the general theory of Wall
[58, §12] there are two cases to consider :
(A) N ⊂ M separates M , so that M\N has two components M1, M2, with

π1(M) = π1(M1) ∗π1(N) π1(M2)

the amalgamated free product determined by the injections π1(N)−→π1(M1),
π1(N)−→π1(M2), by the Seifert-Van Kampen theorem,
(B) N ⊂ M does not separate M , so that M1 = M\N is connected, with

π1(M) = π1(M1) ∗π1(N) {z}
the HNN extension determined by the two injections π1(N)−→π1(M1).
For example, if M is a genus 2 surface and N = S1 ⊂ M separates M with
M\N = M1 t M2 the disjoint union of punctured tori then (N,M) is of
type (A), with π1(M1) = π1(M2) = Z ∗ Z, π1(N) = Z, while (M ′, N ′) =
(S1, {pt.}) is of type (B).

Waldhausen [57] obtained a splitting theorem for the algebraic K-theory
of amalgamated free products and HNN extensions along injections, in-
volving the K-groups Ñil∗ of nilpotent objects, generalizing the splitting
theorem of Bass [3, XII] for the Whitehead group of a polynomial exten-
sion. The Mayer-Vietoris exact sequence of [57] is

. . . −−→ Wh(π1(N))⊕ Ñil1 −−→ Wh(π1(M1))⊕Wh(π1(M2))

−−→ Wh(π1(M)) −−→ K̃0(Z[π1(N)])⊕ Ñil0

−−→ K̃0(Z[π1(M1)])⊕ K̃0(Z[π1(M2)]) −−→ K̃0(Z[π1(M)]) −−→ . . .

with Wh(π1(M))−−→Ñil0 a split surjection, setting M2 = ∅ in case (B). See
Remark 8.7 below for a brief account of the algebraic transversality used in
[57], and its extension to algebraic L-theory.

Codimension 1 Splitting Theorem 8.3 (Cappell [9]) Let Mm be an m-
dimensional manifold, and let Nm−1 ⊂ Mm be a codimension 1 submanifold
with trivial normal bundle, such that π1(N)−−→π1(M) is injective. The al-
gebraic L-theory of Z[π1(M)] is such that there is defined a Mayer-Vietoris
exact sequence

. . .−−→LI
n(Z[π1(N)])⊕UNiln+1−−→Ln(Z[π1(M1)])⊕ Ln(Z[π1(M2)])

−−→Ln(Z[π1(M)])−−→LI
n−1(Z[π1(N)])⊕UNiln

−−→Ln−1(Z[π1(M1)])⊕ Ln−1(Z[π1(M2)])−−→Ln−1(Z[π1(M)])−−→ . . .
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with

I = im(Wh(π1(M))−−→K̃0(Z[π1(N)]))

= ker(K̃0(Z[π1(N)])−−→K̃0(Z[π1(M1)])⊕ K̃0(Z[π1(M2)]))

⊆ K̃0(Z[π1(N)])

and Ln(Z[π1(M)])−−→UNiln a split surjection onto an L-group of unitary
nilpotent objects, setting M2 = ∅ in case (B). The codimension 1 h-splitting
obstruction (3.2) of a homotopy equivalence h : M ′−−→M of m-dimensional
manifolds along N ⊂ M is given by

[s(h)] = ([τ(h)], σ∗(f, b)) ∈ LSm−1 = Ĥm(Z2; I)⊕UNilm+1 .

The first component is the obstruction to the existence of a normal bordism
to a split homotopy equivalence, the image [τ(h)] ∈ Ĥm(Z2; I) of the Tate
Z2-cohomology class of the Whitehead torsion

τ(h) = (−)m+1τ(h)∗ ∈ Ĥm+1(Z2; Wh(π1(M))) .

The second component is the surgery obstruction

σ∗(f, b) ∈ UNilm+1 ⊆ Lm+1(Z[π1(M)])

of a normal bordism

(f, b) : (W ; M ′,M ′′) −−→ M × ([0, 1]; {0}, {1})

from h : M ′−−→M to a split homotopy equivalence h′ : M ′′−−→M given
by the nilpotent normal cobordism construction of Cappell [10] in the case
[τ(h)] = 0 ∈ Ĥm(Z2; I).

The I-intermediate quadratic L-groups LI
∗(Z[ρ]) in 8.3 are such that there

is defined a Rothenberg-type exact sequence

. . . −−→ Lm(Z[ρ]) −−→ LI
m(Z[ρ]) −−→ Ĥm(Z2; I) −−→ Lm−1(Z[ρ]) −−→ . . .

with Ĥ∗(Z2; I) the Tate Z2-cohomology groups of the duality involution
∗ : I−−→I.

See Ranicki [48, §7.6] for a chain complex interpretation of the nilpotent
normal cobordism construction and the identification

LSm−1 = Ĥm(Z2; I)⊕UNilm+1 .
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Example 8.4 In the situation of 8.1

π1(M) = π × Z , π1(N) = π

it is the case that

Wh(π1(M)) = Wh(π)⊕ K̃0(Z[π])⊕ Ñil0(Z[π])⊕ Ñil0(Z[π]) ,

UNil∗ = 0 , Ĥ∗(Z2; Ñil0(Z[π])⊕ Ñil0(Z[π])) = 0 , I = K̃0(Z[π])

with the Z2-action interchanging the two copies of Ñil0(Z[π]). Moreover, the
codimension 1 h-splitting obstruction of 8.3

[s(h)] = [τ(h)] = [C(M̃ ′+, M̃ +)] ∈ LSm−1 = Ĥm(Z2; K̃0(Z[π]))

is the Tate Z2-cohomology class of the codimension 1 splitting obstruction

[τ(h)] = (−)m+1[τ(h)]∗ ∈ coker(Wh(π)−−→Wh(π × Z))

= K̃0(Z[π])⊕ Ñil0(Z[π])⊕ Ñil0(Z[π]) .

Corollary 8.5 Let π be a finitely presented group such that :
either (A) π = π1 ∗ρ π2 is an amalgamated free product, with π1, π2, ρ

finitely presented,
or (B) π = π1 ∗ρ {z} is an HNN extension, with π1, ρ finitely presented,

and let
I = im(Wh(π)−−→K̃0(Z[ρ])) ⊆ K̃0(Z[ρ]) .

The algebraic L-theory Mayer-Vietoris exact sequence

. . . −−→ LI
n(Z[ρ])⊕UNiln+1 −−→ Ln(Z[π1])⊕ Ln(Z[π2]) −−→ Ln(Z[π])

−−→ LI
n−1(Z[ρ])⊕UNiln −−→ Ln−1(Z[π1])⊕ Ln−1(Z[π2]) −−→ . . .

extends to a Mayer-Vietoris exact sequence of S-groups

. . . −−→ SI
n(Bρ)⊕UNiln+1 −−→ Sn(Bπ1)⊕ Sn(Bπ2) −−→ Sn(Bπ)

−−→ SI
n−1(Bρ)⊕UNiln −−→ Sn−1(Bπ1)⊕ Sn−1(Bπ2) −−→ . . .

interpreting π2 = ∅ in case (B).
Proof This a formal consequence of 8.3 and the Mayer-Vietoris exact se-
quence of generalized homology theory

. . . −−→ hn(Bρ) −−→ hn(Bπ1)⊕ hn(Bπ2) −−→ hn(Bπ)

−−→ hn−1(Bρ) −−→ hn−1(Bπ1)⊕ hn−1(Bπ2) −−→ . . . ,
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with h∗( ) = H∗( ;L•).

Theorem 8.6 (Cappell [11]) The Novikov conjecture holds for the class of
finitely presented groups π obtained from {1} by amalgamated free products
and HNN extensions along injections.
Proof If the groups G = π1, π2, ρ in 8.5 are such that the algebraic L-theory
assembly maps A : H∗(BG;L•(Z))−−→L∗(Z[G]) are rational isomorphisms
then so is the algebraic L-theory assembly map A : H∗(Bπ;L•(Z))−−→
L∗(Z[π]), and the Novikov conjecture holds for π. Apply the 5-lemma to the
S-group Mayer-Vietoris exact sequence of 8.5, noting that the UNil-groups
have exponent ≤ 8 and so make no rational contribution.

(The actual inductively defined class of groups for which the Novikov con-
jecture was verified in [11] is somewhat larger.)

Remark 8.7 The finite presentation conditions in 8.5, 8.6 are necessary be-
cause the L-theory Mayer-Vietoris exact sequence of Cappell [9] was only
stated for the group rings of finitely presented groups, since the proof used
geometric methods. In fact, it is possible to state and prove an L-theory
Mayer-Vietoris exact sequence for amalgamated free products and HNN
extensions along injections of any rings with involution, allowing the hy-
pothesis of finite presentation to be dropped. Pending the definitive account
of Ranicki [53], here is a brief account of the algebraic proof of the L-theory
sequence, extending the method used by Waldhausen [57] to prove the al-
gebraic K-theory Mayer-Vietoris exact sequence.

A ring morphism f : R−−→R′ determines induction and restriction func-
tors

f! : {R-modules} −−→ {R′-modules} ;

M −−→ f!M = R′ ⊗R M with r′(1⊗ x) = r′ ⊗ x ,

f ! : {R′-modules} −−→ {R-modules} ;

M ′ −−→ f !M ′ = M ′ with rx′ = f(r)x′ .

Let R be a ring such that :
either (A) R = R1 ∗S R2 is the amalgamated free product determined by

injections of rings i1 : S−−→R1, i2 : S−−→R2 such that R1, R2 are free as
(S, S)-bimodules,

or (B) R = R1 ∗S [z, z−1] is the HNN extension determined by two
injections i1, i

′
1 : S−−→R1, with respect to both of which R1 is a free (S, S)-

bimodule.
As in the Serre-Bass theory there is an infinite tree T with augmented
simplicial R-module chain complex

∆(T ; R) : 0 −−→ k!k
!R −−→ (j1)!j!

1R⊕ (j2)!j!
2R −−→ R −−→ 0
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with

j1 : R1 −−→ R , j2 : R2 −−→ R , k = j1i1 = j2i2 : S −−→ R

the inclusions, and

j!
1R =

∑

T
(0)
1

R1 , j!
2R =

∑

T
(0)
2

R2 , k!R =
∑

T (1)

S ,

setting R2 = 0 in case (B). Thus for any finite f.g. free R-module chain
complex C there is defined a Mayer-Vietoris presentation

(∗) C ⊗R ∆(T ; R) : 0 −−→ k!k
!C −−→ (j1)!j!

1C ⊕ (j2)!j!
2C −−→ C −−→ 0

with j!
1C an infinitely generated free R1-module chain complex, j!

2C an in-
finitely generated free R2-module chain complex, and k!C an infinitely gen-
erated free S-module chain complex. For any subtree U ⊂ T the augmented
simplicial R-module chain complex ∆(U ; R) defines a Mayer-Vietoris pre-
sentation of R

C(U ;R) : 0 −−→ k!

∑

U(1)

S −−→ (j1)!
∑

U
(0)
1

R1 ⊕ (j2)!
∑

U
(0)
2

R2 −−→ R −−→ 0 ,

such that if U is finite then
∑

U
(0)
1

R1 is a f.g. free R1-module,
∑

U
(0)
2

R2 is a f.g.

free R2-module, and
∑

U(1)

S is a f.g. free S-module. Let C be n-dimensional,

with
Cr = Rcr (0 ≤ r ≤ n)

a f.g. free R-module of rank cr. There exist finite subtrees

Ur ⊂ T (0 ≤ r ≤ n)

such that the f.g. free submodules

(D1)r =
∑

U
(0)
r,1

Rcr
1 ⊂ j!

1Cr =
∑

T
(0)
1

Rcr
1 ,

(D2)r =
∑

U
(0)
r,2

Rcr
2 ⊂ j!

2Cr =
∑

T
(0)
2

Rcr
2 ,

Er =
∑

U
(1)
r

Scr ⊂ k!Cr =
∑

T (1)

Scr
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define f.g. free subcomplexes

D1 ⊂ j!
1C , D2 ⊂ j!

2C , E = D1 ∩D2 ⊂ k!C

with a Mayer-Vietoris presentation

0 −−→ k!E −−→ (j1)!D1 ⊕ (j2)!D2 −−→ C −−→ 0 .

This type of algebraic transversality (a generalization of the linearization
trick of Higman [23] for matrices over a Laurent polynomial extension) was
used in [57] to obtain the Mayer-Vietoris exact sequence in algebraic K-
theory

. . .−−→Kn(S)⊕ Ñiln+1−−→Kn(R1)⊕Kn(R2)−−→Kn(R)

−−→Kn−1(S)⊕ Ñiln−−→Kn−1(R1)⊕Kn−1(R2)−−→Kn−1(R)−−→ . . .

with Kn(R)−−→Ñiln split surjections.
Now suppose that R, R1, R2, S are rings with involution. Given a finite

f.g. free R-module chain complex C apply C ⊗R − to (∗) above, to obtain
an exact sequence of Z[Z2]-module chain complexes

(∗∗) 0−−→ k!C⊗S k!C −−→ (j!
1C⊗R1 j!

1C)⊕(j!
2C⊗R2 j!

2C)−−→C⊗RC −−→ 0

with Z[Z2] acting by x ⊗ y−−→± y ⊗ x. In the terminology of Ranicki [47]
the following algebraic transversality holds : for any n-dimensional quadratic
complex over R

(C, ψ ∈ Qn(C) = Hn(Z2; C ⊗R C))

there exist an (n − 1)-dimensional quadratic complex (E, θ) over S and
n-dimensional quadratic pairs

Γ1 = ((i1)!E−−→D1, (δ1θ, (i1)!θ)) , Γ2 = ((i2)!E−−→D2, (δ2θ, (i2)!θ))

over R1, R2 such that the union n-dimensional quadratic complex over R
is homotopy equivalent to (C,ψ)

(j1)!Γ1 ∪ (j2)!Γ2 ' (C, ψ) .

The algebraic Poincaré splitting method of Ranicki [48, §§7.5,7.6] gives a
Mayer-Vietoris exact sequence in quadratic L-theory

. . .−−→LI
n(S)⊕UNiln+1−−→Ln(R1)⊕ Ln(R2)−−→Ln(R)

−−→LI
n−1(S)⊕UNiln−−→Ln−1(R1)⊕ Ln−1(R2)−−→Ln−1(R)−−→ . . .
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with Ln(R)−−→UNiln split surjections and

I = im(K1(R)−−→K0(S)) = ker(K0(S)−−→K0(R1)⊕K0(R2)) ⊆ K0(S) ,

using the algebraic transversality given by (∗∗) to replace the geometric
transversality of [48, 7.5.1]. There is a corresponding Mayer-Vietoris exact
sequence in symmetric L-theory. This type of algebraic Poincaré transver-
sality was already used in Milgram and Ranicki [32] and Ranicki [50] for
the L-theory of Laurent polynomial extensions and the associated lower
L-theory.

§9. With one bound

The applications of bounded and controlled algebra to splitting theorems
in topology and the Novikov conjectures depend on the development of an al-
gebraic theory of transversality : algebraic Poincaré complexes in categories
associated to topological spaces are shown to have enough transversality
properties of manifolds mapping to the spaces to construct a ‘disassembly’
map. For the sake of simplicity we shall restrict attention to the bounded
algebra of Pedersen and Weibel [43] and Ranicki [50], even though it is the
continuously controlled algebra of Anderson, Connolly, Ferry and Pedersen
[1] which is actually used by Carlsson and Pedersen [14].

Given a metric space X and a ring A let CX(A) be the X-bounded
free A-module additive category, with objects the direct sum of f.g. free
A-modules graded by X

M =
∑

x∈X

M(x)

such that M(K) =
∑

x∈K

M(x) is a f.g. free A-module for every bounded

subspace K ⊆ X, and with morphisms the A-module morphisms

f = {f(y, x)} : M =
∑

x∈X

M(x) −−→ N =
∑

y∈X

N(y)

for which there exists a number b > 0 with f(y, x) = 0 : M(x)−−→N(y) for
all x, y ∈ X with d(x, y) > b.

