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Preface

These volumes grew out of the conference which we organized at the
Mathematisches Forschungsinstitut Oberwolfach in September, 1993, on the
subject of “Novikov conjectures, index theorems and rigidity.” The aim of
the meeting was to examine the Novikov conjecture, one of the central
problems of the topology of manifolds, along with the vast assortment of
refinements, generalizations, and analogues of the conjecture which have
proliferated over the last 25 years. There were 38 participants, coming from
Australia, Canada, France, Germany, Great Britain, Hong Kong, Poland,
Russia, Switzerland, and the United States, with interests in topology, anal-
ysis, and geometry. What made the meeting unusual were both its interdis-
ciplinary scope and the lively and constructive interaction of experts from
very different fields of mathematics. The success of the meeting led us to
try to capture its spirit in print, and these two volumes are the result.

It was not our intention to produce the usual sort of conference pro-
ceedings volume consisting of research announcements by the participants.
There are enough such tomes gathering dust on library shelves. Instead,
we have hoped to capture a snapshot of the status of work on the Novikov
conjecture and related topics, now that the subject is about 25 years old.
We have also tried to produce volumes which will be helpful to beginners in
the area (especially graduate students), and also to those working in some
aspect of the subject who want to understand the connection between what
they are doing and what is going on in other fields. Accordingly, we have
included here :
(a) a fairly detailed historical survey of the Novikov conjecture, including

an annotated reprint of the original statement (both in the original
Russian and in English translation), and a reasonably complete bibli-
ography of the subsequent developments;

(b) the texts of hitherto unpublished classic papers by Milnor, Browder,
and Kasparov relevant to the Novikov conjecture, which are known to
the experts but hard for the uninitiated to locate;

(c) several papers (Ferry, Ferry-Weinberger, Ranicki, Rosenberg) which,
while they present some new work, also attempt to survey aspects of
the subject; and

(d) research papers which reflect the wide range of current techniques
used to attack the Novikov conjecture: geometry, analysis, topology,
algebra, . . . .

All the research papers have been refereed.
We hope that the reader will find the two volumes worthwhile, not merely

as a technical reference tool, but also as stimulating reading to be browsed
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Proper affine isometric actions of
amenable groups

M. E. B. Bekka, P.-A. Cherix and
A. Valette

A property of a (countable) group Γ of relevance both in harmonic anal-
ysis and operator algebras is the so-called Haagerup’s approximation prop-
erty (see [Cho], [JV], [Ro]): one possible definition is to say that the abelian
C∗-algebra c0(Γ) has an approximate unit consisting of positive definite
functions on Γ.

On the other hand, in §§7.A and 7.E of his book [Gr], M. Gromov in-
troduced the following definition (and dubious pun): Γ is a-T-menable if
Γ admits a proper affine isometric action on some Hilbert space H, where
“proper action” means that, for any bounded subsets B, C in H, the set of
elements g ∈ Γ such that α(g)B meets C is finite. (This non-standard sense
of properness is relevant for actions on general metric spaces.)

Our first result is that the two concepts are actually equivalent.

Lemma. For a group Γ, the following are equivalent:

(i) Γ has the Haagerup approximation property;

(ii) Γ admits a proper function of conditionally negative type;

(iii) Γ is a-T-menable.

Proof. (i) ⇔ (ii) is due to Akemann and Walter (Theorem 10 in [AW]).
(ii) ⇒ (iii). Let ψ be a proper function of conditionally negative type on

Γ. By Proposition 14 of [HV], there exists an affine isometric action α of Γ
on a Hilbert space H such that, for any g ∈ Γ,

ψ(g) = ‖α(g)(0)‖2.

We claim that α is a proper action. To see this, it is enough to check that,
for any R > 0, the set FR = {g ∈ Γ : α(g)BR ∩ BR 6= ∅} is finite (here BR

denotes the closed ball with radius R centered at 0).
For g ∈ G, denote by π(g) the linear part of α(g), so that α(g)(0) is its

translation part, i.e.,
α(g)ξ = π(g)ξ + α(g)(0)
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for any ξ ∈ H.
If g ∈ FR, we find ξ ∈ BR such that ‖α(g)(ξ)‖ ≤ R, which implies

‖α(g)(0)‖ ≤ R + ‖π(g)(ξ)‖ ≤ 2R or ψ(g) ≤ 4R2. Thus FR is contained in
{g ∈ Γ : ψ(g) ≤ 4R2}, a finite set by assumption.

(iii) ⇒ (ii). If α is a proper isometric action of Γ on H, then the function
ψ : Γ → R; g 7→ ‖α(g)(0)‖2 is of conditionally negative type (see no 13 of
Chapter 5 in [HV]). On the other hand, it is clear that ψ is proper. ¤

During the problem session at the Oberwolfach Conference on “Novikov
conjectures, index theorems and rigidity,”1 (Sept. 5–11, 1993), Gromov
asked whether any amenable group is a-T-menable; doing so, he advertised
a Question in §7.E of [Gr]. Our main result is that Gromov’s question has
an affirmative answer.

Let us fix more notation. We denote by λΓ the left regular representation
of Γ on `2(Γ), and by πΓ the direct sum of countably many copies of λΓ,
acting on

HΓ = `2(Γ)⊕ `2(Γ)⊕ `2(Γ)⊕ · · ·

(countably many summands).

Proposition. Let Γ be a countable amenable group. Then Γ admits a
proper affine isometric action α on HΓ, such that the linear part of α is πΓ.

Proof. Let (Fk)k≥1 be an increasing family of finite subsets of Γ, such that⋃∞
k=1 Fk = Γ. By Følner’s property, we find for any k ≥ 1 a finite subset Uk

of Γ, such that for any g ∈ Fk,

|gUk 4 Uk|
|Uk| < 2−k.

Let ξk be the normalized characteristic function of Uk, i.e.,

ξk(x) =

{
|Uk|−

1
2 , if x ∈ Uk,

0, otherwise.

Then

‖λΓ(g)ξk − ξk‖2 =
|gUk 4 Uk|

|Uk|
for any g ∈ Γ.

1The third author thanks the organizers for inviting him to that stimulating week!
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For g ∈ Γ, set now b(g) =
⊕∞

k=0 k(λΓ(g)ξk − ξk). This series converges
in HΓ because, for g ∈ Fn, we have

∥∥∥∥∥
∞⊕

k=n

k(λΓ(g)ξk − ξk)

∥∥∥∥∥

2

=
∑

k≥n

k2 ‖λΓ(g)ξk − ξk‖2 ≤
∑

k≥n

k22−k < ∞.

It is immediate to check that b is a 1-cocycle with respect to πΓ, i.e., for
any g, h ∈ Γ, b(gh) = πΓ(g)(b(h)) + b(g). Thus, defining α(g) : HΓ → HΓ

by α(g)ξ = πΓ(g)ξ + b(g), we see that α is an affine isometric action of Γ
on HΓ, with linear part πΓ.

Now, we define an function ψ conditionally of negative type on Γ by
ψ(g) = ‖b(g)‖2, and we claim that ψ is a proper function. This amounts to
proving that, for R ≥ 0, the set CR = {g ∈ Γ : ‖b(g)‖ ≤ R} is finite. To see
this, we fix N ∈ N such that R ≤ N . Then, for g ∈ CR:

N2 ‖λΓ(g)ξN − ξN‖2 ≤ ‖b(g)‖2 ≤ R2,

hence |gUN 4 UN | ≤ |UN | or |UN |
2 ≤ |UN ∩ gUN |. But the set of h’s in Γ

such that |UN |
2 ≤ |UN ∩ hUN | is clearly finite.

From the fact that ψ is a proper function conditionally of negative type,
one deduces the fact that α is a proper action as in the implication (ii) ⇒
(iii) of the Lemma. ¤

Remark. It is known (see e.g. [HV, Chapter 4]) that a countable group
Γ does not have Kazhdan’s property (T) if and only if Γ admits an affine
isometric action with unbounded orbits on some Hilbert space. For Γ a
countably infinite amenable group, the action α just constructed appeared
in [Che] to give an explicit example of such an affine isometric action with
unbounded orbits. Guichardet also proved that any such group admits an
affine isometric action with unbounded orbits on `2(G), the linear part of
which is λΓ (see [Gu], Cor. 2.4 in Chapter III; the proof, appealing to the
closed graph theorem, is not constructive, so we do not know whether such
an action is proper or not).
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Bounded K–theory and the
Assembly Map in Algebraic
K–theory

Gunnar Carlsson1

Introduction

Since their introduction 20 years ago, the evaluation of Quillen’s higher
algebraic K–groups of rings [35] has remained a difficult problem in homo-
topy theory. One does have Quillen’s explicit evaluation of the algebraic
K–theory of finite fields [36] and Suslin’s theorem about the K–theory of
algebraically closed fields [41]. In addition, Quillen’s original paper [35] gave
a number of useful formal properties of the algebraic K–groups: localiza-
tion sequences, homotopy property for the K–theory of polynomial rings,
reduction by resolution, and reduction by “devissage”. These tools provide,
for a large class of commutative rings, a fairly effective procedure which
reduces the description of the K–theory of the commutative ring to that of
fields. The K–theory of a general field remains an intractable problem due
to the lack of a good Galois descent spectral sequence, although by work of
Thomason [45] one can understand its so–called Bott–periodic localization.
In the case of non–commutative rings, the formal properties of Quillen are
not nearly as successful as in the commutative case.

A central theme in the subject has been the relationship with properties
of manifolds which are not homotopy invariant; here the ring in question
is usually the group ring Z[Γ], with Γ the fundamental group of a mani-
fold. Examples include Wall’s finiteness obstruction [49], the s–cobordism
theorem of Barden–Mazur–Stallings [31], Hatcher–Wagoner’s work [24] on
the connection between K2 and the homotopy type of the pseudoisotopy
space, and finally Waldhausen’s description [48] of the pseudoisotopy space
in terms of the K–theory of “rings up to homotopy”. Since the rings Z[Γ] are
typically not commutative, the reduction methods of [35] are not adequate
for the description of the K–theory of Z[Γ].

Fortunately, in the case of group rings, there is a reasonable conjec-
ture concerning the structure of the K–theory of Z[Γ], or more generally
A[Γ], where A is a commutative ring. Let Γ be any group, let BΓ+ denote

1Supported in part by NSF DMS 8907771.A01
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its classifying space with a disjoint basepoint added, and let K
˜

A denote

the connective spectrum associated to the symmetric monoidal category of
finitely generated projective A–modules. (We will allow ourselves to use the
language of spectra freely, in this introduction and throughout the paper;
see [1] or [30] for a discussion.) The homotopy groups of K

˜
A are precisely

the higher algebraic K–groups of Quillen. Then we have the “assembly
map”

α : BΓ+ ∧K
˜

A −→ KA[Γ]

(see [27] or [47]), which is constructed out of the group homomorphism

Γ×GLnA → GL1A[Γ]×GLnA
⊗−→ GLnA[Γ] .

Here, Γ is included in GL1A[Γ] by recognizing that any γ ∈ Γ can be viewed
as a unit in the ring A[Γ], and ⊗ is the homomorphism

GL1(A[Γ])×GLn(A[Γ]⊗
A

A) → GLn(A[Γ]) ; (M, N) → M ⊗N .

A preliminary conjecture about K
˜

A[Γ] is that α is an equivalence. This

would provide a complete description of K
˜

A[Γ] in terms of its constituent

parts K
˜

A and BΓ+, and would in particular yield a spectral sequence with

E2
p,q = Hp(Γ,KqA) converging to Kp+qA[Γ]. The conjecture is however

known to fail in general. If Γ is finite, then even with the coefficient ring C,
one can show by direct calculation that the map fails to be an isomorphism.
On the other hand, if A contains nilpotent elements, one can show that
even for the group Γ = Z (the conjecture holds for A regular and Γ = Z by
the methods of Quillen [35]), α fails to be an equivalence due to the pres-
ence of Nil–groups (see [5]), in the K–theory of the polynomial ring over A.
However, there are no known counter–examples to the conjecture with A
regular and Γ a group which admits a finite classifying space. In [47], Wald-
hausen proves that α is an equivalence, when A is regular, for a large class
of groups built from Z by processes of amalgamated product and extension
by Z. The rationalized form of the conjecture (πi(α)⊗

Z
idQ is an isomor-

phism) is much more approachable, and has been studied by many people.
Quinn for instance, has shown that this rationalized form holds when Γ is a
torsion free Bieberbach group [37], and Bökstedt–Hsiang–Madsen [6] have
shown that the πi(α)⊗

Z
idQ is injective for any group with finitely generated

homology. Low dimensional integral information has also been obtained by
Farrell–Hsiang [16,17]. More recently, the startling results of Farrell–Jones
[18,19] have given a complete description of the pseudo–isotopy space of a
closed compact manifold admitting a Riemannian metric with negative cur-
vature; one consequence of this is that πi(α)⊗

Z
idQ is an isomorphism for the
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fundamental groups of these manifolds. The method here relies on the prop-
erties of geodesic flow on the tangent bundle to the manifold. Their method
will generalize to a larger class of groups, including fundamental groups
of manifolds admitting a Riemannian metric with non–positive curvature
and cocompact discrete torsion-free subgroups of Lie groups, but always
relies on fairly precise control on the geometry (i.e., metric structure) of the
manifold.

In this paper, we will study the map α directly, without rationalization.
We describe our method. Suppose G is a finite group. (Note that our results
will certainly not apply to finite groups; it is included here for motivational
purposes.) Then the group ring A[G] can be viewed as the algebra of G–
invariant A–linear transformations from A[G] to A[G], where G acts on
HomA(A[G], A[G]) by the conjugation action (gf)(x) = gf(g−1x). Thus, if
|G| = n, A[G] is the invariant subring of a group action of G on the n× n
matrices over A, given by conjugating by a subgroup of the permutation
matrices in GLn(A). From this fact, one derives that K

˜
A[G] can be obtained

as the fixed point spectrum (K
˜

A)G of an action of G on K
˜

A. We now recall

the notion of the homotopy fixed point set of an action of a group G on a
space (or spectrum) X. For any group G, let EG denote a contractible space
on which G acts freely. Then we can equip the function space (or spectrum)
F (EG, X) with the conjugation G–action (gf)(z) = gf(g−1z). There is of
course the equivariant map EG → point, which induces an equivariant map

ε : X → F (point, X) → F (EG, X) ,

and because of the contractibility of EG, this map is a homotopy equiv-
alence, although not necessarily a G–homotopy equivalence. We denote
F (EG, X)G by XhG, and refer to it as the homotopy fixed point set of X;
εG is now a map from XG to XhG. The advantage of XhG over XG is
that XhG is computable from BG and X in an explicit way; for instance,
if G acts trivially on X, XhG = F (BG+, X). More generally, there is
a spectral sequence with Ep,q

2 = H−p(G, πqX) converging to πp+q(XhG).
We informally say that XhG can be constructed in a “homotopy theoretic”
way out of the constituent pieces BG+ and X, as BG+ ∧K

˜
A is built in a

homotopy–theoretic way out of BG+ and K
˜

A. We now obtain a map

K
˜

A[G] = (K
˜

A)G → (K
˜

A)hG ,

which we use as a detecting device for the assembly map α. Atiyah [2] has
shown that it is an effective such device when A = C. In our work, however,
we will be exclusively interested in groups Γ which admit a finite classifying
space; in particular, they are torsion–free. In the case we can still describe
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A[Γ] as HomA(A[Γ], A[Γ])Γ, i.e., the fixed point set of an action of Γ on a
ring of infinite matrices, which we write M∞(A) = HomA(A[Γ], A[Γ]). Un-
fortunately, the K–theory spectrum of M∞ = HomA(A[Γ], A[Γ]) can easily
be shown to be contractible; elementary properties of the (−)hΓ construc-
tion (see, e.g., [12]) show that (K

˜
M∞A)hΓ is therefore contractible. To

remedy this, one might attempt to replace M∞(A) by a Γ–invariant sub-
ring containing A[Γ], and whose K–theory spectrum allows one to detect
more. Roughly speaking, this is the procedure we use in this paper.

Precisely what we do is sketched as follows. We recall that E. Pedersen
and C. Weibel [33], [34], have introduced, for a ring R and metric space X,
the bounded K–theory K

˜
(X, R); K

˜
(X, R) is a spectrum, has appropriate

covariant functoriality properties in both X and R, and when applied to
the Euclidean space Ek produces a k–fold developing of the K–theory spec-
trum of R, equivalent to the Gersten–Wagoner k–fold delooping [22], [46].
When a group Γ acts on a metric space, we introduce a related equivariant
bounded K–theory spectrum, K

˜
Γ(X;R); it is a spectrum with Γ–action.

Viewed as a spectrum without Γ–action, K
˜

Γ(X; R) is equivalent to the

original Pedersen–Weibel construction K
˜

(X; R). In general, its fixed point

set is difficult to describe. However, suppose X is a compact Riemannian
manifold; with π1(X) = Γ. Then the universal cover of X becomes a Rie-
mannian manifold with free, isometric Γ–action, and the Γ–fixed point set
of K

˜
Γ(X, R) is equivalent to the K–theory spectrum K

˜
(R[Γ]). We have

thus achieved the construction of a spectrum with Γ–action with K
˜

(R[Γ])

as fixed point set, and hence obtain a map

εΓ : K
˜

(R[Γ]) → K
˜

Γ(X,R)hΓ .

An elementary (but not as convenient for our purpose as the one given in
the paper) Γ–homotopy equivalent version of the K

˜
Γ(X; R)–construction

can be described as follows. Let Γ be a finitely generated group, and Ω a
finite generating set for Γ. For any γ ∈ Γ, let

`(γ) = min{n | there is a word w±1
1 . . . w±n

1 which is equal to α} .

For any γ ∈ Γ and ` ≥ 0, set N`(γ) = span {γ̄ | `(γ−1γ̄) ≤ `}. Define
M b(A) ⊆ Hom(A[Γ], A[Γ]) to be the subgroup of all f : A[Γ] → A[Γ] so
that there exists some ` so that f(γ) ∈ N`(γ) for all γ ∈ Γ; M b(A) is of
course a subring, closed under the Γ–action and it contains A[Γ]. One can
show that when Γ = π1(X) as above, K

˜
Γ(X, R) is equivariantly equivalent

to K
˜

M b(A) with the Γ action induced from the one on M b(A).
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Having obtained our detecting map εΓ, we must find some way to evalu-
ate it on the assembly map. We choose to do this by realizing the assembly
map as the induced map on fixed point sets of an equivariant map with
target K

˜
Γ(X;R). We define, for any spectrum A, a functor bh

˜
`f (−, A)

defined on an appropriate category of metric spaces, and a natural trans-
formation bh

˜
`f (−,K

˜
(R)) → K

˜
(−, R). When A

˜
is an Eilenberg–MacLane

spectrum bh
˜

`f (−, A) is closely related to Borel–Moore homology [7]. When

X is equipped with an isometric Γ–action bh
˜

`f (−,K
˜

(R)) becomes a spec-

trum with Γ–action, and we obtain an equivariant natural transformation
bh
˜

`f (−,K
˜

(R)) → K
˜

Γ(−, R). The functor bh
˜

`f (−,K
˜

(R)) on a large (in-

cluding all cases of interest to us) category of metric spaces with Γ–action
has two crucial properties. The first is that when the Γ–action is free and
properly discontinuous, bh

˜
`f (X, K

˜
(R))Γ ∼= bh

˜
`f (Γ\X,K

˜
(R)). In particular,

when Γ\X is compact, bh
˜

`f (Γ\X, K
˜

(R)) reduces to ordinary homology of

Γ\X with coefficients in K
˜

(R), i.e., (Γ\X)+ ∧ K
˜

(R). The second crucial

property is that the natural map εΓ : bh
˜

`f (X,K
˜

(R))Γ → bh
˜

`f (X,K
˜

(R))hΓ

is an equivalence. Now suppose that X is a compact Riemannian manifold,
π1(X) = Γ, and that X̃ is contractible. Then the natural transformation
bh
˜

`f (−,K
˜

(R)) → K
˜

Γ(−, R), by restricting to fixed point sets, gives rise to

a map X+ ∧K
˜

(R) → K
˜

(R[Γ]). Since X̃ is contractible, X is a model for

BΓ, and this map can be identified with the assembly map. We now have
the commutative diagram

BΓ+ ∧K
˜

(R) −→ K
˜

(R[Γ])

o ↓
y

bh
˜

`f (X̃, K
˜

(R))Γ −→ K
˜

Γ(X̃, R)Γ

εΓ ↓
y

bh
˜

`f (X̃,K
˜

(R))hΓ −→ K
˜

Γ(X̃, R)hΓ

The lower left hand vertical arrow is an equivalence by the second of the
properties of bh

˜
`f (−,K

˜
(R)). We recall that if X

f→ Y is an equivariant map,

which is an equivalence without reference to the Γ–action, then XhΓ →
Y hΓ is an equivalence; this is a general property of homotopy fixed point
sets. Therefore, if we show that the map bh

˜
`f (−,K

˜
(R)) → K

˜
(X̃, R) is an

equivalence, the lowest horizontal arrow above will also be an equivalence.
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Therefore, so is the composite

BΓ+ ∧K
˜

(R) → K
˜

(R[Γ]) → K
˜

Γ(X̃, R)hΓ ,

and the assembly map can be identified up to homotopy with the inclusion
of a wedge summand of spectra. We now state our two main theorems.
Let K

˜
(R) denote the non–connective Gersten–Wagoner spectrum of R; its

homotopy groups agree with those of K
˜

(R) in nonnegative dimensions, and

in all dimensions if R is regular (see [22] or [46]). In III.20 a natural trans-
formation bh

˜
`f (−,K

˜
(R)) → K

˜
(X, R) is constructed where K

˜
(X, R) denotes

a non–connective version of K
˜

(X,R); it also agrees with K
˜

(X, R) in non–

negative dimensions.

Theorem A. Suppose X is a Riemannian manifold with π1(X) ∼= Γ, and X̃
is contractible. Equip X̃ with the Riemannian metric induced from X. If the
map bh

˜
`f (X̃,K

˜
(R)) → K

˜
(X̃, R) is an equivalence, then the assembly map

can be identified up to homotopy with the inclusion of a wedge summand
of the spectrum K

˜
(R[Γ]).

The condition that bh
˜

`f (X̃,K
˜

(R)) → K
˜

(X̃, R) is an equivalence depends

only on the behavior of the metric on X̃ “in the large.” After some con-
templation, one can see that it only depends on the structure (again in the
large) of the metric space whose points are elements of Γ and where the
metric is the one associated to a length function for some finite generating
set for Γ. It does not depend on the fine algebraic structure of Γ; for in-
stance, all torsion–free cocompact subgroups of the groups of isometries of
Euclidean k–space give the same result.

A second result that we prove in this paper is that if G is a connected
Lie group, K is a maximal compact subgroup, and G/K is equipped with
a left–invariant Riemannian metric, then bh

˜
`f (G/K,K

˜
(R)) → K

˜
(G/K, R)

is an equivalence. Since Γ\G/K is a Riemannian manifold, with G/K con-
tractible, the following now is a consequence of Theorem A.

Theorem B. Suppose Γ is a discrete, cocompact, torsion–free subgroup of
a connected Lie group G. Then the assembly map

BΓ+ ∧ K˜
(R) → K

˜
(R[Γ])

may be identified up to homotopy with the inclusion of a wedge summand
of spectra.
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Our methods are more homotopy theoretic than previous work in the
area, with the exception of Waldhausen’s work [47]. We feel that there are
three important advantages. The first is that our methods produce integral
results, i.e., not results after rationalizing. This is crucial for future geomet-
ric applications. The second is that they are applicable to situations where
the group Γ acts freely not on a Riemannian manifold, but on some other
space with metric. An interesting example of this is the case of cocompact,
discrete, torsion–free subgroups Γ of reductive p–groups G, which act on
the so–called Bruhat–Tits buildings [8]. These buildings carry metrics but
are definitely not manifolds; P. Mostad in his thesis [32] has applied the
methods of this paper to them to conclude in the case G = SLn(Q̂p) that
the assembly map can be identified up to homotopy with the inclusion of a
wedge summand in this case as well. The third advantage is that via the
work of Ranicki [39], the Pedersen–Weibel theory has an L–theoretic ana-
logue, and one would expect that the methods of this paper and the sequels
should extend to give results about the L–theory analogue of the assembly
map. This map plays a key role in attempts to prove the “Borel conjecture”
that any two closed compact K(Γ, 1)–manifolds are homeomorphic.

In a later paper, we plan to study the surjectivity of the assembly map
on homotopy groups; in cases where it has been shown to be an injection,
this shows it to be an equivalence. We also plan to develop a “simplicial”
version of the theory, in order to obtain a more homotopic theoretic method
to study the assembly map bh

˜
`f (X̃,K

˜
(R)) → K

˜
(X̃, R), less dependent on

strong geometric hypotheses on X.
The paper is arranged as follows. § I contains homotopy theoretic mate-

rial required later in the paper. It need not be read carefully by the expert,
although some nonstandard terminology is introduced. § II gives the con-
struction of bh

˜
`f and related analogues to Borel–Moore homology. We prove

excision results and discuss equivariant properties; the latter should have
independent interest for the study of classifying spaces of infinite groups.
§ III defines bounded K–theory, develops some of its elementary proper-
ties, and constructs the natural transformation bh

˜
`f (−,K

˜
(R)) → K

˜
(−, R).

§ IV proves some useful excision properties of the bounded K–theory spec-
tra. Specifically, we prove an excision theorem for finite coverings and
for certain families of infinite coverings, whose nerves have dimension 1.
§ V then applies the results of § IV to prove that the transformation
bh
˜

`f (G/K,K
˜

(R)) → K
˜

(G/K, R) is an equivalence, where G is a connected

Lie group, K ⊆ G is a maximal compact, and G/K is equipped with a
left invariant Riemannian metric. § VI defines the equivariant bounded
K–theory and proves the main theorems.

The author wishes to thank a number of mathematicians for helpful dis-
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cussions on various aspects of this paper. The list includes W. Dwyer,
T. Farrell, W.C. Hsiang, L. Jones, M. Karoubi, I. Madsen, A. Nicas, E. Ped-
ersen, F. Waldhausen, and C. Weibel. This paper was written during 1991
while the author was at Princeton University and visiting the University of
Minnesota.

I. Homotopy Theoretic Preliminaries

We refer the reader to [11] or [28] for background material on simplicial
homotopy theory. Throughout this paper, the word “space” will mean sim-
plicial set, and “map” will mean simplicial map. A map f : X. → Y. is said
to be a weak equivalence if the induced map on geometric realization is a
weak equivalence. A simplicial space will thus mean a bisimplicial set, and
we use the notation | | for the functor which assigns to a simplicial space its
diagonal simplicial set. Recall that a map of simplicial spaces f : X. → Y. is
a weak equivalence if fk : Xk → Yk is a weak equivalence for all k. Similarly,
recall that a cosimplicial space is a covariant functor from ∆ to spaces. We
assume that the reader is familiar with the notation “Kan complex”, “Kan
fibration”, and “fibrant cosimplicial space”. A map of cosimplicial spaces is
said to be a weak equivalence if it is an equivalence in each level. Spaces,
maps, and cosimplicial spaces can be converted in a functorial way to Kan
complexes, Kan fibrations, and fibrant cosimplicial spaces. Recall the no-
tion of total space Tot(X.) of a cosimplicial space, and that if f : X. → Y.
is a weak equivalence of fibrant cosimplicial spaces, then Tot(f) is a weak

equivalence. Let X.
f−→ Y.

g−→ Z. be a diagram of based spaces, and sup-
pose that gf is constant. Let ĝ : Ŷ . → Ẑ. denote the result of the functorial
conversion of g to a Kan fibration. There is a canonically induced map f̂
from X. into the inverse image under ĝ of the basepoint Ẑ., and we say that
the sequence X.

f−→ Y.
g−→ Z. is a fibration up to homotopy if f̂ is a weak

equivalence. Finally, if C is any category, we let S.C denote the category of
simplicial objects in C. For C any category, we let N.C denote the nerve
of C, the simplicial set whose k–simplices are given by diagrams

X0
f0−→ X1

f1−→ X2
f2−→ · · · fk−1−→ Xk

in C, and whose face and degeneracy maps are given by compositions and
insertions of the identity as in [35]. We recall from [35] that a functor
F : C → D induces a map N.F : N.C → N.C, and that if F, G : C → D
are functors and N : F → G is a natural transformation, then N induces a
simplicial homotopy from N.F to N.G. We permit ourselves the abuse of
notation x ∈ C for “x is an object of C.” We say a functor F is a weak
equivalence if N.F is, and that a category is contractible if N.C is weakly
equivalent to a point. For any functor F : C → C and object x ∈ D, we
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let F ↓ x denote the category whose objects are pairs (ξ, θ), where ξ is
an object of C and θ : F (ξ) → x is a morphism in D, which we call the
reference map, and where a morphism from (ξ, θ) to (ξ′, θ′) is given by a
morphism ϕ : ξ → ξ′ in C making the diagram

ξ
F (φ)−→ ξ′

↘θ ↙θ′
x

commute. The category x ↓ F is defined in a dual fashion, as in [35]. We
recall that Quillen’s Theorem A [35] asserts that F is a weak equivalence
if for all x ∈ D, F ↓ x is a contractible category. Similarly, if x ↓ F is
contractible for all x, F is a weak equivalence.

We will be dealing with spectra throughout this paper. We will adopt
the definitions of [10], i.e., that a spectrum X

˜
is a family of based spaces

{Xi}i=0 with maps σi : S1 ∧ Xi → Xi+1, where S1 denotes the simplicial
circle. A map of spectra f : X → Y is a family of maps fi : Xi → Yi,
making the diagrams

S1 ∧Xi
Id∧fi−→ S1 ∧ Yi

σi ↓ ↓ σi

Xi+1
fi+1−→ Yi+1

commute. Note that if we applied geometric realization, we would obtain
what are usually called prespectra and maps of prespectra. For a simplicial
set, let ‖X.‖ denote its geometric realization, a topological space. If X

˜
is a spectrum, we obtain continuous maps ‖σi‖ : ‖S1‖ ∧ ‖Xi‖ → ‖Xi+1‖,
and hence suspension homomorphisms πk+1(‖Xi‖) → πk+i+1(‖Xi+1‖). We
define πk(X

˜
) to be lim

→ i πk+i(‖Xi‖), and note that πk is a functor from the

category of spectra S to Ab. We say a map f : X
˜
→ Y

˜
of spectra is a weak

equivalence if πk(f) is an equivalence for all k.
A spectrum X

˜
is said to be an Ω–spectrum if for each i, the map

‖Xi‖ → Ω‖Xi+1‖ adjoint to the realization of ‖σi‖ is a weak equivalence of
topological spaces. Note that for an Ω–spectrum X

˜
, πk(X

˜
) ∼= πk+i(‖Xi‖),

whenever the right hand side is defined. Let ωS ⊂ S denote the full sub-
category of Ω–spectra. Then every X

˜
∈ S is weakly equivalent to an Ω–

spectrum. Indeed, there is a functor Q : S → ωS and a natural transforma-
tion Id → Q which is a weak equivalence for all X

˜
∈ S. Note that a map

f : X
˜
→ Y

˜
between Ω–spectra X

˜
and Y

˜
is a weak equivalence if and only if

all the homomorphisms πi(‖fk‖) : πi(‖Xk‖) → πi(‖Ỹk‖) are isomorphisms.
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We say a map of spectra f : X
˜
→ Y

˜
is a cofibration if each fi is. In this

case, we can form the cofibre spectrum Y \X
˜

by setting (Y/X)i = Yi/Xi.

Note that if X
˜

and Y
˜

are Ω–spectra, Y \X
˜

is generally not. We say a spec-

trum X
˜

is Kan if each Xi is a Kan complex, and that a map of spectra

f : X
˜
→ Y

˜
is a Kan fibration if each fi is a Kan fibration. Spectra and

maps of spectra can be replaced by Kan spectra and Kan fibrations of spec-
tra in a functorial way. Suppose we have a sequence X

˜
f−→ Y

˜
g−→ Z

˜
of

maps of spectra, and that g ·f is the constant map of the spectra. Then the
sequence X

˜
f−→ Y

˜
g−→ Z

˜
is said to be a fibration up to homotopy if each

Xk
fk−→ Yk

gk−→ Zk is. Cofibrations and fibrations up to homotopy both
induce long exact sequences on homotopy groups of spectra.

Now recall from [11] the definitions of homotopy colimits and homotopy
limits of functions from a category C to s–sets. The homotopy colimit is
the diagonal space of a certain simplicial space, and the homotopy limit is
the total space of a certain cosimplicial space, which is fibrant if the value
of the functor is a Kan complex for every object of C. We adopt the based
versions of both constructions.

We summarize the relevant properties of these constructions.

Proposition 1.1.

(a) Let Φ : C → D and F : D → s–sets be functors. Then we obtain
maps Φ! : hocolim

−→
C

F ◦Φ → hocolim
−→
D

F and Φ! : holim
←−
D

F → holim
←−
C

F ◦Φ.

Further, Ψ! · Φ! = (Ψ · Φ)! and Φ! ·Ψ! = (Φ ·Ψ)!.

(b) Let F, G : C → s–sets be functors and let N : F → G be a natural
transformation. Then N induces maps N : hocolim

−→
C

F → hocolim
−→
C

G

and N̄ : holim
←−
C

F → holim
←−
C

G. N1 N2 = N1N2 and N1 N2 = N1N2.

(c) Suppose F,G : C → s–sets are functors, and N : F → G is a natural
transformation, so that N(x) : F (x) → G(x) is a weak equivalence for
all x ∈ C. Then N is a weak equivalence. If F (x) and G(x) are Kan
for all x ∈ C then N̄ is a weak equivalence.

(d) There are natural maps

hocolim
−→
C

F → colim
−→
C

F
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and

lim
←−
C

F → holim
←−
C

F .

(e) Suppose N : F → G is a natural transformation of functors from C
to s–sets and that N(x) is a cofibration for all x ∈ C. Then N is a
cofibration. Similarly, if N1 : F → G and N2 : G → H are natural
transformations of functors from C to s–sets, F (x), G(x), and H(x)
are Kan for all x ∈ C, so that for each x ∈ C, F (x) → G(x) → H(x)
is a fibration up to homotopy of spaces, then the sequence

holim
←−
C

F
N̄1−→ holim

←−
C

G
N̄2−→ holim

←−
C

H

is a fibration up to homotopy.

(f) Let X. be a simplicial space, i.e., a functor F : ∆op → s–sets . Then
hocolim
−→
∆op

F is naturally equivalent to |X|.

(g) (See [14].) Let Φ : C → D and F : D → s–sets be functors. if
the categories x ↓ Φ are contractible for all x ∈ D, then Φ! is an
equivalence. If the categories Φ ↓ x are contractible for all x ∈ D, and
F (x) is a Kan complex for all x ∈ D, then Φ! is an equivalence.

Now suppose F : C → S is a functor. For each k, let Fk : C → s–sets
denote the “k–th space” functor of F . The maps σi induce maps σ̄i :
S1∧hocolim

−→
C

Fk → hocolim
−→
C

Fk+1, and therefore defines a spectrum which we

write as hocolim
−→
C

F . Similarly, we obtain maps S1∧holim
←−
C

Fk → holim
←−
C

Fk+1,

and hence a homotopy inverse limit spectrum which we denote holim
←−
C

F .

hocolim
−→
C

F is generally not Kan, even if each spectrum F (x) is. It also is

not an Ω–spectrum, even if F (x) is for all x ∈ C. However, if F (x) is Kan
and is an Ω–spectrum for each x ∈ C, then holim

←−
C

F is a Kan Ω–spectrum.

We now record the analogue to I.1 for spectra. If X
˜

. is a simplicial object

in S., we let |X
˜

.| denote the spectrum obtained by applying | | termwise.

Proposition I.2. I.1 holds as stated for functors with values in S.
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We will refer to a functor F : C → S as a (spectrum valued) C–diagram.
A natural transformation N : F → G of functors is referred to as a map of
C–diagrams, and is called a weak–equivalence if N(x) is a weak equivalence
of spectra for all x ∈ C. A homotopy natural transformation from a C–
diagram G is a family of C–diagrams {Hi}n

i=0 with H0 = F and Hn = G,
together with natural transformations θi : Hi → Hi−1 and ηi : Hi → Hi+1

for all 1 ≤ i ≤ n−1 so that each θi is a weak equivalence. Homotopy natural
transformations may be composed in the evident way, and we say that the
homotopy natural transformation is a homotopy natural equivalence if in
addition each ηi is a weak equivalence. Homotopy natural transformations
are just morphisms in in the homotopy category obtained from the category
of C–diagrams by inverting the weak equivalences. We say two C–diagrams
are weakly equivalent if there is a homotopy weak equivalence connecting
them. Weakly equivalent diagrams yield weakly equivalent homotopy col-
imits. If F (x) and G(x) are Kan Ω–spectra for all x ∈ C, and are weakly
equivalent, then holim

←−
C

F and holim
←−
C

G are weakly equivalent spaces. Let

K∞ : S → S denote the functorial replacement of X
˜

by a weakly equivalent

Kan spectrum. Then if F is any C–diagram, K∞QF is a weakly equivalent
diagram to F , and K∞QF (x) is a Kan Ω–spectrum for all x ∈ C. We will
frequently have diagrams F whose values are not Kan Ω–spectra, and we
will also wish to consider holim

←−
C

K∞QF instead of holim
←−
C

F , since holim
←−
C

F

does not have good homotopy invariance properties. For this reason, it will
be understood in the remainder of this paper that if F : C → S is a diagram
whose values are not Kan Ω–spectra, then the notation holim

←−
C

F will mean

holim
←−
C

K∞QF . We allow ourselves this abuse of notation in the interest of

streamlining the notation; it should not create any real confusion.
We wish to introduce a tool for analyzing the homotopy type of homotopy

colimits and limits. Let C be any category and let F(C, Ab) denote the
category of Abelian group valued functors on C. F(C,Ab) has enough
injectives and projectives, and the functors lim

←−
C

and colim
−→
C

are left and right

exact, respectively. Consequently, one may define right derived functions
lim
←−

s and left derived functors colim
−→

s.

Proposition I.3. Let F : C → S be any functor, and let πiF denote the
Abelian group valued functor obtained by composing F with πi. Then there
is a spectral sequence with E2

p·q = colim
−→
C

pπqF , converging to π∗(hocolim
−→
C

F ).
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Similarly, there is a spectral sequence with Ep·q
2 = lim

←
p
CπqF , converging to

π∗(holim
←−
C

F ).

Proof: This follows directly by applying homology and homotopy spectral
sequences to the simplicial and cosimplicial spaces defining hocolim

−→
C

F and

holim
←−
C

F . Q.E.D.

We wish to discuss the functoriality of the hocolim
−→
C

and holim
←−
C

construc-

tions. Let E be any subcategory of the category of small categories, and let
C denote any category. We define a category CE as follows. The objects of
CE are pairs (E,ϕ), where E ∈ E , and ϕ : E → C is a functor. If (E,ϕ) and
(E′, ϕ′) are objects in CE , then a morphism from (E,ϕ) to (E′, ϕ′) is a pair
(F, ν), where F : E → E′ is a functor and ν is a natural transformation from
ϕ to ϕ′ · F . These morphisms are composed in the evident way. Similarly,
CE0 has the same objects as CE , but a morphism from (E,ϕ) to (E′, ϕ′) in
CE0 is a pair (F, ν), where F : E′ → E is a functor, and ν : ϕ′ · F → ϕ is a
natural transformation.

Proposition I.4. Let CAT denote the category of small categories. Then
hocolim
−→

and holim
←−

define functors from Sε and Sε
0, respectively, to S.

Proof: Follows directly from I.2 (a) and (b). Q.E.D.

Let C be a category, and let F : C → CAT be a functor. Then as in [42],
we define a category C o F as follows. The objects of C o F are pairs (x, ξ),
where x ∈ C and ξ ∈ F (x). A morphism from (x, ξ) to (x′, ξ′) is a pair
(f, θ), where f : x → x′ is a morphism in C and θ is a morphism in F (x′)
from F (f)(ξ) to ξ′. Once again, the composition is given by an obvious
formula. Let A be any category and let π : ACAT → CAT be the functor
defined by π(E,ϕ) = E, π(F, ν) = F . If Φ : C → ACAT is any functor,
we obtain an associated functor Φv : C o (π · Φ) → A by Φv(x, ξ) = φx(ξ),
where Φ(x) = (Ex, ϕx). This sets up a natural bijection between functors
C

Φ−→ ACAT with π · Φ = F and functors from C o F to A.

Proposition I.5. Let Φ : C → SCAT (or Φ : C → s–setsCAT ) be a functor.
Then there is a natural equivalence

holim
←−

Coπ·Φ
Φv → holim

←−
C

(holim
←−

· Φ) .
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Proof: This is proved in [42] for the case where Φv is constant, in the case
of s–sets. The extension to this generality is direct and we leave it to the
reader. Q.E.D.

We will also need symmetric monoidal category-theoretic models for
spectrum homotopy colimits. We recall from [43] the notion of a sym-
metric monoidal category; it is a category equipped with sum operations
and associativity and commutativity isomorphisms satisfying certain coher-
ence conditions; we refer to [15] for the explicit definitions. A symmet-
ric monoidal category is permutative if the associativity isomorphism is
actually an identity. We adopt Thomason’s terminology “lax symmetric
monoidal functors,” “strict symmetric monoidal functors,” and use “sym-
metric monoidal functor” for Thomason’s “strong symmetric monoidal func-
tor.” SymMon will denote the category of small symmetric monoidal cat-
egories and lax symmetric monoidal functors. We will also use the term
unital in the same sense as Thomason does. Thomason constructs a func-
tor Spt : SymMon → S, whose properties we summarize below. For a
unital symmetric monoidal category C, let π0(C) denote π0(NC). π0(C) is
a commutative monoid, and can be identified with the equivalence classes
of objects of C under the equivalence relation generated by the relation
{x ∼ y if and only if ∃f : x → y in C}. A submonoid M ⊂ π0(C) is said to
be cofinal if for all x ∈ π0(C), there is a y ∈ π0(C) so that x + y ∈ M . For
any M ⊂ π(C), let C[M ] denote the symmetric monoidal subcategory of C
on objects which lie in an equivalence class belonging to M . We also recall
from [29] the notion of a symmetric monoidal pairing A × B → C. The
following theorem summarizes the information we need concerning infinite
loop space machines; parts (a)–(c) are in Thomason [43], and part (d) is
contained in [29].

Theorem I.6. There is a functor Spt : SymMon → S satisfying the follow-
ing conditions.

(a) If f : C → D is a lax symmetric monoidal functor and N.f is a weak
equivalence of simplicial sets then Spt(f) is an equivalence of spectra.

(b) For any symmetric monoidal category C, let Spt0(C) denote the zeroth
space of Spt(C). There is a natural map NC → Spt0(C), which
induces an isomorphism

(π0NC)−1H∗(NC) ∼−→ H∗(Spt0(C)).

(c) Let f : C → D be a unital symmetric monoidal functor between unital
symmetric monoidal categories C and D, and suppose π0(C) contains
a cofinal submonoid M so that π0(f)(M) is also a cofinal submonoidal
of π0(D). Suppose further that for every object x ∈ D lying in an
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equivalence class belonging to π0(f)(M), x ↓ f (or f ↓ x) is a con-
tractible category. The πi(Spt(f)) is an isomorphism for i > 0.

(d) If µ : A × B → C is a symmetric monoidal pairing, then there is an
induced map

Spt(µ) : Spt(A) ∧ Spt (B) → Spt(C)

so that the composite

N.A×N.B → Spt0(A) ∧ Spt0(B) → (SptA ∧ Spt B)0 → Spt0 C

is equal to the composite

N.A×N.B
N.µ−→ N.C → Spt0(C) .

Proof: Parts (a) and (b) are conditions 2.1 and 2.2 of [43]. Part (c) follows
directly from (a) and (b) directly together with Quillen’s theorem A. Q.E.D.

We now wish to understand how homotopy colimits work in this setting.
Thomason [43] accomplishes this as follows. Let C be a category, and let
F : C → SymMon be a functor. Thus Spt ·F is a functor from C to S, and
in [43], Thomason produces a symmetric monoidal category Permhocolim

−→
C

F

and a natural equivalence of spectra

Spt (Permhocolim
−→
C

F ) → hocolim
−→
C

(Spt · F ).

The objects of Permhocolim
−→
C

F are of the form n[(L1, X1), . . . , (Ln, Xn)],

where n is a positive integer, Li is an object of C, and Xi is an object of
F (Li). A morphism

n[(L1, X1), . . . , (Ln, Xn)] → m[(L′1, X
′
1), . . . , (L

′
n, X ′

n)]

consists of data (`i, Ψ, xj), where

(1) Ψ : {1, . . . , n} → {1, . . . ,m} is a surjection of sets,

(2) `i : Li → L′Ψ(i) is a morphism in C for i = 1, . . . , n, and

(3) xj : ⊕Ψ(i)=jF (`i(xj)) → x′j is a morphism in F (L′j) for j = 1, . . . , m.
(The order of summation in ⊕Ψ(i)=jF (`i)(Xj) is given by the ordering
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{1, . . . , m}, and the brackets are “piled up on the left.”) The compo-
sition law for morphisms is defined in a straightforward way; see [43]
for details. The sum in Permhocolim

−→
C

F is given on objects by

n[(L1, X1), . . . , (Ln, Xn)]
⊕

m[(L′1, X
′
1), . . . , (L

′
n, X ′

n)]

= (n + m)[(L1, X1), . . . , (Ln, Xn), (L′1, X
′
1), . . . , (L

′
n, X ′

n)].

The definition on morphisms is easily worked out by the reader. For
simplicity, we will use the notation C ooF for Permhocolim

−→
C

F .

Proposition I.7. The rule (C,F ) → CooF gives a functor from SymMonCAT

to SymMon; i.e., C ooF has the same functoriality properties as the spectrum
level homotopy colimit.

Thomason proves the following universal mapping property for C ooF .

Proposition I.8 ([43], Proposition 3.1.) Let F : C → SymMon be a
functor, and let S be a permutative category. For each object x ∈ C, let
ix : F (x) → C o oF be the functor given by ix(ξ) = 1[(x, ξ)], where ix is
symmetric monoidal. Moreover, for each morphism f : x → y in C, we
obtain a symmetric monoidal natural transformation Nf : ix → iy · F (f),
and the equation Nf ·Ng = Nf ·g holds for all composable pairs of morphisms
f and g. Given lax symmetric monoidal functors fx : F (x) → S for all x ∈
C, and symmetric monoidal natural transformations M(g) : fx → fy · F (g)
for every morphism g : x → y in C satisfying M(g1) M(g2) = M(g1g2), then
there is a unique strict symmetric monoidal functor µ : C ooF → S such that
µ · ix = fx and µ ·N(g) = M(g).

The construction C ooF is a bit unwieldy; fortunately, in two situations
where we will require it, much more economical models are available.

Suppose first that L is the category of proper subsets of the set {0, 1};
C has three objects, ∅, {0} and {1}, with unique morphisms ∅ → {0} and
∅ → {1}. A functor from L into a category C is just a diagram of the form

y ← x → z

in C. In the case of spectra, the homotopy colimit of such a diagram is
the double mapping cylinder of the diagram. Suppose we have a functor F
from L to SymMon, say B

u←− A
v−→ C, so that A, B, and C are unital and

permutative monoidal functors. Then we define as in [43], the simplified
double mapping cylinder of this diagram, Cyl (B ← A → C), to be the
following symmetric monoidal category. The objects are triples (b, a, c),
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with b ∈ B, a ∈ A, and c ∈ C. A morphism (b, a, c) → (b′, a′, c′) is an
equivalence class of data, a datum consisting of objects U and V of A, a
morphism Ψ : a → U ⊕ a′ ⊕ V and morphisms Ψ1 : b ⊕ uU → b′ and
Ψ2 : vV ⊕ c → c′ in B and C, respectively. If µ : U ′ ∼−→ U and ν : V ′ ∼−→ V
are isomorphisms in A, the datum (U, V, Ψ, Ψ1, Ψ2) is equivalent to

(U ′, V ′, (µ−1 ⊕ Id′a ⊕ ν−1) ·Ψ, Ψ1 · (Idb ⊕ vµ),Ψ2 · (vν ⊕ Idc)) .

The composite of the two morphisms (U, V,Ψ, Ψ1, Ψ2) and (U ′, V ′,Ψ′,Ψ′1,Ψ
′
2)

is given by (U ⊕ U ′, V ′ ⊕ V, Ψ′′, Ψ′′1 ,Ψ′′2), where Ψ′′ is the composite

a
Ψ−→ U ⊕ a′ ⊕ V

Id⊕Ψ⊕Id−→ U ⊕ U ′ ⊕ a⊕ V ′ ⊕ V,

Ψ′′1 is the composite

b⊕ u(U ⊕ U ′) ∼= b⊕ uU ⊕ uU ′ Ψ1⊕Id−→ b′ ⊕ uU ′ Ψ′1−→ b′′ ,

and Ψ′′2 is the composite

v(V ′ ⊕ V )⊕ c
∼−→ vV ′ ⊕ vV ⊕ c

Id⊕Ψ2−→ vV ′ ⊕ c′
Ψ′2−→ c′′ .

The symmetric monoidal structure is given by (b, a, c) ⊕ (b′, a′, c′) = (b ⊕
b′, a ⊕ a′, c ⊕ c′), note that Cyl (B u←− A

b−→ C) is permutative. Note
that we have inclusion functors iA : A → Cyl (B u←− A

b−→ C), iB : B →
vCyl (B u←− A

b−→ C), and iC : C → Cyl (B u←− A
b−→ C), which are sym-

metric monoidal, and we have symmetric monoidal natural transformations
iA → iB ◦ u and iA → iC ◦ v. This data is precisely what is required in
the universal mapping principle I.8 to give a (strict) symmetric monoidal
functor θ from L ooF to Cyl (B ← A → C). We observe that the construc-
tion Cyl also has a universal mapping property. Let X be a permutative
category, and suppose β : B → X and γ : C → X are symmetric monoidal
functors so that βu = γv. Then we define a symmetric monoidal functor
αx : Cyl(B u←− A

v−→ C) → X on objects by αx(b, a, c) = βb ⊕ βua ⊕ γc,
and on morphisms by letting αx(U, V, Ψ, Ψ1, Ψ2) be the following composite

βb⊕ βu(a)⊕ γc
Id⊕βu(Ψ)⊕Id−→ βb⊕ βu(U ⊕ a′ ⊕ V )⊕ γc

∼−→

βb⊕ βuU ⊕ βu(a′)⊕ βuV ⊕ γc = βb⊕ βuU ⊕ βu(a′)⊕ γvV ⊕ γc
∼−→

β(b⊕ βuU)⊕ βu(a′)⊕ γ(vV ⊕ c)
β(Ψ1)⊕Id⊕β(Ψ2)−→ β(b′)⊕ βu(a′)⊕ γ(c′)

The second arrow is the isomorphism arising from the fact that βu is sym-
metric monoidal, and the fourth arises from the fact that β and γ are
symmetric monoidal. Thomason’s theorem now reads as follows.
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Theorem I.9. ([43], Theorem 5.2.) Spt (θ) is an equivalence of spectra.
Further, note that the functors β and γ constitute data to which the univer-
sal mapping principle I.8 applies (the natural transformations are identities),
and we denote the associated symmetric monoidal functor by ν. Then the
diagram

Spt (L ooF )
Spt (ν)−→ Spt(X)

↘Spt (θ) ↗Spt (αx)
Spt (Cyl B u←A

v→C)

is functorial and naturally homotopy commutative for L–diagrams with A,
B, and C permutative.

Proof: The first statement is stated in [43]. The rest are immediate conse-
quences of the universal mapping principle; αx ·θ and ν differ by a canonical
choice of commutativity isomorphism. Q.E.D.

We consider one variant on this construction. Let M be the category
with two objects x and y, with MorM (x, x) = {Idx}, MorM (y, y) = {Idy},
and MorM (x, y) = {f, g} , and MorM (y, x) = ∅. A morphism from M to a
category C is just a diagram of the form

X
f→→g Y

in C. If X
f→→g Y is an M–diagram in the category of based spaces, then the

homotopy colimit of this diagram is the quotient (X × I)
∐

Y/ ∼=, where ∼=
is the equivalence relation generated by (x, 0) ∼= f(x) ∈ Y , (x, 1) ∼= g(x) ∈
Y , and (∗, t) ∼= ∗ ∈ Y . The spectrum version is obtained by applying
this construction termwise to the spectra involved. There is a cofibration
sequence of spectra Y → hocolim

−→
M

F → ΣX
˜

, and the spectrum homotopy

colimit can be described as the cofibre of the stable map X
˜

f−g−→ Y
˜

. Consider

an M–diagram in SymMon, say u, v: A −→ B so that A and B are unital
and permutative, so that u and v are unital symmetric monoidal functors,
and so that the morphisms in A and B are all isomorphisms. We defined
a category Tor(u, v:A −→ B) = T as follows. The objects of T are pairs
(a, b), where a and b are objects of A and B respectively. A morphism from
(a, b) to (a′, b′) consists of equivalence classes of data, where a datum is
given by (U, V, ϕ, ψ), where U and V are objects of A, ϕ : a → U ⊕a′⊕V is
an isomorphism in A, and ψ : uU⊕b⊕vV → b′ is an isomorphism in B. Two
sets of data (U1, V1, ϕ1,Ψ1) and (U2, V2, ϕ2, ψ2) are equivalent if there are
isomorphisms θ : U1 → U2 and η : V1 → V2 in A so that ϕ2 = (θ⊕Ida′⊕η)·ϕ
and ψ1 = ψ2 · (uθ ⊕ Idb ⊕ uη). If (U1, V1, ϕ1, ψ1) and (U2, V2, ϕ2, ψ2) are
morphisms (a, b) → (a′, b′) and (a′, b′) → (a′′, b′′) respectively, then their
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composite is given by

(U1⊕U2, v2⊕V1, (IdU1⊕ϕ2⊕IdV1)·ϕ1, ψ2 ·(Idu2⊕ψ1⊕IdV2)·(TU⊕Idb⊕TV )) ,

where TU : U1 ⊕ U2 → U2 ⊕ U1 and TV : V1 ⊕ V2 → V2 ⊕ V1 are the
commutativity isomorphisms. Also, if E is a permutative category and
α : A → E and β : B → E are symmetric monoidal functors so that
β · u = α = β · v, we define an associated symmetric monoidal functor
ν : T → E on objects by ν(a, b) = α(a) ⊕ β(b), and on morphisms by the
requirement that ν(U, V, ϕ, ψ) be the composite

α(a)⊕β(b)
α(ϕ)⊕Id−→ α(U⊕a′⊕V )⊕β(b) ∼−→ α(U)⊕α(a′)⊕α(V )⊕β(b) ∼−→

α(a′)⊕βu(U)⊕β(b)⊕βv(V ) −→ α(a′)⊕β(uU ⊕ b⊕V )
Id⊕β(ψ)

α (a′)⊕β(b′)

By the universal mapping principle I.8, α and β determine a symmetric
monoidal functor ξ : M ooF → E. We also have inclusion functors jA : A → T
and jB : B → T , together with natural transformations Nf and Ng from
jA to jA · u and jA · v, respectively. The universal mapping principle gives
a symmetric monoidal functor θ : M ooF → T .

Proposition I.10. Spt (θ) is an equivalence of spectra. Moreover, the
diagram

Spt (M ooF )
Spt (ξ)−→ Spt(E)

↘Spt (θ) ↗Spt (ν)
Spt (I)

is functorial and naturally homotopy commutative for M–diagrams with A
and B permutative and unital and u and v unital.

Proof: The naturality and homotopy commutativity statements are imme-
diate as in I.9. It remains to show that Spt (θ) is an equivalence. The proof
of this fact closely parallels the proof of Theorem 5.2 of [43]. Let P̃ = M ooF .
We define a symmetric monoidal functor ρ : P̃ → T . For a given object
n[P1, . . . , Pn] with Pi an object of either A or B, let a = a(P1, . . . , Pn)
be the sum in A of the objects belonging to A, and let b = b(P1, . . . , Pn)
be the sum of objects belonging to B. The ordering on the sum is the
one inherited from the ordering of the Pi’s. ρ is now defined on objects
by ρ(n[P1, . . . , Pn]) = (a(P1, . . . , Pn), b(P1, . . . , Pn)). Suppose we have a
morphism in P̃ , from n[P1, . . . , Pn] to m[P ′1, . . . , P

′
m]. Let U denote the

direct sum of all the Pi’s for which `i = f , and let V denote the direct
sum of all the Pi’s for which `i = g. Then there is determined an isomor-
phism from a(P1, . . . , Pn) to U ⊕ a(P ′1, . . . , P

′
m) ⊕ V , and an isomorphism

uU ⊕ b(P1, . . . , Pn) ⊕ vV → b(P ′1, . . . , P
′
m). This defines a morphism in T ,

which is defined to be the image under ρ of the given morphism in P̃ . Ob-
serve that ρ and θ are naturally isomorphic symmetric monoidal functors;
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the isomorphism involves only repeated application of the isomorphic sym-
metric OA ⊕ a ∼= a and OB ⊕ b ∼= b coming from the unital structure on A
and B, where OA and OB denote the zero objects of A and B, respectively.
Consequently, it will suffice to prove that Spt (ρ) is an equivalence of spec-
tra. Let P̃ ′ ⊂ P̃ be the full subcategory on objects n[P1, . . . , Pn], so that at
least one object Pi is in B, i.e., so that at least one Li is equal to y. P̃ ′ is
a symmetric monoidal subcategory of P̃ . Let P ′ be the full subcategory of
P̃ ′ consisting of objects n[P1, . . . , Pn] so that Pn is an object of B, and all
the other P ′i ’s are objects of A. The inclusion P ′ ↪→ P̃ ′ has a left adjoint,
sending m[P ′1, . . . , P

′
m] in P̃ ′ to n[P1, . . . , Pn] in P ′, where Pn is the sum

of all the Pi’s belonging to B (ordered in the ordering inherited from the
ordering [P ′1, . . . , P

′
m]), and the objects P1, . . . , Pn−1 are simply the ordered

list of the objects P ′i belonging to A. Consequently, P ′ → P̃ ′ is a weak
equivalence.

We now claim that P̃ ′ → P̃ induces a weak homotopy equivalence Spt (P̃ ′)
→ Spt (P̃ ). For, consider the functor P̃ → P̃ ′, given on objects n[P1, . . . , Pn]
→ (n + 1)[P1, . . . , Pn, OB ]. We have an isomorphism OB ⊕OB ∼ OB which
shows that our functor is lax symmetric monoidal. As in [43], proof of
Theorem 5.2, we now see that the composite P̃ → P̃ ′ → P̃ induces multi-
plication by an idempotent element of π0(Spt (P̃ )), hence that Spt (P̃ ) →
Spt (P̃ ′) → Spt (P̃ ) is homotopic to the identity map. Since P ′ → P̃ ′ in-
duces a weak equivalence on nerves, it suffices by I.6 (a) to show that the
composite functor sending n[P1, . . . , Pn] in P ′ to (n + 1)[P1, . . . , Pn, OB ] in
P̃ ′ is homotopic to the inclusion. But there is an evident natural transforma-
tion (n + 1)[P1, . . . , Pn, OB ] → n[P1, . . . , Pn], arising from the isomorphism
Pn ⊕OB

∼= Pn. This shows that Spt (P̃ ′) → Spt (P̃ ) is a weak equivalence.
Finally, we must check that the composite Spt (P̃ ′) → Spt (P̃ ) → Spt (T )

is an equivalence, this will follow if P̃ ′ → T is weak equivalence, which in
turn will follow if the composite P ′ i−→ P̃

ρ−→ T induces an equivalence
on nerves, again by I.6 (a). We must show that (a, b) ↓ ρ · i is contractible
for all objects (a, b) of T . An object in (a, b) ↓ ρ · i consists of an object
n[P1, . . . , Pn] of P ′ and a morphism (U, V, ϕ, Ψ) : (a, b) → (⊕n−1

i=1 Pi, Pn

)
in

T . Consider the full subcategory of (a, b) ↓ ρ · i consisting of those objects
for which the reference map is an isomorphism. The inclusion of this sub-
category has a right adjoint, sending (U, V, ϕ, Ψ) : (a, b) → (⊕n−1

i=1 Pi, Pn

)
to

the object (OA, OB , ϕ, Id) : (a, b) → (
U ⊕ ⊕n−1

i=1 Pi ⊕B, b
)

=
(⊕n−1

i=1 Pi, Pn

)
so N.((a, b) ↓ ρ · i) is equivalent to the nerve of this subcategory. But the
subcategory has the terminal object (2[a, b], Id : (a, b) → ρ · i(2[a, b])), hence
we have the result. Q.E.D.

We will also need to understand the symmetric monoidal category–theo-
retic versions of mapping telescopes of spectra. Let N denote the category
whose objects are the non–negative integers, with a unique morphism from
i to j when i ≤ j and Hom N(i, j) = ∅ when i < j. Let Ns denote the



Bounded K–theory and the Assembly Map in Algebraic K–theory 25

category whose objects are the non–empty subsets S of N, so that any two
elements of S are adjacent, and with a unique morphism S → T if and only
if T ⊂ S. Of course, obNs = N

∐{{i, i + 1}, i ∈ N}, and the nerve of Ns is
the barycentric subdivision of the nerve of N, whose geometric realization
is homeomorphic to the non–negative half–line [0,+∞). We have a functor
π : Ns → N given by π(S) = min(S). Let Φ : N→ CAT and Ψ : Ns → CAT
be any functors. Then we have, as above, the Grothendieck constructions
N o Φ and Ns oΨ.

Proposition I.11. There are equivalences N.(N oΦ)+ → hocolim
−→
N

(N. ·Φ)+

and N.(N o Ψ)+ → hocolim
−→
Ns

(N. · Ψ)+ of simplicial sets, where X.+ denotes

X. with a disjoint base point added, which are natural on the categories of
N–diagrams and Ns–diagrams in CAT , respectively. In particular, N.(N o
Φ) has the weak homotopy type of the mapping telescope of N.Φ(0) →
N.Φ(1) → · · ·.
Proof: Clear from I.5. Q.E.D.

Proposition I.12. Let Φ : N → CAT and Ψ : Ns → CAT be functors,
and let E be a category

(a) Functors from N oΦ to E are in bijective correspondence with collections
of data {Fi, Ni : i ≥ 0}, where Fi : Φ(i) → E is a functor, and Ni is a
natural transformation from Fi to Fi+1 ·Φ(i → i +1). Functors from Ns oΨ
to E are in bijective correspondence with collections of data {Fi, Gi, Ni, N

′
i :

i ≥ 0}, where Fi : Ψ({i}) → E and Gi : Ψ({i, i + 1}) → E are functors,
and where Ni (respectively N ′

i) are natural transformations from Gi to
Fi : Ψ({i, i + 1} → {i}) respectively to Fi+1 ·Ψ({i, i + 1} → {i + 1}).
Proof: Immediate from the paragraphs preceding I.5. Q.E.D.

Proposition I.13. Let Φ and Φ′ be the functors from N to CAT . Suppose
we have functors Fi : Φ(i) → Φ′(i) and natural transformations Ni from
Φ′(i < i + 1) · Fi to Fi+1 · Φ(i < i + 1). Then the data {Fi, Ni; i ≥ 0}
determine a functor N oΦ → N oΦ′, which restricts to Fn on the subcategory
(n, Φ(n)) ∼= Φ(n), and which induces an equivalence on nerves if each Fn

does. Similarly, if Ψ and Ψ′ are functors from Ns to CAT , and we have
functors Fi : Ψ(i) → Ψ′(i) and Gk : Ψ({i, i + 1}) → Ψ′({i, i + 1}), together
with natural transformations Ni (respectively N ′

i) from Ψ′({i, i + 1} →
{i})·Gi to Fi·Ψ({i, i+1} → {i}) (respectively from Ψ′({i, i+1} → {i+1})·Gi

to Fi+1 · Ψ({i, i + 1} → {i + 1})), we obtain a functor Ns o Ψ → Ns o Ψ′,
which restricts to Fi on ({i}, Ψ(i)) and to Gi on ({i, i + 1}, Ψ({i, i + 1})),
and which induces an equivalence on nerves if the Fi’s and Gi’s all do.

Proof: Let Fi : Φ(i) → N o Φ′ be given by x → (i, Fi(x)). Let F ′i :
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Φ(i) → N o Φ′ be given by x → (i + 1,Φ′(i < i + 1) · Fi(x)). There is
a natural transformation Fi → F ′i (on an object x, it is the morphism
(i, ξ) → (i + 1, Φ′(i < i + 1)(ξ)) associated to the identity map of Φ′(i <
i + 1)(ξ), and Ni gives a natural transformation from F ′i to the functor
x → (i + 1, Fi+1 · Φ(i < i + 1)(x)) = Fi+1 · Φ(i < i + 1). The composite of
these two natural transformations give the required functor via I.12, which
we call F . To see that it is an equivalence if the Fi’s all are, we note that
if N(i) denotes the full subcategory of N consisting of integers less than or
equal to i, then we have a commutative diagram

Φ(i) Fi−→ Φ′(i)
f ↓ ↓ g

N(i) o Φ F |N(i)oΦ−→ N(i) o Φ′

and one easily checks that the vertical arrows are equivalences. The result
now follows easily from the well known properties of mapping telescopes.
The case of Ns is similar. Q.E.D.

Proposition I.14. Let Φ : N→ CAT be a functor. Then the natural map
Ns o (Φ · π) → N o Φ is a weak equivalence.

Proof: Direct from I.1 (g); the categories i ↓ π are easily seen to be con-
tractible. Q.E.D.

We use Quillen’s Theorem A to obtain a nice criterion for a functor
N o Φ → E to be a weak equivalence. Thus, let Φ : N→ CAT be a functor,
and let G be a functor from N o Φ to a category E, determined by data
{Fi, Ni}. For any x ∈ E, we may consider the categories x ↓ Fi. We define
a functor li : x ↓ Fi → x ↓ Fi+1 on objects by li(y, θ) = (Φ(i < i + 1)(y), θ),
which makes sense since Fi+1 · Φ(i < i + 1)(y) = Fi(y). On morphisms,
li(η) = Φ(i < i + 1)(η). Thus, for every object x of E, we obtain a functor
Gx : N→ CAT .

Proposition I.15. If for each x ∈ E, the mapping telescope associated
to N. ◦ Gx is weakly contractible, then G induces a weak equivalence on
nerves.

Proof: One sees that NoGx is isomorphic to the category x ↓ G, and applies
Quillen’s Theorem A and I.11. Q.E.D.

When we have functors Φ : N → SymMon, we will see that N o Φ and
sometimes Ns oΨ give small models for the spectrum homotopy colimits of
Spt · Φ and Spt · Ψ. For Φ : N → SymMon, we define N o Φ l−→ N o oΦ
as follows. From I.12, we are required to produce functors Φ(i) Fi−→ N ooΦ
and natural transformations Ni from Fi to Fi+1 · Φ(i → ı + 1). Fi will be
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the functor from Φ(i) → N ooΦ given by ξ → 1[(i, ξ)] and Ni(ξ) will be the
morphism 1[(i, ξ)] → 1[(i+1, Φ(i < i+1)(ξ))] corresponding to the identity
map of Φ(i < i + 1)(ξ). Similarly, we defined ls : Ns o Ψ → Ns o oΨ for
Ψ : Ns → SymMon.

Proposition I.16. Let Φ, Ψ, l, and ls be defined as above.

(a) l is a weak equivalence

(b) If Ψ({i, i + 1} → {i}) is a weak equivalence for all i, then ls is a weak
equivalence.

Proof: In the proof of his spectrum homotopy colimit theorem [43], Thoma-
son shows that N.(C ooF ) is weakly equivalent to the diagonal simplicial set
obtained by taking the nerve of a simplicial category, which in every level
k is C o oF (k), where F (k) is of the form S · G, for G : C → CAT a func-
tor and S denoting the “free symmetric monoidal category functor.” See
[43] for details of this construction. Consequently, since homotopy colimits
commute with | |, it suffices to consider the case where Φ and Ψ are of the
form S · Φ0 and S · Ψ0, Φ0 : N → CAT and Ψ0 : N → CAT . Moreover,
Thomason [43], p. 1637–1638] shows that there is a commutative diagram
of functors

C o S ◦ F −→ S(C o F )
↘

y
C ooS ◦ F

where the right hand vertical arrow is a weak equivalence and the diagonal
arrow is l (respectively ls) in the case C = N (respectively C = Ns). We
describe the horizontal functor. Let Σn denote the symmetric group on n
letters, viewed as a category with on object, and let E be a category. The
permutation action of Σn on the category En can be viewed as a functor
PE

n : Σn → CAT , and SE can be identified with
∐

n≥1 vΣn o PE
n . If C

G−→
CAT is any functor, let Fn : C×Σn → CAT be the functor (x, e) → F (x)n,
with evident Σn action. Then C oS ·F can be identified with

∐
n(C×Σn)oFn,

and S(C o F ) can be identified with
∏

n Σn o PCoF
n , and there is an evident

inclusion C o S · F → S(C o F ), involving the diagonal maps C o Fn →
(C oF )n. This is the horizontal arrow in Thomason’s diagram above. It will
thus suffice to show that this horizontal arrow is a weak equivalence in our
situation. Since this functor breaks up as a disjoint union of functors over n,
it will suffice to check that (C×Σn) oFn → Σn oPCoF

n is a weak equivalence
for each n. But it is easy to see that N.(Σn o PE

n ) ∼= E Σn ×Σn (N.E)n,
where E Σn denotes a contractible simplicial set on which Σn acts freely.
Part (a) of our proposition now amounts to showing that mapping telescopes
commute with the n–adic construction X → E Σn ×Σn Xn, which is clear.
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For the second case, let Ns(k) denote the full subcategory on the objects
0, 1, . . . , k, {0, 1}, . . . , {k, k+1}. (Ns×Σn)oΨ can be written as lim

→ k(Ns(k)×
Σn) oΨn. But (Ns(k)×Σn) oΨn has nerve equivalent to Σn oPN

s(k)oΨ
n , since

both have nerves weakly equivalent to E Σn×Σn
Ψ({k, k+1})n, as one easily

checks using the hypothesis that Ψ({i, i+1} → {i}) induces an equivalence
on nerves for all i. Q.E.D.

We finally need to examine group actions on inverse limits. Let C be a
category with an action by group Γ. We may view this action as a functor
Γ → CAT , where Γ denotes Γ viewed as a category with one object. We
write Γ o C for the Grothendieck construction on this functor. Suppose
F : Γ o C → s-sets is a functor. Then by the discussion preceding I.5, F
corresponds to a functor Γ → s-setsCAT .

Recall from [11, Ch. XI, § 5] that if F : C → s–sets is any functor,
the cosimplicial space X defining holim

←−
C

F is given in codimension k by

Xk =
∏

x0→···xk
F (xk). We say a category is discrete if its only mor-

phisms are identity morphisms; discrete subcategories are the same things
as sets. We may now view N.C as a simplicial discrete category, and if
F : C → s–sets is a functor, we define functors Fk : Nk C → s–sets by
Fk(x0 → · · ·xk) = F (xk). One readily checks that the usual definitions of
cofaces and codegeneracy maps in X. make k → (Nk C,Fk) into a functor
s → s–setCATδ , where CATδ ⊂ CAT is the full subcategory of discrete
categories. Consequently, holim

←−
C

F can be described as the total space of

a cosimplicial space X., in which each Xk is itself the homotopy inverse
limit of a functor over a discrete category. If C is acted on by a group
Γ, and we are given a functor F : Γ o C → s–sets, then the cosimplicial
space defining holim

←−
C

F |C is a cosimplicial Γ–space, which in every level k

is the homotopy inverse limit over Nk C of (F |C)k associated to a func-
tor Γ o Nk C → s–sets, then the cosimplicial space defining holim

←−
C

F |C is a

cosimplicial Γ–space, which in every level k is the homotopy inverse limit
over Nk C of (F |C)k associated to a functor Γ oNk C → s–sets. If X. is any
Γ–space, we let XhΓ denote the homotopy inverse limit holim

←−
Γ

X., where X.

is viewed as a functor from Γ to s–sets. Alternatively, one can take XhΓ to
be the fixed point set of the conjugation action of Γ on the function complex
F (WΓ, X), where WΓ is any free contractible Γ–space. The map WΓ → ∗
gives a map XΓ. → XhΓ..

Proposition I.17. Let a group Γ act on a category C, and suppose F :
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Γ oC → s–sets is a functor. Suppose further that Γ acts freely on the objects
of C, and that F (ξ) is a Kan complex for all ξ ∈ Γ o C. Let X. denote the
cosimplicial Γ–space defining holim

←−
C

F |C.

(a) (X.)Γ and (X.)hΓ are fibrant cosimplicial spaces.

(b) The natural map of cosimplicial spaces (X.)Γ → (X .)hΓ is a weak

equivalence, hence by (a),


holim

←−
C

F |C



Γ

→

holim

←−
C

F |C



hΓ

is a

weak equivalence.

Proof: (a) is direct, entirely analogous to the proof that the cosimplicial
space defining holim

←−
C

is fibrant if F (x) is a Kan complex for all x ∈ C. We

leave it to the reader. To prove (b), we must show that if C is discrete
category with free Γ–action, and Γ o C → s–sets is a functor, then the

natural map


holim

←−
C

F |C



Γ

→

holim

←−
C

F |C



hΓ

is a weak equivalence.

But to give a functor Γ o C → s–sets is the same as to specify simplicial
sets Ex for every x ∈ C, and maps Fγ,x : Ex → Eγx for all γ ∈ Γ, x ∈ C,
such that Fγ2,γ1x · Fγ1,x = Fγ2γ1,x for γ1, γ2 and x. The homotopy inverse
limit holim

←−
C

F |C is now the product
∏

x∈C Ex, and the Γ–action is given

by the equation γ · {ex} = {Fγeγ−1x}. Let A denote the set of orbits of
the Γ–action on the objects of C, and let Cα denote the subcategory on
objects belonging to the orbit α. Then the above description shows that
holim
←−
C

F |C ∼−→ ∏
α∈A holim

←−
Cα

F |Cα, and the isomorphism is equivariant, so

it suffices to deal with the case where the Γ–action is transitive on the objects
of C. In this case, holim

←−
C

F |C is Γ–isomorphic to the Γ–space
∏

γ∈Γ Xe, with

Γ acting by permuting factors, and this space is in turn Γ–isomorphic to
the space of functions F (Γ, Xe). But for a space of the form, the statement
is obvious. Q.E.D.

For Γ a group, a Γ–spectrum is just a spectrum with action by the group
Γ. Fixed point sets and homotopy fixed point sets are defined termwise.

Corollary I.18. Let C be any category with Γ–action, and let F : Γ oC →
S be a functor. Then holim

←−
C

F |C is equipped with a Γ–action from F .
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Suppose that Γ acts freely on the objects of C. Then the natural map
holim

←−
C

F |C



Γ

→

holim

←−
C

F |C



hΓ

is a weak equivalence of spectra.

Proof: Follows directly from I.17; recall that conventionally, all spectrum
homotopy inverse limits are taken only after converting the functor F into
one where the values are all Kan Ω–spectra. Q.E.D.

II. Locally Finite Homology

In this section, we describe the theory of locally finite “Borel–Moore” [7]
homology with coefficients in a spectrum, and clarify its equivariant prop-
erties.

Definition II.1. A map f : X → Y , where X and Y are sets, is said to be
proper if for all finite sets U ⊆ Y , f−1U ⊆ X is finite. In particular, a one
to one map is always proper.

Let A[−] denote the “free Abelian group” functor. Applied to a set X,
it assigns to X all formal linear combinations

∑
x∈X nxx, where nx = 0

except for a finitely many x. Let Â[X] denote the group of all linear com-
binations

∑
x∈X nxx, without any constraints on the nx’s. Â[−] cannot be

made functorial for all maps of sets; only proper maps will induce homo-
morphisms on Â. Let setsp denote the category of sets and proper maps;
Â defines a functor from setsp to Ab. We give an alternate version of the
definition of Â. For a set X, let F(X) denote the category of finite sub-
sets of X under inclusions. We define functor ΦX : F(X)op → Ab by
A[X]/A[X −U ] ∼= A[U ]; note that A[Φ] is interpreted as the zero group, to
cover the case where X itself is finite. If U ⊆ V , X − V ⊆ X − U , and we
obtain an evident projection ΦX(V ) → ΦX(U). Note that if f : X → Y is
a proper map of sets, we obtain a functor f! : F(Y )op → F(X)op, defined
on objects by f!(U) = f−1U . Also associated to f is a natural transforma-
tion νf : Φ◦f! → ΦY of functors on F(Y )op, given by the homomorphism
A[X]/A[X − f−1U ] → A[Y ]/A[Y − U ] induced by f . We obtain a functor
Â0 : setsp → AbCAT

0 by setting Â0[X] = (F(X)op, ΦX) and Â0[f ] = (f!, νf ).

Proposition II.2. The functors Â[ ] and lim
←−
◦Â0 are isomorphic as functors

from setsp to Ab.

Proof: We must produce a natural isomorphism Â → lim
←−

◦ Â0. To produce
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a homomorphism from Â[X] to

(lim
←−

◦ Â0)[X] = lim
←−

U∈F(X)op

A[X]/A[X − U ] ,

it suffices to produce homomorphisms to A[X]/A[X − U ] for each U satis-
fying the obvious compatibility conditions. The projections

πU : Â[X] → Â[X]/Â[X − U ] ∼= A[X]/A[X − U ]

give such a compatibility, and it follows directly from the definition of inverse
limits that the map is an isomorphism. Naturality is also clear. Q.E.D.

We may view this construction a bit more homotopy theoretically as
follows. First, for any set, let X+ denote X with a disjoint basepoint added.
Then A[X] can be identified with π0(K˜

∧X+), where K
˜

denotes the integral

Eilenberg–MacLane spectrum K(Z, 0). Moreover, πi(K˜
∧X+) = 0 for i > 0,

so the (discrete) space A[X] is homotopy equivalent to the zero–th space of
the spectrum K

˜
∧X+. We now wish to construct a version of Â that allows

an arbitrary spectrum W
˜

to replace K
˜

. When one is dealing with spaces

or spectra, one must replace inverse limits by homotopy inverse limits. Let
setsp be as above. For any set X and spectrum W

˜
, we define a functor

ΦX
W : F(X)op → S by ΦX

W (U) = W
˜
∧ (X/X − U); as before, when U ⊆ V ,

we have the evident collapse map X/X − V → X/X − U . Note that the
image of X − U in X/X − U is taken as the basepoint when applying the
smash product. Also, when f : X → Y is a proper map, we obtain a
natural transformation νf : ΦX

W ◦ f! → ΦY
W exactly as above, using the set

map X/X − f−1U → Y/Y − U induced by f . HW : setsp → SCAT
0 is now

defined by HW (X) = (F(X)op,ΦX
W ) and HW (f) = (f!, νf ).

Definition II.3. Let W
˜

be any spectrum. We define a functor h
˜

`f (−; W
˜

)

from setsp to spectra by h
˜

`f (−; W
˜

) = holim
←−

◦HW .

For any set X and Abelian group G, let Ĝ[X] denote lim
←−

F(X)op

G⊗ZA[X/X−

U ]; Ĝ is a functor from setsp to Ab, and can be identified with the group of
all infinite formal linear combinations

∑
x∈X gxx, gx ∈ G.

Proposition II.4. For any set X and spectrum W
˜

, we have

πi(h˜
`f (X; W

˜
)) ∼= ̂πi(W˜

)[X] ,
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the isomorphism being natural with respect to morphisms in setsp. In par-
ticular, if W

˜
is the Eilenberg–MacLane spectrum K(G, 0) for an Abelian

group G, then we have




π0(h˜
`f (X;W

˜
)) ∼= Ĝ[X] and

πi(h˜
`f (X;W

˜
)) ∼= 0 for i 6= 0,

so h
˜

`f (X; W
˜

) is naturally equivalent to the spectrum K(Ĝ[X], 0). (Here

K(−, 0) is viewed as a functor which assigns to an Abelian group G the
Eilenberg–MacLane spectrum K(G, 0).)

Proof: There is by I.3 a spectral sequence with E−p,q
2 –term lim

←−
F(X)op

pπq◦ΦX
W ,

converging to πp+q( holim
←−

F(X)op

ΦX
W ). The result will follow if we can demonstrate

the vanishing of these derived functors for p > 0, since lim
←−

F(X)op

πq ◦ ΦX
W is

readily seen to be isomorphic to ̂πq(W˜
)[X]. Let A be any Abelian group, and

define a functor F(X)op GA−→ Ab by GA(U) = F (U,A), the set of functions
from U to A under pointwise addition. Note that if A = πq(W˜

), then the

functors πq ◦ΦX
W and GA are isomorphic; we thus establish the vanishing of

the higher derived functors for GA. lim
←−
Fop

∗GA is by [11, Ch. XI] computable

as the cohomotopy of the cosimplicial Abelian group

k →
∏

U0⊇U1⊇···⊇Uk

GA(Uk),

with the coface and codegeneracy maps given by the formulas defining ho-
motopy inverse limits. Let H : F(X) → sets be the functor H(U) = U ;
then the cosimplicial Abelian group k → ∏

U0⊇U1⊇···⊇Uk
GA(Uk) is obtained

by applying F (−, A) to the simplicial space k → ∐
U0⊆U1⊆···⊆Uk

H(Uk), i.e.,
to the homotopy colimit hocolim

−→
F(X)

H. If we can show that Hp (hocolim
−→
F(X)

H)

vanishes for p > 0 and is free for p = 0, we can conclude the result by the uni-
versal coefficient theorem. But by Thomason’s homotopy colimit theorem
[43], Theorem 5.2, hocolim

−→
F(X)

H has the same weak homotopy type as the nerve

of the category F(X) oH, where H is viewed as a functor from F(X) to dis-
crete categories. The objects of F(X) oH are pairs (U, x), where U ∈ F(X)
and x ∈ U . There is a unique morphism (U, x) → (U ′, x′) if U ⊆ U ′ and
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x = x′. Let F(X)δ ⊆ F(X) denote the subcategory of F(X) of sets U
with exactly one element. We define an inclusion i : F(X)δ → F(X) oH by
{x} i−→ ({x}, x), and a functor s : F(X) oH → F(X)δ by s((U, x)) = {x}.
s ◦ i is the identity functor on F(X)δ, and the morphism ({x}, x) → (U, x)
gives a natural transformation from i◦s to the identity functor on F(X) oH,
so the nerve of F(X)oH is weakly equivalent to the nerve of the discrete cat-
egory F(X)δ(X). This gives the isomorphism stated in the theorem. The
naturality of the isomorphism follows from the naturality of the spectral
sequence with respect to maps in SCAT

0 . Q.E.D.

We now extend the definition of h
˜

`f (−; W ) to simplicial sets, and finally

to spaces.