A proper eventually Lipschitz map f : X−−→Y of metric spaces is
a function (not necessarily continuous) such that the inverse image of a
bounded set is a bounded set, and there exist numbers r, k > 0 depending
only on f such that for all s > r and all x, y ∈ X with d(x, y) < s it is the
case that d(f(x), f(y)) < ks. Such a map induces a functor

f ! : CX(A) −−→ CY (A) ;

M =
∑

x∈X

M(x) −−→ f !M =
∑

y∈Y

( ∑

x∈f−1(y)

M(x)
)

.
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If f : X−−→Y is a homotopy equivalence in the proper eventually Lips-
chitz category then f ! : CX(A)−−→CY (A) is an equivalence of additive
categories, inducing isomorphisms in algebraic K-theory.

Let PX(A) be the idempotent completion of CX(A), the additive cate-
gory in which an object (M, p) is an object M in CX(A) together with a
projection p = p2 : M−−→M , and a morphism f : (M, p)−−→(N, q) is a mor-
phism f : M−−→N in CX(A) such that qfp = f : M−−→N . The reduced
projective class group of PX(A) is defined by

K̃0(PX(A)) = coker(K0(CX(A))−−→K0(PX(A))) .

Example 9.1 A bounded metric space X is contractible in the proper
eventually Lipschitz category, so that CX(A) is equivalent to the additive
category of based f.g. free A-modules, PX(A) is equivalent to the additive
category of f.g. projective A-modules and

K∗(CX(A)) = K∗(PX(A)) = K∗(A) (∗ 6= 0) ,

K0(CX(A)) = im(K0(Z)−−→K0(A)) , K0(PX(A)) = K0(A) ,

K̃0(PX(A)) = coker(K0(Z)−−→K0(A)) = K̃0(A) .

Suppose given a metric space X with a decomposition

X = X+ ∪X− .

Define for any b ≥ 0 the subspaces

X+
b = {x ∈ X | d(x, y) ≤ b for some y ∈ X+} ,

X−
b = {x ∈ X | d(x, z) ≤ b for some z ∈ X−} ,

Yb = {x ∈ X | d(x, y) ≤ b and d(x, z) ≤ b for some y ∈ X+, z ∈ X−} .

The inclusions X+−−→X+
b , X−−−→X−

b are homotopy equivalences in the
proper eventually Lipschitz category, so that

K∗(CX+
b

(A)) = K∗(CX+(A)) , K∗(CX−
b

(A)) = K∗(CX−(A)) .

Proposition 9.2 (Pedersen and Weibel [43], Carlsson [12]) For any metric
space X and any decomposition X = X+ ∪ X− there is defined a Mayer-
Vietoris exact sequence in bounded K-theory

. . .−−→Kn(PX+(A))⊕Kn(PX−(A))−−→Kn(PX(A))
∂−−→ lim−→

b

Kn−1(PYb
(A))−−→Kn−1(PX+(A))⊕Kn−1(PX−(A))−−→ . . .
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with

Yb = {x ∈ X | d(x, y) ≤ b and d(x, z) ≤ b for some y ∈ X+, z ∈ X−} .

Proof The original proof in [43] (for open cones) and the generalization in
[12] use the heavy machinery of the algebraic K-theory spectra. For n = 1
there is a direct proof in Ranicki [50], as follows. Every finite chain complex
C in CX(A) is such that there exist subcomplexes C+, C− ⊆ C with C±

defined in CX±
b

(A) and C+ ∩C− defined in CYb
(A) for some b ≥ 0. Thus C

admits a ‘Mayer-Vietoris presentation’

0 −−→ C+ ∩ C− −−→ C+ ⊕ C− −−→ C −−→ 0 .

If C is contractible then C+ and C− are PYb
(A)-finitely dominated chain

complexes. The reduced version ∂̃ of the connecting map ∂ in the Mayer-
Vietoris exact sequence

. . . −−→ K1(CX+(A))⊕K1(CX−(A)) −−→ K1(CX(A))
∂−−→ lim−→

b

K0(PYb
(A)) −−→ K0(PX+(A))⊕K0(PX−(A)) −−→ . . .

sends the Whitehead torsion τ(C) ∈ K1(CX(A)) to the reduced projective
class

∂̃τ(C) = [C+] = −[C−] ∈ lim−→
b

K̃0(PYb
(A)) ,

which is such that ∂̃τ(C) = 0 if and only if there exists a presentation
(C+, C−) with C+, C−, C+ ∩ C− contractible. See [50] for further details.

Example 9.3 For any metric space Y let

X = Y × R , X+ = Y × R+ , X− = Y × R− ,

so that
X = X+ ∪X− , X+ ∩X− = Y × {0} .

In this case

K∗(PX+(A)) = K∗(PX−(A)) = 0 (Eilenberg swindle) ,

K∗+1(PX(A)) = lim−→
b

K∗(PYb
(A)) = K∗(PY (A)) .

The connecting map

∂ : K1(CX(A)) = K1(PX(A))−−→K0(PY (A)) ; τ(C)−−→ [C+] = −[C−]
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is an isomorphism, with τ(C) the torsion of a contractible finite chain com-
plex C in CX(A) and (C+, C−) any Mayer-Vietoris presentation of C.

A CW complex M is X-bounded if it is equipped with a proper map
M−−→X such that the diameters of the images of the cells of M are uni-
formly bounded in X, so that the cellular chain complex C(M) is defined
in CX(Z). We shall only be concerned with metric spaces X which are
allowable in the sense of Ferry and Pedersen [18], and finite-dimensional X-
bounded CW complexes M which are (−1)- and 0-connected in the sense
of [18], with a bounded fundamental group π. The cellular chain complex
C(M̃) of the π-cover M̃ of M is defined in CX(Z[π]). Similarly for cellular
maps, with induced chain maps in CX(Z[π]).

If f : M−−→N is an X-bounded homotopy equivalence of X-bounded
CW complexes with bounded fundamental group π the X-bounded White-
head torsion is given by

τ(f) = τ(f̃ : C(M̃)−−→C(Ñ))

∈ Wh(CX(Z[π])) = coker(K1(CX(Z))⊕ {±π}−−→K1(CX(Z[π])))

with f̃ : C(M̃)−−→C(Ñ) the induced chain equivalence in CX(Z[π]). If
X = X+ ∪X− the algebraic splitting obstruction

∂τ(f) ∈ lim−→
b

K0(PYb
(Z[π]))

is such that ∂τ(f) = 0 if and only if f is X-bounded homotopic to an
X-bounded homotopy equivalence (also denoted by f) such that the re-
strictions f | : f−1(Y )−−→Y are Y -bounded homotopy equivalences, with
Y = X+, X−, Yb (for some b ≥ 0).

The lower K-groups K−∗(A) of Bass [3, XII] are defined for any ring
A to be such that

K1(A[Zi]) =
i∑

j=0

(
i

j

)
K1−j(A)⊕ Ñil-groups .

For a group ring A = Z[π]

Wh(π × Zi) =
i∑

j=0

(
i

j

)
Wh1−j(π)⊕ Ñil-groups ,

where the lower Whitehead group are defined by

Wh1−j(π) =





Wh(π) if j = 0

K̃0(Z[π]) if j = 1
K1−j(Z[π]) if j ≥ 2 .
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Bass, Heller and Swan [4] proved that Wh(Zi) = 0 (i ≥ 1), so that

Wh1−∗({1}) = 0 .

Example 9.4 (Pedersen [40]) The Ri-bounded K-groups of a ring A are
the lower K-groups of A

K∗(PR i(A)) = K∗−i(A) .

The Ri-bounded Whitehead groups of a group π are the lower Whitehead
groups

Wh(CRi(π)) = Wh1−i(π) (i ≥ 1) .

There is a corresponding development of bounded L-theory.
An involution on the ground ring A induces a duality involution on the

X-bounded A-module category

∗ : CX(A) −−→ CX(A) ; M =
∑

x∈X

M(x) −−→ M∗ =
∑

x∈X

M(x)∗ ,

with M(x)∗ = HomA(M(x), A).

Definition 9.5 (Ranicki [49], [50]) The X-bounded symmetric L-groups
L∗(CX(A)) are the cobordism groups of symmetric Poincaré complexes in
CX(A). Similarly for the X-bounded quadratic L-groups L∗(CX(A)).

The symmetrization maps 1 + T : L∗(CX(A))−−→L∗(CX(A)) are iso-
morphisms modulo 8-torsion. For bounded X CX(A) is equivalent to the
category of f.g. free A-modules and

L∗(CX(A)) = L∗(A) , L∗(CX(A)) = L∗(A) .

The functor

{metric spaces and proper eventually Lipschitz maps}
−−→ {Z-graded abelian groups} ; X −−→ L∗(CX(A))

was shown in Ranicki [50] to be within a bounded distance (in the non-
technical sense) of being a generalized homology theory. The functor is
homotopy invariant, and has the following bounded excision property :
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Proposition 9.6 (Ranicki [50, 14.2]) For any metric space X and any de-
composition X = X+∪X− there is defined a Mayer-Vietoris exact sequence
in bounded L-theory

. . .−−→Ln(CX+(A))⊕ Ln(CX−(A))−−→Ln(CX(A))
∂−−→ lim−→

b

LJb
n−1(PYb

(A))−−→Ln−1(CX+(A))⊕ Ln−1(CX−(A))−−→ . . . ,

with

Yb = {x ∈ X | d(x, y) ≤ b and d(x, z) ≤ b for some y ∈ X+, z ∈ X−} ,

Jb = ker(K̃0(PYb
(A))−−→K̃0(PX(A)))

⊆ K̃0(PYb
(A)) = coker(K0(CYb

(A))−−→K0(PYb
(A))) .

The Jb-intermediate quadratic L-groups LJb∗ (PYb
(A)) are such that there is

defined a Rothenberg-type exact sequence

. . . −−→ Ln(CYb
(A)) −−→ LJb

n (PYb
(A))

−−→ Ĥn(Z2; Jb) −−→ Ln−1(CYb
(A)) −−→ . . .

with Ĥ∗(Z2; Jb) the Tate Z2-cohomology groups of the duality involution
∗ : Jb−−→Jb.

The lower L-groups L
〈−j〉
∗ (A) of Ranicki [45] are defined for any ring

with involution A to be such that

Ln(A[Zi]) =
i∑

j=0

(
i

j

)
L
〈1−j〉
n−j (A) ,

with L
〈1〉
∗ (A) = Lh

∗(A) = L∗(A) the free L-groups and L
〈0〉
∗ (A) = Lp

∗(A) the
projective L-groups.

Example 9.7 The Ri-bounded L-groups of a ring with involution A were
identified in Ranicki [50] with the lower L-groups of A

L∗(CRi(A)) = L
〈1−i〉
∗−i (A) .

Definition 9.8 The X-bounded symmetric signature of an m-dimen-
sional X-bounded geometric Poincaré complex M with bounded fundamen-
tal group π is the cobordism class

σ∗(M) = (C(M̃), φ) ∈ Lm(CX(Z[π])) ,
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with φ the symmetric structure of the Poincaré duality chain equivalence
[M ] ∩ − : C(M̃)m−∗−−→C(M̃).

The standard algebraic mapping cylinder argument shows :

Proposition 9.9 The X-bounded symmetric signature is an X-bounded
homotopy invariant of an X-bounded geometric Poincaré complex.

Definition 9.10 Let (f, b) : (M ′, ∂M ′)−−→(M,∂M) be a normal map from
an X-bounded m-dimensional manifold with boundary (M ′, ∂M ′) to an
X-bounded m-dimensional geometric Poincaré pair (M,∂M), such that M
has bounded fundamental group π, and ∂f : ∂M ′−−→∂M is an X-bounded
homotopy equivalence. The X-bounded quadratic signature of (f, b) is
the quadratic Poincaré cobordism class

σ∗(f, b) = (C(f !), ψ) ∈ Lm(CX(Z[π])) ,

with ψ the quadratic structure on the algebraic mapping cone C(f !) of the
Umkehr chain map in CX(Z[π])

f ! : C(M̃) ' C(M̃, ∂M̃)m−∗ f∗−−→ C(M̃ ′, ∂M̃ ′)m−∗ ' C(M̃) .

The quadratic Poincaré complex (C(f !), ψ) in 9.10 can be obtained in two
(equivalent) ways : either by the X-bounded version of Wall [58, §§5,6] by
first performing geometric surgery below the middle dimension to obtain a
quadratic form/formation in CX(Z[π]) as in Ferry and Pedersen [18], or by
the X-bounded version of Ranicki [47], using algebraic Poincaré complexes
and the chain bundle theory of Weiss [59].

Proposition 9.11 The X-bounded quadratic signature is the bounded sur-
gery obstruction of Ferry and Pedersen [18], such that σ∗(f, b) = 0 if (and
for m ≥ 5) (f, b) is normal bordant to an X-bounded homotopy equivalence.

The symmetrization of the X-bounded quadratic signature is the X-
bounded symmetric signature

(1 + T )σ∗(f, b) = σ∗(M ′ ∪∂f −M) ∈ Lm(CX(Z[π])) .

Let M be an X-bounded CW complex with bounded fundamental group
π. See Ranicki [51, Appendix C5] for the construction of the locally finite
assembly maps

Alf : H lf
• (M ;L•) −−→ L•(CX(Z[π])) .
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The locally finite homology spectrum H lf
• (M ;L•) is defined using locally

finite sheaves over M of quadratic Poincaré complexes over Z, and the L-
spectrum L•(CX(Z[π])) is defined using quadratic Poincaré complexes in
CX(Z[π]). The X-bounded structure groups of M

Sb
∗(M) = π∗(Alf : H lf

• (M ;L•)−−→L•(CX(Z[π])))

are the relative groups in the X-bounded algebraic surgery exact
sequence

. . . −−→ Sb
m+1(M) −−→ H lf

m (M ;L•)
Alf

−−→ Lm(CX(Z[π]))

−−→ Sb
m(M) −−→ . . . .

Proposition 9.12 (Ranicki [50], [51])
(i) An m-dimensional X-bounded manifold M with bounded fundamental
group π has an L•(Z)-coefficient fundamental class [M ]L ∈ H lf

m (M ;L•(Z))
with locally finite assembly the X-bounded symmetric signature

Alf ([M ]L) = σ∗(M) ∈ Lm(CX(Z[π])) .

A normal map (f, b) : M ′−−→M has a normal invariant

[f, b]L ∈ H lf
m (M ;L•) = H0(M ;L•) = [M, G/TOP ] .

The surgery obstruction of (f, b) is the image of the normal invariant under
the locally finite assembly map

σ∗(f, b) = Alf ([f, b]L) ∈ im(Alf : H lf
m (M ;L•)−−→Lm(CX(Z[π])))

= ker(Lm(CX(Z[π]))−−→Sb
m(M)) .

(ii) An m-dimensional X-bounded geometric Poincaré complex M has a
total surgery obstruction

sb(M) ∈ Sb
m(M)

such that sb(M) = 0 if (and for m ≥ 5 only if) M is X-bounded homotopy
equivalent to an m-dimensional X-bounded topological manifold. The total
surgery obstruction has image [sb(M)] = 0 ∈ H lf

m−1(M ;L•) if and only
if the Spivak normal fibration νM : M−−→BG admits a TOP reduction
ν̃M : M−−→BTOP , in which case sb(M) = [σ∗(f, b)] is the image of the X-
bounded surgery obstruction σ∗(f, b) ∈ Lm(CX(Z[π])) for any normal map
(f, b) : M ′−−→M .
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(iii) An X-bounded homotopy equivalence h : M ′−−→M of m-dimensional
X-bounded topological manifolds has a structure invariant

sb(h) ∈ Sb
m+1(M)

such that sb(h) = 0 if (and for m ≥ 5 only if) h is X-bounded homotopic to
a homeomorphism. Moreover, for m ≥ 5 every element s ∈ Sb

m+1(M) is the
structure invariant s = sb(h) of such an X-bounded homotopy equivalence
h : M ′−−→M . Thus

Sb
m+1(M) = Sb,TOP (M)

is the X-bounded topological manifold structure set of M , with a surgery
exact sequence

. . . −−→ Lm+1(CX(Z[π])) −−→ Sb,TOP (M) −−→ [M, G/TOP ]

−−→ Lm(CX(Z[π]))

as in Ferry and Pedersen [18, §11].

For any subspace K ⊆ SN define the open cone metric space

O(K) = {tx |x ∈ K, t ≥ 0} ⊆ RN+1 ,

such that for compact K

H lf
∗+1(O(K);L•) = H̃∗(K;L•) .

In particular, O(SN ) = RN+1 and

H lf
∗+1(O(SN );L•) = H̃∗(SN ;L•) = L∗−N (Z) .

Proposition 9.13 (Ranicki [50], [51]) (i) The locally finite assembly maps

Alf : H lf
∗ (O(K);L•(Z)) −−→ L∗(CO(K)(Z))

are isomorphisms for any compact polyhedron K ⊆ SN , with Sb
∗(O(K)) = 0.

Similarly for symmetric L-theory.
(ii) The symmetric L-theory orientation [M ]L ∈ Hm(M ;L•(Z)) of a closed
m-dimensional manifold M is a topological invariant.
Proof (i) For any ring with involution A every quadratic complex (C,ψ)
in CO(K)(A) is cobordant to the assembly A(Γ) of a locally finite sheaf Γ
over O(K) of quadratic complexes over A. If (C, ψ) is a quadratic Poincaré
complex it may not be possible to choose Γ such that each of the stalks
is a quadratic Poincaré complex over A — the reduced lower K-groups
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K̃−∗(A) are the potential obstructions to such a quadratic Poincaré disas-
sembly. This is an O(K)-bounded algebraic L-theory version of the lower
Whitehead torsion obstruction (10.1 below) to codimension 1 splitting of
O(K)-bounded homotopy equivalences of O(K)-bounded open manifolds.
For A = Z the obstruction groups are K̃−∗(Z) = Wh1−∗({1}) = 0 by Bass,
Heller and Swan [4]. See [51, Appendix C14] and §10 below for further de-
tails.
(ii) Let M+ = M ∪{pt.}. Regard M ×R as an (m+1)-dimensional O(M+)-
bounded geometric Poincaré complex via the projection M ×R−−→O(M+),
with O(M+) defined using any embedding M+ ⊂ SN (N large). The sym-
metric L-theory orientation of M is the O(M+)-bounded symmetric signa-
ture of M × R

σ∗(M × R) = [M ]L

∈ Lm+1(CO(M+)(Z)) = H lf
m+1(O(M+);L•(Z)) = Hm(M ;L•(Z)) .

A homeomorphism h : M ′−−→M determines an O(M+)-bounded homotopy
equivalence h× 1 : M ′ × R−−→M × R, so that

[M ]L = σ∗(M × R) = (h× 1)∗σ∗(M ′ × R) = h∗[M ′]L

∈ Hm(M ;L•(Z)) = Lm+1(CO(M+)(Z)) .

See [51, Appendix C16] for further details.

Remark 9.14 (i) As in the original proof of the topological invariance of
the rational Pontrjagin classes due to Novikov [38] it suffices to prove the
topological invariance of signatures of special submanifolds – cf. 2.6. As
in the proof of 4.1 suppose given a homeomorphism h : M ′m−−→Mm of
m-dimensional (differentiable) manifolds and a special submanifold N4k ⊂
Mm × Rj . Let

W = N × Ri ⊂ M × Rj (i = m + j − 4k)

be a regular neighbourhood of N in M × Rj , and let

W ′ = (h× idR j )−1(W ) ⊂ M ′ × Rj .

Now W ′ is an (m+j)-dimensional Ri-bounded manifold which is Ri-bounded
homotopy equivalent to W , so that the Ri-bounded symmetric signatures
are such that

σ∗(W ′) = σ∗(W ) = σ(N) ∈ Lm+j(CRi(Z)) = L4k(Z) = Z .
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Let N ′4k ⊂ W ′ be the inverse image submanifold obtained by making the
homeomorphism (h × idR j )| : W ′−−→W transverse regular at N ⊂ W , so
that N ′ is the transverse inverse image of 0 ∈ Ri under W ′−−→Ri. The al-
gebraic isomorphism Lm+j(CRi(Z)) ∼= L4k(Z) of Ranicki [50] sends σ∗(W ′)
to σ(N ′). Thus

σ(N ′) = σ∗(W ′) = σ∗(W ) = σ(N) ∈ Z ,

giving (yet again) the topological invariance of the signatures of special
submanifolds.
(ii) The topological invariance of signatures of special submanifolds is a
formal consequence of the topological invariance of the symmetric L-theory
orientation, as follows. If N4k ⊂ Mm × Rj is a special submanifold there
exists a proper map

e : M × Rj −−→ Ri (i = m + j − 4k)

such that N = e−1(0), and there is defined a commutative diagram

Hm(M ;L•(Z)) = H lf
m+j(M × Rj ;L•(Z))
�������

e∗

u

H lf
m+j(R

i;L•(Z)) = L4k(Z)

H lf
m+j(M × Rj , (M × Rj)\N ;L•(Z)) = H4k(N ;L•(Z))

NN
NN
NNP

A

with A the simply-connected symmetric L-theory assembly map. The sym-
metric L-theory orientation [M ]L ∈ Hm(M ;L•(Z)) has image the signature
of N

e∗([M ]L) = A([N ]L) = σ(N) ∈ L4k(Z) = Z .

The topological invariance of the symmetric L-theory orientation [M ]L thus
implies the topological invariance of the signatures σ(N) of special subman-
ifolds, and hence the topological invariance of the L-genus and the rational
Pontrjagin classes L(M), p∗(M) ∈ H4∗(M ;Q) (as in 4.1).

§10. Codimension 1 splitting for non-compact manifolds

The obstruction theory for splitting homotopy equivalences of compact
manifolds along codimension 1 submanifolds involves both algebraic K- and
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L-theory, as recalled in §8. In fact, the approach to the (integral) Novikov
conjecture of Carlsson and Pedersen [14] makes use of the obstruction the-
ory for splitting bounded homotopy equivalences of non-compact manifolds
along codimension 1 submanifolds, which only requires algebraic K-theory
obstructions to be considered.

Bounded Codimension 1 Splitting Theorem 10.1 (Ferry and Pedersen
[18, 7.2], Ranicki [50, 7.5]) Let h : M ′m−−→Mm be an X ×R-bounded homo-
topy equivalence of m-dimensional X × R-bounded manifolds with bounded
fundamental group π. Assume the given proper map ρ : M−−→X × R is
transverse regular at X × {0} ⊂ X × R, so that

Nm−1 = ρ−1(X × {0}) ⊂ Mm

is a codimension 1 X-bounded submanifold with trivial normal bundle and
bounded fundamental group π. The X × R-bounded Whitehead torsion

τ(h) ∈ Wh(CX×R(Z[π])) = K̃0(PX(Z[π]))

is such that τ(h) = 0 if (and for m ≥ 6 only if) h splits along N ⊂ M .
K-theoretic proof. Make h : M ′−−→M transverse regular at N ⊂ M , and
let N ′ = h−1(N) ⊂ M ′, so that as in the K-theoretic proof of 8.1 we have

h = h+ ∪g h− : M ′ = M ′+ ∪N ′ M ′− −−→ M = M+ ∪N M− .

Since h is an X ×R-bounded homotopy equivalence the natural chain map
is a chain equivalence in CX×R(Z[π])

C(Ñ ′, Ñ) ' C(M̃ ′+, M̃+)⊕ C(M̃ ′−, M̃−) ,

and Poincaré duality defines a chain equivalence in CX×R(Z[π])

C(M̃ ′+, M̃+)m−1−∗ ' C(M̃ ′−, M̃−) .

The restriction X-bounded normal map

(g, c) = h| : N ′ −−→ N

is an X-bounded homotopy equivalence if and only if the chain complex
C(M̃ ′+, M̃+) is chain contractible. The isomorphism given by 9.3

∂ : Wh(CX×R(Z[π]))
'−−→ K̃0(PX(Z[π]))

sends τ(h) to the reduced projective class of the CX(Z[π])-finitely dominated
cellular Z[π]-module chain complex C(M̃ ′+, M̃+). For m ≥ 6 τ(h) = 0 if
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and only if it is possible to modify N ′ by X-bounded handle exchanges
inside M ′ until the X-bounded normal map h| : N ′−−→N is a homotopy
equivalence, if and only if h splits along N ⊂ M .
L-theoretic proof. The unobstructed case τ(h) = 0 ∈ Wh(CX×R(Z[π]))
proceeds as in the L-theoretic proof of 10.1 to compute the simple X × R-
bounded topological manifold structure set of M

. . . −−→ Ls
m+1(CX×R(Z[π])) −−→ Sb,s

m+1(M)

−−→ H lf
m (M ;L•) −−→ Ls

m(CX×R(Z[π])) −−→ . . . .

It follows from the algebraic computation of Ranicki [50]

Ls
m+1(CX×R(Z[π])) = Lm(CX(Z[π]))

that there is defined an exact sequence

. . . −−→ Sb
m+1(M\N) −−→ Sb,s

m+1(M) −−→ Sb
m(N) −−→ Sb

m(M\N) −−→ . . . .

The structure set Sb,s
m+1(M) of simple X × R-bounded homotopy equiva-

lences of m-dimensional manifolds h : M ′−−→M is thus identified with the
structure set Sb

m+1(N−−→M\N) of X ×R-bounded homotopy equivalences
h : M ′−−→M which split along N ⊂ M

Sb,s
m+1(M) = Sb

m+1(N−−→M\N) .

Example 10.2 For m ≥ 6 an X × R-bounded homotopy equivalence of
m-dimensional X × R-bounded manifolds of the type

h : M ′m −−→ Mm = Nm−1 × R

is homotopic to

g × idR : M ′ = N ′ × R −−→ M = N × R

for an X-bounded homotopy equivalence of (m−1)-dimensional X-bounded
manifolds g : N ′−−→N if and only if

τ(h) = 0 ∈ Wh(CX×R(Z[π])) = K̃0(PX(Z[π])) .

The algebraic surgery exact sequences for the structure set Sb,s
m+1(N × R)

of simple X × R-bounded homotopy equivalences h : M ′−−→M and the
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structure set Sb
m(N) of X-bounded homotopy equivalences g : N ′−−→N are

related by an isomorphism

. . . w H lf
m (N ;L•) wAlf

u

∼=

Lm(CX(Z[π])) w

u

∼=

Sb
m(N) w

u

∼=

. . .

. . . w H lf
m+1(N × R;L•) wAlf

Ls
m+1(CX×R(Z[π])) w Sb,s

m+1(N × R) w . . .
so that

Sb,s
m+1(N × R) = Sb

m(N) ,

and simple X×R-bounded homotopy equivalences h : M ′−−→M split along
N × {0} ⊂ M = N × R.

Proposition 10.3 Let N be a compact n-dimensional manifold, and let W
be an open (n + i)-dimensional Ri-bounded manifold with an Ri-bounded
homotopy equivalence h : W−−→N ×Ri (i ≥ 1). The Ri-bounded Whitehead
torsion

τ(h) ∈ Wh(CRi(Z[π])) = Wh1−i(Z[π]) (π = π1(N))

is such that τ(h) = 0 if (and for n ≥ 5 only if) h is Ri-bounded homotopic
to

g × idRi : W = N ′ × Ri −−→ N × Ri

for some closed codimension i submanifold N ′ ⊂ W , with g : N ′−−→N a
homotopy equivalence.
Proof See Bryant and Pacheco [8] for a proof based on the geometric twist-
glueing technique of Siebenmann [56]. Alternatively, apply 10.2 i times.

§11. Splitting the assembly map

This section is an outline of the infinite transfer method used by Carlsson
and Pedersen [14] to prove the integral Novikov conjecture by splitting the
algebraic L-theory assembly map

A : H∗(Bπ;L•(Z)) −−→ L∗(Z[π])

for torsion-free groups π with finite classifying space Bπ, such that Eπ has
a sufficiently nice compactification. The method may be viewed as a partic-
ularly well-organized way of avoiding the algebraic K-theory codimension



On the Novikov conjecture 329

1 splitting obstructions to deforming homotopy equivalences of manifolds
with fundamental group π to homeomorphisms.

The homotopy fixed set of a pointed space X with π-action is

Xhπ = mapπ(Eπ+, X) ,

with Eπ+ = Eπ ∪ {pt.}.
Let K be a connected compact polyhedron, regarded as a metric space.

The action of the fundamental group π = π1(K) on the universal cover K̃
induces an action of π on the spectrum L•(C K̃

(Z)), with the fixed point
spectrum such that

L•(C K̃
(Z))π ' L•(CK(Z[π])) ' L•(Z[π]) .

The action of π on the cofibration sequence of spectra

H lf
• (K̃;L•)

Alf

−−→ L•(C K̃
(Z)) −−→ Sb(K̃)

determines a cofibration sequence of the homotopy fixed point spectra

H lf
• (K̃,L•)hπ

Alf

−−→ L•(C K̃
(Z))hπ −−→ Sb(K̃)hπ

with a homotopy equivalence

H lf
• (K̃,L•)hπ ' H •(K,L•) .

The infinite transfer maps of Ranicki [51, p. 328]

trf : L∗(Z[π]) = L∗(CK(Z[π])) = L∗(C K̃
(Z)π) −−→ L∗(C K̃

(Z))

extend to define a natural transformation of algebraic surgery exact se-
quences

. . . w Sm+1(K) w

u
trf

Hm(K;L•) wA

u
trf ∼=

Lm(Z[π]) w

u
trf

Sm(K) w

u
trf

. . .

. . . w Sb,hπ
m+1(K̃) w H lf,hπ

m (K̃;L•) wAlf
Lm(C

K̃
(Z)hπ) w Sb,hπ

m (K̃) w . . .
with

Sb,hπ
∗ (K̃) = π∗(Sb(K̃)hπ) , L∗(C K̃

(Z)hπ) = π∗(L•(C K̃
(Z))hπ) .
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The composite

Sm+1(K)
trf−−−→ Sb,hπ

m+1(K̃) −−−→ Sb
m+1(K̃)

sends the structure invariant s(h) ∈ Sm+1(K) of a homotopy equivalence h :
M ′−−→M of compact m-dimensional manifolds with a π1-isomorphism refer-
ence map M−−→K to the K̃-bounded structure invariant sb(h̃) ∈ Sb

m+1(K̃)
of the induced K̃-bounded homotopy equivalence h̃ : M̃ ′−−→M̃ of the uni-
versal covers.

The method of infinite transfers first applied by Carlsson [13] to the
algebraic K-theory version of the Novikov conjecture has the following ap-
plication in algebraic L-theory to the integral Novikov conjecture :

Proposition 11.1 Let π be a group such that the classifying space Bπ
has the homotopy type of a finite CW complex, so that π is torsion-free.
If the universal cover Eπ of Bπ is realized by a contractible metric space
E with a free π-action and such that the locally finite assembly maps are
isomorphisms

Alf : H lf
∗ (E;L•(Z))

'−−→ L∗(CE(Z))

then the integral Novikov conjecture holds for π, i.e. the assembly maps

A : H∗(Bπ;L•(Z)) −−→ L∗(Z[π])

are split injections.
Proof The Eπ-bounded structure spectrum Sb(Eπ) is contractible, and
hence so is the homotopy fixed point spectrum Sb(Eπ)hπ. The locally finite
assembly map

Alf
π : H lf

• (Eπ;L•(Z))hπ −−→ L•(CEπ(Z))hπ

is a homotopy equivalence, so that there are defined homotopy equivalences

H •(Bπ;L•(Z)) ' H lf
• (Eπ;L•(Z))hπ ' L•(CEπ(Z))hπ .

The infinite transfer maps

trf : L•(Z[π]) ' L•(CEπ(Z))π −−→ L•(CEπ(Z))hπ ' H •(Bπ;L•(Z))

induce splitting maps trf : L∗(Z[π])−−→H∗(Bπ;L•(Z)) for the assembly
maps A : H∗(Bπ;L•(Z))−−→L∗(Z[π]).
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Example 11.2 Let π = Zn, so that

Bπ = Tn , E = Eπ = Rn .