Definition II.5. By a locally finite simplicial set, we mean a simplicial ob-
ject in setsp. If X. is a locally finite simplicial set, then applying h

˜
`f (−; W

˜
)

gives a simplicial spectrum for any spectrum W
˜

. We define the simplicial

locally finite homology of X. to be the diagonalization of this simplicial
spectrum, and denote it by sh

˜
`f (X., W

˜
).

We now extend the definition to a theory on topological spaces. For W
˜

an Eilenberg–MacLane spectrum, Borel–Moore homology [7] gives a way to
construct this theory. However, this approach seems too sheaf–theoretic to
extend to the case of coefficients in a spectrum, and for our purposes, it is
preferable to have a version more closely related to singular homology.

If X is a topological space, let S.X denote its “singular complex,” see
[28]. This is a simplicial set, but it is not locally finite, so we cannot apply
h
˜

`f (−;W
˜

) directly. We proceed as follows. For a singular k–simplex σ :

∆k → X, we let im(σ) denote the image of σ, a compact subset of X. A
subset A ⊆ SkX is said to be locally finite if, for every point x ∈ X, there is
a neighborhood U of x, so that U∩im(σ) is non–empty for only finitely many
σ ∈ A. It is clear that if A is locally finite, then so are diA = {diσ, σ ∈ A}
and siA = {siσ, σ ∈ A}, and that di | A and si | A are proper maps of
sets. For a topological space X, let LkX denote the partially ordered set
of locally finite subsets of SkX. The face maps di and degeneracy maps
si induce maps of partially ordered sets Ldi and Lsi. Define Jk(X; W

˜
)

to be lim
−→

A∈LkX

h
˜

`f (A; W
˜

). This makes sense since for A1 ⊆ A2 locally finite

subsets of Sk, the inclusion is proper (any inclusion of sets is a proper
map). Therefore, it induces a map on h

˜
`f (−; W

˜
). Let J .(X; W

˜
) denote the

resulting simplicial spectrum.
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Definition II.6. For any topological space X and spectrum W
˜

, we define

h
˜

`f (X; W
˜

) to be |J .(X; W
˜

)|.

We examine the degree of functoriality of this construction.

Lemma II.7. Suppose X
f−→ Y is a proper (in the usual topological

sense) map, and Y is locally compact. Suppose A ⊆ SkX is a locally finite
collection of singular k–simplices. Then the collection f ◦ A = {f ◦ σ, σ ∈
A} ⊆ SkY is locally finite.

Proof: Let y ∈ Y be any point, and let U be a neighborhood of y, with Ū
compact. Then

{f ◦ σ | im(f ◦ σ) ∩ U 6= ∅} ⊆ {f ◦ σ | im(f ◦ σ) ∩ Ū 6= ∅} .

But the set {f ◦ σ | im(f ◦ σ) ∩ Ū 6= ∅} is the surjective image of the set
{σ | im(f ◦ σ) ∩ f−1Ū 6= ∅}. By the properness of f , f−1Ū is compact. For
each x ∈ Ū , let Bx be an open neighborhood of x, so that {σ ∈ A | im(σ)∩
Bx 6= ∅} is finite. The covering {Bx ∩ Ū}x∈Ū of Ū has finite subcovering,
say Bx1 , . . . , Bxs . Now

{σ | im(σ) ∩ f−1Ū 6= ∅} ⊆
s⋃

i=1

{σ | im(σ) ∩Bxi 6= ∅} ,

and the right hand side is a finite set. This gives the result. Q.E.D.

Corollary II.8. The construction X → h
˜

`f (X; W
˜

) is functorial for proper

maps of locally compact topological spaces.

Proof: Let f : X → Y be a proper map between locally compact spaces
and let f !

k : LkX → LkY be the order preserving map A → f ◦A. Then we
have the natural map

lim
−→

A∈LkX

h
˜

`f (A; W
˜

) → lim
−→

B∈LkY

h
˜

`f (B;W
˜

)

induced by f !
k, and hence an induced map of simplicial spectra J .(X;W

˜
) →

J .(Y, W
˜

). This clearly gives the required functoriality. Q.E.D.

We now turn to homotopy invariance and excision. We will first deal
with the case where W

˜
is an Eilenberg–MacLane spectrum K(G, 0). Let

Ĝ[−] be defined as in Proposition II.4. If X is a topological space, we define
Ĉ∗(X; G) to be the chain complex associated to the simplicial Abelian group
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k → lim
−→

A∈LkX

Ĝ[A]. Thus, Ĉ∗(X; G) is the chain complex of locally finite

sums of singular simplices in X with coefficients in G. Let K
˜

(−; 0) denote

the functor which assigns to an Abelian group G the Eilenberg–MacLane
spectrum K(G, 0) corresponding to that group.

Proposition II.9. There is a natural (with respect to proper maps of
locally compact topological spaces) isomorphism

Hi(Ĉ∗(X; G)) → πi(h˜
`f (X;K

˜
(G, 0))) ,

for all i. (For i < 0, this just means that πi(h˜
`f (X;K

˜
(G, 0))) = 0 for i < 0,

which follows directly from II.4.)

Proof: Consider the simplicial Abelian group k → lim
−→

A∈LkX

Ĝ[A]. It is the

levelwise zero–th space of the simplicial spectrum

k → K
˜

( lim
−→

A∈LkX

Ĝ[A], 0) ∼= lim
−→

A∈LkX

Ĝ[A] ,

since K
˜

(−, 0) commutes with filtered direct limits. Also, K
˜

(−, 0) commutes

with inverse limits in the following sense. Let BnK
˜

(−, 0) denote the sim-

plicial Abelian group–valued functor which assigns to G the n–th delooping
in K

˜
(−, 0). If A

˜
is a pro–Abelian group, then the natural map

BnK
˜

(lim
←−

A
˜

, 0) → lim
←−

Bn(K
˜

(A
˜

, 0))

is an isomorphism of simplicial Abelian groups. We therefore have a map
of spectra

K
˜

(lim
←−

A
˜

, 0) → holim
←−
C

K
˜

(A
˜

, 0) ,

where C denotes the parameter category for the pro–Abelian group A
˜

.

Moreover, this map is natural for morphisms of pro–Abelian groups. The
simplicial Abelian group k → lim

−→
A∈LkX

ĜA is delooped n times by apply-

ing BnK
˜

(−, 0) levelwise to obtain a bisimplicial Abelian group and taking

the diagonal simplicial group. Since all face and degeneracy maps and the
maps in the directed system defining lim

−→
A∈LkX

Ĝ[A] are induced by maps of
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pro–Abelian groups, we obtain for any locally compact space X a morphism
of simplicial spectra

[k → K
˜

( lim
−→

A∈LkX

Ĝ[A], 0)] → [k → lim
−→

A∈LkX

holim
←−

U∈F(A)op

K
˜

(G⊗(A[A]/A[A−U ], 0))] ,

and furthermore this morphism of simplicial spectra induces an equivalence
after applying | | since it is an equivalence in each level by II.4. On the
other hand, there is a canonical equivalence of functors from based sets to
spectra, K

˜
(G, 0) ∧X → K

˜
(G⊗A[X], 0), and hence an equivalence

holim
←−

U∈F(A)op

K
˜

(G, 0) ∧ [A/A− U ] → holim
←−

U∈F(A)op

K
˜

(G⊗A[A]/G⊗A[A− U ], 0)

of spectra. This together with I.2. (c), (f) gives that the realization of
the simplicial spectrum k → K

˜
( lim

−→
A∈LkX

Ĝ[A], 0) is naturally equivalent to

h
˜

`f (X; K
˜

(G, 0)), and since the homotopy groups of the simplicial Abelian

group k → lim
−→

A∈LkX

Ĝ[A] are isomorphic to the homotopy groups of Ĉ∗(X;G),

we obtain the result. Q.E.D.

Corollary II.10. Let X be a locally compact space, and let I denote
the closed unit interval. Then the inclusions i0, i1 : X → X × I induce
equivalences of spectra

h
˜

`f (X;K
˜

(G, 0)) → h
˜

`f (X × I; K
˜

(G, 0)) .

Proof: II.9 reduces one to showing that the induced maps Hi(Ĉ∗(X; G)) →
Hi(Ĉ∗(X × I; G)). But one easily checks that the prism operators used to
prove the corresponding result for C∗(X, G) in, say [23], extend to Ĉ∗(X; G)
to produce the required chain homotopies. Q.E.D.

Now, let X be a locally compact space, and let U = {Uα}α∈A be a
covering of X by subsets of X. A singular simplex σ : ∆k → X is said
to be small of order U if σ(∆k) ⊆ Uα, for some α ∈ A. An element∑

σ∈Lkx gσσ = ξ of Ĉk(X; G) is said to be small of order U if gσ 6= 0 implies
that σ is small of order U , i.e., if ξ is an infinite sum of singular simplices
each of which is small of order U . Let MkX ⊆ LkX be the collection of
locally finite subsets of singular simplices which are small of order U , and
define ĈUk (X,G) ⊆ Ĉk(X, G) by

ĈUk (X, G) = lim
−→

A∈MkX

lim
←−

U∈F(A)op

G⊗ (A[A]/A[A− U ]) .
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The ĈUk (X, G)’s fit together into a subcomplex ĈUk (X, G) ⊆ ĈU∗ (X, G). We
say the covering U is excisive if for every singular simplex σ : ∆k → X, the
covering σ−1(Uα), α ∈ A, admits a Lebesgue number. This condition holds,
for instance, if U is an open covering or more generally if U is any covering
so that the family of subsets {U0

α}α∈A (U0 denotes the interior of U) also
covers X

Proposition II.11. Suppose that there is an increasing union X = ∪∞i=0Ui,
where each Ui is compact, and Ui ⊆ U0

i+1. This holds, for instance, in a
metric space where all closed balls are compact or more generally in a count-
able disjoint union of such. Suppose further that U is an excisive covering
of X. Then the inclusion ĈU∗ (X, G) → Ĉ∗(X,G) induces an isomorphism
on homology.

Proof: We recall first from [23] that one has a natural chain transformation
Sd(X) : C∗(X, G) → C∗(X,G) and a natural chain homotopy H(X) :
C∗(X, G) → C∗+1(X,G), with ∂H(X) + H(X)∂ = Id − Sd(X). We show
that for a space X satisfying the hypotheses of the proposition, Sd(X) and
H(X) extend in a natural way to Ĉ∗(X,G). For any subspace U ⊆ X,
we write Ĉ∗(X,U,G) for the quotient complex Ĉ∗(X;G)/Ĉ∗(U,G). Let the
Un’s be as in the statement of the theorem. Then it is easy to verify that
Ĉ∗(X, G) ∼= lim

←−
Ĉ∗(X, X − U0

n; G) and that

Ĉ∗(X, X − U0
n; G) ∼= C∗(X,X − U0

n; G) ∼= C∗(X, G)/C∗(X − U0
n; G) ;

the second statement requires the compactness of the Un’s. The naturality
of the operators Sd and H with respect to maps of spaces shows that they
extend to lim

←−
n

C∗(X, X − Un; G). Similarly, for any subspace W ⊆ X, let

CU∗ (W ; G) denote the subcomplex of all singular chains on W which are
small of order U when viewed as chains on X, or equivalently which are
small of order UW , where UW denotes the covering {Uα ∩ W}α∈A. Also,
let CU∗ (X, W ;G) denote the quotient complex CU∗ (X; G)/CU∗ (W,G). We
observe, as we did for Ĉ∗, that ĈU∗ (X, G) is isomorphic to

lim
←−
n

CU∗ (X, X − U0
n; G).

We wish to show that ĈU∗ (X; G) → Ĉ∗(X; G) induces an isomorphism on
homology. We first prove surjectivity, so let ξ be an n–cycle in Ĉn(X;G).
We will construct elements Ck

0 ∈ CU∗ (U0
1 ; G), Ck

1 ∈ CU∗ (U0
2 − U0; G), . . . ,

Ck
k−1 ∈ CU∗ (U0

k − Uk−2;G), Ck
k ∈ Ĉ∗(X − Uk−1, G), and Hk ∈ Ĉ∗(X −

Uk−2;G) so that the following conditions hold:

(i) Ck
i = Ck−1

i for i ≤ k − 2,
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(ii) Ck−1
k−1 − (Ck

k−1 + Ck
k ) = ∂Hk,

(iii) C0
0 = ξ. (Note that C0

0 is only required to lie in Ĉ∗(X;G); we conven-
tionally set U−1 = ∅.)

Let αk =
∑k

i=0 Ck
i ; the sum is taken by viewing all the given chains in

Ĉ∗(X; G) via inclusions. Since αk+1 − αk = Ck+1
k+1 + Ck+1

k − Ck
k ∈ Ĉ∗(X −

Uk−1;G), we see that the sequence {αk}∞k=0 is convergent in the inverse
limit topology, and yields an element limk→∞ αk = α in Ĉ∗(X;G). Since
Hk ∈ Ĉ∗(X−Uk−1;G), the infinite sum

∑∞
k=1 Hk is convergent, yielding an

element H in Ĉ∗(X; G), ∂H =
∑∞

i=1 αi−αi−1 = (limi→∞ αi)−α0, so ξ and
α differ by a boundary. Note that the projection of αk in Ĉ∗(X,X−Uk−1; G)
lies in the subcomplex ĈU∗ (X, X − Uk−1; G), since it is represented by the
sum Ck

0 + · · · + Ck
k−1. Consequently, α lies in lim

←−
CU∗ (X, X − Un;G) ∼=

ĈU∗ (X; G). Consequently, the homology class of ξ is in the image of the
homology of ĈU∗ (X; G), so the construction of the Ck

i ’s and Hk’s would
imply the desired surjectivity. We proceed with the construction of the
Ck

i ’s and Hk’s.

To perform this construction, we note that for any set X, there is an
isomorphism of Abelian groups Ĝ[X] ∼= F (X;G), where F denotes the
Abelian group of G–valued functions on X under pointwise addition. The
isomorphism is given by

∑
x∈X gxx → {x → gx}. The support of f ∈

F (X,G), Supp (f), is the set of elements at which f does not vanish. For
any f ∈ F (X,G), and partition Supp (f) = A

∐
B, we have a corresponding

decomposition f = fA + fB with Supp (fA) = A, Supp (fB) = B. Under
this identification, lim

←−
A∈LkX

Ĝ[A] corresponds to the subgroup of F (SkX;G) of

functions whose support is a locally finite subset of SkX. Since Ĉn(X; G) ∼=
lim
−→

A∈LnX

Ĝ[A], we now have the notion of support of an element of Ĉn(X;G),

and if ξ ∈ Ĉn(X, G), with Supp (ξ) = A
∐

B, then ξ can be written uniquely
as ξA +ξB , with Supp(ξA) = A, Supp(ξB) = B. First, we set C0

0 = ξ. Next,
we decompose the locally finite set Supp(ξ) = A

∐
B, where A = {σ ∈

Supp(ξ) | im(σ) ∩ U0 6= ∅} and B = {σ ∈ Supp(ξ) | im(σ) ∩ U0 6= ∅}, and
write ξ = ξA + ξB . The set A is finite by the compactness of U0 and local
compactness of X, so ξA is a finite sum and can be viewed as an element
in Cn(X, G). Using the argument for proving the usual excision theorem
for singular homology, we find that there is a k so that Sdk(ξA) is small
of order U . In particular, Sdk(ξA) = ξ′A + ξ′′A, where ξ′A ∈ Cn(U0

1 ; G) and
ξ′′A ∈ Cn(X − U0;G). We now define C ′0 = ξ′A and C ′1 = ξ′′A + SdkξB . Note
that Supp(ξB) consists entirely of simplices with image disjoint from U0, so
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ξB , and hence SdkξB , is in Ĉn(X − U0; G). Consequently, ξ′′A + SdkξB ∈
Ĉn(X − U0; G). We must define H1. Note that H + SdH + · · ·Sdk−1H =
H̃ satisfies ∂H̃ + H̃∂ = Id − Sdk, so if we set H1 = H̃ξ, we see that
∂(H̃ξ) = ξ − Sdkξ = C0

0 − (C ′0 + C ′1). H1 is of course in Ĉn(X;G), which
is all that was required of it. This completes the case k = 1, and we
proceed by induction on k. Suppose Ck

0 , . . . , Ck
k ,Hk, have been constructed

as above. Set Ck+1
i = Ci for i ≤ k − 1. Consider Ck

k ∈ Ĉn(X − Uk−1;G).
Supp(Ck

k ) of course consists entirely of simplices with image in X − Uk−1.
Write Supp(Ck

k ) = A
∐

B, where A = {σ ∈ Supp(Ck
k ) | im(σ) ∩ Uk 6= ∅}

and B = {σ ∈ Supp(Ck
k ) | im(σ) ∩ Uk 6= ∅}. Again, by local compactness

of X and compactness of Uk, the set A is finite, and we can write Ck
k =

CA = CB , where CA ∈ Cn(X − Uk−1;G) and CB ∈ Ĉn(X − Uk;G). Since
CA is a finite chain, there is an ` so that Sd`(CA) is small of order U ,
so we write Sd`(CA) = C ′A + C ′′A, where C ′A ∈ Cn(U0

k+1 − Uk−1; G) and
C ′′A ∈ Cn(X−Uk;G). We note that ∂Ck

k ∈ Cn−1(U0
k −Uk−1;G). As before,

let H̃ = H + Sd H + · · ·+ Sd`−1H; ∂H̃ + H̃∂ = Id− Sd`. H̃∂Ck
k is a chain

in CUn (U0
k −Uk−1; G), by the naturality of H̃, and since ∂Ck

k = −∑k−1
i=0 Ck

i ,
with Ck

i small of order U for all i < k. Now, set Ck+1
i = C ′A + H̃∂Ck

k and
Ck+1

k+1 = C ′′A+Sd`CB . C ′A is small of order U , so Ck+1
k ∈ CUn (U0

k+1−Uk−1;G),
and Ck+1

k+1 is clearly in Ĉn(X − Uk; G), so Ck+1
k and Ck+1

k+1 belong to the
right groups. Finally, let Hk+1 = H̃Ck

k . Then Hk+1 is clearly a chain in
Ĉn+1(X − Uk−1; G). We have

∂Hk+1 = ∂H̃Ck
k = −H̃∂Ck

k + Ck
k − Sd`Ck

k

= Ck
k − (H̃∂C − kk + Sd`Ck

k ) = Ck
k − (H̃∂Ck

k + C ′A + C ′′A + Sd`(CB))
= Ck

k − ((H̃∂Ck
k + C ′A) + (C ′′A + Sd`CB)) = Ck

k − (Ck+1
k + Ck+1

k+1 ).

This gives the Ck
i ’s, and hence that the map ĈU∗ (X; G) → Ĉ∗(X;G) induces

a surjection on homology. The injectivity statement is proved in an entirely
similar way, and leave the proof to the reader. Q.E.D.

We now use these results to obtain homotopy invariance and excision
results for the functor h

˜
`f (X, A

˜
), where A

˜
is an arbitrary spectrum.

Lemma II.12. Let A
˜
→ B

˜
→ C

˜
be a homotopy fibre sequence of spectra,

all of which are n–connected for some (possibly negative) integer n. Then
the induced sequence h

˜
`f (X,A

˜
) → h

˜
`f (X, B

˜
) → h

˜
`f (X, C

˜
) is a homotopy

fibre sequence of spectra.

Proof: Direct from the definitions, using I.2 (c) and I.2 (f). Q.E.D.

Lemma II.13. If A
˜

is an n–connected spectrum and X is a locally compact

space, then h
˜

`f (X; A
˜

) is n–connected.
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Proof: Direct from the definition of h
˜

`f and Proposition II.4. Q.E.D.

We are now in a position to prove the proper homotopy invariance of
h
˜

`f (−;A
˜

).

Proposition II.14 Let X be a locally compact space. Then the inclusions
i0, i1 : X → X × [0, 1] induce isomorphisms h

˜
`f (X; A

˜
) → h

˜
`f (X × [0, 1];A

˜
).

Consequently, if f, g : X → Y are properly homotopic maps between locally
compact spaces X and Y , then h

˜
`f (f ; A

˜
) ∼= h

˜
`f (g; A

˜
).

Proof: By II.10, the result holds for the Eilenberg–MacLane spectrum
K
˜

(G, 0). A direct application of II.12 shows that it holds for K
˜

(G,n), and

for any spectrum with finitely many non–zero homotopy groups. Consider
now any n–connected spectrum A

˜
, and consider any map A

˜
→ B

˜
, where

the maps πi(A˜
) → πi(B˜

) are isomorphisms for i ≤ n + k, and B
˜

has only

finitely many non–zero homotopy groups. For instance, use the Postnikov
tower to obtain such a sequence. Consider the diagram

πj(h˜
`f (X, A

˜
)) −→ πj(h˜

`f (X × I; A
˜

))
y

y
πj(h˜

`f (X,B
˜

)) −→ πj(h˜
`f (X × I; B

˜
))

for j < n + k. The two vertical arrows are isomorphisms by II.12 and
II.13, and the lower horizontal arrow is an isomorphism since B

˜
has only

finitely many non–zero homotopy groups. Consequently, the result holds for
spectra which are n–connected for some n. The general result now follows
by passing to direct limits over n. Q.E.D.

We now deal with excision. Let X be a locally compact space, and
suppose X = ∪∞i=0Ui, where Ui is compact and U0

i+1 ⊃ Ui. Suppose X =
U ∪ V , where U and V are closed subsets of X, so that X = U0 ∪ V 0. The
covering U = {U, V } is excisive. Let A

˜
be any spectrum; then we have a

diagram of spectra

h
˜

`f (U ∩ V, A
˜

) −→ h
˜

`f (V,A
˜

)
y

y
h
˜

`f (U,A
˜

) −→ h
˜

`f (X, A
˜

)
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Let P(U, V, A
˜

) denote the homotopy pushout of the diagram below.

h
˜

`f (U ∩ V,A
˜

) −→ h
˜

`f (V,A
˜

)
y

h
˜

`f (U,A
˜

)

Then there is a natural map P(U, V, A
˜

) α−→ h
˜

`f (X, A
˜

).

Proposition II.15. α is a weak equivalence of spectra.

Proof: We first deal with the case A
˜

= K
˜

(G, 0), where G is an Abelian

group. From the definition of homotopy pushouts, there is a long exact
Mayer–Vietoris sequence

· · · → πi(h˜
`f (U ∩ V, A

˜
)) → πi(h˜

`f (U,A
˜

))⊕ πi(h˜
`f (V,A

˜
))

· · · → πi(P(U, V, A
˜

)) → · · ·

On the other hand, since U and V are closed, ĈU∗ (X,G) is the pushout in
the category of chain complexes of the diagram

Ĉ∗(U ∩ V ; G) −→ Ĉ∗(V ; G)y
Ĉ(U ; G)

so we have a long exact sequence

· · · → Hi(Ĉ∗(U ∩ V, G)) → Hi(Ĉ∗(U,G))⊕Hi(Ĉ∗(V, G))

· · · → Hi(ĈU∗ (X; G)) → · · ·
and it follows easily from II.9 that these long exact sequences are identified,
and that the map πi(P(U, V,A

˜
)) → πi(h˜

`f (X, A
˜

)) is identified with the map

Hi(ĈU∗ (X; G)) → Hi(Ĉ∗(X; G)). The result for A
˜

= K
˜

(G, 0) now follows

from II.11.
If A

˜
= K

˜
(G, n), the result follows from II.12 using the homotopy fibre

sequences K
˜

(G,n) → ∗ → K
˜

(G,n+1) of spectra, and I.2 (c), which applies

since a homotopy pushout can be viewed as a homotopy colimit. We also
apply I.2 (c) to obtain a proof in the case where A

˜
has only finitely many

non–zero homotopy groups by induction on the number of non–zero groups.
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An argument similar to that in the proof of II.14 gives the result for an
n–connected spectrum, where n is any integer. Here one uses the fact that
a homotopy pushout of k–connected spectra is again k–connected.

Finally, the case of a general spectrum follows by a passage to direct
limits over n. Q.E.D.

We now prove some miscellaneous results about h
˜

`f which we will find

useful later. Let Z
˜ α, α ∈ A denote any indexed family of Ω–spectra. Let

∏
α∈A Z

˜ α denote the spectrum whose k–th space is the product over α ∈ A

of the k–th spaces of the spectra Z
˜ α. If X is a locally compact space,

and X =
∐

α∈A Xα, one checks the following Proposition directly from the
definitions.

Proposition II.16 There is a natural (for families of proper maps indexed
over A between families of locally compact spaces indexed over A) equiva-
lence of spectra

h
˜

`f

( ∐

α∈A

Xα;W
˜

)
→

∏

α∈A

h
˜

`f (Xα; W
˜

) .

Recall from the beginning of this section that if X. is a locally finite
simplicial set, then there is a simplicial spectrum obtained by applying
h
˜

`f (−;A
˜

) levelwise, and we denote it now by sh
˜

`f (X.;A). This sh
˜

`f (X.; A)

is much “smaller” than the locally finite homology spectrum of the geometric
realization of X. with coefficients in A

˜
; it bears the same relationship to

that spectrum as the homology of the complex of simplicial chains does
to singular homology. There is of course a natural map sh

˜
`f (X.;A

˜
) →

h
˜

`f (‖X.‖;A
˜

).

Corollary II.17 If X. is a finite dimensional locally finite simplicial set,
then ‖X.‖ is a locally compact space and the map

sh
˜

`f (X.; A) → h
˜

`f (‖X.‖;A
˜

)

is an equivalence.

Proof: This is an easy consequence of II.1, since ‖X.‖ can be expressed
as a finite iterated pushout, and since the result holds for arbitrary disjoint
unions of simplices of a fixed dimension by II.14 or II.16. Q.E.D.
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We also wish to look at a version of this theory associated with metric
spaces. It will be convenient to introduce a slightly more general notion of
metric space than is usual.

Definition II.18. A metric space is a set X together with a function
d : X ×X → [0, +∞) ∪ {+∞}, satisfying the following conditions.

(a.) d(x, y) = d(y, x)

(b.) d(x, y) = 0 ⇔ x = y

(c.) d(x, z) ≤ d(x, y) + d(y, z)

Condition (c) is interpreted in the obvious way when some value is infinite.
If {Xα}α∈A is an indexed family of metric spaces we let

∐
α∈A Xα denote

the metric space whose underlying set is
∐

α∈A Xα and where the metric is
defined by d(x1, x2) = dα(x1, x2) if x1, x2 ∈ Xα and dα denotes the metric
on Xα. d(x1, x2) = +∞ if x1 ∈ Xα, x2 ∈ Xβ , α 6= β. As in the case
of an ordinary metric space, i.e., where d(x, y) never takes the value +∞,
we associate a topology on X to the metric. Let ∼ denote the equivalence
relation on X given by x ∼ y ⇔ d(x, y) < +∞, and let π0(X) = X/∼.
For each α ∈ π0(X), we let Xα denote the subspace of X consisting of the
equivalence class α. Then X is isometric to

∐
α∈π0X Xα, and the underlying

spaces are homeomorphic.

Recall that LkX denotes the collection of all locally finite subsets of SkX.
We define BkX ⊆ LkX to be the collection of all locally finite subsets A of
SkX so that there exists a number N for which diam (image (σ)) < N for
all σ ∈ A, and so that for every ball Br(x) in X, the set

{σ ∈ A | image (σ) ∩Br(x) 6= ∅}

is finite. We define an associated subcomplex bĈ∗(X; G) ⊆ Ĉ∗(X; G) by
letting

bĈk(X, G) = {ξ ∈ Ĉk(X,G) | Supp (ξ) ∈ BkX} .

We are thinking of this as the complex of locally finite chains on simplices
of uniformly bounded diameter.

Proposition II.19. Let X be a metric space for which d takes only fi-
nite values and in which all closed balls are compact, or more generally a
countable disjoint union of such. Then the inclusion bĈ∗(X;G) → Ĉ∗(X; G)
induces an isomorphism on homology.

Proof: Let Ur denote the covering of X by balls of radius r. We claim
that a chain ξ ∈ Ĉ∗(X;G) lies in bĈ∗(X; G) if and only if it is small of
order Ur for some r. For if ξ ∈ Ĉ∗(X; G) is a chain so that the image of
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any singular simplex in Supp (ξ) has diameter less than N , then the chain
is clearly small of order UN . Conversely, if ξ is small of order Ur, then the
diameter of any singular simplex in Supp (ξ) is less than or equal to 2r.
Moreover, since by hypothesis, any closed ball is compact, we see that if
ξ is locally finite, the set {σ ∈ supp (ξ) | image (σ) ∩ BR(x)} is finite for
all R and x. Consequently, if ξ is small of order Ur for some r, it lies in
bĈ∗(X; G). Let ĈUr∗ (X;G) denote the subcomplex of Ĉ∗(X; G) consisting
of chains small of order Ur. We have shown that

bĈ∗(X;G) =
⋃
r

ĈUr∗ (X; G) ⊆ Ĉ∗(X; G) .

If we can show that each inclusion ĈUr∗ (X; G) → Ĉ(X; G) induces an isomor-
phism on homology, then the result will follow. But Ur is clearly excisive,
so it remains to show that X satisfies the hypotheses of II.11. We write
X =

∐∞
i=0 Xi, where each Xi is a metric space for which d takes only finite

values, and in which all closed balls are compact. For each i, fix a point
xi ∈ Xi. Let Un =

∐n
i=0 Bn(xi); then the Ui’s are an increasing family of

subsets satisfying the hypotheses of II.11. This gives the result. Q.E.D.

One now defines the analogous theory bh
˜

`f (−, A
˜

), for A
˜

any spectrum,

to be the realization of the simplicial spectrum k → lim
−→
A∈Bk

h
˜

`f (A;A
˜

). One

has the following results about this theory, analogous to the results about
h
˜

`f (X; A
˜

).

Proposition II.20

(a) Let A
˜

= K
˜

(G, 0) be an Eilenberg–MacLane spectrum. Then there is a

natural isomorphism

πi(bh
˜

`f (X; A
˜

)) ∼= Hi(bĈ∗(X;G))

compatible with the analogous isomorphism

πi(h˜
`f (X;A

˜
)) ∼= Hi(Ĉ∗(X; G)) .

(b) Let A
˜
→ B

˜
→ C

˜
be a fibre sequence of spectra up to homotopy. Then

the induced sequence

bh
˜

`f (X;A
˜

) → bh
˜

`f (X; B
˜

) → bh
˜

`f (X; C
˜

)

is a fibre sequence of spectra up to homotopy.
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(c) Let A
˜

be an n–connected spectrum. Then bh
˜

`f (X; A
˜

) is also n–connected.

Corollary II.21 Let X be a countable disjoint union of metric spaces Xi,
so that in each Xi, d takes only finite values, and so that all closed balls
in Xi are compact. Then the natural map bh

˜
`f (X;A

˜
) → h

˜
`f (X; A

˜
) is an

equivalence of spectra.

Proof: Follows from II.19, via an induction similar to that used in the proof
of II.14, using the results of II.20. Q.E.D.

Finally, we discuss the equivariant situation. Let X be any left Γ–set,
where Γ is a group. Then, because of the functoriality of the h

˜
`f (−; A) con-

struction, h
˜

`f (X;A) becomes a spectrum with left Γ–action. On the other

hand, F(X)op is a category with left Γ–action. Let A
˜

be any spectrum. We

define a functor αA : Γ oF(X)op → S on objects by αA(e, U) = A
˜
∧(X/(X−

U)), and on morphisms by α(γ, e) = IdA

˜
∧ (γ· : X/(X−U) → X/(X−γU))

and α(e, U ⊆ V ) = IdA

˜
∧ (X/(X − V ) → X/(X − U)). By the discussion

preceding I.17, we obtain a right Γ–action on holim
←−

F(X)op

ΦX
A

˜
= h

˜
`f (X;A

˜
), and

one checks that one obtains the first left Γ–action on h
˜

`f (X; A
˜

) from the

second right action via the the anti automorphism γ → γ−1 of Γ.

Proposition II.22 Let X be a free left Γ–set, where Γ is a torsion–free
group. Let h

˜
`f (X, A

˜
) be given the above described left Γ–action. Then the

natural map h
˜

`f (X, A
˜

) → h
˜

`f (X, A)hΓ is an equivalence of spectra.

Proof: The torsion–freeness of Γ implies that the action of Γ on the objects
of F(X)op is free, so I.18 applies. Q.E.D.

Corollary II.23 Let Γ be a group which acts freely on a contractible fi-
nite dimensional simplicial complex E. Let X. denote any locally finite
simplicial free Γ–set. Let sh

˜
`f (X., A

˜
) be as in II.17; sh

˜
`f (X.; A

˜
) is ob-

tained by applying the functor h
˜

`f (−;A
˜

) : setsp → S levelwise to X..

sh
˜

`f (X., A
˜

) is of course also a spectrum with Γ–action. The natural map

sh
˜

`f (X., A
˜

)Γ → sh
˜

`f (X.,A
˜

)hΓ is a weak equivalence of spectra.

Proof: Since E is finite dimensional, the functor (−)hΓ = F (E,−)Γ com-
mutes with | · |, so the result follows from II.22. Q.E.D.
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We also wish to describe sh
˜

`f (X; A
˜

)Γ explicitly. To get an idea of what

the fixed set should be, we note that if X is any left Γ−set, then Ẑ[X]Γ is the
product of copies of Z, one for each Γ− orbit in X, or equivalently Ẑ[Γ\X].
In fact, on the category of free left Γ− sets, the abelian group valued func-
tors X → Ẑ[X]Γ and X → Ẑ[Γ\X] are isomorphic. The analogous result
for spectra, which we now prove, is a bit complicated technically, but the
intuition should be clear. Let X be a free left Γ–set, where Γ is any torsion–
free group. Let F0(X)op denote the full subcategory of F(X)op consisting
of those finite sets which intersect each Γ–orbit of X in at most one ele-
ment. F0(X)op is closed under the Γ–action, and we obtain an equivariant
restriction map

holim
←−

F(X)op

ΦX
A

˜
→ holim

←−
F0(X)op

ΦX
A

˜
| F0(X)op .

Proposition II.24 The construction X → holim
←−

F0(X)op

ΦX
A

˜
| F0(X)op is functo-

rial for proper equivariant maps of free Γ–sets. The induced map on fixed
point sets 

holim
←−

F(X)op

ΦX
A

˜




Γ

→

 holim

←−
F0(X)op

ΦX
A

˜
| F0(X)op




Γ

of the above mentioned restriction map is a natural weak equivalence of
functors from the category of free Γ–sets and proper equivariant maps to
S.

Proof: The functoriality for proper equivariant maps follows immediately
from the observation that if f : X → Y is a proper equivariant map, where
X and Y are free Γ–sets, and U ∈ F0(Y ), then f−1U ∈ F0(X). This gives
an equivariant functor f !

0 : F0(Y ) → F0(X), and the functoriality is now
shown exactly as in the case of F(X). The naturality of the transformation
is direct. To see that it is an equivalence, we observe that the Γ actions
on F(X)op and F0(X)op are both free on objects and hence that we have a
commutative diagram


holim

←−
F(X)op

ΦX
A

˜




Γ

−→

holim

←−
F(X)op

ΦX
A

˜




hΓ

y
y


holim

←−
F(X)op

(ΦX
A

˜
| F0(X)op)




Γ

−→

holim

←−
F(X)op

(ΦX
A

˜
| F0(X)op)




hΓ
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where the horizontal arrows are equivalences by I.18, so it suffices to prove
that the right hand vertical arrow is an equivalence. By I.2 (c), it suffices
to show that the restriction

holim
←−

F(X)op

ΦX
A

˜
→ holim

←−
F0(X)op

ΦX
A

˜
| F0(X)op

(on ambient spectra, not fixed point spectra) is an equivalence. As in the
proof of II.4, it will suffice to prove that the derived functors limp

←
−

F0(X)op

GA

vanish for p > 0, where GA : F0(X)op → Ab is the functor U → F (U,A),
for any Abelian group A. It is direct to verify that

lim
←−

F(X)op

πq ◦ ΦX
A

˜
→ lim

←−
F0(X)op

πq ◦ (ΦX
A

˜
| F0(X)op)

is an isomorphism. Precisely as in the proof of II.4, the derived functors are
computed by applying the contravariant functor U → F (U,A) from sets to
Ab to the simplicial space k → ∐

U0⊆···⊆Uk
H(U0), where U0 ⊆ · · · ⊆ Uk is

an increasing chain of subsets in F0(X) and H : F0(X) → sets denotes the
functor H(U) = U . As in the proof of II.4, we note that the diagonal of this
simplicial space has the homotopy type of F0(X) oH, and the result follows
from the observation that the functor i : F(X)δ → F(X) oH actually has
image in F0(X) oH. Q.E.D.

Let U ∈ F0(X)op; let UΓ denote the image of U in Γ\X. Note that the
natural projection U → UΓ is a bijection for U ∈ F0(X)op, and similarly
that X/(X−U) → (Γ\X)/(Γ\X−UΓ) is a bijection of based sets. Therefore,
if we set

ΨX
A

˜
= [U → A

˜
∧ ((Γ\X)/(Γ\X)− UΓ)]

we obtain an equivalence of functors

ΦX
A

˜
| F0(X)op → ΨX

A

˜
.

on F0(X)op. Moreover, this equivalence is functorial in X for proper, Γ–
equivariant maps between free Γ–sets. Consequently, we obtain an equiva-
lence of functors

(I)


X → holim

←−
F0(X)op

ΦX
A

˜
| F0(X)op


 →


X → holim

←−
F0(X)op

ΨX
A

˜




on the category of free Γ–sets and proper equivariant maps. holim
←−

U∈F0(X)op

ΦX
A

˜
is

given a Γ–action by restricting the functor ΓoF(X)op αA−→ S used in defining
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the group action on h
˜

`f (X; W
˜

) to the subcategory Γ o F0(X)op. Similarly,

we define an action of Γ on holim
←−

U∈F0(X)op

ΨX
A

˜
by defining a second functor βA :

ΓoF0(X)op → S as follows. On objects, βA(e, U) = A
˜
∧((Γ\X)/(Γ\X−UΓ)),

and on morphisms we let

βA(e, U ⊆ V ) = A
˜
∧ ((Γ\X)/(Γ\X − VΓ)) → A

˜
∧ ((Γ\X)/(Γ\X − UΓ))

be the projection and βA(γ, Id U ) be the identity map on A
˜
∧((Γ\X)/(Γ\X−

UΓ)). There is a natural transformation αA → βA, given on objects (e, U)
by the projection A

˜
∧ (X/(X−U)) → A

˜
∧ ((Γ\X)/(Γ\X−UΓ)), which is an

equivalence since U ∈ F0(X)op. Consequently, the natural transformation
(I) constructed above is Γ–equivariant and is a weak equivalence of functors.
Since Γ acts freely on the objects of F0(X)op, a straightforward argument
using I.18 shows that the map


 holim

←−
U∈F0(X)op

ΦX
A

˜




Γ

→

 holim

←−
U∈F0(X)op

ΨX
A

˜




Γ

is an equivalence.

Now, let π : F0(X)op → F(Γ\X)op denote the functor π(U) = UΓ.
Then it is easy to see that ΨX

A = ΦΓ\X
A

˜
◦ π. We obtain an equivariant

natural transformation (again on the category of free Γ–sets and proper
Γ–equivariant maps)


X → holim

←−
F(Γ\X)op

ΦΓ\X
A

˜


 →


X → holim

←−
F0(X)

ΨX
A

˜


 ,

where the action on the left hand side is trivial.

Proposition II.25 The map

X → holim

←−
F(Γ\X)op

ΦΓ\X
A

˜


 →


X → holim

←−
F0(X)

(
ΨX

A

˜

)Γ



is a weak equivalence of functors on the category of free Γ–sets and proper
equivariant maps.

Proof: Let Fδ(Γ\X)op and Fδ
0 (X) denote the full subcategories of subsets

with exactly one element. Then using argument similar to that in the proofs
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of II.4 and II.24, we find that we have a commutative diagram

(I)

holim
←−

F(Γ\X)op

ΦΓ\X
A

˜
−→ ( holim

←−
F0(X)op

ΨX
A

˜
)Γ

y
y

holim
←−

Fδ(Γ\X)op

ΦΓ\X
A

˜
−→ ( holim

←−
Fδ

0 (X)op

ΨX
A

˜
)Γ

where the left hand vertical arrow is an equivalence. We claim the right hand
arrow is an equivalence; to see this, consider the commutative diagram


 holim

←−
F0(X)op

ΦX
A

˜




Γ

˜−→

 holim

←−
F0(X)op

ΨX
A

˜




hΓ

y
y


 holim

←−
Fδ

0 (X)op

ΦX
A

˜




Γ

˜−→


 holim

←−
Fδ

0 (X)op

ΨX
A

˜




hΓ

The horizontal arrows are equivalences by I.18 since Γ acts freely on the
objects of Fδ

0 (X)op and F0(X)op; thus, to prove that the left hand arrow
is an equivalence, it will suffice to prove that the right hand arrow is. But
the right hand arrow will be an equivalence if holim

←−
F0(X)op

ΨX
A

˜
→ holim

←−
Fδ

0 (X)op

ΨX
A

˜
is. But the functor ΨX

A

˜
is naturally equivalent to ΦX

A

˜
, and the result now

follows immediately as in the proof of II.4. Thus, both vertical arrows in
(I) are weak equivalences. Consequently, the proposition would follow if we
could show that the lower horizontal arrow in (I) is an equivalence. But

holim
←−

Fδ(Γ\X)op

ΦΓ\X
A

˜
is just

∏
z∈Γ\X A

˜
∧ {z}+, and holim

←−
Fδ

0 (X)op

ΨX
A

˜
is just

∏
x∈X A

˜
∧

{xΓ}+, where xΓ is the image of x in Γ\X. The Γ action is give by permuting
the factors in the wedge sum, since xΓ = (γx)Γ for all γ. Consequently,
( holim

←−
Fδ

0 (X)op

ΨX
A

˜
)Γ may also be identified with

∏
x∈Γ\X A

˜
∧ {x}+, and we leave

it to the reader to verify that the lower vertical arrow in (I) corresponds to
the identity map when the identifications are made. Q.E.D.

Corollary II.26 The functors X → h
˜

`f (X; A
˜

)Γ and X → h
˜

`f (Γ\X; A
˜

)

on the category of free Γ–sets and proper equivariant maps are naturally
weakly equivalent.

Corollary II.27 Let Γ be any torsion free group, and let X. be any locally
finite simplicial set with free Γ–action. Then there is a natural equivalence
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of functors

h
˜

`f (Γ\X.; A
˜

) → h
˜

`f (X.,A
˜

)Γ

on the category of locally finite free simplicial Γ–sets and proper equivariant
simplicial maps.

We remark that if X is any locally compact space with Γ–action, then
h
˜

`f (X; A
˜

) becomes a spectrum with Γ–action. Moreover, if X is locally

compact, then the orbit space Γ\X is also locally compact. The following
is now a direct consequence of II.25.

Corollary II.28 Let Γ be any torsion free group. Then there is a natural
equivalence of functors h

˜
`f (Γ\X.; A

˜
) → h

˜
`f (X., A

˜
)Γ on the category of lo-

cally compact properly discontinuous free Γ–spaces and proper equivariant
maps.

Proof: Let LΓ
kX denote the collection of Γ–invariant locally finite col-

lections of singular simplices in X. Then the hypotheses of the corollary
show that elements of LΓ

kX are in bijective correspondence with elements of
Lk(Γ\X), and we see that h

˜
`f (X; A

˜
)Γ is the diagonalization | | of the simpli-

cial spectrum k → lim
−→

A∈Lk(Γ\X)

h
˜

`f (π−1A, A
˜

)Γ, where π : S.(X) → S.(Γ\X)

is the projection. II.26 now shows that this is equivalent to the diago-
nalization of the simplicial spectrum k → lim

−→
A∈Lk(Γ\X)

h
˜

`f (A; A
˜

), and this is

h
˜

`f (Γ\X;A
˜

). Q.E.D.

Similarly, suppose (X, d) is a locally compact metric space, with Γ acting
on X by isometries. Then bh

˜
`f (X; A

˜
) becomes a spectrum with Γ–action;

indeed, bh
˜

`f (−; A
˜

) defines a functor from the category of locally compact

metric spaces with isometric Γ–action and proper, uniformly continuous,
equivariant maps to the category of spectra with Γ–action. Suppose now
that the action is properly discontinuous, and equip Γ\X with the orbit
space metric ∆([x], [y]) = minγ∈Γ d(x, γy). Let BΓ

k X denote the collection
of Γ–invariant elements of BkX. Each element of BΓ

k (X) corresponds (by
applying π) to an element of Bk(Γ\X), but not every element in Bk(Γ\X) is
in the image of BΓ

k (X). The point is that although all elements of Bk(Γ\X)
correspond to elements of LΓ

k (X), these elements do not necessarily lie in
BΓ

k (X) ⊆ LΓ
k (X). The inclusion BΓ

k (X) → Bk(Γ\X) induces a map of
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simplicial spectra

k → lim

−→
A∈BΓ

k
X

h
˜

`f (A; A
˜

)Γ


 →


k → lim

−→
A∈Bk(Γ\X)

h
˜

`f (π−1A; A
˜

)Γ


 .

Applying |−| and II.26, we obtain a natural transformation ν : bh
˜

`f (X, A
˜

) →
bh
˜

`f (Γ\X;A
˜

) on the category of locally compact metric spaces in which all

closed balls are compact, with free properly discontinuous Γ–actions and
equivariant, proper, uniformly continuous maps.

Proposition II.29 ν(X) is a weak equivalence if Γ\X is paracompact.

Proof: We consider first the case where A
˜

= K
˜

(G, 0), the Eilenberg–

MacLane spectrum for G. Let bĈ∗(Γ\X) ⊆ Ĉ∗(Γ\; G) be defined as above.
Let bĈ ′∗(Γ\X; G) ⊆ bĈ∗(Γ\X; G) be the subcomplex of chains ξ ∈ Ĉ∗(Γ\X;
G) so that Supp(ξ) ⊆ image (BΓ

k (X) → Bk(X)). An argument very similar
to the proof of II.9 now shows that

H∗(bĈ ′∗(Γ\X); G) ∼= π∗(bh
˜

`f (X;A
˜

)Γ), H∗(bĈ∗(Γ\X); G) ∼= π∗(bh
˜

`f (X; A
˜

)),

and hence that it suffices to show that the inclusion bĈ ′∗(Γ\X;G)⊆ bĈ∗(Γ\X;
G) induces an isomorphism on homology. To do this, we construct a certain
covering U of Γ\X. Note that p : X → Γ\X is an open mapping. Fix a
number R > 0 and for every x choose an open ball Bx ⊆ X so that the
diameter of Bx is less than R and so that p(Bx) is an open neighborhood of
p(x) which is evenly covered. The sets {p(Bx)}x∈X form an open covering
of Γ\X; by paracompactness, there is a locally finite refinement, {Uα}α∈A,
which we call U . Note that if U ∈ U , p−1U is a disjoint union of sets whose
diameter is less than R. Let {σβ}β∈B be any locally finite family of singular
simplices of Γ\X, which is small of order U . Then the associated Γ–invariant
element of LΓ

kX, obtained by taking all possible lifts of singular simplices
σβ to X, is in BΓ

k (X), since any lift of σβ clearly has diameter less than
R. Consequently, we have an inclusion ĈU∗ (Γ\X; G) → bĈ ′∗(Γ\X; G). The
composite ĈU∗ (Γ\X; G) → bĈ ′∗(Γ\X;G) → bĈ∗(Γ\X; G) induces an iso-
morphism on homology, since the chain maps ĈU∗ (Γ\X; G) → Ĉ∗(Γ\X; G)
and bĈ∗(Γ\X;G) → Ĉ∗(Γ\X; G) do by II.11 and II.19, respectively. Con-
sequently, bĈ ′∗(Γ\X; G) → bĈ∗(Γ\X; G) induces a surjection on homology.
To prove it induces an injection, it will suffice to prove that ĈU∗ (Γ\X;G) →
bĈ ′∗(Γ\X; G) induces a surjection on homology. We recall that the proof
that ĈU∗ (Γ\X; G) → Ĉ∗(Γ\X; G) is surjective proceeds by constructing for
each ξ ∈ Ĉ∗(X;G) a family of elements Ck

i , i ≤ j, and Hk, satisfying certain
compatibility conditions, and showing that ∂

(∑∞
i=0 Hk

)
= α − ξ, where α
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is small of order U . The proof of the surjectivity of H∗(ĈU∗ (Γ\X;G)) →
H∗(Ĉ∗(Γ\X; G)) is now obtained by noting that all the elements Ck

i and Hk

can be taken to lie in bĈ ′∗(X;G) if ξ ∈ bĈ ′∗(X;G). For a general spectrum,
the proof proceeds by induction on the Postnikov tower as in II.14. Q.E.D.

Corollary II.30 Suppose X is a locally finite simplicial complex, with free
Γ–action, where Γ is a torsion free group acting freely on a finite dimensional
simplicial complex E. Then the natural map h

˜
`f (X; A

˜
)Γ → h

˜
`f (X; A

˜
)hΓ

is an equivalence. If X is further equipped with a metric, so that all
the simplices of X have uniformly bounded diameter, then bh

˜
`f (X; A

˜
) →

bh
˜

`f (X; A
˜

)hΓ is an equivalence.

Proof: It follows from II.27, II.28, and II.29 that the maps sh
˜

`f (X; A
˜

) →
h
˜

`f (X; A
˜

) and sh
˜

`f (X;A
˜

) → bh
˜

`f (X;A
˜

) are actually equivariant equiva-

lences. The result now follows from II.23. Q.E.D.

III. Bounded K–theory

We will be working with the Pedersen–Weibel “bounded K–theory.” See
[33,34] for a complete discussion of this construction. We adopt the defini-
tion given in §II (Definition II.18) as our definition of a metric space.

Let R be a ring, and let X be a metric space. We define a category
CX(R) as follows.

Definition III.1

(a) The objects of CX(R) are triples (F, B, ϕ), where R is a free left R–
module (perhaps not finitely generated), B is a basis for F , and ϕ :
B → X is a function, the “labeling function”, so that for any ball
Br(x), r ∈ R, x ∈ X, ϕ−1(Br(x)) is finite.

(b) Let (F, B, ϕ) and (F ′, B′, ϕ′) be objects of CX(R), and let L : F → F ′

be any R–linear homomorphism. For β ∈ B, β′ ∈ B′, let elements
rL(β′, β) ∈ R be defined by the equation

L(β) =
∑

β′∈B′
rL(β′, β)β′ .

This uniquely defines rL(β′, β) since F is generated by B. We say L is
bounded by N (or is bounded of filtration N) if d(ϕ′(β′), ϕ(β)) > N
implies rL(β′, β) = 0. The morphisms in CX(R) are now defined to
consist of all L for which there exists an N so that L is bounded by
N .
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Note that CX(R) is an additive category. For any category A, let Â

denote the idempotent completion of A (see [19]). The objects of Â are
pairs (a, e), where a ∈ A and e : a → a is a morphism so that e2 = e.
A morphism from (a1, e1) to (a2, e2) is a morphism f : a1 → a2 so that
e2fe1 = f . We write ĈX(R) for ̂CX(R). Let f : (a1, e1) → (a2, e2) be a
morphism in ĈX(R); say f is bounded by N (or has filtration N) if there is a
morphism f ′ : a1 → a2 in CX(R) which is bounded by N , so that e2f

′ = f .

Proposition III.2 Let f : x → y and g : y → z be morphisms in CX(R) or

ĈX(R). If f is bounded by M and g is bounded by N , then g ◦f is bounded
by M + N .

Proof: Clear in the case of CX(R). If we are in ̂CX(R), let x = (a1, e1),
y = (a2, e2), z = (a3, e3), let f ′ : a1 → a2 have a filtration M and g′ : a2 →
a3 have a filtration N , and e2f

′ = f , e3g
′ = g. Then g′ ◦ g′ has filtration

M + N , and

e3g
′f ′ = gff ′ = e3ge2f

′ = e3gf = e3e3gfe2 = e3fge2 = gf .

Q.E.D.

We write i CX(R) and iĈX(R) for the categories of isomorphisms of CX(R)
and ĈX(R), respectively. Any object of CX(R) has an underlying free R–
module. Similarly, an object of ĈX(R) has an underlying free R–module
and an idempotent of that R–module; this corresponds to a projective
R–module. A morphism CX(R) (respectively ĈX(R)) is an isomorphism
if it is an isomorphism on the underlying free R–module (or the under-
lying projective R–module) and if both f and f−1 are bounded of some
filtration n. Note that it is possible for an isomorphism of underlying free
R–modules to be bounded without its inverse being bounded. Choose sym-
metric monoidal structures on the categories of left R–modules, R–mod, and
sets, so that in each case the sum of two objects is the categorical sum. Any
such sum structures give rise to a symmetric monoidal structure on iCX(R)
and iĈX(R); for instance, in the case of iCX(R), (F, B, ϕ) ⊕ (F ′, B′, ϕ′) =
(F⊕F ′, B

∐
B′, ϕ

∐
ϕ′), where

∐
denotes the sum in sets. If the symmetric

monoidal structures on R–mod and sets are permutative, then so are the
structures on iCX(R) and iĈX(R), and we assume permutative structures
chosen once and for all, and iCX(R) and iĈX(R) will denote the correspond-
ing permutative categories.

Definition III.3 Let Spt : SymMon → S be the functor described in I.6.

Then we define K
˜

(X; R) = Spt(iCX(R)) and K̃
˜

(X; R) = Spt(iĈX(R)).

This construction is evidently covariantly functorial in the variable R.
We discuss its functoriality in X.
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Definition III.4 Let (X, d) and (X ′, d′) be metric spaces, and let f :
X → X ′ be any function. f is said to be proper if the inverse images
of sets of finite diameter are finite unions of sets of finite diameter, and f is
eventually continuous if there is a function Φ : R→ R such that d′(fx, fy) ≤
Φ(d(x, y)), if d(x, y) < +∞. Given a proper, eventually continuous map of
metric spaces f : X → X ′, we obtain functors Cf : iCX(R) → iCX′(R) and

Ĉf : iĈX(R) → iĈX′(R) of symmetric monoidal categories by

Cf (F, B, ϕ) = (F, B, f ◦ ϕ)

and
Ĉf (F, B, ϕ, e) = (F,B, f ◦ ϕ, e) .

On morphisms, Cf (L) = L and Ĉf (L) = L. The properness condition
assures that Cf (F, B, ϕ) is an object of CX′(R), and the eventual continuity
assures that morphisms in iCX(R) are sent to morphisms in iCX′(R). We
obtain corresponding maps of spectra

K
˜

(X, R)
K

˜
(f,R)

−→ K
˜

(X ′, R)

and

K̃
˜

(X,R)
K̃

˜
(f,R)

−→ K̃
˜

(X ′, R) .

Let µ denote the category of metric spaces and proper, eventually contin-

uous maps; then the above constructions make K
˜

(−;R) and K̃
˜

(−; R) into

functors from µ to S.

We record some straightforward properties of this construction.

Proposition III.5 Let (X, d) be a bounded metric space, i.e., so that
d(x, y) < N for all x, y and a fixed real number N . Then K

˜
(X,R) is

equivariant to the K–theory spectrum of the symmetric monoidal category
of free finitely generated left R–modules, and K̂

˜
(X;R) is equivalent to the

K–theory spectrum of the category of finitely generated projective left R–
modules.

Proposition III.6 Let d and d′ be two metrics on a set X, and suppose that
there are functions Φ : R→ R and Ψ : R→ R so that d(x, y) ≤ Φ(d′(x, y))
and d′(x, y) ≤ Ψ(d(x, y)), whenever either d(x, y) or d′(x, y) is finite. Then
the identity map on X is eventually continuous and proper when viewed
as a map (X, d) → (X, d′) or (X, d′) → (X, d), and induces equivalences

K
˜

((X, d), R) → K
˜

((X, d′), R) and K̂
˜

((X, d), R) → K̂
˜

((X, d′), R).
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Proposition III.7 Let X be a metric space, and let Y ⊆ X be a submetric
space. Suppose that there is a real number N so that for every x ∈ X,
there is a point y ∈ Y so that d(x, y) ≤ N . Then the inclusion maps

K
˜

(Y,R)
K
˜

(i,R)

−→ K
˜

(X, R) and K̂
˜

(Y, R)
K
˜

(i,R)

−→ K̂
˜

(X,R) are equivalences of

spectra (i : Y → X is of course proper and eventually continuous).

Proposition III.8 If X and Y are metric spaces, then we define X × Y to
be the metric space whose points are elements of X × Y , and whose metric
is given by

dX×Y ((x1, y1), (x2, y2)) = dX(x1, x2) + dY (y1, y2) ,

suitably interpreted if dX(x1, x2) or dY (y1, y2) is +∞. Let A be a com-
mutative ring, and suppose R1 and R2 are A–algebras, with A contained
in the center of both R1 and R2. Then there is a symmetric monoidal
pairing µ : iCX(R1) × iCY (R2) → iCX×Y (R1 ⊗A R2), given on objects by
µ((F1, b1, ϕ1), (F2, B2, ϕ2)) = (F1 ⊗A F2, B1 × B2, ϕ1 × ϕ2). The pairing

extends in an evident way to a symmetric monoidal pairing µ̂ : iĈX(R1) ×
iĈY (R2) → iĈX×Y (R1⊗A R2). From I.6, we obtain maps m = m(X, Y,A) :
K
˜

(X, R1) ∧ K
˜

(Y,R2) → K̃(X × Y,R1 ⊗A R2) and m̂ = m̂(X, Y,A) :

K̂
˜

(X, R1) ∧ K̂
˜

(Y,R2) → K̂
˜

(X × Y,R1 ⊗A R2).

Pedersen and Weibel [33] continue to analyze the case of Euclidean space
En, with standard Euclidean metric. Their result yields the following. Con-
sider the spectrum K

˜
(E1;Z). The zeroth space of this spectrum is the group

completion of the simplicial set N.iCE1(Z), so an automorphism of any ob-
ject in iCE1(Z) corresponds to an element of π1(K˜

(E1;Z)). Let Z denote

the object (Z[Z],Z, ϕ), where Z[Z] denotes the free Z–module on the set
of integers Z ⊆ E1, Z denotes the basis Z of Z[Z], ϕ : Z → E1 is the in-
clusion, and let α : Z[Z] → Z[Z] be the automorphism given on the basis
Z by α(n) = n + 1. We also let α denote the element of π1(K˜

(E1;Z))

corresponding to this α.

Theorem III.9 (Pedersen–Weibel [33], [34])

(a) The composite

K
˜

(X, R) ∧ S1 Id∧α−→ K
˜

(X,R) ∧K
˜

(E1;Z)
µ−→ K

˜
(X × E1; R)

induces an isomorphism on πi for i ≥ 1.



56 Gunnar Carlsson

(b) The natural map K
˜

(X; R) → K̂
˜

(X; R) induces an isomorphism on πi

for i > 0.

The adjoint of the map of III.9 (a) gives a map K
˜

(X, R) → ΩK
˜

(X ×
E1, R), inducing an isomorphism on πi for i > 0, and we obtain a directed
system of spectra whose n–th term is ΩnK

˜
(X × En;R). To see this, one

notes that K
˜

(X×En;R) ∼= K
˜

(X×(E1)n; R), which follows from III.6. The

homotopy colimit hocolim
−→
n

ΩnK
˜

(X×En; R) will be denoted by K
˜

(X,R), and

is in general a non–connective spectrum. One has a similar directed system
{ΩNK̂(X ×En; R)}, and K̂

˜
(X; R) = hocolim

−→
n

ΩnK̂
˜

(X ×En; R). There is a

natural inclusion K
˜
→ K̂

˜
.

Proposition III.10 (Pedersen–Weibel [33])

(a) The map K
˜

(X; R) → K̂
˜

(X; R) is an equivalence of spectra.

(b) π−i(K˜
(∗, R)) is the ith negative K–group of R, for i > 0, defined as in

Bass [5].

Proof: (a) is a direct consequence of III.9 (b); (b) is proved in [33]. Q.E.D.

Remark: All of the above discussion is contained implicitly or explicitly in
[33] and [34].

Let X ∈ M; we say X is discrete if d(x1, x2) = +∞ whenever x1 6= x2.
The full subcategory of M on the discrete metric spaces can be identified
with the category setsp via the inclusion functor i : setsp → M which
assigns to any set the discrete metric space on the elements of X. Our first
task is to analyze the functors K

˜
(−; R) ◦ i, K̂

˜
(−;R) ◦ i, and K

˜
(−; R) ◦ i;

we will identify them with the functors h
˜

`f (−,K
˜

(R)), h
˜

`f (−, K̂
˜

(R)), and

h
˜

`f (−,K
˜

(R)) respectively.

Proposition III.11 The functors K
˜

(−; R)◦i and K̂
˜

(−, R)◦i are canonically

isomorphic to the functors X → ∏
x∈X K

˜
(x,R) and X → ∏

x∈X K̂
˜

(x,R)

respectively.
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Proof: From the definitions, we have isomorphisms iCiX(R) ∼= ∏
x∈X iCX(R)

and iĈiX(R) ∼= ∏
x∈X iĈX(R) of symmetric monoidal categories; the result

now follows from the definition of
∏

x∈X and the results of [13]. Q.E.D.

Proposition III.12 There are canonical isomorphisms of spectra

K
˜

(X q Y, R) ∼= K
˜

(X, R)×K
˜

(Y,R)

and
K̂
˜

(X q Y,R) ∼= K̂
˜

(X, R)× K̂
˜

(Y, R) ,

and consequently induced projection maps

K
˜

(X q Y, R) → K
˜

(X,R), K
˜

(X q Y, R) → K
˜

(Y,R),

K̂
˜

(X q Y, R) → K̂
˜

(X,R), K̂
˜

(X q Y, R) → K̂
˜

(Y,R).

(Here × denotes the termwise product of spectra.)

Proof: Again, iCXqY (R) ∼= iCX(R) × iCY (R) and iĈXqY (R) ∼= iĈX(R) ×
iĈY (R). Q.E.D.

Let setsf ⊆ setsp be the full subcategory of finite sets, and let j denote
the restriction of i : setsp →M to setsf . There is a natural transformation
Θ of functors from K

˜
(R)∧( )+ to K

˜
( ; R)◦j, where ( )+ is the functor which

assigns to a set X the (discrete) based space X+, defined as follows. Let
FR denote the symmetric monoidal category of based free finitely generated
left R–modules. For each x ∈ X, we have an inclusion functor ix : FR →
iCX(R), given by ix((F, B)) = (F, B, ϕx), where ϕx : B → X is the constant
function with value x. Each ix is symmetric monoidal and hence induces a
map of spectra ϑx : K

˜
(R) → K

˜
(X;R), and we define Θ(X) to be ∨x∈Xϑx,

where we identify K
˜

(R) ∧ {x}+ with K
˜

(R) ∧ S0 = K
˜

(R).

Proposition III.13 Θ is a natural equivalence of functors from setsf to
S.

Proof: Follows directly from III.12. Q.E.D.

Corollary III.14 K
˜

(−; R) ◦ i and K̂
˜

(−;R) ◦ i are naturally equivalent to

h
˜

`f (−;K
˜

(R)) and h
˜

`f (−; K̂
˜

(R)), respectively, as functors from setsp to S.

Proof: Let X be any set, and let ΨX
R : F(X)op → S be defined on objects by

ΨX
R (U) = K

˜
(jU ; R). On morphisms, ΨX

R (U ⊆ V ) is defined to be the pro-

jection K
˜

(jV, R) → K
˜

(jU ; R) arising from the decomposition K
˜

(jV ; R) ∼=
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K
˜

(jU ; R) × K
˜

(j(V − U); R). The assignment X → (F(X)op,ΨX
R ) gives

a functor η from setsp to SCAT . To define it, one needs only to define a
natural transformation ΨX

R ◦ f! → ΨY
R , if f : X → Y is a proper map. We

define it to be the map K
˜

(jf−1U ;R) → K
˜

(jU ;R) induced by f | f−1U .

holim
←−

◦ η is now a functor from setsp to S. Moreover, the natural equiv-

alence ΦX
K
˜

(R)
→ ΨX

R given on U by Θ(U) gives a weak equivalence of

functors h
˜

`f (−,K
˜

(R)) ∼−→ holim
←−

◦ η. On the other hand, we obtain a natu-

ral transformation from K
˜

(−;R) ◦ i → holim
←−

◦ η as follows. For every finite

set U ⊆ X, we obtain a projection map K
˜

(iX; R) πU−→ K
˜

(jU,R) from the

decomposition X = (X − U)q U , using III.12. The diagrams

K
˜

(iX; R) πV−→ K
˜

(jV ; R)

↘πU

y
K
˜

(jU ; R)

commute for all inclusions U ⊆ V , where the vertical map is the projection
associated to the decomposition V = (V − U)q U , so we obtain a map

K
˜

(iX; R) → lim
←−

F(X)op

ΨX
R → holim

←−
F(X)op

ΨX
R

for each set X. This gives a natural transformation M : K
˜

(−;R) ◦ i →
holim
←−

◦ η since the diagrams

K
˜

(iX; R)
K

˜
(if ;R)

−→ K
˜

(iY, R)

πf−1U ↓ ↓ πU

K
˜

(jf−1U ; R)
K

˜
(j(f | f−1U);R)

−→ K
˜

(jU ;R)

all commute. That M(X) is an equivalence for all sets X follows from II.4
and III.11 using the results of [13]. This gives the result for K

˜
; the proof

for K̂
˜

is identical. Q.E.D.

We also need the analogous result for K, which is less straightforward.
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Proposition III.15 The functors K
˜

(−, R) ◦ i and h
˜

`f (−;K
˜

(R)) are natu-

rally equivalent.

Proof: One readily constructs analogues to η and to the natural transfor-
mations

h
˜

`f (−;K
˜

(R)) → holim
←−

◦ η

and
K
˜

(−;R) ◦ i → holim
←−

◦ η,

and verifies that h
˜

`f (−;K
˜

(R)) → holim
←−

◦ η is an equivalence. What is not

immediate is that K
˜

(−; R) ◦ i → holim
←−

◦ η is an equivalence. This would

follow if we could show that the natural map K
˜

(iX; R) → ∏
x∈X K˜

(x; R) is

an equivalence. To see this, we verify that the map induces isomorphisms
on πi for all i. For i ≥ 0, this follows from III.9 (a) and III.14. For
i < 0, we proceed as follows. Recall that Karoubi [26] axiomatically defined
lower K–groups K−i(A) for any additive category A. Pedersen and Weibel
[33] generalized the construction CX(R) to a construction CX(A) for any
additive category, restricting to the old notion when A is the category R–
mod of finitely generated free left R–modules. Moreover, they define a non–
connective spectrum which we call L

˜
(X,A) (we use L

˜
only to distinguish it

from our functor K
˜

), and prove that for i > 0, π−i(L˜
(X,A)) ∼= K−i(A). It

is clear from the definitions that if A = R–mod, then L
˜

(X,A) ∼= K
˜

(X, R),

that if X is any set, K
˜

(iX, R) ∼= L
˜

(∗,∏x∈X R–mod), and that under these

identifications, the homomorphism

π−i(K˜
(iX,R)) → π−i

( ∏

x∈X

K
˜

(x,R)

)
, i > 0,

corresponds to the natural map

K−i

( ∏

x∈X

R–mod

)
→

∏

x∈X

K−i(R–mod).

Thus, what is required is to show that Karoubi’s groups K−i commute with
(perhaps infinite) products. But this result now follows from Karoubi [26]
or Pedersen–Weibel [33], since a product of “flasque resolutions” of additive
categories Ax is a flasque resolution of

∏
x∈X Ax. Q.E.D.
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We now wish to adapt the notion of the nerve of a covering to the situation
where an object X of M is covered by a family of subsets {Xα}α∈A.

Definition III.16 A simplicial metric space is a functor from ∆op to M.
Since iCX(R) and iĈ(R) are functorial in X, we obtain from a simplicial

metric space X. simplicial spectra K
˜

(X.,R), K̂
˜

(X.,R), and K
˜

(X., R). Note

that if X. is a constant simplicial metric space, then all these simplicial
spectra are constant.

Recall from II.18 the definition of a disjoint union of metric spaces

Definition III.17 Let U = {Uα}α∈A be a covering of a metric space X by
subsets. We say U is locally finite if the following two conditions hold.

(a) For any α ∈ A, the set {α′ ∈ A | Xα′ ∩Xα 6= ∅} is finite

(b) For any set U ⊆ X of finite diameter, the set {α ∈ A | U ∩Xα 6= ∅} is
finite.

Definition III.18 Let U = {Uα}α∈A be any locally finite covering of a
metric space X. We define a simplicial metric space N.U by setting

NkU =
∐

(α0,...,αk)∈Ak+1

Uα0 ∩ · · · ∩ Uαk
,

and by defining face and degeneracy maps via the following formulae

(a) di|Uα0 ∩ · · · ∩Uαk
is the inclusion Uα0 ∩ · · · ∩Uαk

, to the disjoint union
factor corresponding to (α0, . . . , α̂i, . . . , αk)

(b) Si|Uα0 ∩ · · · ∩ Uαk
is the identity map on Uα0 ∩ · · · ∩ Uαk

to the factor
corresponding to (α0, . . . , αi, αi, . . . , αk).

The fact that these maps are eventually continuous is clear, since they are
distance nonincreasing. That they are proper follows from part (a) of the
definition of local finiteness.

Definition III.19 Let X be a metric space, and let U = {Uα}α∈A denote a
locally finite covering of X. Then we note that we have a map of simplicial
metric spaces from N.U to X ., the constant simplicial metric space with
value X, obtained by including each Uα0 ∩ · · · ∩Uαk

into X. This is clearly
eventually continuous (it is distance nonincreasing) and it is proper due to
condition (b) in the definition of local finiteness. Applying | |, we obtain
maps of spectra

A(U) : |K
˜

(N.U , R)| → |K
˜

(X ., R)| ∼= K
˜

(X, R)
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Â(U) : |K̂
˜

(N.U , R)| → |K̂
˜

(X ., R)| ∼= K̂
˜

(X, R)

A(U) : |K
˜

(N.U , R)| → |K
˜

(X ., R)| ∼= K
˜

(X,R)

which we call the assembly maps for these coverings.

A key point in this paper will be to show that in certain situations, the
assembly map A is an equivalence. This means proving an excision result
for certain coverings of metric spaces. We defer this to the next section; for
now, we construct an intrinsic version of the assembly maps, independent
of choice of covering.

Recall from §II the notation BkX for the collection of all locally finite
collections A of singular k–simplices in X for which there exists a number
N , so that the diameter of image(σ) is less than N for all γ ∈ A. Recall also
that we defined an associated locally finite homology theory bh

˜
`f (−; A

˜
) to

be | | applied to the simplicial spectrum k → limA∈BkXh
˜

`f (A; A
˜

). Viewing

each A ∈ BkX a a discrete metric space, we obtain an analogous simplicial
spectrum k → limA∈BkXK

˜
(A;A

˜
), and denote this theory by bG

˜
h(X;R).

Corollary III.14 gives a homotopy weak equivalence η : bh
˜

`f (−; K
˜

(R)) →
bG
˜

h(X; R) of functorsM→ S. We will now define a natural transformation

α : bG
˜

h(X; R) → K
˜

(X, R). Let A be any collection of singular n–simplices

of X, and ζ any point of the standard n–simplex. Then we define a function
ϑζ : A → X by ϑζ(σ) = σ(ζ). ϑζ is always eventually continuous, since A
is viewed as a discrete metric space, and if A is locally finite ϑζ is clearly
symmetric monoidal, ϑζ is proper. Consequently, we have the map of spec-
tra K

˜
(ϑζ , R) : K

˜
(A, R) → K

˜
(X, R) given by (F,B, ϕ) → (F, B, ϑζ ◦ ϕ).

Suppose further that A ∈ BnX, and that N is the number required to
exist by the definition of BnX. Then if ζ and η are both points in the
standard n–simplex, we have a symmetric monoidal natural transforma-
tion Nη

ζ : K
˜

(ϑζ , R) → K
˜

(ϑη, R), given by letting Nη
ζ (F,B, ϕ) be the map

(F,B, ϑζ ◦ϕ) 7→ (F, B, ϑη ◦ϕ) which is given by the identity homomorphism
from F to itself. This is a morphism in iCX(R) because it and its inverse
are bounded by N .

Recall that the standard n–simplex can be viewed as the nerve of the
ordered set n = {0, 1, . . . , n}, 0 < 1 < · · · < n, viewed as a category.

Let A ∈ BnX; we define a functor iCA(R) × n
l(A,n)−→ iCX(R) as follows.

On objects, l(A, n)((F, B, ϕ), i) is (F, B, ϑi ◦ϕ), where i denotes the vertex
∆n = N.n corresponding to i on morphisms, it is defined by the requirement
that l(A, n) | iCA(R)×j is the functor induced by θj , and that (Id×(i ≤ j)) :
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((F, B, ϕ), i) → ((F,B, ϕ), j) is sent to N j
i (F, B, ϕ). This is compatible with

the inclusion of elements in BnX, so we obtain a functor lim
−→

A∈BnX

iCA(R)×n →

iCX(R), and hence a map lim
−→

A∈BnX

N.iCA(R) × ∆n → iCX(R). If C is a

symmetric monoidal category, let the tth space in Spt (C) be denoted by
Sptt(C), and let σt : S1 ∧ Sptt(C) → Sptt+1(C) be the structure map
for Spt(C). The fact that the natural transformations N j

i are symmetric
monoidal shows in addition that we obtain maps lim

−→
A∈BnX

Sptt(iCA(R)) ×

∆n Λt−→ Sptt(iCX(R)), so that the diagrams

lim
−→

A∈BnX

(S1 ∧ Sptt(iCA(R)))×∆n −→ S1 ∧ Sptt(iCX(R))

σt × Id ↓ ↓ σt

lim
−→

A∈BnX

Sptt+1(iCA(R))×∆n −→ Sptt+1(iCX(R))

commute. Further, it is routine that lim
−→

A∈BnX

Λt respects the equivalence

defining | |, so for each t, we obtain a map from |k → lim
−→

A∈BnX

SpttiCA(R)| to

SpttiCX(R), respecting the structure maps in Sptt. Consequently, we have
a map l : bG

˜
h(X, R) → K

˜
(X,R). We note that l is natural in X, with

respect to morphisms in M. We define α : bh
˜

`f (−; K
˜

(R)) → K
˜

( ; R) to

the the homotopy natural transformation l ◦ η, where η : bh
˜

`f (−;K
˜

(R)) →
bG
˜

h(−; R) is the above defined homotopy weak equivalence of diagrams. We

observe that the construction generalizes, using III.14, to homotopy natural
transformations bh

˜
`f (−; K̂

˜
(R)) → K̂

˜
(−;R) and bh

˜
`f (−;K

˜
(R)) → K

˜
(−, R),

which we also denote by α. We summarize the above discussion

Proposition III.20 There are homotopy natural transformations

bh
˜

`f ( ; K
˜

(R)) → K
˜

(−;R)

bh
˜

`f ( ; K̂
˜

(R)) → K̂
˜

(−;R)

bh
˜

`f ( ;K
˜

(R)) → K
˜

(−;R)

defined on the category of locally compact metric spaces and uniformly
continuous proper maps, which are equivalences when applied to discrete
metric spaces.
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IV. Excision Properties of Bounded K–theory

We are now going to consider the assembly maps Â(U) and A(U) defined in
§III for a covering U = {Y,Z} of a metric space X. In this case |K̂

˜
(N.U , R)|

can be identified with the homotopy pushout of the diagram

K̂
˜

(Y ∩ Z;R) −→ K̂
˜

(Z;R)

↓
K̂
˜

(Y ;R)

and the assembly map is the map arising from the universal mapping prop-
erty of homotopy pushouts and the observation that the diagram

K̂
˜

(Y ∩ Z, R) −→ K̂
˜

(Z, R)
y

y
K̂
˜

(Y,R) −→ K̂
˜

(X, R)

commutes. In general, this map does not have good properties. For instance,
consider the subset S = [0, 1]× 0 ∪ 0× [0,+∞) ∪ 1× [0, +∞), viewed as a
submetric space of the Euclidean plane, and consider the covering of S given
by S0 = [0, 1]× 0 ∪ 0× [0, +∞), S1 = [0, 1] ∪ 1× [0,+∞), S0 ∩ S1 = [0, 1],
and so K̂

˜
(S0 ∩ S1;R) ∼= K̂

˜
(R) by III.5. The inclusion 0 × [0, +∞) ↪→ S0

induces an equivalence of K̂
˜

–theory spectra, since the subset 0 × [0,+∞)

satisfies hypotheses of III.7. Consequently,

K̂
˜

(S0;R) ∼= K̂
˜

(0× [0, +∞), R) ∼= K̂
˜

(E+, R) ,

where E+ denotes the non–negative real half line, and this last spectrum
was shown to be contractible by Pedersen–Weibel [33] using the “Eilenberg
swindle.” Similarly, K̂

˜
(S1; R) ∼= ∗. If the map Â(U), U = {S0, S1} were an

equivalence, then πi(K̂˜
(S; R)) would be isomorphic to πi−1(K̂˜

(R)), using

the Mayer–Vietoris sequence for the homotopy pushout. But, the inclusion
0× [0, +∞) ↪→ S also satisfies the conditions of III.7, so K̂

˜
(S; R) ∼= ∗, show-

ing that there is no good relation between the homotopy pushout associated
to U and K̂

˜
(S;R). To remedy this situation, we note that the associated to

any covering U = {Y, Z} of a metric space and r ∈ [0, +∞), we have the cov-
ering BrU = {Br(Y ), Br(Z)}, where Br(Y ) = {x ∈ X | ∃y ∈ Y , d(x, y) ≤
r}, and similarly for Z. Note that for r ≤ s, we have commutative cubes of
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spectra

K̂
˜

(Br(Y ) ∩Br(Z), R) w

u

[[]
K̂
˜

(Bs(Y ) ∩Bs(Z), R)4
46

u

K̂
˜

(Br(Z), R) w

u

K̂
˜

(Bs(Z), R)

u

K̂
˜

(Br(Z), R)�����
w K̂
˜

(Bs(Y ), R)�����

K̂
˜

(X, R) wId K̂
˜

(X,R)

Consequently, if Pr denotes the homotopy pushout of the diagram

K̂
˜

(Br(Y ) ∩Br(Z); R) −→ K̂
˜

(Br(Z), R)
y

K̂
˜

(Br(Y ); R)

we obtain maps βr,s : Pr → Ps whenever r ≤ s, so that Â(BsU) ◦ βr,s =

Â(BrU), and consequently a map of spectra lim
−→
r

Pr

lim
→ Â(BrU)−→ K̂

˜
(X; R). By

crossing the situation with Euclidean space Rk, and passing to the direct
limit over the system defining K

˜
(−, R), we obtain a map

lim
−→
r

Nr

lim
→ Â(BrU)−→ K

˜
(X;R) ,

where Nr denotes the homotopy pushout of the diagram

K
˜

(Br(Y ) ∩Br(Z); R) −→ K
˜

(Br(Z); R)
y

K
˜

(Br(Y ); R)

Our theorem reads as follows

Theorem IV.1 lim
−→
r

Â(BrU) induces an isomorphism on πi for i > 0. Con-

sequently, lim
−→
r

A(BrU) is an equivalence of spectra.

We defer the proof of this theorem to develop some necessary technical
material. Recall from §I the construction of the simplified double mapping
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cylinder construction associated to the diagram of symmetric monoidal cat-
egories

iĈY ∩Z(R) −→ iĈZ(R)y
iĈY (R)

where U = {Y, Z} is a covering of a metric space X; the results of §I con-
cerning this construction hold since, in fact, all morphisms in all categories
in the diagram are isomorphisms. Let Cyl(U) denote this simplified double
mapping cylinder. Recall that in the discussion preceding I.9, we associated
a symmetric monoidal functor αX from the simplified double mapping cylin-
der of a diagram B

u←− A
v→C of unital symmetric monoidal categories and

unital symmetric monoidal functors to a unital symmetric monoidal cate-
gory X with any pair of unital symmetric monoidal functors β : B → X and
γ : C → X so that βu = γv. We define l : Cyl(U) → iĈX(R) to be the sym-
metric monoidal functor associated to the inclusions jY : iĈY (R) → iĈX(R)
and jZ : iĈZ(R) → iĈX(R).

Proposition IV.2 There is a homotopy commutative diagram

|K̂
˜

(N.U ;R)| ↘Â(U)

β ↓ K̂
˜

(X; R)

SptCyl (U) ↗Spt (l)

for any covering U = {X0, X1} of X. Further, β is an equivalence.

Proof: K̂
˜

(N.U ; R) is a simplicial spectrum, i.e., a functor from ∆op to

S, and by I.2 (f), there is a natural (for ∆op–diagrams in S) equivalence
hocolim
−→
∆op

K̂
˜

(N.U ;R) → |K̂
˜

(N.U ; R)|. Â(U) is obtained as the map induced

on | | by the simplicial map from K̂
˜

(N.U ; R) to the constant simplicial

spectrum with value K̂
˜

(X;R). Consequently, Â(U) can be identified up to a

natural equivalence with the map hocolim
−→
∆op

K̂
˜

(N.U ;R) → hocolim
−→
∆op

K̂
˜

(X;R),

induced by the natural transformation K̂
˜

(N.U ;R) → K̂
˜

(X;R). Let nk =

{0, 1}k+1, and for τ = (α0, . . . , αk) ∈ nk, let µk(τ) = ∩k
i=0Xαi ; we view

µk as a functor from the discrete category nk to M. Let n. denote the
simplicial set k → nk, with face maps given by deletions and degeneracies
given by diagonals; it may be identified with the functor ∆op → sets given
on objects by k 7→ F (k, {0, 1}). n. can be viewed as a simplicial (discrete)
category. Furthermore, for any morphism θ : k → ` in ∆op, we let n.θ :
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nk → n` denote the map of sets n.θ viewed as a functor between discrete
categories. Then we have a natural transformation Nθ from µk to µ` ◦ (nθ),
given on τ = (α0, . . . , αk) by the inclusion ∩k

i=0Xαi
↪→ ∩`

j=0Xβj
, where

n.θ(τ) = (β0, . . . , β`). One verifies directly that Nη ◦ Nθ = Nη◦θ, so we
define a functor δ : ∆op → MCAT on objects by δ(k) = (nk, µk), and
on morphisms by δ(θ : k → S) = (n.θ, Nθ). One can compose δ with
the functor K̂

˜
(−; R)CAT : MCAT → SCAT , and further with hocolim :

SCAT → S, to obtain a functor δ : ∆op → S, given on objects by k →
hocolim
−→
nk

K̂
˜

(µk(−); R). Since nk is finite, and since the homotopy colimit over

a discrete category amounts to taking the wedge product over all the objects
in the category of the value of the functor, it follows from III.12 that there
is a natural equivalence of functors from δ to the functor k → K̂

˜
(NkU ;R),

and consequently a homotopy commutative diagram

hocolim
−→
∆op

K̂
˜

(N.U ;R) ↘
x K̂

˜
(X; R)

hocolim
−→
∆op

δ ↗

where the vertical arrow is an equivalence and the lower diagonal arrow is
induced by the various inclusions µk(τ) → X. Let I be the category whose
objects are the non–trivial subsets of {0, 1}, with a unique morphism from
S to T if T ⊆ S. We define a functor θ : ∆op on.U → I as follows. A typical
object of ∆opon.U is a pair (k, (α0, . . . , αk)), where k is a nonnegative integer,
and (α0, . . . , αk) ∈ {0, 1}k, and we define θ(k, α0, . . . , αk) = {α0, . . . , αk},
the subset consisting of all coordinates occurring in (α0, . . . , αk). Of course,
there are at most two distinct coordinates. Since I is a partially ordered set,
θ is determined by its behavior on orbits. As above, let µ. : ∆op on.U →M
be the functor given by µ.(k, (α0, . . . , αk)) = Xα0 ∩ · · · ∩ Xαk

; it is clear
that µ. factors over I, via the functor ν : I → M, given on objects by
ν(S) = ∩s∈SXs. We have a commutative diagram

hocolim
−→

∆opon.U
K̂
˜

(µ(−); R) ↘
y K̂

˜
(X; R)

hocolim
−→
I

K̂
˜

(ν(−); R) ↗

We claim that the left hand vertical arrow is a weak equivalence; by I.2 (g),
this would follow if all the categories {0} ↓ ν, {1} ↓ ν, and {0, 1} ↓ ν have
contractible nerves. To check that {0, 1} ↓ ν has contractible nerve, we



Bounded K–theory and the Assembly Map in Algebraic K–theory 67

note that since there is a unique morphism from {0, 1} to any object of
I, {0, 1} ↓ ν is isomorphic to the category ∆op o n.. But by Thomason’s
homotopy colimit result, I.5 and I.2 (f), |∆op o n.| ∼= |hocolim

−→
∆op

n.| ∼= n..