Compactify E by adding the (n− 1)-sphere at infinity

E = Rn ∪ Sn−1 = Dn ,

extending the free Zn-action on Rn by the identity on ∂E = Sn−1. In this
case the locally finite assembly isomorphisms

Alf : H∗(Dn, Sn−1;L•(Z)) = H lf
∗ (Rn;L•(Z))

= H̃∗−1(Sn−1;L•(Z)) = L∗−n(Z)
'−−→ L∗(CRn(Z))

and the assembly isomorphisms

A : H∗(Tn;L•(Z))
'−−→ L∗(Z[Zn])

were already obtained in Ranicki [45], [50], using the identification of the
Rn-bounded L-groups of a ring with involution A with the lower L-groups

L∗(CRn(A)) = L
〈1−n〉
∗−n (A)

and the splitting theorem

L∗(A[Zn]) =
n∑

k=0

(
n

k

)
L
〈1−k〉
∗−k (A) ,

with L
〈−∗〉
∗ (Z) = L∗(Z) by virtue of Wh−∗({1}) = 0.

Example 11.3 Let π = π1(M) be the fundamental group of a complete
closed n-dimensional Riemannian manifold with non-positive sectional cur-
vature M . The universal cover E = M̃ is a complete simply-connected open
Riemannian manifold such that the exponential map at any point x ∈ E
defines a diffeomorphism

expx : τx(E) = Rn −−→ E

by the Hadamard-Cartan theorem, so that M = Bπ is aspherical. The
locally finite assembly map

Alf : H lf
∗ (E;L•(Z)) = L∗−n(Z) −−→ L∗(CE(Z))
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is an isomorphism, so that the integral Novikov conjecture holds for π by
11.1. See Farrell and Hsiang [16] for the original geometric proof, which is
generalized by Carlsson and Pedersen [14] (cf. 11.5 below) by abstracting
the properties of the π-action on the compactification E = Dn near the
sphere at ∞ ∂E = E\E = Sn−1.

Example 11.4 For any integer g ≥ 1 let

πg = {a1, a2, . . . , a2g | [a1, a2] . . . [a2g−1, a2g]}

be the fundamental group of the closed oriented surface Mg of genus g, so
that

Bπg = Mg , E = Eπg = R2 .

For g = 1 Mg = T 2, as already considered in 11.2. For g ≥ 2 Mg has a
hyperbolic structure, and the free action of πg on E = R2 = int(D2) extends
to a (non-free) action on E = D2, which is the identity on ∂E = S1. The
hypotheses of 11.1 are satisfied, so that the assembly maps

A : h∗(Bπg) = H∗(Bπg;L•(Z)) −−→ L∗(Z[πg])

are split injections, and the integral Novikov conjecture holds for πg. In
fact, these assembly maps are isomorphisms, which may be verified by
the following argument (for which I am indebted to C.T.C.Wall). By the
Freiheitssatz for one-relator groups the normal subgroup ρg / πg generated
by a1, a2, . . . , a2g−1 is free, so that πg is the α-twisted extension of ρg by
Z = {a2g}

{1} −−→ ρg −−→ πg −−→ Z −−→ {1}
and

Z[πg] = Z[ρg]α[z, z−1]

is the α-twisted Laurent polynomial extension of Z[ρg], with

z = a2g , α(ai) = (a2g)−1aia2g (1 ≤ i ≤ 2g − 1) .

The assembly maps A : h∗(Bρg)−−→L∗(Z[ρg]) are isomorphisms by Cappell
[9]. A 5-lemma argument applied to the assembly map

. . . w hn(Bρg) w1−α

u
A

hn(Bρg) w

u
A

hn(Bπg) w

u
A

hn−1(Bρg) w

u
A

. . .

. . . w Ln(Z[ρg]) w1−α
Ln(Z[ρg]) w Ln(Z[πg]) w Ln−1(Z[ρg]) w . . .



On the Novikov conjecture 333

from the Wang exact sequence in group homology to the exact sequence
of Ranicki [46] for the L-theory of a twisted Laurent polynomial extension
(using Wh(πg) = 0) shows that the assembly maps

A : h∗(Bπg) = H∗(Bπg;L•(Z)) −−→ L∗(Z[πg])

are isomorphisms.

Theorem 11.5 (Carlsson and Pedersen [14]) Let π be a group with finite
classifying space Bπ such that the universal cover Eπ is realized by a con-
tractible metric space E with a free π-action, and with a compactification E
such that :
(a) the free π-action on E extends to a π-action on E (which need not be

free),
(b) E is contractible,
(c) compact subsets of E become small near the boundary ∂E = E\E,

i.e. for every point y ∈ ∂E, every compact subset K ⊆ E and for every
neighbourhood U of y in E, there exists a neighbourhood V of y in E
so that if g ∈ π and g(K) ∩ V 6= ∅ then g(K) ⊂ U .

Then the integral Novikov conjecture holds for π.

The proof of 11.5 uses infinite transfer maps (as in 11.1), but with the
continuously controlled category BX,Y (Z) of Anderson, Connolly, Ferry and
Pedersen [1] replacing the bounded category CE(Z) of Pedersen and Weibel
[43]. For a compact metrizable space X and a closed subspace Y ⊆ X
BX,Y (Z) is the category with the same objects as CE(Z), where E = X\Y .
A morphism in BX,Y (Z)

f = {f(x′, x)} : A =
∑

x∈E

A(x) −−→ B =
∑

x′∈E

B(x′)

is a Z-module morphism such that for every y ∈ Y and every neighbourhood
U ⊆ X of y there is a neighbourhood V ⊆ U such that

f(x′, x) = 0 : A(x) −−→ B(x′) (x ∈ V, x′ ∈ X\U)

(or equivalently f(A(V )) ⊆ B(U)). If E is dense in X and compact subsets
of E become small near the boundary ∂E = Y in E = X there is defined
a forgetful functor CE(Z)−−→BX,Y (Z). This functor induces isomorphisms
in K- and L-theory in certain cases with X contractible (e.g. if E = O(K)
is the open cone on a compact subcomplex K ⊆ SN and X = O(K) ∪ K
is the closed cone, with Y = K ⊂ X), but it is not known if it does so
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in general. See Pedersen [41] for the relationship between the bounded and
continuously controlled categories.

The algebraic transversality of Ranicki [50], [51] is extended in Carlsson
and Pedersen [14, 5.4] to prove that the continuously controlled L-theory
assembly maps

A : H lf
∗ (E;L•(Z)) = H∗(X, Y ;L•(Z)) −−→ L∗(BX,Y (Z))

are isomorphisms if E = Eπ and (X,Y ) = (E, ∂E) are as in 11.5 – this
is the key step in the proof. As in 10.1 there are potential lower White-
head torsion obstructions to splitting, which are avoided by the compu-
tation Wh−∗({1}) = 0 of Bass, Heller and Swan [4]. The assembly map
A : H lf,hπ

m (E;L•(Z))−−→Lm(BE,∂E(Z)hπ) in the commutative square

Hm(Bπ;L•(Z)) wA

u
trf ∼=

Lm(Z[π])

u
trf

H lf,hπ
m (E;L•(Z)) wA Lm(BE,∂E(Z)hπ)

is an isomorphism, giving the splitting of the assembly map

A : Hm(Bπ;L•(Z)) −−→ Lm(Z[π]) .

Example 11.6 As already noted by Carlsson and Pedersen [14], the work
of Bestvina and Mess [5] shows that negatively curved groups in the sense of
Gromov satisfy the conditions of Theorem 11.5, so that the integral Novikov
conjecture holds for these groups. The fundamental groups π of complete
Riemannian manifolds (of finite homotopy type) Bπ with non-positive cur-
vature are the main examples of such groups – cf. 11.3.

If π is in the class of groups satisfying the conditions of 11.5

L∗(Z[π]) = H∗(Bπ;L•)⊕ S∗(Bπ) .

It is worth investigating the extent to which S∗(Bπ) is determined by the
Cappell UNil-groups.

References

[1] D. R. Anderson, F. X.Connolly, S. Ferry and E. K.Pedersen, Algebraic
K-theory with continuous control at infinity, J. Pure and App. Alg. 94,
25–47 (1994)



On the Novikov conjecture 335

[2] M. Atiyah, The signature of fibre bundles, Papers in the honour of Ko-
daira, Tokyo Univ. Press, 73–84 (1969)

[3] H. Bass, Algebraic K-theory, Benjamin (1969)
[4] −−, A.Heller and R. Swan, The Whitehead group of a polynomial ex-

tension, Publ.Math. I. H. E. S. 22, 61–80 (1964)
[5] M. Bestvina and G. Mess, The boundary of negatively curved groups,

Journal of A. M. S. 4, 469–481 (1991)
[6] W. Browder, Structures on M × R, Proc. Camb.Phil. Soc. 61, 337–345

(1965)
[7] −−, Manifolds with π1 = Z, Bull. A. M. S. 72, 238–244 (1966)
[8] J. L. Bryant and P. S. Pacheco, K−i-obstructions to factoring an open

manifold, Topology and its Applications 29, 107–139 (1988)
[9] S. Cappell, Unitary nilpotent groups and hermitian K-theory I., Bull.

A.M. S. 80, 1117–1122 (1974)
[10] −−, A splitting theorem for manifolds, Inventiones Math. 33, 69–170

(1976)
[11] −−, On homotopy invariance of higher signatures, Inventiones Math.

33, 171–179 (1976)
[12] G. Carlsson, Homotopy fixed points in the algebraic K-theory of certain

infinite discrete groups Proc. James Conf. , LMS Lecture Notes 139,
5–10 (1989)

[13] −−, Bounded K-theory and the assembly map in algebraic K-theory,
in these proceedings

[14] −− and E. K. Pedersen, Controlled algebra and the Novikov conjectures
for K- and L-theory, Topology (to appear)

[15] F. T. Farrell and W.C. Hsiang, Manifolds with π1 = G ×α T , Amer. J.
Math. 95, 813–845 (1973)

[16] −− and −−, On Novikov’s conjecture for nonpositively curved mani-
folds, Ann. Math. 113, 197–209 (1981)

[17] −− and L. E. Jones, Rigidity in Geometry and Topology, Proc. 1990
I. C. M., Kyoto, 653–663 (1991)

[18] S. Ferry and E.K. Pedersen, Epsilon surgery theory, in these proceed-
ings

[19] −−, A. A. Ranicki and J. Rosenberg, A History and Survey of the
Novikov Conjecture, in these proceedings

[20] −− and S. Weinberger, A coarse approach to the Novikov conjecture, in
these proceedings

[21] M. Gromov, Geometric reflections on the Novikov conjecture, in these
proceedings

[22] −−, Positive curvature, macroscopic dimension, spectral gaps and higher
signatures, Functional Analysis on the Eve of the 21st Century (Proc.
conf. in honor of I. M. Gelfand’s 80th birthday), Progress in Math.,
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Analytic Novikov for topologists

Jonathan Rosenberg

Abstract. We explain for topologists the “dictionary” for understanding
the analytic proofs of the Novikov conjecture, and how they relate to the
surgery-theoretic proofs. In particular, we try to explain the following points:

(1) Why do the analytic proofs of the Novikov conjecture require the
introduction of C∗-algebras?

(2) Why do the analytic proofs of the Novikov conjecture all use K-
theory instead of L-theory? Aren’t they computing the wrong
thing?

(3) How can one show that the index map µ or β studied by operator
theorists matches up with the assembly map in surgery theory?

(4) Where does “bounded surgery theory” appear in the analytic proof-
s? Can one find a correspondence between the sorts of arguments
used by analysts and the controlled surgery arguments used by
topologists?

The literature on the Novikov conjecture (see [FRR]) consists of several
different kinds of papers. Most of these fall into two classes: those based
on topological arguments, usually involving surgery theory, and those based
on analytic arguments, usually involving index theory. The purpose of this
note is to “explain” the second class of papers to those familiar with the
first class. I do not intend here to give a detailed sketch of the Kasparov
KK-approach to the Novikov conjecture (for which the key details appear
in [Kas4], [Fac2], and [KS]), since this has already been done in the con-
venient expository references [Fac1], [Kas2], [Kas3], [Bla], and [Kas5]. Nor
do I intend to explain the approach to the Novikov conjecture taken by
Mishchenko and Soloviev (found in [Mis1], [Mis2], [MS], [Mis3], and [KS,
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Appendix]), using Fredholm representations but not using KK, for which
a convenient expository reference is [HsR]. Rather, I intend to concentrate
on explaining the “dictionary” for relating the two main classes of papers
on the Novikov conjecture, the topological and the analytic, and on trying
to find the common ground relating them. I will assume that the reader is
already familiar with the reduction of Novikov’s original conjecture on ho-
motopy invariance of higher signatures to a statement about the L-theory
assembly map

A : H•(X; L•(Z)) → L•(Zπ1(X)),

in the case where the space X is taken to be a K(π, 1)-space Bπ. This
aspect of the problem is discussed elsewhere in these proceedings, especially
in [Ran3].

§1. Why K-theory of C∗-algebras?

Topologists looking at the analytic literature on the Novikov conjecture
often wonder why so much emphasis is placed on the (topological) K-theory
of C∗-algebras, when in fact it is known that the original Novikov conjecture
has to do with L-theory of group rings, and that certain related problems
in the topology of non-simply connected manifolds (concerning Whitehead
torsion) have to do with the algebraic K-theory of integral group rings. First
let’s pin down the objects of study.

1.1. Definition. A Banach ∗-algebra is a real or complex Banach alge-
bra, together with an isometric (conjugate-linear) involution ∗. A ∗-homo-
morphism or ∗-isomorphism of such algebras means a homomorphism or
isomorphism preserving the involutions. A real or complex C∗-algebra A
is a Banach ∗-algebra which is isometrically ∗-isomorphic to a norm-closed
involutive subalgebra of the bounded operators on some Hilbert space (real
or complex, as the case may), with involution obtained by sending an oper-
ator a to its Hilbert space adjoint a∗, defined by the property that

〈aξ, η〉 = 〈ξ, a∗η〉.

(In the real case, it is important to remember that real, complex, and quater-
nionic Hilbert spaces may all be regarded by restriction of scalars as real
Hilbert spaces.) If a C∗-algebra A acts on a Hilbert space H, then Mn(A)
naturally acts on the Hilbert space Hn, and thus any matrix algebra over a
C∗-algebra is also a C∗-algebra.

We also quickly remind the reader of the most crucial special properties
of C∗-algebras, which may be deduced either from the Spectral Theorem
for self-adjoint operators on a Hilbert space, or else from the algebraic char-
acterization of C∗-algebras as in [Ped, Ch. 1]. First, some basic definitions.
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1.2. Definition. An element a of a Banach ∗-algebra A is called self-
adjoint if a = a∗, positive (actually “non-negative” would be better, since
0 is not excluded, but the name “positive” has become standard), written
a ≥ 0, if a = b∗b for some other element b. If A has a unit and a ∈ A, the
spectrum spec a of a (this has nothing to do with spectra in homotopy
theory!!) is the set of λ ∈ C such that a − λ · 1 is not invertible in A
(or in AC := A ⊗R C if A is only an algebra over R). This is always a
compact subset of C, and clearly it only depends on the structure of A as
an algebra over C or R, not on the norm. Note that in the real case, since
the obvious action of Gal(C/R) on AC fixes a ∈ A, it follows that spec a
is invariant under complex conjugation. If A does not have a unit, then we
may always embed A as an ideal of codimension 1 in a C∗-algebra A+ with
unit, obtained by realizing A as an algebra of operators on a Hilbert space
H and considering all operators of the form a + λ · 1, where λ is a scalar
and 1 is the identity operator on H. The spectrum of a ∈ A may then be
defined to be its spectrum in A+, and in this case, spec a always contains 0.

Here are the crucial facts we will need.

1.3. Facts. Let A be a real or complex C∗-algebra, and let a ∈ A.

(i) If a is self-adjoint, then spec a ⊂ R. Conversely, if a and a∗ commute
and spec a ⊂ R, then a = a∗.

(ii) If a ≥ 0, then spec a ⊂ [0,∞). Conversely, if a = a∗ and spec a ⊂
[0,∞), then a ≥ 0.

(iii) (Functional Calculus) Assume that a = a∗, or more generally
that a and a∗ commute, and that f is a continuous function defined
on spec a. (If A is an algebra over C, f can be complex-valued; if
A is an algebra over R, then f has to satisfy the condition that
f(z) = f(z).) Assume in addition that if A does not have a unit,
then f(0) = 0. Then there is a unique element f(a) ∈ A which
is contained in the closed subalgebra generated by a, having the
property that if fn is a sequence of polynomials (chosen without
constant term, in case A does not have a unit), converging uniformly
to f on spec a, then fn(a) (defined as in any algebra) converges in
norm to f(a).

(iv) Any ∗-homomorphism ϕ from A to another C∗-algebra is auto-
matically continuous with closed range, and induces an isometric
∗-isomorphism from A/ kerϕ onto range ϕ.

(v) If A has a unit, any finitely generated projective A-module defined
by an idempotent e = e2 in A may also be defined by a self-adjoint
idempotent p in A.

(vi) The norm on A is determined by the ∗-algebra structure by the
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formula ‖a‖2 = max spec a∗a.

Proof. We omit the proofs of (i)–(iv), which can be found in [Ped, Ch. 1],
except for the real case of (iii). Here one first uses the complex case to define
f(a) as an element of AC, and then one uses the condition f(z) = f(z) to see
that f(a) is invariant under the action of Gal(C/R) and thus lies in A. The
property (vi) follows from basic facts about operators on Hilbert spaces.

Since (v) is a little less standard (I believe it was first noted by Kaplan-
sky), we include a proof. One can do everything completely algebraically,
but to get a better impression of what is going on, suppose A is acting on
a Hilbert space H. Then the image of e must be a closed subspace V of H,
and with respect to the decomposition H = V ⊕ V ⊥ of H, e must have a

matrix of the form
(

1 a
0 0

)
, where a : V ⊥ → V is a bounded operator.

Then

e∗ =
(

1 0
a∗ 0

)
, ee∗ =

(
1 + aa∗ 0

0 0

)
,

and in particular, the spectrum of ee∗ is contained in {0} ∪ [1, ∞). Thus if
f(0) = 0 and f(t) = 1 for t ≥ 1, f is continuous on the spectrum of ee∗ and
thus (by (iii) above) p = f(ee∗) lies in A and is a self-adjoint projection with
the same range as e. We claim Ae ∼= Ap as projective modules over A. But
in fact ep = p and pe = e, so right multiplication by p gives an isomorphism
from Ae to Ap, with inverse given by right multiplication by e. ¤

We should emphasize that these facts are special to C∗-algebras; they
fail in some other Banach ∗-algebras.

1.4. To explain the appearance of K-theory of group C∗-algebras, consider
a group π with integral group ring Zπ and complex group ring Cπ. One can
form the (complex) Hilbert space `2(π) having π as an orthonormal basis,
and by definition, the reduced group C∗-algebra C∗r (π) is the completion
of Cπ in the operator norm for its action on `2(π) by left multiplication.
Most analytic approaches to the Novikov conjecture for the group π, and
thus to homotopy invariance of higher signatures for manifolds having π as
fundamental group, involve in some way the K-theory of the C∗-algebra
C∗r (π). While there are obvious inclusions

Zπ ↪→ Cπ ↪→ C∗r (π),

it is not in any way expected that these should be close to inducing isomor-
phisms on K-theory. In fact, in the fundamental example where π ∼= Zn

is free abelian, K̃0 vanishes for both Zπ and Cπ, whereas K0(C∗r (π)) ∼=
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K0(Tn) has rank 2n−1. Rather, the introduction of K0(C∗r (π)) is designed
to facilitate the definition of a “non-simply connected Hirzebruch signa-
ture formula,” which Novikov recognized from the start to be intimately
tied up with the conjecture on higher signatures. In fact, an examination
of Novikov’s original text in [Nov, §11] shows that he already suggested the
introduction of C∗-algebras for this purpose, though only in a special case.
(For the original text and an analysis of Novikov’s formulation of the higher
signature conjecture, see [FRR, §2].)

1.5. To see how C∗-algebras come in, it is worth thinking about how the
ordinary signature of a manifold is defined. The Poincaré duality struc-
ture (which is the homotopy-theoretic manifestation of the basic geometric
property of transversality) gives rise to a symmetric bilinear form on middle-
degree cohomology. The signature is extracted from this form by diagonal-
izing the form (over R) and taking the formal difference of its positive and
negative eigenspaces. Thus while it is customary to view the signature as an
ordinary integer, it naturally arises as an element of a group of such formal
differences, that is, as an element of K0(R) (which happens to be naturally
isomorphic to Z). It is thus natural to expect a “generalized signature” also
to be a formal difference of positive and negative eigenspaces of a bilinear
form, this time arising from Poincaré duality with local coefficients. For this
to make sense, it is necessary to work in a ring over which the form is diag-
onalizable, and this is where C∗-algebras come in. To “diagonalize” a form,
one wants to make use of the Spectral Theorem for self-adjoint operators
on a Hilbert space, but this requires that our involutive ring be identifiable
with a ring of bounded operators on a Hilbert space, in other words, with a
(subalgebra of a) C∗-algebra. Then the “positive and negative eigenspaces”
of the form will be projective modules over this ring, and thus the signature,
their formal difference, will be an element of K0 of a C∗-algebra completion
of the (real or complex) group ring. Signatures are more tractable objects
than forms, since (topological) K-theory behaves better than L-theory, be-
cause of its useful “rigidity” properties of homotopy invariance and strong
excision. Thus the whole machinery of topological K-theory and index the-
ory can be brought to bear on the study of “generalized signatures.”

An important question in trying to prove the Novikov conjecture using
analytic methods is whether the passage from symmetric forms to signatures
loses any essential information. One may view this operation as consisting
of two rather different steps: passage from symmetric forms over the group
ring to symmetric forms over a completed group ring, and passage from
symmetric forms to signatures in the context of C∗-algebras. The first of
these operations is still not completely understood, though it seems that
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in many cases it loses information only at the prime 2. (As an example,
the natural maps L•(Z) → L•(R) are not isomorphisms in even degrees,
but become isomorphisms after tensoring with Z[ 12 ].) However, the second
operation, passing from forms to signatures in the context of C∗-algebras,
is better understood, and loses almost no information. A key folk theorem
in this direction, which I believe may have first been discovered by Gelfand
or Mishchenko, is often cited but hard to pin down in the literature,* so we
include a proof here. The case where A = CC(X) is complex and abelian
appears in [GM] and as Theorem 4.1 in [Nov].

1.6. Theorem (Folklore). Let A be a real or complex C∗-algebra with
unit, regarded also as ring with involution (in the complex case, note that
the involution on scalar multiples of the identity is complex conjugation).
If ϕ is a non-singular hermitian form on a finitely generated projective A-
module P , then there is a unique ϕ-invariant splitting P = P+ ⊕ P− of P ,
with respect to which ϕ is equivalent to the form with matrix

(
1P+ 0
0 −1P−

)
.

Thus isomorphism classes of non-singular hermitian forms over A may be
identified with pairs ([P+], [P−]) of isomorphism classes of finitely generated
projective modules over A. The “signature” map

[P, ϕ] 7→ [
P+

]− [
P−

]

defines a natural isomorphism of functors

Φ : L0

∼=−→ K0

(on the category of real or complex C∗-algebras with unit), where L0 = Lp
0

is the usual projective quadratic L-group of A as defined in [Ran1, §1] (this
coincides with the symmetric L-group L0 since 1

2 ∈ A).

Similarly, if ϕ is a non-singular skew-hermitian form on a finitely gener-
ated free A-module P = An, then ϕ is equivalent to the form defined by
a skew-hermitian element h of Mn(A) with spec h ⊂ {i,−i}. (If A is an
algebra over C, then since i =

√−1 ∈ A,

(x, y) 7→ ϕ(ix, y)

*Equivalent statements using slightly different notation appear in [Mis2], [Kar3] and
in [KM].
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is a non-singular hermitian form, so in the complex case there is no essential
difference between hermitian and skew-hermitian forms.)

Proof. Recall that L0(A) = L0(A) is the Witt group of non-singular her-
mitian forms ϕ defined on finitely generated projective (left) A-modules P ,
modulo hyperbolic forms. Let (P, ϕ) be such a form, and let Q be a com-
plement to P , so that P ⊕Q is finitely generated and free, say P ⊕Q ∼= An.
We may identify P with Ane, where e is a self-adjoint projection in Mn(A)
(which is 0 on Q and the identity on P ), and may identify ϕ with an ele-
ment h = h∗ ∈ eMn(A)e. (We have used Fact 1.3(v).) Non-singularity of ϕ
means that h + 1− e is invertible, and thus (using Fact 1.3(i)) its spectrum
is contained in

(∞, −ε] ∪ [ε, ∞)

for some ε > 0 (depending on h). Let f be +1 on [ε, ∞) and 0 on (∞, −ε].
Then (using Fact 1.3(iii)) f(h + 1 − e) is a self-adjoint projection which
commutes with h and e; also it is clear that f(h + 1 − e) ≥ 1 − e (in
other words, if p = f(h + 1 − e) − (1 − e), then 0 ≤ p ≤ e). Note that
P = Pp ⊕ P (1 − p) = P+ ⊕ P− is exactly the decomposition of P into
the “positive” and “negative” eigenspaces of ϕ, as in the definition of the
classical signature in 1.5, in that hp ≥ 0 and h(1 − p) ≤ 0. It is obvious
from the construction that the submodules P+ and P− are ϕ-invariant. So
to show that ϕ is equivalent to the form with matrix

(
1P+ 0
0 −1P−

)
,

it is sufficient to replace P by P+ ⊕ (some complement) and h by hp ⊕ 1,
and to show show that if the form ϕ on a finitely generated free module
An is given by an invertible positive operator h, then it is equivalent to the
standard form

〈a, b〉 = a1b
∗
1 + · · ·+ anb∗n. †

(A similar argument then applies to P−.)
But the fact that ϕ is given by h means of course that

ϕ(a, b) = ahb∗.

Since h is positive, it has a square root h
1
2 (defined using Fact 1.3(iii)), and

h
1
2 is invertible since h is. Thus under the change of basis defined by h−

1
2 , h

†I am taking forms to be A-linear in the first variable and ∗-linear in the second
variable, slightly different notation from that used in [Ran1].
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is replaced by h−
1
2 hh−

1
2
∗

= 1, as required. On the other hand, any change
of basis sends h to khk∗ for some k, and thus preserves positivity. So the
splitting into positive and negative eigenspaces is unique, and this proves
the part of the theorem about classification of forms.

To complete the proof in the hermitian case, observe that we now know
that non-singular hermitian forms over A correspond exactly to pairs (P+ ,
P−) of finitely generated projective modules. Hyperbolic forms obviously
correspond to such pairs with P+ ∼= P−. So the “signature” [P+] − [P−]
is well-defined on Witt classes and clearly induces an isomorphism from
L0 = L0 to K0.

As far as the skew-hermitian case is concerned, basically the same proof
shows that if P = Ane, where e is a self-adjoint projection in Mn(A),
then using the functional calculus we can change variables so that ϕ is
given by (the cut-down to P of) a skew-hermitian element h of Mn(A) with
spec h ⊂ {i,−i} and commuting with the projection e. In the complex case,
h is diagonalizable and the classification is the same as in the hermitian
case. In the real case, this is not quite enough to classify the skew-hermitian
forms. ¤

1.7. Remark. The functor Lh
0 defined using hermitian forms on finitely

generated free modules does not have such a simple description, but one can
see from the above description that for A as above, Lh

0 (A) can be identified
with the quotient group

{([
P+

]
,
[
P−

]) ∈ K0(A)×K0(A) :
[
P+

]
+

[
P−

]
= 0 in K̃0(A)

}

/ 〈([A] , [A])〉 .

This is consistent with the usual Rothenberg exact sequence (derived for
example in [Ran1, §1.10])

· · · −→ Ĥ1(Z/2; K̃0(A)) −→ Lh
0 (A) −→ Lp

0(A) −→ Ĥ0(Z/2; K̃0(A)) −→ · · ·

since we see that when Lp
0(A) is identified with K0(A), the image of Lh

0 (A)
consists of all

[
P+

]− [
P−

]
,

[
P+

]
+

[
P−

]
= 0 in K̃0(A),

and thus the cokernel of Lh
0 (A) −→ Lp

0(A) is just

K̃0(A)/2K̃0(A).
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Note that this is Ĥ0(Z/2; K̃0(A)) for the trivial action of Z/2 on K̃0(A).
However, the trivial action is indeed appropriate here, since the action of
Z/2 on K̃0(A) in the Rothenberg sequence is defined via the map p 7→ p∗

on idempotents. But every finitely generated projective module over a C∗-
algebra may be defined by a self-adjoint idempotent in some matrix algebra
over A, because of Fact 1.3(v).

Similarly, the kernel of Lh
0 (A) → Lp

0(A) is given by

{
([P ] , [P ]) : [P ] ∈ K0(A), 2 [P ] = 0 in K̃0(A)

}
/ 〈([A] , [A])〉

∼= 2-torsion in K̃0(A) ∼= Ĥ1(Z/2; K̃0(A)).

Thus for C∗-algebras the Rothenberg sequence reduces to

0 −→ Ĥ1(Z/2; K̃0(A)) −→ Lh
0 (A) −→ Lp

0(A) −→ Ĥ0(Z/2; K̃0(A)) −→ 0,

with Z/2 acting trivially. ¤
While Theorem 1.6 seems to be well-known, the relationship between

higher L-groups and higher K-groups for C∗-algebras is more complicated
and does not seem to be explained very clearly in the literature. Recall
that for a Banach algebra A, possibly without unit, one has topological K-
groups Ktop

• (A) (which for • ≥ 1 are just the homotopy groups of GL(A)
shifted in degree) which are periodic of period 2 in the complex case and of
period 8 in the real case (convenient references are [Kar2] and [Bla]). For
algebras of functions, these are the more familiar groups (to topologists—
operator algebraists use the groups Ktop

• (A) all the time!) Ktop
• (CC(X)) ∼=

KU−•(X), Ktop
• (CR(X)) ∼= KO−•(X). If (X, τ) is a compact Real space

in the sense of Atiyah (in other words, a space with an involution τ) and
we define

C(X, τ) :=
{

f ∈ CC(X) : f(x) = f (τ (x))
}

,

then Ktop
• (C(X, τ)) ∼= KR−•(X, τ). Ktop

0 coincides with the algebraic K-
group K0, but in general, Ktop

n differs from the algebraic K-group Kn if
n 6= 0. On the other hand, we also have the surgery groups Lh

•(A) and
Lp
•(A) defined forgetting the topology of A and only using the structure

of A as a ring with involution. For complex C∗-algebras A, we will see
now that the groups Lp

•(A) and Ktop
• (A) are naturally isomorphic, whereas

for real C∗-algebras, this is only true after inverting 2. The coincidence of
Lp
•(A) with Ktop

• (A) was first noted for commutative complex C∗-algebras
in [Nov, Theorem 4.1], and (for general complex C∗-algebras) is basically
equivalent to some of the results in §3 and §4 of [Mis2] (though it’s hard at
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first to see whether that paper is talking about Lh
• or Lp

•). A complete proof,
using algebraic surgery and rather different from the one that we will give
below, was given in [Mil]. That algebraic L-theory can recapture topological
K-theory seems surprising until one remembers Fact 1.3(vi), which asserts
that the structure of a C∗-algebra as a topological algebra can be recaptured
from its algebraic structure as an involutive algebra over R or C (together
with the topology of the real or complex numbers).

1.8. Theorem ([Mis2], [Mil]). Let A be a complex C∗-algebra with unit.
Let L•(A) denote the 4-periodic (projective) quadratic L-groups of A as
defined in [Ran1, §1] (these also coincide with the symmetric L-groups since
1
2 ∈ A). Then these groups are 2-periodic, and are naturally isomorphic to

the topological K-groups Ktop
• (A).

Proof. The fact that the L-groups are 2-periodic is due to the fact that√−1 ∈ A, so that there is a natural bijection between hermitian and skew-
hermitian forms over A. Because of Theorem 1.6 and Remark 1.7, we really
only need to show that there is a natural isomorphism Φ from Lh

1 (A) to
Ktop

1 (A), analogous to the signature map of Theorem 1.6.
Now the group Lh

1 (A) is defined** to be the limit (as n → ∞) of the
abelianization of what we can call U(n, n; A), the unitary group of the
hyperbolic form on An ⊕An defined by the matrix

σn =
(

0 1n

1n 0

)
,

modulo σn itself and modulo the image of GL(n, A) under the map

GL(n, A) → U(n, n; A) : a 7→
(

a 0
0 (a∗)−1

)
.