But n. is isomorphic to the nerve of the category with objects 0 and 1,
and a unique morphism between any pair of objects. This category has
contractible nerve since it has an initial object. {0} ↓ ν and {1} ↓ ν can
also be shown to have contractible nerves by similar arguments. Now I.9
shows that there is a homotopy commutative diagram

hocolim
−→
I

K̂
˜

(ν(−), R) ↘
y K̂

˜
(X; R)

Spt (Cyl (U)) ↗Spt (l)

The composite equivalence

|K̂
˜

(N.U , R)| −̃→ hocolim
−→
∆op

K̂
˜

(N.U , R) −̃→ hocolim
−→
∆op

δ

−̃→ hocolim
−→

∆opon.

K̂
˜

(µ.(−), R) −̃→

hocolim
−→
I

K̂
˜

(ν(−), R) −̃→ Spt(Cyl(U)) ,

where the first two arrows are homotopy inverses to arrows constructed
above and the middle arrow comes from I.5, is now the desired map β.
Q.E.D.

To study Â(U), it therefore suffices to study Spt(l).
We now prove the key lemma. Its proof is a straightforward modification

of the proof of the corresponding theorem in the work of Pedersen and
Weibel [33]. Let lr : Cyl(BrU) → iĈX(R) be the functor defined above
corresponding to the covering BrU . We have commutative diagrams

Cyl (BrU) ↘lry iĈX(R)
Cyl (Br+sU) ↗ls

of symmetric monoidal functors. For any object x of iĈX(R), we may con-
sider the category x ↓ lr. Let Filrd(x) denote the full subcategory of x ↓ lr

on objects (z, z
θ−→ lrz) so that θ and θ−1 both have filtration less than
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or equal to d. θ is an isomorphism since all morphisms in iĈX(R) are iso-
morphisms. Note that for any d′ ≥ d, r′ ≥ r, we have inclusion functors
Filrd(x) → Filr

′
d′(x).

Lemma IV.3 Let x be any object of iCX(R) ⊆ iĈX(R). Then the func-
tor Filrd(x) → Filr+s

d (x) induces a map on nerves which is homotopic to a
constant map, whenever s > d.

Proof: Let (F,B, ϕ) be an object of iĈX(R). Let

B1 = {b ∈ B | ϕ(b) ∈ Br+s(Y )−Br+s(Z)} ,

B2 = {b ∈ B | ϕ(b) ∈ Br+s(Z)−Br+s(Y )} ,

B12 = {b ∈ B | ϕ(b) ∈ Br+s(Y ) ∩Br+s(Z)} .

Note that B = B1

∐
B2

∐
B12, and we have a corresponding direct sum

splitting in iĈX(R)

(F,B, ϕ) ∼= (F1, B1, ϕ|B1)⊕ (F2, B2, ϕ|B2)⊕ (F12, B12, ϕ|B12) ,

where F1, F2, and F12 denote the (free) submodules of F spanned by
B1, B2, and B12 respectively. Let M , M1, M2, and M12 denote the ob-
jects (F,B, ϕ), (F1, B1, ϕ|B1), (F2, B2, ϕ|B2), and (F12, B12, ϕ|B12) respec-
tively. M , M2, and M12 can be viewed as objects in the subcategories
iĈBr+s(Y )(R), iĈBr+s(Z)(R), and iĈBr+s(Y )∩Br+s(Z)(R) of iĈX(R) respec-
tively, and there is an evident bounded (by 0) isomorphism θ from M to
lr+s(M1,M2,M12). We’ll show that there is a natural transformation from
the constant functor with value ((M1,M12,M2), θ) to the inclusion functor
Filrd → Filr+s

d (M). This will give the result, since natural transformations
produce simplicial homotopies. To see that there is such a natural trans-
formation, consider a typical object ((A1, A12, A2), η) of Filrd(M). Since
η−1 is bounded by d, and s > d, η−1 must carry the summand A12 of
lr(A1, A12, A2) = lr+s(A1, A12, A2) into the summand M12 of M . Conse-
quently, the idempotent e12 of lr(A1, A12, A2) determined by e12(α, α′, α′′) =
(0, α′, 0) determines a bounded idempotent η−1e12η of M12; this exhibits
A12 as a summand of M12. Define idempotents e1 and e2 of A1 ⊕A12 ⊕A2

by e1(α, α′, α′′) = (α, 0, 0) and e2(α, α′, α′′) = (0, 0, α′′). Again, since η−1

is bounded by d, η−1 must carry the summand A1 into M1 ⊕M12 and the
summand A2 into M12 ⊕ M2, so η−1e1η and η−1e2η determine bounded
idempotents of M1 ⊕ M12 and M12 ⊕ M2, respectively. Note further that
since η is bounded by d, η carries the summands Mi of M into the summands
Ai of A1⊕A12⊕A2. Therefore, if m ∈ Mi, then η−1eiηm = m, so the idem-
potent η−1eiη restricts to the identity on Mi. Let p1 : M1 ⊕M12 → M12
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and p2 : M12 ⊕M2 → M12 be the evident projections, viewed as bounded
idempotents of M1⊕M12 and M12⊕M2 respectively. Let p̂1 = Id− p1 and
p̂2 = Id−p2, viewed as idempotents of M1⊕M12 and M12⊕M2 respectively.
Since p̂i takes values in Mi, we have η−1eiηp̂i = p̂i. Consider the bounded
self maps p1η

−1e1η and p2η
−1e2η of M1 ⊕M12 and M12 ⊕M2 respectively.

When restricted to M12, they yield idempotents of M12. For

(piη
−1eiη) (piη

−1eiη) = (Id− p̂i) η−1eiη (Id− p̂i) η−1eiη

= (Id− p̂i) η−1eiηη−1eiη − (Id− p̂i) η−1eiηp̂iη
−1eiη

= (Id− p̂i) η−1eiη − (Id− p̂i)p̂iη
−1eiη = piη

−1eiη .

Furthermore, we claim that

p1η
−1e1η + p2η

−1e2η + η−1e12η

is the identity idempotent of M12; this follows directly from the observation
that e1 + e2 + e12 is the identity idempotent on A1 ⊕ A12 ⊕ A2. Let U be
the object of iĈBr+s(Y )∩Br+s(Z)(R) determined by p1η

−1e1η |M12 and let V
be the object determined by p2η

−1e2η |M12. Then we have the bounded
isomorphism M12

∼= U ⊕ A12 ⊕ V , arising from the isomorphism A12
∼=

η−1e12ηM12 and from the fact that

p1η
−1e1η + p2η

−1e2η + η−1e12η = IdM12 .

Similarly, we obtain bounded isomorphisms M1⊕U
∼−→ A1 and V ⊕M1

∼−→
A2. This data now produces a morphism

((M1,M12,M2), θ) −→ ((A1, A12, A2), η)

in Cyl(Br+sU) and is readily checked that it is a natural transformation.
Q.E.D.

Corollary IV.4. Let x be an object of iCX(R) ⊆ iĈX(R), and let

l : lim
−→
r

Cyl(BrU) → iĈX(R) be the functor given on Cyl(BrU) by lr. Then

x ↓ l is a contractible category.

Proof: x ↓ l = lim
−→
d

lim
−→
r

Filrd(x); The result now follows immediately from

IV.3. Q.E.D.

Corollary IV.5 The functor

l : lim
−→
r

Cyl(BrU) → iĈX(R)
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induces a map

Spt(l) : Spt(lim
−→
r

Cyl(BrU)) → K̂
˜

(X, R) ,

which induces isomorphisms on πi for i > 0. Consequently lim
−→
r

Â(BrU)

induces isomorphisms on πi for i > 0, and lim
−→
r

A(BrU) is an equivalence of

spectra from lim
−→
r

|K
˜

(N.BrU ;R)| to K
˜

(X, R).

Proof: One observes that the image F of π0(iCX(R)) → π0(iĈ(R)) is co-
final, since every object of iĈX(R) is a summand of an object of iCX(R).
Let M ⊆ π0(lim−→

r

Cyl(BrU)) be the inverse image π0(f)−1(F ); one checks

easily that M is cofinal in π0(lim−→
r

Cyl(BrU)). The first statement about

lim
−→
r

Â(BrU) follows from IV.2. To prove the final statement, let U [k] denote

the covering {Y ×Ek, Z×Ek} of X×Ek, where U = {Y,Z}. By the second
statement applied to the covering U [k], we see that ΩkÂ(BrU [k]) induces iso-
morphisms on πi for i > −k. Consequently, the maps lim

−→
r

lim
−→
k

ΩkÂ(BrU [k])

induces an equivalence lim
−→
r

K̂
˜

(N.BrU ; R) → K̂
˜

(X, R), and the result follows

for K
˜

by III.10 (a). Q.E.D.

Corollary IV.6 Let U be any finite covering of a metric space X, and let
BrU be the covering {BrU,U ∈ U}. Then the map

lim
−→
r

A(BrU) : lim
−→
r

|K
˜

(N.BrU ; R)| → K
˜

(X, R)

is an equivalence of spectra.

Proof: Repeated application of IV.5. Q.E.D.
We will also need to examine the behavior of the assembly for certain

infinite coverings. Specifically, we wish to study coverings U = {Ui}i∈Z
parametrized by the integers, which satisfy the following hypothesis.

Hypothesis (A): Ui ∩ Uj = ∅ if |i− j| > 1.

Thus, all triple intersections of distinct sets in the coverings are empty,
and the covering is one dimensional in an appropriate sense. As in the case of
finite coverings, we will need to introduce the coverings BrU = {BrUi}i∈Z.
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Unfortunately, BrU will no longer satisfy Hypothesis (A), and one sees that
it is not reasonable to try to prove an excision theorem for U itself but rather
for a direct limit involving coverings constructed from U . We will have to
introduce a stronger hypothesis below to ensure that even this direct limit
gives an excision result. We now develop these constructions.

We consider first the notion of a map of coverings. Thus, let {Uα}α∈A =
U and {U ′

β}β∈B = U ′ be two locally finite coverings (in the sense of III.17)

of a metric space X. By a map of coverings U Θ−→ U ′, we mean a function θ :
A → B so that Uα ⊆ U ′

θ[α] for all α ∈ A. A map of coverings induces a map
N.Θ : N.U → N.U ′ of simplicial metric spaces, and hence a map of simplicial

spectra K
˜

(N.U ; R)
K

˜
(N.Θ;R)

−→ K
˜

(N.U ′; R), as well as maps K̂
˜

(N.Θ;R) and

K
˜

(N.Θ;R).

Consider a covering of X parametrized by the integers, say U = {Ui}i∈Z.
We associate to U a new covering, U ′, also parametrized by the integers,
by U ′ = {U ′

i}, U ′
i = U2i ∪ U2i+1. We note that there is a map of coverings

U Θ−→ U ′, given by the map θ : Z → Z, θ(2i) = θ(2i + 1) = i. We are free
to iterate this procedure; we set U(0) = U , and define U(`) inductively by
U(`) = U(` − 1)′. We write U(`) = {Ui(`)}, where Ui(`) = U2i(` − 1) ∪
U2i+1(` − 1). We have maps of coverings Θ` : U(`) → U(` + 1), and the
diagrams

|K
˜

(N.U(`); R)| ↘A(U(`))

|K
˜

(N.Θ`;R)| ↓ K
˜

(X; R)

|K
˜

(N.U(` + 1); R)| ↗A(U(`+1))

as well as their analogues for K̂
˜

and K
˜

are easily seen to commute. Conse-

quently, we have a map

hocolim
−→

`

|K
˜

(N.U(`) : R)|
hocolim

→
A(U(`))

−→ K
˜

(X; R)

(and analogues for K̂
˜

and K
˜

), where hocolim
−→

`

denotes mapping telescope,

i.e., homotopy colimit over the negative integers with a unique morphism
from i to j whenever i ≤ j. We wish to find conditions on U which will
ensure that

hocolim
−→

`

|K
˜

(N.U(`); R)|
hocolim

→
A(U(`))

−→ K
˜

(X;R)

is a weak equivalence. The correct condition is the following.
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Hypothesis (B): For every r ∈ R, there is an ` so that the covering BrU(`)
satisfies Hypothesis (A).

The rest of this section will be devoted to proving that hocolim
−→

`

A(U(`)) is

a weak equivalence when U is locally finite and satisfies Hypothesis (B). The
idea of the proof, as in the proof of IV.1, is to reduce the proof to a simpli-
fied homotopy colimit construction involving the constructions Tor(A→

→B)
studied in I.10 and mapping telescopes. We first will need to interpret
|K̂
˜

(N.U ;R)| as a homotopy colimit when U satisfies Hypothesis (A). We

now develop the terminology required for this interpretation.
Let P be a partially ordered set, which we view as a category by the

requirement that there be a unique morphism from X to Y when x ≥ y;
the object set is of course P itself. Suppose further that a group G operates
freely on P in an order preserving way. We define the orbit category P/G
as follows. The objects of P/G are the elements of P/G. Let B ⊂ P ×P be
defined by V = {(x, y) ∈ P × P | x ≥ y}. Then we have the induced map
π1 × π2 : B/G → P/G × P/G, given by [x × y] 7→ ([x], [y]), and we define
MorP/G([x], [y]) = (π1 × π2)−1([x], [y]). The composition law is obtained
as follows. A typical morphism from [x] to [y] can thus be represented as
[g1x ≥ g2y], for some g1, g2 ∈ G. By the freeness of the action, there is a
unique representative of the form x ≥ gy. If f ′ : [y] → [z] is a morphism, it
can similarly be uniquely represented by a morphism of the form gy ≥ g′z.
The composite of the two morphisms is now x ≥ g′z. This composition is
clearly independent of the representative for [x] chosen, and we do indeed
have a category.

Example: Let P a be the subset of the partially ordered subset of all non–
trivial subsets of Z consisting of sets of the form {i} or of the form {i, i+1}.
This partially ordered set is pictured as

≥ {−1} ≤ {−1, 0}≥{0}≤{0, 1}≥{1}≤{1, 2}≥ .

The group Z acts freely by poset isomorphism on P a via its translation
action on Z, so n · {i, i + 1} = {i + n, i + n + 1} and n · {i} = {i + n}. In
this case, the orbit category P a/Z can be pictured as

[{0, 1}]
f

→
→
g

[{0}] .

Here, f is the morphism represented by {0, 1} ≥ {0} and g is represented
by {0, 1} ≥ {1}. Note that P a/Z is isomorphic to the category M occurring
in Proposition I.10. We can also consider the category P a/2Z, its picture
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is as follows
[{0, 1}]

↙f1 ↘g1

[{0}] [{1}]
↖g2 ↗f2

[{1, 2}]
Here, the morphisms are given by

f1 = [{0, 1} ≥ {0}] , f2 = [{1, 2} ≥ {1}] ,
g1 = [{0, 1} ≥ {1}] , g2 = [{1, 2} ≥ {2}] .

We define functors p, q : P a/2Z → P a/Z. p is defined on objects by
p[{0, 1}] = p[{1, 2}] = [{0, 1}], p[{0}] = p[{1}] = [{0}], and on morphisms
by p(fi) = f , p(gi) = g. This functor is obtained by factoring out the Z/2Z–
action on P a/2Z. q is defined on objects by q[{0, 1}] = q[{0}] = q[{1}] =
[{0}], q[{1, 2}] = [{0, 1}], and on morphisms by q(f1) = q(g1) = Id[{0}], and
qg2 = g, q(f2) = f .

Now let X be a (perhaps infinite) simplicial complex, with free G–action.
This means that G acts freely on the k–simplices of X for every k. By P(X),
we mean the partially ordered set of simplices of X, with σ ≤ τ ⇔ σ is a face
of τ . Note that if X denotes the real line, viewed as a simplicial complex by
X = ∪n[n, n+1], then P(X) is isomorphic to the poset P a described above.
We also construct from X the simplicial set S.X whose k–simplices are the
simplicial maps from the standard k–simplex into X. For any simplicial set
Y., we define its category of simplices C(Y.) as follows. The objects of C(Y.)
are the simplices of Y., and if y ∈ Yk, y′ ∈ Y`, then

MorC(X)(y, y′) = {θ : k → ` in ∆op such that θ∗y = y} .

If X is an ordered simplicial complex, then there is a functor C(S.X) →
P(X) given on objects by sending a simplex x to the image of the unique
non–degenerate simplex x′ so that x is equal to a degeneracy operator ap-
plied to x′. Since P(X) is a poset, the behavior on morphisms is forced
by the behavior on objects, and it is easy to check that this does define a
functor. Moreover, if X is equipped with a free G–action, there is a sim-
ilarly induced functor C((S.X)/G) → P(X)/G which is characterized by
the requirement that the diagram

C −→ P(X)y
y

C((S.X)/G) −→ P(X)/G

should commute. We denote the functor C((S.X)/G) → P(X)/G by π.
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Proposition IV.7 Let F : P(X)/G → s sets be any functor. Then the
natural map

hocolim
−→

C((S.X)/G)

F ◦ π → hocolim
−→

P(X)/G

F

is a weak equivalence. Consequently, the same result holds for functors from
P(X)/G to Spectra.

Proof: By I.2 (g), it suffices to check that for any object x of P(X)/G,
the category x ↓ π has contractible nerve. But due to the freeness of the
G–action, one sees that x ↓ π is isomorphic to the category x̃ ↓ p, where x̃
is any orbit representative in P(X) for x, and where p : C(S.X) → P(X) is
the functor defined above. It is further clear that if x̃ is a k–simplex, then
x̃ ↓ p is isomorphic to C(S.∆[k]), via the inclusion C(S.∆[k]) → C(S.X)
induced by the simplicial map ∆[k] x̃−→ X. But it is a standard fact from
Bousfield and Kan [11] that N(C(S.∆[k])) is weakly equivalent to S.∆[k],
and is therefore weakly contractible. Q.E.D.

We observe for later use that if Y. is a simplicial set, then C(Y.) is iso-
morphic to the category ∆op o FY , where FY : ∆op → CAT is the functor
which assigns to k the set Yk, viewed as a discrete category.

Now suppose that we have a locally finite covering U = {Ui}i∈Z of a
metric space, satisfying Hypothesis (A). Let N.U denote the nerve of the
covering, and let Z be the simplicial complex obtained by triangulating R
with a vertex at each integer. Then we have the simplicial set S.Z. SkZ
can be identified with the set of all sequences of integers of length k + 1,
(n0, . . . , nk), satisfying the condition that {n0, . . . , nk} ⊆ {`, `+1} for some
`. The sequence (n0, . . . , nk) corresponds to the simplicial map ∆[k] → Z
sending the j–th vertex to nj .

C defines a functor from s sets (and by restriction s setsp) to CAT . Via
this embedding, we consider the category Ms sets. We define T : Ms sets →
s.M on objects by T (X., Φ)k =

∐
x∈Xk

Φ(x), T (X., Φ)(θ) = Φ(x θ−→ θ∗x)
on the disjoint union factor Φ(x). We leave the behavior of T on morphisms
in Ms setsp

to the reader. The local finiteness of X. assures that T (X., Φ)
is a simplicial object in M. Let (X., Φ) be any object of Ms setsp

, and let
f : X. → X.′ be a simplicial map, where X.′ is locally finite. We do not
require that f be proper. Then we define a new object f!(X., Φ) in Ms setsp

by f!(X.,Φ) = (X.′, f!Φ), where (f!Φ)(x̃) =
∐

x, f(x)=x̃ Φ(x). There is no

morphism (X.,Φ) → f!(X., Φ) in Ms setsp

if f is not proper, but there
is a canonical isomorphism T (X.,Φ) → T (f!(X., Φ)) of simplicial metric

spaces. Note, though, that if X.
f−→ X.′

g−→ X.′′ are simplicial maps of
locally finite simplicial sets, and g is proper, then we do have a morphism



Bounded K–theory and the Assembly Map in Algebraic K–theory 75

g̃ : f!(X., Φ) → (g ◦ f)! (X., Φ) in Ms setsp

, so that the diagram

T (X., Φ)
↙ ↘

T (f!(X., Φ))
T (g̃)−→ T ((g ◦ f)!(X., Φ))

commutes, and T (g̃) is an isomorphism in s.M.
Now, let the coverings U(`) be defined as above; since U satisfies Hy-

pothesis (A), so does U(`) for all ` ≥ 0. For each `, let µ` : C(S.Z) → M
be given on objects by µ`(n0, . . . , nk) = U(`)n0 ∩ · · · ∩ U(`)nk

, and by the
evident inclusions on morphisms. Each (S.Z, µ`) is an object in Ms setsp

.
Let π : S.Z → S.Z/Z and π̄ : S.Z → S.Z/2Z be the projection maps. Note
that we have ρ : S.Z/2Z→ S.Z/Z, which is clearly a proper map. ρ deter-
mines a morphism ρ̃` : π̄!(S.Z, µ`) → π!(S.Z, µ`) in Ms setsp

, where T (ρ̃`) is
an isomorphism in s.M making the diagram

(I)
T (S.Z, µ`)

↙˜ ↘˜

T (π!(S.Z, µ`))
T (ρ̃`)−→ T (π`(S.Z, µ`))

commute in s.M. Let δ : Z → Z be the map of simplicial complexes
given on vertices by δ(2i) = δ(2i + 1) = i. δ is a proper map, and we can
consider the object δ!(S.Z, µ`). Because of the properness of δ, there is a

morphism (S.Z, µ`)
δ̃−→ δ!(S.Z, µ`) in Ms setsp

; δ!(S.Z, µ`) = (S.Z, δ!µ`).
For (n0, . . . , nk) a k–simplex of S.Z,

δ!µ`(n0, . . . , nk) = U2n0(`) ∩ · · · ∩ U2nk
(`)

∐
U2n0+1(`) ∩ · · · ∩ U2nk+1(`) .

There is an inclusion

U2n0(`) ∩ · · · ∩ U2nk
(`)

∐
U2n0+1(`) ∩ · · · ∩ U2nk+1(`)

↪→ (U2n0(`) ∪ U2n0+1(`)) ∩ · · · (U2nk
(`) ∪ U2nk+1(`))

= Un0(` + 1) ∩ · · · ∩ Unk
(` + 1) = µ`+1(n0, . . . , nk)

in M, which gives rise to a natural transformation δ!µ` → µ`+1. We there-
fore obtain a morphism

θ` : (S.Z, µ`)
δ̃−→ δ!(S.Z, µ`) → (S.Z, µ`+1)

in Ms setsp

. Note that the composite S.Z
δ−→ S.Z → S.Z/Z factors

uniquely through S.Z/2Z, i.e., we have a commutative diagram

(II)
S.Z

δ−→ S.Zy
y

S.Z/2Z δ̂−→ S.Z/Z
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Let s setsf ⊆ s setsp denote the finite simplicial sets; π̄!(S.Z, µ`) and π̄!(S.Z,

µ`+1) are in the subcategoryMs setsf ⊆Ms setsp

. The above diagram shows
that θ` induces a morphism θ̄` : π̄!(S.Z, µ`) → π!(S.Z, µ`+1) in Ms setsf

. Let
Nσ denote the category obtained from Ns by adjoining a single new object
∞ to Ns declaring that for every object of Ns, there is a unique morphism
from that object to ∞, and declaring that the only self–map of ∞ is the
identity map. We now define an Ns diagram λ in Ms setsf

by

λ({`}) = π!(S.Z, µ`)
λ({`, ` + 1}) = π̄!(S.Z, µ`)
λ(∞) = (∗, Φx)
∗ = one point simplicial set
Φx = constant functor with value X.
λ({`, ` + 1}) → {`} = ρ̃`

λ({`, ` + 1}) → {` + 1} = θ̄`

λ({`} → ∞) = (f, i)
λ({`, ` + 1} → ∞) = (g, j)

where f : S.Z/Z→ ∗ and g : S.Z/2Z→ ∗ are the constant maps, and i and
j are the inclusion maps µ`(x) ↪→ X and µ̄`(x) ↪→ X for x ∈ S.Z/Z and
x ∈ S.Z/2Z respectively. We now define four functors from Ms setsf

to S,
which we will eventually show are weakly equivalent.

(i) A0 : Ms setsf → S is given on objects by A0(Y., Φ) = |K̂
˜

(T (Y.,Φ), R)|,
and the behavior on morphisms is straightforward from the functori-
ality of K̂

˜
(−; R), T ( ), and | |.

(ii) We view the simplicial set Y. as a functor from ∆op to (discrete) cate-
gories. Thus, C(Y.) ∼= ∆op o Y., and we let Ψ : ∆op →MCAT be the
functor so that Ψv = Φ, where Ψv is defined in the discussion preced-
ing I.5. Compose Ψ with the functor | hocolim

−→
◦K̂
˜

( , R)CAT | to define

A1. A1(Y., Φ) is given by A1(Y., Φ) = |k → hocolim
−→
Yk

K̂
˜

(Φ |Yk; R)|.

(iii) Let Ψ be as in (ii); then (hocolim
−→

◦K̂
˜

( , R)CAT )◦Ψ defines a simplicial

spectrum. We define A2(Y., Φ) to be

hocolim
−→
∆op

((hocolim
−→

◦K̂
˜

( , R)CAT ) ◦Ψ) .

On objects, it is given by

A2(Y., Φ) = hocolim
−→
∆op

|k → hocolim
−→
Yk

K̂
˜

(Φ |Yk;R)| .
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(iv) A3 is hocolim
−→

◦K̂
˜

( , R) ◦ Φ; A3(Y.,Φ) = hocolim
−→

C(Y.)

K
˜

(Φ(−), R).

Proposition IV.8 There are weak equivalences of functors A1 → A0, A2 →
A1, and A2 → A3. Consequently, there is a homotopy commutative diagram

hocolim
−→
Ns

A0 ◦ λ −→ K
˜

(X, R)

x
x

hocolim
−→
Ns

A3 ◦ λ −→ hocolim
−→
∆op

K
˜

(X, R)

where the vertical arrows are equivalences and the horizontal arrows are
induced by the morphisms to ∞ in Nσ.

Proof: The natural transformation A1 → A0 is given by the equivalence
∨y∈Yk

K̂
˜

(y, R) → K̂
˜

(Yk;R) coming from III.12. A2 → A1 is I.2 (f). A2 → A3

is I.5. Q.E.D.

Define an Nσ diagram of spectra λ̂ by

λ̂({`}) = |K̂
˜

(N.U(`); R)

λ̂({`, ` + 1}) = |K̂
˜

(N.U(`), R)|
λ̂(∞) = K̂

˜
(X; R)

λ̂({`, ` + 1} → {`}) = Id
λ̂({`, ` + 1} → {` + 1}) = |K̂

˜
(N.Θ`; R)|

λ̂({`} → ∞) = Â(U(`))
λ̂({`, ` + 1} → ∞) = Â(U(`)) .

From the fact that T (X., Φ) → T (π!(X, Φ)) and T (X., Φ) → T (π̄!(X, Φ))
are isomorphisms in s.M, and from diagrams (I) and (II), it follows that
we have commutative diagrams (in s.M)

T (S.Z, µ`)
Id←− T (S.Z, µ`)

T (θ`)−→ T (S.Z, µ`+1)
↓ o ↓ o ↓ o

T (π!(S.Z, µ`))
T (ρ̃`)←− T (π̄!(S.Z, µ`))

T (θ̄`)−→ T (π!(S.Z(S.Z, µ`+1)))
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and commutative diagrams of simplicial spectra

K̂
˜

(N.U(`), R)
K̂

˜
(N.Θ`;R)

−→ K̂
˜

(N.U(` + 1), R)

↓ o ↓ o

K̂
˜

(T (S.Z, µ`); R)
K̂

˜
(T (θ`);R)

−→ K̂
˜

(T (S.Z, µ`+1);R)

where all the vertical arrows are isomorphisms. We conclude that the Nσ

diagrams λ̂ and A0◦λ are weakly equivalent diagrams of spectra. Moreover,
define N∞ to be the category N with an object ∞ adjoined, with a unique
morphism from every object in N to ∞, and so that the only self–map of
∞ is the identity. N∞ bears the same relationship toward N as Nσ does
toward Ns, and we have the functor π∞ |Ns = π, and π∞(∞) = ∞. Define

an N∞ diagram ˆ̂
λ in S as follows.

ˆ̂
λ({`}) = |K̂

˜
(N.U(`); R)|

ˆ̂
λ(∞) = |K̂

˜
(X; R)|

ˆ̂
λ({`} → {` + 1}) = |K̂

˜
(N.Θ`; R)|

ˆ̂
λ({`} → ∞) = Â(U(`))

Then λ̂ = ˆ̂
λ ◦ π∞, and I.14, I.2 (g), and I.5 now show that we have a

commutative diagram of spectra

hocolim
−→
Ns

λ̂

↓ o ↘
hocolim
−→
N

ˆ̂
λ −→ K̂

˜
(X; R)

↓ oo ↗hocolim
−→

`

Â(U(`))

hocolim
−→

`

|K̂
˜

(N.U(`); R)|

with the upper left hand arrow an equivalence and the lower one an isomor-
phism.
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Corollary IV.9 There is a homotopy commutative diagram of spectra

hocolim
−→
Ns

A3 ◦ λ −→ hocolim
−→
∆op

K
˜

(X,R)

o ↓ ↓ o

hocolim
−→

`

K̂
˜

(N.U(`); R)

hocolim
−→

Â(U(`))

−→ K
˜

(X, R)

where the vertical arrows are equivalences and the upper horizontal arrow
is induced by the morphism to ∞ in Nσ.

Recall that we are viewing Ms setsf

as a subcategory of MCAT . We note
that
A3 : Ms setsf → S is actually defined on all ofMCAT , since it is the compos-
ite
hocolim
−→

◦K̂
˜

(−; R)CAT . Recall also from the discussion above that we have

functors
C(S.Z/Z) → P(Z)/Z and C(S.Z/2Z) → P(Z)/2Z, and one easily checks
that we have factorizations

C(S.Z/Z)y ↘π!µ`

P(Z)/Z m`−→ M

and
C(S.Z/2Z)y ↘π̄!µ`

P(Z)/2Z m̄`−→ M

and consequently morphisms π!(S.Z, µ`) → (P(Z)/Z,m`) and π̄!(S.Z, µ`) →
(P(Z)/2Z, m̄`) in MCAT . We remark that P(Z) ∼= P a Z–equivariantly, so
we rewrite (P(Z)/Z, m`) ∼= (P a/Z,m`) and (P(Z)/2Z, m̄`) ∼= (P a/2Z,m`).
Recall the definitions of p, q : P a/2Z → P a/Z from above. It is now

easy to verify that there are natural transformations m̄`
ξ`−→ m` ◦ p and

m̄`
ξ`−→ m`+1 ◦ q so that the corresponding diagrams

π̄!(S.Z, µ`)
ρ̃`−→ π!(S.Z, µ`)y

y
(P a/2Z, m̄`)

(p,ξ`)−→ (P a/Z,m`)
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and
π̄!(S.Z, µ`)

θ̄`−→ π!(S.Z, µ`+1)y
y

(P a/2Z, m̄`)
(q,ζ`)−→ (P a/Z, m̄`+1)

commute in MCAT . We now define an N diagram with values in MCAT by

λ1({`}) = (P a/Z, m`)
λ1({`, ` + 1}) = (P a/2Z, m̄`)
λ1(∞) = (e,ΨX)
e = the category with one object
ΨX = constant functor with value X.
λ1({`, ` + 1} → {`}) = (p, ξ`)
λ1({`, ` + 1} → {` + 1}) = (q, ζ`)
λ1({`} → ∞) = f
λ1({`, ` + 1} → ∞) = g

where f and g are morphisms corresponding to the constant functors P a/Z→
e, P a/2Z→ e, and the inclusions m`(x) ⊆ X, m̄`(x) ⊆ X respectively.

From the above discussion, it follows that we have a natural transforma-
tion λ → λ1 of Nσ diagrams in MCAT .

Proposition IV.10 The natural transformation λ → λ1 is a weak equiva-
lence of diagrams. From this it follows from IV.9 that there exists a homo-
topy commutative diagram

hocolim
−→
Ns

A3 ◦ λ1 −→ K̂
˜

(X; R)

↓ o ↗ hocolim
−→

`

Â(U(`))

hocolim
−→

`

|K̂
˜

(N.U(`); R)|

where the vertical arrow is an equivalence and the horizontal arrow is con-
structed using the morphisms to ∞ in Nσ.

We recall from I.7 that (C, Φ) → C ooΦ defines a functor SymMonCAT →
SymMon, i.e., that Thomason’s category theoretic colimit has the same kind
of functoriality as hocolim

−→
. We write scolim

−→
for this functor. We now define

A4 : MCAT → S to be the composite

MCAT iCAT

−→ SymMonCAT scolim−→ SymMon
Spt−→ S ,

where i : M→ SymMon is given by i(X) = iĈX(R). A4 is given on objects
by A4(C, Φ) = Spt (C ooΦ).
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Proposition IV.11 Thomason’s natural equivalence hocolim
−→
C

(Spt ◦ Φ) →

Spt (C o oΦ) gives a natural equivalence of functors A3 → A4 on MCAT .
Consequently, there is a homotopy commutative diagram

hocolim
−→
Ns

A4 ◦ λ1 −→ K̂
˜

(X; R)

↓ o ↗ hocolim
−→

`

Â(U(`))

hocolim
−→

`

|K̂
˜

(N.U(`); R)|

where the vertical arrow is an equivalence and the horizontal arrow is ob-
tained from the maps to ∞ in Nσ.

Let B : Nσ → SymMonCAT be given by

B({`}) = P a/Z oo(i ◦m`)
B({`, ` + 1}) = P a/2Z oo(i ◦ m̄`)

B(∞) = iĈX(R)
B({`, ` + 1} → {`}) = (p, i(ξ`))
B({`, ` + 1} → {` + 1}) = (q, i(ζ`))
B({`} → ∞) = f
B({`, ` + 1} → ∞) = g

where f and g are the functors induced by the constant functors P a/Z→ e,
P a/2Z→ e, and i(m`(−) ↪→ X), i(m̄`(−) ↪→ X), respectively.

Consider Ns ooB; there is an evident functor ε : Ns ooB → iĈX(R), namely
the composite

Ns ooB → Ns oo(iĈX(R)) → iĈX(R) ,

where (iĈX(R)) is used to denote the constant functor with value iĈX(R).
The following is now an immediate consequence of Thomason’s homotopy
colimit theorem from §I.
Corollary IV.12 The functors Ar ◦ λ and Spt ◦ B are naturally equiv-
alent spectrum valued Nσ diagrams. Consequently, there is a homotopy
commutative diagram

Spt (Ns ooB)
Spt (ε)−→ K̂

˜
(X; R)

↓ o ↗hocolim
−→

`

Â(U(`))

hocolim
−→

`

|K̂
˜

(N.U(`); R)|
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where the vertical arrow is an equivalence.

This completes the translation of our problem into category theoretic
language. Now consider the coverings U(`) again. For each `, let Y` =∐

i Ui(`) ∩ Ui+1(`) and Z` =
∐

i Ui(`). We have two inclusions f`, g` :
Y` → Z`, where f` is the disjoint union of the inclusions Ui(`) ∩ Ui+1(`) →
Ui(`) and g` is the disjoint union of the inclusions Ui(`) ∩ Ui+1(`) →

Ui+1(`). The diagram iĈU`
(R)

f`

→
→
g`

iĈZ`
(R) is an M diagram in SymMon,

where M is the category of I.10, and we let T ` be the permutative category

Tor [iĈY`
(R)

f`

→
→
g`

iĈZ`
(R)]. T ` is permutative since we have taken iĈY`

(R) and

iĈZ`
(R) to be permutative. An object of T ` is given by a pair (A, B), where

A (respectively B) is an object of iĈY`
(R) (respectively iĈZ`

(R)). We define
a symmetric monoidal functor τ` : T ` → T `+1 as follows. Note that every
object A of iĈY`

(R) can be canonically decomposed as A = A0 ⊕A1, where
A0 is an object of iĈY`+1(R), and where A1 is an object of iĈW (R), with
W =

∐
i U2i(`)∩U2i+1(`) ⊆

∐
i Ui(`+1). Via this last inclusion, we view A′

as an object in iĈZ`+1(R). Define τ` on objects by τ`(A,B) = (A0, A1⊕B),
where B is viewed as an object of iĈZ`+1(R) via the inclusion Z` → Z`+1.

On a morphism (A, b)
(U,V,φ,ψ)−→ (Ã, B̃), we set θ`(U, V, φ, ψ) = (Ū , V̄ , φ̄, ψ̄),

where Ū = U0, V̄ = V 0, φ̄ : A0 → U0 ⊕ Ā0 ⊕ V 0 is the restriction of φ to
the factor A0 ⊆ A, and ψ̄ is the composite

U0 ⊕A1 ⊕B ⊕ V 0 Id⊕φ |A1⊕Id⊕Id−→ U0 ⊕ U1 ⊕ Ā1 ⊕ V 1 ⊕B ⊕ V 0 c−→
→ Ā1⊕U0⊕U1⊕B⊕B⊕V 1⊕V 0 Id⊕γU⊕Id⊕γV−→ Ā1⊕U⊕B⊕V

Id⊕ϕ−→ Ā1⊕B̄1

Here, c is a commutativity isomorphism and U0 and V 0 are viewed as
objects of iĈZ`+1(R) via the inclusions f`+1 and g`+1, respectively, A1 is
viewed as an object of iĈZ`+1(R) via the inclusion

∐
i U2i(`) ∩ U2i+1(`) →∐

i Ui(` + 1), and γU and γV are the isomorphisms U0 ⊕ U1 ∼−→ U and
V 1 ⊕ V 0 → V , respectively. We define a functor τ̂ on N with values in
SymMon by τ̂(`) = T `, τ̂(` ≤ ` + 1) = τ`, and consider the category
N o oτ̂ . We define a symmetric monoidal functor α : N o oτ̂ → iĈZx(R). It
follows from I.8 that in order to produce such an α, we must produce lax
symmetric monoidal functors α` : T ` → iĈX(R) and symmetric monoidal
natural transformation from α` to α`+1 ◦ τ`. We let α` be the symmetric
monoidal functor ν : T ` → iĈX(R) associated, as in the discussion preceding
I.10, to the functor iĈZ`

(R) → iĈX(R) induced by the map Z` → X in M;
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note that here we are using the local finiteness of the covering U . Since
T `+1 is permutative,

α`(A, B) = A⊕B ∼= A0 ⊕A1 ⊕B = α`+1 ◦ τ`(A,B) ,

and this isomorphism is the required symmetric monoidal transformation
from α` to α`+1 ◦ τ . We also wish to define a symmetric monoidal functor
Ns ooB → N ooτ̂ . Again by Thomason’s universal mapping property I.8, we
are only required to produce lax symmetric monoidal functors

β` : P a/Z ooi ◦m` → N ooτ̂
β` : P a/2Z ooi ◦ m̄` → N ooτ̂

together with natural transformations

γ` → β` ◦B({`, ` + 1} → {`})
γ` → β`+1 ◦B({`, ` + 1} → {` + 1}) .

Recall that P a/Z is isomorphic to the category M of I.10, and further that i◦

m` is under this isomorphism identified with the diagram iĈY`
(R)

f`

→
→
g`

iĈZ`
(R).

Consequently, we have the functor θ : P a/Z oo(i ◦m`) → T ` of I.10. We call
this functor r`; it is symmetric monoidal. We also have the lax symmetric
monoidal functor j` : T ` → N ooτ̂ , (A,B) 7→ 1[(`, (A,B))]; β` is defined to be
J` ◦ r` and we set γ` = β` ◦B({`, `+1} → {`}). The natural transformation
γ` → β` ◦B({`, `+1} → {`}) is taken to be the identity natural transforma-
tion. We examine the composite β`+1◦B({`, `+1} → {`+1}). It is expressed
as a composite j`+1 ◦ s`, where s` : P a/2Z ooi ◦ m̄` → T `+1 is a symmetric
monoidal functor, which we describe explicitly. s` can by I.8 be identified
with a collection of lax symmetric monoidal functors Fx : i ◦ m̄`(x) → T `+1

for each object x of P a/2Z together with a system of natural transforma-

tions N(f) : Fx → Fy ◦ (i ◦ m̄`(f)) for every morphism x
f−→ y in P a/2Z

satisfying N(f)N(g) = N(fg). Let Y even
` =

∐
i U2i(`) ∩ U2i+1(`), and

Y odd
` =

∐
i U2i+1(`)∩U2i+2(`), Zeven

` =
∐

i U2i(`), and Zodd
` =

∐
i U2i+1(`).

We have inclusion functors iĈZ`+1(R) ↪→ T `+1 and iĈY`+1(R) ↪→ T `+1 given
on objects by B 7→ (0, B). The functor data describing s` is now given by
the following table

x Fx

[{0}] iĈZeven
`

(R) → ĈZ`+1(R) → T `+1

[{1}] iĈZodd
`

(R) → ĈZ`+1(R) → T `+1

[{0, 1}] iĈY even
`

(R) → ĈY`+1(R) → T `+1

[{1, 2}] iĈY odd
`

(R) → ĈY`+1(R) → T `+1
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The natural transformations are all identity morphisms for all objects in
their domain categories except for the transformations corresponding to
the two morphisms [{1, 2}] f0−→ [{0}] and [{1, 2}] f1−→ [{1}]. F[{1,2}] is the
functor A 7→ (A, 0), F[{0}] ◦ (i ◦ m̄`(f0)) is the functor A 7→ (0, g`A), and
F[{1}] ◦ m̄`(f1) is the functor A 7→ (0, f`A). The natural transformation
N(f0) is given on an object A by the morphism (0, A, ϕA, ψA), where ϕA :
A → 0 ⊕ A and ψA : 0 ⊕ g`A → g`A are the canonical isomorphisms.
Similarly, N(f1) is given on A by the morphism (A, 0, ϕ1

A, ψ1
A), where ϕ1

A :
A → A⊕ 0 and ψ1

A : f`A⊕ 0 → f`A are the canonical isomorphisms.

The lax symmetric monoidal functor

β` ◦B({`, ` + 1} → {`}) : P a/2Z oo(i ◦ m̄`) → N ooτ̂

is expressed as j` ◦ r` ◦B({`, ` + 1} → {`}), and r` ◦B({`, ` + 1} → {`}) is
a symmetric monoidal functor. Let Gx, N1

f denote the functor and natural
transformation data for r` ◦ B({`, ` + 1} → {`}) arising from Thomason’s
universal mapping principle I.8. The functor data is given as follows

x Gx

[{0}] iĈZeven
`

→ iĈZ`
→ T̂`

[{1}] iĈZodd
`

→ iĈZ`
→ T̂`

[{0, 1}] iĈY even
`

→ iĈY`
→ T̂`

[{1, 2}] iĈY odd
`

→ iĈY`
→ T̂`

In this case, all the natural transformations are identity maps. We first note
that we have a symmetric monoidal natural transformation

β` ◦B({`, ` + 1} → {`}) → j`+1 ◦ τ` ◦ r` ◦B({`, ` + 1} → {`}) .

For any ζ ∈ P a/2Z oo(i ◦ m̄`), this is the morphism

1[(`, r` ◦B({`, `+1} → {`})(ζ))] → 1[(`+1, τ` ◦ r` ◦B({`, `+1} → {`})(ζ))]

corresponding to the morphism ` 7→ ` + 1 in N and the identity map of
τ` ◦ B({`, ` + 1} → {`})(ζ). j`+1 ◦ τ` ◦ r` ◦ B({`, ` + 1} → {`}) is now
a second symmetric monoidal functor P a/2Z o o(i ◦ m̄`) → T `+1, and one
calculates directly that it is equal to j`+1 ◦ s`; indeed, s` = τ` ◦ r` ◦B({`, `+
1} → {`}). Moreover, the natural transformation data for s` is equal to the
result of applying τ` to the natural transformation data for r` ◦ B({`, ` +
1} → {`}), so we have constructed the required symmetric monoidal natural
transformation γ` → β`+1 ◦B({`, ` + 1} → {` + 1}), and hence a symmetric
monoidal functor Ns ooB → N ooτ̂ .
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Proposition IV.13 The diagram

Spt (Ns ooB)
↘Spt (ε)y Spt (iĈX(R)) = K̂

˜
(X, R)

↗Spt (α)

Spt (N ooτ̂)

is homotopy commutative, and the vertical arrow is an equivalence of spec-
tra.

Proof: It is a direct verification that the functors ε and Ns ooB → N ooτ̂ α−→
iĈX(R) are isomorphic as symmetric monoidal functors, the isomorphism
being given by rearrangement isomorphisms, so the associated diagram of
spectra commutes up to homotopy. Let N[i] be the full subcategory of
N on the objects {0, 1, . . . , i}, and let Ns[i] be the full subcategory of Ns

on objects {0}, {1}, . . . , {i}, {0, 1}, . . . , {i − 1, i}. By restriction, we obtain
functors Ns[i] ooB → N[i] ooτ̂ , and Spt (N ooτ̂) = colim

−→
i

Spt (N[i] ooτ̂), so it will

suffice to show that

Spt (Ns[i] ooB) → Spt (N[i] ooτ̂)

is an equivalence for all i. But let js
i : P a/Z o o(i ◦ mi) → N(i) o oB and

ji : T i → N[i] o oτ̂ be the inclusion functors given on objects by js
i (x) =

1[({i}, x)] and ji(y) = 1[(i, y)], where x is an object of P a/Z oo(i ◦mi) and
y is an object of T i, js

i and ji are both lax symmetric monoidal functors,
and hence induce maps of spectra. We now have the commutative diagram

Spt (P a/Z oo(i ◦mi))
∼−→ Spt (J i)

Spt (js
i ) ↓ ↓ Spt (ji)

Spt (Ns[i] ooB) −→ Spt (N[i] ooτ̂)

where the upper horizontal arrow is the equivalence of spectra Spt (θ) con-
structed in I.10. It is now easy to check that Spt (ji) is an equivalence; in
fact there is a symmetric monoidal functor N[i] o oτ̂ → T i, and a natural

transformation from the identity to the composite N[i] ooτ̂ → T i
ji−→ N[i] ooτ̂ .

On the other hand, restricting the arguments of IV.8–IV.11 to the subcat-
egory Ns[i], we see that

Spt (Ns[i] ooB) ∼= hocolim
−→

`∈N[i]

|K̂
˜

(N.U(`); R)| ∼= |K̂
˜

(N.U(i); R)| .

Of course, Spt P a/Z oo(i ◦mi) ∼= |K̂
˜

(N.U(i); R)|, and one sees directly that

Spt (js
i ) induces the equivalence. Q.E.D.
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We now begin the analysis of the functor α : N ooτ̂ → iĈX(R). First, we
have the following consequence of I.16.

Proposition IV.14 The functor N o τ̂ l−→ N ooτ̂ is a weak equivalence.

Let ϕ = α ◦ l, and let ϕ` denote the inclusion of the full subcategory
on the objects of the form (`, t), where t is an object of T `. Under the
identification t ↔ (`, t), ϕ` is identified with α` : T ` → iĈX(R). For r ≥ 0,
let BrU be defined as above. Let T `,r be the category

T


iĈY (BrU(`))(R)

f`

→
→
g`

iĈZ(BrU(`))(R)


 .

The above constructions (τ`, τ̂ , . . .) apply to T `,r and we let αr
` : T `,r →

iĈX(R) and ϕr : N o (` → T `,r) → iĈX(R) be the corresponding functors.
(Note that Br(U(`)) = (BrU)(`).) Whenever ` ≤ `′ and r ≤ r′, we have
the well defined functors T `,r → T `′,r′ induced by τ`′−1 ◦ τ`′−2 ◦ · · · ◦ τ` and
an evident inclusion of coverings. An object of T `,r has the form (A,B),
where A is an object of iĈY (BrU(`))(R) and B is an object of iĈZ(BrU(`))(R).
For each ` and r and each object F of iĈX(R), we consider the category
F ↓ α`,r; it is the increasing union of full subcategories Fil

r

d(`, R), where
Fil

r

d(`, R) is the full subcategory on objects (z, θ : F → αα,r(z)) so that
θ and θ−1 have filtration less than or equal to d. Before studying these
categories, we record a preliminary lemma on idempotents.

Lemma IV.15 Let Y0, Y1 ⊆ X be subspaces of a metric space X; we view
iĈY0(R) and iĈY1(R) as full subcategories of iĈX(R). Let F0 and G1 be

objects of iĈY0(R) and iĈY1(R), respectively, and let F and G be arbitrary

objects of iĈX(R). Suppose θ : F0 ⊕ F → G1 ⊕ G is an isomorphism in

iĈX(R) so that θ and θ−1 have filtration ≤ d. Let e denote the idempotent
of G1⊕G corresponding to projection on G1, and suppose d(y0, y1) > d for
all y0 ∈ Y0, y1 ∈ Y1. Then the idempotent θ−1eθ of F0 ⊕ F has the form
0⊕ ê, where ê is an idempotent of F .

Proof: This is a direct verification from the definitions of filtrations and of
the morphisms in iĈX(R); we leave it to the reader. Q.E.D.

Theorem IV.16 Suppose we are given `, r and d so that Br+3dU(`) satisfies
Hypothesis (A), where U is a locally finite covering of X. Then the functor

Fil
r

d(`, R) → Fil
r+3d

d (`, F ) induces a map on nerves which is simplicially

homotopic to a constant map, for any object F of iCX(R) ⊆ iĈX(R).

Proof: The strategy is to find a natural transformation from a constant
functor to the inclusion Fil

r

d(`, R) → Fil
r+3d

d (`, F ), or rather to a functor
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naturally isomorphic to this inclusion. We first define the constant functor.
Let Yi = Br+dUi(`) ∩ Br+dUi+1(`), and Ẑi = Br+dUi(`) − (Br+dUi−1(`) ∪
Br+dUi+1(`)). The Yi’s and Zi’s together form a partition of the metric
space X, and consequently we have a decomposition

(I) F ∼=
⊕

i

F (i)⊕
⊕

i

F (i, i + 1) ,

where F (i) is the span of the basis elements for F whose label lies in Ẑi

and F (i, i + 1) is the span of the basis Elements of F whose labels lie in Yi.
Recall that an object of T `,r is of the form (A,B), where A ∈ iĈY (BrU(`))(R)
and B ∈ iĈZ(BrU(`))(R). Let W =

∐
α∈A Wα be a disjoint union of metric

spaces. Then any object A of iĈW (R) decomposes canonically as A ∼=
⊕α∈AAα, where Aα is an object of iĈWα(R). Write Aα = (Āα, eα), where
Āα is an object of iCWα(R) ⊆ iĈWα(R), and eα is a bounded idempotent of
Āα. If the family {Aα}α∈A corresponds to an object A of iĈW (R), then there
is a number d so that eα has filtration ≤ d for all α ∈ A. We say a family
{Aα}α∈A = {(Āα, eα)}α∈A, with Aα ∈ iĈWα(R), is uniformly bounded if a
d exists so that eα has filtration ≤ d for all α. One readily checks that the
objects of iĈW (R) are in bijective correspondence with uniformly bounded
families {Aα}α∈A, and that the morphisms correspond to families {fα}α∈A,
where fα is a morphism in iĈWα(R), and so that there is a number d so that
fα has filtration less than or equal to d for all α ∈ A. Now, Y (Br+3dU(`)) =∐

i Yi(Br+2dU(`)), where Yi(Br+3dU(`)) = Br+3dUi(`) ∩Br+3dUi+1(`), and
Z(Br+3dU(`)) =

∐
i Zi(Br+2dU(`)), where Zi(Br+3dU(`)) = Br+3dUi(`).

Consequently, to specify an object (E,E′) ∈ T `,r+3d, it suffices to give
uniformly bounded sequences Ei and E′

i, where Ei ∈ iĈYi(Br+3dU(`))(R) and
E′

i ∈ iĈZi(Br+3dU(`))(R). We define (E, E′) by

Ei = F (i, i + 1) , E′
i = F (i) .

(In both cases, these are objects whose idempotent is the identity map,
so they clearly form uniformly bounded families.) α`,r+3d(E,E′) = E ⊕
E′, so the decomposition (I) gives a filtration zero isomorphism F

ε−→
α`,r+3d(E,E′). This data gives an object ξ of Fil

r+3d

d (`, R), and we will show
that there is a natural transformation from the constant functor with value ξ

to a functor naturally isomorphic to the inclusion Fil
r

d(`, R) → Fil
r+3d

d (`, F ).

Let ((A,B), F θ−→ α`,r(A,B)) be any object of Filrd(`, F ); we have the
corresponding uniformly bounded families {Ai} and {Bi}, where

Ai ∈ iĈYi(BrU(`))(R) and Bi ∈ iĈZi(BrU(`))(R).

The object α`,r(A,B) admits filtration zero idempotents ρi and σi, given
by projection on Ai and Bi, respectively. Consequently, ρ̂i = θ−1ρiθ and



88 Gunnar Carlsson

σ̂i = θ−1σiθ are idempotents of F , of filtration < 2d. We wish to describe
these idempotents in terms of the decomposition (I). First, let us examine
ρ̂i. We write α`,r(A,B) as A⊕B = Ai⊕A′, where A′ =

⊕
j 6=i Aj ⊕

⊕
j Bj ,

and

(II) F ∼= F ′ ⊕ F (i, i + 1) ,

where F ′ =
⊕

j F (j) ⊕ ⊕
j 6=i F (j, j + 1). Ai ∈ iĈYi(BrU(`))(R), and F ′ is

an object of Ai ∈ iĈX−Yi(Br+dU(`))(R). The subsets Yi(BrU(`)) and X −
Yi(Br+dU(`)) and corresponding modules Ai and F ′ satisfy the hypotheses
of IV.15, so ρ̂i has the form O ⊕ ρ̄i in terms of the decomposition (II),
where ρ̄i is an idempotent of F (i, i+1). Next, we turn to σ̂i. We now write
α`,r(A, B) = A⊕B ∼= Bi ⊕B′, where B′ =

⊕
j Aj ⊕

⊕
j 6=i Bj , and

(III) F ∼= F ′′ ⊕ (F (i− 1, i)⊕ F (i)⊕ F (i, i + 1)) ,

where F ′′ ∼= ⊕
j 6=i F (j) ⊕ ⊕

j 6=i−1,i F (j, j + 1). Bi ∈ iĈZi(BrU(`))(R) =
iĈBrU(`)(R), and F ′′ ∈ iĈX−Br+dU(`)(R). The subsets BrUi(`) and X −
Br+dUi(`) and corresponding modules Bi and F (i−1, i)⊕F (i)⊕F (i, i+1)
satisfy the hypotheses of IV.15, so σ̂i has the form O ⊕ σ̄i in terms of the
decomposition (III), where σ̄i is an idempotent of F (i − 1, i) ⊕ F (i) ⊕
F (i, i + 1). We now decompose σ̄i further in terms of the decomposition
F (i−1, i)⊕F (i)⊕F (i, i+1). Again, decompose α`,r(A,B) as α`,r(A,B) ∼=
B′ ⊕Bi, and write

(IV) F ∼= F (i)⊕ F ′′′ ,

where F ′′′ ∼= ⊕
j 6=i F (j) ⊕ ⊕

j F (j, j + 1). Let V0 = ∪j 6=iBrUj(`) and
V1 = X − ∪j 6=iBr+dUj(`). Then F (i) is an object of iĈV1(R) and B′ is
an object of iĈV0(R). Projection on the factor B′ is identified with the
idempotent Id− σi. V0 and V1 and the corresponding modules B′ and F (i)
now satisfy the hypotheses of IV.15, and we conclude that in terms of the
decomposition (IV), θ−1(Id − σi) θ = Id − σ̂i decomposes as O ⊕ ν, where
ν is an idempotent of F ′′′; consequently, σ̂i itself decomposes as Id ⊕ ν′,
where ν′ = Id + ν. Taking both decompositions into account, and writing
F (i−1, i)⊕F (i)⊕F (i, i+1), we see that σ̄i decomposes as IdF (i)⊕ν̄, where ν̄
is an idempotent of F (i−1, i)⊕F (i, i+1). Further, since ν̄ is the restriction
of σ̂ to F (i−1, i)⊕F (i, i+1), and σ̂i has filtration ≤ 2d, ν̄ has filtration ≤ 2d.
But F (i − 1, i) (respectively F (i, i + 1)) is an object of iCYi−1(Br+dU(`))(R)
(respectively F (i, i + 1)) is an object of iCYi−1(Br+dU(`))(R) (respectively
iCYi(Br+dU(`))(R)), and if yi−1 ∈ Yi−1(Br+dU(`)), then d(yi−1, yi) > 2d,
Hypothesis (A) on Br+3dU(`). From these facts it follows readily that ν̄
decomposes as ν̄ = ν+

i−1 ⊕ ν−i , where ν+
i−1 is an idempotent of F (i − 1, i)

and ν−i is an idempotent of F (i, i + 1). ν−i + ρ̂i + ν+
i is now an idempotent

of F (i, i + 1), we claim ν−i + ρ̂i + ν+
i = Id. To check this, it suffices to show
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that (σ̂i + ρ̂i + σ̂i+1)(x) = x for all x ∈ F (i, i + 1), since ν−i + ρ̂i + ν+
i is the

restriction of σ̂i + ρ̂i + σ̂i+1 to F (i, i + 1). We now write

(V) F ∼= F (i, i + 1)⊕ F ′ ,

where F ′ is defined as in the decomposition (II) above. We also write
α`,r(A, B) = C ′′ ⊕ (Bi ⊕ Ai ⊕ Bi+1), where C ′′ ∼= ⊕

j 6=i Aj ⊕
⊕

j 6=i,i+1 Bj .
Now Id − (σi + ρi + σi+1) is identified with projection on C ′′. Let W0 =
∪j 6=i,i+1BrUj(`) and W1 = Br+dUi(`) ∩ Br+dUi+1(`). C ′′ is an object of
iĈW0(R) and F (i, i + 1) is an object of iĈW1(R). One now checks that W0,
W1, and the corresponding modules C ′′ and F (i, i+1) satisfy the hypotheses
of IV.15, so

θ−1(Id− (σi + ρi + σi+1))θ = Id− (σ̂i + ρ̂i + σ̂i+1)

decomposes as O ⊕ ê for some idempotent of F ′, and hence restricts to the
identity on F (i, i + 1).

We now define a functor j : Fil
r

d(`, R) → Fil
r+3d

d (`, F ) by j((A,B), θ) =
((A′, B′), θ′), where A′, B′, and θ′ are defined by the following equations.

A′i = (F (i, i + 1), ρ̂i)
B′

i = (F (i, i− 1)⊕ F (i)⊕ F (i, i + 1), σ̂i)

For θ′, note that
α`,r+3d(A′, B′)

∼=
⊕

i

(F (i, i + 1)⊕ F (i, i + 1)⊕ F (i, i + 1), ν−i ⊕ ρ̂i ⊕ ν+
i )⊕

⊕

i

F (i) ,

and we have an isomorphism li in iĈYi(Br+3dU(`))(R), from (F (i, i + 1), Id)
to (F (i, i + 1) ⊕ F (i, i + 1) ⊕ F (i, i + 1), ν−i ⊕ ρ̂i ⊕ ν+

i ) given by li(x) =
(ν−i (x), ρ̂i(x), ν+

i (x)), for x ∈ F (i, i + 1). Let ωi F (i, i + 1) ⊕ F (i, i + 1) ⊕
F (i, i + 1) → F (i, i + 1) be given by ωi(x1, x2, x3) = x1 + x2 + x3; then the
inverse to li is given by the composite ωi ◦ (ν−i ⊕ ρ̂i ⊕ ν+

i ). θ′ is now the
composite

⊕

i

(F (i, i + 1)⊕ F (i, i + 1)⊕ F (i, i + 1), ν−i ⊕ ρ̂i ⊕ ν+
i )⊕

⊕

i

F (i)

↓ (
⊕

i ωi) ⊕ Id
⊕

i F (i, i + 1)⊕⊕
i F (i)

y
F

where the second arrow is the degree zero isomorphism arising from the
construction of the direct sum decomposition (I). One now checks that j
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is a functor. Let i : Fil
r

d(`, R) → Fil
r+3d

d (`, F ) be the inclusion functor. We
will define an isomorphism of functors from i to j. θ−1 induces isomorphisms
Ai → A′i and Bi → B′

i, whose sum gives an isomorphism

α`,r+3d(A,B) → α`,r+3d(A′, B′)

compatible with θ and θ−1. This gives the isomorphism from i to j. It
remains to construct a natural transformation from the constant functor
with value ξ to j. To define this natural transformation, we let ((A,B), θ)
be an object of Fil

r

d(`, F ) and let ((A′, B′), θ′) be j((A, B), θ). Let U be the
object of iĈY (Br+3dU(`))(R) defined by Ui = (F (i, i + 1), ν−i ) and similarly
let V be defined by Vi = (F (i, i + 1), ν+

i ). We must define ϕ : E → U ⊕
A′ ⊕B and Ψ : U ⊕E′ ⊕ V → B′, where U and V are viewed as objects of
iĈZ(Br+3dU(`))(R) via the two distinct inclusions

Y (Br+3dU(`))

f`

→
→
g`

Z(Br+3dU(`)) .

ϕ is given by setting ϕi equal to the isomorphism

(F (i, i + 1), Id)

↓ li

(F (i, i + 1), ν−i )⊕ (F (i, i + 1), ρ̂i)⊕ (F (i, i + 1), ν+
i )

||
(F (i, i + 1), ν−i )⊕A′i ⊕ (F (i, i + 1), ν+

i )

ψ is given by setting ψi equal to the isomorphism

(F (i− 1, i), ν+
i−1)⊕ (F (i), Id)⊕ (F (i, i + 1), ν+

i )

↓ ||
(F (i− 1, i)⊕ F (i)⊕ F (i, i + 1), ν+

i−1 ⊕ Id⊕ ν−i )

||
(F (i− 1, i)⊕ F (i)⊕ F (i, i + 1), σ̂i)

coming to the decomposition of σ̂i. These isomorphisms yield natural trans-
formations, and this concludes the proof. Q.E.D.

As always, we suppose U = {Ui}i∈Z is a locally finite covering parametrized
by Z. Suppose further that each covering BdU is locally finite. For each
d, let τ̂d:N → SymMon be the functor analogous to τ̂ associated to the
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covering BdU . We have symmetric monoidal functors αd : N ooτ̂d → iĈX(R)
and functors λd : N o τ̂d → N ooτ̂d, making the commutative diagrams

N o τ̂d
λd−→ N ooτ̂d

↘αdy
y iĈX(R)

↗αe

N o τ̂e
λe−→ N ooτ̂e

when d ≤ e. For any element ξ ∈ π0(iĈX(R)), let (N o τ̂d)ξ and (N o oτ̂d)ξ

denote the full subcategories of objects x so that αd ◦ λd(x) (respectively
αd(x)) belongs to ξ. Let π0 = π0(iĈX(R)). Then we have disjoint union
decompositions

N o τ̂d
∼= ∐

ξ∈π0
(N o τ̂d)ξ

ld ↓ ↓ ∐
λd | (N o τ̂d)ξ

N ooτ̂d
∼= ∐

ξ∈π0
(N ooτ̂d)ξ

where the disjoint union of categories has the the obvious meaning. Since a
disjoint union of maps

∐
fα :

∐
Xα →

∐
Yα is an equivalence if and only if

each fα is IV.14, shows that λd | (Noτ̂d)ξ is a weak equivalence for each ξ. Let
iC0

X(R) ⊆ iĈ(R) be the full subcategory on objects isomorphic to objects
of iCX(R); the inclusion iCX(R) ↪→ iC0

X(R) is an equivalence of categories.
Let πf ⊆ π0 be the submonoid image (π0(iCX(R)) → π0(iĈX(R))).

Proposition IV.17 Suppose the locally finite covering U satisfies Hypoth-
esis (B). Then the restriction of the functor lim

−→
d

αd ◦λd to
∐

ξ∈πf
lim
−→
d

(N o τ̂d)ξ

induces an equivalence on nerves

N.


 ∐

ξ∈πf

lim
−→
d

(N o τ̂d)ξ


 → N.iC0

X(R) .

Consequently, the functor
∐

ξ∈πf

lim
−→
d

(N ooτ̂d)ξ → iC0
X(R)

is a weak equivalence.

Proof: Immediate consequence of I.15 and IV.16. Q.E.D.

Let πh ⊆ π0(lim−→
d

N ooτ̂d) be the inverse image π0(lim−→
d

αd)−1(πf ). Then πh

is easily seen to be a cofinal submonoid of π0(lim−→
d

N ooτ̂d). The following is

now an immediate consequence of I.6 (c).
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Proposition IV.18 Suppose the locally finite covering U satisfies Hypoth-
esis (B), and that each BdU is locally finite. Then the map of spectra
Spt (lim

−→
d

αd) induces isomorphisms on πi for i > 0. It follows from IV.11,

IV.12, and IV.13 that the map lim
−→
`,d

Â(BdU(`)) induces isomorphisms on πi

for i > 0.

Theorem IV.19 Let U be as in IV.18. Then the map of spectra

lim
−→
`,d

A(Bd(U(`))) : lim
−→
`,d

|K(N.BdU(`); R)| → K
˜

(X;R)

is an equivalence.

Proof: This follows directly from the fact that the coverings U × Ek =
{Ui×Ek}i∈Z satisfy the hypothesis of IV.18 if U does, using IV.18. Q.E.D.

V. Bounded K–theory of Homogeneous Spaces

Let G be a connected Lie group, and K a maximal compact subgroup. G/K
is a left G–space and can, by choosing an appropriate inner product on the
tangent space Te(G/K) be given a left invariant Riemannian metric. We
want to show that for the metric space G/K, the assembly map

bh
˜

`f (G/K, K
˜

(R)) → K
˜

(G/K;R)

introduced in §III is an equivalence. Our first result shows essentially that
whether or not this map is an equivalence is independent of the choice of
left invariant Riemannian metric.

Proposition V.1 Let G be any group, and let X be a transitive G–space.
Let d and d′ be continuous metrics on X, taking only finite values (i.e.,
they are metrics in the standard sense, not permitted to take the value
+∞), and suppose that G acts by isometries with respect to both metrics.
Suppose finally that all closed balls in both metrics are compact. Then the
identity maps Id : (X, d) → (X, d′) and Id : (X, d′) → (X, d) are eventually
continuous and, of course, proper. It follows that if (Z, dZ) is any other
metric space (in the generalized sense, i.e., with d perhaps taking the value
+∞), then the identity maps (X × Z, d × dZ) → (X × Z, d′ × dZ) and
(X ×Z, d′ × dZ) → (X ×Z, d× dZ) are eventually continuous and proper.

Proof: Consider X, d, d′. Fix any point x0 ∈ X. Then for any r, there
exists a number R(r) so that Br(x0) ⊆ B′

R(r)(x0) and B′
r(x0) ⊆ BR(r)(x0),

where Br and B′
r denote the closed balls of radius r with respect to the
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metrics d and d′ respectively. This follows since, e.g., the continuous func-
tion x 7→ d′(x, x0) must be bounded above on the compact set Br(x0). By
the transitivity and isometric nature of the G–action, we have d(x1, x2) ≤
r → d′(x, x2) ≤ R(r) and d′(x1, x2) ≤ r → d(x, x2) ≤ R(r). The result now
follows. Q.E.D.

Corollary V.2 Let G be a connected Lie group and K a maximal compact
subgroup. Let d1 and d2 be two left invariant Riemannian metrics on G/K.
Then, if D is any discrete set, the assembly map

bh
˜

`f ((D ×G/K, d1);K˜
(R)) → K

˜
((D ×G/K; d1), R)

is an equivalence if and only if

bh
˜

`f ((D ×G/K, d2);K˜
(R)) → K

˜
((D ×G/K; d2), R)

is. (Recall that this map is really a homotopy natural transformation.)

Proof: V.1 shows that the identity map (D×G/K, d1) → (D×G/K, d2) is
proper and eventually continuous. Such maps induce maps of spectra both
on bh

˜
`f (−;K

˜
(R)) and on K

˜
(−, R), compatible with the assembly map. The

result is now immediate. Q.E.D.

We begin the study of G/K by considering the case of a simply connected
solvable Lie group; in this case, there are no non–trivial compact subgroups,
so K = {e} and G/K is the Lie group G itself, equipped with a left invariant
Riemannian metric.

Proposition V.3 Let G be a simply connected solvable Lie group of di-
mension n. Then G is isomorphic to a semidirect product T ×̃G0, where
G0 ⊆ G is a normal simply connected solvable Lie group of dimension n−1,
and T is isomorphic to R and is equipped with an action on G0.

Proof: The Lie algebra g of G being solvable, there is an ideal g0 ⊆ g of di-
mension n−1. Let G0 the subgroup of G belonging to g0. [9, Proposition 21,
p. 352] shows that G0 is a simply connected subgroup of G, and it is solvable
since the ideal g0 is a solvable Lie algebra. Since g0 is an ideal and G is
simply connected, [9, Proposition 14, p. 316] shows that G0 is normal and
that G/G0 is simply connected. Since G/G0 has dimension 1, G/G0 ∼= R.
Choose any element x of g, x 6∈ g0, and let T be the one parameter subgroup
of G corresponding to x. Then it follows from [9, Proposition 20, p. 352]
that the multiplication map T ×G0 → G is a homeomorphism, and that T
therefore surjects on G/G0. Consequently, G ∼= T ×̃G0. Q.E.D.

Let T ⊆ G be the subgroup of V.3. Then g has a vector space splitting
as g = t⊕ g0, where t is the Lie algebra of T . We choose a positive definite
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symmetric bilinear form β on g, so that the decomposition above is orthog-
onal and so that β(x, x) = 1, where x is a fixed choice of tangent vector in t;
a choice of x gives an isomorphism R→ t, in which the Riemannian metric
β | t × t is identified with the standard metric on R. Left translation by
elements of G gives an orthogonal decomposition of Tg(G) for every g ∈ G,
Tg(G) = Th

g (G) ⊕ T v
g (G), and an inner product on Tg(G) for which this

decomposition is orthogonal. T v(G) is just the vertical subbundle of T (G)
associated to the projection G → T .

Proposition V.4 With G given the Riemannian metric associated to β,
and T given the metric associated to β | t×t, the homomorphism G

π−→ T is
a distance non–increasing map, when G and T are viewed as metric spaces.

Proof: Let y ∈ Tg(G), y = yh + yv. Then the length of the projection of
y into Tπ(g)(T ) is equal to the length of yh, and because of the orthogonal
nature of the decomposition T v ⊕ Th, the length of y is equal to the sum
of the lengths of yh and yv. This shows that the Jacobian of π is length
non–increasing, which gives the result. Q.E.D.

Let s : T → G denote the inclusion. From the choice of metric on T ,
we see that s is also length non–increasing, so by V.5 s is an isometry onto
its image. Identify t with R via the choice of x ∈ t. We can then consider
the subspace π−1([a, b]) ⊆ G, for a < b, and let z ∈ [a, b]. We define a
deformation ρt(a, b, z) : π−1([a, b]) → π−1(z) by the formula ρt(a, b, z)(g) =
g(t(z − π(g))).

Proposition V.5

(a) Let d denote the distance function in G, and suppose 0 ≤ t ≤ 1. Then
for all g ∈ π−1([a, b]), d(g, ρt(a, b, z)(g)) ≤ b− a.

(b) For all a, b, and z as above, ρ1(a, b, z) is a proper map and ρt(a, b, z)
is a proper homotopy from the identity map on π−1([a, b]) to the
composite

π−1([a, b])
ρ1(a,b,z)−→ π−1(z) ↪→ π−1([a, b]) .

Consequently, the inclusion π−1(z) → π−1([a, b]) is a proper homotopy
equivalence.

(c) Br π−1([a, b]) = π−1([a− r, b + r]).

Proof: (a) We have

d(g, ρt(a, b, z)(g)) = d(g, gs(t(z − π(g))) = d(e, s(t(z − π(g)))) .
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But since s is an isometry onto its image,

d(e, s(t(z − π(g)))) = |t(z − π(g))| = |t| |z − π(g)| ≤ |t| (b− a) ,

which is the result. Q.E.D.

(b) Any compact set C in π−1(z) is contained in a closed ball of radius
r with center g ∈ G. (a) now shows that

{(t, g) | ρt(a, b, z)(g) ∈ C} ⊆ [0, 1]×Br+2(b−a)(g) ,

which is a compact set. Consequently, ρt(a, b, z) is a proper homotopy and
ρ1(a, b, z) is a proper map. Q.E.D.

(c) Br π−1([a, b]) ⊆ π−1([a− r, b + r]) since π is distance non–increasing.
Suppose g ∈ π−1([a − r, b + r]), so that there is a path ϕ in T of length
less than or equal to r with ϕ(0) = π(g) and ϕ(1) ∈ [a, b]. Let ϕ̂ be
the unique path in G with π ◦ ϕ̂ = ϕ so that the tangent vector to ϕ̂ at
ϕ(t) lies in Th

ϕ(t)(G). From the definition of the Riemannian metric on G,
length (ϕ̂) = length (ϕ) ≤ r, and ϕ̂(1) ∈ π−1([a, b]). Q.E.D.

Corollary V.6 Let a, b, c, and G be as above, and let Z be any metric
space.

(a) h
˜

`f (Z × π−1(z); A
˜

) → h
˜

`f (Z × π−1([a, b]);A
˜

) is a weak equivalence of

spectra.

(b) The inclusion Z × π−1(z) → Z × π−1([a, b]) induces equivalences on

K
˜

(−; R), K̂
˜

(−;R), and K
˜

(−; R).

Proof: (a) follows from V.5 (b) and II.14, since a product of proper homo-
topy equivalences is a proper homotopy equivalence. (b) is a direct conse-
quence of V.5 (a) and III.7. Q.E.D.

We can now prove the main result of this section for simply connected
solvable Lie groups.

Theorem V.7 Let G be a simply connected solvable Lie group, equipped
with a left invariant Riemannian metric. Then if D is any countable discrete
metric space, the assembly map

bh
˜

`f (G×D;K
˜

(R)) → K
˜

(G×D;R)

is an equivalence of spectra.

Proof: The proof proceeds by induction on dim (G). For the case dim (G) =
0, G = {e}, this follows from III.15. Now suppose the inductive hypothesis
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is known for groups of dimension less than dim (G). Let T and G0 be as in
V.3, and let µ be the Riemannian metric associated to the inner product
β introduced in the discussion preceding V.4. By V.2, it suffices to prove
the result for the metric µ. We identify T with R as before, and define
a covering U = {Ui}i∈Z by Ui = π−1([i − 1/3, i + 4/3]). Let U(`) be the
coverings constructed from U as in § IV, and let

Br U(`) = {Br Ui}i∈Z = (Br U)(`).

Also, let U ′
i ⊆ T , U ′

i = [i − 1/3, i + 4/3], and let U ′,U ′(`), Br U ′, etc., be
defined analogously in the space T . We note that each covering Br U(`) is
excisive. This follows from the fact that U0 = {U0

i }i∈Z is an open covering
of X, and that hence for each r and `, Br U0(`) is an open covering of X.
Each covering Br U(`) is clearly locally finite in the sense of III.17. We also
verify that U satisfies Hypothesis (B) of § IV. But from V.5 (c), it is clear
that it suffices to check this for the covering U ′. For a given number r, one
checks that if ` > log2(d + 1/3) + 1, then

BrU
′
i(`) ∩BrU

′
j(`) = ∅ if |i− j| > 1.

Let U ×D, U(`) ×D, and BrU(`) ×D denote the coverings {Ui ×D}i∈Z,
{Ui(`) × D}i∈Z, and {BrUi × D}i∈Z of G × D. These coverings are also
excisive, locally finite, and the covering U ×D also satisfies Hypothesis (B);
this follows from the corresponding results for U . Note that

(BrU(`))×D = Br(U(`)×D) = Br((U ×D)(`)) .

We now consider the commutative diagram
(∗)
colim
−→
`,r

|bh
˜

`f (N.Br(U ×D(`)), R)| −→ colim
−→
`,r

|K
˜

(N.Br(U ×D(`)),K
˜

(R))|
y ↓ colim

−→
`,r

A(Br(U ×D)(`))

bh
˜

`f (G×D,K
˜

(R)) −→ K
˜

(G×D, R)

where the horizontal maps are the assembly maps bh
˜

`f → K
˜

. Since the

covering U ×D satisfies Hypothesis (B), it follows from IV.19 that the right
hand vertical arrow is an equivalence. We claim that the left hand vertical
arrow is also an equivalence. To see this, consider the diagram
(∗∗)
colim
−→
`,r

bh
˜

`f (N.Br(U ×D(`)),K
˜

(R)) −→ colim
−→
`,r

h
˜

`f (N.Br(U ×D(`)),K
˜

(R))

y
y

bh
˜

`f (G×D;K
˜

(R)) −→ h
˜

`f (G×D;K
˜

(R))
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The horizontal arrows are equivalences by an application of II.21; one notes
that NkBr(U ×D(`)) is a countable disjoint union of metric spaces of the
form π−1([a, b]), for some a and b. To prove that the right hand vertical
arrow is an equivalence, it will suffice to prove that

h
˜

`f (N.Br(U ×D(`)),K
˜

(R)) → h
˜

`f (G×D,K
˜

(R))

is an equivalence for a cofinal set of values of ` and r. Since U ×D satisfies
Hypothesis (B) we are free to verify this only for pairs (`, r) for which
BrUi(`)∩BrUj(`) = ∅ when |i−j| > 1. Consider such a choice of (`, r). Let
Heven =

∐
i BrU2i(`) and Hodd =

∐
i BrU2i+1(`). In view of the hypotheses

on (`, r), the evident maps Heven → G and Hodd → G are inclusions.
Moreover, one easily checks that if we let H = {Heven,Hodd} denote the
two element covering, and let H×D = {Heven×D,Hodd×D}, then there is
an isomorphism of simplicial metric spaces N.Br(U(`)×D) → N.(H×D),
making the diagram

N.Br(U(`)×D) −→ N.(U ×D)
↘ ↙

G×D

commute, where G × D denotes the constant simplicial metric space with
value G × D. It follows from the fact that Br(U(`) × D) is excisive that
H×D is excisive. Consequently, we have the commutative diagram

h
˜

`f (N.Br(U(`)×D);K
˜

(R)) ≈−→ h
˜

`f (N.(U ×D),K
˜

(R))

↘ ↓ oo
h
˜

`f (G×D,K
˜

(R))

where the right hand vertical arrow is an equivalence by II.15, and the
horizontal arrow is induced by an isomorphism of simplicial metric spaces.
Therefore, the right hand vertical arrow in (∗∗) is an equivalence, hence
so is the left hand vertical arrow. Thus, to show that the lower horizontal
arrow in (∗) is an equivalence, it will suffice to show that the upper one is.
The upper horizontal arrow is induced by a map of simplicial spectra, and
it will suffice to show that it is an equivalence in each level. For this, we
must show that for a cofinal set of ` and r, and each k, that the map

bh
˜

`f (NkBr(U(`)×D),K
˜

) → K
˜

(NkBr(U(`)×D), R)

is an equivalence of spectra. We take our cofinal set of (`, r)’s to be the
set of all ` and r so that BrU(`) satisfies Hypothesis (A). In this case, by
V.5 (c), Nk(Br(U(`) ×D)) is a finite disjoint union of metric spaces, each
of which is of the form

(a)
∐

i

π−1([2`i− 1/3− r, 2`(i + 1) + 1/3 + r])×D
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or

(b)
∐

i

π−1([2`i− 1/3− r, 2`i + 1/3 + r])×D ,

so it suffices to show that bh
˜

`f (−,K
˜

(r)) → K
˜

(−;R) induces an isomorphism

on metric spaces of this form. Consider (a); we have the inclusion

(i)
∐

i

π−1(2`(i+1/2))×D ↪→
∐

i

π−1([2`i−1/3−r, 2`(i+1)+1/3+r])×D .

But,
∐

i π−1(2`(i+1/2)) is isometric to Z×π−1(2`−1), where Z is viewed as a
discrete metric space, and similarly

∐
i π−1([2`i−1/3−r, 2`(i+1)+1/3+r])

is isometric to Z × π−1([−1/3 − r, 2` + 1/3 + r]), and under these identifi-
cations, the inclusion (i) corresponds to the inclusion IdZ × (π−1(2`−1) ↪→
π−1([−1/3 − r, 2` + 1/3 + r])). Let A0 =

∐
i π−1(2`(i + 1/2)) × D and

A =
∐

i π−1([2`i − 1/3 − r, 2`i + 1/3 + r]); we have the inclusion A0 ↪→ A.
We have the commutative diagrams

(I)

bh
˜

`f (A0,K
˜

(R)) −→ K
˜

(A0;R)
y

y
bh
˜

`f (A,K
˜

(R)) −→ K
˜

(A,R)

and

(II)

bh
˜

`f (A0,K
˜

(R)) −→ h
˜

`f (A0,K
˜

(R))
y

y
bh
˜

`f (A,K
˜

(R)) −→ h
˜

`f (A,K
˜

(R))

In each case, the right hand vertical arrow is an equivalence; this follows
by V.6 (b) in case (I) and V.6 (a) in case (II), using the identifications
A0 ∼= Z × π−1(2`−1) and A ∼= Z × π−1([−1/3 − r, 2` + 1/3 + r]). But the
horizontal arrows in (II) are also equivalences, since both A and A0 satisfy
the hypotheses of II.21. Therefore, the left hand vertical arrow in (I) is
also an equivalence. We are required to show that the lower horizontal
arrow is an equivalence; it now suffices to show that the upper one is. But,
A0 ∼= π−1(2`−1) × Z × D, and Z × D is countable. Moreover, π−1(2`−1)
is isometric to G0, with some G0 invariant metric (not necessarily coming
from a Riemannian metric on G0) in which all closed balls are compact. V.1
together with the inductive result shows that bh

˜
`f (A0,K

˜
(R)) → K

˜
(A0, R)

is an equivalence. A similar argument works in case (b). This gives the
result. Q.E.D.
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We now carry out the analysis of G/K, where G is connected and K is a
maximal compact subgroup. Let n and r denote the maximal nilpotent ideal
and radical of g, respectively. See [9, Ch. 1, § 4.4 and § 5.2] for definitions
of these ideals. Let N and R be the corresponding subgroups of G. By
[9, Ch. III, § 9.7, Proposition 23] R and N are closed normal subgroups of
G. Recall also from [9, Ch. I, § 5.3] the definition of the nilpotent radical
s ⊆ n ⊆ g. We say a Lie algebra g is reductive if its nilpotent radical
consists only of 0. This implies that g ∼= l ⊕ a, where l is semisimple and
a is Abelian. It follows from [9, Ch. I, § 6.4, Corollary to Proposition 6]
that g/s is a reductive Lie algebra, and hence by part (c) of the Corollary
to Proposition 5 of Ch. 1, § 6.4 in [9], that g/n or any quotient of g/n is
a reductive if its Lie algebra is; G/N is therefore a reductive group. The
following Proposition is Exercise 22 for Ch. III, § 9 of [9].