In the notation of [Kar3], the abelianization of Uhyp(A) := lim−→U(n, n; A)
is denoted 1L1(A). The map GL(n, A) → U(n, n; A) defines in the limit
(after passing to abelianizations) a map K1(A) → 1L1(A), whose coker-
nel in [Kar3] is denoted 1W1(A). However, GL(n, A) and U(n, n; A) are

**This is close to, but not exactly, the form of the definition given in [Ran1, §1.6] using
“formations,” but is an equivalent formulation obtained by modifying the definition of
[what is now called] Ls

1(A) in [Wall, §6]. The class of a unitary u ∈ U(n, n; A) corresponds
to the class of the formation

(An ⊕An, An ⊕ 0, u(An ⊕ 0)).
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topological groups (in fact, Banach Lie groups), and if we divide by the
connected components of the identity, GL(n, A)0 and U(n, n; A)0, instead
of by the commutator subgroups (which are always contained in the former),
then we obtain in place of K1(A) and 1L1(A) groups which (again in the
notation of [Kar3]) are denoted by Ktop

1 (A) and 1L
top
1 (A). Théorème 2.3 of

[Kar3] shows that 1L
top
1 (A) is canonically isomorphic to Ktop

1 (A)⊕Ktop
1 (A),

with the natural map Ktop
1 (A) → 1L

top
1 (A) corresponding to the diagonal

embedding. This means that we have an exact sequence

K1(A) → Uhyp(A)/Uhyp(A)0 → Ktop
1 (A) → 0.

So to prove the theorem we need to show two things: that σn is in U(n, n;
A)0, and that the image of GL(n, A)0 in U(n, n; A)0 generates the latter
modulo the commutator subgroup.

For our purposes it is useful to make use of the Lie algebra

g =
{(

a b
c −a∗

)
: b = −b∗, c = −c∗

}

of U(n, n; A), which can be identified with the tangent space to U(n, n; A)0
at the identity. This space has the property that if X ∈ g, then etX ∈
U(n, n; A)0. Since we are in the complex case,

(
0 i
i 0

)
,

(
i 0
0 i

)
∈ g,

and exponentiating, we find that

exp
(
−π
2

(
i 0
0 i

))
exp

(
π
2

(
0 i
i 0

))
=

(−i 0
0 −i

)(
0 i
i 0

)

=
(

0 1
1 0

)
= σn.

Thus σn ∈ U(n, n; A)0. To prove that the image of GL(n, A)0 generates
U(n, n; A)0 modulo the commutator subgroup, we apply the (Banach space
version of the) Implicit Function Theorem to the map

ψ : GL(n, A)0 × U(n, n; A)0 × U(n, n; A)0 → U(n, n; A)0

defined by

(h, g1, g2) 7→
(

h 0
0 (h∗)−1

)
g1g2g

−1
1 g−1

2 .
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If we take (for example)

g1 =
(

2 0
0 1

2

)
, g2 = exp

(
0 b
c 0

)
,

we obtain

g1g2g
−1
1 g−1

2 = exp
(

0 4b
1
4c 0

)
exp

(
0 −b
−c 0

)
,

and from this it is easy to see that the differential of ψ at the point (1, g1, 1)
is surjective. Thus the image of ψ contains an open neighborhood of the
identity in U(n, n; A)0, and thus the image of GL(n, A)0 and the commu-
tator subgroup of U(n, n; A)0 generate all of U(n, n; A)0. This completes
the proof. ¤

If we look carefully at the above proof, we see that the assumption that
A is a complex (and not just a real) C∗-algebra was only used twice: once
to show that the L-groups are 2-periodic, and once to show that σn ∈
U(n, n; A)0. If A is a real C∗-algebra, Karoubi’s [Kar3, Théorème 2.3] is
still valid, and thus the same proof as for Theorem 1.8 yields the following
(which seems not to be in the literature).

1.9. Theorem. If A is a real C∗-algebra, there is a canonical surjection of
Ktop

1 (A) onto Lh
1 (A), with kernel of order at most 2 (generated by the class

of σn).

1.10. Remark. Note that one cannot do any better than this, since Ktop
1 (R)

∼= Z/2 and Lp
odd vanishes for any semisimple ring [Ran1, Proposition

1.2.3(iii)], in particular for a field, so that Lp
1(R) = Lh

1 (R) = 0.
Now the Rothenberg exact sequence quoted in Remark 1.7 continues to

the left as

Lh
2 (A) −→ Lp

2(A) −→ Ĥ0(Z/2; K̃0(A))

−→ Lh
1 (A) −→ Lp

1(A) −→ Ĥ1(Z/2; K̃0(A)) −→ Lh
0 (A),

and since the map Ĥ1(Z/2; K̃0(A)) → Lh
0 (A) is injective, the map Lh

1 (A) →
Lp

1(A) is always surjective. In the complex case where the map Lh
2 (A) →

Lp
2(A) can be identified with the map Lh

0 (A) → Lp
0(A), it follows from

Remark 1.7 that Lh
1 (A) −→ Lp

1(A) is always an isomorphism. However in the
real case, the map Lh

1 (A) → Lp
1(A) need not be an isomorphism. For if

A = R⊕ · · · ⊕ R (n summands),
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A is still semisimple, so Lp
1(A) = 0. And Lp

2(A) = 0 since any symplec-
tic form over A is a hyperbolic form on a projective module. So from the
Rothenberg exact sequence,

Lh
1 (A) ∼= Ĥ2(Z/2; K̃0(A)) ∼= (Z/2)n−1.

This is consistent with Theorem 1.9, since Ktop
1 (A) ∼= (Z/2)n.

One may note as well that the projective L-groups Lp
∗ have the good

categorical properties

Lp
∗(A1 ×A2) ∼= Lp

∗(A1)⊕ Lp
∗(A2) (additivity),

Lp
∗(Mn(A)) ∼= Lp

∗(A) (Morita invariance)

[Ran2, §22] in analogy with K-theory. The free L-groups Lh
∗ don’t have such

good properties, because the reduced projective class group K̃0 doesn’t have
them. ¤

If we are willing to invert 2, then the results of Karoubi in [Kar1] and
[Kar3] yield the following in the real case.

1.11. Theorem (essentially due to Karoubi). If A is a real C∗-algebra,

then the groups Ktop
• (A)

[
1
2

]
, Lh

•(A)
[
1
2

]
, and Lp

•(A)
[
1
2

]
are canonically iso-

morphic, and periodic with period 4.

Proof. Because the groups Ĥ•(Z/2; ) are always 2-torsion, the Rothen-
berg sequence shows that (for any ring) the natural map Lh

•(A)
[
1
2

] →
Lp
•(A)

[
1
2

]
is an isomorphism. Also it is well-known that the 8-periodicity of

Ktop
• (A) becomes a 4-periodicity after inverting 2 (see for example [Kar2,

Theorem III.2.11]). Since Theorems 1.6 and 1.9 already handle the cases
• ∼= 0, 1 mod 4, we need only explain how to deal with the cases • ∼= 2, 3

mod 4. Here we need to apply Théorème 0.1 and Théorème 0.4 of [Kar1],
for which parts of the proofs appear in [Kar3] and [Kar4]. As in the case
above, [Kar3, Théorème 2.3] shows that there is a natural isomorphism
from 1L

top
• (A) to Ktop

• (A) ⊕Ktop
• (A), and thus from 1L

top
• (A)/Ktop

• (A) =
1W

top
• (A) (Karoubi’s notation) to Ktop

• (A). Now after inverting 2, 1W
top
• (A)

becomes what Karoubi calls 1W•(A)
[
1
2

]
[Kar1, Théorème 0.1 and Théorème

0.4]. Applying periodicity, this is −1W•−2(A)
[
1
2

]
, which in turn coincides

with Lh
•−2(A, −1) ∼= Lh

•(A)
[
1
2

]
. (Karoubi’s W -group is the same as Witt

group, and thus the same as the Wall group, in degree 0, and differs from
the usual L-group in degree 1 by at most a Z/2 coming from the class of
σ.) ¤
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1.12. It is worth pointing out (this fact is well-known to specialists in C∗-
algebras) that the complex group ring Cπ of any group π has a unique maxi-
mal C∗-algebra-completion, denoted C∗max(π). It has the universal property
that any involution-preserving homomorphism from Cπ into the algebra of
bounded operators on a Hilbert space must factor through the canonical
inclusion Cπ ↪→ C∗max(π). Thus the study of generalized signatures natu-
rally leads to a study of K0(C∗max(π)). Since the algebra C∗max(π) is fairly
intangible, however, most analytic proofs of the Novikov conjecture make
do with the more concrete algebra C∗r (π) defined above, which is neces-
sarily a quotient of C∗max(π). The canonical map C∗max(π) ³ C∗r (π) is an
isomorphism if and only if π is amenable. More generally, the group π is
called K-amenable when this map induces an isomorphism on topological
K-groups. This condition is now known to be satisfied for discrete subgroups
of SO(n, 1) and SU(n, 1), as well as for amenable groups. However it fails
when π has Kazhdan’s property T, for example, if π is a lattice subgroup
in Sp(n, 1) (n ≥ 1) or in a simple Lie group of R-rank ≥ 2.

For purposes of studying which closed manifolds admit Riemannian met-
rics of positive scalar curvature, I was forced in [Ros1] and [Ros3] to deal
with C∗-algebra completions of the real group ring Rπ rather than of the
complex group ring Cπ. This does not make an essential difference in the
theory: one still has a universal C∗-algebra completion C∗max(π) and a re-
duced C∗-algebra C∗r (π) (the completion of Rπ for its action on `2(π) by left
multiplication). When it is necessary to distinguish this from the complex
C∗-algebra, one can write C∗r,R(π).

It seems that to the extent that there is a good C∗-algebraic analogue of
the Borel conjecture (which involves surjectivity of an assembly map and
not just injectivity), this analogue (of which the leading candidate is called
the Baum-Connes conjecture) must involve C∗r (π) and not C∗max(π); the
K-theory of the latter is in many cases simply “too large”. Of course, for
K-amenable groups, the question of which C∗-algebra completion of Cπ to
use makes no difference.

§2. Identity of the assembly and index maps

Now that we have seen how the K-theory of C∗-algebras is naturally
related to higher signatures, we come to the issue of proofs of the Novikov
conjecture itself. Analytic proofs for a group π tend to be arguments for
injectivity of a certain index map, usually denoted µ or β, which roughly
speaking maps the KU - or KO-homology of Bπ to the K-groups of some
C∗-algebra completion of the real or complex group ring.

To relate this to the surgery-theoretic assembly map as defined, say, in
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[Ran2] or in [Q2], we need first of all a version of Theorems 1.8 and 1.11
on the level of spectra and not just on the level of individual groups. While
it is in some sense known to the experts that such a version should exist,
it does not seem to be written down anywhere, so we provide some details.
But even in the complex case, just as in Theorem 1.11, it is necessary to
invert 2. The reason is basically that L-spectra when localized at 2 are
always Eilenberg-MacLane spectra [TaW, Theorem A], whereas the spectra
for topological K-theory behave quite differently at the prime 2.

2.1. Theorem. Let A be a C∗-algebra, either real or complex, and let
L•(A) be the L-theory spectrum of A defined as in [RanL] and [Ran2]. (The
p decoration would be more natural here, but it really doesn’t matter since
we need to invert 2 anyway. Lp and Lh become equivalent after inverting
2.) Let Ktop

• (A) denote the spectrum for topological K-theory of A, with

homotopy groups Ktop
• (A). (This may be realized as an Ω-spectrum with 0-

th space K0(A)×BGL(A). In the complex case, each even-numbered space
may be taken to be K0(A) × BGL(A) and each odd-numbered space may
be taken to be GL(A). In the real case, every 8-th space may be taken to
be K0(A) × BGL(A). Each space in the spectrum has the homotopy type
of a CW-complex, by [Pal].) We localize the spectra as in [Ad, §3.1].

Then there is a natural equivalence of spectra

Ktop
• (A)

[
1
2

] → L•(A)
[
1
2

]

which on homotopy groups induces the isomorphisms of Theorems 1.8 and
1.11.

Proof. The proof that follows is rather nonconstructive. It would be desir-
able to have a more constructive argument based on directly constructing
a map of (unlocalized) infinite loop spaces which induces an equivalence
on homotopy groups after localization, but we have encountered various
difficulties in doing this.

First we observe that the theorem is true for A = R. To see this, note
that L•(Z) is a periodic delooping of the infinite loop space

L0(Z) ' Z×G/Top,

[Ran2, p. 136], which after inverting 2 becomes equivalent to the 0th space
Z × BO in the spectrum of real K-theory Ktop

• (R) [MaM, Theorem 4.28].
The equivalence

Z×G/Top
[
1
2

] ' Z×BO
[
1
2

]
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can be chosen to respect the natural H-space structures (coming on the
left from the Cartesian product of a surgery problem with a manifold, and
coming on the right from the tensor product of vector bundles) [MaM,
Corollary 4.31]. On the other hand, the equivalence is also an infinite loop
map [MaM, beginning of Ch. 6]. The equivalence

L0(Z) ' Z×G/Top

also respects the infinite loop space structures. The spectrum L•(Z) is a
L•(Z)-module spectrum [Ran2, Appendix B], in essence via the tensor prod-
uct of a quadratic form with a symmetric form, and the multiplication

L•(Z) ∧ L•(Z) → L•(Z)

obviously corresponds to the “Cartesian product” H-space structure on
Z × G/Top

[
1
2

]
. So putting everything together and taking the periodic

deloopings, we obtain an equivalence of spectra

L•(Z)
[
1
2

] ' Ktop
• (R)

[
1
2

]
.

Furthermore, the inclusion Z ↪→ R induces isomorphisms on L-groups after
inverting 2, and the symmetrization map L•(Z) → L•(Z) respects L•(Z)-
module structures and becomes an equivalence after inverting 2, so that we
obtain equivalences of ring spectra

Ktop
• (R)

[
1
2

] ' L•(Z)
[
1
2

] '−→ L•(R)
[
1
2

]
.

The fact this equivalence is compatible with products amounts to saying
that it matches up the respective periodicity operators (which shift degree
by 4).

Now consider a general C∗-algebra A. ThenKtop
• (A) is naturally a module

spectrum over Ktop
• (R), while L•(A) is naturally a module spectrum over

L•(R), in each case via the tensor product. And we have seen that the
equivalence

Ktop
• (R)

[
1
2

] ' L•(R)
[
1
2

]

is compatible with products. So because of Theorems 1.8 and 1.11, it’s
enough to know:

2.2. Theorem (Bousfield). Two Ktop
• (R)

[
1
2

]
-module spectra with the

same homotopy groups are homotopy-equivalent. (More precisely, any iso-
morphism of the homotopy groups of such spectra, compatible with the
module action of the ring

π•
(
Ktop
• (R)

[
1
2

])
= Ktop

• (R)
[
1
2

] ∼= Z
[
1
2

]
[t, t−1],
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where t is in degree 4, is realized by an equivalence of spectra.)

Proof. This follows immediately from the Universal Coefficient Theorem for
Ktop
• (R)-module spectra of Bousfield [Bou, Theorems 4.6 and 9.6].‡ ¤

We want to use Theorem 2.1 to relate the analytic literature on the
Novikov conjecture to the topological literature. For this we need to recall
the basic construction in the analytic literature, the Mishchenko/Kaspa-
rov/Baum-Connes index map.

2.3. Definition. Let π be a group, and let C∗r (π) denote its real or complex
reduced C∗-algebra. (The construction works equally well with real and
complex coefficients.) The index map β (also sometimes denoted µ) from
K•(Bπ) (meaning KU•(Bπ) in the complex case, KO•(Bπ) in the real
case) to Ktop

• (C∗r (π)), first studied in this generality in [Kas2], is defined as
follows. First define the universal bundle V over Bπ with fibers which are
finitely generated projective (right) C∗r (π)-modules, by letting V = Eπ ×π

C∗r (π). This defines a class [V] in the Grothendieck group of such bundles,
K0(Bπ; C∗r (π)), first studied for this purpose in [MS]. Then β is basically
the operation of “slant product” with this class. To make this rigorous, think
of K•(Bπ) as lim−→K•(X), where X runs over the finite subcomplexes of Bπ

indexed by inclusion. Then [V] pulls back to a class [V]X over any such X,
which we can think of as belonging to

K0(X;C∗r (π)) ∼= K0(C(X)⊗ C∗r (π)),

with C(X) ⊗ C∗r (π) here denoting the (completed) tensor product of C∗-
algebras, in other words, C(X, C∗r (π)). (Restriction to a finite subcomplex
makes X compact, and thus makes C(X) a commutative C∗-algebra with
unit.) The “slant product” to be used here is the Kasparov intersection
product of [Kas1]

K•(X) ∼= KK•(C(X), C)
[V]X⊗X−−−−−→ KK•(C, C∗r (π)) ∼= Ktop

• (C∗r (π)), ††

for which convenient expository references are [Fac1] and [Bla, §18].‡‡

‡I am indebted to Stephan Stolz for pointing out to me the relevance of Bousfield’s
work.