Proposition V.9 Let G be a connected reductive Lie group. Then G ∼=
(S × V )/D, where V is a finite dimensional real vector space, S is a simply
connected semisimple Lie group, and D is a discrete subgroup of the center
of G.

Definition V.10 Let G be a reductive Lie group, written as G ∼= (S×V )/D,
with S simply connected and semisimple and V a vector group. We say G
is T–compact if V/V ∩D is compact. We say G is Z–compact if the entire
center of G is compact. For G any connected Lie group, we say G is quasi–
linear if there is a simply solvable normal subgroup G0 ⊆ G so that G/G0

is a Z–compact reductive group.

Now consider a connected Lie group G, with N the subgroup corre-
sponding to the the maximal nilpotent ideal in g, the Lie algebra of G. The
following follows from the discussion in § I of [38].

Proposition V.11 N contains a unique maximal compact subgroup NK ,
which is invariant under all automorphisms of N . Consequently, KN is
normal in G, and if K ⊆ G is any maximal compact subgroup, then KN ⊆
K, and we have a diffeomorphism of left G–spaces

G/K → G/KN

/
N/KN ,

where the action on G/K → G/KN

/
N/KN is obtained by pulling the

G/KN action back along the projection G → G/KN . Consequently, in
order to prove that

bh
˜

`f (G/K ×D;K
˜

(R)) → K
˜

(G/K ×D, R)

is an equivalence for all G, all invariant Riemannian metrics on G/K, and
all countable discrete metric spaces D, it suffices to restrict attention to
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groups G for which the subgroup corresponding to the maximal nilpotent
ideal of the Lie algebra of G is simply connected. We refer to such groups
as nilsimple.

Now consider a nilsimple group G, with N ⊆ G the subgroup correspond-
ing to the maximal nilpotent ideal of the Lie algebra of G. G/N is reductive,
and we write G ∼= S × V/D as in V.9. V/V ∩D is a connected Abelian Lie
group, hence it can be written as T ×E, where T is a compact torus, and E
is a vector group. If π : G → G/N is the projection, then π−1(E) is a sim-
ply connected solvable normal subgroup of G, and the quotient G/π−1(E)
is a T compact reductive group. Thus, for any nilsimple group G, there is
a normal solvable simply connected subgroup G0 ⊆ G so that G/G0 is T
compact reductive. We can any such subgroup G0 r–characteristic.

Proposition V.12 Let G be any nilsimple group. Then there is a local
isomorphism G → Ḡ of connected Lie groups, where Ḡ is nilsimple and
contains an r–characteristic subgroup Ḡ0 so that Ḡ/Ḡ0 is Z compact. If G0

is the Lie subgroup of G having the same Lie algebra as Ḡ0, then G0 is r–
characteristic for G, and G/G0 → Ḡ/Ḡ0 is a local isomorphism of reductive
Lie groups.

Proof: We consider the universal covering group G̃. Let G0 ⊆ G be any
r–characteristic subgroup; because of the simple connectivity of G0, G̃ can
be viewed as the pullback of the diagram

Gy
G̃/G0 −→ G/G0

where G̃/G0 denotes the universal cover of G/G0. Consequently we have
an exact sequence

{e} → G0 → G̃ → G̃/G0

of connected Lie groups, where G̃/G0 is simply connected reductive, hence
isomorphic to S × V , with S semisimple and V a vector group. The local
isomorphisms from G̃ to connected Lie groups are parametrized by discrete
subgroups of the center of G̃; similarly, discrete subgroups of the center
of G̃/G0 parametrize the local isomorphism from G̃/G0 to connected Lie
groups. It follows from the definitions that if D is the discrete subgroup
of the center of G̃/G0 defining the reductive group G/G0, then there is
a corresponding discrete subgroup D′ of the center of G̃ so that D′ maps
isomorphically to D under the projection G̃ → G̃/G0. To prove the result,
it will clearly suffice to produce a discrete cocompact subgroup Dm of the
center of G̃/G0 containing D and a discrete subgroup D′

m of the center of G̃
containing D′ which maps isomorphically to Dm under the projection G̃ →
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G̃/G0. To find D′
m, we consider the composite G̃ → G̃/G0 ∼= S × V → S,

with S simply connected and semisimple. From [9, Ch. III, § 6.6, Corollary 1
and Ch. I, § 6, Theorem 5, and Corollary 1] it follows that G̃ is the semidirect
product of S with π−1(V ), where π : G̃ → G̃/G0 is the projection, along
some homomorphism ϕ : S → Aut (π−1(V )). But from [9, Ch. III, § 10.2,
Theorem I (iv)] it follows that if we let h denote the Lie algebra of π−1(V ),
then the homomorphism Aut (π−1(V )) → Aut (h) is injective, since π−1(V )
is connected. The composite

S
ϕ−→ Aut (π−1(V )) → Aut (h)

can be viewed as a linear representation of S, and from [9, Ch. III, § 9,
Exercise 7(a)] it follows that the composite (and hence ϕ) factors through a
quotient S/L, where L is a subgroup of finite index in the center of S. Note
that for any ` ∈ L, the element (`, e) ⊆ S×̃ϕπ−1(V ) ∼= G̃ is an element of
the center of G̃, and in fact ` → (`, e) defines a homomorphism σ from L
into the center of G̃ so that the composite

L
σ−→ center (G̃) → center (S)

is the inclusion of L into center (S). Now consider the subgroup p(D) ⊆
center (S), where p : S×V → S is the projection. L∩p(D) is a subgroup L,
and we can choose a free Abelian subgroup L0 ⊆ L so that L0∩p(D) = {0}
and so that L0 +(p(D)∩L) has finite index in L. We now let Dm = D+L0

and D′
m = D′+σ(L0). These subgroups clearly have the required properties.

Q.E.D.

Consider now any nilsimple connected Lie group G, and let G0 be r–
characteristic. The Lie algebra of the T compact reductive group G/G0

decomposes as s⊕a, where G/G0 ∼= S×V , and s and a are the Lie algebras
of S and V , respectively. S is semisimple and V is Abelian, as usual.
Consider any Cartan decomposition s = t⊕p for the semisimple Lie algebra
s; see [25, Ch. III, § 7] for a discussion of this.

Proposition V.13 Suppose G/G0 is Z–compact. Then the Lie subgroup of
G/G0 corresponding to the subalgebra t⊕a is a maximal compact subgroup
of G/G0.

Proof: With G/G0 expressed as S × V/D, we see that the image of V is
a central compact subgroup of G/G0, with Lie algebra a, and the quotient
group G/G0

/
image (V ) ∼= S/p(D), where p : S × V → S is the projection.

It follows that the maximal compact subgroups of G/G0 are in bijective
correspondence with the maximal compact subgroups of S/p(D) via pro-
jection. The center of S/p(D) is discrete and compact, hence finite, so the
subgroup of S/p(D) corresponding to t is maximal compact in S/p(D) by
[25, Ch. VI, Theorem 1.1 (i)]. The result now follows. Q.E.D.
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Corollary V.14 Let G be nilsimple, with G0 an r–characteristic subgroup..
Let G/G0 ∼= S×V/D, with s and a the Lie algebras of S and V , respectively,
and let t ⊕ p be a Cartan decomposition of s. Let K ⊆ G/G0 be the Lie
subgroup corresponding to t. Then there is a section s : K → G, so that the
composite K

s−→ G → G/G0 is the inclusion G/G0. Moreover, AdG(s(K))
is compact.

Proof: Consider first the case where G/G0 is Z compact. Then K is com-
pact, and G0 is simply connected solvable, so by [9, Ch. III, § 9, Exercise 19]
we have a section s : K → G as required. The compactness of AdG(s(K))
follows from the compactness of K. For a general nilsimple group, we apply
V.12. Thus, consider the diagram

G −→ Ĝy
y

G/G0 −→ Ĝ/G0

where the horizontal maps are local isomorphisms and Ĝ/G0 is Z compact.
Let K ⊆ G/G0 be the subgroup corresponding to t, and K̂ the subgroup
of Ĝ/G0 corresponding to t. We have a section s : K̂ → Ĝ by the above
discussion, and consider the composite l : K → K̂

s−→ Ĝ. Both vertical
maps induce isomorphisms on π1, and consequently it follows that

image (π1(l)) ⊆ image (π1(G) → π1(Ĝ)) .

By covering space theory, we see that l lifts to a unique group homomor-
phism K → G, which is the required map. AdG(K) is isomorphic to
AdĜ(K̂), since G → Ĝ is a local isomorphism, so the proof is complete.
Q.E.D.

We now recall the Iwasawa decomposition for a semisimple Lie group.
See [25, Ch. VI, § 3,4,5] for details. Let G be a semisimple Lie group with
Lie algebra g, and let t⊕p be a Cartan decomposition for g. Then there are
subalgebras h and n of g, with h Abelian, n nilpotent, and h+n a subalgebra
with n an ideal in h + n, so that g is the vector space direct sum t⊕ h⊕ n.

Theorem V.15 (See [25, Ch. VI, Theorems 1.1 and 5.1]) Let K be the
subgroup of G corresponding to t, and let B be the subgroup corresponding
to h+n. Then K contains the center of G, the multiplication map B×K →
G is a diffeomorphism and is left B equivariant and right K equivariant.
Moreover, B is solvable and simply connected.

We now establish a similar result for T compact reductive groups. Let G
be T compact reductive, with G ∼= S × V/D, with D discrete subgroup of
the center of S × V . g, the Lie algebra of G, breaks up as s⊕ a, with s the
Lie algebra of S and a the Lie algebra of V . Let s = t⊕h⊕n be an Iwasawa
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decomposition for s, and let K denote the subgroup corresponding to t + a
and let B the subgroup corresponding to h⊕ n.

Proposition V.16 The multiplication map B×K → G is a diffeomorphism.
It is left B equivariant and right K equivariant, and B is solvable and simply
connected.

Proof: Consider the projection G
p−→ S/p(D). Then the images of B

and K give an Iwasawa decomposition for S/p(D). This means that for
any element g ∈ G, there are elements b ∈ B and k ∈ K so that bgk ∈
V/V ∩ D. But V/V ∩ D ⊆ K, so by modifying k, we can assure that
bgk = e. This shows that the multiplication map is surjective. Suppose
b · k = e, with b ∈ B, k ∈ K. From V.15, we conclude that k ∈ V/V ∩D, so
b ∈ B ∩ (V/V ∩D). But, let B̃ be the subgroup of S × V corresponding to
h+n. Then B̃ ⊆ S; consequently, if B∩ (V/V ∩D) is non trivial, then p(B̃)
has a non trivial intersection with p(D). But p(D) is contained in the center
of S, and the center of S is contained in K, again by V.15, so p(B̃)∩p(D) =
{e}. Consequently, the multiplication map is injective. The equivariance
statements are clear. Let B0 ⊆ S/p(D) be the subgroup corresponding to
h + n. Then p : G → S/p(D) restricts to a local isomorphism from B to
B0, and B0 is solvable and simply connected by V.15. Consequently, B is
solvable and simply connected. Q.E.D.

Now, let G be a nilsimple connected Lie group, and let G0 be r–character-
istic. Let B and K be the subgroups of G/G0 as in V.16. Let B̄ denote the
inverse image of B under the projection; B̄ is solvable and simply connected.
Let K̄ denote the image of a section K

s−→ G, whose existence is guaranteed
by V.14

Proposition V.17 The multiplication map B̄×K̄ → G is a diffeomorphism,
and is left B̄ equivariant and right K̄ equivariant. AdG(K̄) is compact.

Proof: The first statement follows directly from V.16. The equivariance is
clear, and the compactness of AdG(K̄) follows from V.14. Q.E.D.

Proposition V.18 K̄ contains a maximal compact subgroup K0 of G,
which is normal in K̄.

Proof: According to [25, Ch. VI, Theorem 2.2] the subgroup K ′ of S/p(D)
corresponding to the subalgebra t contains a maximal compact subgroup
K ′′ of S/p(D), and further decomposes as a product of K ′′ with a vector
group. Consequently, K ′′ is normal in K ′. Because of the compactness of
V/V ∩D, and the fact that it is central, it is clear that K, which corresponds
to t + a, contains a unique maximal compact subgroup projecting to K ′′.
Let K0 be the image of this compact subgroup under the section s; it is a
compact normal subgroup of K̄ = s(K). We claim that K0 is a maximal
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compact subgroup of G. But, its projection in G/G0 is maximal compact.
Consequently, if K̃ is any compact subgroup of G containing K0, its image
in G/G0 must be equal to the image of K0, and hence K̃ would contain non
trivial elements of G0. Therefore, K̃ ∩ G0 would be a nontrivial compact
subgroup of G0, of which there are one, since G0 is solvable and simply
connected. Thus, K0 is maximal compact and normal in K̄. Q.E.D.

Consider the coset space G/K0. Since K0 / K̄, K̄/K0 acts on the right
and G acts on the left, giving a G × K̄/K0 action on G/K0. We wish to
produce a G× K̄/K0 invariant Riemannian metric on G/K0.

Proposition V.19 Suppose L0 /L1 ⊆ G and Lie subgroups of a connected
Lie group, and suppose AdG(L1) is compact. G/L0 is then a G× (L1/L0)
space, and there is a G× (L1/L0) invariant Riemannian metric on G/L0.

Proof: The tangent space to G/L0 at e is g/l, where l is the Lie algebra
corresponding to L0, any G invariant metric on G/L0 is determined by its
value at e. L1 acts by the adjoint representation on g/l, since L0 is normal
in L1, and any AdG(L1) invariant positive definite inner product on g/l
yields a G × L1/L0 invariant Riemannian metric on G/L0. Such an inner
product exists by the compactness of AdG(L1). Q.E.D.

Proposition V.20 Let G be any nilsimple connected Lie group, and let B̄
and K̄ be as in V.17 and let K0 be as in V.18, so K0 is maximal compact
in G. Then the coset space G/K0 is a G × K̄/K0 space, and admits a
G× K̄/K0 invariant Riemannian metric.

Proof: Direct application of V.17 and V.19. Q.E.D.

Theorem V.21 Let G be any connected Lie group, K ⊆ G a maximal com-
pact subgroup, and let G/K be equipped with a left invariant Riemannian
metric. Then the assembly map

h
˜

`f (G/K ×D,K
˜

(R)) → K
˜

(G/K ×D; R)

is an equivalence for any countable discrete metric space D.

Proof: By V.1, it suffices to prove the result for any particular metric.
We choose to prove it for a G× K̄/K0 invariant metric, whose existence is
guaranteed by V.20. But using the notation of V.17, it follows from V.17
that G/K0 is a simply transitive B×K̄/K0 space, and B×K̄/K0 is a simply
connected solvable Lie group. The result now follows from V.7. Q.E.D.

VI. Equivariant bounded K–theory

Definition VI.1 By an action of a group Γ on a metric space (X, d), we
mean a left action of Γ on the set X so that d(γx, γy) = d(x, y), i.e., an
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action by isometries. A weak action of Γ on (X, d) is a left Γ action on X
so that for every r ∈ [0, +∞) and γ ∈ Γ, there is a number r̂ ∈ [0,+∞)
so that d(x1, x2) ≤ r implies d(γx1, γx2) ≤ r̂. We will require this weaker
notion in the sequel to this paper.

Given a weak action of Γ on a metric space X, one sees easily that
Γ acts by symmetric monoidal isomorphisms on the categories iCX(R) and
iĈX(R). The action is given on objects of iCX(R) by γ ·(G, B,ϕ) = (F,B, γ◦
ϕ) and on morphisms by γ(L) = L, and similarly on iĈX(R). For us, it
will be necessary to have a version of bounded K–theory which behaves
equivariantly like h

˜
`f (−;K

˜
(R)). We have seen that if Γ acts freely on a

locally finite simplicial complex X, then

h
˜

`f (X; K
˜

(R))Γ ∼= h
˜

`f (Γ\X; K
˜

(R)).

On the other hand, it is easy to see that if γ acts freely on the metric space
X, then the only fixed object of iCX(R) is the zero object. Consequently,
we must produce an equivariant bounded K–theory, similar in spirit to
equivariant complex K–theory [3] and equivariant stable homotopy theory
[40]. Thomason [44] has given a general construction which applies in this
situation.

Let C be any category with left Γ action. Let EΓ denote the category
with one object for every element of Γ, and a unique morphism between any
two objects of EΓ. Γ acts on the left (and on the right) of EΓ via the action
given by left (or right) multiplication on the objects; the description on ob-
jects forces the behavior on morphisms. We let C̃ denote the category whose
objects are functors from EΓ to C, and whose morphisms are the natural
transformations between functors. Γ acts on C̃ by γ(F )(x) = γF (γ−1x)
and γ(F )(f) = γF (γ−1f), where x and f denote an object and a mor-
phism in EΓ, respectively and, if N : F → G is a natural transformation,
γN : γF → γG is the natural transformation given on an object x ∈ EΓ
by γ(N(γ−1x)) : γF (γ−1x) → γG(γ−1x). The fixed point subcategory C̃

Γ

now is the category whose objects are the equivariant functors from EΓ to
C and whose morphisms are the equivariant natural transformations. There
is an equivariant functor C → C̃ given by assigning to an object x ∈ C the
constant functor with value x. There is a non equivariant functor C̃ → C
given by restriction to the subcategory consisting only of the identity ele-
ment of Γ. The composite C → C̃ → C is equal to the identity functor.
There is a natural isomorphism from the identity functor on C̃ to the com-
posite C̃ → C → C̃, arising from the evident isomorphism of functors from
EΓ → ∗ → EΓ to the identity on EΓ, where ∗ → EΓ is the inclusion on
the subcategory on the identity element of Γ. Therefore, the equivariant
functor C → C̃ is (non equivariantly) an equivalence of categories.
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Remark: C̃
Γ

should be thought of as a category theoretic first approxima-
tion to the homotopy fixed point set (N.C)hΓ, since the nerve of EΓ is a
contractible free left Γ space.

We remark that if C is symmetric monoidal and Γ acts on C by symmet-
ric monoidal isomorphisms, then C̃ becomes a symmetric monoidal category
by pointwise sum of functors, and the Γ action on C̃ is symmetric monoidal.
Spt (C̃) is thus a spectrum with Γ action, and the functor C̃ → C induces
an equivalence Spt (C̃) → Spt (C). This equivalence is of course not equiv-
ariant.

We might now proceed to define equivariant bounded K–theory in terms

of iC̃X(R) and i
˜̂CX(R), when Γ acts on X. The theory one obtains this way

will be useful in the sequel to this paper, but for our immediate purposes,
we will need a slightly more refined theory. Suppose a group Γ acts on a
metric space X. Then let iC̃0

X(X)(R) ⊆ iC̃X(R) be the full subcategory
on functors F : EΓ → iCX(R) for which F (f) and F (f)−1 has filtration 0
for all morphisms f in EΓ. iC̃0

X(R) is clearly closed under the Γ action on
iC̃X(R). We also have the forgetful functor iC̃0

X(R) → iC̃X(R) → iCX(R),
which restricts a functor F to the object C ∈ EΓ, and this forgetful functor is
an equivalence of categories since the “diagonal functor” iCX(R) → iC̃X(R)

defined above has image in iC̃0
X(R). We similarly define i

˜̂C0
X(R), and define

equivariant K–theory spectra K
˜

Γ(X; R) and K̂
˜

Γ
(X; R) by applying Spt to

iC̃0
X(R) and ˜̂C0

X(R), respectively. As in the non equivariant case, we produce
a non connective theory K

˜
Γ(X; R) by stabilizing over X × Ek, where Ek

denotes Euclidean k space with trivial Γ action. We summarize the evident
properties of these functors as follows. LetMΓ denote the category of metric
spaces with Γ action and equivariant, eventually continuous, proper maps,
and let SΓ denote the category of spectra with Γ action and equivariant
maps of spectra. We have forgetful functors MΓ →M and SΓ → S, which
just forgets the Γ action, and we refer to these both as ρ.

Proposition VI.2 K
˜

Γ(−; R), K̂
˜

(−; R), and K
˜

Γ(−; R) all define functors

MΓ → SΓ, and we have natural equivalences of functors ρ ◦K
˜

Γ(−; R) →

K
˜

(−; R) ◦ρ, ρ ◦ K̂
˜

Γ
(−;R) → K̂

˜
(−; R) ◦ρ, and ρ◦K

˜
Γ(−; R) → K

˜
(−; R)◦ρ.

The next step will be to evaluate the fixed spectra K
˜

Γ(−;R)Γ, K̂
˜

Γ
(−;R)Γ,

and K
˜

Γ(−; R)Γ. In order to do this, we must introduce a generalization of

our bounded K–theory construction.

Definition VI.3 Let X be any set, and r a ring. By a filtration sheaf on X
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with coefficients in R, we mean a family F = {Fd}, d ∈ [0,∞), which assign
to every pair of elements of X an additive subgroup of R, subject to the
compatibility constraint Fd(x, y) · Fe(y, z) ⊆ Fd+e(x, z), where · denotes
the multiplicative product in R and so that 1 ∈ F0(x, x) ∀x ∈ X. We
define a symmetric monoidal category CX(R;F) as follows. The objects
are triples (F, B, ϕ), where F is a free left R–module, B is a basis for F ,
and ϕ : B → X is a labeling function so that for any fixed β ∈ B and
d ∈ [0,+∞), the set {β̃ ∈ B | Fd(ϕβ, ϕβ̃) 6= {0}} is finite. If (F, B, ϕ) and
(F ′, B′, ϕ′) are objects of CX(R;F), we say an R–module homomorphism

F
f−→ F ′ is bounded by d if for all β ∈ B

f(β) =
∑

β′∈B′
rβ′ββ′ ,

with rβ′β ∈ Fd(β, β′). The compatibility conditions show that if f is
bounded by d and g is bounded by e, then g◦f is bounded by d+e. One de-
fines ĈX(R;F) to be the idempotent completion of CX(R;F), and defines the

(symmetric monoidal) categories of isomorphisms iCX(R,F) and iĈX(R,F).
K
˜

(X;R;F) and K̂
˜

(X, R,F) are now defined to be Spt (iCX(R;F)) and Spt

(iĈX(R;F)); note that in this generality X is not required to be a metric
space However, if X is a metric space and F is a filtration sheaf on the set
X with coefficients in R, we say F is subordinate to the metric on X if
Fd(x, y) = {0} whenever d(x, y) > d.

Examples:

(i) Let X be a metric space, and R a ring. Then we define a filtration
sheaf FX on X by (FX)d(x, y) = {0} if d(x, y) > d, and (FX)d(x, y) = R if
d(x, y) ≤ d.

One verifies that the categories iCX(R,FX) and iCX(R) are isomorphic
symmetric monoidal categories (here iCX(R) denotes the usual metric space
category constructed in § III), and hence we have equivalences of spectra
K
˜

(X;R) ∼= K
˜

(X; R;FX).

(ii) Let A be a filtered ring, i.e., a ring A equipped with a family of additive
subgroups Ai so that Ai · Aj ⊆ Ai+j . Then for any set X, we define a
filtration sheaf FA on X by FA

d (x, y) = Ad.

(iii) Let X be a metric space, and let A be a filtered ring. Then we define
a filtration sheaf on X FA

X , which is a mixed version of (i) and (ii), by
(FA

X)d(x, y) = Ad if d(x, y) ≤ d.

Now suppose Γ acts freely and properly discontinuously on a metric space
X, i.e., that for fixed x and y, the infimum over γ ∈ Γ of d(γx, y) is at-
tained. We then define the orbit space metric ∆ on Γ\X by ∆([x], [y]) =
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infγ∈Γ d(γx, y). Let s : Γ\X → X be any section, i.e., any choice of orbit
representatives. s is not for the moment required to have any metric prop-
erties. Let A be a ring. We define a filtration sheaf G(X, s,A) on Γ\X with
coefficients in the group ring A[Γ] by letting G(X, s, A)d(z1, z2) be the A
linear span of the set {γ ∈ Γ | d(sz1, γsz2) ≤ d}. One checks that this gives
a filtration sheaf on Γ\X, subordinate to the orbit space metric.

Proposition VI.4 There are equivalences of spectra

K
˜

Γ(X,A)Γ ∼= K
˜

(Γ\X,R[Γ],G(X, s, A))

and

K̂
˜

Γ
(X, A)Γ ∼= K̂

˜
(Γ\X, R[Γ],G(X, s, A)) .

The equivalences are natural with respect to maps in MΓ respecting choices
of section.

Proof: We only carry out the case of K
˜

Γ; K̂
˜

Γ
is similar. Consider the

category iĈ0
X(R)Γ. In [44], it is observed that if C is a category with

trivial Γ action, then Ĉ is just the category of representations of Γ in C.
iCX(R) has objects of the form (F, B, ϕ), and the Γ action is given by
γ · (F,B, ϕ) = (F,B, γ ◦ ϕ). Thus, the action is trivial on the “modules”
and “bases”, affecting only the labeling functions ϕ, in the sense that the
forgetful functor from the category iCX(R) to the category of based free
R–modules is equivariant when we equip the latter category with the triv-
ial Γ action. Consequently, from [44], we see that there is a functor from
iC̃X(R)Γ to the category of all representations of Γ in the category of based
free left R–modules. Under the assignment, if Φ : EΓ → iCX(R) is an
equivariant functor, then Φ(x) = Φ(y) for all x, y ∈ EΓ, and Φ(g → h)
is left multiplication by h−1g. In our situation, the functor Φ is given by
Φ(g) = (G, B, g ◦ ϕ), where (F, B) is a fixed based module. Let the action
of Γ be given by ρ, so each ρ(g) is an automorphism of (F,B). The require-
ment that Φ ∈ iC̃0

X(R) amounts to the condition that ρ(h−1g), viewed as
an isomorphism in iCX(R) from (F, B, g ◦ ϕ) to (F,B, h ◦ ϕ) has filtration
zero. This means that if β ∈ B, and ρ(h−1g)(β) =

∑n
i=1 riβi, ri 6= 0, then

h ◦ ϕ(βi) = g ◦ ϕ(β), or ϕ(βi) = h−1gϕ(β).

Thus, the requirement can be reduced to the condition that the represen-
tation ρ of Γ admits a basis B with labeling function ϕ : B → X so that
for any γ ∈ Γ, and β ∈ B, ρ(γ)(β) ∈ span (ϕ−1(γϕ(β))). If we now decom-
pose B as

∐
x∈X ϕ−1(x), and write the corresponding sum splitting of F as

F ∼= ⊕x∈XFx, Fx = span (ϕ−1(x)), then for each γ, ρ(γ) restricts to an iso-
morphism Fx → Fγx for all x. The section s now gives F the structure of a
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free left RΓ–module on the generators ϕ−1(s(Γ\X)) ⊆ B. Define a labeling
function ψ : ϕ−1(s(Γ\X)) → Γ\X to be the projection; (F,ϕ−1(s(Γ\X)), ψ)
is now readily seen to be an object of iCΓ\X(RΓ;G(X, s, R)). A morphism

Φ
f−→ Φ′ in iC̃0

X(R)Γ gives rise to an isomorphism F
f̄−→ F ′ of the corre-

sponding free left R–modules, which is compatible with the operators ρ(γ)
and ρ′(γ). This is just an RΓ–linear isomorphism from F to F ′, viewed as
free left RΓ–modules, satisfying certain boundedness hypotheses, which we
now analyze. Suppose Φ(e) = (F,B, ϕ) and Φ′(e) = (F ′, B′, ϕ′). Let β ∈
ϕ−1(s(Γ\X)) and β′ ∈ (ϕ′)−1(s(Γ\X)), and let f̄β′

β be the β′β matrix ele-
ment of the matrix of f̄ relative to the bases ϕ−1(s(Γ\X)), (ϕ′)−1(s(Γ\X)).
Write

f̄β′

β =
n∑

i=1

riγi, ri 6= 0, γi ∈ Γ.

Then in order for the original morphism f to have had filtration d, it is
necessary that

d(ϕ(β), γiϕ(β′)) ≤ d for all i,

or that x is in the span of the set {γβ′ | d(β, γβ′) ≤ d}, or that fβ′

β ∈
g(X, s, R)d. One checks that the original f is bounded by d if and only if
fβ′

β ∈ G(X, s, R)d for all β, β′. We conclude that we have an equivalence of
categories iC̃0

X(R)Γ ∼= iCΓ\X(R,G(X, s,R)), which gives the result. Q.E.D.

In certain cases, it is possible to identify the K–theory spectra associated
with this filtration sheaf with the K–theory spectra defined in § III, with
labels in Γ\X.

Definition VI.5 Let F ,G be two filtration sheaves on a set X with co-
efficients in a ring R. We say F and G are comparable if for each d,
0 ≤ d < +∞, there is an e, 0 ≤ e < +∞, so that Fd(x, y) ⊆ Ge(x, y)
and so that Gd(x, y) ⊆ Fe(x, y), independent of x and y. Comparable fil-
tration sheaves clearly have weakly equivalent K–theory spectra.

Definition VI.6 Let R
˜

= {Ri}i≥0 denote a filtered ring, and let R =

∪∞i=0Ri. If F is a filtration sheaf on a metric space X with coefficients in R,

then we say F is R
˜

constant if it is comparable to the filtration sheaf F
R

X̃

introduced in Example (iii) following Definition VI.3.

Let Γ be any finitely generated group, and let Ω = {g1, . . . , gn} be any
finite generating set. Define ` : Γ → {0, 1, . . . , n, . . .} by

`(γ) = min{n | ∃i1, . . . , in, with gi1 · · · gin = γ} .

Defining A[Γ]i = A[{γ | `(γ) ≤ i}], the group ring A[Γ] becomes a filtered
ring, which we denote by A[Γ]

˜
. If Ω′ is any other finite generating set,
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and A[Γ]′i denote the associated filtration, then these two filtrations are
equivalent in the sense that for all d, 0 ≤ d < +∞, there exists e, 0 ≤ e <
+∞, so that A[Γ]d ⊆ A[Γ]′e and A[Γ]′d ⊆ A[Γ]e. It follows easily that the

filtration sheaves F
A[Γ]

X̃ and F
A[Γ]

˜
′

X are comparable, and hence that a given
filtration sheaf on X with coefficients in A[Γ] is A[Γ]

˜
constant if and only if

it is A[Γ]
˜

′ constant.

Proposition VI.7 Let Γ be a finitely generated group acting freely and
properly discontinuously on a metric space X. Let Ω be any finite generating
set, and let Γd ⊆ Γ, Γd = {γ | `(γ) ≤ d}. A[Γ]

˜
will denote the associated

filtered ring. Suppose further that there is a section s : Γ\X → X so that
the following three conditions hold.

(A) s is a morphism in M, i.e., s is eventually continuous.

(B) For all d ∈ [0, +∞) there exists N such that for every z ∈ Γ\X and
γ ∈ Γd, d(sz, γsz) ≤ N .

(C) For all N ∈ [0,+∞) there exists a d so that for all z ∈ Γ\X, BN (sz)∩
Γ · sz ⊆ Γd · sz.

Then G(X, s,A) is A[Γ]
˜

constant.

Remark: These conditions clearly hold when X is a Riemannian manifold
with free, properly discontinuous Γ action and Γ\X compact. s is obtained
by choosing a bounded fundamental domain for the action. More generally,
the condition holds for the Γ manifold X × Z, where X is as above, the Γ
action on X×Z is given by γ(x, z) = (γx, z) and X×Z is given the product
metric with respect to some Riemannian metric on Z.

Proof: Let r =
∑n

i=1 αiγi ∈ A[Γ], where the αi’s are all non zero. Then

r ∈ (F
A[Γ]

Γ̃\X )k(z1, z2) if there are numbers d, e ≥ 0 so that γi ∈ Γd for all
i, ∆(z1, z2) ≤ e, and d + e ≤ k. Here ∆ denotes the orbit space metric.
Choose N so large that d(sz, γsz) ≤ N for all γ ∈ Γk, which is possible by
Hypothesis (B), and so that d(sz1, sz2) ≤ N for all z1, z2 ∈ Γ\X such that

∆(z1, z2) ≤ k, which is possible by Hypothesis (A). If r ∈ (F
A[Γ]

Γ̃\X )k(z1, z2),
we find that

d(sz1, γisz2) ≤ d(sz1, sz2) + d(sz2, γisz2) ≤ 2N ,
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so

(F
A[Γ]

Γ̃\X )k(z1, z2) ⊆ g(X, s, A)2N (z1, z2) ,

independent of z1 and z2. Suppose now that r ∈ G(X, s, A)N (z1, z2). This
is equivalent to the statement that d(sz1, γisz2) ≤ N for all i. Conse-
quently, ∆(z1, z2) ≤ N ; choose N ′ so large that d(sz1, sz2) ≤ N ′ whenever
∆(z1, z2) ≤ N , possible by Hypothesis (A). Now,

d(sz2, γisz2) ≤ d(sz2, sz1) + d(sz1, γisz2) ≤ N ′ + N .

By Hypothesis (C), it is possible to choose d so large that d(sz, γsz) ≤
N ′ + N implies γ ∈ Γd. It is now clear that

G(X, s, A)N (z1, z2) ⊆ (F
A[Γ]

Γ̃\X )d+N (z1, z2) .

This is the result. Q.E.D.

We note that for any metric space X and filtration sheaf F on X with co-
efficients in R, subordinate to the metric on X, there are functors iCX(R,F) →
iCX(R) and iĈX(R,F) → iĈX(R) induced by the inclusion of the filtration
sheaf F into the filtration sheaf G defined by Gd(x, y) = {0} if d(x, y) > d
and Gd(x, y) = R) if d(x, y) ≤ d. This gives maps of spectra K

˜
(X, R,F) →

K
˜

(X, R) and K̂
˜

(X, R,F) → K̂
˜

(X,R). In particular, VI.4 shows that

we have natural maps K
˜

Γ(X, A)Γ → K
˜

(Γ\X, A[Γ]) and K̂
˜

Γ
(X,A)Γ →

K̂
˜

(Γ\X, A[Γ]), when Γ acts freely and properly discontinuously on X.

Corollary VI.8 Let X be a connected Riemannian manifold with a smooth,
isometric, free, properly discontinuous Γ action, and suppose Γ\X is com-
pact. Let A be a ring. Then we have equivalences

K
˜

Γ(X,A)Γ ∼= K
˜

(Γ\X, A[Γ]) ∼= K
˜

(A[Γ])

and

K̂
˜

Γ
(X, A)Γ ∼= K̂

˜
(Γ\X,A[Γ]) ∼= K̂

˜
(A[Γ]) .

Proof: One checks first that the functor

iCΓ\X(A[Γ],F
A[Γ]

Γ̃\X ) → iCΓ\X(A[Γ])
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is an equivalence of categories, since the compactness of Γ\X implies that
the objects in iCΓ\X(A[Γ]) are actually finitely generated. This shows that
the map

K
˜

(Γ\X, A[Γ],F
A[Γ]

Γ̃\X ) → K
˜

(Γ\X,A[Γ])

is an equivalence. Secondly, K
˜

(Γ\X, A[Γ]) is equivalent to K
˜

(A[Γ]) by III.5.

The result for K̂
˜

follows similarly. Q.E.D.

We wish to prove the analogous result for K
˜

; this requires a prelimi-

nary lemma. Let A
˜

denote a filtered ring, and let X denote any metric

space. Let F
A

Γ̃\X be the filtration sheaf defined in Example (iii) following
Definition VI.3.

Lemma VI.9 Let X = Ek, the k–dimensional Euclidean space, and sup-
pose A = ∪∞i=0Ai. Then the maps

K
˜

(X,A,F
A

X̃) → K
˜

(X, A)

and

K̂
˜

(X,A,F
A

X̃) → K̂
˜

(X, A)

are equivalences of spectra.

Proof: One verifies that the maps induce isomorphisms on πi. For i ≥ k,
this follows from [33, Theorem 3.4] applied to the filtered additive category
A of finitely generated based A–modules, where a morphism has filtration
d if the elements in the matrix representing it all lie in Ad. For i < k, this
follows from [33, § 5] and the observation that, in the notation of [33], the
category C+(A) is flasque and A filtered. Q.E.D.

Corollary VI.10 Let Γ and X be as in VI.8. Then there is weak equivalence
of spectra

K
˜

Γ(X,A)Γ ∼= K
˜

(Γ\X;A[Γ]) ∼= K
˜

(A[Γ]) .

Proof: It follows from VI.7 that

K̂
˜

Γ
(X × Ek, A)Γ ∼= K̂

˜
((Γ\X)× Ek, A[Γ],F

A[Γ]

Γ̃\X ) ,
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and VI.9 shows that this latter spectrum is equivalent to K̂
˜

((Γ\X)×Ek, A[Γ]).

The result now follows from the definition of K
˜

. Q.E.D.

We will now examine the case of discrete metric spaces.

Proposition VI.11 Let Y be any metric space. Then the two functors
X → K

˜
Γ(X × Y, A)Γ and X → K

˜
((Γ\X) × Y,A) are naturally equivalent

as functors from the category of free Γ sets and proper, equivariant maps
(viewed as discrete metric spaces) to S. Here, X × Y is given the Γ action

γ(x, y) = (γx, y). Similarly for K̂
˜

Γ
.

Proof: For any object (F,B, ϕ) ∈ iCX×Y (R) and x ∈ X, let Fx denote
the span of the basis elements β so that ϕ(β) = (x, y) for some y ∈ Yj .
Of course F is the direct sum ⊕x∈XFx. An object of iĈ0

X×Y (R)Γ is an

equivariant functor EΓ Ψ−→ iCX×Y (R) with values in the filtration zero
isomorphisms in iCX×Y (R). Write Ψ(e) = (F (Ψ), B(Ψ), ϕ(Ψ)). Since Ψ is
a functor from EΓ, we see that it determines, for each γ ∈ Γ, isomorphisms
Ψγ : F (Ψ)e → F (Ψ)γ−1 . Let iC̃′X×Y (R)Γ denote the full subcategory of
iC̃0

X×Y (R)Γ on the functors Ψ so that Ψγ is an identity map for each γ. It
is easy to see that the inclusion

i : iC̃′X×Y (R)Γ ↪→ iC̃0
X×Y (R)Γ

is an equivalence of categories, i.e., that there is a functor

iC̃0
X×Y (R)Γ

j−→ iC̃′X×Y (R)Γ

so that j ◦ i is the identity and so that the functor i ◦ j is isomorphic
to the identity functor on iC̃0

X×Y (R). Thus X → Spt (iC̃′X×Y (R)Γ) is a
functor from the category of free Γ sets and proper equivariant maps to S,
and there is a natural equivalence from [X → Spt (iC̃′X×Y (R)Γ)] to [X →
Spt (iC̃0

X×Y (R)Γ)]. Let X̄ ⊆ X denote any set of orbit representatives for
X; we have the projection π : X̄ → Γ\X, which is a bijection. We now
define a functor

ρ : iC̃′X×Y (R)Γ → iCX̄×Y (R)

as follows. For Ψ ∈ iC̃′X×Y (R)Γ, we let B(Ψ) = ϕ(Ψ)−1(X̄ × Y ), and let
F (Ψ) be the R linear span on B(Ψ). Now define ρ on objects by

ρ(Ψ) = (F (Ψ), B(Ψ), ϕ(Ψ) |B(Ψ)) .

Let p : iCX̄×Y (R) → iC(Γ\X)×Y (R) the functor induced by π × Id; we now
have p ◦ ρ : iC̃′X×Y (R)Γ → iC(Γ\X)×Y (R). It follows from the definition of
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iC̃′X×Y (R)Γ that the functor p◦ρ is independent of the choice of X̄, and that
it is a natural transformation of functors from the category of free Γ sets
and proper equivariant maps. It also follows directly from IV.4 that p ◦ ρ
is an equivalence of categories. The point is that in this case, the filtration
sheaf G(X × Y, s, R) is given by





G(X × Y, s, R)d((z1, y1), (z2, y2)) = {0} if z1 6= z2,

G(X × Y, s, R)d((z, y1), (z, y2)) = {0} if d(y1, y2) > d,

G(X × Y, s, R)d((z, y1), (z, y2)) = R ⊆ R[Γ] if d(y1, y2) ≤ d.

Note that
⋃

d G(X × Y, s,R)d 6= R[Γ]. We now have a diagram

Spt (iC̃0
X×Y (R)Γ) ← Spt (iC̃′X×Y (R)Γ) → Spt (iCΓ\X×Y (R))

of equivalences of functors in X, and hence a homotopy natural equivalence

K
˜

Γ(X × Y,R)Γ → K
˜

((Γ\X)× Y, R) .

Q.E.D.

Corollary VI.12 The functors K
˜

Γ(−, R)Γ and K
˜

(Γ\(−), R) are naturally

equivalent as functors on the category of free Γ sets and proper equivariant
maps.

Proof: Apply VI.11 with Y = Ek and pass to limits over k. Q.E.D.

Proposition VI.13 For any free Γ set X, the natural maps K
˜

Γ(X, R)Γ →

K
˜

Γ(X, R)hΓ, K̂
˜

Γ
(X,R)Γ → K̂

˜
Γ
(X, R)hΓ, and K

˜
Γ(X,R)Γ → K

˜
Γ(X, R)hΓ

are equivalences of spectra.

Proof: Consider the case of K
˜

Γ; the other cases are identical. It follows

from II.4 and III.14 that as a Γ–module

πi(K˜
Γ(X; R)) ∼= ̂πi(K˜

(R))[X] ∼= HomZ(Z[X], πi(K˜
(R))) ,

where the action on the last group is obtained by using the multiplication
action on Z[X]. Thus, πi(K˜

Γ(X;R)) is “coinduced”, and it follows that

Hp(Γ; πi(K˜
Γ(X; R))) = 0 if p > 0.

Consequently, the spectral sequence of I.3 converging to π∗(K˜
Γ(X;R)hΓ)

collapses at the E2 level, with Ep,q
2 = 0 if p 6= 0, and

Ep,q
2 = πq(K˜

Γ(X; R))Γ ∼= ̂πq(K˜
(R))[Γ\X] .
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On the other hand, it also follows from II.4, III.14, and VI.11 that

πq(K˜
Γ(X;R))Γ ∼= ̂πq(K˜

(R))[Γ\X] ,

and one readily verifies that the natural map K
˜

Γ(X,R)Γ → K
˜

Γ(X, R)hΓ

induces the identification of homotopy groups. In the case of K
˜

Γ, one must

of course use III.15 and VI.12 in place of III.14 and VI.11. Q.E.D.

We now wish to construct an equivariant version of the assembly map
constructed in III.20. For a given group Γ, we will compare the functors

bh
˜

`f (−;K
˜

(R)) : MΓ
f → SΓ

and
K
˜

Γ(−; R)Γ : MΓ
f → SΓ ,

where MΓ
f will denote the category of metric spaces with free, properly dis-

continuous, isometric Γ action. We first consider a general construction. Let
E and C be categories, with C symmetric monoidal, and suppose a group
Γ acts on E and C, with Γ acting on C by symmetric monoidal automor-
phisms. Let Fun (E, C) denote the category whose objects are the functors
from E to C, and whose morphisms are the natural transformations. Under
pointwise sum Fun (E,C) becomes a symmetric monoidal category, and Γ
acts on Fun (E,C) by symmetric monoidal automorphisms via (γ ◦F )(x) =
γ F (γ−1x). If X. is any space and Z

˜
is a spectrum, let F (X., Z

˜
) denote the

function spectrum which can be defined by F (X., Z
˜

)k = F (X., Zk) if Z
˜

is

a Kan Ω spectrum.

Proposition VI.14 There is an equivariant natural (with respect to equiv-
ariant symmetric monoidal functors C → C ′ between symmetric monoidal
categories with symmetric monoidal Γ actions) transformation

Spt (Fun (E,C)) → F (N.E; Spt (C)) ,

which is an equivalence if E contains an initial or terminal object. Note we
do not claim the transformation is an equivariant equivalence.

Proof: Suppose first that E and C are arbitrary categories. There is
an evaluation functor E × Fun (E,C) → C, and an induced map N.E ×
N.Fun (E,C), and hence an adjoint map

N.Fun(E,C) → F (N.E, N.C) .
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The spectrum level statement follows from the observation that the adjoint
is symmetric monoidal and the equivariance from the fact that the evalua-
tion is equivariant. The equivalence follows since e ∈ E is either initial or
terminal, the restriction functor

Fun (E,C) → Fun (e, C) ∼= C

is an equivalence of categories, and N.E is weakly contractible. Q.E.D.

We let K0, K1, and K2 : MΓ → SΓ denote the bounded K–theory spec-
tra K

˜
(−, R), K̂

˜
(−, R), and K

˜
(−, R), respectively, equipped with “naive” Γ

action given by γ(F,B, ϕ) = (F,B, γ ◦ ϕ). Define functors

Θ(i)
i : MΓ → SΓ

by
Θ(i)

i (X) = F (N.EΓ,Ki(X)) ,

where Γ acts by conjugation of maps. Let KΓ
0 , KΓ

1 , and KΓ
2 denote the

functors K
˜

Γ( ; R), K̂
˜

Γ
( ; R), and K

˜
Γ(−, R), respectively. A map f : X

˜
→ Y

˜
of spectra with Γ action is said to be a weak Γ equivalence if each map
fΓ : X

˜
Γ → Y

˜
Γ is a weak equivalence; a natural transformation N : F → G

of functors from a category C to SΓ is a weak Γ equivalence if N(x) is
a weak Γ equivalence for all x ∈ C. Let FjG : C → SΓ be functors; a
homotopy natural transformation is a sequence of functors Hi : C → SΓ,
i = 0, . . . , n with H0 = F , Hn = G, and natural transformations ρi :
Hi → Hi−1, i = 1, . . . , n, and qi : Hi → Hi+1, i = 0, . . . , n − 1, so that
each ρi is weak Γ equivalence. If each qi is also a weak Γ equivalence, we
say the homotopy natural homotopy transformation is a homotopy weak
equivalence from F to G. A homotopy natural transformation is just a
morphism in the homotopy category of SΓ valued diagrams on C obtained
by inverting the weak Γ equivalences of functors. Note that we have taken
the strongest notion of weak Γ equivalence; weak Γ equivalences become
equivariant homotopy equivalences after geometric realization. We note
that we can compose homotopy natural transformations just as in the non
equivariant case introduced in § I.

Let
`0(X) = Spt (Fun (EΓ, iCX(R))) ,

`1(X) = Spt (Fun (EΓ, iĈX(R))) ,

`2(X) = lim
−→
k

Ωk`1(X × Ek) ,

where Ek denotes Euclidean space with trivial Γ action. Note that `i is
a functor from MΓ to SΓ. The natural transformation of VI.14 provides
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an equivariant map `i(X) → F (N.EΓ,Ki(X)); moreover, K0 and K1 are
defined as the spectra associated to full, Γ invariant, symmetric monoidal
subcategories of iCX(R) and iĈX(R), respectively, so we obtain equivariant
maps KΓ

i → `i. These maps are all natural in X, so we obtain natural
transformations η

(i)
i : KΓ

i → Θ(i)
i of functors from Mγ to SΓ. Let Γ–setsp ⊆

MΓ denote the full subcategory of discrete metric spaces with free Γ action.

Proposition VI.15 η
(i)
i restricted to Γ–setsp is a weak Γ equivalence.

Proof: The natural maps (KΓ
i (X))Γ → (KΓ

i (X))hΓ are weak equivalences
by VI.13. For any Γ spectrum X

˜
whatsoever, F (N.EΓ; X

˜
)Γ→F (N.EΓ; X

˜
)hΓ

can be identified with the map F (N.EΓ; X
˜

)Γ → F (N.EΓ × N.EΓ; X
˜

)Γ

induced by the projection map N.EΓ × N.EΓ → N.EΓ on the first fac-
tor, which is an equivariant homotopy equivalence, so F (N.EΓ, X

˜
)Γ →

F (N.EΓ, X
˜

)hΓ is an equivalence. Consequently, Θ(i)
i (X)Γ → Θ(i)

i (X)hΓ is

a weak equivalence. By I.2 (c), to check that η
(i)
i is a weak Γ equivalence,

it now suffices to check that η
(i)
i is an equivalence non equivariantly. This

now follows directly from VI.2. Q.E.D.

Recall that in the proofs of III.14 and III.15, we constructed functors
µi : Γ–setsp → S, i = 0, 1, 2, and natural equivalences h

˜
`f (−, µi(point)) →

µi(−) and Ki(−) → µi(−). For instance, µ0 was defined on an object X

to be holim
←−

U∈F(X)op

K
˜

(U ; R). Note µ0(point) ∼= K
˜

(R), µ1(point) ∼= K̂
˜

(R), and

µ2(point) ∼= K
˜

(R). The functoriality of the construction shows that all

the functors can be viewed as functors from Γ–setsp to SΓ, and that the
natural transformations are functorial. Define Θ(ii)

i and Θ(iii)
i , i = 0, 1, 2,

from Γ–setsp to SΓ by

Θ(ii)
i (X) = F (N.EΓ, µi(X))

and
Θ(iii)

i (X) = F (N.EΓ, h
˜

`f (X, µi(point))).

We define η
(ii)
i and η

(iii)
i to be the natural transformations

F (N.EΓ,Ki(−)) → F (N.EΓ, µi(−))

and
F (N.EΓ, h

˜
`f (−, µi(point))) → F (N.EΓ, µi(−))
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induced from the transformations above via the functor F (N.EΓ,−). Thus
η
(ii)
i : Θ(i)

i → Θ(ii)
i and η

(iii)
i : Θ(iii)

i → Θ(ii)
i .

Proposition VI.16 η
(ii)
i and η

(iii)
i are both weak Γ equivalences.

Proof: The maps (Θ(i)
i )Γ → (Θ(i)

i )hΓ, (Θ(ii)
i )Γ → (Θ(iii)

i )hΓ, and (Θ(iii)
i )Γ →

(Θ(iii)
i )hΓ are all weak equivalences; this was shown for Θ(i)

i in VI.15, and
the other two cases follow by the identical argument. Consequently, it suf-
fices to show that η

(ii)
i and η

(iii)
i are equivalences, non equivariantly. But

this follows from the proofs of III.14 and III.15. Q.E.D.

Finally, let Θ(iv)
i be the functor h

˜
`f (−, µi(point)). Then the map N.EΓ →

point induces a natural transformation

h
˜

`f (−, µi(point)) → F (N.EΓ, h
˜

`f (−, µi(point))) ,

i.e., a natural transformation Θ(iv)
i

η
(iv)
i−→ θ

(iii)
i .

Proposition VI.17. If Γ is torsion free, then η
(iv)
i is a weak Γ equivalence.

Proof: Follows from II.22 by the argument used in proving the similar
result for Θ(i)

i in VI.15. Q.E.D.

The diagram

h
˜

`f (−, µi(point))
η
(iii)
i

◦η(iv)
i−→ Θ(ii)

i

η
(ii)
i

◦η(i)
i←− KΓ

i

defines a weak Γ equivalence of functors

h
˜

`f (−, µi(point)) = h
˜

`f (−,Ki(point)) → KΓ
i

from Γ–setsp to SΓ.

Now let X be a metric space with isometric left Γ action, and let U =
{Uα}α∈A be a Γ invariant locally finite covering. Then as in § III, we obtain
a simplicial object N.U in the category MΓ. Applying the functors K

˜
Γ, we

obtain an equivariant map

AΓ(U) : |K
˜

Γ(N.U ;R)| → K
˜

Γ(X;R) .

Suppose that we have a smooth compact closed K(Γ, 1) manifold X; equip
it with a Riemannian metric and a triangulation τ . Note that because of
the compactness of X, the simplices in the triangulation have uniformly
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bounded diameter, hence the same is true when we consider the induced
Riemannian metric and triangulation τ̂ on the universal cover X̃. Let U
denote the covering of X̃ by simplices of τ̂ ; then U is Γ invariant and locally
finite. We examine the fixed point set

|K
˜

Γ(N.U ;R)|Γ = |K
˜

Γ(N.U ; R)Γ| .

For each k, the Γ metric space NkU is a disjoint union of metric spaces of
uniformly bounded diameter, by the above remark. For a metric space X,
let π0X be defined as in II.18. Because of the uniformly bounded diameter
of the components of NkU , the map NkU P−→ π0NkU is a morphism in
MΓ. By choosing an element in P−1(x) for each element in a set of orbit
representatives for the (free) Γ action on π0(NkU), we obtain a Γ equivariant
map π0(NkU) → Nk(U) in MΓ, and it follows easily from III.7, VI.4, and
VI.12 that K

˜
(P, R) is a Γ equivariant equivalence. Consequently, the map

|K
˜

Γ(N.U , R)| → |K
˜

Γ(π0N.U , R)|

is a Γ equivariant equivalence of spectra, so

|K
˜

Γ(N.U , R)|Γ → |K
˜

Γ(π0N.U , R)|Γ

is a weak equivalence of spectra. But,

|K
˜

Γ(π0N.U , R)|Γ ∼−→ |K
˜

Γ(π0N.U , R)Γ| ,

and by VI.12, we have an equivalence

|K
˜

Γ(π0N.U , R)Γ| ∼−→ |K
˜

(Γ\π0N.U , R)| .

But one readily checks that π0N.U is the simplicial set associated with the
barycentric subdivision of the triangulation τ̂ , and hence that Γ\π0N.U is
the simplicial set associated with the barycentric subdivision of τ . Conse-
quently, by III.15, we have an equivalence

|K
˜

(Γ\π0N.U , R)| ∼−→ |h
˜

`f (Γ\π0N.U ,K
˜

(R))| ,

and II.17, |h
˜

`f (Γ\π0N.U ,K
˜

(R))| is naturally equivalent to h
˜

`f (Γ\X,K
˜

(R)).

We summarize:

Proposition VI.18 There is a well defined (up to homotopy) equivalence

h
˜

`f (Γ\X,K
˜

(R)) → |K
˜

Γ(N.U , R)|Γ .
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On the other hand, it follows from VI.10 that K
˜

Γ(X, R)Γ ∼= K
˜

(R[Γ]). Thus,

the map induced on fixed point sets by AΓ(U) may be identified with a
homotopy class of maps from

h
˜

`f (Γ\X,K
˜

(R)) → K
˜

(R[Γ]) .

Since Γ\X is compact,

h
˜

`f (Γ\X,K
˜

(R)) ∼= (Γ\X)+ ∧ K˜
(R) ,

and the classifying map for the universal cover defines an equivalence Γ\X+→
BΓ+. Therefore, the induced map on fixed point sets of AΓ(U) determines
a homotopy class of maps from BΓ+ ∧ K˜

(R) to K
˜

(R[Γ]).

Proposition VI.19 The above mentioned homotopy class of maps is inde-
pendent of the manifold X, of the metric chosen, and of the triangulation
chosen. We say a map BΓ+ ∧ K˜

(R) to K
˜

(R[Γ]) is an assembly map if it

belongs to this homotopy class.

Proof: Elementary, we leave the proof to the reader. Q.E.D.

Remark: The assembly map can, of course, be defined without reference
to X; or to the metric or triangulation; see [27]. With enough work, one can
even construct an assembly map in our context (i.e., realized as a fixed point
map of a Γ equivariant map of bounded K theory spectra) with reference
only to Γ. We do not carry this out here, in the interest of brevity, but
return to this point in a later paper in this series.

Definition VI.20 We say a map f : W
˜
→ Z

˜
of spectra is split injective if

there is a map g : Z
˜
→ W

˜
so that g ◦ f is homotopic to the identity map of

W
˜

. Note that this means πi(f) is the inclusion on a direct summand.

Proposition VI.21 Suppose W
˜

and Z
˜

are spectra with Γ action, and let

f : W
˜
→ Z

˜
be an equivariant map of spectra. Suppose further that

(A) The map W
˜

Γ → W
˜

hΓ is an equivalence

(B) f is an equivalence, non equivariantly.

Then the induced map on fixed point sets, fΓ : W
˜

Γ → Z
˜

Γ, is split injective.
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Proof: Consider the following square.

(I)

W
˜

Γ fΓ

−→ Z
˜

Γ

y
y

W
˜

hΓ fhΓ

−→ Z
˜

hΓ

The left hand vertical arrow is an equivalence by Hypothesis (A). The lower
horizontal arrow is an equivalence by I.2 (c), using Hypothesis (B). There-

fore, the composite W
˜

Γ fΓ

−→ Z
˜

Γ → Z
˜

hΓ is an equivalence, and composing it

on the left with any homotopy inverse gives the result. Q.E.D.

Lemma VI.22 Let Γ be a group, X a closed compact smooth K(Γ, 1)
manifold, equipped with a Riemannian metric and a triangulation τ . Let U
be the covering of X̃ by the simplices of τ̂ , the associated triangulation of
X̃. Then the natural map

|K
˜

Γ(N.U , R)|Γ → |K
˜

Γ(N.U , R)|hΓ

is an equivalence.

Proof: In the discussion preceding VI.18 above, we saw that the projection
map

K
˜

Γ(P, R) : |K
˜

Γ(N.U , R)| → |K
˜

Γ(π0N.U , R)|

is an equivariant equivalence. On the other hand, VI.15, VI.16, and VI.17
show that |K

˜
Γ(π0N.U , R)| is equivariantly equivalent to |h

˜
`f (π0N.U ,K

˜
(R))|.

The result now follows by II.23. Now Γ satisfies the hypothesis of II.23 since
X̃ is the required finite dimensional contractible Γ complex. Q.E.D.

Lemma VI.23 Let Γ, X,U be as in VI.22. Suppose further that the natural
map

bh
˜

`f (X̃,K
˜

(R)) → K
˜

(X̃, R)

of III.20 is an equivalence. Then AΓ(U) is an equivalence, non equivari-
antly.

Proof: In view of VI.2, it suffices to show that A(U) is an equivalence.
Consider the following commutative square

| bh
˜

`f (N.U ,K
˜

(R))| −→ bh
˜

`f (X̃,K
˜

(R))
y

y
|K
˜

(N.U , R)| A(U)−→ K
˜

(X̃, R)
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The right hand vertical arrow is an equivalence by hypothesis. To study the
left hand vertical arrow, we consider the projection P : N.U → π0N.U , and
the commutative square

(II)

| bh
˜

`f (N.U ,K
˜

(R))| −→ | bh
˜

`f (π0N.U ,K
˜

(R))|
y

y
|K
˜

(N.U , R)| −→ |K
˜

(π0N.U , R)|.

The lower horizontal arrow is an equivalence by an application of III.7, using
the uniform boundedness of the simplices in the triangulation. The upper
horizontal arrow is an equivalence since

bh
˜

`f (N.U ,K
˜

(R)) → h
˜

`f (N.U ,K
˜

(R))

and
bh
˜

`f (π0N.U ,K
˜

(R)) → h
˜

`f (π0N.U ,K
˜

(R))

are both equivalences (using again the uniformly bounded diameter of the
components N.U) and since P : N.U → π0N.U is a proper homotopy
equivalence (use II.14). The right hand vertical arrow is an equivalence
by III.15 and the fact that bh

˜
`f (−,K

˜
(R)) and h

˜
`f (−,K

˜
(R)) coincide on

discrete metric spaces. Consequently the left hand vertical arrow in (II) is
an equivalence, hence so is the one in (I). Therefore, to prove that A(U) is
an equivalence, it will suffice to show that the upper horizontal arrow is an
equivalence. To see this, we first observe that X and all the metric spaces
NkU satisfy the hypotheses of II.21, so that it suffices to check that

|h
˜

`f (N.U ,K
˜

(R))| → h
˜

`f (X̃,K
˜

(R))

is an equivalence. For ε > 0, let BεU denote the covering consisting of the ε
neighborhoods of the simplices of the triangulation τ̂ . For sufficiently small
ε > 0, the map N.U → N.BεU is a proper homotopy equivalence, so it will
suffice to show that

|h
˜

`f (N.BεU ,K
˜

(R))| → h
˜

`f (X̃,K
˜

(R))

is an equivalence. From the choice of ε, for any set BεU , U ∈ U , ΓBε
∼=∐

γ∈Γ γBεU ; let Ũ denote the covering of X̃ by the sets of the form Γ ·BεU .
Note that Ũ is a finite covering. The fact that ΓBεU is a disjoint union of
the spaces γBεU allows one to show that the map

|h
˜

`f (N.BεU ,K
˜

(R))| → |h
˜

`f (N.Ũ ,K
˜

(R))|
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induced by the map of coverings Bε → γBεU is an isomorphism of spectra,
and the map

A(Ũ) : |h
˜

`f (N.Ũ ,K
˜

(R))| → h
˜

`f (X̃,K
˜

(R))

is an equivalence by iterated application of II.15. Q.E.D.

Theorem VI.24 Suppose Γ is a group, and that X is a K(Γ, 1) manifold.
If X̃ admits a Γ invariant Riemannian metric so that the transformation

bh
˜

`f (X̃,K
˜

(R)) → K
˜

(X̃, R)

of III.20 is an equivalence, then any assembly map BΓ+ ∧K˜
(R) → K

˜
(R[Γ])

is a split injection.

Proof: VI.22 and VI.23 show that

AΓ(U) : |K
˜

Γ(N.U , R)| → K
˜

Γ(X,R)

satisfies the hypotheses of VI.21, where U is the covering associated to any
triangulation of X. Q.E.D.

Theorem VI.25 let Γ be a discrete, cocompact, torsion free subgroup of a
connected Lie group G. Then any assembly map BΓ+ ∧ K˜

(R) → K
˜

(R[Γ])

is a split injection.

Proof: Let K ⊆ G be any maximal compact subgroup, and let X̃ = G/K
be equipped with a left invariant Riemannian metric. Then the metric is
also Γ invariant, and when X̃ is equipped with this metric bh

˜
`f (X̃; K

˜
(R)) →

K
˜

(X̃;R) is an equivalence by V.21. Q.E.D.
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Rigidity of the index on open
manifolds
Jürgen Eichhorn

1 Introduction

Let (Mn, g) be open complete, (S, (., .),∇) −→ M a Clifford bundle, D the
generalized Dirac operator. D depends on ∇ and g, so we write D = D∇,g.
Let ID be the corresponding index form, m a functional on ID, B an oper-
ator algebra, ζ a cyclic cohomology class, Ind D ∈ KiB, indtD = 〈ID,m〉,
indaD = 〈IndD, ζ〉 the topological and analytical index respectively. Rigid-
ity amounts to the description of the admissible variations of ∇, g such that
[ID], IndD, indtD, indaD remain unchanged. We consider spaces C of
Clifford connections. A special case is given by g of bounded geometry up
to order k > n

2 + 1 and the space C(Bk) of Clifford connections of bounded
geometry up to order k, ∇ ∈ C(Bk). The key approach is to introduce
suitable Banach or Sobolev topologies by means of uniform structures on
C(Bk), thus obtaining spaces Cr(Bk). The choice of the uniform structure
has to be adapted to the choice of i, B, m, ζ. Then we obtain many rigidity
theorems, depending on the choice of B, e.g. the following :
Theorem Assume (Mn, g) open, complete, of bounded geometry up to order
k, k ≥ r > n/2 + 1, ∇, ∇1 ∈ C(Bk), ∇1 ∈ component of ∇ ∈ Cr(Bk),
D = D∇, D1 = D∇1 , S and D graded, D : Ω0,1 −→ Ω0,0 = L2(S) Fredholm.
Then D1 is Fredholm too and

IndD+ = Ind D+
1 .

Remark For ∇, ∇1 ∈ C(Bk) arbitrary or other topologies this is in general
definitely wrong. On compact manifolds this is always trivially true. For
more general spaces of Clifford connections one has to describe what is a
continuous family of deformations D∇t . As a matter of fact, for ∇t =
t∇ + (1 − t)∇1 it is in general not. Moreover, in general index theories
on open manifolds the index is a real number. It is is by no means clear
whether the real number ind D∇t should continuously vary or jump or be
constant.

2 The general scheme of index theory

Given a Riemannian manifold (Mn, g), hermitian vector bundles E, F −→
M and an elliptic operator D : C∞0 (E) −→ C∞0 (F ), the general scheme
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of index theory consists of the following. One chooses a suitable exten-
sion of D, an operator algebra B, a functor Ki(B), constructs an ele-
ment IndD ∈ Ki(B), defines an element ID of cohomological nature,
mainly a differential form, defines pairings 〈ID,m〉, 〈Ind D, ζ〉 and sets
indtD = 〈ID,m〉, indaD = 〈Ind D, ζ〉. In most cases 〈Ind D, ζ〉 is a pair-
ing with a cyclic cohomology class. This gives a diagram

D −→ Ind D ∈ Ki(B)y
y

ID → 〈ID,m〉 = indtD
?= indaD = 〈IndD, ζ〉.

The commutative closure of the diagram by an equality indtD = indaD
means the establishing of an index theorem.

Working out this program, one has to make concrete choices of the class of
the D’s, B, i, ζ ∈ HC∗(B), and the functional m, and one has to construct
ID and IndD. We start with very general definitions from [7], [8]. Let
S −→ M be a graded Clifford bundle, η the grading, H = H+⊕H− = L2(S)
and A ∈ L(H).

Definition 1 A has bounded propagation if there is a number R > 0 such
that for any s ∈ H

supp(As) ∪ supp(A∗s) ⊆ Pen(supp(s), R),

where Pen(supp(s), R) = {x ∈ M | d(x, supp(s)) ≤ R}.

Example. If D is the generalized Dirac operator belonging to (S,∇) then
eitD has bounded propagation.

Let A = AH be the set of all operators having bounded propagation. A
is a unital *-algebra.

A positive operator A ∈ L(H) is said to be locally traceable, if for all
compactly supported continuous functions f on M , the operator fAf is of
trace class. A general operator is locally traceable if it is a finite linear
combination of positive locally traceable operators.

Lemma 2.1 The set B = BH of all locally traceable operators with bounded
propagation is a ∗-ideal in AH . 2

Definition 2 Let A be a unital super algebra, η be a grading, B a super
ideal in A. An element F ∈ A will be called a generalized Fredholm operator
if F is odd relative to the super structure, i.e., Fη+ηF = 0 and F 2−1 ∈ B.
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By well known constructions of algebraic K-theory there is an index
Ind F∈ K0(B) defined as follows. Namely, there exists an element G ∈ A
such that G2 = 1 and G− F ∈ B. Then

IndF =
[
G(

1 + η

2
)G

]
−

[
1− η

2

]
∈ K0(B).

Definition 3 Let D be an unbounded self adjoint operator on H. D is
called generalized elliptic if there is a constant c > 0 such that for all t ∈ R
the unitary operator eitD belongs to AH , has propagation bound ≤ c | t |,
and if there is an n > 0 such that (1 + D2)−n is locally traceable. D will be
called an even elliptic operator if Dη + ηD = 0.

Example The generalized Dirac operator of S is generalized elliptic. Let W
the algebra of functions on R having compactly supported Fourier trans-
form. A chopping function is a smooth function ψ : R → R such that
ψ(x) → ±1 for x → ±∞ and ψ′ belongs to W .

Lemma 2.2 Chopping functions exist. If ψ is a chopping function then
ψ2 − 1 ∈ W. If ψ0 and ψ1 are two chopping functions then ψ0 − ψ1 ∈ W.2

Lemma 2.3 Let D be a generalized elliptic operator. If φ ∈ W then φ(D) ∈
BH . If ψ is a chopping function then ψ(D) ∈ AH . 2

Let D be even elliptic, ψ an odd chopping function, F = ψ(D). Then
F ∈ AH , F 2 − 1 ∈ BH , Fη + ηF = 0 and Ind F ∈ K0(BH) is well defined.
According to [7], IndF is independent of the choice of ψ and we define
Ind D := Ind ψ(D).

Definition 4 Let (Dt)t be a family of elliptic operators parametrized by
t ∈ [a, b]. (Dt)t is called a continuous family if it satisfies the following
conditions.
1. The operators Dt have a common dense domain D.
2. The graph norms on D induced by the operators Dt are equivalent.
3. The map t → Dt is continuous from [a, b] to L(D, H), where D is
equipped with the graph norm.

Proposition 2.1 Let (Dt)t be a continuous family of even elliptic operators
on H. Then the image of Ind Dt in K0(B̄H) is independent of t, where B̄H

denotes the C∗-algebra obtained as the norm closure of B̄H in L(H).

See [7] for a proof. 2

Lemma 2.4 The C∗-algebra B̄H contains the compact operators.

This is Lemma 4.12 in [8]. 2
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3 Sobolev topologies in spaces of Clifford
connections

Rigidity theory for the index is strongly adapted to the index theory under
consideration, i.e., to the choice of the algebra A, the ideal B, the corre-
sponding K-functors and so on. We here consider three cases, the case of
section 2, i.e., AH , BH , B̄H , the case of uniform operators considered in [9],
and finally the Fredholm case, i.e., the case B =compact operators. We per-
mit “continuous” deformations of the Clifford connection and the metric on
M and have therefore to describe what are “continuous” deformations, i.e.,
we have to define intrinsic and natural topologies in the space of Clifford
connections and metrics. If M is compact this is a very trivial matter. In
the noncompact case this task seems to us to be rather nontrivial. We start
our approach shortly recalling some very simple definitions from general
topology.

Let X be a set, U ⊂ P(X ×X) = set of all subsets of X×X. U is called
a uniform structure if it satisfies the following conditions.
(F1) V ∈ U , V1 ⊇ V implies V1 ∈ U
(F2) V1, ..., Vn ∈ U implies V1 ∩ · · · ∩ Vn ∈ U .
(U1) Every V ∈ U contains the diagonal ∆ ⊂ X ×X.
(U2) V ∈ U implies V −1 ∈ U .
(U3) If V ∈ U then there exists W ∈ U such that W ◦W ⊆ V .
The sets of U are called neighborhoods of the uniform structure, (X, U) a
uniform space.
B ⊆ U is called a fundamental system or basis for U if each neighborhood

of U contains an element of B. B ⊂ P(X × X) is a fundamental system
for a uniquely determined uniform structure if and only if it satisfies the
following conditions.
(B1) If V1, V2 ∈ B then V1 ∩ V2 contains an element of B.
(U ′

1) Each V ∈ B contains the diagonal ∆ ⊂ X ×X.
(U ′

2) For each V ∈ B there exists V ′ ∈ B such that V ′ ⊆ V −1.
(U ′

3) For each V ∈ B there exists W ∈ B such that W ◦W ⊆ V.

Every uniform structure induces a topology on X. Let (X, U) be a
uniform space. Then for every x ∈ X U(x) = {V (x)}V ∈U is a neighborhood
filter for a uniquely determined topology on X. This topology is called the
uniform topology generated by the uniform structure U .

The uniform space (X, U) is called Hausdorff if
⋂

V ∈UV = ∆. A uniform
space is metrizable if and only if (X,U) is Hausdorff and has a countable
basis B. Let (X, U) be a uniform space. Then there exists a complete uni-
form space (X̃, Ũ) such that X̃ is isomorphic to a dense subset of X. If
(X, U) is additionally Hausdorff then (X̃, Ũ) is determined up to isomor-
phism. (X̃, Ũ) is called the completion and is built up by Cauchy filters.
We refer to [10], pp. 126–127 for the proof. Let (Y,UY ) be a Hausdorff
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uniform space, X ⊂ Y a dense subspace. If X is metrizable by a metric
% then % is extendable to a metric on Y which metrizes the uniform space
(Y, UY ). In conclusion, if (X, U) is a metrizable uniform space, (X̃, Ũ) and
(X̃%, Ũ%) are its uniform and metric completions, respectively, then

X̃ = X̃%

as metrizable topological spaces. We want to endow the space of Clifford
connections in a canonical manner with an intrinsic uniform structure.

Let (Mn, g) be open, complete, S −→ M a Clifford bundle without fixed
connection. Set

C = CS = {∇ |∇ is a Clifford connection in S}.
Clifford connection means here ∇(X ·s) = ∇X ·s+X ·∇s. Consider Ω1(gcl

S )
=space of all smooth 1-forms η with values in the skew symmetric endo-
morphisms of S satisfying η(X · s) = X · η(s). Given a Clifford connection
∇S in S, ∇S induces a connection in gcl

S by

∇ϕ = [∇S , ϕ], i.e. (∇ϕ)(s) = ∇Sϕ(s)− ϕ∇Ss.

We denote in the sequel gcl
S ≡ g. Set now

Vδ =
{

(∇,∇1) ∈ C × C | ∇ −∇1 ∈ C∞0 (T ∗M ⊗ g) and b,m|∇ −∇1|∇ =

=
m∑

i=0

sup
x∈M

|∇i(∇−∇1)|x < δ

}
.

Proposition 3.1 B = {Vδ}δ>0 is a basis for a metrizable uniform struc-
ture.

Proof. (B1) and (U ′
1) are trivial. (U ′

2) really needs serious work. It would
be proved if we could show

b,m|∇ −∇′|∇′ ≤ P (b|∇i(∇−∇′)|), (3.1)

where P is a polynomial without constant term in b|∇i(∇ − ∇′)|, i =
0, . . . , m. If (3.1) would be established then for given δ > 0 there exists
δ′ > 0 such that b,m|∇ −∇′|∇′ < δ′ implies P (b|∇i(∇−∇′)|) < δ. Assume
now b,m|∇ − ∇′|∇′ < δ′. Then b,m|∇ − ∇′|∇ ≤ P (b|∇′i(∇′ − ∇)|) < δ,
i.e. (∇′,∇) ∈ Vδ′ implies (∇,∇′) ∈ Vδ, Vδ′ ⊆ V −1

δ . Therefore we have to
establish (3.1). Set η = ∇′−∇. For the zero-th derivatives there is nothing
to show. Consider the first derivative. | | shall denote the pointwise norm.
Then

|∇′η| ≤ |(∇′ −∇)η|+ |∇η| ≤ C1|η|2 + |∇η| ≤ C2(|η|2 + |∇η|),
|η|+ |∇′η| ≤ C3(|η|+ |η|2 + |∇η|),
b,1|η|∇′ ≤ C3(b|η|+b |η|2 + |∇η|).
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We conclude similarly

|∇′2η| ≤ |(∇′ −∇)∇′η|+ |∇∇′η| ≤ |(∇′ −∇)(∇′ −∇)η|+
+|(∇′ −∇)∇η|+ |∇(∇′ −∇)η|+ |∇2η| ≤
≤ C4(|η|3 + |η||∇η|+ |η||∇η|+ |∇2η|),

b,2|η|∇′ ≤ C5(b|η|+b |η|2 +b |η|3 +b |∇η|+b |η| ·b |∇η|+b |∇2η|).

Now we turn to the general case. Assume we are done for ∇′η, . . . ,∇′r−1
η.

Then

∇′rη =
r∑

i=1

∇i−1(∇′ −∇)∇′r−i
η +∇rη.

It remains to consider the terms

∇i−1(∇′ −∇)∇′r−i
η.

Again iterating the procedure, i.e. applying it to ∇′r−i and so on, we have
to estimate expressions of the kind

∇i1(∇′ −∇)i2∇i3(∇′ −∇)i4 · · ·∇ir−2(∇′ −∇)ir−1∇irη (3.2)

with i1 + · · ·+ ir = r, ir < r. We derive that (3.2) splits into a sum of terms,
each of which can be estimated by

Cn1···ns |∇n1η| · · · |∇nsη|, n1 + 1 + · · ·+ ns + 1 = r + 1,

i.e.
b|∇′rη| ≤

∑

n1+1+···+ns+1≤r+1

b|∇n1η| · · ·b |∇nsη|+b |∇rη|,

which implies (U ′
2). Next we turn to the condition (U ′

3). Given δ > 0, we
have to show that there exists δ′ > 0 such that Vδ′ ◦ Vδ′ ⊂ Vδ, i.e. if

(∇1,∇2) ∈ Vδ′ ◦ Vδ′ = {(∇1,∇2) ∈ C × C |There exists∇
with (∇1,∇) ∈ Vδ′ and (∇,∇2) ∈ Vδ′}

then
b,m|∇1 −∇2|∇1 < δ.

(U ′
3) would be proved if we could show

b,m|∇1 −∇2|∇1 ≤ P (b,i|∇1 −∇|∇1 ,
b,j |∇ −∇2|∇),

where P is a polynomial in b,i|∇1 − ∇|∇1 ,
b,j |∇ − ∇2|∇, i, j = 0, . . . , m,

without constant term.
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We start with

|∇1 −∇2| ≤ |∇1 −∇|+ |∇ −∇2|,
b|∇1 −∇2| ≤b |∇1 −∇|+b |∇ −∇2| = P0(b|∇1 −∇|,b |∇ −∇2|).

Next we consider

|∇1(∇1 −∇2)| ≤ |∇1(∇1 −∇)|+ |∇1(∇−∇2)|. (3.3)

The critical point in (3.3) is the estimation of |∇1(∇−∇2)|. But

|∇1(∇−∇2)| ≤ |(∇1 −∇)(∇−∇2)|+ |∇(∇−∇2)|,
b|∇1(∇−∇2| ≤ C1(b|∇1 −∇| ·b |∇ −∇2|+b |∇(∇−∇2)|),

b|∇1(∇1 −∇2)| ≤ C2(b|∇1(∇1 −∇)|+b |∇1 −∇| ·b |∇ −∇2|+
+b|∇(∇−∇2)|) =

= P1(b|∇1 −∇|,b |∇1(∇1 −∇)|,b |∇ −∇2|,b |∇(∇−∇2)|).

We conclude analogously for ∇2
1(∇1 −∇2),

|∇2
1(∇1 −∇2)| ≤ |∇2

1(∇1 −∇)|+ |∇2
1(∇−∇2)|,

|∇2
1(∇−∇2)| ≤ |(∇1 −∇)(∇1 −∇)(∇−∇2)|+ |(∇1 −∇)∇(∇−∇2)|+

+|∇(∇1 −∇)(∇−∇2)|+ |∇2(∇−∇2|),
b|∇2

1(∇−∇2)| ≤ C3(b|∇1 −∇|2 ·b |∇ −∇2|+b |∇1 −∇| ·b |∇(∇−∇2)|+
+b|∇(∇1 −∇)| ·b |∇ −∇2|+b |∇1 −∇| ·b |∇(∇−∇2)|+b |∇2(∇−∇2)|).

Using
|∇(∇1 −∇)| ≤ |(∇−∇1)(∇−∇1)|+ |∇1(∇1 −∇)|,

we obtain finally

b|∇2
1(∇1 −∇2)| ≤ C4(b|∇2

1(∇1 −∇)|+b |∇1 −∇|2 ·b |∇ −∇2|+
+b|∇1 −∇| ·b |∇(∇−∇2)|+ (b|∇ −∇1|2 +b |∇1(∇1 −∇)|) ·b |∇ −∇2|+

+b|∇2(∇−∇2)|) =

= P2(b|∇i
1(∇1 −∇)|,b |∇j(∇−∇2)|).

In the general case

|∇r
1(∇1 −∇2)| ≤ |∇r

1(∇1 −∇)|+ |∇r
1(∇−∇2)|, (3.4)

and we have to estimate

∇r
1(∇−∇2) ≡ ∇r

1η.
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We start as above

∇r
1η = (∇1 −∇)∇r−1

1 η +∇∇r−1
1 η,

∇r
1η =

∑r
i=1∇i−1(∇1 −∇)∇r−i

1 η +∇rη.

Iterating the procedure, we have to estimate expressions of the kind

∇i1(∇1 −∇)i2 · · ·∇ir−2(∇1 −∇)ir−1∇irη

with i1 + · · · + ir = r, ir < r. Each expression splits into a sum of terms
each of which can be estimated by

Cn1···ns |∇n1(∇1 −∇)| · · · |∇ns−1(∇1 −∇)| · |∇nsη|, (3.5)

n1 + 1 + · · ·+ ns + 1 = r + 1. According to our proof of (U ′
2),

b|∇ni(∇1 −∇)| ≤ Qni(
b|∇j

1(∇1 −∇)|). (3.6)

Here Qni is a polynomial in the indicated variables without constant term.
(3.4) – (3.6) yield

b|∇r
1(∇1 −∇2)| ≤ Pr(b|∇i

1(∇1 −∇)|,b |∇j(∇−∇2)|),
b,m|∇1 −∇2| ≤

∑m
r=0 Pr =

= P (b|∇i
1(∇1 −∇)|,b |∇j(∇−∇2)|).

Therefore we have established (U ′
3). Denote by b,mU(C) the correspond-

ing uniform structure. It is metrizable since it is trivially Hausdorff and
{V1/n}n≥n0 is a countable basis. 2

Let b
mC denote C endowed with the corresponding topology and denote

by b,mC̃ the completion. For any ∇ ∈ b,mC̃
{b,mUε(∇)}ε>0 = {{∇′ ∈ b,mC̃ | b,m|∇ −∇′|∇ < ε}}ε>0

is a neighborhood basis in this topology.

Proposition 3.2 b,mC̃ is locally contractible.

Proof. Let ∇′ ∈b,m Uε(∇). Then ∇t = t∇′ + (1− t)∇ = ∇+ t(∇′ −∇) ∈
b,mUε(∇) since |∇i(t∇′ + (1− t)∇−∇)| = |∇it(∇′ −∇)| = t|∇i(∇′ −∇)|
and since a Cauchy sequence for ∇,∇′ gives such a sequence for ∇t. 2

Corollary 3.1 In b,mC̃, the components and arc components coincide.

Proof. b,mC̃ is locally arcwise connected since it is locally contractible. 2

Remarks. 1. The elements of b,mC̃ are of differentiability class Cm.
2. Let b,mΩ̃1(g,∇) be the completion of C∞0 (T ∗M⊗g) with respect to b,m| |.
Then by construction of our completion

b,mUε(∇) ⊆ ∇+b,m Ω̃1(g,∇).

Before we calculate the components of b,mC̃ we need the following
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Proposition 3.3 . Let ∇ and ∇1 be Cm−1-connections and ∇−∇1 ∈
b,m−1Ω̃1(g,∇). Then

b,mΩ̃1(g,∇) =b,m Ω̃1(g,∇1) (3.7)

as equivalent Banach spaces.