††In the real case, replace C everywhere by R.
‡‡Since we are not using quite the most general case of the Kasparov product, there

are various ways of simplifying the definition of the pairing here, for example by using
the Connes-Higson notion of “asymptotic morphism” in [CoH].
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Calling β the “index map” is justified by the following interpretation,
which explains precisely how it arises in the analytic proofs. Namely, let M
be a closed manifold equipped with a map f : M → Bπ, and suppose D is
an elliptic operator on M , for example the signature operator on an oriented
manifold, or the Dirac operator on a spin manifold. The definition of the
Kasparov groups is such that D immediately defines a class [D] ∈ K•(M),
which we can push forward to a class f∗([D]) ∈ K•(Bπ). In fact, by a fairly
easy theorem of Conner-Floyd type, all classes in K•(Bπ) arise this way (a
much more precise result along these lines has been given by Baum, and
is announced in [BD], though the complete proof never appeared). Then
β(f∗([D])) ∈ Ktop

• (C∗r (π)) is the index in the sense of Mishchenko-Fomenko
[MF] of DV , meaning D with “twisted coefficients” in the flat bundle V.
This follows immediately from the interpretation of the Kasparov product
in terms of index theory, explained in [Bla, §24] or in [Ros4].

2.4. As we will see in the next section, there is another way of defining β,
which comes from going up from Bπ to its universal cover Eπ and doing
everything equivariantly with respect to π. From this point of view, β is
the map in equivariant Kasparov K-homology defined by the π-equivariant
“collapse map” Eπ → ∗ to a point, followed by the isomorphism Kπ

• (∗) ∼=
Ktop
• (C∗max(π)) [Kas2, §4] and the map on topological K-groups induced

by the projection C∗max(π) ³ C∗r (π) mentioned above in 1.12. Here we
note that Kπ

• (Eπ) ∼= K•(Bπ) since π acts freely on Eπ, so that we indeed
get a map K•(Bπ) → Ktop

• (C∗r (π)). Chasing the definitions of the various
Kasparov products involved shows that in this case we get back to the
previous construction of β.

We can justify the name “index map” for β from this point of view as
well. If D is an elliptic operator on a closed manifold M , defining a class
[D] ∈ K0(M), then its analytic index (in the usual sense) is exactly the
image of [D] in K0(∗) ∼= Z under the “collapse map” M → ∗. If D commutes
with an action of a compact group G on M , then D defines an equivariant
class in equivariant K-homology KG

0 (M), and its equivariant index is the
image of this class in KG

0 (∗) ∼= R(G) under the (G-equivariant) “collapse
map” M → ∗. (See [Bla, §24] and [Ros4] for an explanation.) What we are
doing here is exactly analogous, except that we are replacing G by π and
doing π-equivariant index theory on the covering space of M defined by a
map M → Bπ.

2.5. Remark. The map which we have just called β is closely related
to a similar map, often denoted µ, which Baum and Connes have conjec-
tured to be an isomorphism (see [BCH]). The relationship is the following.
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One can define a π-space Eπ (see [BCH]) which is universal for proper ac-
tions of π, just as Eπ is universal for free actions. (When π is finite, Eπ is
just the one-point π-space ∗, while Eπ is of course infinite-dimensional.)
Then the Baum-Connes map µ : Kπ

• (Eπ) → Ktop
• (C∗r (π)) can be de-

fined similarly, as the map in equivariant Kasparov K-homology defined
by the π-equivariant “collapse map” Eπ → ∗, followed by the isomorphism
Kπ
• (∗) ∼= Ktop

• (C∗max(π)) and the map on topological K-groups induced by
the projection C∗max(π) ³ C∗r (π) mentioned above in 1.12. Since Eπ = Eπ
if π is torsion-free, in this case µ reduces to β. For groups with torsion,
Eπ × Eπ is a free contractible π-space, thus another model for Eπ, and
thus projection onto the first factor gives (up to equivariant homotopy) a
π-map Eπ → Eπ through which the collapse map Eπ → ∗ factors, and in
this way β factors through µ.

2.6. Now we address the question of how one gets from information about
β or µ to information about the Novikov conjecture. If one is only interested
in homotopy invariance of higher signatures, it is not necessary to invoke
spectra, and two arguments are available, one due to Kasparov, described in
[Kas2, §9] and in [Kas5], and the other due to Kaminker-Miller [KM]. These
show directly (without any reference to L-theory assembly) that if D is the
signature operator on an oriented closed manifold M2n equipped with a
map f : M → Bπ, then β(f∗([D])) ∈ Ktop

• (C∗r (π)) is an oriented homotopy
invariant. Thus if β is rationally injective, Ch f∗([D]) = 2nf∗([M ]∩L(M)) ∈
H•(Bπ; Q) is an oriented homotopy invariant, L being the Atiyah-Singer
renormalization of the total Hirzebruch L-class. This conclusion is obviously
equivalent to the usual formulation of the Novikov conjecture.

However, it is more interesting to ask how integral statements about β
are related to integral versions of the Novikov conjecture. Here Theorem 2.1
turns out to be quite relevant.

2.7. Theorem. Let Ah and Ap denote the assembly maps in the sense
of [Ran2] for (periodic) Lh- and Lp-theory, respectively. Then for any con-
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nected CW-complex X, the following diagram commutes:

H•(X; Lh
•(Z)) Ah

−−−−→ Lh
•(Zπ1(X))

∼=
y

y
H•(X; Lp

•(Z)) Ap

−−−−→ Lp
•(Zπ1(X))

ι∗

y
yι∗

H•(X; Lp
•(R)) Ap

−−−−→ Lp
•(Rπ1(X))

∼=
yinvert 2 j

yinvert 2

H•(X; Ktop
• (R))

β−−−−→ Ktop
• (C∗r (π1(X))).

Here the maps ι∗ are induced by the inclusions Z ↪→ R, Zπ1(X) ↪→ Cπ1(X),
and the map j is map on Lp-groups induced by the inclusion Cπ1(X) ↪→
C∗r (π1(X)), followed by the isomorphism of Theorem 1.11. (One can also
replace R by C in the diagram.)

Reduction of the problem. The commutativity of the upper two squares is
obvious from the general machinery of [Ran2], so we need to prove com-
mutativity of the lower square. Furthermore, the assembly maps are really
the induced maps on homotopy groups of certain maps of spectra (which
with minor abuse of notation we’ll denote by the same letters), so we will
do slightly better and show that that the diagram of spectra

H•
(
X; Lp

•(R)
[
1
2

]) Ap

−−−−→ Lp
•
(
Rπ1(X)

) [
1
2

]

∼=
y

yj

H•
(
X; Ktop

• (R)
[
1
2

]) β−−−−→ Ktop
•

(
C∗r (π1(X))

) [
1
2

]

is homotopy-commutative. We sketch two different arguments for this.

First Proof. The first proof depends on the description of assembly for L-
theory given in [Ran2, Appendix B], together with the homotopy-theoretic
description of β in [Ros3, Theorem 2.2] along the lines of the description
of assembly in [Lod]. Let f : X → Bπ1(X) be the classifying map for the
universal cover of X. The references just cited give parallel descriptions of
the maps Ap and β as composites

H•(X; Lp
•(R)) = X+ ∧ Lp

•(R)
f∗∧id−−−→ Bπ1(X)+ ∧ Lp

•(R)
σ∧id−−−→ Lp

•(Rπ1(X)) ∧ Lp
•(R)

µ−→ Lp
•(Rπ1(X)),
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H•(X; Ktop
• (R)) = X+ ∧Ktop

• (R)
f∗∧id−−−→ Bπ1(X)+ ∧Ktop

• (R)
Bι∧id−−−−→ Ktop

• (Rπ1(X)) ∧Ktop
• (R)

µ−→ Ktop
• (C∗r (π1(X))).

Here σ is the “preassembly” map of [Ran2, Appendix B] (we are using the
fact that symmetric and quadratic L-theory agree for algebras over a field
of characteristic 0) and ι is the inclusion of π1(X) into GL(C∗r (π1(X))), Bι
is the induced map of classifying spaces (recall the “identity component”
of Ktop

0 (C∗r (π1(X))) is just BGL(C∗r (π1(X)))), and µ in each case is an
appropriate “multiplication” map. Now as shown in [Ran2, Appendix B],
preassembly is compatible with Loday-type assembly; in other words, the
following diagram commutes:

Bπ1(X)+ ∧Ktop
• (R)

[
1
2

] µ◦(σ∧id)−−−−−−→ Lp
•(Rπ1(X))

[
1
2

]

∼=
y

yj

Bπ1(X)+ ∧Ktop
• (R)

[
1
2

] µ◦(Bι∧id)−−−−−−→ Ktop
• (C∗r (π1(X)))

[
1
2

]
.

This clearly yields the desired result. ¤

Second Proof. The second proof uses the abstract characterization of as-
sembly maps found in [WW1, §2]. (The idea that one could use the Weiss-
Williams results for this purpose I learned from reading [CarP].) The main
result from [WW1, §2] that we need is the following; see also [WW2] for an
easy independent treatment.

2.8. Theorem [WW1, §2], [WW2]. Given a homotopy-invariant functor F
from spaces (without basepoint) to spectra, such that F (∅) is contractible,
there is a unique strongly excisive homotopy-invariant functor (in other
words, a generalized homology theory) F% and a natural transformation
F% → F (called assembly) which is the “best approximation to F from the
left by a homology theory,” in the sense that given any strongly excisive
homotopy-invariant functor E with a natural transformation ϕ : E → F , E
factors through F%. (Here “strongly excisive” means F% takes homotopy
pushout squares of spaces to homotopy pushout squares of spectra, and
preserves arbitrary coproducts, up to homotopy equivalence.)

2.9. Corollary (implicit in [WW1, §2], also stated in [WW2, §1]). In
the context of Theorem 2.8, there is a natural equivalence of functors

F%(X) ' |X|+ ∧ F (∗),
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and if E is a strongly excisive homotopy-invariant functor with a natural
transformation ϕ : E → F , then ϕ may be identified with the assembly for
F provided that

ϕ(∗) : E(∗) → F (∗)

is an equivalence of spectra.

Proof. The first statement comes up in the proof of Theorem 2.8, and comes
from the characterization of generalized homology theories in terms of spec-
tra. Then if E is a strongly excisive homotopy-invariant functor with a
natural transformation ϕ : E → F , we also have a natural equivalence

E(X) ' |X|+ ∧ E(∗),

and ϕ factors through the assembly natural transformation F% → F . This
factorization ϕ% gives an equivalence of spectra

ϕ%(X) : E(X) ' |X|+ ∧ E(∗) → |X|+ ∧ F (∗) ' F%(X)

for all X provided that
ϕ(∗) : E(∗) → F (∗)

is an equivalence of spectra. ¤

In the context of [WW1], “spaces” means CW-complexes, but as ex-
plained there, the theorem is valid on other categories of spaces, for example
simplicial complexes. We want to apply the Weiss-Williams theorem to the
functor

F : X 7→ Ktop
• (C∗r (π1(X))),

but of course one encounters the difficulty that π1(X) depends on a choice
of basepoint, and thus X 7→ π1(X) is not well-defined on unbased spaces. To
get around this, we use instead the C∗-algebra of the fundamental groupoid
of a space, π(X), which was also used in [RosW] for basically the same
reason of functoriality. Here π(X) is the topological groupoid with X as its
space of objects, whose morphisms from x ∈ X to y ∈ X are the homotopy
classes (rel {0, 1}) of paths γ : [0, 1] → X with γ(0) = x, γ(1) = y. If
X is a connected space which is nice enough for covering space theory to
apply, e.g., a CW-complex, then π(X) can be identified with X̃×Γ X̃, where
X̃ → X is a universal covering space of X and Γ is the associated group of
covering transformations, and thus carries a natural topology. If in addition
X is locally compact and carries a canonical measure class of full support
(for instance, if X is the geometric realization of a locally finite simplicial



360 Jonathan Rosenberg

complex—we can take the class represented by Lebesgue measure on each
simplex), then π(X) is a locally compact groupoid admitting a Haar system
(the measure class is needed to define the Haar system), and C∗r (π(X)) is
well-defined in the sense of [Ren]. More simply (and this is what we’ll do
here), if X is a simplicial complex or simplicial set (and now one can dispense
with the local finiteness and the measure), one can interpret π(X) to mean
the simplicial fundamental groupoid of X, which has as its set of objects
the vertices of X (with the discrete topology), and whose morphisms from a
vertex x to a vertex y are the homotopy classes (rel {0, 1}) of simplicial paths
γ from some subdivision of [0, 1] into X, with γ(0) = x, γ(1) = y. While this
is not literally the same groupoid as before, it is equivalent to it, and has the
advantages that C∗r (π(X)) is always well-defined, and that a simplicial map
gives rise to a ∗-homomorphism of the associated C∗-algebras. Furthermore,
C∗r (π(X)) is strongly Morita equivalent to the (C∗-algebraic) direct sum of
the C∗r (π1(|X|, xj)), where we choose one basepoint xj in each component
of X. (This results from a trivial modification of [RosW, Theorem 2.5] to
cover the disconnected case.) A simplicial map of polyhedra gives a map of
the associated fundamental groupoids that only depends of the homotopy
class of the map, so

F : X 7→ Ktop
• (C∗r (π(X)))

is a homotopy functor on the category of simplicial sets. (In fact, though we
don’t need to know it, the homotopy type of the spectrum Ktop

• (A) depends
only very weakly on the C∗-algebra A; as we mentioned once before, since
Ktop
• (A) is a Ktop

• (R)-module spectrum, its homotopy type as a spectrum,
after localizing away from 2, only depends on the topological K-groups of A
as groups. This follows immediately from Theorem 2.2.) As such, F comes
with an assembly natural transformation

F%(X) ' |X|+ ∧ F (∗) = |X|+ ∧Ktop
• (R) → Ktop

• (C∗r (π(X))).

The universality statement in Theorem 2.8, together with Corollary 2.9,
now proves that the assembly F% → F coincides with β; in fact, it gives
an easy proof that the two definitions of β in 2.3 and 2.4 coincide.*** And
similarly,

G : X 7→ Lp
•(Rπ(X))

***In order to apply the argument, one needs to know that β (using either the def-
inition in 2.3 or the one in 2.4) may be viewed not just as a map of groups but also as
a natural transformation of homotopy functors from spaces to spectra. We explain how
to do this from the perspective of 2.3; the case of 2.4 is similar. Recall that we defined
K•(Bπ) as lim−→K•(X), where X runs over the finite subcomplexes of Bπ indexed by

inclusion, and β was defined using the Kasparov intersection product (over C(X)) with
the class [V]X ∈ K0(X; C∗r (π)) ∼= K0(C(X) ⊗ C∗r (π)). Regard K•(X) as the coefficient



Analytic Novikov for topologists 361

is a homotopy functor on the category of simplicial sets, and G% coincides
with Ap. Since j is a natural transformation G

[
1
2

] → F
[
1
2

]
, it yields a

homotopy-commutative square

G%
[
1
2

] −−−−→ G
[
1
2

]

j∗

y
yj

F%
[
1
2

] −−−−→ F
[
1
2

]
,

which is exactly what we needed. ¤

This now yields an application to the integral Novikov conjecture.

2.10. Corollary. If, for some group π, the index map

H•(Bπ; Ktop
• (R))

β−→ Ktop
• (C∗r (π))

is injective (after inverting 2), then so is the L-theory assembly map

H•(X; Lp
•(R)) Ap

−−→ Lp
•(Rπ1(X))

(after inverting 2). Similarly, if β
[
1
2

]
is split injective, then so is Ap

[
1
2

]
.