Proof. By assumption, ∇,∇1 are connections of class Cm−1, i.e. their
connection coefficients are of class Cm−1. Then (3.7) makes sense since
∇, . . . ,∇m, ∇1, . . . ,∇m

1 are well defined. We prove

b,m| |∇ ∼ b,m| |∇1 .

We obtain from

|∇1ϕ| ≤ |(∇1 −∇)ϕ|+ |∇ϕ|
|ϕ|+ |∇1ϕ| ≤ C ′(|∇1 −∇| · |ϕ|+ |∇ϕ|+ |ϕ| ≤

≤ C1(∇,∇1)(|ϕ|+ |∇ϕ|).

Quite analogously

|ϕ|+ |∇ϕ| ≤ D1(∇,∇1)(|ϕ|+ |∇1ϕ|,
b,1| | ∼ b,1| |, b,1Ω̃1(g,∇) = b,1Ω̃

1
(g,∇1),

in particular ∇−∇1 ∈ b,1Ω̃1(g,∇1).
Assume now the assertion for r − 1 ≤ m− 1,

b,r−1| | ∼ b,r−1| |,
b,r−1Ω̃1(g,∇) = b,r−1Ω̃1(g,∇1),

in particular
∇−∇1 ∈ b,r−1Ω̃1(g,∇1).

Then

∇r
1ϕ =

r∑

i=1

∇i−1(∇1 −∇)∇r−i
1 ϕ +∇rϕ. (3.8)

For i = 1

|(∇1 −∇)∇r−1
1 ϕ| ≤ C ′(∇,∇1)|∇r−1

1 ϕ|, (3.9)

by induction assumption

b|(∇1 −∇)∇r−1
1 ϕ| ≤ C1(∇,∇1) b,r−1|ϕ|∇. (3.10)
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Consider ∇i−1(∇1−∇)∇r−i
1 ϕ, i ≥ 2. Iterating the procedure, i.e. applying

it to ∇r−i
1 and so on, we have to estimate expressions of the kind

∇i1(∇1 −∇)i2 · · · ∇ir−2(∇1 −∇)ir−1∇irϕ (3.11)

with i1 + · · · + ir = r, i1 + i3 + · · · + ir−2 ≤ r − 1, ir ≤ r − 1. If we
give ∇, ∇1 − ∇, ϕ each degree one, then each term of (3.11) has degree
i1 + · · ·+ ir + 1 = r + 1. (3.11) splits into a sum of terms each of which can
be estimated by

Cn1···ns |∇n1(∇1 −∇)| · · · |∇ns−1(∇1 −∇)| · |∇nsϕ|, (3.12)

n1 + 1 + · · ·+ ns + 1 = r + 1, n1 + n2 + · · ·+ ns−1 ≤ r − 1. By assumption
b|∇n1(∇1 −∇)| < ∞,b |∇n2(∇1 −∇)| < ∞, · · ·, and we obtain

Cn1···ns
b|∇n1(∇1 −∇)| · · · b|∇ns−1(∇1 −∇)| ·b |∇nsϕ| ≤

≤ C2(∇,∇1) b,ns |ϕ|∇. (3.13)

The induction assumption and (3.8) – (3.13) yield

b,r|ϕ|∇1 ≤ C4(∇,∇1) b,r|ϕ|∇,

i.e. ∇−∇1 ∈ b,r−1Ω̃1(g,∇) implies

b,r| |∇ ∼ b,r| |∇1 ,

which finishes the induction. 2

Proposition 3.4 . Let comp(∇) be the component of ∇ in b,mC̃. Then

comp(∇) = ∇+b,m Ω̃1(g,∇).

Proof. We show at first comp(∇) ⊆ ∇ +b,m Ω̃1(g,∇). Let ∇′ ∈ comp(∇)
and let ∇t be an arc between ∇ = ∇0 and ∇′ = ∇1. For every ε > 0
this arc can be covered by a finite number of ε-neighborhoods b,mU(∇tσ )
in b,mC̃, σ = 0, . . . , s, t0 = 0, ts = t, such that additionally b,m|∇tσ −
∇tσ+1 |∇tσ+1 < ε, σ = 0, . . . , s − 1. We set ∇tσ ≡ ∇σ. Then ∇ − ∇1 ∈b,m

Ω̃1(g,∇1). According to Proposition 3.3, ∇ − ∇1 ∈b,m Ω̃1(g,∇). ∇1 −
∇2 ∈b,m Ω̃1(g,∇2), which implies ∇1 −∇2 ∈b,m Ω̃1(g,∇1), ∇1 −∇2 ∈b,m

Ω̃1(g,∇),
∇−∇1 +∇1 −∇2 = ∇−∇2 ∈b,m Ω̃1(g,∇).

We conclude from a trivial induction ∇−∇′ ∈b,m Ω̃1(g,∇), ∇′ = ∇+∇′−
∇ ∈ ∇ +b,m Ω̃1(g,∇). On the other hand, if ∇′ ∈ ∇ +b,m Ω̃1(g,∇), then
∇t = ∇ + t(∇′ − ∇) = t∇ + (1 − t)∇ is an arc in b,mC̃ connecting ∇ and
∇′, as we have already seen. Therefore

comp(∇) = ∇+b,m Ω̃1(g,∇). 2
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For many purposes and other operator algebras or index theories, re-
spectively, it is necessary to consider additional geometric assumptions and
other topologies in the space of Clifford connections.

Let as above (Mn, g) be open complete, (S,∇) → M a Clifford bundle
with with metric Clifford connection ∇. Consider the following conditions:

(I) rinj(M) = infx∈m rinj(x) > 0.

(Bk(M)) |∇iR| ≤ Ci, 0 ≤ i ≤ k.

(Bk(S,∇)) |(∇S)iRS | ≤ Di, 0 ≤ i ≤ k.

Here R or RS denotes the curvature tensor of M or S, respectively. If
M and S satisfy these conditions, we say they have bounded geometry up
to order k. Let D = D∇ be the generalized Dirac operator belonging to
∇, (Ds)(x) =

∑n
i=1 ei · ∇eis(x), where · is the Clifford multiplication and

e1, . . . , en ∈ TxM is an orthonormal basis. Consider

Ωr(S,∇) ≡ Ω0
r(S,∇) =

=
{
s ∈ C∞(S)

∣∣ |s|∇,r = (
∫ ∑r

i=0 |∇is|2x d volx(g))1/2 < ∞}

and Ω̄0,r(S,∇) ≡ Ω̄r(S,∇)
def
= completion of Ωr(S,∇) with respect to | |∇,r,

Ω̃r(S,∇)
def
= completion of C∞0 (S) with respect to | |∇,r and Ωr(S,∇)

def
=

space of all distributional sections s such that |s|∇,r < ∞. Similarly, define

Ωr(S, D) =
{
s ∈ Ω(S)

∣∣∣∣ |s|D,r =

(∫ r∑

i=0

|Dis|2x d volx(g)

)1/2

< ∞}

and Ω̄r(S, D), Ω̃r(S, D),Ωr(S,D). Then

Ω̃r(S,∇) ⊆ Ω̄r(S,∇) ⊆ Ωr(S,∇),

Ω̃r(S,D) ⊆ Ω̄r(S, D) ⊆ Ωr(S, D),

Ω̃r(S,∇) ⊆ Ω̃r(S, D), Ω̄r(S,∇) ⊆ Ω̄r(S, D), Ωr(S,∇) ⊆ Ωr(S,D)

as continuous embeddings, and all spaces are Hilbert spaces.

Proposition 3.5 Assume (I), (Bk(M)) and r ≤ k + 2. Then

Ω̃r(S,∇) = Ω̄r(S,∇) = Ωr(S,∇),

Ω̃r(S,D) = Ω̄r(S, D) = Ωr(S, D).

We refer to [3] for the proof. 2

Proposition 3.6 Assume (I), (Bk(M)) and (Bk(S)), k ≥ 0. Then Ωr(S,∇)
and Ωr(S,D) are for r ≤ k equivalent.
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The proof is carried out in [2]. 2

Proposition 3.7 Assume (I) and (B0(M)), r > n/2 + m. Then there
exists a continuous embedding

Ω̄r(S,∇) ↪→b,m Ω(S,∇).

The proof is contained in [3]. 2

Corollary 3.2 Assume (I), (Bk(M)), (Bk(S,∇)), k > n/2. Then there
exists a continuous embedding

Ωr(S,D) ↪→b,0 Ω(S,∇) =b Ω(S). 2

Define for r ∈ Z+

Ω1
r(g,∇) def=


ϕ ∈ C∞(T ∗M ⊗ g)

∣∣∣∣ |ϕ|∇,r =

(∫ r∑

i=0

|∇iϕ|2x d volx(g)

)1/2

< ∞




and define in similar manner as above

Ω̃1,r(g,∇), Ω̄1,r(g,∇),Ω1,r(g,∇)

by completion in the first two cases or taking distributional sections in the
third case, respectively.

Let (Mn, g) be open, complete with (Bk(M)), k ≥ 1, S → M a Clifford
bundle without fixed connection. Set

C(Bk) = {∇ ∣∣∇Clifford connection satisfying (Bk(S,∇))}
and for r ≤ k, r > n/2 + 1, δ > 0

Vδ = {(∇,∇′) ∈ C(Bk)× C(Bk)
∣∣ |∇ −∇′|∇,r < δ}.

Proposition 3.8 Assume (I), (Bk(M)), r > n/2 + 1. Then B = {Vδ}δ>0

is a fundamental system for a metrizable uniform structure Ur(C(Bk)).

The rather long and nontrivial proof is contained in [5]. 2

Denote Cr(Bk) as C(Bk) endowed with the corresponding topology and
by Cr(Bk) the completion. Let comp(∇) be the component of ∇ in Cr(Bk).

Proposition 3.9 Assume k, r as above, ∇,∇′ ∈ C(Bk),∇′ ∈ comp(∇) ⊆
Cr−1(Bk). Then

Ω1,i(g,∇) = Ω1,i(g,∇′)
and

Ω0,i(S,∇) = Ω0,i(S,∇′), 0 ≤ i ≤ r.
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The rather nontrivial proof is carried out in [4]. 2

Proposition 3.10 Assume k, r as above, ∇ ∈ C(Bk). Then

comp(∇) = ∇+ Ω̄1,r(g,∇).

For the proof we refer to [5]. 2

Corollary 3.3 Assume (I), (Bk(M)), k ≥ r > n/2 + 1. Then

comp(∇) = ∇+ Ω̃1,r(g,∇).

This follows immediately from the corresponding version of Proposition 3.5
which holds for any vector bundle as proved in [4], [5]. 2

If ∇ ∈ C(Bk), η ∈ C∞0 (T ∗M ⊗ g), then ∇ + η ∈ C(Bk). The latter is
no longer true if η has bounded (b, k)-norm. It remains true if we assume
b,i|η| < ∞, i ≥ k + 1. Therefore we still define another basis in C(Bk) by
B = {Vδ}δ>0,

Vδ = {(∇,∇′) ∈ C(Bk)× C(Bk)
∣∣∣∣ b,i|∇ −∇′|∇ < δ},

thus getting completed spaces b,iC(Bk), i ≥ k+1 and components comp(∇) =
∇+ b,iΩ(g,∇).

Finally we have to consider completed spaces of Clifford connections
without curvature restrictions as in Proposition 3.1 but now without the
assumption that ∇−∇′ should have compact support. Let m ≥ 0. Set for
δ > 0

Vδ = {(∇,∇′) ∈ C × C
∣∣∣∣ b,m|∇ −∇′|∇ < δ}.

Proposition 3.11 B = {Vδ}δ>0 is a basis for a metrizable uniform struc-
ture.

The proof is completely analogous to that of Proposition 3.1. 2

Denote b
mC for C endowed with the corresponding topology and b,mC for

its completion. Once again we are interested in the components.
Set

b
mΩ1(g,∇) = {η ∈ Ω1(g) | b,m|η|∇ < ∞}

and b,mΩ(g,∇) =completion of b
mΩ1(g,∇) with respect to b,m| |.

Proposition 3.12 The component of ∇ ∈b,m C is given by

comp(∇) = ∇+b,m Ω(g,∇).
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The proof is quite similar to that of Proposition 3.4. 2

Proposition 3.13 Assume ∇, ∇′ ∈ b,0C = bC, ∇−∇′ ∈ b,0Ω(g) = bΩ(g),
i.e. ∇′ ∈ comp(∇), D = D∇, D′ = D∇′ . Then

Ω̄0,1(S, D) = Ω̄0,1(S, D′).

The same holds for ∇, ∇′ ∈ b,0C̃, ∇′ ∈ comp(∇), since the component of ∇
in b,0C̃ is contained in the corresponding component in b,0C. 2

We finish this section with a version of the Sobolev embedding theorem
which we need in Theorem 4.4.

Proposition 3.14 Assume (Mn, g) open, complete with (I) and (B0(M)),
r > n/2 + m. Then there exists a continuous embedding

Ω̄1,r(g,∇) ↪→b,m Ω(g,∇).

For the proof see Theorem 1.13 of [3]. 2

4 The rigidity of the index

Now we are ready to establish part of our theorems concerning the rigidity
of the index. There are several definitions of the analytical index depending
on the choice of the ideal B. As mentioned above, we consider here three
cases, B =compact operators, i.e. the Fredholm case, B = BH , the locally
traceable operators with bounded propagation speed and B =the uniform
operators as discussed in [9]. These index theories are quite different. The
Fredholm case always leads to a zero index in the B̄H -case since the Fred-
holm property implies a gap in the spectrum (around zero) and then the
index in K0(B̄H) always vanishes as indicated in [7], [8]. Nevertheless, the
Fredholm theory makes sense since there are many examples of manifolds
and elliptic differential operators on open manifolds of bounded geometry
having the Fredholm property. We consider components in the uncompleted
and completed spaces of Clifford connections. The uncompleted case is par-
ticularly trivial. We restrict ourselves to the graded (even) case and discuss
the rigidity if the operator in question is Fredholm.

Theorem 4.1 Let (Mn, g) be open, complete, satisfying (I) and (Bk), k ≥
r > n/2+1, ∇, ∇′ ∈ C(Bk), ∇′ ∈ comp(∇) in Cr(Bk), D = D∇, D′ = D∇′ ,
S and D graded and let D : Ω0,1(S,D) → Ω0,0(S) = L2(S) be Fredholm.
Then D′ is also Fredholm and

Ind D+ = IndD′+.
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Proof. According to Proposition 3.6 and 3.9,

Ω0,1(S,D) = Ω0,1(S,∇) = Ω0,1(S,∇′) = Ω0,1(S,D′).

According to corollary 3.3, ∇′ = ∇ + η, where η ∈ Ω̃1,r(g,∇). Now η is
the | |∇,r-limit of a sequence (ηi)i with compact support, and according
to the Sobolev embedding theorem (Proposition 3.7) also the b,1| |-limit of
this sequence. In particular, b,1|η| < ∞. Let ϕ ∈ C∞0 (T ∗M ⊗ g). Then ϕcl,
ϕcl(s)(x) =

∑n
i=1 ei · ϕei(s(x)) defines a compact operator Ω0,1(S,∇) →

Ω0,0(S) = L2(S). The pointwise operator norm |ϕcl|op,x coincides with |ϕ|x
since ei · ϕei(s(x)) = ϕei(ei · s(x)) and ei· is an isometry. Moreover,

(
∫
|∑ ei · ϕei

(s)|2x d volx(g))1/2 ≤ C · (
∫
|ϕ|2x |s(x)|2 d vol)1/2 ≤

≤ C ·b |ϕ| · (
∫
|s(x)|2 d vol)1/2 = C ·b |ϕ| · |s|∇,0 ≤ C ·b |ϕ| · |s|∇,1

implies |ϕcl|op ≤ C ·b |ϕ|. Therefore ηi → η with respect to | |op and ϕcl is
compact. But D′+ = D+ + ϕcl,+. 2

Theorem 4.2 Let (Mn, g) be open, complete, satisfying ∇′ ∈ comp(∇) ⊂
b,0C̃, D = D∇ : Ω̄0,1(S,∇) → Ω0,0(S) = L2(S) Fredholm, S and D graded.
Then D′ = D∇′ is also Fredholm and

Ind D+ = IndD′+.

Proof. We obtain from Proposition 3.13 the equivalence

Ω0,1(S, D) = Ω0,1(S, D′).

From our assumptions it follows immediately that∇′ = ∇+η, η = limi→∞ ηi

with respect to b| |, ηi ∈ C∞0 (T ∗⊗g). Once again we have D′+ = D++ηcl,+,
ηcl,+ a compact operator. 2

Remark. If Mn is compact then b,mC̃ = b,mC and Cr(Bk) = Cr consist
of one component and we obtain once again the well known rigidity of the
index. If Mn is noncompact then the connection spaces above have un-
countably many components and the simple intuition that t∇′+(1− t)∇ is
an arc is totally wrong and the index can jump. This is a special feature of
noncompactness.

Now we turn to the quite opposite case, B = BH . D+ is Fredholm if and
only if the spectrum of D has a gap around zero and dim(ker D) < ∞.
Considering B = BH , the index in K0(B̄H) is automatically zero if the
spectrum of D has a gap.

Denote by Ind D the image of Ind D in K0(B̄H).

Theorem 4.3 Let (Mn, g) be open, complete, (S,∇) → M a graded Clif-
ford bundle, D = D∇ the graded generalized Dirac operator. Assume ∇′ ∈
bC, D′ = D∇′ . Then

Ind D = Ind D′.
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Proof. Set ∇t = t · ∇′ + (1− t) · ∇, Dt = D∇t . According to Proposition
3.13, (Dt)t is a continuous family. Apply Proposition 2.1. 2

Remark. In bC we have very “large” components and therefore a weaker
rigidity.

Theorem 4.4 Assume (Mn, g) open, complete with (I), (Bk(M)), k ≥ r >
n/2+1, (S,∇) → M a graded Clifford bundle, ∇ ∈ C(Bk), ∇′ ∈ comp(∇) ⊆
Cr(Bk), D = D∇, D′ = D∇′ generalized graded Dirac operators. Then

Ind D = Ind D′.

Proof. Set ∇t = t ·∇′+(1−t)∇, Dt = D∇t . Apply the Sobolev embedding
theorem, Proposition 3.14 and Theorem 4.3. 2

As the very simple proofs indicate, the main problem in studying rigidity
is to define the right topology in C. We solved this problem quite naturally
an generally by construction of canonical uniform structures.

J. Roe defined in [9] the algebra U of uniform operators. We will not
recall this definitions and constructions but refer to [9]. He assumed (Mn, g)
with (I) and (B∞(M)), considered C(B∞) and assumed the existence of a
so-called regular exhaustion. By means of such an exhaustion he defines a
trace τ and a functional m on the bounded cohomology bHn(M). Finally
one starts with (Mn, g), S, D, constructs Ind D ∈ K0(U), τ ∈ HC0(U), a
form ID ∈b Hn(M, g), a functional m on bHn(M) and defines

inda D+ =
〈
IndD+, τ

〉
, indt D+ = 〈ID,m〉 .

Then J. Roe proved the following index theorem, assuming (I), (B∞(M)),
(B∞(S,∇)).

Theorem 4.5

inda D+ = indt D+.

We have shown that (I), (Bk(M)), (Bk(S,∇)), k > n/2, are sufficient.
Assuming the index theorem above, we can prove the rigidity of the

analytical index in this situation by proving the rigidity of the topological
index. This shall be done in the next section.

5 The rigidity of the topological index

We recall some simple facts from bounded Chern–Weil theory ([6]). Let
(E,∇) → M be a hermitian vector bundle with metric connection ∇ = ∇E

over (Mn, g) of rank N , U a bundle chart, s1, . . . , sN : U → E
∣∣
U

a local
basis, Ω = Ω∇ ≡ R∇ the curvature of E, Ωsi =

∑
j Ωij ⊗ sj , where (Ωij)
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is an N × N matrix of 2-forms on U , and let MN be the ring of N × N
matrices. An invariant polynomial P : MN → C defines in a well known
manner a closed graded differential form P = P (Ω) = P0 + P1 + · · ·, where
Pu is homogeneous, Pu(Ω) = 0 for 2u > n. The determinant is an example
of a possibility for P . Let σu(Ω) be the 2u-homogeneous part (in the sense
of forms) of det(1 + Ωij).

Lemma 5.1 Each invariant polynomial is a polynomial in σ1, . . . , σN .2

Lemma 5.2 If ∇ ∈ C(B0) and u ≥ 1 then σu ∈ bΩ2u(M).

Proof. Let | |x be the pointwise norm. We have

|Ω|2x =
1
2

∑

i,j

∑

k<l

|Ωij,kl|2x,

where Ωij,kl = Ωij(ek, el) and e1, . . . , en is an orthonormal basis of TxM .
According to our assumption, |Ω|x ≤ a for all x ∈ M . The proof would be
done if we could estimate |σu(Ω)|x from above by |Ω|x. By definition

σu(Ω) =
1
u!

∑
εi1···iu
j1···ju

Ωi1j1 ∧ · · · ∧ Ωiuju , (5.1)

where the summation runs over all 1 ≤ i1 < · · · < iu ≤ N and all permuta-
tions (i1, . . . , iu) → (j1, . . . , ju). ε denotes the sign of the permutation. We
perform induction. For u = 1 follows σ1(Ω) =

∑
Ωii. The inequality

|Ωij |2x ≤
∑
s,t

|Ωs,t|2x = 2|Ω|2x (5.2)

implies in particular |σ1(Ω)|2x ≤ b|Ω|2x. For arbitrary forms ϕ, ψ one has

|ϕ ∧ ψ|x ≤ |ϕ|x · |ψ|x. (5.3)

(5.1)–(5.3) and an easy induction argument therefore yield

|σu(Ω)|2x ≤ c|Ω|2u
x ,

together with |Ω|2x ≤ a2. Finally |σu(Ω)|x ≤ d. 2

Corollary 5.1 Let P be an invariant polynomial, ∇ ∈ C(B0), u ≥ 1. Then
each form [Pu(Ω)] is an element of bH2u(M). 2

Corollary 5.2 Under the assumptions of corollary 5.1, P and ∇ define
well defined classes

[
Pu(Ω∇)

] ∈ bH
2u(M), u = 1, 2, . . .. 2
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Now the natural question arises: how does
[
Pu(Ω∇)

]
depend on ∇?

We denote I = [0, 1], it : M → I ×M the embedding it(x) = (t, x) and

endow I ×M with the product metric
(

1 0
0 g

)
.

Let bΩq,d be the space of all C1 q–forms ϕ on M such that ϕ and dϕ are
bounded and define the bounded cohomology bH∗(M) as the cohomology
of the complex

· · · d−→ bΩ
q+1,d d−→ bΩ

q,d d−→ bΩ
q−1,d d−→ · · · ,

bHq = bZq/ bB
q.

Lemma 5.3 For every q ≥ 0 there exists a linear bounded mapping K :
bΩq+1,d(I ×M) → bΩq,d(M) such that dK + Kd = i∗1 − i∗0.

Proof. Since gI×M =
(

1 0
0 g

)
, it : M → I×M is an isometric embedding

and i∗t is bounded. i∗t maps into bΩq,d(M) because |di∗ϕ|x = |i∗dϕ|x ≤
c|dϕ|x. Denote X0 = ∂

∂t and for ϕ ∈ bΩq+1,d(I × M) ϕ0(X1, . . . , Xn) :=

ϕ(X0, X1, . . . , Xq). Then ϕ0 ∈ bΩq+1,d(I × M), |ϕ0|t,x ≤ |ϕ|t,x, and we
define

(Kϕ)(X1, . . . , Xq) :=
∫ 1

0

i∗t ϕ0(X1, . . . , Xq)dt.

Therefore K is bounded too. The equation dK + Kd = i∗1 − i∗0 is a well
known fact. 2

Lemma 5.4 Let f, g : M → N be smooth mappings between Riemannian
manifolds, F : I × M → N a smooth homotopy, f∗, g∗ : bΩq,d(N) →
bΩq,d(M), F ∗ : bΩq,d(N) → bΩq,d(I×M) bounded and ϕ ∈ bΩq,d(N) closed.
Then (g∗ − f∗)ϕ ∈ bB

q(M).

Proof. According to our assumption, KF ∗ϕ ∈ bΩq−1,d(M) and (g∗ −
f∗)ϕ = ((F ◦i1)∗−(F ◦i0)∗)ϕ = (i∗1F

∗−i∗0F
∗)ϕ = (dK+Kd)F ∗ϕ = dKF ∗ϕ.

2

Now we are able to prove our main proposition.

Proposition 5.1 Let P : MN → C be an invariant polynomial, u ≥ 1.
Then each component U of b,2C(B1) determines a uniquely determined co-
homology class

[
Pu(ΩU )

] ∈ bH
2u(M).

Proof. All elements of U are at least of class C2. Assume ∇0, n∇1 ∈ U ; set
η := ∇1 −∇0 and ∇t = ∇0 + tη, t ∈ [0, 1]. We have to show

[
Pu(Ω∇0)

]
=



146 Jürgen Eichhorn

[
Pu(Ω∇1)

]
. Consider Ωt := Ω∇t ,

Ωt = Ω0 + td∇0η +
1
2
t2[η, η].

|Ωt|x is bounded on M . If p̄ : [0, 1] × M → M denotes the projection
(t, x) 7→ x, ′ = p∗E the lifting of the bundle spaces, then p∗∇0, p∗∇1 are
connections for the lifted bundles. tp∗∇1 + (1 − t)p∗∇0 = p∗∇0 + tp∗η is
again a connection ∇′.

Ω∇
′
= p∗Ω∇0 + tdp∗∇0p∗η +

1
2
t2[p∗η, p∗η]

is bounded again. ∇′, Ω∇
′

define a bounded cocycle on [0, 1] ×M . Let it
again be the mapping x 7→ (t, x). Then i∗0(E

′,∇′) resp. i∗1(E
′,∇′) can be

identified with (E,∇0) resp. (E,∇1). it, 0 ≤ t ≤ 1, is a smooth bounded
homotopy between i0 and i1. According to 5.6, i∗0Pu(Ω∇

′
) and i∗1Pu(Ω∇

′
)

are cohomologous in bH2u(M), i.e. Pu(Ω∇0) and Pu(Ω∇1) are cohomologous
in bH2u(M). 2

Definition 5 We define for a component U of b,2C(B1) the u-th Chern
class cu(E,U) by

cu(E,U) :=
1

2πı
u

[
σu(ΩU )

]
.

Then cu ∈ bH
2u(M).

Let (E, ∇) be a real Riemannian vector bundle, (EC , ∇C) its complex-
ification. If ∇ satisfies (B1) then the same holds for ∇C . There ex-
ists an inclusion of the components U ⊂ b,2CE(B1) into the components
UC ⊂ b,2CEC (B1). Then we define the u-th Pontrjagin class pu(E,U) by

pu(E,U) := (−1)uc2u(EC , UC).

Theorem 5.1 Assume (Mn, g) open complete with (I) and (Bk), (S,∇) →
M a Clifford bundle with (Bk), k > n/2 + 1, η a grading, D the generalized
Dirac operator, Dη + ηD = 0. Then the bounded cohomology class of the
index form ID is an invariant of comp(∇) in b,k+1C(Bk).

Proof. According to [1], the most general Clifford module is of the form ∆⊗
V , where ∆ is the spin representation and V a vector space. Translating this
to bundles, the index form of the corresponding generalized Dirac operator
is given by

IDV = Â(TM) · ch(V ),

where ch(V ) denotes the Chern character. Now apply Proposition 5.1 to
ch(V ). 2
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Corollary 5.3 Assume the assumptions of Theorem 5.1 and a regular ex-
haustion for M . Then the analytical index indaD+ = 〈Ind D+, τ〉 is an
invariant of comp(∇) in b,k+1C(Bk).

Proof. The assertion follows from Theorem 5.1 and the index theorem 4.5.
2

Remark 1 . We also introduced canonical intrinsic topologies in several
spaces of Riemannian metrics. Similar results as in sections 3, 4, 5 can be
obtained if the metric g of (Mn, g) varies in its component. For reasons of
technical length we will not present them here.
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Remarks on Steenrod homology

Steven C. Ferry

1. Generalities and motivation

The purpose of this note is to introduce readers to Steenrod homology
theory and to explain why this theory arises in studies of the Novikov Con-
jecture. In a nutshell, Steenrod homology is the homology theory which is
appropriate for the study of compact metric spaces which have bad local
properties. Studies of the integral Novikov Conjecture and Borel Conjecture
for the fundamental group of an aspherical polyhedron K frequently make
use of compactifications of the universal cover K̃. The space at infinity in
such a compactification cannot be assumed to have good local properties,1

so homological studies of the space at infinity require something like Steen-
rod homology. To see that singular homology is insufficient for the study
of spaces with bad local properties, we begin by recalling the statement of
Alexander Duality:

Theorem (Alexander Duality). If A is a compact subset of an oriented
n-manifold M , then

Ȟq(A) ∼= Hn−q(M, M −A)

where Ȟ∗( ) denotes Čech cohomology. In case M = Rn, we have

Ȟq(A) ∼= H̄n−q−1(Rn −A),

where H̄∗( ) denotes reduced singular homology theory. ¤

If the space A has bad local properties, the use of Čech cohomology rather
than singular cohomology on the left side of this isomorphism is necessary.

The author was partially supported by NSF grant number DMS-9305758.
1The universal cover of the figure eight is compactified by a Cantor set. Davis and

Januszkiewicz [DJ] have constructed aspherical manifolds whose universal covers are neg-
atively curved polyhedra which are compactified by homology manifolds which are not
locally simply connected.
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If A is the topologist’s sine curve

the singular complex of A is chain contractible, so the singular cohomology
of A is isomorphic to that of a point. To see this, cut A into two pieces
above and below the dotted horizontal line pictured. The upper half has
two contractible path components, so its singular homology is that of two
points. The lower half is an interval and the Mayer-Vietoris sequence for the
union shows that A has the singular homology of a point. The singular chain
complex of A is therefore chain contractible and the singular cohomology
is also trivial. On the other hand, A separates R2, so duality “predicts”
H1(A) ∼= Z, which fails in singular cohomology.

Definition. If A is compact metric, let Ui be a sequence of finite open
covers of A such that Ui+1 refines Ui and so that

lim
i→∞

sup{diam(U) | U ∈ Ui} = 0.

Let Ni be the nerve of Ui, i. e., the simplicial complex with vertices {〈U〉 |
U ∈ Ui} such that 〈U0, . . . , Uk〉 ∈ Ni if and only if U0 ∩ · · · ∩ Uk 6= ∅. Then
we define Čech cohomology by the formula

Ȟq(A) = lim−→{H
q(Ni), si∗}

where Hq(Ni) is singular cohomology and the maps si+1 : Ni+1 → Ni are
induced by refinement.2

Using the fact that every open cover of A is refined by the Ui’s for i
greater than some i0, one shows that any two such sequences of Ui’s are
cofinal. This implies that the definition is independent of the choice of Ui’s.

2If Ni+1 refines Ni, then for each U ∈ Ni+1 there is a VU ∈ Ni with U ⊂ VU . If
{ψU} is a partition of unity subordinate to Ni+1, the map si+1 is given by the formula
si+1(x) =

P
ψU (x)〈VU 〉.
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If A is a finite polyhedron, we have a similar duality theorem from the
homology of A to the cohomology of the complement:

Hq(A) ∼= H̄n−q−1(Rn −A)

where we have used singular homology and (reduced) singular cohomology.
Again, this isomorphism fails for the A equal to the topologist’s sine curve.
A first attempt at a fix is to define Čech homology by

Ȟq(A) = lim←−Hq(Ni)

where the Ni’s are as before, and use Čech homology on the left side of the
isomorphism. This restores the isomorphism in the case of the topologist’s
sine curve, but fails for the dyadic solenoid.

Example. Let d2 : S1 → S1 be the degree two map z → z2. The dyadic
solenoid is

Σ = lim←−{S
1, d2} =

{
(z1, z2, . . . ) ∈

∞∏

i=1

S1

∣∣∣∣∣ d2(zi+1) = zi

}
.

The dyadic solenoid can be embedded in R3 as the intersection of solid tori
Ti, where a generator of π1Ti+1 represents twice a generator of π1Ti.

T1
T2

Ȟi(Σ) is equal to Z for i = 0 and 0 for all i > 0. S3 − Σ is a union of tori

T̄i = S3−
◦
T i where the inclusion of the core of Ti into Ti+1 represents twice

the generator of π1. The cohomology of S3 − Σ may be computed using
Milnor’s lim←−

1 sequence in cohomology.
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Definition. If {Ai, hi} is an inverse system of abelian groups Ai and ho-
momorphisms hi : Ai → Ai−1, define a shift map ∆ :

∏
Ai →

∏
Ai by

∆(a1, a2, . . . ) = (a1 − h2(a2), a2 − h3(a3), . . . ). Then lim←−{Ai, hi} = ker(∆)

and lim←−
1{Ai, hi} = coker(∆).

The functor lim←−
1 is the first derived functor of the inverse limit func-

tor. For countable systems, the higher derived functors vanish, so an exact
sequence of inverse systems gives rise to a six term sequence of lim←−’s and

lim←−
1’s. The group lim←−

1{Ai, hi} is clearly trivial for sequences of surjections.

This leads to easy calculations of lim←−
1 in some cases. If A = {Ai, hi} where

each Ai is isomorphic to Z and hi is multiplication by 2, B = {Bi, gi} where
each Bi is isomorphic to Z and gi is the identity, and C = {Ci, ki} with Ci

cyclic of order 2i and ki the quotient surjection, then there is a short exact
sequence 0 → A → B → C → 0 where the map Ai → Bi is multiplica-
tion by 2i and the map Bi → Ci is the quotient surjection. The six-term
sequence in this case gives us

0 → Z→ lim←−{Z/2iZ, ki} → lim←−
1{Z,×2} → 0

which shows that lim←−
1{Z,×2} is uncountable.

Theorem (Milnor’s cohomology lim←−
1 sequence [Mi2]). If X =

⋃
Ui

where Ui ⊂ Ui+1 ⊂ . . . are open sets, then there is a short exact sequence

0 → lim←−
1Hq−1(Ui) → Hq(X) → lim←−Hq(Ui) → 0. ¤

Applied to the complement of the solenoid, this gives a short exact se-
quence

0 → lim←−
1{Z,×2} → H2(S3 − Σ) → 0 → 0.

This shows that H2(S3 − Σ) ∼= lim←−
1{Z,×2}.

This computation shows that Čech homology theory is not strong enough
to give duality in the case of the solenoid, since duality predicts

Z ∼= Ȟ0(Σ) ∼= H2(R3 − Σ) ∼= lim←−
1{Z,×2} ⊕ Z,

which is wildly false.
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Remark. The astute reader will have noticed that the singular homology
of the dyadic solenoid is the same as its Steenrod homology. One might hope
from this example that replacing the inverse limit by a homotopy inverse
limit and then taking singular homology would lead to the Steenrod theory.
This process fails for the object pictured below, which is the one-point
compactification of an infinite-holed surface.

X =

The space X is the inverse limit of surfaces of increasing genus. Since X
separates R3 into two components, duality requires that H2(X) be equal to
Z. Since increasing numbers of singular simplices are required to represent
the top classes of these surfaces, passing to a homotopy inverse limit and
taking singular homology fails for this example.

Even though the solenoid Σ is connected, the duality calculation above
shows that its 0th homology group in the “correct” homology theory must
be uncountably generated. This may seem counterintuitive, but it turns
out that π1(R3/Σ) is uncountably generated, which is consistent with the
H0 calculation. One way to show this is to use the Steenrod homology
theory Hst

∗ ( ) which will be defined in the next section. The long exact
sequence of the pair (S3, Σ) gives an isomorphism Hst

1 (S3, Σ) ∼= H̄st
0 (Σ) and

invariance under relative homeomorphisms gives Hst
1 (S3, Σ) ∼= Hst

1 (S3/Σ).
An appropriate Hurewicz theorem then shows that π1(R3/Σ) is uncountable.

2. The construction of Steenrod homology theories

In [St], Steenrod constructed a homology theory Hst
∗ ( ) for compact pairs

of metric spaces which enabled him to prove the following duality theorem.

Theorem (Steenrod Duality). For all compact A ⊂ Rn,

Hst
q (A) ∼= H̄n−q−1(Rn −A).

To see what the definition of Hst
∗ ( ) must entail, it is instructive to examine

the maps in Milnor’s lim←−
1 sequence. Thinking of Hn(X) as [X,K(Z, n)],
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restriction gives maps Hn(X) → Hn(Ui) and a map Hn(X) → lim←−Hn(Ui).
If α : X → K(Z, n) is a map such that νi : α|Ui ∼ ∗ is a nullhomotopy for
each i, the νi’s do not necessarily piece together to give a nullhomotopy of
d2. In fact, for each i, νi and νi+1|Ui piece together to give a map ΣUi →
K(Z, n), which yields an element of Hn(ΣUi) ∼= Hn−1(Ui). This gives an
element of lim←−

1Hn−1(Ui) which is trivial if and only if the νi’s may be
rechosen so that they piece together to give a nullhomotopy of α.

These cohomological considerations also suggest the correct definition of
the appropriate homology theory — the missing ingredient in the naive Čech
definition above is coherence of the cycles on the various nerves of covers of
X. An n-dimensional Steenrod regular cycle α on X should be something
like a collection of n-cycles αi on the Ni’s together with an explicit choice
of (n + 1)-chains βi on each Ni such that ∂βi = αi − si+1#(αi+1). Here are
Steenrod’s words on the subject from p. 833 of [St]:

“In this paper, we introduce a new type of cycle. In essence, it is a single in-
finite cycle (in the compact metric space X) with the regularity requirement
that the diameters of successive simplices shall converge to zero. These cy-
cles lead to homology groups Hq(X) which are new topological invariants.
The Vietoris3 homology group of one less dimension V q−1(X) proves to be
a homomorphic image of Hq(X). Explicitly, to each Vietoris cycle there
corresponds a regular cycle of one higher dimension and conversely. How-
ever, to certain bounding Vietoris cycles there correspond non-bounding
regular cycles. In this way we succeed in strengthening the requirements for
bounding . . . ”4

From p. 834 of the same paper, we have:

“A (locally finite) q-chain of a simplicial complex K is a function defined
over the q-simplices of K with values in the (coefficient) group.”

Definition. A regular map of a complex K in X is a function f defined
over the vertices of K with values in X such that, for any ε > 0, all but a
finite number of simplices have their vertices imaging onto sets of diameter
< ε.

3Steenrod’s formal definition, which follows, is self-contained and does not require a
prior knowledge of Vietoris homology.

4Evidently, the convention of writing homology with lower indices had not yet taken
hold in 1940. We will denote Steenrod’s groups by Hst

q and shift the dimension by one
to be consistent with current usage. A modern treatment of Steenrod’s theory from a
somewhat different point of view is given in [Ma].
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Definition. A regular q-chain of X is a set of three objects: a complex A,
a regular map f of A in X, and a (locally finite) q-chain Cq of A. If Cq is
a q-cycle, (A, f, Cq) is called a regular q-cycle.

Definition. Two regular q-cycles (A1, f1, C
q
1) and (A2, f2, C

q
1) of X are

homologous if there exists a (q + 1)-chain (A, f, Cq+1) such that A1 and
A2 are closed (not necessarily disjoint) subcomplexes of A, f agrees with
f1 on A1 and f2 on A2, and ∂Cq+1 = Cq

1 − Cq
2 .

In modern terminology, the reduced Steenrod homology group H̄st
q (X) is

the abelian group of homology classes of regular (q + 1)-cycles in X. Note
the dimension shift. Steenrod’s definition yields reduced homology. Our Hst

q

will denote unreduced Steenrod homology.

Recall that the locally finite singular homology of a locally compact metric
space X is defined to be the homology theory based on infinite singular
chains with the requirement that if K ⊂ X is compact, then K meets the
images of only finitely many simplices from any chain. The boundary of
a locally finite chain is a locally finite chain, so we can form the locally
finite singular chain complex of X and take homology in the usual manner.
We will denote locally finite singular homology by the symbol H lf

q (X). If
X is compact, locally finite chains are finite and H lf

q is ordinary singular
homology.

We will now argue that the homology theory constructed by Steenrod
for a compact finite-dimensional metric space X is isomorphic to the locally
finite homology of the complement of X in a disk Dn if X is embedded as
a subset of the boundary.

If X is a compact metric space with finite covering dimension, X can be
embedded in ∂Dn ⊂ Dn for n ≥ 2 · dim(X) + 2.

Proposition. For compact X ⊂ ∂Dn ⊂ Dn, H̄st
q (X) is isomorphic to

H`f
q+1(D

n −X).

Remark. At first glance, this proposition may look like a restatement of
Steenrod’s duality theorem. In fact, its character is quite different. Instead
of relating homology to cohomology in dual dimensions, this result relates
homology to locally finite homology with a dimension shift of one. What we
are really showing here is that the Steenrod homology of X is isomorphic to
the “homology of the end”5 of Dn−X with a dimension shift. The modern

5For a locally finite CW complex Z, there is an inclusion S∗(Z) → Slf
∗ (Z) of the sin-
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reader who is more comfortable with locally finite homology on noncompact
manifolds than with Vietoris cycles on compact metric spaces can define the
Steenrod homology of X to be the locally finite homology of Dn −X with
no appreciable loss of understanding or integrity. Later in this section, we
will use the fundamental complex to generalize this definition to arbitrary
compact metric spaces. Note that this theorem would be false if we used Sn

in place of Dn, since when X is a polyhedron, the homology of the end of
Sn − X is the homology of the boundary of a regular neighborhood of X
rather than the homology of X itself. Geometrically, the key point is that
cycles in the complement can’t link cycles in X when X is in the boundary
of a disk. It turns out that when X is embedded in the boundary of a disk
D, the proper homotopy type of D −X depends only on X. Later, we will
prove the analogous fact that the proper homotopy type of a fundamental
complex of X depends only on X.

Note that if X is a finite polyhedron in ∂D, then D collapses to the cone
(from the center of D) on X rel the cone on X. This shows that D −X is
proper homotopy equivalent to the open cone on X. ¤

Proof of Proposition. For the proof, we consider Dn to be Dn−1× [0, 1] and
assume that X ⊂ Dn−1× [0, 1]. If (A, f, Cq+1) is a Steenrod cycle, the map
f : A(0) → X extends to a map

f̂ : A → Dn−1 × {1} ⊂ Dn−1 × [0, 1]

by convexity. Let ρ : Â → [0, 1] be a function from the 1-point com-
pactification Â = A ∪ {∞} of A to [0, 1] so that ρ−1(1) = ∞. Now let
f̄ : A → Dn−1 × [0, 1] be given by

f̄(a) = (projDn−1 ◦f̂(a), ρ(a)).

f̄(Cq+1) is a locally finite cycle on Dn−1 × [0, 1]−X. A relative version of
this construction shows that homologous Steenrod cycles give homologous
locally finite cycles. Conversely, triangulating Dn−1 × [0, 1] − X by a tri-
angulation in which simplices get smaller and smaller near X shows that
every locally finite cycle on Dn−1× [0, 1]−X comes from a Steenrod cycle.

gular chains into the locally finite singular chains. The quotient complex Slf
∗ (Z)/S∗(Z) =

Se
∗−1(Z) is often called the chain complex of the end and its homology is called the homol-

ogy of the end. The long exact homology sequence associated to 0 → S∗(Z) → Slf
∗ (Z) →

Se
∗(Z) → 0 shows that the locally finite homology of Z is isomorphic to the homology of

the end when Z is contractible.
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The required map on vertices simply sends a vertex v of this triangulation
which is within ε of X to a point of X ∩Bε(v). ¤

To see how this relates to Čech theory, let X be compact metric with
a cofinal sequence of covers Ui with nerves Ni and refinement maps si+1 :
Ni+1 → Ni as in the definition of Čech cohomology from the first section.
Let U0 = {X} and N0 = pt. Form the mapping telescope of the {Ni, si}’s,
starting with N0 = ∗.

*

s1 s2 s3 s 4

N1 N2 N3 N4

This is a Lefschetz fundamental complex of X. We will denote it by
OFC(X), for open fundamental complex. In the proof of Theorem 2 of [Mi1],
Milnor shows that if the sequence of covers {Ni} and maps si are chosen
carefully,6 then the telescope can be compactified by adding a copy of X
at infinity. This compactification can be obtained as the inverse limit of the
sequence {M(s1) ∪ · · · ∪M(si), pi} where

pi : M(s1) ∪ · · · ∪M(si) → M(s1) ∪ · · · ∪M(si−1)

is the mapping cylinder projection on the last mapping cylinder. We will
refer to this as CFC(X). Lefschetz has shown (see [Bor]) that a compact
metric space is an ANR if and only if it is ε-homotopy dominated by some
finite polyhedron for each ε > 0. The stages in this sequence dominate
the inverse limit, so CFC(X) is a contractible ANR. We can repeat the
argument of the previous Proposition using the mapping cylinder rays in
place of the collar structure to show that the Steenrod homology of X is
isomorphic to the locally finite homology of the fundamental complex. Here
is the relation to embedding X in a disk: if we were to replace each Ki by

6To get this result, Milnor has to be much more careful with the maps. The ones
we’ve described are simplicial, so the inverse limit space obtained this way is guaranteed
to contain topological simplices, which do not abound in generic compact metric spaces.
The interested reader should check [Mil1] for the proof. Nevertheless, the open funda-
mental complex obtained as I describe here is proper homotopy equivalent to the one
Milnor constructs and therefore suffices for a definition of Steenrod homology. Techni-
cally, lim←−{Ni, si} is a compactum X′ which is (strong) shape equivalent to X and which

therefore has Steenrod homology isomorphic to that of X. For X a finite polyhedron, the
open cone on X is a good model for an open fundamental complex.
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Ki ×Q, where X is the Hilbert cube, and each si by a tiny generic pertur-
bation of (si ◦ projKi

) × 0, then the resulting fundamental complex would
be homeomorphic to the Hilbert cube with the inverse limit X embedded
in a “boundary.” The proof of this is not difficult, but would take us too
far afield for a short survey. The fundamental nature of the fundamental
complex is illustrated by the following, which is a version of Chapman’s
Complement Theorem [Si].

Proposition. The simple homotopy type of the fundamental complex of
{Ki, αi} is invariant under homotopies of the bonding maps αi and passage
to subsequences. That is, the simple homotopy type of the fundamental
complex of {Ki, αi} is a pro-homotopy invariant of {Ki, αi}.

Proof. M. Cohen’s book [Co] on simple homotopy theory contains two map-
ping cylinder lemmas.

Lemma. If f, g : K → L are homotopic maps between finite CW com-
plexes, then M(f) is simple-homotopy equivalent to M(g) rel K q L.

Lemma. If f : K → L and g : L → P are maps between finite CW
complexes, then M(g ◦ f) is simple-homotopy equivalent to M(f) ∪L M(g)
rel K q P .

Invariance under homotopies of the bonding maps is an immediate con-
sequence of the first, while invariance under passage to subsequences is a
similarly immediate consequence of the second. ¤

Corollary. The Steenrod homology of X is the locally finite homology of
the fundamental complex of {Ni, si}, where the Ni’s are the nerves of any
cofinal sequence of covers of X.

It is not difficult7 to prove Axioms 1–9 for this theory. A map between
compact metric spaces induces a map between cofinal systems of nerves of
covers and a proper homotopy class of maps between fundamental com-
plexes. Let M be the category of compact metric spaces and continuous
maps between them. Let A be the category of abelian groups. We can
strengthen the above corollary to obtain:

7But we will refrain. Aside from functoriality, which we describe here, Axioms 8 and 9
(see below) are the most interesting. Axiom 8 follows from an excision and standard facts
about cell-like maps, while the proof of Axiom 9 uses a direct construction to produce a
locally finite cycle in OFC(

W
Xi) representing the product of locally finite cycles on the

OFC(Xi)’s. When the Xi,s are finite polyhedra, this construction is straightforward if we
use the fundamental complex obtained by writing

W
Xi as the inverse limit of

Wn
i=1Xi’s.
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Proposition. There is a functor S : M→ A which takes a compact met-
ric space X to H`f

∗ (OFC(X)). This functor is naturally equivalent to the
reduced Steenrod homology functor H̄st

∗−1.

Proof. The equivalence is given by the isomorphisms

H`f
∗ (OFC(X)) ∼= H̄st

∗ (CFC(X)/X) ∼= Hst
∗ (CFC(X), X) ∼= H̄st

∗−1(X)

where the first isomorphism is given by the isomorphism between the lo-
cally finite homology of a space and the reduced Steenrod homology of
its 1-point compactification and the last isomorphism comes from the long
exact sequence of the pair (CFC(M),M) and the fact that CFC(M) is
contractible. ¤

If X and Y are compact metric spaces, a proper homotopy class of maps
between fundamental complexes OFC(X) and OFC(Y ) does not induce a
homotopy class of maps X → Y . Since a proper map OFC(X) → OFC(Y )
does induce a homomorphism H`f

∗ (OFC(X)) → H`f
∗ (OFC(Y )) and there-

fore a homomorphism H̄st
∗ (X) → H̄st

∗ (Y ), it is desirable for many purposes
to expand the notion of map between compact metric spaces so that proper
maps between open fundamental complexes OFC(X) and OFC(Y ) are in
1-1 correspondence with “maps” between X and Y . This is essentially the
definition of a strong shape morphism from X to Y [DS], [EH].

It is worthwhile to interpret these strong shape morphisms in terms of
nerves of covers. After passing to suitable subsequences, a proper map α :
OFC(X) → OFC(Y ) gives rise to a sequence of maps αi : N(Ui) → N(Vi)
together with choices of coherence homotopies making the diagrams

N(Ui) //αi
N(Vi)

N(Ui+1)

OO

//αi+1
N(Vi+1)

OO

homotopy commute. Two such systems are equivalent if, after passing to
subsequences, there are homotopies of the corresponding αi’s and homo-
topies of the coherences. This last is what makes the shape theory “strong.”
If we think of X and Y as being embedded in euclidean space, this means
that a strong shape morphism from X to Y is represented by a sequence of
continuous maps from smaller and smaller neighborhoods of X to smaller
and smaller neighborhoods of Y together with homotopies connecting maps
at one stage to maps at the next. The similarity to the various notions of
“approximate map” appearing in the analytic approaches to the Novikov
Conjecture is striking.
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Steenrod shows that the homology theory resulting from any of these
equivalent definitions satisfies the Eilenberg-Steenrod axioms for all compact
pairs. In [Mi1], Milnor proves that Steenrod homology satisfies two extra
axioms — invariance under relative homeomorphism and a cluster axiom,
which says that the homology of an infinite compact wedge is the product of
the homologies. One of the main theorems of [Mi1] says that these axioms
characterize Steenrod homology theory for compact metric spaces in the
same way that the usual Eilenberg-Steenrod axioms characterize ordinary
homology theory on finite complexes. It is the extension of this result to
extraordinary homology theories which comes into play in the study of the
Novikov Conjecture. Here is the statement of Milnor’s theorem:

Theorem (Characterization of Steenrod homology). There exists
one and only one homology theory8 H∗( ) defined for pairs of compact
metric spaces which satisfies the following two Axioms as well as the seven
Eilenberg-Steenrod Axioms and which satisfies H0(pt) = G.

The new axioms are:

Axiom 8. Invariance under relative homeomorphism.

Axiom 9. (Cluster Axiom). If X is the union of countably many com-
pact subsets X1, X2, . . . which intersect pointwise at a single point b, and
which have diameters tending to zero, then Hq(X, b) is naturally isomorphic
to the direct product of the groups Hq(X, b).

Axiom 9 is closely related to the following:

Theorem (Milnor lim←−
1 sequence in homology). If X is the inverse

limit of a sequence of maps of compact metric spaces Xi+1 → Xi there is
defined a short exact sequence

0 → lim←−
1 Hst

q+1(Xi) → Hst
q (X) → lim←−Hst

q (Xi) → 0. ¤

The most useful case of this is the case in which a compact metric space
X is written as an inverse limit of finite polyhedra, X = lim←−{Ki, si}. In
this case, the sequence allows us to compute the Steenrod homology of X
in terms of the singular homology groups of the Ki’s. For instance, if Σ is
the solenoid of the first section, we have

0 → lim←−
1 H1(S

1) → Hst
0 (Σ) → lim←−H0(S

1) → 0

8This homology theory is, of course, Hst
∗ ( ).
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which shows that Hst
0 (Σ) is isomorphic to H2(R3 −Σ), as computed in the

first section. The proof, which we take directly from [Mi1] is simple:9

Let K0 be a point and form the mapping telescope compactified by a copy
of X at “infinity” as in the construction of the closed fundamental complex.
The compactified telescope T is a contractible ANR containing X. Choose a
point x0 in X and let R be a base ray running down the mapping cylinders
from x0 to ∗. The boundary map for the pair (T, X) and the relative home-
omorphism axiom comparing (T, X) with (T/X, [X]) give an isomorphism
H̄st

k+1(T/X) ∼= H̄st
k (X). Let A ⊂ T/X consist of the union of R with all

of the Ki’s. Collapsing R shows that A is homotopy equivalent to a cluster
as in Axiom 9. On the other hand, (T/X)/A is also a cluster, this time of
the suspensions of the Ki’s. The long exact sequence of (T, A) and Axiom
8 give:

H̄k+2((T/X)/A) //∂
Hk+1(A) // Hk+1(T/X) // H̄k+1((T/X)/A) //∂

Hk(A).

Applying Axiom 9 and the isomorphism H̄st
k+1(T/X) ∼= H̄st

k (X) gives

∏
H̄k+1(Ki) →

∏
H̄k+1(Ki) → H̄k+1(T/X) →

∏
H̄k(Ki) →

∏
H̄k(Ki).

Examination of the boundary map ∂ shows that it is the shift map ∆ used
in the definition of lim←− and lim←−

1.

There is a considerable literature extending these results to larger classes
of spaces. To quote from [In]: “Different constructions of Steenrod (exact)
homology have been given by many authors (Steenrod, Milnor, Kolmogorov,
Chogoshvili, Sitnikov, Borel, Moore, Sklyarenko, Massey, Kuzminov, Shve-
dov, Berikashvili, Inasaridze and others).” References to some of the appro-
priate papers are included in the bibliography of this paper.

9We repeat it here because of the argument’s beauty and because the included picture
may help readers to understand the argument.
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Steenrod homology theories with coefficients in any spectrum were de-
veloped by Edwards-Hastings [EH] and Kahn-Kaminker-Schochet [KKS]. In
modern algebraic topology, it is usual to think of the homology of a finite
polyhedron K with coefficients in a spectrum S as being obtained by tak-
ing homotopy groups of the homology spectrum H(K), where H(K) is the
smash product of K with S. A definition of Steenrod homology which works
for any spectrum S is to start with a compact metric space X, form the se-
quence of nerves Ni as above, form the homology spectra H(Ni;S) = Ni∧S,
and then define

Hk(X;S) = πk holim{H(Ni;S)}.

Thus, the Čech homology construction works if we “spacify” before taking
the limit and then take homotopy groups! There is a lemma, due to Milnor
([BK] IX.3.1) , which says that if Z = lim←−{Zi, αi} and the maps αi : Zi →
Zi−1 are fibrations, then there is a short exact sequence

0 → lim←−
1πk+1Zi → πkZ → lim←−πkZi → 0.

If {Ni} is a sequence of nerves of covers of a compact metric space X as
above, this translates into a Milnor exact sequence in Steenrod S-homology

0 → lim←−
1Hk+1(Ni;S) → Hk(X;S) → lim←−Hk(Ni;S) → 0.

The correspondence between Steenrod homology theories on compacta
and locally finite homology theories on locally compact ANR’s carries over
to homology with coefficients in a spectrum. Thus, one can use a good notion
of “locally finite cycle” to define the Steenrod homology of a compactum to
be the locally finite homology of its fundamental complex or, conversely, one
can use a definition of Steenrod homology with coefficients in a spectrum
to define the locally finite homology of a locally compact metric space X as
the reduced Steenrod homology of its 1-point compactification.

3. Steenrod homology and the Novikov Conjecture

Here is how Steenrod homology arises in one geometric approach to the
L-theory integral Novikov conjecture. In order to show that the assembly
map is a monomorphism, it suffices to show that the map preceding it in
the surgery exact sequence is zero. If M and N are aspherical manifolds
and f : M → N is a homotopy equivalence which is a homeomorphism on
the boundary, this amounts to showing that f is tangential (see [Mi3]) rel
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boundary. We can pass to universal covers and form the diagram:

Ñ ×Γ Ñ //f̃×Γf̃

²²
proj1

M̃ ×Γ M̃

²²
proj1

N //f
M.

Here Γ = π1M = π1N acts diagonally on M × M and N × N and the
maps proj1 are induced by projection onto the first factor. It turns out that
Ñ ×Γ Ñ and M̃ ×Γ M̃ are bundles with fiber Ñ and M̃ over N and M
which are micro-equivalent to the topological tangent bundles of N and M .
To show that f is tangential, it suffices to show that f̃ ×Γ f̃ is proper10

homotopic to a fiber-preserving map which restricts to a homeomorphism
on each fiber. This approach goes back to Farrell-Hsiang [FH].

One approach to this problem is via bounded surgery theory [FP]. The
map f̃ ×Γ f̃ restricts to a copy of f̃ on each fiber. Thus, the problem of ho-
motoping these maps to homeomorphisms can be viewed as a parameterized
bounded surgery problem. We can proceed by induction on skeleta in N to
boundedly homotop maps over each skeleton to homeomorphisms. Assum-
ing that we have succeeded over ∂∆k, the obstruction to succeeding over

the interior lies in Sbdd




M̃ ×∆k

↓
M̃

rel ∂(M̃ ×∆k)


. The bounded surgery

sequence which computes this is:

· · · → Sbdd




M̃ ×∆k

↓
M̃

rel ∂(M̃ ×∆k)


 → H`f

n+k(M̃ ; G/TOP )

→ Lbdd
n+k,fM (e) → . . .

If these structure sets vanish, we conclude that the bounded L-groups are
isomorphic to locally finite homology with coefficients in the L-spectrum.
Thus, it is natural to study the functorial properties of the bounded L-
groups with an eye to showing that they are, in fact, locally finite homology
groups with coefficients in L-theory. See [PW] and [Ran].

Variations on this procedure are possible. In particular, if M̃ admits a
nice compactification, we could use continuously controlled surgery theory

10I’m cutting some corners here. The proper condition is not necessary to show tan-
gentiality, but it is necessary to show vanishing in the integral surgery sequence. Without
the word proper, we would be proving rational Novikov.
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[AnCFK], [CP] in place of bounded surgery theory. So far, success in this
program has come mainly in such cases [FW1], [CP]. This is where Steenrod
homology enters the picture, since the space at infinity need not be an ANR.
If M ∪X = M̄ is a contractible compactification of M̃ , we have H`f

∗ (M̃) =
Hst
∗ (M̄, X) ∼= Hst

∗−1(X). Thus, in case M̃ admits a nice compactification,
we can also proceed by trying to show that the bounded L-theory of M̃ (or
the continuously controlled L-theory of M̄ at X) is the Steenrod homology
of the space X at infinity.

Carlsson [Car2] applied locally finite homology to the K-theory Novikov
Conjecture in the context of equivariant homotopy theory. On the analytical
side, the identification of elliptic operators with K-homology cycles allows
one to trace related constructions back much farther through [GL], [Kas],
and even to [Lus]. The relation between locally finite homology with coeffi-
cients in K- and L- theory and controlled topology was studied by Quinn
[Q1], [Q2]. Using Quinn’s obstruction theory, the geometric approach to the
L-theory Novikov Conjecture in [FW2] can be interpreted in terms of lo-
cally finite L-homology. Similar considerations also arise in the Higson-Roe
approach [HigR], [R] to the Novikov Conjecture via coarse geometry. In the
Higson-Roe approach, the goal is to prove that an assembly map

K`f
∗ (M̃) → K∗(BH)

is an isomorphism. The first term is locally finite K-theory of the universal
cover of M and the second term is the K-theory of the bounded propagation
operators on M̃ . Again, one approach to the goal is to show that the right-
hand side is a locally finite homology theory or, in favorable cases, that it
is the Steenrod homology of a “space at infinity.”

One of the fundamental problems of controlled topology is expressed by
the question “how big is epsilon?” Quinn [Q1], [Q2], Chapman [Ch] and
the author, [F], [ChF] have proven stability theorems in various categories
showing that “epsilon control for epsilon sufficiently small implies arbitrary
control.” When M̃ is a nonpositively curved Riemannian manifold, these
theorems show that bounded control suffices, that is, that a boundedly con-
trolled geometric or algebraic object can be deformed to one with arbitrarily
fine control. For aspherical complexes K where bounded control in K̃ im-
plies epsilon control for any epsilon, the argument at the beginning of this
section will prove the L-theory Novikov Conjecture for π1(K): In the ob-
struction theory of [FP], an element of the bounded L-group is represented
by a “bounded quadratic chain complex.” The question, then, is whether
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such objects and the relations between them can always be subdivided to
obtain ε-controlled quadratic chain complexes for any ε. These last are the
cycles in Quinn’s theory, which is known to be locally finite homology the-
ory with coefficients in the connective L-spectrum. In the presence of such
subdivisions, the assembly map

H`f
n+k(M̃ ; G/TOP ) → Lbdd

n+k,fM (e)

is an isomorphism, the structure set Sbdd




M̃ ×∆k

↓
M̃

rel ∂(M̃ ×∆k)


 is

trivial, and the homotopy equivalence f is tangential. Unfortunately, the
author currently knows of no general procedure for performing such subdi-
visions. The proofs11 that the author is familiar with all rely on some sort
of geometry in the universal cover which allows one to squeeze a bounded
cycle to an epsilon cycle. Even the argument of [CP] has a trace of this
flavor – the vanishing of a controlled surgery obstruction near infinity gives
homeomorphisms near infinity on the tangent bundles and an Alexander
trick as in [FH] does the squeezing. In this sense, a nice compactification is
a vestigial nonpositive curvature condition. The situation in the absence of
geometry is far from clear.
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1. Introduction

In classical surgery theory one begins with a Poincaré duality space X and
a normal map

νM //f̃

²²

ξ

²²
M //f

X

The problem is to vary (M, f) by a normal cobordism to obtain a homotopy
equivalence f ′ : M ′ → X.

It is desirable to have an epsilon or controlled version of surgery theory.
Thus, X comes equipped with a reference map to a metric space K, and
the aim is to produce a homotopy equivalence f ′ : M ′ → X, which is small
measured in K. The existence of such an f ′ implies that X is a small
Poincaré duality space in the sense that cells are close to their dual cells,
measured in K. That X be a small Poincaré duality space must therefore
be part of the original data.

For many applications the most interesting question is whether such a
map f ′ exists with arbitrarily small control in K. In this case, X would
have to be an ε-Poincaré duality space for all ε > 0. Unfortunately, there
are technical difficulties in defining and dealing with such ε-Poincaré duality
spaces. Our approach is to work instead with a bounded surgery theory.
Our bounded surgery theory generalizes epsilon surgery theory in the same
sense that simple proper surgery theory (as developed in [39, 41, 18, 26])
generalizes classical compact surgery theory. The fact that bounded cate-
gories are categories avoids many technical difficulties.

Consider a classical surgery problem as above. Cross with the real line
and look for an infinite simple homotopy equivalence f ′ : M ′ → X × R.
Such a manifold M ′ has the form N ′ × R for some closed manifold N ′, so
f ′ : N ′ → X solves the classical surgery problem. This means that the
two-ended simple surgery theory is as good for applications as the compact
theory. The two-ended theory is more general, though, since it applies to
any two-ended manifold with fundamental group equal to the fundamental
group of each end.

This is our approach to epsilon surgery theory and its generalization. We
consider surgery problems parameterized over K ×R, where K ×R is given
a metric so that K × {t} becomes t times as big as K × {1} for t > 1. Call
this space O(K+). (This description is not quite accurate. See §2 for precise
definitions and details).1

1It is easy to see that if Z is a Poincaré duality space with a map Z → K such that
Z has ε-Poincaré duality for all ε > 0 when measured in K (after subdivision), e.g. a
homology manifold, then Z × R is an O(K+)-bounded Poincaré complex. The converse
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We let X be a complex with bounded Poincaré duality over this control
space. Given a proper normal map

νM //f̃

²²

ξ

²²
M //f

X // O(K+)

we study the problem of producing a proper normal cobordism to f ′ : M →
X such that f ′ is a bounded simple homotopy equivalence measured in
O(K+). The obstruction groups obtained are the desired obstruction groups
for epsilon surgery. This is our codification of the idea that an ε-Poincaré
space (for all ε > 0) is a sequence of smaller and smaller Poincaré duality
spaces joined by smaller and smaller Poincaré cobordisms.

Thus, in case X is a homology manifold (homology manifolds are natu-
rally epsilon Poincaré for all epsilon) with a reference map ϕ : X → K, we
replace an epsilon surgery problem

νM //f̃

²²

ξ

²²
M //f

X // K

by the bounded surgery problem

νM × 1 //f̃

²²

ξ × 1

²²
M × R //f // X × R // O(K+)

If f × id is properly normally cobordant to a bounded simple equivalence
f ′ : M → X × R, we split M ′ near the end to obtain a sequence of more
and more controlled solutions to the original problem. Our approach gener-
alizes this sort of epsilon surgery in case other data happen to be available.
For an application in which a parameterization over an open cone appears
naturally, see Theorem 18.1, which is not a bounded translation of an ep-
silon problem. The other applications in §18 do, however, illustrate how
one passes between the bounded and epsilon worlds.

Naturally, we require hypothesis in addition to the general situation de-
scribed above. In the first part of the paper, our main hypotheses are that
the control map X → K have constant coefficients in the sense that it
“looks like” a product on π1, and that K be a finite complex. This restricts

(while true) will not concern us here.
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applicability in, say, the case of group actions, to semifree group actions. In
§14 we show how to extend the theory to treat a more general equivariant
case, but for readability, we have chosen to give most details in the special
case of constant coefficients.

Some surprising phenomena come up. The method allows studying many
more objects than exist in the compact world. An n-manifold parameterized
by Rn+k is an object of dimension −k, so we have objects that in some sense
correspond to negative dimensional manifolds. This leads to nonconnective
surgery spectra. The necessary algebra for our theory has been developed
in [23, 27, 9].

Needless to say, we have benefited from discussions with many colleagues.
We should like particularly to mention Anderson, Hambleton, Hughes, Lück,
Munkholm, Quinn, Ranicki, Taylor, Weibel, Weinberger, and Williams. In
fact, related theories have been developed by Hughes, Taylor and Williams,
[14], Madsen and Rothenberg [17], and Weinberger [44].

Finally we want to acknowledge that the very stimulating atmosphere of
the SFB at Göttingen has had a major effect on the developments of this
paper. The first author would also like to thank Odense University for its
support in the fall of 1987.

2. Algebraic preliminaries

Let M be a metric space, and let R be a ring with anti-involution. For
definiteness, the reader should keep in mind the model case in which M is
the infinite open cone O(K) on a complex K ⊂ Sn ⊂ Rn+1 and R = Zπ,
with π a finitely presented group. The category CM (R) is defined as follows:

Definition 2.1. An object A of CM (R) is a collection of finitely generated
free right R-modules Ax, one for each x ∈ M , such that for each ball C ⊂ M
of finite radius, only finitely many Ax, x ∈ C, are nonzero. A morphism
ϕ : A → B is a collection of morphisms ϕx

y : Ax → By such that there exists
k = k(ϕ) such that ϕx

y = 0 for d(x, y) > k.

The composition of ϕ : A → B and ψ : B → C is given by (ψ ◦ ϕ)x
y =∑

z∈M ψz
yϕx

z . The composition (ψ◦ϕ) satisfies the local finiteness and bound-
edness conditions whenever ψ and ϕ do.

Definition 2.2. The dual of an object A of CM (R) is the object A∗ with
(A∗)x = A∗x = HomR(Ax, R) for each x ∈ M. A∗x is naturally a left
R-module, which we convert to a right R-module by means of the anti-
involution. If φ : A → B is a morphism, then φ∗ : B∗ → A∗ and
(φ∗)x

y(h) = h ◦ φy
x, where h : Bx → R and φy

x : Ay → Bx. φ∗ is bounded
whenever φ is. Again, φ∗ is naturally a left module homomorphism which
induces a homomorphism of right modules B∗ → A∗ via the anti-involution.
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Definition 2.3. There are functors ⊕ and Π from CM (R) to Mod(R), the
category of free modules over R. ⊕A =

⊕
x∈M Ax and ΠA =

∏
x∈M Ax.

Notice that ΠA∗ = (⊕A)∗.

Definition 2.4. Consider a map p : X → M

(i) The map p : X → M is eventually continuous if there exist k and a
covering {Uα} of X, such that the diameter of p(Uα) is less than k.

(ii) A bounded CW complex over M is a pair (X, p) consisting of a CW
complex X and an eventually continuous map p : X → M such
that there exists k such that diam(p(C)) < k for each cell C of X.
(X, p) is called proper if the closure of p−1(D) is compact for each
compact D ⊂ M . We consider (X, p1) and (X, p2) to be the same,
if there exists k so that d(p1(x), p2(x)) < k for all x.

Remark 2.5. We do not require the control map p to be continuous in
the above definition. It is, however, often the case that p may be chosen
to be continuous. This is the case if the metric space is “boundedly highly
connected” in an appropriate sense. See Definition 5.2.

Definition 2.6. Consider a bounded CW complex (X, p)

(i) The bounded CW complex (X, p) is (−1)-connected if there is k ∈
R+ so that for each point m ∈ M , there is a point x ∈ X such that
d(p(x),m) < k.

(ii) (X, p) is 0-connected if for every d > 0 there exist k = k(d) so that
if x, y ∈ X and d(p(x), p(y)) ≤ d, then x and y may be joined by
a path in X whose image in M has diameter < k(d). Notice that
we have set up our definitions so that 0-connected does not imply
−1-connected.

Definition 2.7. Let p : X → M be 0-connected, but not necessarily (-1)-
connected.

(i) (X, p) has trivial bounded fundamental group if for each d > 0,
there exist k = k(d) so that for every loop α : S1 → X with
diam(p ◦ α(S1)) < d, there is a map ᾱ : D2 → X so that the
diameter of p ◦ ᾱ(D2) is smaller than k.

(ii) (X, p) has bounded fundamental group π if there is a π-cover X̃ so
that X̃ → M has trivial bounded fundamental group.

If X is a CW complex, we will denote the cellular chains of X̃ by C#(X),
considered as a chain complex of free right Zπ-modules. When p : X → M
is a proper bounded CW complex with bounded fundamental group, we
can consider C#(X) to be a chain complex in CM (Zπ) as follows: For each
cell C ∈ X, choose a point c ∈ C and let D#(X)y be the free submodule
of C#(X) generated by cells for which p(c) = y. The boundary map is
bounded, since cells have a fixed maximal size. We will denote the cellular
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chains of X̃ by D#(X) when we consider them as a chain complex in CM (Zπ)
and by C#(X) when we consider them as an ordinary chain complex of Zπ
modules. We will denote D#(X)∗ by D#(X). If (X, ∂X) is a bounded CW
pair, D#(X, ∂X) denotes the relative cellular chain complex regarded as a
chain complex in CM (Zπ).

Lemma 2.8. When p : X → M is a proper bounded CW complex with
bounded fundamental group, we have the following formulas

(i) ⊕D#(X) = C#(X)
(ii) ⊕D#(X) = C#

cs(X) (≡ cochains with compact support)
(iii) ΠD#(X) = Clf

# (X) (≡ locally finite chains)
(iv) ΠD#(X) = C#(X).

Proof. Statement (i) is clear, and (iv) follows from the formula Π(A∗) =
(⊕A)∗. Statements (ii) and (iii) follow easily from the fact that p is proper.
In case p is not proper this suggests an extension of the concepts of homology
with locally finite chains and cohomology with compact support to concepts
requiring compactness or locally finiteness only in a designated direction.

We recall the open cone construction from [27]. If K is a subset of
Sn ⊂ Rn+1, we define O(K) to be the metric space O(K) = {t ·x|0 ≤ t, x ∈
K} ⊂ Rn+1. Here, O(K) inherits a metric from Rn+1. We think of this as
a 1-parameter family of metrics on K, in which distance grows larger with
increasing t. We state the main result of [27]:

Theorem 2.9. Let K be of the homotopy type of a finite complex. The
K-theory of the categories CO(K)(R) is given by

K∗(CO(K)(R)) = KR∗−1(K)

where KR is the nonconnective homology theory associated to the algebraic
K-theory of the ring R.

We refer the reader to [27] for further facts about the O construction and
the K-theory of CO(K)(R).

Definition 2.10. Let R be a ring with unit. We denote Coker(K∗(CM (Z)) →
K∗(CM (R))) by K̃∗(CM (R)). If R is a group ring, R = Zπ, we denote
K̃1(CM (R))/± π by WhM (π).

Definition 2.11. We define

(i) a metric space M is allowable if there exist a bounded finite-dimen-
sional simplicial complex K and a map p : K → M which is −1, 0-
and 1-connected.
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(ii) a map f : X → Y between metric spaces is eventually Lipschitz if
the inverse image of every bounded set is bounded and if there are
numbers k > 0 and d > 0 so that d(f(x), f(x′)) ≤ max(d, kd(x, x′))
for all x, x′ ∈ X. We say that X and Y are eventually Lipschitz
equivalent if there exist a number M > 0 and eventual Lipschitz
maps f : X → Y , g : Y → X so that d(f ◦ g, id) < M and
d(g ◦ f, id) < M .

In connection with our study of the resolution problem, we will want to
apply this theory to open cones on compact finite-dimensional ANR’s, so
we prove that such spaces are allowable.

Proposition 2.12. If X ⊂ Sn is a compact ANR, then O(X) is an allow-
able metric space.

Proof. Let rt : U → X be a homotopy from a neighborhood U of X in
Sm to X such that r0 = id, r1 : U → X is a retraction, and rt|X = id
for all t. Let X =

⋂∞
i=1 Pi, where P1 ⊃ P2 ⊃ . . . are finite polyhedra and

rt(Pi+1) ⊂ Pi for all t ∈ [0, 1]. We may assume that Pn ⊂ N 1
n
(X). Form

the telescope K =
⋃∞

n=1 O(Pn) ∩ B(n, 0), where B(n, 0) is the closed ball
of radius n around 0 ∈ Rm+1. The map r1 induces a map r̄ : K → O(X)
which is −1, 0 and 1-connected.

Remark 2.13. Notice the following

(i) If M = O(X) is the open cone on a compact ANR and p : Z → M
is a finite-dimensional bounded CW complex, then p may be chosen
to be continuous. The argument is an induction over the skeleta of
Z starting with p restricted to the 0-skeleton.

(ii) Assume that K is a connected PL complex. Then we have

K̃1(CO(K)(R)) = K1(CO(K)(R)) and WhO(K)(π) = K̃1(CO(K)(Zπ)),

except when K is empty, in which case O(K) = pt. The argument
is an Eilenberg swindle.

Definition 2.14. Let M be a metric space and let p : X → M and q :
Y → M be maps. A map f : X → Y is said to be bounded over M (or
simply bounded) if there is a number k > 0 so that d(q ◦ f(x), p(x)) < k for
all x ∈ X. We say that f is a bounded homotopy equivalence if there exist
g : Y → X and homotopies h : f ◦ g ∼ id, l : g ◦ f ∼ id so that f, g, h and l
are bounded.

Theorem 2.15. Let M be an allowable metric space and let pX : X → M ,
pY : Y → M be proper bounded finite-dimensional CW complexes, both −1
and 0-connected with bounded fundamental group π. If f : X → Y is a
cellular map such that:
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(i) f ◦ pY = pX .
(ii) f induces a π1-isomorphism.
(iii) f induces a (bounded) homotopy equivalence of chain complexes in

CM (Zπ), f# : D#(X) → D#(Y ).

Then f is a bounded homotopy equivalence.

Proof. This is proved in [2] for the case of a continuous control map. An
alternative approach that works in our generality is to replace X and Y
by proper regular neighborhoods N(X) ⊂ N(Y ) in some high-dimensional
euclidean space and then apply the bounded h-cobordism theorem 2.17.
The problem with torsion is solved by crossing with S1, thus killing the
torsion, thus getting a bounded homotopy equivalence of X×S1 → Y ×S1,
and hence X → Y since X is bounded homotopy to X × R which is the
cyclic cover of X × S1.

Remark 2.16. The theorem above plays a rôle in our theory which is anal-
ogous to the Whitehead theorem’s rôle in standard surgery theory.

Finally we note that we have the bounded analogue of the s-cobordism
theorem.

Theorem 2.17. (Bounded s-cobordism theorem). Assume W → M is a
−1 and 0-connected manifold with bounded fundamental group π such that
the boundary of W has 2 components ∂0W ⊂ W and ∂1W ⊂ W , such
that the inclusions are bounded homotopy equivalences. The torsion τ of W
is defined by the torsion of the contractible chain complex D#(W,∂0W ) ∈
WhM (π) see [37]. For dim(W ) > 5 we have that W is isomorphic to
∂0W × I if and only if τ = 0.

Proof. The s-cobordism theorem in [25] is only stated for the parameter
space Rn, and in that context a bounded and thin h-cobordism theorem is
proved. As far as the bounded s-cobordism theorem is concerned, the argu-
ments only use that the h-cobordism is −1 and 0-connected with bounded
fundamental group.

3. Bounded Poincaré complexes

Given a bounded CW complex p : X → M with bounded fundamental
group π, an element [y] ∈ H lf

n (X,Z) induces a cap-product y∩− : D#(X) →
Dn−#(X). Here, y ∩ − is a homomorphism of chain complexes in CM (Z)
and is well-defined up to chain homotopy. The formula defining y ∩ − is
the usual one using the Alexander-Whitney diagonal approximation. The
size estimate on y∩− follows from the fact that the diagonal approximation
takes the generator c ∈ (Dn(X))m to a sum

∑
ci⊗c′i where ci ∈ (D#(X))mi ,
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c′i ∈ (D#(X))m′
i
, and d(p(mi), p(m′

i)) ≤ 2k, where k is the bound on the
diameter of the cells of X as measured in M .

Our notational conventions in the following definition are based on [43,
pp. 21–22]

Definition 3.1. Let p : X → M be a proper bounded CW complex with
bounded fundamental group π, and let X̃ → X be an orientation double
covering. Then X is a bounded n-dimensional Poincaré duality space if there
is an element [X] ∈ H lf

n (X;Z), such that [X] ∩ − : D#(X) → Dn−#(X) is
a bounded homotopy equivalence of chain complexes. Here, Z is made into
a left Zπ module using the antiinvolution on Zπ. X is a simple bounded
Poincaré duality space if the torsion of [X] ∩ − is trivial in WhM (π). If
p : X → M is a disjoint union of spaces satisfying this condition, we shall
also call X a Poincaré space. Notice that X may have infinitely many
components, but the properness of p : X → M ensures that locally there
are only finitely many components.

Definition 3.2. Let p : (X, ∂X) → M be a proper bounded CW pair
so that X has bounded fundamental group π. The pair (X, ∂X) is an n-
dimensional bounded Poincaré duality pair if ∂X is an (n− 1)-dimensional
bounded Poincaré complex with orientation double covering the pullback
of the orientation double covering on X and if there is an element [X] ∈
H lf

n (X, ∂X;Z), such that [X] ∩ − : D#(X) → Dn−#(X, ∂X) is a bounded
homotopy equivalence of chain complexes. (X, ∂X) is a simple bounded
Poincaré duality space, if the torsion of [X] ∩ − is trivial in WhM (π).

Remark 3.3. We note that [X] ∩− is independent up to chain homotopy
of the choice of representative chain for [X]. This is true since any other
choice is of the form X+δz and (X+δz)∩y−x∩y = δz∩y = δ(z∩y)−z∩δy,
so z ∩ − is a chain homotopy between the two maps X∩ and (X + δz)∩.

Example 3.4. If X happens to be a manifold with a bounded handle
decomposition, the usual proof of Poincaré duality produces a bounded
Poincaré structure on X.

Definition 3.5. Let φ : (W,∂W ) → (X, ∂X) be a map of bounded Poincaré
duality pairs such that φ∗([W ]) = [X]. We define K#(W,∂W ) to be the
algebraic mapping cone of φ∗ : D#(X, ∂X) → D#(W,∂W ). We define
K#(W,∂W ) to be the dual of K#(W,∂W ). We have short exact sequences
of chain complexes

0 // D#(X, ∂X) //φ∗
D#(W,∂W ) // K#(W,∂W ) // 0

0 // K#(W,∂W ) // D#(W,∂W ) //φ∗ // D#(X, ∂X) // 0.
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As in classical surgery theory we have the following:

Lemma 3.6. Let φ : (W,∂W ) → (X, ∂X) be a map of bounded Poincaré
duality pairs such that φ∗([W ]) = [X]. Then cap product with [W ] and
[X] induces a bounded chain homotopy equivalence from K#(W,∂W ) to
Kn−#(W ).

Remark 3.7. We have

(i) This definition of K#(W,∂W ) gives K#(W,∂W ) the same indexing
as the kernel complex in [4] and [43]. Except for a shift in the index
and changes in signs, K#(W,∂W ) is just the algebraic mapping
cone of D#(W,∂W ) → D#(X, ∂X).

(ii) Parameterizing an open manifold by the identity, our constructions
give a simple proof of Poincaré duality on open manifolds from
homology with locally finite coefficients to standard cohomology,
or from cohomology with compact supports to standard homology.
One applies Π and⊕ respectively to the chain homotopy equivalence
[X] ∩ −.

4. Spivak normal fibre space

In this section we construct the Spivak normal fibre space of a bounded
Poincaré duality space. Since bounded Poincaré complexes are certainly
open Poincaré complexes in the sense of Taylor [41], we could simply refer
to [41], but for the readers’ convenience we give the existence proof:

Construct a proper embedding of X ⊂ Rn, n − dim X ≥ 3. Let W a
regular neighborhood of X and r : W → X a retraction. W → M has a
bounded fundamental group, and we can triangulate sufficiently finely to
get a bounded CW structure on W . Let F be the homotopy fibre of the
map ∂W → X.

Lemma 4.1. The fibre F is homotopy equivalent to a sphere of dimension
n− dim X − 1.

Proof. By the codimension 3 condition, F is simply connected. It is clear
that F is also the fibre of the pullback to the universal cover of X, so con-
sider the relative fibration (∗, F ) → (W̃ , ∂W̃ ) → X̃. We have at Zπ-module
chain level homotopy equivalence D#(W,∂W ) ∼= Dn−#(W ) ∼= Dn−#(X) ∼=
Ddim X−n+#(X), so applying ⊕ we get C#(W,∂W ) ∼= C#+dim X−n(X).
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Therefore H∗(W̃ , ∂W̃ ) = H∗+dim X−n(X̃). The usual spectral sequence ar-
gument shows that

Hi(∗, F ) =





0 i < n− dim X

Z i = n− dim X

0 i > n− dim X

and F is thus a sphere, since π1F = 0. Considering W ⊂ Rn ⊂ Rn
+ = Sn

and collapsing everything outside W produces a spherical Thom class.