Proof. This is immediate from the commutative diagram in Theorem 2.7.
¤

Of course, we can also work with complex instead of real C∗-algebras.

§3. Bounded and controlled surgery

In this final section, we will try to relate the topologists’ notions of
bounded and controlled surgery to the analytic work on the Novikov conjec-
ture. While bounded and controlled surgery deal with non-compact surgery

groups of a homology theory

Y 7→ K•(X × Y ) = KK•(C(X)⊗ C(Y ), R),

and Ktop
• (C∗r (π)) as the coefficient groups of the homology theory

Y 7→ KK•(C(Y ), C∗r (π)).

Then the more general form of the Kasparov product (with “coefficients”) gives a map
of homology theories, and it’s easy to check naturality.
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problems, with measurement of distances by means of reference maps to
some metric space, they can be applied to problems about compact man-
ifolds merely by passage to the universal cover. As such they are natu-
rally related to the classical Novikov conjecture, as well of course to cer-
tain “coarse” analogues that may not be related to compact problems. The
idea of passage from surgery on compact manifolds, related to the Novikov
conjecture, to bounded or controlled surgery on the non-compact universal
cover, makes an appearance in [Ran2, Appendix C], in [CarP], in [Gr], in
[FW], in [Ran3], and in many other references which I will not attempt
to enumerate here. Similarly, there is starting to be a considerable parallel
literature on the analytic side, typified by [Roe1], [Roe2], and [HR2]. I will
not attempt a “grand synthesis” of all of this work, but rather something
much more modest. Namely, one sees in [CarP] and in [Ran2, Appendix C,
§C4] the basic point of view that assembly maps can be viewed as “partial
forget control” maps, from continuous control to bounded control.††† The
secret to splitting assembly maps, in other words to proving versions of the
Novikov conjecture, thus seems to be to find a way to go back, from bounded
control to continuous control . This in fact is the main theme in the analytic
literature as well.

We begin with a review of some of the relevant algebraic and topological
concepts.

3.1. Definition. Let (X, d) be a metric space and let R be a ring. Let
CX(R) be the X-bounded projective R-module additive category of
Pedersen and Weibel [PW]. This is defined as follows: an object in CX(R)
is a direct sum of finitely generated projective R-modules graded by X

A =
⊕

x∈X

A(x)

such that for every subspace K ⊆ X of finite diameter, only finitely many
of the modules A(x), x ∈ K, are non-zero. A morphism A → B in CX(R) is
roughly speaking a matrix of finite bandwidth (called by some authors finite

†††In fact, this point of view first appeared in [Q1], though the treatment there of
what later came to be known as assembly is somewhat different, and harder to match up
with what we are doing here.

To be honest, there are several competing notions of control that are relevant here, and
the kind of “continuous control” used in [CarP] is different from what we call “continuous
control” below, which is also known as “asymptotic control.” Our approach to assembly
here is closer to that in [Car1, §III] than to that in [CarP]. However, the basic philosophy
is pretty much the same.
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propagation distance), in other words, an R-module morphism defined by
“matrix entries”

f = {f(y, x) : A(x) → B(y)}
such that there exists a number b > 0 with f(y, x) = 0 : A(x) → B(y) for all
x, y ∈ X with d(x, y) > b. For X compact, the “finite bandwidth” condition
is always trivially satisfied, so CX(R) is just equivalent to the category of
finitely generated projective R-modules. If R is a ring with involution ∗, then
there is an induced involution on CX(R) defined by applying ∗ “pointwise”
in X, and so the L-theory of CX(R) is defined.

3.2. The Pedersen-Weibel category CX(R) was originally introduced in
[PW] for the purpose of giving a good realization of K-homology, since
it turns out by the main theorem of [PW] that if X = O(Y ) ⊆ RN+1 is the
open cone on a compact subset Y ⊆ SN , then

K•(CX(R)) ∼= H lf
• (O(Y ); K•(R)) ∼= H̃•−1(Y ; K•(R)).

Here K•(R) is the (nonconnective) algebraic K-theory spectrum of the ring
R. When R = R, the algebraic K-theory spectrum K•(R) maps to the
topological K-theory spectrum Ktop

• (R), and so K•(CX(R)) maps to the
topological K-homology of Y (with a degree shift). A direct construction of
this map in terms of the Kasparov realization of topological K-homology
was attempted in [Ros2, Theorem 3.4], but as John Roe has kindly pointed
out to me, the proof given there is incorrect. (In the notation of the proof of
[Ros2, Theorem 3.4], the error is that there is no reason why the action ψ of
C(X) on the algebraic direct sum of the At·x should be a ∗-homomorphism
with respect to the inner product 〈 · , · 〉0.) However, we still ought to be
able to match up “bounded topology” with the analytic literature based
on KK-theory, and indeed this is done in [PRW], though only by non-
constructive methods and in the case where X is the open cone on a compact
polyhedron. Matching the “bounded topology” Novikov conjecture with the
analytic literature on the Novikov conjecture involves the “simply connected
assembly map” Alf of [Ran2, Appendix C] for the L-theory of C X̃(Z), where
X̃ is the universal cover of a space X, and relating it by transfer to the usual
assembly map

Ah : H•(X; Lh
•(Z)) → Lh

•(Zπ1(X)).

However, we have to take the action of π1(X) into account and look at
equivariant theories.

Recall that if a group π acts on a (based) space X, the homotopy fixed
set Xhπ is defined to be the set

Xhπ := Map(Eπ+, X)π
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of based equivariant maps from the universal π-space Eπ+ to X (we’ve
added a disjoint basepoint to Eπ in order to stay in the based category).
The obvious (based) map from the actual fixed set Xπ to the homotopy
fixed set Xhπ may or may not be an equivalence.

We will need the observation that if X̃ is the universal covering of a
connected compact polyhedron with fundamental group π and if R is a ring,
then π operates on the category C X̃(R). If R is a PID (so that all projective
R-modules are free and Lp

•(R) = Lh
•(R) := L•(R)), then in the definition

of the category C X̃(R) we may as well replace the word “projective” by
the word “free,” and the subcategory of invariants for this action may be
identified with Cfree

X (Rπ). This is defined the same way as CX(Rπ), but
again with the word “projective” replaced by the word “free,” since Rπ is
exactly the free R-module with π as basis, and since Rπ-module morphisms
of finitely generated free Rπ-modules have finite bandwidth. The category
Cfree

X (Rπ) in turn is equivalent to the category of finitely generated free
Rπ-modules, since X is compact. Thus

L•(C X̃(R))π ' Lh
•(Rπ)

(this observation was first made in [CarP]), while

H(X; L•(R)) ' Hlf (X̃; L•(R))π ' Hlf (X̃; L•(R))hπ

if π is torsion-free (this latter fact is proved in [Car1, Corollary II.5], [Car2,
§II] and in [CarP], in fact for general spectra in place of L•(R)).

3.3. Theorem [CarP], [Ran3, §8]. If X is a connected compact polyhedron

with torsion-free fundamental group π and universal covering X̃, and R is
a PID (we are interested in the cases Z, R, and C), then there is a natural
homotopy-commutative diagram

H(X; L•(R)) Ah

−−−−→ Lh
•(Rπ) = L•(C X̃(R))π

trf

y∼= trf

y

Hlf (X̃; L•(R))hπ Alf, hπ

−−−−→ L•(C X̃(R))hπ.

The vertical arrows may be identified with the natural maps from fixed sets
to homotopy fixed sets.

In particular, if Hlf (X̃; L•(R)) Alf

−−→ L•(C X̃(R)) is an equivalence, then

(since this implies Alf, hπ is also an equivalence) Ah is split injective.

3.4. The rough idea of the methods of [CarP] (this is not exactly what they
do, but only for technical reasons) is first to identify H lf (X̃; L•(R)) with
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the L-theory of a continuously controlled (and not just bounded) category
of R-modules over X̃, and to identify the locally finite assembly map

Hlf (X̃; L•(R)) Alf

−−→ L•(C X̃(R))

with a “partial forget control” map. Then if there is a model for Eπ with a
contractible metrizable compactification Y on which π acts, so that compact
subsets of Eπ become small when translated toward the boundary, one tries
to use the geometry of the compactification to show that

Hlf (Eπ; L•(R)) Alf

−−→ L•(CEπ(R))

is a weak homotopy equivalence. The idea (which is also basic to [FW]
and to many of the other references we have cited) is that “pushing to
the boundary” converts bounded control to continuous control, and thus
provides a splitting to the forgetful map. If one can show this, then one can
apply Theorem 3.3 to finish the argument.

We will see that all of this has a counterpart in the analytic literature
as well. One could trace this through almost all of the analytic papers on
the Novikov conjecture, especially in [Mis3], [HsR], [Gr], and [Hu], but to
the limit the discussion I will concentrate here on the programs of Kasparov
and Roe as expressed, say, in [Kas4], [Kas5], [Roe2], and [HR2].

Now let’s specialize to the case where the coefficient ring R is R or C.
We’ll write everything out for the case of R, but C works exactly the same
way. Following the principles which we have discussed earlier in this paper,
the analytic counterpart to L•(C X̃(R)) should be the topological K-theory
spectrum of a certain “C∗-completion” of the category C X̃(R). There are a
number of technical problems in defining this completion (which also came
up in [Ros2, §3]), which are due to the fact that morphisms in the cat-
egory C X̃(R) are not necessarily bounded for any obvious norm, though
they are “locally bounded” over compact subsets of X̃. To see exactly what
is going on it is convenient first to simplify the category slightly by using
the observation that X̃, being the universal cover of a compact metrizable
space with fundamental group π, is “coarsely equivalent” to |π|, the group
π viewed as a metric space with regard to the word length metric d de-
fined by some set of generators. Thus the category C X̃(R) is equivalent to
the category C |π|(R), for which the underlying metric space |π| is countable
(as a set). Then we may form the separable Hilbert space H ∼= `2(π) ⊗ `2

(completed tensor product) which is the Hilbert space direct sum of one
copy `2g of `2 (the standard infinite-dimensional separable Hilbert space) for
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each element g of π. Each morphism in C |π|(R) may be identified with an
unbounded operator on H, more specifically, by the operator defined by a
matrix with rows and columns indexed by π, where the (g, h) matrix en-
try is a finite-rank operator from `2h to `2g, and where this entry vanishes
as soon as d(g, h) is sufficiently large (the “finite bandwidth” condition).
The set of these operators is a R-algebra A(|π|) with an involution ∗, which
has the convenient property of “stability,” i.e., Mn(A(|π|)) is naturally iso-
morphic to A(|π|) itself. However, A(|π|) is a ring without unit, since the
identity operator on `2g is not of finite rank. For most purposes this is not
a problem, since A(|π|) has an “approximate identity” consisting of distin-
guished self-adjoint idempotents pα, where α ranges over all maps π → N,
in the sense that A(|π|) = lim−→α

pαA(|π|)pα. (Cf. [HR1, Lemma 3.8].) The
idempotent pα is given by the diagonal matrix whose (g, g)-matrix entry
is the orthogonal projection from `2g onto the span of the first α(g) basis
vectors. There is a naturally partial ordering on the maps α : π → N, which
corresponds to the usual partial order on idempotents as applied to the pα,
coming from the usual order ≤ on N. Note also that the objects of the cat-
egory C |π|(R) are in natural bijection with the pα’s, so that for example an
algebraic Poincaré complex in C |π|(R) corresponds to an algebraic Poincaré
complex of projective modules over some pαA(|π|)pα. Thus one can identify
the L-theory spectrum of the category C X̃(R) with the Lp-theory spectrum
of the nonunital ring A(|π|), by which we mean hocolimα Lp(pαA(|π|)pα).
(Here we are implicitly using the fact that Lp, though not Lh, is functorial
for ring ∗-homomorphisms which are non-unital, but which map the unit of
the first ring to a proper idempotent in the second.)

Now let Abdd(|π|) be the subring of A(|π|) consisting of matrices which
act as bounded operators on H. This is a ∗-closed algebra of Hilbert-space
operators, so it has a C∗-algebra completion C∗(|π|). It is trivial to see that
this is the same as the algebra of the same name introduced in [Roe2] and
[HR1, Definition 3.5]. Now we can give an analytic counterpart to Theorem
3.3.

3.5. Theorem. In the situation of Theorem 3.3, the following diagram is
homotopy-commutative. Here the map i∗ is induced by the inclusion i :
Abdd(|π|) ↪→ A(|π|) and (to save space) we have omitted explicit mention
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of the fact that everything is to be localized away from 2.

H(X;Ktop
• (R)) //β

WV

PQ

trf∼=

ÂÂ
ÂÂ
ÂÂ
ÂÂ
ÂÂ
ÂÂ
ÂÂ
ÂÂ
ÂÂ

//

Ktop
• (C∗r (π))

UT

RS

trf

Â Â
Â Â
Â Â
Â Â
Â Â
Â Â
Â Â
Â Â
Â Â

oo

H(X;L•(R)) //Ah

²²
trf∼=

OO
∼=

L•(C X̃(R))π

²²
trf

Lh
• (Rπ)

OO

²²
trf

Hlf (X̃;L•(R))hπ //Alf, hπ

²²
∼=

L•(C X̃(R))hπ Lp
•(A

bdd(|π|))hπoo
i∗

²²
Hlf (X̃;Ktop

• (R))hπ //βRoe, hπ

Ktop
• (C∗(|π|))hπ.

The horizontal map on the bottom is the analogue of β in “coarse Baum-
Connes” theory, as explained in [HR2]. In fact, the outer square in this
diagram is the “spacified” version of a diagram appearing at the end of §6
of [HR2].

Proof. Most of this follows immediately from Theorem 2.7 and Theorem
3.3. The fact that the middle and outer vertical arrows on the left are
equivalences is, as we mentioned before, proved in [Car1, Corollary II.5],
[Car2, §II] and in [CarP]. We only need to explain the arrows and the
commutativity on the far right and very bottom of the diagram. The map
Ktop
• (C∗r (π)) trf−→ Ktop

• (C∗(|π|))hπ, as explained at the end of §6 of [HR2],
arises from the fact that π acts naturally on C∗(|π|), with fixed-point alge-
bra Morita-equivalent (in the C∗-algebra sense) to C∗r (π). Thus the vertical
arrow on the far right is induced by the inclusion C∗(|π|)π ↪→ C∗(|π|). Simi-
larly, π acts naturally on Abdd(|π|), with fixed-point algebra (algebraically)
Morita-equivalent to Rπ, so one has a similar vertical arrow trf : Lh

•(Rπ) →
Lp
•(Abdd(|π|))hπ induced by the inclusion Abdd(|π|)π ↪→ Abdd(|π|), and this

arrow and trf : Ktop
• (C∗r (π)) −→ Ktop

• (C∗(|π|)) fit together in a homotopy-
commutative square. The horizontal arrow at the bottom of the diagram
is result of passing to homotopy fixed sets in the “spacified” version of the
composite

Klf
• (X̃) → KX•(X̃) ∼= KX•(|π|) ∼= Klf

• (Eπ)
µ−→ Ktop

• (C∗(|π|))

discussed in [HR2], where the commutativity of the outer square is also
proved. ¤
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3.6. Corollary (basically discovered independently by several au-
thors). If, in the situation of Theorem 3.3,

Hlf (X̃; Ktop
• (R))

βRoe

−−−→ Ktop
• (C∗(|π|))

is an equivalence, then (since this implies βRoe, hπ is also an equivalence)
Ah is split injective (after inverting 2).

Proof. Chase the diagram. ¤

Now we can see in the analytic literature almost exact parallels to the
topological theory. The coarse assembly map βRoe may again be regarded
as a “partial forget control” map from continuously controlled to bounded
topology. If there is a model for Eπ with a contractible metrizable compact-
ification Y on which π acts, so that compact subsets of Eπ become small
when translated toward the boundary, then “pushing to the boundary” con-
verts bounded control to continuous control, and thus provides a splitting
to the coarse assembly map. Corollary 3.6 then gives a form of the integral
Novikov conjecture.

Furthermore, one can do away with the assumption that π be torsion-
free. When π has torsion, the natural conjecture is that of Baum and Connes
(see 2.5 above) with Eπ replacing Eπ. This has a counterpart for L-theory
as well. Work in progress of Carlsson, Pedersen, and Roe (among others)
gives an analogue of Corollary 3.6 in this context.
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