The proof of uniqueness of the Spivak normal fibre space is also standard,
and is left to the reader.

5. Surgery below the middle dimension

Our definition of “bounded surgery problem” is a straightforward transla-
tion of Wall’s “surgery problem” [43, p. 9] into bounded topology.

Definition 5.1. Let Xn be a bounded Poincaré duality space over a metric
space M and let ν be a (TOP, PL or O) bundle over X. A bounded surgery
problem is a triple (Wn, φ, F ) where φ : W → X is a proper map from an
n-manifold W to X such that φ∗([W ]) = [X] and F is a stable trivialization
of τW ⊕ φ∗ν. Two problems (W,φ, F ) and (W, φ̄, F̄ ) are equivalent if there
exist an (n + 1)-dimensional manifold P with ∂P = W

∐
W , a proper map

Φ : P → X extending φ and φ̄, and a stable trivialization of τP ⊕ Φ∗ν
extending F and F̄ . See [43, p. 9] for further details.

We will use the notation W
φ−→ X

↓
M

to denote a bounded surgery problem.

When M is understood, we will shorten the notation to φ : W → X or
even to φ. In all cases, the bundle information is included as part of the
data. Our theorem on surgery below the middle dimension and its proof
are parallel to Theorem 1.2 on p. 11 of [43]. In order to state the theorem,
we need a definition.

Definition 5.2. If p : X → M is a control map, we will say that f : Y →
X is boundedly k-connected over M if for every c > 0 there is a number
d > 0 so that for each −1 ≤ l < k and map α : Sl → Y with extension
β : Dl+1 → X of f ◦ α with diam(p ◦ β(Dl+1)) ≤ c, there exist a map
γ : Dl+1 → Y and a homotopy h : Dl+1 → X with h0 = f ◦ γ, h1 = β, and
diam(p ◦ h(Dl+1 × I)) ≤ d.

Note that if X is a bounded CW complex over M , then X(k) → X
is boundedly k-connected. The notion of boundedly k-connected over M
differs from the notion of bounded connectivity of the control map discussed
in §2. In particular, there is a dimension shift which is analogous to the
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dimension shift one normally encounters in discussing the connectivity of
the space X as compared to the connectivity of the map X → ∗.

Here is our theorem on surgery below the middle dimension.

Theorem 5.3. Let (Xn, ∂X) be a bounded Poincaré duality space over M ,
n ≥ 6, or n ≥ 5 if ∂X is empty. Consider a bounded surgery problem
φ : (W,∂W ) → (Xn, ∂X). Then φ : (W,∂W ) → (Xn, ∂X) is equivalent to a
bounded surgery problem φ̄ : (W, ∂W ) → (Xn, ∂X) such that φ̄ is boundedly[

n
2

]
-connected over M and φ̄| : ∂W → ∂X is boundedly

[
n−1

2

]
-connected.

Proof. We start by considering the case in which ∂X = ∅. Triangulate W
so that the diameters p ◦ φ(σ), σ a simplex of W , are bounded. Replacing
X by the mapping cylinder of φ, we can assume that W ⊂ X.

We inductively define a bordism U (i), −1 ≤ i ≤ [
n+1

2

]
and maps Φ(i) :

U (i) → W ∪X(i), so that ∂U (i) = W
∐

W
(i)

and so that Φ(i) is a bounded
homotopy equivalence. We begin by setting U (−1) = W × I, and letting
Φ(i) → X be φ ◦ proj. Let U (0) be obtained from U (−1) by adding a dis-
joint (n + 1)-ball corresponding to each 0-cell of X −W . The map Φ(0) is
constructed by collapsing each new ball to a point and sending the point to
the corresponding 0-cell of X −W .

Assume that Φ(i) : U (i) → X has been constructed in such a way that U (i)

is an abstract regular neighborhood of a complex consisting of W together
with cells in dimensions ≤ i corresponding to the cells of X −W in those
dimensions. Assume further that Φ(i) is the composition of the regular
neighborhood collapse with a map which takes cells to corresponding cells.
Each (i+1)-cell of X−W induces an attaching map Si → U (i). If 2i+1 ≤ n,
general position allows us to move this map off of the underlying complex
and approximate the attaching map by an embedding Si → W

(i)
. The

bundle information tells us how to thicken this embedding to an embedding
of of Si × Dn−i and attach (i + 1)-handles to U (i), forming U (i+1). We
extend Φ(i) to Φ(i+1) in the obvious manner. This process terminates with
the construction of U [n+1

2 ]. Turning U [n+1
2 ] upside down, we see that U [n+1

2 ]

is obtained from W
[n+1

2 ] by attaching handles of index >
[

n+1
2

]
. Thus, the

composite map W
[n+1

2 ] → X is boundedly
[

n
2

]
-connected over M .

In case ∂X 6= ∅, the argument is similar. We first construct U over the
boundary (and, therefore, over a collar neighborhood of the boundary) and
then construct U over the interior.

Remark 5.4. Notice the following

(i) The direct manipulation of cells and handles has replaced the usual
appeals to homotopy theory and the Hurewicz-Namioka Theorem.
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This is a general technique for adapting arguments from ordinary
algebraic topology to the bounded category.

(ii) The construction in the proof yields somewhat more – we wind
up with (W, ∂W ) ⊂ (X, ∂X). When n = 2k + 1, W and X are
equal through the k-skeleton. When n = 2k, ∂W is equal to ∂X
through the (k−1)-skeleton and W contains every k-cell of X−∂X.
Since W → X is k-connected, every k-cell in ∂X is homotopic
rel boundary to a map into W . By attaching a k + 2-cell to this
homotopy along a face, we can guarantee that for every k-cell in
∂X there is a k + 1-cell in X so that half of the boundary of the
k+1-cell maps homeomorphically onto the k-cell and the other half
maps into W .

6. Controlled cell-trading

In this section we prove bounded versions of Whitehead’s cell-trading lemma.
There are algebraic and geometric versions of this lemma. We will need to
use both in this paper. These operations apply equally well to cells in a
bounded CW complex and to handles in a bounded handle decomposition.
We will use cell terminology throughout, except for the term “handle addi-
tion.”

We need some notation. If we have a sequence

A
(f,g)−−−→ B ⊕ C

k+l−−→ D

of objects and morphisms, we can represent it pictorially as:

A

²²
f

ÃÃ

g

@@
@@

@@
@

B

²²
k

⊕ C

~~ l~~
~~

~~
~

D

Performing the elementary operation – sliding handles corresponding to
basis elements in B over handles in C – corresponding to a bounded homo-
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morphism m : B → C results in the diagram

A

²²
f

ÃÃ

g+mf

@@
@@

@@
@

B

²²
k−lm

⊕ C

~~ l~~
~~

~~
~

D

We will write this operation schematically as

A

²²
f

ÃÃ

g

@@
@@

@@
@

B

²²
k

//⊕m
C

~~ l~~
~~

~~
~

D

and call it adding the B-cells to C via m. When the sequence A → B ⊕
C → D is a part of a cellular Zπ-chain complex, this operation is realized
geometrically by handle-addition by taking each generator x in B and sliding
it across m(x). Changing the attaching maps of the cells this way clearly
has the effect described above on the cellular chains.

The next construction is cancellation of cells. If a portion of a chain
complex looks like . . . A → B ⊕ C → D ⊕ C ′ . . . and the composite C →
B⊕C → D⊕C ′ → C ′ is an isomorphism sending generators to generators,
then the chain complex is bounded chain homotopy equivalent to . . . A →
B → D . . . . This has a geometric counterpart in cancellation of n- and
(n + 1)-cells. Note that it is not sufficient that the map C → C ′ be an
isomorphism. It must send generators to generators. The complementary
process of changing . . . An

∂−→ An−1 → . . . to . . . An ⊕D
∂⊕1−−→ An−1 ⊕D

is called introducing cancelling n− 1 and n cells.

Here is our algebraic cell-trading lemma. This process involves intro-
ducing cells, adding cells, and cancelling cells, and results in n-cells being
“traded for” (n + 2)-cells.

Lemma 6.1. Suppose given a bounded chain complex decomposed as mod-
ules as B# ⊕A# for which the boundary map has the form

B#

²²

⊕ A#

{{vvv
vv

vv
vv

²²
B#−1 ⊕ A#−1
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If there is a bounded chain homotopy s, with (s|B#) = 0, from the identity
to a morphism which is 0 on A# for # < k, then B# ⊕ A# is boundedly
chain-homotopy equivalent to B# ⊕ A′# where A′# = 0 for # < k and
A′# = A# for # ≥ k + 2.

Proof. First introduce cancelling 1- and 2-cells corresponding to A0 to ob-
tain

B2

²²

⊕ A2

~~||
||

||
||

²²

⊕ A0

²²
B1

²²

⊕ A1

~~||
||

||
||

²²

⊕ A0

B0 ⊕ A0

Now add the new A0-cells in dimension 1 to A1 via s to obtain

B2

²²

⊕ A2

~~||
||

||
||

²²

⊕ A0

²²
B1

²²

⊕ A1

~~||
||

||
||

²²

A0
oo ⊕s

B0 ⊕ A0

The lower map from A0 to A0 is the identity, so the lower A0 modules may
be canceled to obtain

B2

²²

⊕ A2

}}{{
{{

{{
{{

²²

⊕ A0

~~||
||

||
||

B1

²²

⊕ A1

}}{{
{{

{{
{{

B0.

Repeat this process, and define A′# so that B# ⊕A′# is the resulting chain
complex.

Lemma 6.2. Let X → M be a bounded CW complex which is 0-connected
with bounded fundamental group π, so that the cellular chain complex over
Zπ is decomposed as (based) modules B#⊕A# for which the boundary map
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has the form
B#

²²

⊕ A#

zzvvvvvvvvv

²²
B#−1 ⊕ A#−1.

If there is a bounded chain homotopy s with (s|B#) = 0, from the identity
to a morphism which is 0 on A# for # < k, and if A# = 0 for # ≤ 2, then
X may be changed by a bounded simple homotopy equivalence to X ′, so that
the cellular chains have the form B# ⊕ A′# where A′# = 0 for # < k and
A′# = A# for # ≥ k + 2.

Proof. Perform the same operations as above, but do them geometrically,
using handle additions, rather than algebraically.

In the above lemma, if k > dim(A# ⊕ B#), the cellular chain complex be-
comes B# in low dimensions together with modules in some pair of adjacent
high dimensions with ∂ an isomorphism between them. The hypothesis that
A# = 0 for # ≤ 2 is necessary to avoid π1 problems.

7. The bounded π-π Theorem

As in [43, Chapter 9], the π-π Theorem is the key theorem in setting up a
geometric version of bounded surgery theory.

Theorem 7.1. (Bounded π-π Theorem) Let (Xn, ∂X), n ≥ 6, be a bounded
Poincaré duality space over an allowable control space M . Consider a
bounded surgery problem

(W,∂W ) //φ
(Xn, ∂X)

²²
p

M

with bundle information assumed as part of the notation.

If both p : X → M and p| : ∂X → M are (−1)-, and 0-connected and
if the inclusion ∂X → X induces an isomorphism of bounded fundamental
groups π, then we may do surgery to obtain a bounded normal bordism from
(W,∂W ) → (X, ∂X) to (W ′, ∂W ′) → (X, ∂X), where the second map is a
bounded simple homotopy equivalence of pairs.

Proof. We begin with the case n = 2k. By Theorem 5.3 we may do surgery

below the middle dimension. We obtain a surgery problem W ′ φ′−→ X so
that φ′ is an inclusion which is the identity through dimension k.
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This means that cancelling cells in K#(W ′, ∂W ′) yields a complex which
is 0 through dimension k − 1. Abusing the notation, we will assume that
the chain complex K#(W ′, ∂W ′) is 0 for # ≤ k − 1. The generators of
Kk−1(W ) correspond to k-cells in ∂X −W . Cancelling these against the k-
cells described in Remark 5.4(ii), and leaving out the primes for notational
convenience, we have

K#(W,∂W ) = 0 # ≤ k − 1
K#(W ) = 0 # ≤ k − 1.

Since

Kn−#(W,∂W ) ' K#(W )

there is a bounded algebraic homotopy σ on K#(W,∂W ) satisfying σδ +
δσ = 1 for # ≥ k+1. Taking duals as in Definition 2.2, there is an algebraic
homotopy s on K#(W,∂W ) such that s∂ + ∂s = 1 for # ≥ k + 1. Since
K# = K#(W,∂W ) is 0 in high dimensions, the “cell trading” procedure
may be applied upside down, so that the K# is changed to

0 → K ′
k+2

∂−→ K ′
k+1

∂−→ Kk → 0

together with a homotopy s so that s∂+∂s = 1 except at degree k. We leave
out the primes for notational convenience. Corresponding to each generator
of Kk+2 (and at a point near where the generator sits in the control space)
we introduce a pair of cancelling (k − 1)- and k-handles and excise the
interior of the (k − 1)-handle from (W,∂W ). The chain complex for this
modified W is

0 // Kk+2
// Kk+1

// Kk
//

⊕
0

Kk+1

All generators of Kk⊕Kk+1 are represented by discs. We may represent
any linear combination of these discs by an embedded disc, and these em-
bedded discs may be assumed to be disjoint by the usual piping argument.
See [43, p. 39]. This uses the surjective part of the π-π condition. We do
surgery on the following elements: For each generator x of Kk, we do surgery
on (x−∂sx, sx) and for each generator y of Kk+2, we do surgery on (0, ∂y).
This time, we can think of the process as introducing pairs of cancelling k-
and (k + 1)-handles, performing handle additions with the k-handles, and
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then excising the k-handles from (W,∂W ). The resulting chain complex is:

0 // Kk+2
//∂
Kk+1

//

⊕
Kk

⊕
Kk

;;
1−∂s

vvvvvvvvv
//s

⊕
Kk+1

// 0

Kk+2

;;
∂

vvvvvvvvv

which is easily seen to be contractible, the contraction being

0 Kk+2
oo Kk+1

oo s

⊕
Kk

oo

{{

1−∂s

vvvvvvvvv
⊕

Kk

⊕
Kk+1

oo ∂

{{

s

vv
vv

vv
vv

v
0oo

Kk+2

Dualizing, we see that after surgery, K#(W,∂W ) is boundedly chain con-
tractible. Poincaré duality shows that K#(W ) is boundedly chain con-
tractible. Together, these imply the bounded chain contractibility of
K#(∂W ). Using Theorem 2.15 now shows that ∂X → ∂W and X → W are
bounded homotopy equivalences. This is where the hypothesis of allowa-
bility and the full π-π condition are used. An easy argument composing
deformations in the mapping cylinder of (W,∂W ) → (X, ∂X) completes
the proof that (W,∂W ) → (X, ∂X) is a controlled homotopy equivalence.

Having obtained a homotopy equivalence of pairs, we can vary by an h-
cobordism of pairs to obtain a simple homotopy equivalence of pairs. The
argument for this is easy, using only standard facts about torsion of h-
cobordisms and the fact that if φ : (Mn, ∂M) → (Nn, ∂N) is a homotopy
equivalence of pairs, then τ(f |∂M) = τ(f)+(−1)nτ(f)∗. This is a straight-
forward consequence of the simplicity of Poincaré duality at the chain level.
This completes the even-dimensional case.

To obtain the π-π-Theorem in the odd-dimensional case we resort to a
trick.

(i) Cross with S1 to get back to an even dimension and do the simple
surgery.

(ii) Go to the cyclic cover and use the simplicity of the above homotopy
equivalence to split and obtain a homotopy equivalence of the ends.
See Theorem 7.2 below.
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(iii) Vary by an h-cobordism of pairs to get a simple homotopy equiva-
lence of pairs.

This completes the proof.

In the above, we used the following splitting theorem from [9], which is
essentially a bounded version of Quinn’s End Theorem [29, 30]. In section
12 we give a proof based on the algebraic theory of surgery [36].

Theorem 7.2. Let (Xn, ∂X), n ≥ 6, be a bounded Poincaré duality space
over M . If both p : X → M and p| : ∂X → M are (−1), and 0-
connected and if φ : (Wn, ∂W ) → (Xn, ∂X) × R is a bounded simple
homotopy equivalence of pairs over M × R, where M is allowable, then
(Wn, ∂W ) ∼= (Nn, ∂N)×R and φ is boundedly homotopic to φ′× id, where
φ′ : (Nn, ∂N) → (Xn, ∂X) is a bounded homotopy equivalence over M .

8. Manifold 1-skeleton

Our construction of bounded surgery groups is modeled on Ch. IX in Wall
[43]. An essential ingredient there is Wall’s Lemma 2.8, which says that
Poincaré duality spaces have manifold 1-skeleta.

In this and the following section we specialize to allowable metric spaces.

Proposition 8.1. Suppose that M is an allowable metric space. Given a
finitely presented group π and an integer n ≥ 4, there exists a (-1)- and
0-connected n-dimensional manifold W → M with bounded fundamental
group equal to π.

Proof. Let N be a compact 4-manifold with fundamental group π, and let
W be a regular neighborhood of a proper embedding of the 2-skeleton of M
(or rather of a 0- and 1-connected PL-complex mapping to M see Definition
2.11) in R5. Now ∂W×N → M satisfies the conditions except for dimension.

By general position once again, we may embed the 2-skeleton of ∂W ×N
properly in Rn+1. The boundary of a regular neighborhood mapped to M
now satisfies the conditions.

Proposition 8.2. A bounded Poincaré duality space X → M of dimension
≥ 5, with bounded fundamental group π has a manifold 1-skeleton, i.e., there
exist a manifold with boundary (W,∂W ) → M and a bounded homotopy
equivalence X ∼ W ∪∂W Y where Y is obtained from ∂W by attaching cells
of dimension 2 and higher, and (Y, ∂W ) is a bounded Poincaré pair.

Proof of proposition. Our proof, which is modeled on Wall’s, consists of
changing the CW structure on X to make it similar to the CW structure
of the dual chains in high dimensions. We then exploit the fact that the
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boundary map from the (n − 1)- to the n-cells in the dual complex has a
very special form.

Let A# = Dn−#(X), a chain complex in CM (Zπ). Denote D#(X) by
B#. Poincaré duality gives a homotopy equivalence

f : A# → B#, g : B# → A#.

We start by constructing an algebraic model for the new cell structure on
X. The complex we construct will be equal to B# for # = 0, 1, 2 and A#

for # ≥ 5.
Consider the 2-skeleton of B# and the mapping cylinder chain complex

of g|B(2)
# : B

(2)
# → A.

...

²²
A4

²²
0

²²

⊕ B2

~~

1

||
||

||
||

²²
∂

ÃÃ

g

BB
BB

BB
BB
⊕ A3

²²
B2

²²
∂

⊕ B1

~~

−1

||
||

||
||

²²
∂

ÃÃ

−g

BB
BB

BB
BB
⊕ A2

²²
B1

²²
∂

⊕ B0

~~

1

||
||

||
||

ÃÃ

g

BB
BB

BB
BB
⊕ A1

²²
B0 A0

This is boundedly chain homotopy equivalent to A#. Since g is a homotopy
equivalence, we can trade cells to get a new chain complex which looks like
B# through dimension 2. Calling the resulting chain complex A# again,
we begin to work geometrically. Introducing cancelling cells, we get a space
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bounded homotopy equivalent to X with chain complex changed as follows:

A4

ÃÃ

1

BB
BB

BB
BB
⊕ A5 ⊕ B5

²²
A3

ÃÃ

1

BB
BB

BB
BB
⊕ A4 ⊕ B4

²²
A3 ⊕ B3

²²
B2

Adding An-cells to An−1 via ∂ for n ≥ 4 and An-cells to Bn via f for n ≥ 3
results in the chain complex

A4

ÃÃ

1

BB
BB

BB
BB

A5
oo ⊕∂ //⊕f

B5

²²
A3

ÃÃ

1

BB
BB

BB
BB

A4
oo ⊕∂ //⊕f

B4

²²
A3

//⊕f
B3

²²
...

which gives the following boundary maps:

A5

²²
∂

⊕ A4

~~ 1||
||

||
||

²²
−∂

ÃÃ

f

BB
BB

BB
BB
⊕ B5

²²
∂

A4

²²
∂

⊕ A3

~~ 1||
||

||
||

ÃÃ

f

BB
BB

BB
BB
⊕ B4

²²
∂

A3

²²
−∂f

⊕ B3

vv
∂

nnnnnnnnnnnnnnn

B2

Note that the map from An → Bn−1 is trivial for a nontrivial reason,
adding An to Bn via f makes it −∂f but then adding An to An−1 via ∂
makes it −∂f + f∂ = 0.
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Finally, we add Bn to An via −g. A short computation shows that this
changes the boundary map B3 → B2 to 0 (since g : B2 → A2 is the identity)
and it changes nothing else (once again Bn → An−1 is 0 for a nontrivial
reason). We now have

A5

²²
∂

⊕ A4

~~ 1||
||

||
||

²²
−∂

ÃÃ

f

BB
BB

BB
BB
⊕ B5

²²
∂

A4

²²
∂

⊕ A3

~~ 1||
||

||
||

ÃÃ

f

BB
BB

BB
BB
⊕ B4

²²
∂

A3

²²
−∂f

⊕ B3

B2

The chain complex
A4

²²
−∂

ÃÃ

f

BB
BB

BB
BB
⊕ B5

²²
A3

ÃÃ

f

BB
BB

BB
BB
⊕ B4

²²
B3

is contractible, since it is the mapping cone of a homotopy equivalence.
(Remember that A# = B# in low dimensions). We may now trade up
this subchain complex geometrically to above the dimension of X. The
n-skeleton of the resulting CW complex has cellular chains equal to A#

and the map to D#(X) is the given map. It follows from Theorem 2.15
that this is a bounded homotopy equivalence, since it induces a homotopy
equivalence on the cellular chains.

The proof is now finished by observing that the algebraic boundary map
from n- to (n− 1)-cells is the dual of the boundary map D1(X) → D0(X),
and that each 1-cell hits (`0 ± g · f0) where `0 and f0 are 0-cells and g ∈ π.
This means that if we attach the n-cells so that the map to the (n − 1)-
skeleton mod (n−2)-skeleton reflects the algebra completely, then the n-cells
have patches on the boundary mapped homeomorphically to their images,
and the complement goes to the (n− 2) skeleton. These patches are paired
off 2 and 2, so the n-cells are identified via the (n − 1)-cells to build a
manifold W . This is the desired manifold 1-skeleton.

The point is that the fundamental class is the sum of all the n-handles
suitably modified by multiplication by group elements. This is seen from
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the special nature of the boundary map. Using this, let W be the union of
slightly shrunken n-cells with their identifications along (n−1)-cells. In the
diagram

0 // D#W //Â Ä D#X // D#(X −W,∂W ) // 0

0 // D#(W,∂W )

OO

//Â Ä
D#(X)

OO

[X]∩−

// D#(X −W )

OO

// 0

[X]∩ restricted to D#(W,∂W ) is seen to be an isomorphism, and it follows
from arguments similar to above (rolling up in the mapping cones) that
[X] ∩ − induces a homotopy equivalence of D#(X −W ) ← D#(X −W ),
so we have split off a Poincaré duality complex. The reader is referred to
[42, Corollary 2.3.2] for further details.

We finally need the following:

Lemma 8.3. Let X
p−→ M be a bounded Poincaré duality complex, and let

W
f−→ X be a degree 1 normal map of a manifold W to X. This means

that W → X → M is proper, there is a bundle ξ over X with a framing of
τW ⊕ f ′ξ, and that the fundamental class [W ] ∈ H`f

n (W ;Z) is sent to [X] ∈
H`f

n (X;Z). Then there is a normal bordism of W
f−→ X to a manifold (which

we will again call W ) so that f is a homeomorphism over the 1-skeleton of
X found in Proposition 8.2, i.e., so that f |f−1 (regular neighborhood of
1-skeleton) is a homeomorphism.

Proof. We start with F = f ◦ proj : W × I → X and make F |W × 1
transverse to the barycenter of each n-cell of X. Since f is degree 1, the
inverse image of this point counted with signs must be 1. On pairs of points
of opposite sign we attach a 1-handle to W × 1, and extend F over the
resulting bordism, sending the core of the 1-handle to the point and the
normal bundle of the core to normal bundle of the point. The restriction of
F to the new boundary has 2 fewer double points. Continuing this process,
F |(new boundary) becomes a homeomorphism over the 0-handles of our
1-skeleton.

Now consider the 1-handles. Assuming F | transverse to the core of a
1-handle, the inverse image must be a union of finitely many S1’s and one
interval. After a homotopy the interval may be assumed to map homeo-
morphically onto its image, and we only need to eliminate the S1’s. But
each S1 maps to the interior of an interval so this map is homotopy trivial.
Attaching a 2-handle to each S1 in the induced framing, extending the map
to the core D2 by the null homotopy, and extending to the normal direction
by the framing removes S1 from the inverse image of the 1-handle. Doing
this to all of the 1-handles completes the process.
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9. The surgery groups

Our surgery groups are bordism groups patterned on Wall’s Chapter 9. As
usual, we restrict ourselves to allowable metric spaces. Following [43, p. 86],
we define an “n-dimensional unrestricted object” to consist of:

(i) A bounded Poincaré pair, i.e. a pair (Y, X) with control map to M ,
such that each component has bounded fundamental group and is
a bounded Poincaré duality complex in the sense of §3.

(ii) A proper map ϕ : (W,∂W ) → (Y,X) of pairs of degree 1, where W
is a manifold and ϕ| : ∂W → X is a simple homotopy equivalence,
simplicity being measured in WhM (π1(X)).

(iii) A stable framing F of τW ⊕ ϕ∗(τ).
(iv) A map ω : Y → K, where K is a pointed CW complex which is

fixed with a fixed pointed double cover K̂. It is required that the
pullback of this double cover to Y be the orientation covering.

Bordism of these objects is defined similarly. See the reference above for
details. We denote the bordism group of unrestricted objects by L1

n,M (K).
Note that, as in Wall, (Y, X) is allowed to vary along with (W,∂W ). There
is a natural group structure on L1

n,M (K) with the empty set as the 0 element
and the sum represented by disjoint union. As is usual in bordism theories,
the groups are functorial in K, in the sense that a pointed map from K1

to K2 which is covered by a pointed map of double covers induces a group
homomorphism. Note that Y may have infinitely many components, but
that since Y → M is proper, there are only finitely many components
locally.

Still following Wall, we define “restricted objects” by requiring that X →
M be (−1)- and 0-connected and have bounded fundamental group and that
the map Y → K induce a π1-isomorphism. We define L2

n,M (K) to be the set
of restricted bordism classes of restricted objects, i.e., we require objects as
well as bordisms to be (−1)- and 0-connected and to have the same bounded
fundamental group as K. See [43, pp. 86–88]. Note that L2

n,M (K) is only a
set – we have no zero object and no sum, since the empty set is not allowed
and since disjoint union destroys 0- connectedness.

The π-π Theorem shows, just as in the classical case, that we may do
surgery with a fixed restricted target if and only if the invariant in L2

n,M (K)
vanishes ([43, Theorem 9.3]).

Theorem 9.1. Let φ : (W,∂W ) → (Y,X) be a restricted surgery problem,
i.e., a (−1)- and 0-connected surgery problem with bounded fundamental
group π and reference map Y → K inducing an isomorphism of fundamental
groups and pulling back the orientation double cover of Y. We assume n =
dim(X) ≥ 5. Then there is a normal cobordism rel ∂W of W to a bounded
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homotopy equivalence if and only if the equivalence class of φ in L2
n,M (K)

vanishes.

We also have the analogue of [43, Theorem 9.4].

Theorem 9.2. The natural map

L2
n,M (K) −→ L1

n,M (K)

is a bijection if n ≥ 5 and K has a finite 2-skeleton.

Proof. By Proposition 8.1, there exists W → M so that the fundamental
group is bounded π1K and W is (−1)-connected. The existence of a map
W → K inducing an isomorphism on π1 is assured by the construction of
W . The surgery problem V

f−→ X is equivalent to V q W
fq1−−→ X q W,

since crossing with I may be considered a bordism (one is allowed to forget
components that are homotopy equivalences).

Each component of X has a manifold 1-skeleton, and after a bordism of
V we may assume f to be a homeomorphism of these 1-skeleta, by Lemma
8.3, so the stage is set for simultaneous surgery. Attach a 1-handle from
every 0-handle of X to a 0-handle of W so that the image of this 1-handle
in M is small.

Now mimic this construction in the domain by attaching a 1-handle from
V to W . For each 1-handle of X we get a path from a point in W to a point
in W through the one handles we attached above. Join up these points in
W so that the loop created maps trivially to K. This is possible, since W
has bounded π1 isomorphic to π1K. Now attach 2-handles simultaneously
in the domain and range to kill these loops. Since every 0- and 1-handle of
X has been equated with some element of W , the result is a target which
is (−1)-connected and which has bounded fundamental group equal to π1K
induced by the map to K. We have thus constructed a bordism from any
object to a restricted object. Injectivity is proved using the same argument
on the bordism.

The group L1
n,M (K) and the set L2

n,M (K) can thus be given the common
name Ln,M (K), or better Ls

n,M (K) because we require simple homotopy
equivalence. Naturally, the definition may be varied by only requiring homo-
topy equivalence. These groups are denoted Lh

n,M (K). We may, of course,
also specify a ∗-invariant subgroup G of WhM (π) defining LG

n,M (K). We
shall sometimes suppress the upper index.

It is very important to notice that the functor Ln,M (K), as a functor in
M , does not send restricted objects to restricted objects, and that it is only
for restricted objects that the invariant measures whether or not one may
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do surgery to obtain a bounded homotopy equivalence. We discuss this in
the following:

Example 9.3. Consider the inclusion L ⊂ L+, where L+ is L union a
disjoint basepoint. Assume that a restricted surgery problem has an ob-
struction in Ln,O(L)(K) which vanishes in Ln,O(L+)(K). To understand
this geometrically, we first have to replace the image in Ln,O(L+)(K) by a
restricted object. The image is not (−1)-connected, but this may be cor-
rected by doing simultaneous surgery – adding a tail to the surgery problem.
This doesn’t change the surgery problem away from a compact subset of the
target. This means that if the surgery obstruction vanishes in the new prob-
lem, then it is possible to solve the original surgery problem “near infinity.”

Similarly, if one considers the map from L+ to L sending the extra point
to some point of L, the induced map from Ln,O(L+)(K) to Ln,O(L)(K) will
hit an element which is not 0-connected, so some simultaneous surgery has
to be done before the vanishing of this invariant implies that one can surger
the source to a homotopy equivalence. Again, it is possible to do this via a
small modification of the original problem, only changing the target along
a ray out to infinity, rather than by using the more general construction of
the proof of Theorem 9.2.

Notice that an analogous phenomenon occurs in classical compact sur-
gery. A surgery problem comes equipped with a reference map, usually
to Bπ where π is the fundamental group of the target. Given a group
homomorphism π → ρ , the vanishing of the image Lh

n(Zπ) → Lh
n(Zρ)

means that after simultaneous surgery on source and target to make the
fundamental groups equal to ρ, one can do surgery to obtain a homotopy
equivalence.

Theorem 9.4. A map K1 → K2 which induces an isomorphism of fun-
damental groups and which is covered by a map of based covering spaces
induces an isomorphism Ln,M (K1) to Ln,M (K2) for n ≥ 5.

Proof. Given K1 → K2 inducing an isomorphism on π1, etc., we get a long
exact sequence of bordism groups, as in any bordism theory. The relative
groups are 0 by the π-π Theorem.

As noted by Quinn [32], the proof of Theorem 9.5 of [43] can be used to
prove the following:

Theorem 9.5. Given a (−1)- and 0-connected manifold V (n−1) with bound-
ed π1 = π and an element of α ∈ Ln,M (π), n ≥ 6, then α may be represented
with V × I as target.

Proof. We may assume that α is realized by φ : (W,∂W ) → (Y, X) where
X and Y are (−1)- and 0-connected with bounded fundamental group π,
and ∂W → X is a homotopy equivalence. We may glue ∂W to X by
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a mapping cylinder and assume that ∂W → Y is the identity. There is
a bordism from ∂W → ∂W to V → V by equating 0- and 1-handles.
Attaching this to ∂W , we may change the representative above to be of the
form φ : (W,V ) → (X ′, V ), where φ|V = id. By the π-π Theorem, there
is a bordism (P, ∂P ) not rel V from φ to φ′ : (W ′, V ) → (X ′, V ) which
is a homotopy equivalence of pairs. (P, ∂P ) may be reinterpreted to be a
bordism from φ to a surgery problem with V × I as target.

Finally, we should mention that there is an important variation of the
theory where we only ask for conditions to be satisfied near ∞. Thus,
we only ask for bounded homotopy equivalence and Poincaré duality over
O(K) = {t · x|t ∈ [0,∞), x ∈ K} for t large. The groups Ls,∞

n,O(K)(Zπ)
are defined as in the beginning of this section, but everything is only done
near ∞. Spaces and maps only have to be defined near ∞, as well. It is
shown in [9] that CO(K),∞(A) → CO(K+)(A) is a homotopy equivalence, so
Whitehead torsion makes sense in this framework. We obtain the following
quite useful:

Theorem 9.6.

Ls
n,O(K+)(Zπ) → Ls,∞

n,O(K)(Zπ)

is an isomorphism if n ≥ 5.

Proof. The map is the forgetful map taking a problem over O(K+) to its
germ near infinity over O(K).

For simplicity, assume first that n À dim(K). In this case we can form
a manifold P with a map to O(K+) as follows. Embed K in Sn−5 and
let P ′ be the boundary of a regular neighborhood of K in Sn−5. Form P
by gluing together the part of O(P ′) outside the unit sphere and a copy of
(−∞, 1]×P ′. Map [0, 1]×P ′ to the part of O(K) inside the unit sphere and
send (−∞, 0]× P ′ to O(+). Form a manifold V n−1 by taking the product
of P with a closed manifold Q4 which has fundamental group π. Note that
it is reasonable to talk about “levels” in V , just as in O(K+).

To show that the forgetful map is onto, we first use a version of Theorem
9.5 near infinity to show that we can represent a given α ∈ Ls,∞

n,O(K)(Zπ)
by a map φ : (W,∂W ) → (V × I, ∂(V × I)) such that φ|∂W is a simple
homotopy equivalence near infinity. Using the simplicity, we can split φ
over the part of V at level T for some large T , obtaining φ| : (W0, ∂W0) →
(V × I, ∂(V × I)) ∩ (level T ) with φ|∂W0 a homotopy equivalence. Adding
a copy of (W0, ∂W0) × (−∞, T ] to the part of W outside of level T and
mapping to V × I in the obvious way produces an element of Ls

n,O(K+)(Zπ)
whose image in Ls,∞

n,O(K)(Zπ) is α.
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To show that the map is monic, let α ∈ Ls
n,O(K+)(Zπ) be an element

which becomes trivial in Ls,∞
n,O(K)(Zπ). Representing α by a map φ : (W,∂W )

→ (V × I, ∂(V × I)) as above, φ is bordant rel ∂ to a map φ′ : (W ′, ∂W ′) →
(V × I, ∂(V × I)) which is a simple homotopy equivalence near infinity. Us-
ing the simplicity, we can split the homotopy equivalence over some level
T . Expanding a collar around this level in the domain and sliding the re-
mainder of the manifold down towards the cone point and out the “tail”,
O(+), produces a bordism from φ′ to a simple homotopy equivalence. Note
that we actually gain control through this sliding process and that the bor-
dism from φ to φ′ need only be defined on a neighborhood of infinity for
this process to succeed, since an easy transversality argument allows us to
construct a bordism from (W,∂W ) to a manifold which equals (W ′, ∂W ′)
near infinity in O(K) and (W,∂W ) over O(+).

The general case, where we do not have n À dim(K) is similar. The
manifold target is less homogeneous, though, so we represent the problem
with manifold target (V ×I, ∂(V ×I)), but here V has no good homogeneity
properties, split at countably many levels going out the tail O(+), and
use the compact π-π-Theorem between the splittings to solve the surgery
problem. Alternatively, we could use the periodicity result of §12 to deduce
the low-dimensional case from the high-dimensional case treated above.

Remark 9.7. Of course, we are not limited to defining absolute surgery
groups. The same definition may be varied as in pp. 91–93 of [43] to define
relative, or even n-ad, surgery groups.

10. Ranicki-Rothenberg sequences, and L−∞

In this section we study the properties of Ls
n,M (Zπ) in the special case where

M = O(K).

Proposition 10.1. Assume n ≥ 5. There is a long exact Ranicki-Rothen-
berg sequence

→ Ls
n,M (Zπ) → Lh

n,M (Zπ) → Ĥn(Z2 ; K̃1(CM (Z))) →
Proof. The proof is formal, the sequence is a bordism long exact sequence
where the Tate cohomology groups are identified with the relative bordism
groups of surgery problems with simple boundaries (see [26]).

Note that O(ΣK) = O(K) × R as a metric space. This leads to the
following useful proposition.

Proposition 10.2. Assume n ≥ 5. Crossing with R produces an isomor-
phism

Lh
n,O(K)(Zπ) → Ls

n+1,O(ΣK)(Zπ).
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Proof. First, consider the case where K = ∅. Then O(K) = pt and
O(ΣK) = R. To see that the map is monic, let φ : (W,∂W ) → (X, ∂X) be
a compact surgery problem. Crossing with R gives φ× id : (W,∂W )×R→
(X, ∂X)×R. If φ× id represents 0 in Ls

n+1,R(Zπ), then φ× id is normally
bordant rel ∂W to a simple homotopy equivalence φ′×id : (W ′, ∂W ′)×R→
(X, ∂X)×R. Since the homotopy equivalence is simple, W ′ has trivial end
obstruction, so W ′ = M ′ × R and by transversality we get W bordant rel
∂W to M ′ ' X, showing that φ represents 0 in Lh

n,pt(Zπ).

To see that the map is an epimorphism, represent α ∈ Ls
n+1,R(Zπ) by a

problem φ : (W,∂W ) → ((V × I) × R, ∂(V × I) × R) with V n−1 a closed
manifold with fundamental group π. Since the homotopy equivalence on
the boundary is simple, we can split the homotopy equivalence over (V ×
∂I)× {T} and continue the splitting over (V × I)× {T} by transversality,
getting a compact surgery problem (M,∂M) → ((V ×I), ∂(V ×I)). Letting
a collar around M grow in both directions gives a bordism from the original
problem to (M, ∂M)× R→ ((V × I), ∂(V × I))× R.

In case K 6= ∅, the argument is similar. One does the same things
boundedly over O(K).

Definition 10.3. By the groups L2−k
n−k(Zπ) we shall mean Ls

n−k(Zπ) when
k = 0, Lh

n−k(Zπ) when k = 1, Lp
n−k(Zπ) when k = 2, and the negative

L-groups of [34, 35] for k > 2. It is well known that these groups are
4-periodic in the lower index.

Theorem 10.4. When n ≥ 5

Ls
n,Rk(Zπ) ∼= L2−k

n−k(Zπ)

Lh
n,Rk−1(Zπ) ∼= L2−k

n−k(Zπ).

Proof. First, we consider the case n ≥ k + 5. The general case will follow
from 4-periodicity which is proved algebraically in §12. We use induction
on the Ranicki-Rothenberg exact sequence.

We have an algebraically defined inclusion L−i
n (Zπ) ⊂ Ls

n+i+2(Z(π ×
Zi+2)). There is also a map Ls

n+i+2(Z(π×Zi+2)) → Ls
n+i+2,Ri+2(Zπ), which

is defined geometrically by taking cyclic covers. Combining these maps, we
get a map of exact sequences:

L−i+1
n (Zπ) //

²²

L−i
n (Zπ) //

²²

Ĥn(Z2,K−i(Zπ))

²²
Ls

n+i+1,Ri+1(Zπ) // Lh
n+i+1,Ri+1(Zπ) // Ĥn(Z2, K−i(Zπ)).
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Here, we are using that K1(CRi+1(Zπ)) ∼= K−i(Zπ) ([23]). Combining with
the isomorphisms

Lh
i,Rn(Zπ) ∼= Ls

i+1,Rn+1(Zπ)
this inductively proves that

L−i
n (Zπ) ∼= Ls

n+i+2,Ri+2(Zπ).

Note that this proves that the L-groups are 4-periodic, at least when
K = Si, i.e. O(K) = Ri+1 and n ≥ i + 6. We shall now investigate
Ls

n,O(K)(Zπ) as a functor of K, from the category of finite complexes and
Lipschitz morphisms.

Theorem 10.5. Ls
n,O(K)(Zπ) is homotopy invariant, n ≥ 5.

Proof. We have to show that

Ls
n,O(K)(Zπ) → Ls

n,O(K×I)(Zπ)

is an isomorphism. By functoriality, it is a split monomorphism. To see that
it is onto, we note that a homotopy can always be viewed as an unrestricted
bordism. Thus a surgery problem parameterized by O(K × I) becomes
bordant, and hence equivalent in the unrestricted bordism group of §9, to
the induced problem parameterized by projecting to one end.

Continuing to investigate Ls
n,O(K)(Zπ) as a functor in K, we define

L−∞n,O(K)(Zπ) = lim
i

Ls
n+i,O(ΣiK)(Zπ)

where the maps are given by crossing with the reals.

Theorem 10.6. L−∞n,O(K)(Zπ) is a reduced homology theory in the variable
K.

Remark 10.7. This is a geometric version of Theorem 3.4 of the thesis of
Yamasaki [45]. There, L−∞(Zπ) is defined abstractly as a spectrum.

To prove the theorem we need the following:

Lemma 10.8. Let C(L) be the cone on L. Then Ls
n,O(CL)(Zπ) = 0.

Proof. First, note that there is an isometry O(C(L)) ∼= O(L)× [0,∞). Let
α ∈ Ls

n,O(CL)(Zπ) be represented by a surgery problem:

(W,∂W )) // (X, ∂X)

²²
p

O(L)× [0,∞)
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This is the boundary of:

(W,∂W ) // (X, ∂X)

²²
O(L)× [0,∞)

where q(x, t) = p(x) + t. This shows that α = 0.

Proof of theorem. To show that the functor is half exact in the variable K,
consider a cofibration

L ⊂ K → K ∪ CL.

Applying O we get:

O(L) → O(K) → O(K ∪ C(L)) ∼= O(K) ∪O(L) O(L)× [0,∞).

The composite is the trivial map, since it factors through O(CL), so
consider a surgery problem:

(W,∂W ) // (X, ∂X)

²²
O(K)

which goes to 0 in L−∞n,O(K∪C(L))(Zπ). As usual, we may assume that X is
a manifold and that φ is (-1)- and 0-connected. The vanishing of [φ] over
O(K ∪ C(L)) ∼= O(K) ∪O(L) O(L) × [0,∞) means that after simultaneous
surgery on the domain and range to obtain a (-1)- and 0-connected φ′ :
W ′ → X ′, φ′ is bordant to a bounded homotopy equivalence. Clearly, we
can do the simultaneous surgery in such a way that the parts of W ′ and X ′

over O(L)× [1,∞) are products.

If φ′ is bordant to a bounded simple homotopy equivalence φ′′, we can
split the bordism over O(L)×{T} for some large T using controlled splitting
over the boundary and at φ′′ [9]. Projecting back to O(K), the split bordism
becomes an unrestricted bordism from the original problem to a bounded
homotopy equivalence together with the inverse image of O(L)×{T}, show-
ing that the original problem was in the image of L−∞n,O(L)(Zπ).

If φ′ is bordant to a bounded non-simple homotopy equivalence, we cross
with R to kill the torsion and proceed as above. This torsion problem is the
reason that we have to stabilize to obtain a homology theory. In fact, this
argument shows that Ls

n,O(K)(Zπ) is not half exact.
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To finish the proof, note that we have already shown that there is an iso-
morphism Lh

n,O(K)(Zπ) ∼= Ls
n+1,O(ΣK)(Zπ). Since L−∞

n,O(Sk)
(Zπ) is naturally

4-periodic, it follows from half exactness that L−∞n,O(−)(Zπ) is a 4-periodic
homology theory.

Remark 10.9. We get a periodic homology theory and thus not a connec-
tive homology theory. A geometric interpretation of this is that a (−1)-
connected Mk → Rm+k behaves like a −m-dimensional manifold.

11. The surgery exact sequence

In this section we consider the following: Let M be an allowable metric
space and X → M a 0- and -1-connected bounded Poincaré duality space
with bounded fundamental group = π, and assume there is a given lift of

B CAT

²²
X // BG

where CAT = TOP, PL or O. We define the bounded structure set Sb(X)
as usual in surgery theory: An element consists of a manifold W and a
bounded homotopy equivalence

W ' X

²²
M

two such being equivalent if there is a homeomorphism h : W1 → W2 such
that the diagram

W1

²²

h

!!B
BB

BB
BB

B

X

W2

==||||||||

is bounded homotopy commutative. As usual we get a surgery exact se-
quence.

Theorem 11.1. For n ≥ 5 there is an exact sequence of surgery

· · · → Sb(X × I, δ(X × I)) → [ΣX,F/CAT] →
→ Ls

n+1,M (Zπ) → Sb(X) −→ [X, F/ CAT] → Ls
n,M (Zπ)
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and relative versions hereof.

Proof. The proof is standard as in [40]. Given a lift of X → BF to B CAT
there is a surgery problem obtained by transversality. If the obstruction to
doing surgery vanishes, we obtain a bounded homotopy equivalence. Given
two elements in the structure set, they determine two lifts to B CAT. If the
lifts are fibre homotopic we obtain a normal cobordism by transversality as
in standard surgery theory.

Given a finitely dominated Poincaré complex X, we obtain a surgery
exact sequence for X × Rk −→ Rk as follows. Cross X with S1 to obtain
a finite Poincaré complex over R, pass to the cyclic cover, and cross with
Rk−1 to obtain a bounded Poincaré model for X × Rk −→ Rk. A radial
homeomorphism f : Rk −→ Rk which is Lipschitz (but whose inverse is
not necessarily Lipschitz) induces a map of the surgery exact sequences, the
point being that if a homotopy is bounded with respect to a map p to Rk,
it is certainly also bounded with respect to f · p.

Theorem 11.2. Reparameterization by a radial homeomorphism which is
Lipschitz induces the identity on the surgery exact sequence.

Proof. Since f is a radial homeomorphism, x̄ + t · f(x̄) is a homotopy of f
through Lipschitz maps to the identity, and it follows easily that f induces
the identity of L-groups and normal invariants. To see that f induces the
identity on the structure set we need the result of Chapman [7] that a map
from a manifold to Rk which has the bounded homotopy lifting property
can be boundedly approximated by a map with the epsilon homotopy lift-
ing property for all epsilon. If W −→ X × Rk is a bounded equivalence,
then the composition W −→ Rk is boundedly approximated by an approx-
imate fibration. There is then an approximate fiber homotopy equivalence
W −→ X × Rk boundedly homotopic to the original map. This approxi-
mate fiber homotopy equivalence remains bounded under arbitrary radial
reparameterization.

12. The algebraic surgery theory

The algebraic surgery theory has been developed over a number of years by
Ranicki see [34, 35] . The extension to additive categories with involution
has also been developed by A. Ranicki (see [36]). This section depends
strongly on [36]. Here are some of the basic definitions:

An involution on an additive category A is a contravariant functor

∗ : A → A; A → A∗

(f : A → B) → (f∗ : B∗ → A∗)
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together with a natural equivalence

e : idA −→ ∗∗
such that the coherence condition

e(A∗) = (e(A)−1)∗ : A∗ −→ A∗∗∗

is satisfied.

Example 12.1. Let R be an associative ring with an antiinvolution, R =
ZG with Σngg = Σw(g)ngg

−1, for example. Consider the category of
finitely-generated projective R-modules. Then duality induces an involu-
tion on the category.

Of more interest to us is the following:

Example 12.2. Let R be the category of finitely generated free R-modules
with involution as above. We get an induced involution on CM (R) for M a
metric space by the prescription (A∗)x = (Ax)∗.

Ranicki has shown that his theory of algebraic surgery extends to addi-
tive categories with involution, so, in particular, he has defined Lt

n(CM (Zπ)),
where the decoration t is h or corresponds to any involution-invariant sub-
group of WhM (π), as is usual in L-theory. In this setup Lp is the composite
of Lh with idempotent completion of the additive category. To be able to
treat the simple L-groups Ls corresponding to the 0-subgroup of WhM (π)
one needs a system of stable isomorphisms of the objects so that compos-
ites that are automorphisms have trivial torsion. This is obtained from an
Eilenberg swindle on the objects in case M is unbounded (and as usual a
specific choice of basis in case M is bounded). In this section we prove that
these algebraically defined L-groups are the obstruction groups for bounded
surgery problems in the case where there is no boundary or that there is a
homotopy equivalence on the boundary. First recall from [36, p. 169] the
basic definitions.

Let A be an additive category with involution. A sequence of objects
and morphisms 0 → A

f−→ B
g−→ C → 0 is split exact if g is split by

a morphism h such that (f, h) : A ⊕ C → B is an isomorphism. Let ε
denote ±1. An ε-quadratic form in A is an equivalence class of maps ψ :
A → A∗ two such being equivalent if they differ by a morphism of the form
φ− εφ∗. It is nonsingular if ψ+ εψ∗ (which only depends on the equivalence
class) is an isomorphism. A Lagrangian in a non-singular form (A,ψ) is a
morphism i : B → A such that ψ · i = 0 and 0 → B → A → B∗ → 0
is split exact. Ranicki then proves that a non-singular ε quadratic form is
equivalent to the hyperbolic form (B ⊕B∗, { 0 1

0 0 }) if and only if it admits
a Lagrangian. The even L-groups are now defined as the Grothendieck
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construction on isomorphism classes of non-singular quadratic forms with
ε = 1 in dimensions ≡ 0(4) and ε = −1 when the dimension is ≡ 2(4).

To define the odd L-groups one needs formations. A nonsingular ε-
quadratic formation in A, (A,ψ, F,G) is a non-singular ε-quadratic form
(A,ψ) together with an ordered pair of Lagrangians F and G. (Hε, P, P ∗)
is considered a trivial formation where Hε is the hyperbolic form on P ⊕P ∗.
With the obvious notion of isomorphism Ranicki defines the odd L-groups
to be the Grothendieck construction on isomorphism classes of formations
modulo trivial formations and the relation (A,ψ;F,G) + (A,ψ; G,H) =
(A,ψ; F, H), with ε = 1 in dimensions ≡ 3(4) and ε = −1 in dimensions
≡ 1(4). Given this we now proceed along the lines of Wall’s original method.

Theorem 12.3. Consider a bounded surgery problem

(Mn, ∂M) −→ (X, ∂X)
↓
Z

where ∂M → ∂X is a bounded simple homotopy equivalence, X is 0 and
−1-connected with bounded fundamental group π, and n ≥ 5. Then one can
do surgery rel boundary to produce a bounded simple homotopy equivalence
if and only if an invariant in

Ls
n(CZ(Zπ))

vanishes. Moreover every element of Ls
n(CZ(Zπ)) is realized as the obstruc-

tion on a surgery problem with target N × I and homotopy equivalence on
the boundary for an arbitrary n− 1-dimensional manifold N → Z which is
−1 and 0-connected with bounded fundamental group π.

Proof. First consider the even-dimensional case. We proceed as in §7 and
obtain a highly connected surgery problem. We obtain a chain complex
homotopy equivalent to K#(M) which is concentrated in 3 dimensions:

0 → Kk+2 → Kk+1 → Kk → 0

and a contracting homotopy s (except in dimension k) which is obtained
from Poincaré duality. Introducing cancelling k + 1 and k + 2 handles, we
may change this to

0 // Kk+2
// Kk+1

⊕

// Kk

⊕
Kk+2

//1
Kk+2

after adding k+1-handles to Kk+2 along s we may cancel the Kk+2-handles
to shorten this chain complex to a 2-term chain complex which we write
0 → K ′

k+1 → K ′
k → 0. Abusing notation we omit the primes. Notice that
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all generators of Kk are still represented by immersed spheres. For each
generator of Kk+1 we do a trivial surgery to get a chain complex

0 // Kk+1
// Kk

⊕
Kk+1

⊕
Kk+1

We still have the contraction s in dimension k + 1, so we may add handles
along s and cancel Kk+1 to obtain a chain-complex concentrated in one
degree. Recall there is a similar need to do trivial surgeries in compact
surgery theory because the homology modules are only stably free. Denote
the remaining module by A. Poincare duality produces an isomorphism
φ : A → A∗ which determines the intersections of different generators i. e.
φ(ei)(ej) determines the intersections of ei and ej when ei and ej are differ-
ent. Now total order the basis and define a map ν : A → A∗ so that ν(ei)(ej)
is 0 when i > j and the intersection counted with sign in Zπ when i ≤ j
. By symmetrization ν + εν∗ = φ, hence an isomorphism. This represents
the surgery obstruction. If this obstruction is zero, [36, Proposition 2.6]
shows us how to find a Lagrangian, and doing surgery on this Lagrangian
will produce a homotopy equivalence. More specifically [36, Proposition
2.6] tells us that after stabilization with a hyperbolic form, we may find a
Lagrangian. Using −1-connectedness we may do trivial surgeries at points
chosen such that this hyperbolic form is added to A. Once we have a La-
grangian each basis element in the Lagrangian is a linear combination of
generators in A, so we find representations by immersed spheres by tubing
up the generators in A. This uses 0-connectedness. Using the assumption
that we have bounded fundamental group π we may do the Whitney tricks
to cancel double points so that the geometric intersections correspond to the
algebraic intersections meaning that the generators of the Lagrangian are
represented by framed, imbedded spheres. After surgery on these spheres
an easy calculation shows that the new K#(M) is contractible.

To see the obstruction is well defined it suffices to show that the obstruc-
tion is zero on a boundary, but doing surgery on the bounding manifold to
make it highly connected will produce a Lagrangian as in classical surgery
surgery theory. Plumbing shows that all algebraically defined surgery ob-
structions are realized by some surgery problem with boundary. This is done
as follows: Let (A, ν) be an element of Ln, n ≥ 5. Choose a −1, 0 connected
2k − 1-dimensional manifold N → Z, with bounded fundamental group π,
and trivially imbedded k − 1-spheres corresponding to the generators of A.
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Consider
(∪Sk−1)× I ⊂ N × I

Piping against the boundary N × 1 we change these imbeddings to immer-
sions having selfintersection form defined by ν. Do surgery on the spheres
imbedded in M × 1, the non-singularity of ν implies that the trace of this
surgery W → N×I is a homotopy equivalence on the boundary and realizes
the given surgery obstruction (A, ν)

In odd dimensions we can dodge the problem by crossing with the reals
at both the manifold and parameter space level. Now we have a surgery
problem parameterized by O(ΣK). Since we now have an even-dimensional
problem, we can translate to algebra as above, and use the algebraic fact
that

Ls
n+1(CO(ΣK)(Zπ)) ∼= Lh

n(CO(K)(Zπ))

[37] to finish off the proof by an application of Theorem 7.2. This gives
the Lh result, but not the Ls result. An argument that solves the odd-
dimensional case directly was shown to us by A. Ranicki. It goes as follows:

Doing surgery below the mid-dimension and furthermore proceeding as
above we may obtain a length 2 chain complex

0 → Kk+1 → Kk → 0.

Now do surgeries on embedded Sk×Dk+1’s in such a fashion that, denoting
the trace of the surgery by W , the chain complexes K#(W,M), K#(W ) and
K#(W,M ′) are homotopy equivalent to chain complexes which are zero
except in dimension k + 1. One way to do this could be to do surgeries to
all the generators of Kk. Denote the resulting manifold by M ′. The surgery
obstruction is now defined to be the following formation

(Kk+1(W,M)⊕Kk+1(W,M ′),Kk+1(W,M),Kk+1(W ))

where the first Lagrangian is the inclusion on the first factor, and the second
Lagrangian is induced by the pair of inclusions. Poincaré duality shows that
these are indeed Lagrangians. We need to see this is a well-defined element
in the odd L-group. First, the choice of imbeddings of Sk × Dk+1 may
be changed by a regular homotopy, but that changes the formation by an
isomorphism. Next we need to compare the effect of choosing a different set
of spheres. Let W1 and W2 be two traces satisfying the conditions above.
Let W12 denote the result of surgery by both sets of spheres. After attaching
the first set of handles the second set is attached by homotopically trivial
spheres so after a regular homotopy we have that W12 is W1 with further
trivial surgeries done. It is easy to see that trivial surgeries do not change
the equivalence class of the formation, so W1 and W12 define equivalent
formations. Similarly W2 and W12 define equivalent formations and we are
done. We need to see this is a normal cobordism invariant, but given 2
highly connected normally cobordant surgery problems, we may do surgery
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on the normal cobordism and cancel handles as in the even dimensional
case to obtain a normal cobordism which is just a trace of surgeries as
described. This means we have a well defined element in the L-group. If
K#(M) is contractible we may choose to do no surgeries and thus get the
0-formation which does represent 0 in the L-group. Since the operations
that are allowed on Lagrangians in the odd L-groups [36] can be mimicked
geometrically, using the −1, 0-connectedness, and bounded fundamental
group assumptions we see that surgery can be done if and only if the element
is 0 in the L-group. Showing all algebraically defined elements are realized
geometrically is done by plumbing: Given a non-singular formation we may
think of it as (H ⊕ H∗, H, K), using the first Lagrangian to identify the
form with a hyperbolic form. Start out with a −1, 0-connected 2k-manifold
N → Z, with bounded fundamental group π and do trivial surgeries to a set
of generators corresponding to generators of H. In the resulting manifold M ′

we have the kernel Kk = H⊕H∗. Now do surgeries to spheres corresponding
to generators of K to obtain a homotopy equivalence again. The union of the
traces of these surgeries along M ′, W → N×I will have surgery obstruction
given by (H ⊕H∗,H,K).

Corollary 12.4. The groups Ln,O(K)(Zπ) are 4-periodic for n ≥ 5. The
isomorphism is given by multiplication by CP2.

Proof. First, note that it suffices to prove periodicity in Lh, since the
Ranicki-Rothenberg sequence and the 5 Lemma then give Ls periodicity.
(Multiplication by CP2 is an isomorphism on Tate cohomology since CP2

has odd Euler characteristic.) The Lh groups are 4-periodic because the
algebraically defined groups only depend on n mod 4. To see that the iso-
morphism is given by multiplication by CP2, one has to go through steps
analogous to the compact proof [43, Theorem 9.9, p. 96].

Remark 12.5. As remarked above, it would be nicer to have a direct de-
scription of a map from the geometrically defined bordism groups to the
algebraically defined bordism groups. Note, however, that the identifica-
tion of Ls

n,O(Si)(Zπ) with L1−i
n−i−1(Zπ) is independent of the algebra of this

section.

We now give a proof of theorem 7.2 based on the material in this section.

Proof of Theorem 7.2. Given the algebraic description of the surgery groups
(in the case without boundary) we may establish the surgery exact sequences
of the last section without reference to a [42, Chapter 9] type definition of
the L-groups. First assume ∂X is empty. Consider the diagram of surgery
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exact sequences

· · · // Lh
n(CM (Zπ)) //

²²

Sh
b (X) //

²²

[X, F/ TOP] //

²²

. . .

· · · // Ls
n+1(CM×R(Zπ)) // Ss

b (X × R) // [X × R, F/ TOP] // . . .

where the vertical maps are induced by crossing with R. On the normal
invariant we clearly get an isomorphism, and it is proved in [37] that

Lh(CM (Zπ)) → Ls(CM×R(Zπ))

is an isomorphism (see also [6]) hence an element in the simple structure set
parameterized over M×R is the product with R with an element in Sh

b (X).
The reader should note that, as usual in surgery theory, the surgery exact
sequence is not a sequence of abelian groups and homomorphisms. The L-
groups act on the structure set and exactness at the structure set means that
two elements having the same normal invariant differ by an action of the
L-group. It is however easy to see that a version of the 5-lemma sufficient
for our purposes is valid, so we do get a 1-1 correspondence of structure sets.
To get the splitting, we finally need to refer to the bounded s-cobordism
theorem 2.17.

The relative case is treated by first splitting the boundary then working
relative to the boundary.

13. The annulus theorem, CE approximation, and tri-
angulation

In this section we show how bounded surgery theory can be applied to give
direct proofs of Kirby’s annulus theorem and Siebenmann’s CE approxima-
tion Theorem. We also take a look at triangulation theory through the lens
of bounded topology.

Theorem 13.1. (Kirby [16]) If Cn, n ≥ 5, is a bicollared ball in Rn con-

taining a bicollared ball Dn in its interior, then C −
◦
D is homeomorphic to

Sn−1 × [0, 1].

Proof. By the generalized Schönflies Theorem [5], [19], there is a homeomor-
phism h : Rn → Rn with h(Dn) = Bn, where Bn is the standard ball. Now
h : Rn → Rn is certainly a controlled homotopy equivalence, so h defines
an element of the bounded structure set

SPL
b



Rn

↓ id
Rn


.
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The surgery exact sequence in this case is

→ Ln,Rn+1(e) → SPL
b



Rn

↓ id
Rn


 → [Rn, F/ PL] → Ln,Rn(e)

where there are no decorations on the L-groups because π1 is trivial and
all homotopy equivalences are therefore simple. This uses Bass-Heller-Swan
and [24]. By Theorem 10.4, Ln,Rn+1(e) = L1(e), which is zero by Kervaire-
Milnor [4, p. 49]. The space F/ PL is connected, so [Rn, F/PL] is trivial.

Thus, SPL
b

( Rn

↓id
Rn

)
is trivial, which means that there is a PL homeomor-

phism k : Rn → Rn which is boundedly close to h. Let Rn be compactified
to Dn by adding a sphere at infinity. We use the notation LBn to denote
the ball of radius L centered at the origin in Rn. Since k−1 ◦h : Rn → Rn is
a homeomorphism which extends to a homeomorphism k−1 ◦ h : Dn → Dn,
we see

(i) Dn − L
◦

Bn is an annulus, so

k−1 ◦ h(Dn − L
◦

Bn) = Dn − (k−1 ◦ h)(L
◦

Bn)

is an annulus for all L.
(ii) This implies that (k−1 ◦ h)(LBn)−M

◦
Bn is an annulus for L À M ,

since the annulus Dn − M
◦

Bn is (k−1 ◦ h)(LBn) − M
◦

Bn plus the

collar Dn− (k−1 ◦ h)(L
◦

Bn) and adding a collar on the boundary of
a manifold leaves the homeomorphism type unchanged.

(iii) Applying k, we see that h(LBn)−k(M
◦

Bn) is an annulus for L À M .

(iv) Since k is PL, k(M
◦

Bn)−
◦

Bn is an annulus for M large [38, p. 36]

and the collaring trick shows that h(LBn) −
◦

Bn is an annulus for
very large L.

(v) Applying the collaring trick yet again shows that h(Bn)−
◦

Bn is an
annulus.

Here is a geometric restatement of the surgery theory involved in this
argument: Bundle theory over Rn is trivial, so a transversality argument
shows that the bounded PL structure given by h is normally bordant to the
identity. Repeated splitting shows that the obstruction to surgering this
bordism to a bounded h-cobordism over Rn is the codimension n surgery
obstruction over the transverse inverse images of points in Rn. This uses the
π-π theorem and periodicity, since we need to multiply the original problem
by CP2 to keep the dimensions from dropping below 5. All of the surgery
groups that we use here are rel boundary, so the problem of transferring
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between the geometry and algebra alluded to in the last section does not
arise in this connection. The codimension n surgery obstruction for surger-
ing the bordism is an odd-dimensional simply connected (ordinary) surgery
obstruction and is therefore zero. We can therefore surger to a bounded
PL h-cobordism, at which point we can apply the bounded h-cobordism
theorem over Rn (see [25]) to produce the bounded PL approximation k.

Corollary 13.2. (of the proof) Orientation-preserving homeomorphisms of
Rn, n ≥ 5 are stable.

Proof. We assume that the reader is familiar with [16]. The homeomor-
phism k is stable because it is orientation-preserving and PL, while the
homeomorphism k−1 ◦ h is stable because it is bounded. Compositions of
stable homeomorphisms are stable, so h = k ◦ (k−1 ◦ h) is stable.

Remark 13.3. This is the lone surgical ingredient in the proof of the Kirby-
Siebenmann Product Structure Theorem, which says that Mn has a PL
structure if and only if M×Rk has a PL structure for some k. See [15, p. 33].
We could also prove the product structure theorem directly using Theorem
7.2. The existence of handlebody decompositions for high-dimensional TOP
manifolds is a direct consequence. See [15, pp. 104 ff.]. It also follows
immediately by a general bundle theory argument [21] that Mn has a PL
structure if and only if the stable tangent bundle of M has a PL reduction.
Thus, triangulation is a lifting problem and the triangulation problem is
reduced to determining the structure of TOP / PL.

The same lemma gives a proof of Siebenmann’s CE approximation the-
orem.

Theorem 13.4. If n ≥ 5 and f : M → N is a CE map, then f is a uniform
limit of homeomorphisms.

Proof. Let U ⊂ N be the interior of a bicollared ball in N . Then f :
f−1(U) → U ∼= Rn is a bounded structure on Rn. The manifold f−1(U)
is contractible, so by the Product Structure Theorem, f−1(U) has a PL
structure and the argument above shows that there is a PL homeomorphism
k : f−1(U) → U approximating f so closely that the map f̄ : M → N
defined by

f̄(x) =

{
f(x) x /∈ f−1(U)
k(x) x ∈ f−1(U)

is continuous. Performing similar modifications over all of the sets U in an
open cover of N gives a homeomorphism homotopic to f . If the open sets
U are taken to be small, the homeomorphism approximates f .

We can approach Kirby-Siebenmann’s triangulation theory similarly. A
topological homeomorphism h : V PL → Dk×Rm, m+k = n ≥ 5, which is a



208 Steven C. Ferry and Erik K. Pedersen

PL homeomorphism over a neighborhood of the boundary gives an element

of SPL
b

(
Dk×Rm

↓id
O(Dk×Sm−1)

)
. The surgery exact sequence is

. . . → Ln,O(Dk×Sm−1)(e) → SPL
b

(
Dk×Rm

↓id
O(Dk×Sm−1)

)

→ [Dk × Rm, ∂;F/ PL] → Ln,O(Dk×Sm−1)(e).

By homotopy invariance, this is

· · · → Ln,O(Sm−1)(e) → SPL
b

(
Dk×Rm

↓id
O(Dk×Sm−1)

)
→ πk(F/PL) → Ln,O(Sm−1)(e)

which is

πk+1(F/ PL) → Lk+1(e) → SPL
b

(
Dk×Rm

↓id
O(Dk×Sm−1)

)
→ πk(F/ PL) → Lk(e).

The usual plumbing argument shows that the maps πk(F/PL) → Lk(e) are
isomorphisms for k 6= 4, in which case Rochlin’s Theorem shows that the
map is multiplication by 2. This shows that such structures are trivial for
k 6= 3 and allows the straightening of all but 3-handles. The one nontrivial
structure on D3 × Rm comes from a homotopy equivalence

f : V → Dk × Rm

which is a PL homeomorphism near the boundary and which is bounded over
O(Dk×Sm−1). Add a boundary to V to form V̄ and extend the map. This
uses Quinn’s end theorem or our bounded modification thereof and requires
m+k ≥ 6. By the Generalized Poincaré Conjecture, V̄ is a disk. The limit-
ing map is CE and we approximate by a homeomorphism. Coning produces
a TOP homeomorphism h proper homotopic to the original f . Comparing
the bounded and proper surgery exact sequences shows that the bounded
structure given by h is equivalent to the original f , so composing h with
an appropriate PL homeomorphism which is the identity on the boundary
gives a TOP homeomorphism boundedly close to f . Thus, the nonstraight-
enable “bounded homotopy handle” comes from a TOP homeomorphism,
π3(TOP / PL) ∼= Z/2Z, and the development of the theory proceeds as in
[15].

14. Extending the algebra

In this section we extend the bounded algebraic theory in two directions.
First, we consider the equivariant case, i.e., we extend the theory to allow
non-bounded fundamental groups coming from group action. Second, we
introduce germ methods, which allow us to disregard what happens in a
bounded neighborhood of a subset of the metric space.
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In the following, suppose that M is a metric space with a group G acting
by quasi-isometries.

Definition 14.1. An object of CM,G(R) is a left RG-module A together
with a set map f : A → F (M), where F (M) is the finite subsets of M such
that

(i) f is G-equivariant.
(ii) Ax = {a ∈ A | f(a) ⊆ {x}} is a finitely generated free sub R-

module.
(iii) As an R-module A = ⊕x∈MAx.
(iv) f(a + b) ⊆ f(a) ∪ f(b).
(v) The set {x ∈ M | Ax 6= 0} is locally finite.

A morphism ϕ : A → B is a morphism of RG-modules so that there is a
k = k(ϕ) so that ϕm

n : Am → Bn is 0 for d(m, n) > k.

Remark 14.2. In case G is the trivial group, CM,e(R) and CM (R) are iden-
tified by sending an object A in CM (R) to ⊕x∈MAx together with the map
f : ⊕x∈MAx → F (M) picking out non-zero coefficients. Similarly when the
action of G on M is trivial, the categories CM,G(R) and CM (RG) may be
identified.

Definition 14.3. If R is a ring with involution, the category CM,G(R)
has an involution given by A∗ = Homlf

R (A,R), the set of locally finite R-
homomorphisms. We define f∗ : A∗ → F (M) by f∗(φ) = {x | φ(Ax) 6= 0},
which is finite by assumption.

Given a metric space M with an action by G and an equivariant submetric
space N ⊂ M , let us denote the k-neighborhood of N by Nk. We shall now
develop germ methods “away from N”.

Definition 14.4. The category C>N
M,G(R) has the same objects as CM,G(R),

but morphisms ϕ1, ϕ2 : A → B are identified if there exists k such that
ϕx

1y = ϕx
2y for x /∈ Nk.

Using the methods of [27] , [33], and [6] we get the following:

Theorem 14.5. Let M ∪ N × [0,∞) have the metric included from M ×
[0,∞). The forgetful map (functor!)

CM∪N×[0,∞),G(R) // C>N×[0,∞)
M∪N×[0,∞),G(R)

C>N
M,G(R)

induces isomorphisms on algebraic K-theory and (if R is a ring with invo-
lution) on algebraic L-theory.
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Proof. Let A be the full subcategory of U = CM∪N×[0,∞),G(R) with objects
0 except for a bounded neighborhood of N × [0,∞). Then U is A-filtered in
the sense of Karoubi and the result follows from [27] since A has an obvious
Eilenberg swindle making the K-theory trivial.

Arguing as above with Karoubi filtrations we get the following from [27],
see also [6]:

Theorem 14.6. Assume that M is a metric space with a group G acting
by quasi-isometries, and let N be an invariant subspace. Form M ∪ N ×
[0,∞) with metric induced from M ×R and the induced G-action. Then the
sequence of categories (with morphisms restricted to isomorphisms)

CN,G(R) → CM,G(R) → CM∪N×[0,∞),G(R)

induces a fibration of K-theory spectra, and hence a long exact sequence in
K-theory.

In the important special case where the metric space M is O(K) for
some finite complex K with a cellular action on K, the combination of
these two theorems allows the computation (in the sense of providing exact
sequences) of K∗(CO(K),G(R)). Computations are further facilitated by the
fact [13] that these functors are Mackey functors in the variable G.

When R is a ring with involution CM,G(R) is a category with involution,
so following Ranicki the algebraic L-theory is defined. There are exact se-
quences similar to the above sequences for computing L-theory. See Remark
19.4, and [6].

15. Extending the geometry

In this section, the basic setup is going to be a group G acting on a met-
ric space M by quasi-isometries and freely, cellularly, on a bounded CW -
complex X such that the reference map p : X → M is equivariant. We call
this a free bounded G − CW complex. The cellular chains take values in
the category CM,G(Z) and will be denoted D#(X). Thus, the basic point
of view is equivariant instead of working with a fundamental group. We do
however have to worry about interference from the fundamental group of
X.

Let N be an equivariant subset of M . We shall use the following language:

Definition 15.1. Let p : X → M be a bounded G-CW complex. The term
away from N means “when restricted to a subset of X whose complement
under p maps to a bounded neighborhood of N .” Similarly, in a bounded
neighborhood of N means a subset of X mapping to a bounded neighborhood
of N under p. Similarly,
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(i) p : X → M is (−1)-connected away from N if there exists k so that
for every point x in M except for a bounded neighborhood of N
there exists y ∈ X such that d(x, p(y)) < k.

(ii) The bounded CW complex (X, p) is (−1)-connected away from N
if there are k, l ∈ R+ so that for each point m ∈ M either there is
a point x ∈ X such that d(p(x),m) < k or d(m,N) < l.

(iii) (X, p) is 0-connected away from N if for every d > 0 there exist k
and l depending on d so that if x, y ∈ X and d(p(x), p(y)) ≤ d, then
either x and y may be joined by a path in X whose image in M has
diameter < k(d) or d(x,N) < l(d) or d(y, N) < l(d). Notice that
we have set up our definitions so that 0-connected does not imply
(−1)-connected.

(iv) (X, p) is 1-connected away from N if for every d > 0, there exist
k = k(d) and l = l(d) so that for every loop α : S1 → X with
d(α(1), N) > l and diam(p ◦ α(S1)) < d, there is a map ᾱ : D2 →
X so that the diameter of p ◦ (D2) is smaller than k. We also
require p : X → M to be 0-connected away from N , but not (−1)-
connected.

(v) (X, p) has bounded fundamental group π away from N if there exists
a π-covering of X away from N which is 0- and 1-connected away
from N . We do not require (X, p) to be (−1)-connected away from
N .

Definition 15.2. A free bounded G-CW complex X → M is a G-Poincaré
duality complex away from N if X → M is 0- and 1-connected away from
N , and there is a class [X] ∈ H lf (X/G; C) so that a transfer of [X] induces
a bounded homotopy equivalence [X] ∩ − : D#(X) → D#(X) as chain
complexes in C>N

M,G(Z).

Definition 15.3. A G-metric space M (i.e., a metric space M with a group
G acting by quasi-isometries) is allowable if there exists a finite dimensional
complex K with a free cellular G-action and a map p : K → M making K
a free bounded (-1)-, 0- and 1- connected free bounded G− CW -complex.

With these definitions, the theory detailed in the preceding sections for
the case of a boundedly constant fundamental group carries through, so we
obtain the analogue of the main theorem of this paper, the surgery exact
sequence.

Theorem 15.4. Let X → M be a (−1), 0, and 1-connected n-dimensional
G-Poincaré duality complex away from N . For n ≥ 5, there is a surgery
exact sequence

· · · → Sb((X × I), δ(X × I), G)>N → [ΣX/G,F/ CAT]>N →
→ Ls

n+1(C>N
M,G(Z)) → Sb(X, G) → [X, F/ CAT]>N → Ls

n(C>N
M,G(Z)).
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Here simpleness is measured in K1(C>N
M,G)/G, Sb(X, G)>N denotes bound-

ed equivariant structures away from N , and [X, F/ CAT]>N denotes germs
of homotopy classes of maps away from N .

Of course, we have Lh-groups as well as Ls-groups and these groups are
connected via the usual Ranicki-Rothenberg exact sequence.

Proposition 15.5. Assume n ≥ 5. There is a long exact Ranicki-Rothenberg
sequence

→ Ls
n(C>N

M,G(Z)) → Lh
n(C>N

M,G(Z)) → Ĥn(Z2, K̃1(C>N
M,G(Z))) → .

16. Spectra and resolution of ANR homology manifolds

Following the tradition of Quinn, Ranicki, and Nicas, we spacify our bounded
surgery groups, producing spectra such that the surgery groups are the ho-
motopy groups of these spectra.

Theorem 16.1. Let (M,G) be an allowable G-metric space. There is an
infinite loop space Ls

M,G(Z) depending functorially on (M, G), such that

πiLs
M,G(Z) = Ls

i (CM,G(Z)).

Proof. We construct a 4-set whose n-simplices are n-ads of (M,G)-surgery
problems. The realization is an infinite loop space, as in the classical case.
See [28] and Nicas [22] for details.

In the special case where G is the trivial group, i.e., the case of simply-
connected bounded surgery, we can improve a bit on the situation, getting
an analogue of the main theorem of Pedersen-Weibel [27].

Theorem 16.2. The functor sending a finite complex K to LO(K)(Z) sends
cofibrations to fibrations.

Proof. Let L ↪→ K → K ∪CL be a cofibration. The composite LO(L)(Z) →
LO(K)(Z) → LO(K∪CL)(Z) is the zero map, since it factors through
LO(CL)(Z), which is contractible. On homotopy groups we get an ex-
act sequence (by Theorem 10.5) and thus the Five Lemma shows that
LO(L)(Z) is homotopy equivalent to the homotopy fibre of LO(K)(Z) →
LO(K∪CL)(Z).

Following [27], this identifies the homology theory. Denoting the four-
periodic simply connected surgery spectrum by L we have:

Theorem 16.3.
Ln(CO(K)(Z)) ∼= hn−1(K,L)

where h(−,L) denotes the reduced homology theory associated with the spec-
trum L.
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Proof. It is shown in [27], Theorem 3.1 that the spectrum for the homology
theory Ln(CO(K)) is given by the spectrum whose n’th space is LRn(Z), but
that is exactly four-periodic simply connected L-theory.

Let k denote the (unreduced) homology theory with coefficients in con-
nective simply connected L-theory, and h the (unreduced) homology theory
with coefficients in 4-periodic simply connected L-theory. As always, there
is a natural transformation from h to k, sending the periodic spectrum to
the connective version. We define a natural transformation α from k to h
as follows:

Let K be a finite complex, W a regular neighborhood of K. Now k∗(K) ∼=
k∗(W ) ∼= k|W |−∗(W/∂W ) ∼= k0(Σ∗−|W |W/∂W ) = [Σ∗−|W |W/∂W,F/ TOP].
Consider W × [0,∞) → O(K), a simply connected bounded Poincaré du-
ality complex away from 0, and with boundary. The normal invariant of
W × [0,∞) away from 0 relative to the boundary is given by [Σ∗−|W |W/∂W,
F/ TOP] and the surgery exact sequence maps from there to L(∗−|W |)+|W |
(CO(K)(Z)) = h∗(K).

Theorem 16.4. The composite of natural transformations k∗
α−→ h∗ → k∗

is an isomorphism.

Proof. It is enough to verify this for spheres. What we need to prove is that

the bounded structure space Sb

(
Sn×[0,∞)

↓
O(Sn)

)>0

is contractible. The classical

structure space of a sphere is a point (by the high-dimensional Poincaré con-
jecture). Crossing with Rk into bounded L-theory is an isomorphism both
on normal invariants and L-groups, so [Σi(Sn×Rk); F/ TOP] ∼= L(CRk(Z)).
Away from 0, the Poincaré complex Sn×Rk → Rk is Sn×Sk−1× [0,∞) →
O(Sk−1), but that, on the other hand, is the image of Sn×Sk−1× [0,∞) →
O(Sn × Sk−1) away from 0 induced by the projection Sn × Sk−1 → Sk−1.
By naturality, we obtain that α is an isomorphism on one of the summands
when applied to Sn × Sk−1, but then by naturality it must be an isomor-
phism on spheres.

The point of the proof above is to relate the obvious isomorphism for the
case Sn×Rk → Rk to the definition of α. This theorem can also be proved
using Chapman and Ferry’s α-approximation theorem [8].

We get a new proof of Quinn’s obstruction to resolution.

Theorem 16.5. Let X be an ANR homology manifold. Then there is an
integral obstruction to producing a resolution of X.

Proof. First, assume that X admits a TOP reduction of its Spivak normal
fibre space. Theorem 16.6 below shows that such a reduction always exists.
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Consider the bounded surgery exact sequence

Sb

(
X×[0,∞)

↓
O(X)

)>0

→ [X, F/ TOP] → L|X|(C>0
O(X)(Z)).

By the theorem above and Theorem 16.7 below,

L|X|(C>0
O(X)(Z)) ∼= [X, F/ TOP×Z],

and the map [X, F/ TOP] → [X, F/ TOP×Z] followed by the map to con-
nective L-theory, i.e., to [X, F/ TOP], is an isomorphism. Hence it is only
the component in F/TOP×Z that X maps into which is the obstruction to

the nonemptiness of the bounded structure set Sb

(
X×[0,∞)

↓
O(X)

)>0

. Assume

that this integral obstruction vanishes. Choose an element in the bounded
structure set

φ : W ∼= X × [0,∞)

²²
O(X).

φ is a bounded homotopy equivalence away from 0 ∈ O(X). A neighborhood
of infinity in W maps to X, and since X × [0,∞) → O(X) is the identity
away from 0, and φ is a bounded homotopy equivalence, the end of W
mapping to X is tame and simply connected, so we may add an end M to
W and extend the map W → X to M . The map M → X is a resolution
because it is an arbitrarily small homotopy equivalence. The theorem will
now follow from:

Theorem 16.6. An ANR homology manifold X has a canonical TOP re-
duction.

Preparing for the proof, first notice that by [1] Ln(CO(−)(Z)) is a functor
defined on compact subsets of SN , N large, and all continuous maps, not
only Lipschitz maps. We now have

Theorem 16.7. Ln(CO(−)(Z)) satisfies Milnor’s wedge axiom.

Proof. Consider
∨

Xα ⊂ SN . We have

Ln(CO(
∨

Xα)(Z)) ∼= Ln(C>O(∗)
O(

∨
Xα)

(Z)).

By suspension, we may assume n divisible by 4, so an element is given
by a self-intersection form ν, which is bounded, so when we disregard a
neighborhood of O(∗) we get a self-intersection form on each L

>O(∗)
O(Kα)(Z)) ∼=
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Ln(CO(Xα)(Z)). To combine an element in ΠαLn(C>O(∗)
O(Xα)(Z)) to get an el-

ement in Ln(CO(
∨

Xα)(Z)), all we need to do is reparameterize radially so
that all components have the same bound.

This means that the identification of bounded L-theory over open cones
with homology theory extends beyond finite complexes as a Steenrod ho-
mology theory, and that homology with locally finite coefficients may be
defined as reduced homology of the one-point compactification.

Proof of Theorem 16.6. Cover X by open sets Uα so that the Spivak nor-
mal fibration restricted to Uα is trivial. On Uα we obviously have a TOP
reduction, giving rise to a surgery exact sequence as above, denoting the
topological boundary of Uα by ∂Uα,

Sb

(
Uα×[0,∞)

↓
O(Ūα)

)>∂Uα

→ [Uα, F/TOP]
φ−→ L(C>O(∂Ūα)

O(Ūα)
(Z)).

By Poincaré duality, φ may be identified with

[Uα, F/TOP] → [Uα, F/ TOP×Z],

so by changing the lift of Uα we may ensure that the surgery obstruction
is just an integer, and assuming this integer vanishes, we can produce a
resolution over Uα as above. This surgery exact sequence is natural with
respect to restriction to smaller open sets, so the lifts combine to give a lift
over the whole of X.

Remark 16.8. Strictly speaking, the argument above is flawed in that ar-
bitrary wedges of polyhedra cannot be embedded in a single finite-dimensional
sphere. This can be cured by using the unit sphere in a Hilbert space or,
better, by embedding X isometrically into the bounded functions from X
to R and taking a cone there.

Next, we want to understand assembly from the point of view of bounded
surgery. Given a boundedly simply-connected surgery problem away from 0
parametrized by O(K), the induced map from K to a point gives a surgery
problem parametrized by [0,∞) away from 0. We can turn this problem
into a simply-connected surgery problem by doing simultaneous surgery on
source and target, giving the usual functorial property with respect to K,
but avoiding that, we obtain a simple surgery problem (simplicity measured
in Wh(π1(K))) together with a reference map to K, in other words, an el-
ement in Ls(C>0

[0,∞)(Zπ1(K))) ∼= Ls(CR(Zπ1(K))) ∼= Lh(Zπ1(K)). We claim
this forget control map is the assembly map.

Theorem 16.9. Let M be a manifold. Then the forgetful map

F : L(C>0
O(M)(Z)) → Lh(Z(π1(M)))
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is the assembly map.

Proof. Consider the following diagram

· · · // [ΣiM, F/ TOP] //α Lm+i+1(CO(M)(Z))

²²
F

· · · // [ΣiM, F/ TOP] //A
Lh

m+i(Z(π1(M)))

where the lower row is the classical surgery exact sequence with the assembly
map. We have just proved that α is an isomorphism for i > 0 and the
inclusion of a direct summand for i = 0. For i > 0, this identifies the map
with assembly. Since the algebraically defined groups are 4-periodic, this
also identifies F with the higher assembly maps when i = 0.

This gives a curious relation between the resolution problem and the
Novikov Conjecture.

Theorem 16.10. Let M be a closed K(π, 1)-manifold such that the assem-
bly map is an integral monomorphism. Then an ANR homology manifold
X homotopy equivalent to M admits a resolution.

Proof. Consider the diagram

Sb

(
X×[0,∞)

↓
O(X)

)>0
//

²²

[X, F/ TOP] //α Lm+1(C>0
O(X)(Z))

²²
F

²²

S(X) // [X, F/ TOP] //A
Lh

m(Zπ1(X)).

Since S(X) is nonempty, there is a σ ∈ [X,F/TOP] so that A(σ) = 0. But

then α(σ) = 0 and Sb

(
X×[0,∞)

↓
O(X)

)>0

is nonempty, showing that X admits a

resolution.

Bob Daverman has pointed out that there is an easy geometric proof that
there is no nonresolvable ANR homology manifold X homotopy equivalent
to the n-torus. The universal cover of such an ANR homology manifold
could be compactified by adding a sphere at infinity. Adding an exter-
nal collar would then give an ANR homology manifold with both manifold
points and points with neighborhoods from X, showing that the resolution
obstruction for X was trivial. Many of the classes of groups for which the
map α is known to be 1-1 admit similarly nice compactifications. In fact,
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Ferry and Weinberger have recently announced a proof of the Novikov con-
jecture for all Γ such that K = K(Γ, 1) is a finite complex (not necessarily
a manifold) and K̃ admits a sufficiently nice compactification [11].

17. Geometric constructions

In this section we prepare for the applications in the next section by de-
scribing some geometric constructions. Consider a continuous proper map
X → O(K).

Definition 17.1. The K-completion X̂K , of X is defined as follows: As a
set X̂K is the disjoint union of X and K. The open sets of X̂K have as a
basis:

(i) all open sets of X
(ii) for every open set U of K, and every k ∈ R+, the set

{p−1 (x, t) ∈ O(K)|x ∈ U, t > k} ∪ U.

This construction is sometimes called the tear drop construction. It is
easy to see that X̂K is a compact metric space. This construction generalizes
one-point compactification.

Theorem 17.2. Let W1 and W2 be manifolds properly parameterized by
O(K), and assume that h is a bounded homotopy equivalence from W1 to
W2. Then ŴK

1 is a manifold if and only if ŴK
2 is a manifold.

Proof. Assume that ŴK
1 is a manifold. It is easy to see that ŴK

2 is an
ANR homology manifold. Using the homotopy equivalence, the disjoint
two-disc property is also carried over, so the result follows by the Manifold
Recognition Theorem [31]. See [10] for a detailed proof of the disjoint two-
disc property in the case where K = S1.

Remark 17.3. This result is very useful in proving the existence of group
actions by varying the complement of the singular set. For studying group
actions we also need the following:

Proposition 17.4. Let G be a finite group with a stratum-preserving action
on a finite complex K. Assume that W1 and W2 are manifolds parameterized
by O(K) on which G acts freely and compatibly with the action on K. Then
W1 is boundedly equivariantly homotopy equivalent to W2 over O(K) if and
only if W1/G is boundedly homotopy equivalent to W2/G over O(K/G).

Proof. One way is trivial, so assume that h : W1/G → W2/G is a bounded
homotopy equivalence. Certainly we get an equivariant homotopy equiva-
lence h̃ : W1 → W2. The length of the path in the homotopy can be at most
|G| times the length of the path measured in O(K/G), so we are done.
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18. More applications

We begin with an application to group actions.

Consider the standard n + k sphere Sn+k with the standard k − 1 sub-
sphere Sk−1 ⊂ Sn+k so that Sn+k = Sn ∗ Sk−1. Let G be a finite group
and assume that G acts semifreely (topologically) on Sn+k fixing Sk−1. It
was proved in [3] that G has to be a periodic group, since (Sn+k−Sk−1)/G
is finitely dominated and Sn+k − Sk−1 has the homotopy type of a sphere.
Hence, the homotopy type of (Sn+k − Sk−1)/G is given by G and a single
k-invariant which is a unit in Z/|G|. It was further proved that such actions
exist if and only if a certain surgery problem has a solution, i.e., if and only
if a certain Spivak normal bundle has a reduction and the resulting surgery
problem can be solved.

This surgery program was completed in [12] and [20], and also the maps
Lh

n(ZG) → Lp
n(ZG) → L−1

n (ZG) were computed for the relevant groups,
but the computation did not give the classification one usually obtains from
surgery theory. It is the purpose of this section to show how ε-surgery can
turn the computations of [12] and [20] into such a classification.

Let X be a Swan complex. The surgery exact sequence of §11 takes the
following form:

· · · → Ls
n+k+1,Rk(ZG) → Sb

(
X×Rk

↓
Rk

)
→ [X, F/ TOP] → Ls

n+k,Rk(ZG).

We proved in §10 that Ls
n+k,Rk(ZG) = L2−k

n (RG), so we get a surgery exact
sequence:

· · · → L1−k
n+1(ZG) → Sb

(
X×Rk

↓
Rk

)
→ [X,F/TOP] → L2−k

n (ZG) → · · · .

Comparing this with [12] and [20] we see that what is actually being com-

puted is Sb

(
X×Rk

↓
Rk

)
.

In [3] a map is defined:

Sb




X × Rk

↓
Rk


 h−→





Conjugacy classes of semifree group ac-
tions of G on Sn+k fixing Sk+1 with k-

invariant of Sn+k − Sk−1/G given by X,
so that (Sn+k − Sk−1)/G ' X.





The construction in [3] starts with a compact manifold homotopy equivalent
to X × Tn, and then passes to the Zn cover, but it is clear that the same
construction gives a map as above. The right-hand side is a classification
of semifree group actions, so we will be done once we prove:
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Theorem 18.1. h is an isomorphism.

Proof. The map is well-defined because a bounded homeomorphism extends
to a completion by the identity on the fixed sphere. To see that h is onto,
consider a semifree action on Sn+k fixing Sk−1 and let W = Sn−k−Sk−1/G.
It is shown in [3] that W has a tame end at Sk−1. Killing the obstruction to
completing the end by multiplying with a torus, we obtain that W × Tn '
W ′ × Rn, where the radial directions in Rn point to the points of Sn−1.
Going to the cyclic cover we have W ' W ×Rn ' W̃ ′×Rn and W̃ ′ ' X so
we are done. That the map is monic follows from Theorem 11.2 that radial
reparameterization induces the identity on the structure set.

Remark 18.2. Note that this surgery theory is not restricted to the cate-
gory of manifolds. All that is needed is that the objects be manifolds away
from the singular set. It thus makes perfectly good sense to suspend group
actions. Suspension is just crossing with the reals in the nonsingular part
and suspending on the singular part, at least if one assumes nonempty sin-
gular sets. This means that questions such as the above may be treated in
two stages:

(i) Suspend enough times that K−i(Z[π]) = 0, and apply L−∞.
(ii) Try to split off real factors to get back to the manifold situation.

As a second example, consider a closed PL manifold Mn ⊂ Sm−1 ⊂ Rm

which contains a simply-connected polyhedron Y . Let p:M → M/Y be
the projection map. As in the proof of Theorem 9.6, form a two-ended
manifold W which looks like O(M) near +∞ and like M × R near −∞
and parameterize W over O(M+/Y ). The map id : W → W is a bounded
structure on W → O(M+/Y ), so we have an exact surgery sequence:

· · · → Ln+1,O(M+/Y )(Z) → Sb

(
W
↓

O(M+/Y )

)
→ [M,F/TOP]

→ Ln,O(M+/Y )(Z)

where there are no decorations on the L’s because of the simple connectivity.
In this case Ls

n,O(M+/Y )(Z) = L−∞n,O(M+/Y )(Z), so the obstructions lie in
hn(M/Y ; F/TOP). This is unreduced homology.

An element of Sb

(
W
↓

O(M+/Y )

)
is an equivalence class of bounded homo-

topy equivalences φ : W ′ → W . Splitting such a φ over M × {T} for some
large T produces a homotopy equivalence φ| : M ′ → M which is arbitrar-
ily small over M/Y . By the thin h-cobordism Theorem, this splitting is
well-defined up to small homeomorphism over M/Y .

If N ⊃ Y is a regular neighborhood of Y in M , the main theorem of [8]
shows that φ| is close to a homeomorphism over M − int(N). Thus, M ′ is
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the union of a copy of M − int(N) and a copy of (φ|)−1(N) = N ′. Since
M −Y ∼= M −N ∼= M ′−N ′, we see that M ′ is a compactification of M −Y
by a polyhedron homotopy equivalent to Y . If Y has codimension-three or
greater in M , then a polyhedron Y ′ homotopy equivalent to Y and having
the same dimension as Y embeds in N ′ and M ′ −N ′ ∼= M ′ − Y ′.

There is, of course, a related existence question. If M is an open manifold
and we wish to compactify M by adding a complex K at ∞, we can proceed
by constructing a nonmanifold “Poincaré completion” and then try to solve
the resulting bounded surgery problem over the open cone on the one-point
compactification of M . Note that the use of bounded surgery here is the
reverse of the group actions application above. There, we started with a
manifold and a control map and used our theory to vary the complement.
Here, we control over the complement and allow the theory to construct the
manifold completion. One interesting aspect of this theory is that, except
for predicting the dimension of Y ′, it works well for Y of any codimension.

Another way of exploiting the same control map M → M/Y is to start
with a homotopy equivalence φ : N → M and try to solve the resulting
controlled surgery problem over O(M+/Y ), as above. As before, we en-
counter obstructions lying in hn(M/Y ; F/TOP). If we succeed in solving
this surgery problem, we obtain a bordism from N to a manifold N ′ which
is controlled homotopy equivalent to M over M/Y . As above, such a man-
ifold splits into a copy of M − Y and a polyhedron homotopy equivalent to
Y . The bordism comes equipped with a degree one normal map to M × I,
so there is a further ordinary surgery obstruction to surgering the bordism
to an s-cobordism from N ′ to N . Note that this is a nonsimply connected
surgery obstruction, since M is not required to be simply connected. In
the case Y = pt, the resulting exact sequence is the ordinary surgery ex-
act sequence. In the general case, we have obtained a 2-stage obstruction
to splitting N into a manifold homeomorphic to M − Y and a complex
homotopy equivalent to Y .

As a final example, consider a manifold M homotopy equivalent to the
total space of a bundle (or quasifibration or approximate fibration) of man-
ifolds:

F

²²
M ' E

²²
B

We may ask whether M can be turned into a bundle of some sort over B.
Assuming that the bundle splits at fundamental group level , we obtain a
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surgery problem
M × R // E × R

²²
O(B+)

with fundamental group π = π1(F ). The obstruction lies in

Ls
n,O(B+)(Z[π1F ]).

Assuming that the obstruction vanishes, we obtain a manifold N normally
cobordant to M and a homotopy equivalence of N to E which is arbitrarily
small when measured in B. But this means that N → B is an approximate
fibration, so we have obtained a normal cobordism from M to a manifold
which approximate fibers over B. As before, we now have an ordinary
surgery obstruction to turning this cobordism into an s-cobordism. The
result is an obstruction theory for homotoping a map to an approximate
fibration. Note that the fact that E → B was a bundle was barely used.
If E → B is any map from a manifold to a polyhedron which is a “trivial
bundle on π1,” and M → E is a homotopy equivalence, then solving the
same sequence of problems would produce a map M → B with the same
“shape fiber structure” as E → B.

19. A variant L-theory

It is sometimes a problem that the L-theory described in §9 is not a ho-
mology theory as a functor of the control space. This is unlike K-theory
[27]. Inspired by discussions with Quinn, we give a a variant definition of
L-theory which is (at least) a half exact functor in the control space. This,
on the other hand, means that it cannot degenerate to usual L-theory when
the control space is a point. The idea is to mix the torsion requirements.
As in §9, our definition is modeled on [43, Ch. 9].

Given a space K, an object is a surgery problem

(M, ∂M) // (X, ∂X)

²²
O(K)

where (X, ∂X) is a bounded Poincaré pair with bounded fundamental group
π and a specific CW structure. Thus, we have a specific simple type of
(X, ∂X) parameterized by O(K), but we only require (X, ∂X) to be a
Poincaré pair. We do not require Poincaré torsion to vanish in WhO(K)(Zπ).
We assume ∂M → ∂X to be a simple homotopy equivalence.
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Associated to such an object we have a Poincaré torsion τ(X). We use
sign conventions for Poincaré torsion as in [23].

The usual equivalence of bordism is to say (M1, ∂M1) → (X1, ∂X1) is
bordant to (M2, ∂M2) → (X2, ∂X2) if there is a triad surgery problem

(W,M1,M2) → (Y,X1, X2).

We refine this relation by requiring that τ(Y, X1) = 0.
We claim that this refined type of bordism is an equivalence relation on

the set of surgery problems. The condition τ(Y,X1) = 0 is equivalent to the
condition τ(Y ) = τ(X1) = τ(X2) (see e.g. [23]). We have τ(X×I, X×0) =
0 showing that an object is equivalent to itself. Symmetry follows from
τ(Y, X1) = ±τ(Y, X2). Finally, if Y is a bordism from X1 to X2 and Z is
a bordism from X2 to X3, then τ(Y ∪ Z) = τ(Y ) + τ(Z) − τ(X2) showing
that τ(Y ∪ Z) = τ(X1) = τ(X3).

All constructions involving simultaneous surgery as in §9 are allowed,
since manifolds have trivial Poincaré torsion, and these are manifold con-
structions.

The Grothendieck construction on the set of surgery problems with fun-
damental group π, and only requiring homotopy equivalence of the Poincaré
duality map, not simple homotopy equivalence, parameterized by O(K),
modulo the above equivalence relation, we shall denote by

Lh,s
n,O(K)(Zπ).

The basic idea is to require relations to be simpler than generators.

Theorem 19.1. The functor Lh,s
n,O(K)(Zπ), n ≥ 5, is half exact in the vari-

able K.

Proof. In §9 we studied the functor Lh
O(K),n(Zπ) as a functor in K. In trying

to prove half exactness, there was a splitting obstruction, but this splitting
obstruction must vanish because of the assumption of simpler relations.

Let

Hh
n(Z2 ; K1) = {σ ∈ K1 |σ∗ = (−1)nσ} ,

Hs
n(Z2 ; K1) = {σ ∈ K1 |σ = τ + (−1)nτ∗}

where K1 = K1(CO(K)(Zπ)).

Theorem 19.2. For n ≥ 5, there are exact sequences

Hs
n(Z2 ; K1) → Lh,s

n,O(K)(Zπ) → Lh
n,O(K)(Zπ) → 0

0 → Ls
n,O(K)(Zπ) → Lh,s

n,O(K)(Zπ) → Hh
n(Z2 ;K1)
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which together with the usual Ranicki-Rothenberg exact sequence fit into a
commutative braid

Hh
n+1(Z2 ; K1)

&&

ÃÃ@
@@

@@
@@

@
Ls

n,O(K)(Zπ)
%%

ÀÀ;
;;

;;
;;

Lh
n,O(K)(Zπ)

0

%%

¿¿9
99

99
99

Hs
n−1(Z2 ; K1)

Ĥn+1(Z2 ; K1)

@@¢¢¢¢¢¢¢¢

ÁÁ

0

==
==

==
==

Lh,s
n,O(K)(Zπ)

AA¤¤¤¤¤¤¤

ÀÀ;
;;

;;
;;

Ĥn(Z2 ; K1)

@@
0

¢¢¢¢¢¢¢¢

ÁÁ=
==

==
==

=

Lh
n+1,O(K)(Zπ)

>>~~~~~~~~

99

0

Hs
n(Z2 ; K1)

AA¤¤¤¤¤¤¤

99

1+T

Hh
n(Z2 ;K1)

BB¦¦¦¦¦¦¦

99
Ls

n−1,O(K)(Zπ)

Proof. In Lh we allow more relations than in Lh,s, so clearly there is an
epimorphism. Similarly, in Ls we allow fewer generators than in Lh,s, so
there is a monomorphism. The proof is now completed by a slight modi-
fication of the main argument in [26], realization of h-cobordisms, and the
π-π theorem.

Remark 19.3. The authors believe that the Lh,s groups coincide with the
diagonal L-groups as proposed by Quinn in various lectures. The notation
is chosen to indicate that one may always define L-groups with two upper
decorations instead of only one, corresponding to a ∗-invariant subgroup of
the Whitehead group containing another ∗-invariant subgroup.

Remark 19.4. Ranicki has recently proved the existence of a useful exact
sequence [37]. Given a cofibration A → X → X ∪A CA there is a long exact
sequence:

. . . → Lh
n(CO(A)(R)) → Lh

n(CO(X)(R)) → LK
n (CO(X∪ACA)(R)) →

→ Lh
n−1(CO(A)(R)) → . . .

where K = Im(K1(CO(X)(R)) → K1(CO(X∪ACA)(R))). This seems to be an
adequate substitute for being a homology theory. See also the extensions
of Ranicki’s results given in [6, Section 4] which give a general result of the
above mentioned type in the language of Karoubi–filtered categories.

20. Final Comments

Throughout this paper we have been working under the assumption of a
constant fundamental group or a group action. This does exclude some
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examples one might want to study, for example

(S7 → CP (3)) Ã {S7 × R→ O(CP (3)+))}
as control map. In this example we have a locally constant fundamental
group Z which is not globally constant. It is however possible to study
questions of this type by the methods developed in this paper as follows:
Cover CP (3) by open sets Uα so that the restriction of the bundle to each
Uα is trivial. A bounded surgery problem parameterized by O(CP (3)) with
this fundamental group structure will now produce a surgery problem in
each Ln(C∂Uα

Ūα
(Z[Z])), and the original surgery problem can be solved if and

only if all these surgery problems can be solved in a compatible way. But
this can be investigated: If we can solve over O(Uα) and over O(Uβ) there
will be an obstruction in Ln+1(C∂(Uα∩Uβ)

O(Ūα∩Ūβ)
(Z[Z])). So the methods can in

principle be made to work, if not in the most elegant way, for a locally
constant system of fundamental groups in the stratified sense.
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On the coarse Baum-Connes
conjecture

Nigel Higson and John Roe

1. Introduction

The Baum-Connes conjecture [2, 3] concerns the K-theory of the reduced
group C∗-algebra C∗r (G) for a locally compact group G. One can define a
map from the equivariant K-homology of the universal proper G-space EG
to K∗(C∗r (G)): each K-homology class defines an index problem, and the
map associates to each such problem its analytic index. The conjecture is
that this map is an isomorphism. The injectivity of the map has geometric
and topological consequences, implying the Novikov conjecture for example;
the surjectivity has consequences for C∗-algebra theory and is related to
problems in harmonic analysis.

In geometric topology it has proved to be very useful to move from
studying classical surgery problems on a compact manifold M to studying
bounded surgery problems over its universal cover (see [8, 24] for exam-
ple). In terms of L-theory, one replaces the classical L-theory of Zπ by
the L-theory, bounded over |π|, of Z (here |π| denotes π considered as a
metric space, with a word length metric). Now the authors, motivated by
considerations of index theory on open manifolds, have studied a C∗-algebra
C∗(X) associated to any proper metric space X, and it has recently become
quite clear that the passage from C∗r (π) to C∗(|π|) is an analytic version of
the same geometric idea. Moreover, various descent arguments have been
given [4, 9, 5, 17, 27], both in the topological and analytic contexts, which
show that a ‘sufficiently canonical’ proof of an analogue of the Baum-Connes
conjecture in the bounded category will imply the classical version of the
Novikov conjecture.

The purpose of this paper is to give a precise formulation of the Baum-
Connes conjecture for the C∗-algebras C∗(X) (filling in the details of the
hints in the last section of [26]) and to prove the conjecture for spaces
which are non-positively curved in some sense, including affine buildings
and hyperbolic metric spaces in the sense of Gromov. Notice that while the
classical Novikov conjecture has been established for the analogous class of
groups, the Baum-Connes conjecture has not. Unfortunately there does not
seem to be any descent principle for the surjectivity side of the Baum-Connes
conjecture as there is for the injectivity side.

The main tool that we will use in this paper is the invariance of K∗(C∗(X))
under coarse homotopy, established by the authors in [15]. Coarse homotopy
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is a rather weak equivalence relation on metric spaces, weak enough that
(for example) many spaces are coarse homotopy equivalent to open cones
OY on compact spaces Y .

The idea of ‘reduction to a cone on an ideal boundary’ is also used in
some topological approaches to the Novikov conjecture, but the notion of
coarse homotopy appears at present1 to be peculiar to our analytic set-up.
Certainly the proofs in [15] make heavy use of C∗-algebraic machinery.

A different and very interesting approach to the coarse Baum-Connes
conjecture has been proposed by G. Yu [31].

2. Coarse homology theories

The coarse category UBB was defined in [26] to be the category whose
objects are proper metric spaces (that is, metric spaces in which closed
bounded sets are compact) and whose maps are proper Borel maps f satis-
fying the growth condition

∀R > 0 ∃S > 0 such that d(x0, x1) < R ⇒ d(f(x0), f(x1)) < S.

Two morphisms f and g are called bornotopic if there is a constant C such
that d(f(x), g(x)) < C for all x.

A substantial part of the paper [26] was devoted to the explicit construc-
tion of a bornotopy-invariant cohomology theory on the coarse category.
Now let M∗ be any generalized homology theory on the category of lo-
cally compact spaces and proper maps. We will show how it is possible to
‘coarsen’ M to a ‘coarse homology theory’ MX∗, functorial on the coarse
category and invariant under bornotopy.

To do this recall from [26], Definition 3.13, that an anti-Čech system for
a proper metric space X is a sequence U1,U2 of successively coarser open
covers of X, with the property that the diameter of each set in Un is bounded
by a constant Rn which is less than the Lebesgue number of Un+1, and the
constants Rn tend to infinity. It follows that each member of the cover Un

is contained within a member of Un+1, and from now on we shall include a
choice of such as part of the structure of an anti-Čech system. Passing to
the nerves of the covers Un, this extra data determines ‘coarsening’ maps

|U1| → |U2| → |U3| → . . .

by associating to each member of the cover Un the member of the cover
Un+1 chosen to contain it.2

1Added in proof: Since writing this paper we have learned of unpublished calcula-
tions of Ferry and Pedersen which make use of similar ideas.

2Recall that the nerve of a cover U = {Uα} is the simplicial complex with vertices
[Uα] labelled by members of U , and a p-simplex [Uα0 . . . Uαp ] for each (p + 1)-tuple in U
with Uα0 ∩ · · · ∩ Uαp 6= ∅.
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(2.1) Definition: We define the coarse M -homology of X to be the direct
limit

MX∗(X) = lim
→

M∗(|Un|).

If f : X → Y is a coarse map, and if Un and Vm are anti-Čech systems for
X and Y respectively, then for each n there is an mn such that if U ∈ Un

then f [U ] is contained in a member of Umn . After selecting one such member
of Umn

for each member of Un we get a proper map

fn : |Un| → |Vmn |.
Defining the maps fn inductively, we can arrange that the diagrams

|Un| → |Un+1|
fn ↓ ↓ fn+1

|Vmn | → |Umn+1 |
commute. Passing to the direct limit we obtain an induced map

f∗ : MX∗(X) → MX∗(Y ).

It is independent of the choices involved in the definition of the maps fn.
Applying this observation to the identity map on X we note that two

different choices of anti-Čech system on X will give rise to canonically
isomorphic direct limits MX∗(X), which justifies our omission of the anti-
Čech system U in the notation MX∗(X).

We have made MX∗ into a functor on the category UBB.

(2.2) Proposition: Two bornotopic maps f, g : X → Y induce the same
transformation on MX∗.

Proof: For each n one can choose an mn such that the maps fn and
gn in the above construction both map to the same |Vmn | and are linearly
homotopic. The induced maps on homology are therefore the same.

We shall occasionally find it useful to confine our attention to coarse
maps which are continuous. Imposing this requirement on morphisms we
obtain the continuous coarse category UBC, a subcategory of UBB. The
following definition is best viewed within this context.

(2.3) Definition: Let X and Y be proper metric spaces. A coarse homo-
topy from X to Y is a continuous and proper map

h : X × [0, 1] → Y

such that for every R > 0 there exists S > 0 with

d(x, x′) ≤ R ⇒ d(h(x, t), h(x′, t)) ≤ S, for all t ∈ [0, 1].
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Two coarse maps f0, f1 : X → Y are coarsely homotopic if there is a coarse
homotopy h : X × [0, 1] → Y such that

f0(x) = h(x, 0) and f1(x) = h(x, 1), for all x ∈ X.

A coarse map f : X → Y is a coarse homotopy equivalence if there is a
coarse map g : Y → X such that f ◦ g and g ◦ f are coarsely homotopic to
the identity maps on Y and X, respectively.

Remark: It is possible to relax the continuity requirement in this def-
inition to pseudocontinuity , that is continuity ‘on a certain scale’; see the
remarks to Section 1 in [15]. This point will be of some importance when
we discuss hyperbolic spaces later in this paper.

(2.4) Theorem: Let M be a generalized homology theory. Then coarse
M -homology, MX∗, is also a coarse homotopy invariant functor on UBC.

Proof: Let h : X × [0, 1] → Y be a coarse homotopy, and let Un and
Vm be anti-Čech systems for X and Y respectively. From the definition
of coarse homotopy it follows that for each n there is an mn such that h
induces a proper homotopy hn : |Un| → |Vmn |. The result follows.

3. Comparison of homology and coarse homology

Let X be a proper metric space, let U = {Uα} be a locally finite open cover
and let {ϕα} be a partition of unity subordinate to this cover. Define a map
κ : X → |U| by

κ(x) =
∑
α

ϕα(x)[Uα].

To explain this formula, note that for each x we have
∑

ϕα(x) = 1, and
those finitely many vertices [Uα] for which ϕ(x) 6= 0 span a simplex in |U|.
So κ(x) describes, in barycentric coordinates, a point of |U|.

Suppose that we apply this construction to the first cover U1 in an anti-
Čech system. Two different choices of partition of unity will give rise
to maps which are properly homotopic, and so induce the same map on
homology. Passing to the direct limit we obtain a canonical coarsening map

c : M∗(X) → MX∗(X).

(This is dual to the map c considered in [26] in a cohomology context.) We
wish to inquire when c is an isomorphism.

Since the passage from X to |U1|, and then |U2|, and so on, obliterates the
‘small scale’ topology of X, it is natural to confine our attention to uniformly
contractible spaces. These are defined by the requirement that for each
R > 0 there be some S > R such that B(x; R) is contractible within B(x; S),
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for every x ∈ X. One might conjecture that if X is uniformly contractible
then the coarsening map c is an isomorphism. However, this is not so:
Dranishnikov, Ferry and Weinberger [6] have constructed an example of a
uniformly contractible space X for which the coarsening map in K-homology
is not an isomorphism. But we shall show that if X is a bounded geometry
complex (defined below) then uniform contractibility does imply that the
coarsening map is an isomorphism.

Recall that a path metric on a space X is a metric such that the distance
between any two points of X is the infimum of the lengths of the continuous
paths connecting them. A path metric space is a metric space whose metric
has this property.

(3.1) Definition: A path metric space X is called a metric simplicial
complex if it is a simplicial complex and its metric coincides on each simplex
with the usual spherical metric.

The spherical metric on the standard n-simplex ∆n is obtained by re-
garding it as the set of points of Sn ⊆ Rn+1 with nonnegative coordinates.
Any locally finite simplicial complex can be given a complete metric that
makes it into a metric simplicial complex.

The following result is proved in [25, Section 3].

(3.2) Proposition: Let X be a complete path metric space, U an open
cover of X that has positive Lebesgue number and such that the sets of U
have bounded diameter. Then the map κ : X → |U|, defined above, is a
bornotopy-equivalence.

(3.3) Lemma: let f : X → Y be a coarse map. Suppose that X is a finite-
dimensional metric simplicial complex and that Y is uniformly contractible.
Then there exists a continuous map g : X → Y that is bornotopic to f .
Moreover, if f is already continuous on a subcomplex X ′, then we may take
g = f on X ′.

Proof: We construct g by induction over the skeleta Xk of (X, X ′).
The base step is provided by setting g = f on X ′ ∪X0. Assume then that
g has been defined on X ′ ∪Xk. Then g is defined on the boundary of each
k+1-simplex ∆ of (X, X ′), and as Y is uniformly contractible, g|∂∆ can be
extended to a map ∆ → Y whose image lies within a bounded distance of
the image of the vertex set of ∆. Proceeding thus inductively, after finitely
many stages we obtain a continuous map g : X → Y which coincides with f
on X ′∪X0, and which has the property that there is a constant C > 0 such
that d(g(x), g(x′)) < C whenever x ∈ X0 is a vertex of a simplex containing
x′. Since X0 is coarsely dense, g is bornotopic to f .

(3.4) Lemma: Let X be a finite-dimensional metric simplicial complex and
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Y a uniformly contractible space; then any two bornotopic continuous coarse
maps from X to Y are properly homotopic.

Proof: Let h : X × [0, 1] → Y be a bornotopy, and apply Lemma 3.3 to
h which is continuous on the subcomplex X × {0, 1} of X × [0, 1].

(3.5) Corollary: If two uniformly contractible, finite dimensional metric
simplicial complexes are bornotopy equivalent then they are proper homotopy
equivalent.

The following notion is due to Fan [7].

(3.6) Definition: A proper metric space X has bounded coarse geometry
if there is some ε > 0 such that for each R > 0 there is C > 0 such that the
ε-capacity of any ball of radius R is at most C.

Recall [21] that the ε-capacity of a set Y is the maximum number of
elements in an ε-separated subset of Y .

One can show that bounded coarse geometry implies that for all suffi-
ciently large ρ there is a universal bound on the ρ-entropy and the ρ-capacity
of any subset of X in terms of its diameter.

Bounded coarse geometry has the following consequence which will be
important for us.

(3.7) Lemma: If X is a space of bounded coarse geometry, then for any
R > 0 there is S > 0 such that X has an open cover U with:

• The Lebesgue number of U is at least R;
• The cover U is of finite order (that is, its nerve is finite-dimensional);
• The sets of U have diameter less than S.

The proof is straightforward.
For brevity, we will abbreviate the phrase ‘metric simplicial complex

with bounded coarse geometry’ to ‘bounded geometry complex.’ It is easy
to check that every bounded geometry complex is finite dimensional.

(3.8) Proposition: Let X be a uniformly contractible, bounded geometry
complex, and let MX∗ be the coarse homology theory associated to a gen-
eralized homology theory M∗ as above. Then the natural map c : M∗(X) →
MX∗(X) is an isomorphism.

Proof: We will construct an anti-Čech system by induction as follows.
Let U1 be any cover of X of the kind described in Lemma 3.7, and let
f1 : X → |U1| be the map κU1 . By 3.2, f1 is a bornotopy equivalence; so
it admits a bornotopy inverse g1 : |U1| → X. Since X is flabby and |U1| is
finite-dimensional, Lemmas 3.3 and 3.4 show that g1 may be assumed to be
continuous and to be a left proper homotopy inverse of f1.
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The map f1 ◦ g1 is bornotopic to the identity map on |U1|. It is therefore
possible to find a second cover U2 of the kind described in Lemma 3.7, which
coarsens U1 with coarsening map f2 : |U1| → |U2| and which has f2 ◦ f1 ◦ g1

properly homotopic to f2 by a linear homotopy. Proceeding inductively we
may obtain an anti-Čech system

X
f1−→ |U1| f2−→ |U2| f3−→ · · ·

which has the following properties:

• The maps fi are continuous;
• The maps hi = fi ◦ · · · ◦ f1 admit left proper homotopy inverses gi;
• The maps fi+1 and hi+1 ◦ gi are properly homotopic.

It follows (using the proper homotopy invariance of M -homology) that
(hi)∗ : M∗(X) → M∗(|Ui|) is an isomorphism onto the image of (fi)∗. Thus
the induced map to the direct limit is an isomorphism.

Remark: Let X be a proper metric space. We define a coarsening of X to
be a uniformly contractible, bounded geometry complex Y equipped with
a bornotopy-equivalence X → Y . A space X that has a coarsening might
be called coarsenable. It follows from Corollary 3.5 that a coarsening of X,
if it exists, is unique up to a proper homotopy equivalence (which is at the
same time a bornotopy equivalence).

Moreover, by Lemmas 3.3 and 3.4, coarsening is functorial: a coarse map
between two spaces induces a unique proper homotopy class of continuous
coarse maps between their coarsenings. Thus one may define the coarse
M -homology of a space X simply to be the ordinary M -homology of a
coarsening of X, and indeed one may make the analogous definition for
cohomology also. This definition has the disadvantage of applying only
to the category of coarsenable spaces, which seems to be rather hard to
characterize by an internal description.

One situation in which the notion of coarsening can be made concrete,
however, is that in which X is (the underlying metric space of) a finitely
generated discrete group Γ. The usual Baum-Connes conjecture for Γ relates
to the equivariant K-homology of a certain space EΓ, the universal space
for proper Γ-actions. A model for EΓ as a Γ-finite simplicial complex, if one
exists, will automatically be a bounded geometry complex in our sense, and
will in fact be a coarsening of Γ. Thus the coarse K-homology of |Γ| is a
‘nonequivariant’ version of the left-hand side of the ordinary Baum-Connes
conjecture for Γ.



234 Nigel Higson and John Roe

4. Cones

In this section we shall analyze the coarse homology of an open cone. Recall
that if Y is a compact subset of the unit sphere in a normed space then the
open cone on Y , denoted OY , is the set of all non-negative multiples of
points in Y .

(4.1) Definition: Let r : R+ → R+ be a contractive map3 such that
r(0) = 0 and r(∞) = ∞, and let OY be an open cone. The radial contrac-
tion associated to r is the map ρ : OY → OY defined by

ρ(ty) = r(t)y, y ∈ Y.

Any radial contraction is coarsely homotopic to the identity map, and
therefore induces the identity on coarse homology. On the other hand, radial
contractions can be used to force more or less arbitrary maps from open
cones to obey a growth condition; this is the content of the next lemma.
These two properties taken together make radial contractions extremely
useful in computations involving coarse homology.

(4.2) Lemma: Let OY be an open cone, as above, and let Z be any metric
space. Let f : OY → Z be a continuous (or pseudocontinuous) and proper
map. Then there exists a radial contraction ρ : OY → OY such that f ◦ ρ
is a coarse map.

Proof: Fix ε > 0 such that, for any x ∈ OY , the inverse image
f−1(B(f(x); ε)) is a neighbourhood of x. (Any ε will do if f is continuous;
pseudocontinuity means, by definition, that there exists an ε with this
property.) For each s ≥ 0 let Ks = {x ∈ OY : ‖x‖ ≤ s} and let δ(s)
be a Lebesgue number for the covering

{f−1(B(f(x); ε)) : x ∈ Ks}
of Ks. Then δ(s) is a monotone decreasing function of s. Define a function
r(t) by the equation

t =
∫ r(t)

0

(s + 1)
min{δ(s), 1} ds.

By elementary calculus, r is a contractive map. Consider the radial con-
traction ρ defined by r. By construction, for any R > 0 there exists
r0 > 0 such that if x, x′ ∈ OY with d(x, x′) < R and ‖x‖ > r0, then
d(ρ(x), ρ(x′)) < 1/δ(max{‖x‖, ‖x′‖}), and hence d(f ◦ ρ(x), f ◦ ρ(x′)) < ε.
Thus, whenever d(x, x′) < R, one has d(f ◦ ρ(x), f ◦ ρ(x′)) < S, where

S = ε + diam f(Kr0).

3That is, a Lipschitz map with Lipschitz constant less than or equal to 1.
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Hence f ◦ ρ is a coarse map.

For example, suppose that h : Y → Y ′ is a homeomorphism. The induced
map Oh : OY → OY ′ need not be a coarse map; in fact, it will be so if
and only if the original h is Lipschitz. Nevertheless, by the above result
there exists a radial contraction ρ such that both ρ ◦ h and h−1 ◦ ρ are
coarse maps. Since ρ is coarsely homotopic to the identity, these maps
are coarse homotopy equivalences4 between OY and OY ′. This allows
one to extend the scope of the definition of ‘open cone’. Let Y be any
finite-dimensional compact metrizable space; then it is a classical theorem
that Y is homeomorphic to a subset of a sphere in a Euclidean space (see
Theorem V.2 in [18]). The open cone OY can be defined as the open cone
on any such homeomorphic image, and will be well defined up to coarse
homotopy equivalence.

We should now like to calculate the coarse M -homology of such an open
cone. If Y is a finite complex, then OY can be triangulated as a uniformly
contractible bounded geometry complex, and so the calculation will follow
from 3.8. However, we will need to consider open cones on more unpleasant
metrizable spaces also; our proof of the Baum-Connes conjecture for a
hyperbolic space will proceed via the open cone on its Gromov boundary.

It will be necessary to assume that the homology theory M satisfies the
strong excision axiom [29, 22, 19]. We recall that this axiom states that for
any pair (X,A) of compact metric spaces, the natural map M∗(X,A) →
M∗(X \ A) is an isomorphism. For example, Steenrod homology satisfies
strong excision, but singular homology does not. Of more direct relevance
to this paper is the fact that Kasparov’s K-homology [20] satisfies the strong
excision axiom.

(4.3) Proposition: If M∗ is a generalized homology theory satisfying the
strong excision axiom, then the coarsening map

c : M∗(OY ) → MX∗(OY )

is an isomorphism for any finite-dimensional compact metric space Y .

Proof: We consider OY to be embedded in Rn. Form an anti-Čech
system as follows: the cover Ui is made up of all the nonempty intersections
B ∩OY , where B runs over the set of open balls in Rn with centres at the
integer lattice points and radius 3i. Let Xi be the geometric realization of
the nerve of Ui. We also let X0 = OY itself. There are obvious coarsening
maps

X0 → X1 → X2 → X3 → . . .

4In one or two places in the literature one can find statements which might mislead
the unwary into believing that OY and OY ′ are bornotopy equivalent. This is not, in
general, the case.
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and MX∗(OY ) is by definition the direct limit of the M -homology of this
sequence. We make the following claims about this construction.

• Claim 1: Each Xi can be compactified to a space Xi obtained by
adding a copy of Y as a set of points at infinity.5

• Claim 2: The coarsening maps can be extended by the identity on
Y to give continuous maps Xi → Xi+1.

• Claim 3: The extended map Xi → Xi+1 is nullhomotopic.

Granted these three claims, the result follows. For consider the commutative
diagram

M̃∗(Y ) −−−−→ M̃∗(Xi) −−−−→ M∗(Xi)
∂−−−−→ M̃∗−1(Y )

y=

y
y

y=

M̃∗(Y ) −−−−→ M̃∗(Xi+1) −−−−→ M∗(Xi+1)
∂−−−−→ M̃∗−1(Y )

in which the rows are the long exact sequences in reduced M -homology
arising from the pairs (Xi, Y ) and the columns are the coarsening maps.
Because we are using reduced homology, Claim 3 implies that the second
vertical map is in fact zero. A diagram chase then shows that ∂ gives an
isomorphism between Im(M∗(Xi) → M∗(Xi+1)) and M̃∗−1(Y ). Passing to
the direct limit we obtain another commutative diagram

M∗(OY ) ∂−−−−→ M̃∗−1(Y )

c

y =

y
MX∗(OY ) ∂−−−−→ M̃∗−1(Y )

where both ∂’s are isomorphisms, and therefore c is an isomorphism too.

It remains to prove the claims. Claims 1 and 2 are straightforward;
to check Claim 3, let us notice that there are continuous maps αi : Xi →
Pen(OY ; 2 · 3i) and βi : Pen(OY ; 2 · 3i) → Xi+1 defined as follows: αi sends
each vertex of Xi to the centre of the corresponding ball in Rn and extends
by linearity, and βi(x) is defined to be

∑
p ϕ(|x− p|) · p∑

p ϕ(|x− p|)
where the sum ranges over all integer lattice points p and ϕ(r) is a positive
continuous function equal to 1 for r small and equal to 0 for r > 3i. (Notice
that, because x ∈ Pen(OY ; 2 · 3i), the points p for which ϕ(x − p) > 0 do
indeed define the vertices of a simplex in Xi+1.) Clearly Pen(OY ; 2 ·3i) can

5In the case of X0, the compactification is simply the usual closed cone on Y , and is
therefore contractible. The point of the construction is to obtain a ‘pro’-version of this
fact for the sequence of coarsenings Xi.
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be compactified by adding Y at infinity, and both αi and βi extend contin-
uously by the identity. Moreover, βiαi is homotopic to the coarsening map
(by a linear homotopy). It is therefore enough to prove that the continuous
extension of αi is nullhomotopic, and this is so because Pen(OY ; 2 · 3i) is
star-shaped about 0.

5. K-Homology and Paschke duality

In this section we will recall the basic definitions of Kasparov’s K-homology
theory, together with the duality theory of Paschke that relates K-homology
and K-theory.

Let X be a locally compact metrizable space. By an X-module, we
will mean a separable Hilbert space equipped with a representation of the
C∗-algebra C0(X) of continuous functions (tending to zero at infinity) on
X. We shall say that an X-module is non-degenerate if the representation
of C0(X) is non-degenerate, and as in [16] we shall say that an X-module
is standard if it is non-degenerate and no non-zero function in C0(X) acts
as a compact operator.

Let T be a bounded operator on an X-module HX . By definition, T
is locally compact if the operators Tϕ and ϕT are compact for every ϕ ∈
C0(X). We say that T is T pseudolocal if ϕTψ is a compact operator for all
pairs of continuous functions on X with compact and disjoint supports. As
Kasparov remarks (see Proposition 3.4 in [20]), T is pseudolocal if and only
if the commutator ϕT − Tϕ is compact, for every ϕ ∈ C0(X). This makes
it clear that the set of all pseudolocal operators on HX is a C∗-algebra
containing the set of all locally compact operators as a closed two-sided
ideal. We shall use the notation

Ψ0(X,HX) = pseudolocal operators on HX

and
Ψ−1(X, HX) = locally compact operators on HX ,

which is meant to suggest that pseudolocal operators should be thought of
as abstract pseudodifferential operators of order ≤ 0, and locally compact
operators as abstract pseudodifferential operators of order ≤ −1. Compare
[1, 20].

Kasparov’s K-homology groups Ki(X) are generated by certain cycles
modulo a certain equivalence relation. A cycle for K0(X) is given by a pair
(HX , F ), comprised of an X-module HX and a pseudolocal operator F on
HX such that FF ∗−I and F ∗F−I are locally compact.6 A cycle for K1(X)

6Kasparov’s theory allows for more a complicated sort of cycle, comprised of a pseu-
dolocal operator F : HX → H′

X between two different Hilbert spaces, but there is a
simple trick to convert such a cycle to one of the simpler ones we are considering. See
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is given by a similar pair (HX , F ), but with the additional requirement that
F be self-adjoint. In both cases the equivalence relation on cycles is given
by homotopy of the operator F , unitary equivalence, and direct sum of
‘degenerate’ cycles, these being cycles for which Fϕ−ϕF , ϕ(F ∗F −1), and
so on, are not merely compact but actually zero. See [20] for further details.

The K-homology of X may be related to the K-theory of the algebras
of abstract pseudodifferential operators on X. Let HX be an X-module.
Then for i = 0, 1 there are maps

Ki(Ψ0(X, HX)/Ψ−1(X, HX)) → K1−i(X) (5.1)

defined as follows. In the odd case (i = 1), we map a unitary U in
Ψ0(X)/Ψ−1(X), representing an odd K-theory class, to the even K-homo-
logy cycle (HX , F ), where F is any lifting of U to Ψ0(X). Similarly in
the even case (i = 0), we map a projection P , representing an even K-
theory class, to the odd K-homology cycle (HX , 2Q − 1), where Q is any
self-adjoint lifting of P . It is readily checked that these operations respect
the various equivalence relations and give a well-defined homomorphism of
abelian groups. Now Paschke [23] (see also [14]) proved the following result:

(5.2) Proposition: If HX is a standard X-module, then the map 5.1 is
an isomorphism.

Suppose now that a standard X-module HX has been fixed. One can in
fact identify not only the K-theory of the quotient Ψ0(X)/Ψ−1(X) but also
the K-theory of the algebras Ψ0(X) and Ψ−1(X) individually. It turns out
that Ki(Ψ−1(X)) is always zero, except when i = 0 and X is compact in
which case it is Z, and from this and Paschke’s duality theorem it follows
that Ki(Ψ0(X)) is isomorphic to K̃1−i(X), the reduced K-homology of X.

It is also possible to interpret the boundary map in K-homology in terms
of Paschke duality. We will summarize the results of [14] in a special case
which suffices for our purposes. Suppose that X is locally compact but not
compact, and that X = X ∪Y is a compactification of X, that is a compact
space containing X as a dense open subspace. Then HX can be thought of
as an X-module, because any representation of C0(X) on a Hilbert space
has a unique extension to a representation of C(X). It therefore makes
sense to consider the algebra Ψ0(X)∩Ψ−1(X), and one easily sees that this
is an ideal in Ψ0(X). The relative form of Paschke’s duality is then the
following

(5.3) Proposition: The K-theory groups of the algebras Ψ0(X)∩Ψ−1(X),
Ψ0(X), and Ψ0(X)/(Ψ0(X) ∩ Ψ−1(X)) are isomorphic to the reduced K-
homology groups of Y , X, and X, with a dimension shift in each case.

Section 1 of [14].
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Moreover, the isomorphisms transform the six-term exact sequence in K-
theory arising from the C∗-algebra extension

0 → Ψ0(X) ∩Ψ−1(X) → Ψ0(X) → Ψ0(X)/(Ψ0(X) ∩Ψ−1(X)) → 0

into the six-term exact sequence in reduced K-homology arising from the
pair (X,Y ).

6. Formulation of the Baum-Connes conjecture

In previous papers we have associated to each proper metric space X a
C∗-algebra C∗(X) [16, 15] whose K-theory is functorial for maps in UBB
and is a bornotopy invariant. Our objective in this section is to construct
an ‘analytic index’ map

µ : K∗(X) → K∗(C∗(X)). (6.1)

This map is analogous to the assembly map in bounded L-theory.
We begin by briefly recalling some relevant definitions. Let X and Y

be proper metric spaces. We refer the reader to Section 4 of [16] for the
definition of the support of a bounded linear operator from an X-module
to a Y -module. It is a closed subset of X × Y , and generalizes the support
of the distributional kernel in the C∞ context. We recall that a bounded
linear operator T on an X-module has finite propagation if there exists some
R > 0 such that

(x, x′) ∈ Supp(T ) ⇒ d(x, x′) ≤ R.

The least such R is called the propagation of T . The set of all locally
compact, finite propagation operators on a non-degenerate X-module HX

is a ∗-algebra, and we denote by C∗(X, HX) the C∗-algebra obtained by
closing it in the operator norm.

It is shown in Section 4 of [16] that if HX is any non-degenerate X-module
and H ′

X is a standard X-module then there is a canonical homomorphism
of K-theory groups

K∗(C∗(X, HX)) → K∗(C∗(X, H ′
X)).

Moreover, if HX is also standard, then this map is an isomorphism. So, at
the level of K-theory at least, the C∗-algebra C∗(X, HX) does not depend
on the choice of standard X-module HX . For this reason we shall often
suppose that that a particular standard X-module has been chosen, and
write C∗(X) in place of C∗(X, HX).

To define our index map (6.1) it will be convenient to introduce one
more C∗-algebra. The set of all pseudolocal, finite propagation operators
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on a non-degenerate X-module HX is a ∗-algebra, and we define

D∗(X, HX) = norm closure of the pseudolocal, finite propagation operators.

As is the case for C∗(X, HX), the K-theory of D∗(X, HX) depends only
slightly on the choice of HX . We shall discuss this point in the next section.
Here we make the following important observation.

(6.2) Lemma: Let X be any proper metric space. The inclusion of
D∗(X, HX) into the C∗-algebra of pseudolocal operators Ψ0(X, HX) induces
an isomorphism of quotient C∗-algebras

D∗(X,HX)/C∗(X, HX) ∼= Ψ0(X, HX)/Ψ−1(X, HX).

This should be compared with the simple fact that every properly sup-
ported pseudodifferential operator can be perturbed by a properly sup-
ported smoothing operator so as to have support confined to a strip near
the diagonal in X ×X.

Proof: It suffices to show that every pseudolocal operator T can be
written as a sum of a finite propagation operator and a locally compact
operator.

Choose a partition of unity ψ2
j subordinate to a locally finite open cover

of X by sets of uniformly bounded diameter. The series

T ′ =
∑

j

ψjTψj

converges in the strong topology. Indeed the partial sums are uniformly
bounded in norm and

∑
j ψjTψjv converges (in fact it is a finite sum) for

any vector v in the dense subset Cc(X)H ⊂ H. Clearly T ′ is an operator
of finite propagation. On the other hand, if ϕ is a function of compact
support, then

(T ′ − T )ϕ =
∑

j

[ψj , T ]ψjϕ

is a finite sum of compact operators, hence is compact. Similarly, ϕ(T −T ′)
is compact, and thus T − T ′ is locally compact.

Now fix a standard X-module HX , and consider the long exact K-theory
sequence associated to the extension

0 → C∗(X,HX) → D∗(X,HX) → D∗(X, HX)/C∗(X,HX) → 0. (6.3)

The boundary map in this sequence is a map

Ki−1(D∗(X, HX)/C∗(X, HX)) → Ki(C∗(X, HX)).
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But by the lemma above together with Paschke duality (5.2), the first group
that appears here is simply Ki(X). Thus we have obtained a homomorphism

µ : Ki(X) → Ki(C∗(X))

which is our analytic index map.
If X is compact, then C∗(X) is just the algebra of compact operators

and so K0(C∗(X)) ∼= Z. In this case the map µ associates to each operator
in K0(X) its usual Fredholm index in K0(C∗(X)) ∼= Z. On the other hand,
if X is a complete Riemannian manifold, D is a Dirac operator on a Clifford
bundle S over X, and [D] denotes its K-homology class, then µ[D] is the
index of D in K∗(C∗(X)) as defined in [26]. To prove this one needs to verify
that if Ψ is a ‘chopping function’ (as defined in [26]), then Ψ(D) belongs to
the algebra D∗(X, L2(S)). This can be accomplished by a straightforward
finite propagation speed argument.

We can now formulate a first version of the coarse Baum-Connes conjec-
ture.

(6.4) Conjecture: If X is a uniformly contractible bounded geometry
complex then the map µ : K∗(X) → K∗(C∗(X)) is an isomorphism.

In [26] this was conjectured for all uniformly contractible spaces, but the
example of Dranishnikov, Ferry and Weinberger cited earlier shows that this
more wide-ranging conjecture is false.

A more general version of the conjecture removes the hypothesis of uni-
form contractibility. To formulate it, recall that in the paper [16], the group
K∗(C∗(X)) is made into a bornotopy invariant functor on UBB. Now let X
be a complete path metric space. By 3.2, X admits an anti-Čech system Ui

consisting of covers whose geometric realizations |Ui| are all metric simplicial
complexes bornotopy-equivalent to X. The maps

µi : K∗(|Ui|) → K∗(C∗(|Ui|)) ∼= K∗(C∗(X))

therefore give in the direct limit a map

µ∞ : KX∗(X) → K∗(C∗(X)). (6.5)

(6.6) Conjecture: For any complete path metric space of bounded coarse
geometry, the map (6.5) is an isomorphism.

This is essentially Conjecture 6.30 of [26]. Using Proposition 3.8, it
implies Conjecture 6.4.

It is clear from the definitions that

µ∞ ◦ c = µ

where c is the coarsening map. In the Dranishnikov-Ferry-Weinberger ex-
ample alluded to above, the map c fails to be injective, and therefore the
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map µ cannot be injective either. This example therefore leaves intact the
possibility that Conjecture 6.6 is true for all spaces whether or not they are
of bounded geometry, and indeed we will prove the conjecture for certain
spaces of non-bounded geometry in this paper. Nevertheless, it seems safer
to restrict the general statement to spaces of bounded geometry for the time
being.

Remark: Note that conjecture 6.6 is coarse homotopy invariant, in the
following sense. It is easy to see that the maps µ and µ∞ are natural under
coarse maps of X. Now the functors X 7→ KX∗(X) and X 7→ K∗(C∗(X))
are both coarse homotopy invariant. It follows (by considering the obvious
commutative diagram) that if X is coarse homotopy equivalent to X ′, and
the conjecture holds for X, then it holds for X ′ also. We will make use of
a version of this principle in our discussion of hyperbolic metric spaces.

Remark: Suppose that Γ is a finitely generated discrete group; how is
the coarse Baum-Connes conjecture for the underlying metric space |Γ| of
Γ related to the usual Baum-Connes conjecture for Γ? One answer is as
follows: we have seen that KX∗(|Γ|) = K∗(EΓ), the K-homology of the
universal space for proper actions of Γ. On the analytic side there is a
natural action of Γ on C∗(|Γ|), and it is not hard to show that the fixed
subalgebra C∗(|Γ|)Γ is Morita equivalent to the reduced group C∗-algebra
C∗r (Γ). In fact there is a commutative diagram

KΓ
∗ (EΓ) −−−−→ K∗(C∗r (Γ))
y

y
K∗(EΓ) −−−−→ K∗(C∗(|Γ|))

where the top line is the conjectured isomorphism of the usual Baum-Connes
conjecture, the bottom line is the conjectured isomorphism of our coarse
version, and the vertical arrows represent a process of forgetting the Γ-
equivariance of the situation.

Remark: We have identified the boundary map in the K-theory exact
sequence corresponding to the extension 6.3 with an assembly map. This
suggests very strongly that the whole of this K-theory exact sequence should
be thought of as an analytic analogue of the (simple, bounded) surgery exact
sequence. In particular, K∗(D∗(X)) should be thought of as an analytic
analogue of the simple structure set for X bounded over itself, and this can
be made precise by relating it to the boundedly controlled model for the
structure set discussed in [4]. It is an intriguing problem to determine what
kind of ‘structures’ this ‘structure set’ is classifying.
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7. Proof of the conjecture for open cones, nonpositively
curved manifolds, and affine buildings

In this section we shall work in the category UBC.
The following is a slight weakening of the notion of ‘rescaleable space’ in

[26].

(7.1) Definition: A proper metric space X is scaleable7 if there is a
continuous and proper map f : X → X, coarsely homotopic to the identity
map, such that

d(f(x), f(x′)) ≤ 1
2
d(x, x′)

for all x, x′ ∈ X.

Every cone is scaleable, as is every complete, simply connected, non-
positively curved Riemannian manifold, every tree and affine building (so
long as the trees and buildings are locally finite).

Here is the main result of this section.

(7.2) Theorem: If X is a scaleable space then the the index map

µ : K∗(X) → K∗(C∗(X))

is an isomorphism.

This gives an immediate proof of the following cases of Conjecture 6.6.

(7.3) Corollary: If X is an open cone on a finite-dimensional compact
metric space Y then the coarse Baum-Connes conjecture 6.6 holds for X.

Proof: This follows immediately from the fact that µ is an isomorphism
together with the result that coarsening gives an isomorphism on the K-
homology of a cone (4.3).

(7.4) Corollary: If X is a complete, simply connected, non-positively
curved Riemannian manifold then the coarse Baum-Connes conjecture ( 6.6)
holds for X.

Proof: This argument was already given in [15] and [16]; we use the
fact that the exponential map is a coarse homotopy equivalence to reduce
to the case of Euclidean space, which (for example) may be thought of as a
cone on a sphere.

7This definition is closely related to ‘Lipschitz contractibility’ in the sense of Gromov
[12, page 25].
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(7.5) Corollary: If X is a bounded geometry complex which is either
a tree or an affine Bruhat-Tits building then the coarse Baum-Connes con-
jecture holds for X.

Proof: Every tree or affine building is uniformly contractible. So the
result follows from 3.8.

Affine buildings and trees need not be of bounded geometry. However
it is not difficult to extend the previous corollary to all buildings and trees
by using non-positive curvature to broaden Proposition 3.8 to these cases.
Alternatively, one can adapt the argument of the next section so as to apply
to buildings. But we shall not pursue this matter here.

We begin by looking the dependence of K∗(D∗(X, HX)) on HX , and
its functoriality in UBC. We shall use the following well-known result of
Voiculescu [30].

(7.6) Theorem: Let A be a separable C∗-algebra and let H and H ′ be two
separable Hilbert spaces equipped with non-degenerate representations of A.
If the representation of A on H ′ has the property that no non-zero element
of A acts as a compact operator on H then there is an isometry V : H → H ′

such that V a− aV is a compact operator for every a ∈ A. ¤
In the concrete cases of interest to us it is usually possible to construct

such isometries V explicitly, but Voiculescu’s theorem provides a convenient
general framework.

(7.7) Lemma: Let X and Y be proper metric spaces, let HX be a non-
degenerate X-module and let and HY be a standard Y -module. Let

H∞
Y = HY ⊕HY ⊕HY ⊕ . . . .

If f : X → Y is a continuous coarse map then there is an isometry

W : HX → H∞
Y

such that
Supp(W ) ⊆ {(x, y) : d(f(x), y) < R},

for some R > 0, and ϕW −Wϕ ◦ f is compact, for every ϕ ∈ C0(Y ).

Proof: Let U = {Uj} and V = {Vk} be locally finite open covers of
X and Y by sets of uniformly bounded diameter with the property that f
maps each Uj into some Vkj . Let

Hj
X = C0(Uj)HX and Hk

Y = C0(Vk)HY .

By Voiculescu’s theorem (applied to A = C(Vkj )), for each j there is an
isometry Wj : Hj

X → H
kj

Y such that ϕWj −Wjϕ ◦ f is compact, for every
ϕ ∈ C0(Y ).
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If ψ2
1 , ψ2

2 , . . . is any partition of unity subordinate to U . then we can
define W by

Wf = W1ψ1f ⊕W2ψ2f ⊕ . . . ,

which has all the required properties.

Conjugation with W gives a map

Ad(W ) : D∗(X,HX) → D∗(Y, H∞
Y ).

If W and W ′ are two isometries satisfying the conclusion of the lemma
then W ′W ∗ ∈ D∗(Y,H∞

Y ). It follows that the induced maps Ad(W )∗ and
Ad(W ′)∗ on K-theory are equal (see Lemma 3.2 of [16], for example).

Let us apply these remarks to the identity map 1: X → X. If H and H ′

are two standard X-modules then we obtain canonical maps

K∗(D∗(X, H∞)) ↔ K∗(D∗(X, H
′∞))

which are inverse to one another. In view of this, when convenient we
shall drop the term H∞

X from our notation, writing D∗(X) in place of
D∗(X, H∞

X ). Selecting one standard module for each X we obtain a functor
on UBC, and the same construction makes K∗(D∗(X)/C∗(X)) a functor
on UBC. By Paschke duality (5.2), this latter functor is simply Kasparov’s
K-homology, K∗−1(X).

(7.8) Lemma: The functor K∗(D∗(X)) is coarse homotopy invariant.

Proof: Let h : X × [0, 1] → Y be a coarse homotopy, and denote by
Z = X ×h [0, 1] the product space X × [0, 1] endowed with the warped
product metric introduced in [15]. As noted in that paper, to prove that
h0 and h1 induce the same map on K-theory it suffices to show that the
projection map Z → X induces an isomorphism on K-theory. But consider
the diagram

0 → C∗(Z) → D∗(Z) → D∗(Z)/C∗(Z) → 0
↓ ↓ ↓

0 → C∗(X) → D∗(X) → D∗(X)/C∗(X) → 0

where the vertical maps are given by conjugation with an isometry chosen
as in Lemma 7.7. By the main theorem in [15], the first vertical map induces
an isomorphism on K-theory, and by the identifications

K∗(D∗(Z)/C∗(Z)) ∼= K∗−1(Z) and K∗(D∗(X)/C∗(X)) ∼= K∗−1(X),

the third vertical map also induces an isomorphism on K-theory. So by
the Five Lemma the middle vertical map also induces an isomorphism on
K-theory.
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(7.9) Lemma: The map µ : K∗(X) → K∗(C∗(X)) is an isomorphism if
and only if K∗(D∗(X)) = 0.

Proof: The map µ, as defined in the previous section, is precisely the
identification K∗−1(X) ∼= K∗(D∗(X)/C∗(X)) followed by the boundary
map in K-theory for the short exact sequence

0 → C∗(X) → D∗(X) → D∗(X)/C∗(X) → 0.

So the lemma follows from the long exact sequence in K-theory.

Proof of Theorem 7.2: By the previous lemma it suffices to show
that if X is a scaleable space then K∗(D∗(X)) = 0. Let f : X → X be a
contraction of X, as in Definition 7.1. For simplicity, let us suppose that f
is one-to-one (as it is for cones, if we make the obvious choice for f). We
shall deal with the slight extra complications of the general case at the end
of this proof. Let S be a countable dense subset of X which is invariant
under f . Form the standard X-module

H = `2S ⊕ `2S ⊕ . . . ,

and let

H ′ = H ⊕H ⊕ . . . .

There is an obvious inclusion of H as the first summand in H ′, and a
corresponding inclusion I : D∗(X, H) → D∗(X, H ′). It suffices to show
that this inclusion induces the zero map on K-theory, since by the remarks
following Lemma 7.7 it also induces an identification K∗(D∗(X, H)) ∼=
K∗(D∗(X,H ′)). Define an isometry on `2S by mapping the basis vector
corresponding to s ∈ S to the basis vector corresponding to f(s) ∈ S (it is
here that we are using our assumption that f be one-to-one). Taking the
direct sum of this isometry with itself infinitely many times we obtain an
isometry V of H, and an isometry V ′ of H′. Conjugation with V ′ induces
the map f∗ on K∗(D∗(X, H ′)), and thanks to coarse homotopy invariance
this is the identity map.

Consider now the following map from operators on H to operators on
H ′:

I ⊕Ad(V )⊕Ad(V 2)⊕ · · · : T 7→ T ⊕Ad(V )(T )⊕Ad(V 2)(T )⊕ · · · .

We observe that this maps D∗(X, H) into D∗(X,H ′). The reason is that if
T has propagation R then Ad(V )(T ) has propagation at most R/2, thanks
to the fact that f contracts distances by at least 1/2. So if ϕ and ψ are
functions on X with disjoint compact supports then ϕAd(V n)(T )ψ = 0 for
large enough n. Having made this observation, the rest of the argument is
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routine. At the level of K-theory we have

(I ⊕Ad(V )⊕Ad(V 2)⊕ · · · )∗
= I∗ + (0⊕Ad(V )⊕Ad(V 2)⊕ · · · )∗
= I∗ + (Ad(V )⊕Ad(V 2)⊕ · · · )∗
= I∗ + Ad(V ′)∗(I ⊕Ad(V )⊕Ad(V 2)⊕ · · · )∗
= I∗ + (I ⊕Ad(V )⊕Ad(V 2)⊕ · · · )∗.

We subtract (I ⊕Ad(V )⊕Ad(V 2)⊕ · · · )∗ from everything to get I∗ = 0.
To complete the proof of the theorem we consider the case where f is not

necessarily one-to-one. In this case we replace `2S with `2S×A, where A is
any countably infinite set, and define an isometry on `2S × A by mapping
the basis vector labelled by (a, s) to a basis vector corresponding to some
(a′, f(s)), where a′ is chosen so that this map on basis vectors is one-to-one.
Of course `2S × A is an X-module in the obvious way, and we proceed as
above. ¤
Remark: One can give a somewhat different proof of the conjecture
for open cones, more in the spirit of certain topological approaches to
the Novikov conjecture, as follows. One proves first that the functor
Y 7→ K∗(C∗(OY )) defines a generalized homology theory on the category
of compact metrizable spaces, and that there is a natural transformation
from this functor to the functor Y 7→ K∗−1(Y ) which is an isomorphism on
spheres. One shows further that this functor has the continuity properties
summarized in the Steenrod axioms [22, 19], and one then appeals to a
uniqueness theorem for Steenrod homology theories to complete the proof.

8. Proof of the conjecture for hyperbolic metric spaces

Gromov [11] has introduced a notion of hyperbolicity for general metric
spaces. A metric space is hyperbolic if it is ‘negatively curved on the large
scale’. In this section we will show that the coarse Baum-Connes conjecture
is true for any (geodesic and locally compact) hyperbolic metric space X.

Our proof will proceed by way of the Gromov boundary Y = ∂gX of
the hyperbolic space X. This finite-dimensional compact metrizable space
is the boundary of a ‘radial compactification’ of X, and there are natural
‘exponential’ and ‘logarithm’ maps between X and the open cone OY on
its Gromov boundary. We intend to show that these maps define coarse
homotopy equivalences in a certain sense. Since the coarse Baum-Connes
conjecture is coarse homotopy invariant, this will prove the conjecture for X
by reducing it to the conjecture for OY , which was proved in the preceding
section.

We recall a definition of the Gromov boundary. Fix a basepoint ∗ in X
and consider the set of geodesic rays in X originating from ∗. Two such rays
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are said to be equivalent if they lie within a finite distance of one another;
it can be shown that there is an absolute constant 8δ such that if γ1 and γ2

are equivalent, then d(γ1(t), γ2(t)) < 8δ for all t. The Gromov product of
two such rays may be defined by

(γ1|γ2) = lim
s,t→∞

(γ1(s)|γ2(t))

where we note that the expression (γ1(s)|γ2(t)) is an increasing function
of s and t, and the metric on Y has the property that there are constants
A > 0 and ε > 0 for which

A−1d([γ1], [γ2]) < e−ε(γ1|γ2) < Ad([γ1], [γ2]).

Details of these constructions may be found in [10, 11].
Let OY denote the open cone on the Gromov boundary Y . We define

the exponential map exp: OY → X in the natural way: to a pair ([γ], t)
assign the point γ(t) ∈ X. (In order to have a well-defined map we choose
one representative from each equivalence class; the choice of representative
cannot affect the exponential map by more than 8δ.) The exponential map is
highly expansive, but by 4.2 it is always possible to choose a radial shrinking
ρ of OY so that exp ◦ρ is a coarse map. The main result of this section is
then

(8.1) Proposition: The map

exp ◦ρ : OY → X

induces an isomorphism on coarse K-homology and on the K-theory of the
corresponding C∗-algebras.

To avoid wearisome repetition, let us simply say that a coarse map is a
weak equivalence8 if it has the property described in proposition 8.1, namely
that it induces an isomorphism on coarse K-homology and on the K-theory
of the corresponding C∗-algebras.

(8.2) Corollary: The coarse Baum-Connes conjecture 6.6 is true for
any hyperbolic metric space X.

Proof: Consider the diagram

KX∗(OY ) −−−−→ K∗(C∗(OY ))
y

y
KX∗(X) −−−−→ K∗(C∗(X))

8This is really the analogue of the notion of homology equivalence in ordinary topology,
rather than of weak homotopy equivalence. But since fundamental group problems are
not really relevant here, we ask the reader to permit us this convenient abuse of language.
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in which the vertical maps are induced by exp ◦ρ, the horizontal maps are
the assembly maps µ∞, and the first horizontal map is an isomorphism by
the results of the previous section.

We will prove proposition 8.1 in two stages: first we will prove that
the exponential map is a weak equivalence onto its range, and secondly we
will prove that the range of the exponential map is weakly equivalent to
the whole space X. (Notice that the exponential map need not in general
be surjective; consider the example of a tree formed from the real line by
attaching a branch of length |n| to each integer point n.)

Let R ⊆ X denote the range of the exponential map. A map log : R →
OY can be defined by sending a point x ∈ R to the pair ([γ], |x|), where γ
is some choice of geodesic ray that passes within 8δ of x. Let us check that
the choices involved here do not affect the map by more than a bounded
amount. If γ1 and γ2 are two rays both of which pass within 8δ of x, then by
definition, (γ1|γ2) > |x| − 8δ and so the distance in the open cone between
([γ1], x) and ([γ2], x) is bounded above by

A|x|e−ε(|x|−8δ)

which is bounded by some constant independent of |x|.

(8.3) Lemma: The map log : R → OY defined above is a coarse map.

Proof: It is sufficient to prove that if x1 and x2 belong to R and have
|x1| = |x2| = r say, then there is an estimate of the form

d(log x1, log x2) ≤ Φ(d(x1, x2))

for some universal function Φ. Let γ1 and γ2 be rays passing within 8δ of
x1 and x2 respectively; then

(γ1|γ2) ≥ (x1|x2)− 16δ ≥ r − 16δ − d(x1, x2)/2.

Therefore
d(log x1, log x2) ≤ Are−εr−16δeεd(x1,x2)/2

and this is bounded by Aeε(16δ+d(x1,x2)/2).

(8.4) Lemma: The composite map log ◦ exp ◦ρ : OY → OY is weakly equiv-
alent to the identity.

Proof: The map log ◦ exp is bornotopy equivalent to the identity, and
the map ρ is coarsely homotopy equivalent to the identity.

Now recall from [15] the notion of a generalized coarse homotopy , this
being a map which satisfies all the requirements of definition 2.3 except that
it need only be pseudocontinuous rather than continuous. If the space Y is a
path metric space, then any generalized coarse homotopy from X to Y can
be factored into a coarse homotopy followed by a bornotopy-equivalence.
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Thus a generalized coarse homotopy whose range is a path metric space
will be a weak equivalence.

(8.5) Lemma: The composite map exp ◦ρ◦ log : R → X is weakly equivalent
to the inclusion R ↪→ X.

Proof: Let ρt, with ρ0 = ρ and ρ1 = identity, be a linear coarse
homotopy of ρ to the identity map. It is not hard to check that exp ◦ρt ◦ log
is then a generalized coarse homotopy of exp ◦ρ ◦ log to exp ◦ log, which in
turn is bornotopic to the inclusion map.

We must now prove that the range R of the exponential map is weakly
equivalent to the whole space X. Let us begin by noticing that R is coarsely
convex9, that is, there is a constant 16δ such that given any two points x0

and x1 in R, any geodesic segment [x0, x1] lies within 16δ of R. Now we
have

(8.6) Lemma: For any coarsely convex subset W of a hyperbolic metric
space X, there is a map π : X → W such that d(x, π(x)) ≤ d(x,W ) + δ;
moreover, this map is unique up to bornotopy.

Note that such a map π is ‘coarsely contractive’, that is, d(π(x0), π(x1)) <
d(x0, x1) + 2δ.

Proof: It suffices to prove that there is a constant a > 0 such that if w1

and w2 are points of W within distance d(x,W )+δ of x, then d(w1, w2) < a.
Let p be the point on the geodesic segment [w1, w2] that is closest to x.
Then, for i = 1, 2,

d(x, wi) < d(x,W ) + δ < d(x, p) + δ + c

where c is the constant implied in the statement that W is coarsely convex.
However, by Lemma 17 and Proposition 21 of Chapter 2 of [10],

d(x, p) < (w1|w2)x + 4δ < d(x, p) + 5δ + c− d(w1, w2)/2.

Therefore
d(w1, w2) < 10δ + 2c

as required.

Now take W = R in the above lemma. Define a family of maps πt : X →
X by interpolating ‘linearly’ between π0, the identity map, and π1 = π;
in other words, πt(x) is the point at distance td(x, π(x)) along a geodesic
segment from x to π(x). By the approximate convexity of hyperbolic spaces
(Proposition 25 in Chapter 2 of [10]), the maps πt are uniformly coarsely
contractive. In order to show that the πt give a generalized coarse homotopy

9The importance of this point was indicated by M. Gromov in a helpful conversation
with one of the authors, for which we are grateful.
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between π and the identity map (and thereby to show that the inclusion of
R into X is a weak equivalence) it will suffice to prove

(8.7) Lemma: The map Π: X × [0, 1] → X representing the family πt

defined above is proper.

Proof: Suppose not. Then there is a sequence of points (xj , tj) in
X × [0, 1] such that the points (xj , tj) are all at mutual distance at least 2
whereas the πtj (xj) remain in a compact set. Extracting a subsequence and
using the contractiveness of the π’s, we can suppose that there is a sequence
xj which tends to a point x∞ ∈ ∂X while π(xj) remains in a compact set.
This, however, is impossible. For the point x∞ is represented by a geodesic
ray γ which belongs to R. Let yj = γ((xj |γ)) ∈ R. By the construction
of yj and the thinness of geodesic triangles, there is a constant 16δ such
that d(xj , yj) < |xj | − |yj | + 16δ. Since π(xj) remains in a compact set,
there is a constant C such that d(xj , π(xj)) > |xj | − C. Since d(xj , π(xj))
is (up to an error of 2δ) the shortest distance from xj to any point of R,
d(xj , π(xj)) < d(xj , yj) + 2δ, and it follows that

|yj | < 18δ + C.

But |yj | = (xj |γ) →∞ as j →∞, because xj tends to the point at infinity
represented by the geodesic ray γ, and this contradiction completes the
proof.

Combining Lemmas 8.4, 8.5, and 8.7, we complete the proof of Proposi-
tion 8.1, and therefore of the coarse Baum-Connes conjecture for hyperbolic
metric spaces.

9. Appendix: Remarks on ideal boundaries

In this section we want to show how the machinery developed in this paper
may be applied to clarify the relationship between the analytic index map
µ and the K-homology theory of suitable ‘coronas’ of a space X. This idea
was of some importance in the paper [26], and we would like to discuss it
here both because it is rather simple from the present point of view and
because the article [13] by one of us to which reference was made at the
relevant point of [26] is no longer available in the form in which it was
cited.

The situation of interest is the following. X is a proper metric space as
usual, and X = X ∪ Y is a corona compactification of X, which means that
the continuous functions on X restrict to functions on X whose gradient,
measured relative to the metric on X, tends to zero at infinity. In this
situation proposition 5.18 of [26] (compare also section 3 of [28]) states in
our notation that C∗(X) ⊆ Ψ0(X)∩Ψ−1(X), and thus by relative Paschke
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duality (5.3) we get a map

b : Ki(C∗(X)) → K̃i−1(Y ).

The result that we would like to prove states that b ◦µ is just the boundary
map ∂ : Ki(X) → K̃i−1(Y ) in reduced K-homology; this result was used in
the proof of Proposition 5.29 in [26]. To prove it, we need to note first that
D∗(X) ⊆ Ψ0(X); this can be proved by exactly the same methods as those
used for C∗(X). Now consider the diagram of six-term exact sequences in
K-theory associated to the diagram of extensions

C∗(X) −−−−→ D∗(X) −−−−→ D∗(X)/C∗(X)
y

y
y

Ψ0(X) ∩Ψ−1(X) −−−−→ Ψ0(X) −−−−→ Ψ0(X)/(Ψ0(X) ∩Ψ−1(X))

The connecting map associated to the lower sequence is ∂ by the relative
Paschke duality theorem, and that associated to the upper sequence is µ by
definition. The two quotient algebras both have K-theory isomorphic to the
K-homology of X, and the right-hand vertical map induces the identity10

on K∗(X). The desired result follows immediately.
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Exotic index theory and the
Novikov conjecture

Steven Hurder 1

1 Introduction

The Novikov conjecture, that the higher signatures of a compact oriented
manifold are homotopy invariant, is well-known both for its depth and for
the breadth of the research it has spawned. There are two approaches to
proving the conjecture for various classes of groups — one via geometric
surgery techniques [8, 16, 9, 17], and the other via index theory methods.
The index method appeared first in the work of Lusztig [33], which was
greatly extended by Mǐsčenko [35, 36] and Kasparov [28, 29, 30, 32]. The
two methods are directly compared in Rosenberg’s article [42]. Connes
introduced an intermediate approach which combines index methods with
the more geometric techniques of cyclic cohomology [4, 10, 11, 12, 13, 15].

The index theory approach for a compact oriented manifold with fun-
damental group Γ traditionally has two steps (cf. the survey by Kasparov
[31]). The first is the Kasparov-Mǐsčenko construction of the “parametrized
signature class” σ(M) ∈ K0(C∗r (Γ)), and the key point is that this class is
a homotopy invariant [25, 27, 34, 35]. Secondly, one shows that operator
assembly map β: K∗(BΓ) → K∗(C∗r Γ) from the K-homology of BΓ to the
K-theory of the reduced group C∗-algebra is rationally injective and the
image of the K-homology class determined by the signature operator coin-
cides with σ(M). Hence, the signature K-homology class is also homotopy
invariant and its pairing with group cohomology classes will be invariant —
which is the conclusion of the Novikov conjecture.

The Γ-invariance of the lifted operator D̃ on the universal cover M̃ of
M ∼= BΓ is used to define a class β[D] ∈ K∗(C∗r Γ), basically given by the
differences of the homotopy classes of the representation of Γ on the kernel
and cokernel of D̃. The “index data” of an operator is localized in its spec-
trum around 0, while the C∗r (Γ)-index contains information related to all
the unitary representations of Γ weakly contained in the regular represen-
tation, so a priori has in it more structure than is necessary for the study
of the Novikov conjecture. The idea of index theory in coarse geometry (cf.
Roe [40]) is to localize the C∗-index in a neighborhood of infinity spacially,

1Supported in part by NSF grant DMS 91-03297.
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which by a non-commutative uncertainty principle corresponds to localizing
the index at 0 spectrally. The applications of this fundamental idea are still
being developed.

The purpose of this note is to prove the injectivity of the map β for
a large class of groups using the methods of exotic index theory; that is,
index theory for families of coarse metric spaces. The exotic index approach
has the advantage that “coarsening the index class” results in technical
simplifications which allow the Mǐsčenko-Kasparov method to be applied
more broadly. As an example, exotic index methods yield new cases of the
Foliation Novikov Conjecture [26, 19].

The topological context for the “index data localized at infinity” of a
Γ-invariant elliptic operator is the geometric structure given by a family of
parametrized metric spaces with base a model for BΓ, and fibers the coarse
metric type of Γ. The basic idea is to consider such a family as a generalized
vector bundle and introduce its coarse Bott class which is the analogue in
coarse theory of the Thom class (cf. [1]). The data given by a coarse Bott
class corresponds to the “dual Dirac” KK-class of Mǐsčenko-Kasparov, but
formulated within the coarse geometry category. Our most general result
using this technique is that the operator assembly map is injective on K-
theory for a group Γ whose associated field of metric spaces admits a coarse
Bott class. This note contains a complete proof of this assertion for such Γ
when BΓ represented by a complete Riemannian manifold.

A Riemannian n-manifold M̃ is ultraspherical (Definition 6.1, [40]) if
it admits a proper map f : M̃ → Rn where f has non-zero degree and
the gradient ∇f has uniformly bounded pointwise norm on M̃ . Given a
complete Riemannian manifold M with fundamental group Γ and universal
covering M̃ , we say that M is Γ-ultraspherical if the balanced product M̃Γ =
(M̃ × M̃)/Γ admits a map F : M̃Γ → TM which preserves fibers, and the
restriction of F to each fiber Fx: {x} × M̃ → TxM is ultraspherical. The
coarse index approach yields the following:

THEOREM 1.1 Let Γ be a group so that the classifying space BΓ is
represented by a spin manifold M which admits a complete Riemannian
metric so that M is Γ-ultraspherical. Then the operator assembly map
β: K∗(BΓ) → K∗(C∗r Γ) is injective.

The proof of Theorem 1.1 is especially transparent when M is compact
without boundary. For this reason, we give the proof in the closed case
first, in sections 2 through 6. Section 7 discusses the non-compact case.

Note that the hypotheses of Theorem 1.1 do not require that M be of
the homotopy type of a CW-complex of finite type. Also note, if BΓ is
represented by a finite CW complex, then it is also represented by an open
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complete spin manifold M : embed BΓ in R` for appropriate ` À 0 and take
M to be a regular neighborhood. Modify the restriction of the Euclidean
metric to M so that it rapidly vanishes near the boundary of the closure
of M , and one obtains a complete Riemannian metric on TM as well. The
key hypothesis which must be verified, is that the universal covering M̃ of
M is ultraspherical for the particular choice of complete metric on TM .

There is a version of the theorem for non-spin manifolds, where the sig-
nature operator is used in place of the Dirac operator in the application of
Poincaré duality.

The coarse index approach can also be used to prove:

THEOREM 1.2 Let Γ be a finitely presented group whose classifying space
BΓ is homotopy equivalent to a finite CW complex. Suppose the universal
covering EΓ of BΓ admits a metrizable, contractible compactification XΓ
such that
• The deck translation action of Γ on EΓ extends continuously to XΓ.
• For any compact subset K ⊂ EΓ and sequence of group elements

{γn} ⊂ Γ which tend to infinity in the word norm, the translates K · γn

have diameter tending to zero.
Then the operator assembly map β: K∗(BΓ) → K∗(C∗r Γ) is injective.

Theorem 1.2 follows by proving that for Γ as in the theorem, there is a
complete open manifold V and a free action of Γ on V so that (V ×V )/Γ →
V/Γ ∼= BΓ admits a coarse Bott class. This follows via a geometric method
similar to that used in [12] to establish the theorem for word hyperbolic
groups, which will be discussed in detail in a later paper. Example 8.3 gives
the proof of Theorem 1.2 for the very particular case where Γ ∼= π1(M) and
M is a complete open manifold with restrictions on its geometry. The most
general case will be treated in a subsequent paper.

The hypotheses of Theorem 1.2 correspond with those assumed in Carl-
sson-Pedersen [9] and Ferry-Weinberger [17] to prove injectivity of the inte-
gral assembly map via controlled surgery theory. The results of Bestvina-
Mess [6] show that the hypotheses of Theorem 1.2 are satisfied for groups
which are word hyperbolic.

Theorems 1.1, 1.2, 6.2 and 7.6 have similar conclusions to all approaches
to the Novikov conjecture using the KK-approach. Kasparov and Skan-
dalis [32] construct a Dirac and dual Dirac class for C∗-algebras associated
to Bruhat-Tits buildings, and use this to prove the conjecture for many
classes of arithmetic groups. A. Connes, M. Gromov, and H. Moscovici [12]
developed the theory of proper Lipschitz cohomology (a work that directly
inspired this note) and used it to give the first proof of the Novikov Con-
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jecture for word hyperbolic groups. Our notion of a “coarse Bott class” for
a group is clearly related to their

Lipschitz-Poincaré dual of a group (cf. Epilogue to [12].) The non-finite
type case of Theorem 1.1 yields a new class of examples where the conjec-
ture has been verified, for the case where BΓ is represented by a complete
manifold not of finite type.

Here is an outline of this paper. The coarse index class is introduced in
section 2. The parametrized corona ∂πΓ of the fundamental group is intro-
duced in section 3. In section 4 we develop a pairing between the K-theory
K1(∂πΓ) and the exotic indices. Section 5 considers the exotic index for
operators on compact manifolds. The coarse Bott class hypotheses is intro-
duced in section 6, where we prove that the µ-map is injective for a group
with this condition. It is immediate that a group satisfying the hypotheses
of Theorem 1.1 admits a coarse Bott class, so its proof is completed. Sec-
tion 7 details the modifications needed in the open case. Finally, in section 8
we show that the groups satisfying the hypotheses of Theorem 1.2 satisfy
the hypotheses of Theorem 1.1.

The results of this paper were presented to the meeting on Novikov Con-
jectures, Index Theorems and Rigidity at Oberwolfach, September 1993.
There are close parallels between the operator methods of this paper and
those used in the most recent controlled K-theory approaches to the Novikov
Conjecture [9, 17]. This manuscript is a substantial revision of an earlier
preprint (dated April 16, 1993) with these parallels accentuated.

This author is indebted to Jonathan Block, Alain Connes, Steve Ferry,
James Heitsch, Nigel Higson, Jonathan Rosenberg, Mel Rothenberg and
Shmuel Weinberger for discussions on the Novikov conjecture and related
topics, and especially to John Roe for sharing his insights on exotic index
theory and its application to the Novikov conjecture.

2 The coarsening map

We begin by recalling some basic ideas of coarse geometry. A pseudomet-
ric on a set X is a non-negative, symmetric pairing d(·, ·) : X×X → [0,∞)
satisfying the triangle inequality

d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

A map f : X1 → X2 is said to be coarsely quasi-isometric with respect
to pseudometrics di(·, ·) on the Xi if there exists constants A,B > 0 so that
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for all y, y′ ∈ X1

A−1 · (d1(y, y′)−B) ≤ d2(f(y), f(y′)) ≤ A · (d1(y, y′) + B) . (2.1)

This notion is stricter than Roe’s notion of uniformly bornologous (cf. Defi-
nition 2.1, [40]), where the estimator A = S(R) need not be a linear function
of R = d(y, y′).

A subset Z ⊂ X is called C-dense if for each x ∈ X, there exists n(x) ∈ Z
so that d(x, n(x)) ≤ C.

A map f : X1 → X2 is said to be a coarse isometry with respect to
pseudometrics di(·, ·) if f is a coarse quasi-isometry and the image f(X1) is
C-dense in X2 for some C.

A net, or quasi-lattice, is a collection of points N = {xα | α ∈ A} ⊂ X
so that there are C, D > 0 with N a C-dense set, and distinct points of
N are at least distance D apart. The inclusion of a net N ⊂ X is a coarse
isometry for the restricted metric on N .

For sections 2 through 6, we will assume that M is a compact spin mani-
fold without boundary, and we fix a Riemannian metric on M . Let M̃ → M
denote the universal covering of M , with the fundamental group Γ = π1(M)
acting via translations T : M̃×Γ → M̃ on the right. The Riemannian metric
on TM lifts to a Γ-invariant complete Riemannian metric on TM̃ , and M̃
is endowed with the Γ-invariant path length metric. Introduce the balanced
product M̃Γ = (M̃ × M̃)/Γ, with projections πi: M̃Γ → M for i = 1, 2 onto
the first and second factors, respectively. The Γ-invariant metric on M̃ in-
duces a Γ-invariant metric on the second factor of M̃ × M̃ , which descends
to a fiberwise metric on M̃Γ: for x ∈ M and y, y′ ∈ M̃x then dx(y, y′)
denotes the “fiberwise” distance from y to y′. Note that that M̃x = π−1

1 (x)
is naturally isometric to M̃ .

For x ∈ M̃ , let ∆(x) ∈ M̃Γ denote the equivalence class of x × x, with
π1(∆(x)) = π2(∆(x)) = x. This factors through a map, also denoted by
∆: M → M̃Γ, which includes M along the diagonal.

Let H(M̃, N) denote the Hilbert space of L2-sections of the trivial bundle
M̃×CN , where the inner product is determined by the Riemannian volume
form on M̃ . We will often abuse notation and write H(M̃) = H(M̃, N)
where N À 0 is a sufficiently large integer determined as needed. Introduce
the continuous field of Hilbert spaces over M ,

HM = {Hx = H(M̃x) | x ∈ M}

where each fiber Hx is isomorphic to H(M̃). Note the inner product of two
sections of HM is a continuous function on M by definition.
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The Roe algebra C∗(X) of a complete metric space X equipped with
a Radon measure is the norm closure of the ∗-algebra B∗ρ(X) of bounded
propagation, locally compact, bounded operators on H(X) (cf. section 4.1
[40]). The compact operators on H(X) satisfy K(H(X)) ⊂ C∗(X). The
inclusion is strict if and only if X is non-compact.

We next extend the construction of the Roe algebra from the open man-
ifold M̃ to the fibers of the map π: M̃Γ → M . This technical step is one
of the main ideas of the coarse approach to the Novikov Conjecture. We
begin with a non-equivariant version of the extension. Let B∗ρ(M̃×M̃, π) be
the ∗-algebra generated by the continuous families of operators A = {Ax ∈
B∗ρ(M̃x) | x ∈ M̃} with uniformly bounded propagation. That is, we require
that there exists a constant C so that for each x ∈ M̃ , the operator Ax can
be represented by a kernel on the fiber M̃x supported in a C-neighborhood
of the diagonal in M̃x × M̃x, and the function x 7→ Ax is continuous in x
for the operator norm on B∗ρ(M̃x) ∼= B∗ρ(M̃) ⊂ B(H(M̃)). Using this last
identification we have a natural isomorphism

B∗ρ(M̃ × M̃, π) ∼= Cup(M̃,Bρ(M̃)) (2.2)

where the subscript “up” indicates the uniform control on propagation.

The right translation action of Γ induces a right action on operators
Bρ(M̃). Given A = {Ax} and γ ∈ Γ we obtain an action

γ∗A = (Tγ)∗ATγ−1(x).

Let B∗ρ(M̃ × M̃, π)Γ denote the ∗-subalgebra of Γ-invariant elements of
Cup(M̃ , Bρ(M̃)), and C∗(M̃Γ, π) ⊂ B(HM ) its C∗-closure for the ∗-represent-
ation on H(M̃). An element of C∗(M̃Γ, π) is a continuous field of operators
{Ax | x ∈ M} where for each x ∈ M , Ax ∈ C∗(M̃x). The C∗-completion
commutes with the Γ-action, hence:

PROPOSITION 2.1 There is a natural isomorphism

C∗(M̃Γ, π) ∼= C(M̃, C∗(M̃))Γ.

Let C∗r (Γ) denote the reduced C∗-algebra of Γ, and B(H(M̃))Γ ⊂ B(H(M̃))
the C∗-subalgebra of Γ-invariant bounded operators.

PROPOSITION 2.2 There is an injective map of C∗-algebras, C: C∗r (Γ) →
C∗(M̃Γ, π). The induced map on K-theory, called the coarsening map for
Γ,

χ: K∗(C∗r (Γ)) → K∗(C∗(M̃Γ, π)), (2.3)

is independent of the choices made in defining C.



Exotic index theory and the Novikov conjecture 261

Proof: Let K ⊂ B(H(M̃)) denote the C∗-subalgebra of compact operators.
Let Pξ ∈ K denote the projection onto a unit vector ξ ∈ H(M̃). Choose ξ

with compact support, so that Pξ ∈ Bρ(H(M̃)). Define the inclusion of C∗-
algebras, P ∗ξ : C∗r (Γ) → C∗r (Γ)⊗̂K mapping the unit element 1e 7→ 1e ⊗ Pξ.

PROPOSITION 2.3 [13] There is an isomorphism of C∗-algebras

C∗r (Γ)⊗̂K ∼= C∗(M̃)Γ ⊂ B(H(M̃))Γ

where the image of the projection 1e ⊗ Pξ is contained in B∗ρ(M̃Γ, π)Γ.

The natural inclusion of C∗(M̃)Γ into C∗(M̃Γ, π) is induced from the
inclusion of the constant functions in terms of the isomorphism (2.2). The
composition

C: C∗r (Γ) → C∗r (Γ)⊗̂K ∼= C∗(M̃)Γ ⊂ C∗(M̃Γ, π)

is the desired map. Note that the choice of ξ affects C but not χ. 2

Here is a simple but typical example of the above construction, for the
group Γ = Zn with model M = Tn the n-torus, and M̃ = Rn. Fourier
transform gives an isomorphism C∗r (Zn) ∼= C0(Tn), so that the K-theory
K∗(C∗r (Zn)) ∼= K∗(Tn). Higson and Roe [24, 23] have calculated the K-
theory K∗(C∗(X)) for a wide range of complete metric spaces X, which
in the case of Rn yields K∗(C∗(Rn)) ∼= K∗(Rn). There is a natural un-
parametrized coarsening map K∗(C∗r (Zn)) → K∗(C∗(Rn)), which assigns
to a Zn-invariant elliptic operator on Rn its index in the coarse group
K∗(C∗ρ(Zn)) ∼= K∗(C∗(Rn)) ∼= K∗(Rn). This coarsening process retains
only the information contained in the top degree in K-homology.

The Higson-Roe results and standard algebraic topology yield

K∗(C∗(RnZn, π)) ∼= K∗(Tn ×Rn) ∼= K∗+n(Tn)

where the last isomorphism is cup product with the Thom class for the
bundle M̃Γ = RnZn = (Rn×Rn)/Zn → Tn. In this case the parametrized
coarsening map

χ: K∗(C(Tn)) ∼= K∗(C∗r (Zn)) → K∗(C∗(RnZn, π)) ∼= K∗(Tn ×Rn)

is an isomorphism.

3 Parametrized coronas

In this section, the parametrized (Higson) corona ∂πM̃Γ is defined, which
encapsulates the topological data relevant to the coarse indices of Γ-invariant
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operators on M̃ . Begin by introducing subalgebras of the bounded contin-
uous functions on M̃Γ:

• Cb(M̃Γ) denotes the algebra of bounded continuous functions on M̃Γ,
with the usual sup-norm

|h| = sup
y∈M̃Γ

|h(y)|.

• Cb
u(M̃Γ) is the unital algebra of uniformly continuous bounded func-

tions on M̃Γ.

• C0(M̃Γ) is the uniform closure of the compactly supported functions
Cc(M̃Γ).

For x ∈ M and r > 0, introduce the fiberwise variation function

Var(x,r) : Cu(M̃x) → C(M̃x, [0,∞))
Var(x,r)(h)(y) = sup {|h(y′)− h(y)| such that dx(y, y′) ≤ r}

and also set

Varr:Cu(M̃Γ) → C(M̃Γ, [0,∞))
Varr(h)(y) = Var(π(y),r)(h)(y).

We say f ∈ Cb
u(M̃Γ) has uniformly vanishing variation at infinity if

for each r > 0 there exists a function D(f, r) : [0,∞) → [0,∞) so that
dx(y, ∆(x)) ≥ D(f, r)(ε) =⇒ Var(x, r)(f)(y) ≤ ε. When M is compact,
this condition is equivalent to saying that Varr(f) ∈ C0(M̃Γ) for all r > 0.
Let Ch(M̃Γ, π) ⊂ Cb

u(M̃Γ) denote the subspace of functions which have
uniformly vanishing variation at infinity.

LEMMA 3.1 (cf. 5.3, [40]) Ch(M̃Γ, π) is a commutative C∗-algebra. 2

The spectrum of the C∗-algebra Ch(M̃Γ, π), denoted by M̃Γ, is a com-
pactification of M̃Γ, where the inclusion of the ideal C0(M̃Γ) ↪→ Ch(M̃Γ, π)

induces a topological inclusion M̃Γ ⊂ M̃Γ as an open dense subset.
Define the parametrized (Higson) corona of M̃Γ as the boundary

∂πM̃Γ = M̃Γ− M̃Γ,

which is homeomorphic to the spectrum of the quotient C∗-algebra

Ch(M̃Γ, π)/C0(M̃Γ).
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The functions in C(M) act as multipliers on Ch(M̃Γ, π)/C0(M̃Γ), hence

the projection π = π1 extends to continuous maps π̂: M̃Γ → M and ∂π:
∂πM̃Γ → M . One can show, using that Ch(M̃Γ, π) is a subalgebra of
the uniformly continuous functions on M̃Γ, that both maps π̂ and ∂π are
fibrations. The typical fiber of ∂π: ∂πM̃Γ → M is not metrizable, even in
the simplest case where M = S1 (cf. page 504, [38]).

4 The boundary pairing

The K-theory of the parametrized corona ∂πM̃Γ naturally pairs with the
coarse indices of Γ-invariant operators on M̃ . This pairing is a parametrized
extension of N. Higson’s observation [20, 21] that the vanishing condition
on gradients for C1-functions on a open complete Riemannian manifold X
is the exact analytic condition required to form a pairing between the K-
theory of its corona ∂hX and the K-homology of X. Roe extended this idea
to complete metric spaces [40], and a parametric form of this construction
was introduced in [26]. We require the following result:

THEOREM 4.1 There is a natural pairing, for p, q = 0, 1,

Be:Kq(C∗r (Γ))⊗Kp(∂πM̃Γ) −→ Kp+q+1(M). (4.1)

For each [u] ∈ Kp(∂πM̃Γ) evaluation of the pairing on [u] yields the exotic
index map

Be[u]:Kq(C∗r (Γ)) −→ Kq+p+1(M). (4.2)

Proof: The idea of the proof is to construct a natural map

∂e:Kp(∂πM̃Γ) → KKp+1(C∗(M̃Γ, π), C(M)). (4.3)

The map (4.1) is obtained as the Kasparov product between the images of
the maps (2.3) and (4.3):

χ⊗ ∂e : Kq(C∗r (Γ))⊗Kp(∂πM̃Γ)

−→ KKq(C, C∗(M̃Γ, π))⊗KKp+1(C∗(M̃Γ, π), C(M))
−→ KKp+q+1(C, C(M)) ∼= Kp+q+1(M).

The map (4.3) is exactly the coarse analogue of the dual Dirac construction.
We give the essential points of the construction below — further details can
be found in section 6, [26]. For example, one must use care because both the
full Roe algebra C∗(M̃Γ, π) and the Higson corona ∂πM̃Γ are not separable,
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so it is actually necessary to work with separable subalgebras and direct
limits to define the pairing (4.3). This poses no problem, as every class
in Kp(∂πM̃Γ) factors through a separable quotient of the corona ∂πM̃Γ,
and the image of a projection in C∗r (Γ) lies in a separable subalgebra of
C∗(M̃Γ, π).

Suppose p = 1. Let [u] ∈ K1(∂πM̃Γ); then we will define ∂e[u]. Represent
[u] by a continuous map u : ∂πM̃Γ → U(N) for some N > 0. Let j :
U(N) ⊂ GL(N,C) ⊂ CN2

be the embedding obtained by the standard
coordinates on matrices. Apply the Tietze Extension Theorem to the map
from the boundary of M̃Γ into a regular neighborhood retract of U(N),
u: ∂πM̃Γ → U(N) ⊂ N(U(N)) ⊂ CN2

, to obtain a continuous extension

M̃Γ → End(CN2
), and then use the retraction from N(U(N)) back to U(N)

to obtain a map û: M̃Γ → End(CN2
) such that û(x) is a unitary matrix for

x in an open neighborhood of ∂πM̃Γ in M̃Γ.

The Kasparov (C∗(M̃Γ, π), C(M))-bimodule that represents ∂e[u] is con-
structed from û following the method of G. Yu [44], as adapted to the
bivariant context. (Yu’s method implements a K-theory duality in the index
theory of coarse spaces, in the sense of Higson’s original paper introducing
these ideas [20].) Introduce the KK-cycle:

(E0 ⊕ E1,Φ =
[

0 F ∗

F 0

]
, φ0 ⊕ φ1, ψ) (4.4)

whose components are defined as follows:

• Let the integer N be determined by the representative u : ∂πM̃Γ →
U(N). Recall that HΓ consists of fiberwise sections of the Hermitian vector

bundle E = M̃Γ×CN , so there is a natural module action φi of C(M) on
HΓ via the induced map π∗1 : C(M) → C(M̃Γ). Set Ei = HΓ for i = 0, 1.

• The matrix-valued function û induces a map of bundles F : E0 → E1

which is an Hermitian isomorphism outside of a compact set in M̃Γ.

• Let ψ be the diagonal representation of C∗(M̃Γ, π) on E0⊕E1. Note that
ψ is a C(M)-representation, as the operators in C∗(M̃Γ, π) are fiberwise,
and the module action of C(M) is via fiberwise constant multipliers.

It is now routine to check

PROPOSITION 4.2 (cf. Lemma 3 [44]) (E0⊕E1, Φ, φ0⊕φ1, ψ) defines
a Kasparov (C∗(M̃Γ, π), C(M))-bimodule. Its KK-class

∂e[u] ∈ KK(C∗(M̃Γ, π), C(M))
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depends only on the class [u] ∈ K1(∂πM̃Γ).

Proof: To establish that this yields a KK-bimodule, it only remains to
check that for all a ∈ C∗(M̃Γ, π), the graded commutator [Φ, ψ(a)] is a uni-
formly fiberwise compact operator. This follows from the compact support
of Φ and the bounded propagation property of a; the calculation follows
exactly as that for a single complete open manifold by Higson and Roe (cf.
Proposition 5.18, [40]). The homotopy invariance of the KK-class follows
by standard methods (cf. Chapter VIII, [7]).

A similar construction applies in the even case, where we represent a
K-theory class [E] ∈ K0(∂πM̃Γ) by a map to a Grassmannian embedded
in Euclidean space, then follow the above outline to obtain

∂e[E] ∈ KK1(C∗(M̃Γ, π), C(M)).

5 Coarse geometry and the exotic index

The exotic indices for an elliptic differential operator D on M are ob-
tained from its Γ-index class by the pairing (4.1) with boundary classes.

Let D be a first order differential operator defined on the smooth sections
C∞(M,E0) of an Hermitian bundle E0 → M , determining a K-homology
class [D] ∈ K∗(M). The cap product ∩:K∗(M) ⊗ K∗(M) → K∗(M) is
realized by an operator pairing: given [E] ∈ K(M) the choice of an Her-
mitian metric on a representative E = E+ − C` determines an extension
of D to an elliptic first order operator D ⊗ E acting on C∞c (M,E0 ⊗ E).
The K-homology class [D ⊗ E] ∈ K∗(M) represents [D] ∩ E. We recall a
fundamental result:

THEOREM 5.1 ([5]; Corollary 4.11 [30]) Let M be a closed spin-mani-
fold and D = ∂ the Dirac operator on spinors. Then [D] ∩ :K∗(M) →
K∗(M) is the Poincaré duality isomorphism on K-theory.

We define the Baum-Connes map [3] µ[D]: K∗(M) → K∗(C∗r (Γ))
in terms of the lifts of operators to coverings: For [E] ∈ K∗(M), the lift
of D ⊗ E to a Γ-invariant differential operator ˜D ⊗E on the compactly
supported sections C∞c (M̃, ˜E0 ⊗E) has a Γ-index

µ[D] [E] = [ ˜D ⊗E] ∈ K∗(C∗r (Γ)).

When M = BΓ the Baum-Connes map can be written simply as µ[D]([E]) =
β ([D] ∩ [E]).
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DEFINITION 5.2 For each class [u] ∈ Kp(∂πM̃Γ) and K-homology class
[D] ∈ Kq(M), define the exotic index map

Inde([u], [D]) = Be[u] ◦ µ[D] :K∗(M) −→ K∗+p+q+1(M). (5.1)

The exotic index map (5.1) can be evaluated in terms of ordinary indices
of a family [14]. Let D̃π denote the differential operator along the fibers of
π: M̃Γ → M , obtained from the suspension of the Γ-invariant operator D̃.
It determines a Connes-Skandalis index class Indπ(D̃π) ∈ KK∗(C0(M̃Γ),
C(M)), where in the case of graded operators we have suppressed notation
of the grading. Use the boundary map δ in K-theory for (M̃Γ, ∂πM̃Γ) and
the KK-external product

KK(C, C0(M̃Γ))⊗KK∗(C0(M̃Γ), C(M)) −→ KK(C, C(M)) ∼= K∗(M)

to pair δ[u] ∈ KK(C, C0(M̃Γ)) with Indπ(D̃π) to obtain a map

Indπ

(
δ[u]⊗ D̃π

)
∈ K∗(M).

The Kasparov pairing δ[u] ⊗ (D̃π) is operator homotopic to a family of
fiberwise operators over M which are invertible off a compact set — exactly
the class of operators considered by Gromov and Lawson [18, 39]. An elegant
homotopy argument of G. Yu for the indices of special vector bundles on an
open complete manifold (Theorem 2, [44]) adapts to the parametrized case
to relate these two indices in K∗(M):

PROPOSITION 5.3 (Exotic families index theorem)

Inde([u], [D])[E] = Indπ

(
δ[u]⊗ ( ˜D ⊗E)π

)
∈ K∗(M). (5.2)

REMARK 5.4 Formula (5.2) gives an expression for the exotic indices as
the indices of a family of operators — a decidedly non-exotic index. The
notation that Inde([u], [D])[E] is an “exotic” index is retained because it
results from pairing with coefficients δ[u] that are the transgression of a
K-theory class “at infinity”. The description of the index invariants as “ex-
otic” thus parallels exactly the usage in characteristic class theory, where
classes arising from boundary constructions are usually called exotic or sec-
ondary. It should be noted that almost all other authors now refer to such
constructions as coarse invariants, due to the role of coarse geometry in
their construction.
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6 Coarse Bott classes

The notion of a coarse Bott class in K-theory for a family of pseudo-
metric spaces is introduced, and we prove the map µ: K∗(BΓ) → K∗(C∗r Γ)
is injective for a group Γ with a coarse Bott class coming from the corona.
There is a close analogy between the coarse techniques of this section and the
constructions of “proper Lipschitz cocycles” introduced by Connes-Gromov-
Moscovici [12].

The definition of coarse Bott classes is motivated by the Bott class for
vector bundles:

DEFINITION 6.1 Let M = M̃/Γ be a connected, compact spin-manifold,
and ∂ the Dirac operator on spinors for M . We say that Θ ∈ K∗(M̃Γ) is a
coarse Bott class if there exists [uΘ] ∈ K∗(∂πM̃Γ) so that Θ = δ[uΘ], and
for some x ∈ M , hence for all x, the index of the operator ∂x ⊗ (Θ|M̃x) on
the fiber M̃x satisfies Ind(∂x ⊗ (Θ|M̃x)) = ±1.

Here is the main result of this note for the case where BΓ ∼= M is
compact:

THEOREM 6.2 Let Γ be a group so that the classifying space BΓ is repre-
sented by a complete, orientable Riemannian spin manifold M = M̃/Γ such
that there is a coarse Bott class Θ ∈ K∗(M̃Γ). Then β: K∗(BΓ) → K∗(C∗r Γ)
is injective.

Proof: Let uΘ ∈ K∗(∂πM̃Γ) with Θ = δuΘ be a coarse Bott class, and let
∂ be the Dirac operator on M . By Theorem 5.1 it will suffice to show that
the exotic index map

Inde([D], [uΘ]) = Be[uΘ] ◦ µ[D] :K∗(M) −→ K∗(M)

is injective. This in turn follows from a simple topological observation and
a calculation. The observation is contained in the following lemma, which
is a simple reformulation of Kasparov’s “homotopy lemma” (cf. the proof
of Theorem, section 6.5, page 193 [30]).

LEMMA 6.3 For each [E] ∈ K∗(M), Θ⊗ π∗1 [E] = Θ⊗ π∗2 [E] ∈ K∗(M̃Γ).

Proof: The projections πi: M̃Γ → M for i = 1, 2 are homotopic, so the
induced module actions π∗1 and π∗2 of K∗(M) on K(M̃Γ) coincide. 2

Theorem 6.2 now follows from a calculation using Proposition 5.3 (the
exotic families index theorem) applied to the fibration π = π1: M̃Γ → M .
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LEMMA 6.4 For each non-zero [E] ∈ K∗(M), the exotic index Inde([uΘ],
[∂])[E] ∈ K∗(M) is non-zero.

Proof:

Inde([uΘ], [∂])[E] = Indπ

(
Θ⊗ ( ˜∂ ⊗E)π

)

= Indπ

(
Θ⊗ π∗2E⊗ ∂̃π

)

= Indπ

(
Θ⊗ π∗1E⊗ ∂̃π

)

= Indπ

(
Θ⊗ ∂̃π

)
⊗ [E]

6= 0.

The last conclusion follows as Ind(∂ ⊗ (Θ|M̃x)) = ±1 for all x ∈ M implies
Indπ

(
Θ⊗ ∂̃π

)
∈ K∗(M) is invertible in K∗(M).

Note that one can weakened the notion of a coarse Bott class, requiring
only that the indices of the operators ∂x ⊗ (Θ|M̃x) on the fibers M̃x satisfy
Ind(∂x ⊗ (Θ|M̃x)) 6= 0. Then in the above proof, Indπ

(
Θ⊗ ∂̃π

)
∈ K∗(M)

will be invertible in K∗(M) ⊗ Q, which implies the rational injectivity of
the operator assembly map β in this case. We expect this more general case
will prove useful for the study of further classes of groups.

7 The relative case

We extend Theorem 6.2 to the case where BΓ ∼= M is a complete open
manifold. We do not assume that M has finite type, so the main result of
this section, Theorem 7.6, implies the Novikov Conjecture for certain classes
groups Γ = π1(M) which need not be of finite type.

Fix a complete Riemannian metric on TM . As in the compact case, the
metric lifts to a Γ-invariant Riemannian metric on TM̃ , and the induced
path-length metric on M̃ is Γ-invariant and complete. Endow the fibers of
M̃Γ → M with the quotient metric obtained from that on M̃ — for each
x ∈ M the fiber M̃x = π−1

1 (x) is isometric to M̃ . Recall that ∆: M → M̃Γ
is the quotient of the diagonal mapping ∆: M̃ → M̃ × M̃ .

B∗ρ(M̃Γ, π) is the C∗-algebra with typical element a family of operators
A = {Ax ∈ B∗ρ(M̃x) | x ∈ M} with uniformly bounded propagation, exactly
as in § 2 for the compact case, with a natural isomorphism

B∗ρ(M̃Γ, π) ∼= Cup(M̃,Bρ(M̃))Γ. (7.1)
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A uniformly continuous function ψ: M̃Γ → C has ∆-compact support if
there exists a constant Rψ > 0 so that the support of ψ is contained in the
fiberwise Rψ-tube N(∆, Rψ) around the diagonal ∆(M) ⊂ M̃Γ:

N(∆, Rψ) = {y ∈ M̃Γ | dx(y, ∆(π1(y))) ≤ Rψ}.

The construction of the parametrized corona for M̃Γ remains unchanged
in the case where M is non-compact: Γ acts naturally on the Higson corona
∂hM̃ , and we set

∂πM̃Γ ≡ (M̃ × ∂hM̃)/Γ.

Let π: ∂πM̃Γ → M be induced by projection onto the first factor.

A key difference in the non-compact case is that we must introduce the
“locally finite” K-theory K∗

lf (∂πM̃Γ) of ∂πM̃Γ. An exhaustion for M is a
nested increasing sequence {Mn} of compact submanifolds (with boundary)
M0 ⊂ M1 ⊂ · · ·M whose union is all of M . For each n ≥ 1 define M̃nΓ =
π−1(Mn) and define its corona to be ∂πM̃nΓ = ∂π−1(Mn).

We will take for an operating definition

K∗
lf (∂πM̃Γ) = {u = lim

←
[un] ∈ lim

←
K∗(∂πM̃nΓ) | ∃R > 0 ∀n > 0

δ[un] has support in N(∆, n,R)},

where N(∆, n, R) = {y ∈ M̃nΓ | dπ(y)(y, ∆π(y)) ≤ R}.
The support condition on an element u = lim←[un] has a subtle aspect

that we comment on. The sequence of representatives {[un]} are supported
in a uniform tube N(∆, R) ⊂ M̃Γ around ∆(M). If we suppose that M

admits a compactification to a manifold with boundary, M , then M̃Γ can
be trivialized on a collar neighborhood of M −M hence M̃Γ → M extends
to a fibration over M , with a section

τ : M → (M̃ × M̃)/Γ.

With respect to the “intuitively natural” section τ , the tube N(∆, R) inter-
sects the fiber M̃x in a section which becomes infinitely far from τ(x) as x
tends to the boundary M −M .

In particular, given any compact set K ⊂ M̃Γ, the distance between {y ∈
M̃x|dx(y, ∆(x)) ≤ R} and K tends to infinity as x tends to the boundary
M −M . This latter condition makes sense whether M admits a manifold
compactification or not, and suggests that the proper way to consider the
fiberwise supports of the sections {[un]} is that they lie in supports tending
to infinity with respect to a geometric “cross-section”.
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Another unique aspect of the open manifold case, is the need to introduce
the algebra of fiberwise operators A = {Ax | x ∈ M} on M̃Γ whose support
in a fiber M̃x tends to infinity with respect to the basepoint ∆(x) as x tends
to infinity in M . To be precise, introduce the subalgebra B∗cρ(M̃Γ, π) ⊂
B∗ρ(M̃Γ, π) generated by the continuous fields of operators A = {Ax | x ∈
M} such that for each ∆-compactly supported function ψ: M̃Γ → C, the
field ψ ·A = {ψ ·Ax | x ∈ M} has compact support in M . Let C∗cρ(M̃Γ, π) ⊂
C∗ρ(M̃Γ, π) denote the C∗-closure of B∗cρ(M̃Γ, π).

PROPOSITION 7.1 There is an injective map of C∗-algebras, C: C∗r (Γ) →
C∗cρ(M̃Γ, π), and the coarsening map for Γ given by the induced map on K-
theory,

χ: K∗(C∗r (Γ)) → K∗(C∗cρ(M̃Γ, π)),

is natural.

Proof: Choose a compactly supported function ξ ∈ C0(M) ⊂ L2(M) with
L2-norm one, and compact support Kξ ⊂ M . The function ξ defines a
projection Pξ ∈ K ∼= K(M) which lifts to a Γ-invariant operator P̃ξ on M̃ .
Let Pξ also denote the fiberwise operator in B∗ρ(M̃Γ, π). The product ψ ·Pξ

then has compact support in the R-tube over the support Kξ of ξ.

As in the proof of Proposition 2.2, P̃ξ determines a map

P ∗ξ : C∗r (Γ) → C∗r (Γ)⊗̂K ⊂ C∗(M̃Γ, π)

whose image similarly consists of classes represented by operators with sup-
ports contained in the fibers over the support of ξ, hence lie in C∗cρ(M̃Γ, π).
2

The construction of the boundary pairing Be proceeds exactly as before,
where we note the important detail that by Proposition 7.1 its range is the
K-theory with compact supports of M :

THEOREM 7.2 There is a natural pairing, for p, q = 0, 1,

Be: Kq(C∗r (Γ))⊗Kp
lf (∂πM̃Γ) −→ Kp+q+1(M). (7.2)

The definition of coarse Bott classes is modified as follows:

DEFINITION 7.3 Let M = M̃/Γ be a connected, complete spin-manifold,
and ∂ the Dirac operator on spinors for M . We say that Θ ∈ lim

←
K∗(M̃nΓ)

is a coarse Bott class if there exists [uΘ] ∈ K∗
lf (∂πM̃Γ) so that Θ = δ[uΘ],

and for some x ∈ M hence for all x, the fiber index Ind(∂⊗ (Θ|Vx)) = ±1.
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With the previous set-up, we now have the following extension of Lemma
6.3 within the framework of the fiberwise foliation index theorem applied
to π: M̃Γ → M :

LEMMA 7.4 Let Θ ∈ lim
←

K∗(M̃nΓ) be a coarse Bott class. For each

[E] ∈ K∗(M),

Indπ

(
Θ⊗ ∂̃π ⊗ π∗2E

)
= Indπ

(
Θ⊗ ∂̃π ⊗ π∗1E

)
. (7.3)

Proof: By Theorem 7.2 the index class of the operator Θ⊗ ∂̃π is supported
in a compact subset of M̃Γ, so we can apply the homotopy argument from
the proof of Lemma 6.3. 2

Poincaré duality for a manifold with boundary extends to exhaustion
sequences:

THEOREM 7.5 (Corollary 4.11 [30]) Let M be a complete spin-mani-
fold and ∂ the Dirac operator on spinors. Then [∂]∩ :K∗(M) → K∗(M) is
the Poincaré duality isomorphism on K-theory.

Finally, we have established the preliminaries needed to prove the main
result of this note, the version of Theorem 6.2 applicable for M an open
complete manifold:

THEOREM 7.6 Let Γ be a group so that the classifying space BΓ is repre-
sented by a complete, orientable Riemannian spin manifold M = M̃/Γ such
that there is a coarse Bott class Θ ∈ K∗(M̃Γ). Then β: K∗(BΓ) → K∗(C∗r Γ)
is injective.

Proof: This follows exactly the outline of the proof of Theorem 6.2, where
we use the natural pairing

lim
←

K∗(Mn)⊗K∗(M) −→ K∗(M),

Poincaré duality as in Theorem 7.5, and the fact that the class

Indπ

(
Θ⊗ ∂̃π

)
∈ lim

←
K∗(Mn)

is invertible. 2



272 Steven Hurder

8 Applications

In this final section, we give three illustrations of the use of Theorem 6.2.

EXAMPLE 8.1 (cocompact lattices) Let Γ ⊂ G be a torsion-free uni-
form lattice in a connected semi-simple Lie group G with finite center.
Choose a maximal compact subgroup K ⊂ G; then the double quotient
M = K\G/Γ is a compact manifold, as Γ is torsion-free and discrete. The
inverse of the geodesic exponential map is a degree-one proper Lipschitz map
log: V → Rn. The geodesic ray compactification of V , corresponding to the
spherical compactification of Rn via the map log, is a Γ-equivariant quo-
tient of the corona ∂hV (this is the usual Mǐsčenko calculation), so there
is a fiberwise degree-one map M̃Γ → TM . Thus the usual Bott class in
TM → M pulls back to a Bott class for M̃Γ.

For M a spin manifold, we have satisfied all of the hypotheses of Theo-
rem 6.2 so the operator assembly map β: K∗(BΓ) → K∗(C∗r Γ) is injective.

The case where G is simply connected nilpotent Lie group follows sim-
ilarly, except that the construction of the Γ-equivariant spherical quotient
of the corona ∂hV uses the special vector field technique of Rees [37].

This example reproduces the Mǐsčenko method [35, 36] in the “coarse
language”; the cases discussed below are seen to be just successive embel-
lishments of it.

EXAMPLE 8.2 (non-uniform lattices) Consider a discrete, non-uni-
form
torsion-free subgroup Γ ⊂ G of a connected semi-simple Lie group G with
finite center. Choose a maximal compact subgroup K ⊂ G; then the quo-
tient M̃ = K\G is ultra-spherical for a K-G bi-invariant Riemannian metric
on TG. The double quotient M = K\G/Γ is a complete open manifold, to
which we apply the methods of section 7.

This calculation reproduces the Kasparov’s method [28, 29, 30] for han-
dling non-uniform lattices. Kasparov’s construction of the “realizable K-
functor for C∗-algebras” has been replaced with the usual inverse limit
construction on the K-theory of the corona.

EXAMPLE 8.3 (word hyperbolic groups) We give a sketch of the pr-
oof of Theorem 1.2 for the case where Γ satisfies the following hypotheses:
there is an open manifold M representing BΓ such that M̃Γ has a coarse
Bott class. Assume

• the classifying space BΓ has finite type.
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• The universal covering M̃ of M admits a metrizable, contractible com-
pactification M̃ .
• The right deck translation action of Γ on V extends continuously to

M̃ .
• For any compact subset K ⊂ EΓ and sequence of group elements

{γn} ⊂ Γ which tend to infinity in the word norm, the translates K · γn

have diameter tending to zero.

These assumptions imply that M̃ is an equivariant quotient of the Higson
compactification of M̃ , so it will suffice to construct a class Θ ∈ K∗(M̃Γ)

which is the boundary of a class θ ∈ K∗((M̃ × M̃)/Γ).

Use the exponential map to define a local diffeomorphism from an open
δ-neighborhood N(TM, δ) ⊂ TM of the zero section in TM to an open
neighborhood of ∗M ⊂ M̃Γ. Choose a Bott class in H∗(TM) supported
near the diagonal. It will pull back to a compactly supported class around
the diagonal of M̃Γ. This is induced from a relative class in H∗((M̃ ×
M̃)/Γ, (M̃ × δM̃)/Γ). Replacing M with M × S1, we can assume that
the restriction of the Bott class to the diagonal is trivial in cohomology,
hence the image of the pull-back to H∗((M̃ × M̃)/Γ, (M̃ × δM̃)/Γ) maps

to the trivial class in H∗((M̃ × M̃)). (This uses that (M̃ × M̃)/Γ retracts
to the diagonal, or that the added boundary to M̃Γ is a Z-set.) Choose

ω ∈ H∗−1((M̃ × δM̃)/Γ) which maps to the pull-back class. Now use the
isomorphism between rational K-theory and rational cohomology to pull
these cohomology classes on the pair ((M̃ × M̃)/Γ, (M̃ × δM̃)/Γ) back to
K-theory classes. This yields the θ and Θ required to have a coarse Bott
class.

The more general case, where BΓ is simply a finite CW complex, requires
embedding BΓ into Euclidean space, taking a regular neighborhood M of
BΓ, then repeating this argument for the open manifold M . However, one
must show that M̃ admits a Z-set compactification, given that M̃Γ admits
one. The proof of this uses an engulfing technique similar to that in [12].
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Bounded and continuous control

Erik K. Pedersen

The purpose of this note is to clarify the relation between bounded and
continuous control as it occurs in various proofs of the Novikov conjecture
[2, 3]. In [2] the bounded categories C of [8] are used to prove the algebraic
K-theory Novikov conjecture for certain groups. In [3] the continuously
controlled categories B of [1] are used to prove the algebraic K- and L-
theory Novikov conjectures for a larger class of groups.

Since continuous control is finer than bounded control, there should be a
forgetful functor from continuously controlled algebra to bounded algebra.
This is only true, however, after delooping the categories. A functor from
bounded algebra to continuously controlled algebra does not always exist,
but if the metric space can be given an ideal boundary satisfying conditions
of the type that “bounded is small at infinity”, one gets a functor from
bounded control to continuous control at infinity. To make this precise let
us recall some definitions. We shall use the language of algebraic K- or
L-theory, but it is relatively straightforward to modify these considerations
to topological K-theory or A-theory, using [5, 4].

Let A be a small additive category, M a proper metric space.

Definition 1. The bounded category C(M ;A) has objects A = {Ax}x∈M , a
collection of objects from A indexed by points of M , satisfying {x|Ax 6= 0}
is locally finite in M . A morphism φ : A → B is a collection of morphisms
φx

y : Ax → By so that there exists k = k(φ) so φx
y = 0 if dM (x, y) > k.

Composition is defined as matrix multiplication. Given a subspace N ⊂
M , we denote the full subcategory with objects A so that {x|Ax 6= 0}
is contained in a bounded neighborhood of N by C(M ;A)N . It is easy
to see that C(M ;A) is C(M,A)N -filtered in the sense of Karoubi [6]. We
denote the quotient category by C(M,A)>N , the category of germs away
from N . C(M ;A)>N thus has the same objects as C(M,A), but morphisms
are identified if they agree except in a bounded neighborhood of N .

Next we recall the definition of continuous control. Let (X, Y ) be a pair
of Hausdorff spaces, Y closed in X, and contained in X − Y , A a small
additive category.

The author was partially supported by NSF grant DMS 9104026
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Definition 2. The continuously controlled category B(X, Y ;A) has objects
A = {Ax}x∈X−Y satisfying {x|Ax 6= 0} is locally finite in X − Y . A mor-
phism φ : A → B is a collection of morphisms φx

y : Ax → By satisfying that
for every z ∈ Y it is continuously controlled i. e. for every neighborhood U
of z in X, there is a neighborhood V of z in X so that x ∈ V , y /∈ U implies
φx

y = 0 and φy
x = 0.

Again composition is defined by matrix multiplication. If Z is a closed
subset of Y , we denote the full subcategory of B(X, Y ;A) with objects A
so that ∂({x|Ax 6= 0} ⊆ Z, by B(X,Y ;A)Z . Here ∂ denotes the topological
boundary. It is easy to see that B(X,Y ;A) is B(X, YA)Z-filtered in the
sense of Karoubi. We denote the quotient category by B(X, Y ;A)Y−Z or
B(X,Y ;A)>Z . The objects are the same as in B(X, Y ;A) but morphisms
are identified if they agree in a neighborhood of Y − Z.

Recall the following from [1] and [2, 3]. Given a small additive category
A, we associate a spectrum K−∞(A) as follows: restricting the morphism
to isomorphisms we get a symmetric monoidal category to which there is a
functorially associated connective spectrum K(A). The inclusion

K(C(Ri;A)) → K(C(Ri+1;A))

is canonically null homotopic in two ways by Eilenberg swindle towards +∞
and −∞ respectively. Hence we get a map

ΣK(C(Ri;A)) → K(C(Ri+1;A))

or adjointly
K(C(Ri;A)) → ΩK(C(Ri+1;A))

and we define
K−∞(A) = hocolim(ΩiK(C(Ri;A))) .

Similarly if A is a small additive category with involution, we have the
functor L−∞ to spectra [10]. In this note we shall use spt to denote K−∞

or L−∞. Using [5] the considerations in here generalize to topological K-
theory, replacing additive categories by controlled C∗-algebras, and using
[4] they generalize to A-theory, replacing additive categories by appropriate
categories with cofibrations and weak equivalences.

Definition 3. Let spt be any one of K−∞, L−∞, Ktop or A−∞.

We shall use the language appropriate for K−∞ throughout.

Theorem 4. ( [3, 2, 12, 11, 10] ) For any proper metric space M and any
subspace N ⊆ M there is a fibration of spectra

spt(C(M ;A)N ) → spt(C(M ;A)) → spt(C(M,A)>N )
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Theorem 5. ([1, 3]) For any compact Hausdorff pair (X, Y ) such that Y ⊂
X − Y and a closed subset Z ⊆ Y there is a fibration of spectra

spt(B(X, Y ;A)Z) → spt(B(X, Y ;A)) → spt(B(X,Y ;A)Y−Z) .

Definition 6. A Steenrod functor is a homotopy invariant functor

St : {compact metrizable spaces} → {spectra} ; Y → St(Y )

with the following two properties :

(i) St is strongly excisive, i.e. if Z ⊆ Y there is a fibration

St(Z) → St(Y ) → St(Y/Z) ,

(ii) St satisfies the wedge axiom, i.e. for any countable collection {Xi}
of compact metrizable spaces with wedge

∨
i

Xi ⊂
∏

i Xi the natural

map is a homotopy equivalence

St(
∨

i

Xi) '
∏

i

St(Xi) .

Milnor [7] showed that a natural transformation St1 → St2 of Steenrod
functors which induces a homotopy equivalence on S0 induces a homotopy
equivalence St1(Y ) → St2(Y ) for every compact metric space Y .

Theorem 5 is one of the key ingredients in proving:

Theorem 7. ([3]) For any compact metrizable pair (X, Y ) there is a ho-
motopy equivalence

spt(B(X, Y ;A)) ' spt(B(CY, Y ;A))

where CY is the cone on Y . Moreover,

st : {compact metrizable spaces} → {spectra} ;
Y → st(Y ) = spt(B(CY, Y ;A))

is a Steenrod functor.

Definition 8. The functor

M → hl.f.(M ; Σ spt(A)) = st(M+)

is the homology with locally finite coefficients in the spectrum Σspt(A) on
the category of spaces M with metrizable one-point compactification M+

and proper maps.

Recall that a metric space M is proper if closed balls are compact. The
one-point compactification M+ of a locally compact space M is metrizable
if and only if M is second countable.
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Definition 9. Let M be a proper metric space with a compactification M ,
such that M is dense in M . Thus ∂M = M−M is the topological boundary
of M in M . The compactification is small at infinity if for every z ∈ ∂M ,
k ∈ N, and neighborhood U of z in M , there is a neighborhood V of z in
M so that B(x, k) ⊂ U for all x ∈ V ∩M .

The one-point compactification M+ of a proper metric space M is an
obvious example of such a compactification. A more interesting class of
examples is provided by radial compactifications of nonpositively curved
manifolds.

Proposition 10. If M is a proper metric space and M is a compactification
which is small at infinity there is a “forget some control” map

C(M ;A) → B(M, ∂M ;A)

which is the identity on objects.

Proof. One simply observes that bounded morphisms are automatically con-
tinuously controlled at points of ∂M .

We thus get an induced map of spectra

spt(C(M ;A)) → spt(B(M, ∂M);A) ' st(∂M)

Definition 11. The continuously controlled assembly map is the connecting
map in the Steenrod theory

∂ : st(M+) = st(M/∂M) → Σst(∂M)

The relation between bounded and continuous control is derived from the
following :

Theorem 12. If M is a proper metric space with a metrizable one-point
compactification there is a bounded assembly map

hl.f.(M ; Σ spt(A)) → Σspt(C(M ;A)) .

If M is a compactification of M which is small at infinity the diagram

hl.f.(M ; Σ spt(A)) // Σspt(C(M ;A))

²²
st(M/∂M) //∂ Σst(∂M)

is commutative.
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Proof. We need an appropriate categorical model for Σ spt(C(M ;A)) to be
able to relate bounded control to continuous control, since continuous con-
trol cannot be discussed without the extra parameter in the cone. We
shall use ad hoc notation. The following is a diagram of categories as
above. The objects are parameterized by M × (0, 1) in all cases, but the
control conditions vary. As part of the proof we construct a map from
spt(B(C(M+), M+;A)) → spt(C(M,A)) for any metric space M justify-
ing the claim that there is always a forget control map from continuous to
bounded control. Here is a diagram which we proceed to explain

A1
//

²²

A2
// A3

A4
// A5

OO

Here

A4 = B(CM, C∂M ∪M ;A)

A5 = B(ΣM, Σ∂M ;A)

and the map A4 → A5 is induced by collapsing M . This means that

spt(A4) → spt(A5)

is the boundary map

∂ : st(M ∪ ∂M) → st(Σ∂M) ' Σst(∂M)

The category
A1 = Bb(CM, C∂M ∪M ;A)

is the subcategory of A4, where the morphisms are required also to have
bounded control. The map A1 → A4 forgets this extra control requirement.
It induces a homotopy equivalence because in both cases the subcategories
with support at C(∂M) allow Eilenberg swindles and the germ categories
at M are isomorphic. The spectra spt(A1) and spt(A4) are thus models for
hl.f.(M ; Σ spt(A)).
A2 is the categorical model for Σ spt(C(M ;A)). We think of M × (0, 1)

as compactified by Σ∂M , and require continuous control at the suspension
points and bounded control everywhere. The map A1 → A2 is induced
by collapsing M and forgetting the continuous control along ∂M × (0, 1).
The subcategories of A2 with support at 0 and 1 respectively, admit obvi-
ous Eilenberg swindles and intersect in a category isomorphic to C(M ;A).
Hence spt(A2) is a deloop of spt(C(M ;A)). Finally

A3 = B(ΣM, Σ∂M, pM ;A)

is the category with continuous control at the suspension points, but along
∂M × (0, 1) we only require control in the ∂M -direction. Arguing as for
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A2 we find spt(A3) is a deloop of spt(B(M, ∂M ;A)). The map A2 → A3

is a forget control map sending bounded control to control in the ∂M -
direction. The map A2 → A3 is precisely the deloop of the map C(M ;A) →
B(M, ∂M ;A) mentioned earlier, the map forgetting bounded control, but
remembering the control at infinity. To see this consider the diagram

B(I, S0; C(M ;R))

²²

// B(I, S0;B(M, ∂M ; R))

²²
A4

// A5

where all the maps are induced by the identity on objects, and the vertical
maps induce homotopy equivalences.

Looping the map

hl.f.(M ; Σ spt(A)) = st(M/∂M) → Σspt(C(M ;A))

gives a map from hl.f.(M ; spt(A)) to the bounded K-theory of M . This
is the map used in [2], where hl.f.(M ; spt(A)) was given a more homotopy
theoretic description.

Remark 13. The bounded L-theory assembly map of [9, p. 327]

Al.f. : H l.f.
∗ (X;L.(R)) → L∗(C(X;R))

is the special case of the bounded assembly map of Theorem 12 when spt is
the quadratic L-spectrum L.(R) of a ring with involution R.

In the applications to the Novikov conjecture in [3, 2] M = EΓ is a
contractible space with a free action of a discrete group Γ.

Definition 14. An equivariant split injection of spectra with Γ-actions
S → T is an equivariant map of spectra for which there exists a spec-
trum R with Γ-action and an equivariant map of spectra T → R such that
the composite S → T → R is a homotopy equivalence (non-equivariantly).

Theorem 15. Let Γ be a discrete group such that BΓ is finite and the free
Γ-action on M = EΓ has a metrizable Γ-equivariant compactification M
which is small at infinity.

(i) The continuously controlled assembly map factors through the bounded
assembly map

hl.f.(EΓ;Σ spt(A)) → Σspt(C(EΓ;A)) → st(Σ∂M) .
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(ii) If the bounded assembly map

Σspt(C(EΓ;A)) → st(Σ∂M)

is an equivariant split injection then the Novikov conjecture holds
for Γ, meaning that the assembly map

h(BΓ; spt(R)) → spt(R[Γ])

is a split injection of spectra for any commutative ring R with
K−i(R) = 0 for sufficiently large i.

(iii) If the continuously controlled assembly map

hl.f.(EΓ;Σ spt(A)) → st(Σ∂M)

is an equivariant split injection the Novikov conjecture holds for Γ.
(iv) If M is contractible then the Novikov conjecture holds for Γ.

Proof. (i) Immediate from Theorem 12.
(ii) Immediate from [2].
(iii) Immediate from [3]. Alternatively, combine (i) and (ii).
(iv) Proved in [3]. Alternatively, note that if M is contractible then the
continuously controlled assembly map is an equivariant map which is a
homotopy equivalence.

Conjecture 16. If M is a proper metric space with a contractible compact-
ification M which is small at infinity then the map C(M ;R) → B(M, ∂M ; R)
induces a homotopy equivalence of spectra spt(C(M ; R)) → spt(B(M,∂M ;R))
for any ring R with K−i(R) = 0 for sufficiently large i.

Example 17. Conjecture 16 is true if M = O(K) is the open cone on a
finite CW complex K, since in this case spt(C(M ; R)) → spt(B(M,∂M ;R))
is a natural transformation of generalized homology theories which is a
homotopy equivalence on the coefficients ([8, 1, 11, 4, 12]).

Example 18. Conjecture 16 is true if M is a complete nonpositively curved
manifold ([5]).

Acknowledgment The author would like to thank A. Ranicki for his en-
couragement to write this paper, and for useful suggestions.
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On the homotopy invariance of the
boundedly controlled analytic
signature of a manifold over an
open cone

Erik K. Pedersen, John Roe, and
Shmuel Weinberger

1. Introduction

The theorem of Novikov [21], that the rational Pontrjagin classes of a smooth
manifold are invariant under homeomorphisms, was a landmark in the devel-
opment of the topology of manifolds. The geometric techniques introduced
by Novikov were built upon by Kirby and Siebenmann [19] in their study of
topological manifolds. At the same time the problem was posed by Singer
[30] of developing an analytical proof of Novikov’s original theorem.

The first such analytic proof was given by Sullivan and Teleman [33,
32, 34], building on deep geometric results of Sullivan [31] which showed
the existence and uniqueness of Lipschitz structures on high-dimensional
manifolds. (It is now known that this result is false in dimension 4 —
see [10].) However, the geometric techniques needed to prove Sullivan’s
theorem are at least as powerful as those in Novikov’s original proof1. For
this reason, the Sullivan-Teleman argument (and the variants of it that have
recently appeared) do not achieve the objective of replacing the geometry
in Novikov’s proof by analysis.

In an unpublished but widely circulated preprint [35], one of us (S.W.)
suggested that this objective might be achieved by the employment of tech-
niques from coarse geometry. A key part in the proposed proof is played
by a certain homotopy invariance property of the ‘coarse analytic signature’
of a complete Riemannian manifold. We will explain in section 2 below
what the coarse analytic signature is, in what sense it is conjectured to
be homotopy invariant, and how Novikov’s theorem should follow from the
conjectured homotopy invariance. In section 3 we will prove the homotopy
invariance modulo 2-torsion in the case that the control space is a cone on
a finite polyhedron. This suffices for the proof of the Novikov theorem. In
section 4 we will show how the methods of this paper can be improved to
obtain homotopy invariance ‘on the nose’.

1See the discussion on page 666 of [8].
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Although the coarse signature is an index in a C∗-algebra, our proof is not
a direct generalization of the standard proof of the homotopy invariance of
signatures over C∗-algebras, as presented for example in [17]. (The assertion
to the contrary in [35] is, unfortunately, not correct as it stands.) The
problem is this: in the absence of any underlying uniformity such as might
be provided by a group action, it becomes impossible to prove that the
homotopies connecting two different signatures are represented by bounded
operators on some Hilbert space. We circumvent this problem by comparing
two theories, a ‘bounded operator’ theory and an ‘unbounded’ theory, by
means of a Mayer-Vietoris argument. Homotopy invariance can be proved
in the ‘unbounded’ theory, but since the two theories are isomorphic, it
must hold in the ‘bounded’ theory as well. A somewhat similar argument
was used by the first author in a different context [23].

Our ‘unbounded’ theory is just boundedly2 controlled L-theory as defined
in [25, 26], and to keep this paper to a reasonable length we will freely
appeal to the results of this theory. We do not claim, therefore, that
this paper gives a ‘purely analytic’ proof of Novikov’s theorem; indeed,
if one is prepared, as we are, to appeal to the homological properties of
controlled L-theory, then one can prove Novikov’s theorem quite directly
and independently of any analysis (see [26], for example). Our point is rather
the following. Conjecture 2.2 is a natural analogue of theorems about the
homotopy invariance of appropriate kinds of symmetric signatures in other
contexts. But those theorems have simple general proofs, whereas in our
case the proof is indirect and depends strongly on the hypothesis that the
control space possesses appropriate geometric properties, of the kind which
can also be used to show the injectivity of the assembly map (compare
[5]). Moreover, although 2.2 is a conjecture about C∗-algebras, it appears
to be necessary to leave the world of C∗-algebras in order to prove it. It
may be that conjecture 2.2 is in fact false for more general control spaces
X, and, if this were so, then it would suggest the existence of some new
kind of obstruction to making geometrically bounded problems analytically
bounded also.

It is possible that the special case of conjecture 2.2 that is proved in this
paper might be approachable by other, more direct, analytic methods, such
as a modification of the almost flat bundle theory of [7, 16]; but it seems that
similar questions about gaining appropriate analytic control would have to
be addressed.

This paper provides a partial answer to a problem that was raised, in one
form or another, by several of the participants at the Oberwolfach confer-
ence; see (in the problem session) Ferry-Weinberger, problem 1, Rosenberg,
problem 2, and Roe, problems 1 and 2.

2Notice that there are two senses in which the word ‘bounded’ is used in this paper;
we may distinguish them as geometrically bounded and analytically bounded .
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We are grateful to Nigel Higson and Jonathan Rosenberg for helpful
discussions and comments.

2. The coarse signature

Let X be a proper metric space. We refer to [28, 15, 14] for the construction
of the C∗-algebra C∗(X) of locally compact finite propagation operators and
of the assembly map µ : K∗(X) → K∗(C∗(X)). We recall that the groups
K∗(C∗(X)) are functorial under coarse maps, that is, proper maps f such
that the distance between f(x) and f(x′) is bounded by a function of the
distance between x and x′. Such maps need not be continuous; but on
the subcategory of continuous coarse maps the groups K∗(X) are functorial
also, and assembly becomes a natural transformation.

If X is a proper metric space, a (smooth) manifold over X is simply a
manifold3 M equipped with a control map c : M → X; c must be proper
but it need not be continuous. It is elementary that any such manifold M
can be equipped with a complete Riemannian metric such that the control
map c becomes a coarse map, and that any two such Riemannian metrics
can be connected by a path of such metrics.

(2.1) Definition: Let (M, c) be a manifold over X. The coarse analytic
signature of M over X is defined as follows: equip M with a Rieman-
nian metric such that c becomes a coarse map, let DM denote the signa-
ture operator on M . According to [28] this operator has a ‘coarse index’
Ind(DM ) ∈ K∗(C∗(M)), which is in fact the image of the K-homology4

class of D under the assembly map µ. We define

SignX(M) = c∗(Ind DM ) ∈ K∗(C∗(X)).

Remark: For clarity we should make explicit what is meant by the
‘signature operator’, especially on an odd-dimensional manifold. We use the
language of Dirac operators on Clifford bundles (see [27], for example). Let
C be the bundle of Clifford algebras associated to the tangent bundle TM ,
and let ω ∈ C be the volume form. Then ω2 = ±1, the sign depending on
the dimension of M modulo 4, and so there is a decomposition of C into two
eigenspaces C+ ⊕C− of ω. If the dimension of M is even, ω anticommutes
with the Clifford action of TM on C, and so C becomes a graded Clifford
bundle, and we define the signature operator to be the associated graded
Dirac operator. If the dimension of M is odd, then ω commutes with the
action of TM , and so C+ and C− individually are Clifford bundles; we define

3All manifolds will be assumed to be oriented.
4In this paper, we define the K-homology of a locally compact metrizable space M to

be the Kasparov group [18] KK(C0(M),C); this is the same as the locally finite Steenrod
K-homology of X as defined in algebraic topology.
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the signature operator in this case to be the (ungraded) Dirac operator of
C+.

It is implicit in the definition of the coarse analytic signature that c∗(Ind
DM ) is independent of the choice of Riemannian metric on M . This may
be proved by the following development of the theory of [14]. Recall that in
that paper the assembly map µ was defined to be the connecting map in the
six-term K-theory exact sequence arising from an extension of C∗-algebras

0 → C∗(X) → D∗(X) → D∗(X)/C∗(X) → 0,

where D∗(X) is the C∗-algebra of pseudolocal finite propagation operators.
Using Pashcke’s duality theory [22], it was shown that the K-theory of
the quotient algebra D∗(X)/C∗(X) was isomorphic to the (locally finite)
K-homology of X. Now let us generalize the whole set-up to the case of
a manifold M over X, which we write

(
M
↓
X

)
. We define algebras C∗

(
M
↓
X

)

and D∗
(

M
↓
X

)
to be the (completions of) the algebras of locally compact

and pseudolocal operators, respectively, on M , that have finite propagation
when measured in X. Then it is not hard to see on the one hand that
the K-theory of C∗

(
M
↓
X

)
maps canonically to the K-theory of C∗(X) (in

fact it is equal to it if the range of the control map is coarsely dense), and

on the other hand that the K-theory of D∗
(

M
↓
X

) /
C∗

(
M
↓
X

)
is canonically

isomorphic to the (locally finite) K-homology of M . Thus we obtain an
assembly map µ : K∗(M) → K∗(C∗(X)) which is independent of any choice
of Riemannian metric on M ; and naturality of the construction shows that
µ(DM ) coincides with the coarse signature as defined above for any choice
of metric.

The usual notions of algebraic topology may be formulated in the cate-
gory of manifolds over X. In particular we have the concepts of boundedly
controlled map, boundedly controlled homotopy , and boundedly controlled
homotopy equivalence. A map

M1

!!
c1 BB

BB
BB

BB
//ϕ
M2

}}
c2

||
||

||
||

X

is thus boundedly controlled if ϕ is continuous, and c1 is at most a uniformly
bounded distance from c2 · ϕ. Similarly a boundedly controlled homotopy
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is a boundedly controlled map

M1 × I

##
c1·p GG

GG
GG

GG
G

//H
M2

}}
c2

||
||

||
||

X

where p is projection on the first factor. Notice this means that c2(H(m×I))
has uniformly bounded diameter. The notion of a boundedly controlled
homotopy equivalence now follows in an obvious manner.

The following is the homotopy invariance property that we wish to use:

(2.2) Conjecture: If two smooth manifolds M and M ′ over X are homo-
topy equivalent by a boundedly controlled orientation-preserving homotopy
equivalence, then their coarse analytic signatures agree:

SignX(M) = SignX(M ′) ∈ K∗(C∗(X)).

We make a few comments on the difficulty in proving this along the lines
of the analytic proof in [17]. One wants to construct chain homotopies which
intertwine the L2-de Rham complexes of M and M ′ (or some simplicial
L2-complexes constructed from an approximation procedure). Because we
are working in the world of C∗-algebras, everything has to be a bounded
operator on appropriate L2-spaces. This means that one needs suitable
estimates on the derivatives of the maps and homotopies involved, and such
estimates do not seem automatically to be available unless one works in a
‘bounded geometry’ context. This would be appropriate for a proof of the
bi-Lipschitz homeomorphism invariance of the Pontrjagin classes, but not,
it seems, of the topological invariance.

We will now show that conjecture 2.2 implies Novikov’s theorem. In
fact, we will show a little more, namely that the conjecture implies that
the K-homology class of the signature operator of a smooth manifold is
invariant under homeomorphism. This is also the conclusion of Sullivan and
Teleman’s proof [32, 33] which uses Lipschitz approximation. To simplify
the later proofs a little, we work away from the prime 2.

(2.3) Proposition: Suppose that Conjecture 2.2 is true modulo 2-torsion
for control spaces X which are open cones on finite polyhedra. Then, if
N and N ′ are homeomorphic compact smooth manifolds, the K-homology
signatures of N and N ′ are equal in K∗(N)⊗ Z[ 12 ].

(2.4) Corollary: In the situation above, the rational Pontrjagin classes
of M and M ′ agree.
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Proof: By the Atiyah-Singer index theorem [2], the homology Chern
character of the signature class is the Poincaré dual of the L-class (which
is the same as the Hirzebruch L-class except for some powers of 2); the
rational Pontrjagin classes can be recovered from this. ¤

Proof: (of the Proposition): We begin by considering manifolds
M and M ′ which are smoothly N × R and N ′ × R respectively. Let gij be
a Riemannian metric on N . We equip M with a warped product metric of
the form

dt2 + ϕ(t)2gijdxidxj ,

where ϕ(t) is a smooth function with ϕ(t) = 1 for t < −1 and ϕ(t) = t for
t > 1. The exact form of the metric is not especially important, provided
that it has one cylinder-like and one cone-like end, so that N+ (that is, N
with a disjoint point added) is a natural Higson corona of M . Let X = M
considered as a metric space. Then M is obviously boundedly controlled
over X (via the identity map!). We use the homeomorphism between N and
N ′ to regard M ′ as boundedly controlled over X as well. A simple smoothing
argument shows that M and M ′ are boundedly controlledly (smoothly)
homotopy equivalent over X; thus by the conjecture their coarse analytic
signatures agree.

We now identify the coarse analytic signature of M with the ordinary
K-homology signature of N . To do this recall from [28, 14] that there is a
natural map defined by Paschke duality

b : K∗(C∗(M)) → K̃∗−1(N+) = K∗−1(N),

with the property that b(Ind D), for any Dirac-type operator D on M ,
is equal to ∂[D], where ∂ : K∗(M) → K∗−1(N) is the boundary map in
K-homology. (In fact, b is an isomorphism for cone-like spaces such as M ,
but this fact will not be needed here.) On the other hand, it is a standard
result in K-homology that ‘the boundary of Dirac is Dirac’ [13, 36]. It is
not true that ‘the boundary of signature is signature’, but this is true up
to powers of 2. In fact ∂[DM ] = k[DN ] , where [DN ] is the class of the
signature operator of N and k is 2 if M is even-dimensional, 1 if M is
odd-dimensional. We will discuss the factor k in section 4.

By a similar argument we may identify the coarse analytic signature of
M ′ with k times the ordinary K-homology signature of N ′, pulled back
to K∗(N) via the homeomorphism N ′ → N . The desired result therefore
follows from the equality of these two signatures. ¤

Remark: With a little more effort, this argument might be made to
work with the hypothesis that N and N ′ are ε-controlled homotopy equiva-
lent for all ε, rather than homeomorphic. Of course one knows from the
α-approximation theorem [6] that N and N ′ are in fact homeomorphic
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under this hypothesis, but the point is that one can avoid appealing to
this geometric result.

In the next section we will need to know that the coarse analytic signature
is bordism invariant. In other words, we will require

(2.5) Proposition: Suppose that N is an X-bounded manifold which is
the boundary of an X-bounded manifold-with-boundary M . Then SignX(N)
is a 2-torsion element in K∗(C∗(X)).

Proof: Let M◦ denote the interior of M . A portion of the exact
sequence of K-homology is

K∗+1(M◦) → K∗(N) → K∗(M).

As remarked above, there is an integer k equal to 1 or 2 such that ∂[DM◦ ] =
k[DN ], and it follows from exactness that the image of [DN ] in K∗(M) is a
k-torsion element. But from the naturality of the assembly map there is a
commutative diagram

K∗(N)

&&MMMMMMMMMM
// K∗(M)

xxqqqqqqqqqq

K∗(C∗(X))

in which both vertical arrows are assembly maps. Therefore the image
of [DN ] under the assembly map, that is the coarse analytic signature, is
k-torsion. ¤

3. Proof of homotopy invariance modulo 2-torsion

We begin by recalling the definition of the Lh-groups of an additive category
with involution[25]. Given an additive category U an involution on U is a
contravariant functor ∗ : U → U, sending U to U∗, and a natural equivalence
∗∗ ∼= 1. One of the defining properties of an additive category is that the
Hom-sets are abelian groups, that is Z-modules. All the categories that we
will consider will have the property that the Hom-sets are in fact modules
over the ring Z[i, 1

2 ], and we will make this assumption from now on. This
yields two simplifications in L-theory: the existence of i =

√−1 makes
L-theory 2-periodic, since dimensions n and n + 2 get identified through
scaling by i, and the existence of 1

2 removes the difference between quadratic
and symmetric L-theory. We therefore get the following description of L-
theory. In degree 0 an element is given as an isomorphism ϕ : A → A∗

satisfying ϕ = ϕ∗. Elements of the form B ⊕ B∗ ∼= B∗ ⊕ B, with the
obvious isomorphism, are considered trivial, and Lh

0 is the Grothendieck
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construction determining whether a selfadjoint isomorphism is stably con-
jugate to a trivial isomorphism. In the definition of Lh

2 the condition ϕ = ϕ∗

is replaced by ϕ = −ϕ∗ but in the presence of i these groups become scale
equivalent. In odd degrees the groups are given as automorphisms of trivial
forms.

Remark: Suppose the additive category U is the category of finitely gen-
erated projective modules over a C∗-algebra A and the involution is given
by the identity on objects and the ∗-operation on morphisms. One defines
the projective L-groups Lp

∗(A) to equal Lh
∗(U) for this category U. In this

situation, the availability of the Spectral Theorem for C∗-algebras allows
one to separate out the positive and negative eigenspaces of a nondegenerate
quadratic form and thus to assign a signature in K∗(A) (a formal difference
of projections) to any element of Lp

∗(A). This construction goes back to
Gelfand and Mischenko [11], and a very careful account may be found in
Miller [20]; the exposition in Rosenberg [29] is couched in language similar to
ours, and also includes a proof that one obtains in this way a homomorphism
Lp
∗(A) → K∗(A), which becomes an isomorphism after inverting 2.

Remark: Notice that we are using projective modules in the above state-
ment, so one calls the corresponding L-group Lp(A) . In general Lp of an
additive category with involution is just Lh of the idempotent completion
of the category. To simplify these issues we will work modulo 2-torsion,
so from now on when we write L(A) without upper index we shall mean
Lh(A)⊗Z[ 12 ], noting that by the Ranicki-Rothenberg exact sequences tensor-
ing with Z[ 12 ] removes the dependency on the upper decoration. To retain
the above mentioned isomorphism we obviously have to tensor K-theory
with Z[ 12 ] as well.

We now recall the (geometrically) bounded additive categories defined in
[24]. Let X be a metric space, and R a ring with anti-involution. This turns
the category of left R-modules into an additive category with involution,
since the usual dual of a left R-module is a right R-module, but by means
of the anti-involution this may be turned into a left R-module.

The reader should keep in mind the model case in which X is the infinite
open cone O(K) on a complex K ⊆ Sn ⊂ Rn+1 and R = C. The category
CX(R) is defined as follows:

(3.1) Definition: An object A of CX(R) is a collection of finitely gener-
ated based free right R-modules Ax, one for each x ∈ X, such that for each
ball C ⊂ X of finite radius, only finitely many Ax, x ∈ C, are nonzero. A
morphism ϕ : A → B is a collection of morphisms ϕx

y : Ax → By such that
there exists k = k(ϕ) such that ϕx

y = 0 for d(x, y) > k.

The composition of ϕ : A → B and ψ : B → C is given by (ψ ◦ ϕ)x
y =∑

z∈X ψz
yϕx

z . Note that (ψ ◦ϕ) satisfies the local finiteness and boundedness
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conditions whenever ψ and ϕ do.

(3.2) Definition: The dual of an object A of CX(R) is the object A∗

with (A∗)x = A∗x = HomR(Ax, R) for each x ∈ X. A∗x is naturally a
left R-module, which we convert to a right R-module by means of the anti-
involution. If ϕ : A → B is a morphism, then ϕ∗ : B∗ → A∗ and (ϕ∗)x

y =
h ◦ ϕy

x, where h : Bx → R and ϕy
x : Ay → Bx. ϕ∗ is bounded whenever ϕ

is. Again, ϕ∗ is naturally a left module homomorphism which induces a
homomorphism of right modules B∗ → A∗ via the anti-involution.

If we choose a countable set E ⊂ X such that for some k the union of
k-balls centered at points of E covers X, then it is easy to see that the
categories CE(R) and CX(R) are equivalent.

It is convenient to assume that such a choice has been made once and for
all. Then we may think of the objects of CX(C) as based complex vector
spaces with basis a subset of E ×N satisfying certain finiteness conditions.
Any based complex vector space has a natural inner product, and therefore
a norm, and we define a morphism in CX(C) to be analytically bounded if it
becomes a bounded operator when its domain and range are equipped with
these natural `2 norms.

(3.3) Definition: The category Cb.o.
X (C) has the same objects as CX(C),

but the morphisms have to satisfy the further restriction that they define
analytically bounded operators on `2(E × N)

It is apparent that there is a close connection between the category
Cb.o.

X (C) and the C∗-algebra C∗(X). In fact, the way we have arranged
things any object A in the category Cb.o.

X (C) can be thought of as a projection
in C∗(X) defined by the generating set for A and hence as a projective
C∗(X)-module, and an endomorphism of A respects the C∗(X)-module
structure. Since the involution on Cb.o.

X (C) is given by duality, it corresponds
to the ∗-operation on C∗(X). Hence we get a map

L∗(Cb.o
X (C)) → L∗(C∗(X)) = K∗(C∗(X)).

Similarly the forgetful functor Cb.o.
X (C) → CX(C) induces a map

L∗(Cb.o
X (C)) → L∗(CX(C)).

Notice that whenever we have a manifold
(

M
↓
X

)
bounded over a metric

space X, we may triangulate M in a bounded fashion so the cellular chain
complex of M can be thought of as a chain complex in CX(Z) and, more
relevantly, the chain complex with complex coefficients can be thought of
as a chain complex in CX(C). Poincaré duality thus gives rise to a self-dual
map and hence an element σX [M ] ∈ L0(CX(C)), the bounded symmetric
signature of the manifold. The bounded symmetric signature is an invariant
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under bounded homotopy equivalence, since a bounded homotopy equiva-
lence gives rise to a chain homotopy equivalence in the category CX(C) and
the L-groups by their definition are chain homotopy invariant [25].

As mentioned above we get maps

K∗C∗(X) L∗(Cb.o.
X (C))oo α //β

L∗(CX(C))

(3.4) Theorem: In case X = O(K), the open cone on a finite complex,
the map β is an isomorphism. Moreover, SignO(K) M = αβ−1σO(K)[M ]

Proof: Let F be any of the functors

K 7→ L∗(Cb.o.
O(K)(C)), K 7→ L∗(CO(K)(C)).

Then F is a reduced generalized homology theory on the category of finite
complexes. In case F(K) = L∗(CO(K)(C)) this is proved by Ranicki [25]. In
the case F(K) = L∗(Cb.o.

O(K)(C)) the proof needs the extensions to Ranicki’s
results provided in [5] but goes along exactly the same lines, noting that re-
stricting the morphisms to the ones defining analytically bounded operators
does not prevent Eilenberg swindles5, and thus the basic Karoubi filtration
technique goes through. Moreover, β is plainly a natural transformation
of homology theories6, and it is an isomorphism for K = ∅, so it is an
isomorphism for all finite complexes. This proves the first statement.

To prove the second statement note that if M has a bounded triangulation
of bounded geometry (meaning that for each r > 0 there is a number Nr

such that the number of simplices meeting c−1(B(x; r)), for any x ∈ X,
is at most Nr), then the natural representative of σO(K)[M ] is in fact an
analytically bounded operator (since Poincaré duality is given by sending a
cell to its dual cell combined with appropriate subdivision maps). Moreover,
by following the line of proof given by Kaminker and Miller [17, 20], and
using the de Rham theorem in the bounded geometry category [9], one may
show that this bounded operator passes under α to the class of the signature
operator in K∗(C∗(O(K)) (compare [17], theorem 5.1). In case M is not of
bounded geometry we need to notice that both σO(K)[M ] and SignO(K)[M ]
areO(K)-bordism invariants modulo 2-torsion, the latter by proposition 2.5,

and that any manifold
(

M
↓

O(K)

)
is O(K)-bordant to a bounded geometry

manifold. To see this latter statement make M → O(K) transverse to a
level t·K ⊂ O(K), and let V be the inverse image of (≥ t)·K, W the inverse
image of (≤ t) ·K. We then get a bordism from M to W ∪∂W ∂W × [0,∞)
by M × I ∪V V × [0,∞) and the map p extends to a proper map from the

5The key point is that the operator norm of an orthogonal direct sum is the supremum
of the operator norms of its constituents. See [15] for the details of an Eilenberg swindle
in the analytic situation.

6We do not assert that α is a natural transformation of homology theories.
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bordism to O(K) by sending (m, t) ∈ M ×I to p(m) and (v, s) ∈ V × [0,∞)
to (s+u) · k where u · k = p(v). This is easily seen to be a proper map, and
we do get a bordism over O(K) to a manifold of bounded geometry. ¤

Remark: In the above argument we needed to reduce the manifold M to
bounded geometry, and to do this we used the fact that it is always possible
to split M over an open cone. If one could similarly reduce a homotopy
equivalence bounded over an open cone to a bounded geometry homotopy
equivalence, the proof of our theorem would be considerably simplified.
However, it appears that the proof of such a result would require a lengthy
excursion into bounded geometry surgery [3].

(3.5) Corollary: In the situation above SignO(K)(M) is an invariant
modulo 2-torsion under boundedly controlled homotopy equivalence.

As has already been explained, this suffices for a proof of Novikov’s
theorem.

4. Integral homotopy invariance

In the previous section we worked modulo 2-torsion, for simplicity. We
will now justify the title of this paper by showing that it is not in fact
necessary to invert 2 in corollary 3.5. In this section we will therefore, of
course, suspend the convention made previously that all L and K groups
are implicitly tensored with Z[ 12 ].

There are two points at which 2-torsion issues were neglected: the proof
of the bordism invariance of the signature in section 2, and the identification
of the various decorations on L-theory in section 3. We will address these
in turn.

Bordism invariance. We begin by discussing in somewhat greater detail
the reason for the appearance of the factor k in the formula for the boundary
of the signature operator. The informal statement that ‘the K-homology
boundary of Dirac is Dirac’ can be expressed more precisely as follows:

(4.1) Proposition: Let M be a manifold with boundary N , C a bundle
of Clifford modules on M , DC the corresponding Dirac operator. If M is
even-dimensional, we assume that C is graded by a grading operator ε. Let
n be a unit normal vector field to N . Define a bundle of Clifford modules
∂C on N as follows:

(1) If M is odd-dimensional, ∂C = C, graded by Clifford multiplication
by in;

(2) If M is even-dimensional, ∂C is the +1 eigenspace of the involution
inε on C (which commutes with the Clifford action of TN).
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Then the boundary, in K-homology, of the class of the Dirac operator [DC ]
is the class of the Dirac operator of ∂C.

While this particular statement does not appear to be in the literature,
related results are proved in [12, 13, 36]. Now let us take C to be the
bundle of Clifford modules that defines the signature operator on M (see
the remark after definition 2.1). Then a simple calculation shows that if
M is odd-dimensional, ∂C defines the signature operator on N , but that
if M is even-dimensional, ∂C defines the direct sum of two copies of the
signature operator on N . Hence the factor k in 2.3 and 2.5.

To get rid of the factor 2 in the even-dimensional case we employ an
idea of Atiyah [1]. Suppose that the normal vector field n extends to a
unit vector field (also called n) on M , and define an operator Rn on C by
right Clifford multiplication by in. Then Rn is an involution and its ±1
eigenspaces are bundles of (left) Clifford modules. Let DC+ be the Dirac
operator associated to the +1 eigenbundle of Rn. Using the result above,
we find that ∂[DC+ ] is exactly the signature operator of N . Thus, the same
method of proof as that of 2.5 gives us

(4.2) Proposition: Suppose that N is an X-bounded manifold which
is the boundary of an X-bounded manifold-with-boundary M . In addition,
if M is even-dimensional, suppose that the unit normal vector field to N
extends to a unit vector field on M . Then SignX(N) = 0 in K∗(C∗(X)).

Now we remark that there is no obstruction to extending the field n
over any non-compact connected component of M . Moreover, provided
that the control space X is non-compact and coarsely geodesic, there is
no loss of generality in assuming that every connected component of M is
non-compact; for, in any compact component, we may punch out a disc,
replace it with an infinite cylinder, and control this cylinder over a ray in
X. Thus we conclude that over any such space X, and in particular over an
open cone on a finite polyhedron, the coarse signature is bordism invariant
on the nose.

Decorations. With the issue of bordism invariance settled, the integral
boundedly controlled homotopy invariance of the coarse analytic signature
will follow (as in section 3) from:

(4.3) Theorem: The functors K 7→ Lh
∗(C

b.o.
O(K)(C)) and K 7→ Lh

∗(CO(K)(C))
are isomorphic homology theories (under the forgetful map).

Proof: All we need to do is to prove that both functors are homology
theories, since they agree on ∅. Since C is a field we have K−i(C) = 0 for
i > 0 [4, Chap. XII]. Hence

Lh
∗(CO(K)(C)) = L−∞∗ (CO(K)(C))
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is a homology theory. To prove Lh
∗(Cb.o.

O(K)(C)) is also a homology theory we
use the excision result [5, Theorem 4.1]. Combining this with [5, Lemma
4.17] we only need to see that idempotent completing any of the categories
Cb.o.
O(K)(C) does not change the value of Lh i.e. that K0 of the idempotent

completed categories is trivial. This is the object of the next proposition.
¤

(4.4) Proposition: With terminology as above we have

K0(Cb.o.
O(K)(C)∧) = 0

for K a non-empty finite complex.

Proof: The proof follows the methods in [23] and [24] quite closely, and
the reader is supposed to be familiar with these papers. Let L be a finite
complex, K = L ∪α Dn. Consider the category U = Cb.o.

O(K)(C) and the full
subcategory A = Cb.o.

O(K)(C)O(L) with objects having support in a bounded
neighborhood of O(L). A is isomorphic to Cb.o.

O(L)(C), and U is A-filtered in
the sense of Karoubi, so following [24], we get an exact sequence

. . . → K1(U) → K1(U/A) → K0(A∧) → K0(U∧) → . . .

but U/A is isomorphic to

Cb.o.
O(Dn)(C)/Cb.o.

O(Sn−1)(C)

which has the same K-theory as Cb.o.
Rn(C). So by induction over the cells in

K, it suffices to prove that

K1(Cb.o.
Rn(C)) = 0 n > 1

and
K0(Cb.o.

Rn−1(C)∧) = 0 n > 1

but following the arguments in [23] it is easy to see these groups are equal.
Now consider the ring C[t1, t−1

1 , . . . , tk, t−1
k ]. The category

Cb.o.
Rn(C[t1, t−1

1 , . . . , tk, t−1
k ])

with geometrically bounded morphisms, inducing analytically bounded op-
erators on the Hilbert space where the ti powers are also used as basis has
a subcategory

Cb.o.,t1,... ,tk

Rn (C[t1, t−1
1 , . . . , tk, t−1

k ])

where the morphisms are required to use uniformly bounded powers of the
ti’s. Turning ti-powers into a grading produces a functor

Cb.o.,t1,... ,tk

Rn (C[t1, t−1
1 , . . . , tk, t−1

k ]) →
C

b.o.,t1,... ,ti−1,ti+1,... ,tk

Rn+1 (C[t1, t−1
1 , . . . , ti−1, ti+1, . . . , tk, t−1

k ]).
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We claim this is a split epimorphism on K1. Consider the automorphism
βti

which is multiplication by ti on the upper half of Rn+1 and the identity
on the lower half. Here upper and lower refers to the coordinate introduced
when the ti-powers were turned into a grading. The splitting is given
by sending an automorphism α to the commutator [α, βti

] and restricting
to a band. Since both the bounded operator and the bounded t-power
conditions are responsive to the Eilenberg swindle arguments used in [23]
the argument carries over to this present situation. From this it follows
there is a monomorphism

K1(Cb.o.
Rn(C)) → K1(Cb.o.,t1,... ,tn∗ (C[t1, t−1

1 , . . . , tn, t−1
n ])).

But the bounded t-power condition is vacuous, when the metric space is
a point, and the uniformity given by the Zn-action renders the bounded
operator condition vacuous too. Since the inclusion maps given by the com-
mutator with βti commute up to sign we find that the image of K1(Cb.o.

Rn(C))
is contained in

K−i(C) ⊂ K1(C[t1, t−1
1 , . . . , tn, t−1

n ])

which is 0 since C is a field and we are done. ¤
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3-Manifolds and PD(3)-Groups

C. B. Thomas

This article is a survey of what one knows about PD(3)-groups and
related topics. Our aim is to show first how such groups are related to
3-manifold groups, and second to suggest why these groups should be of
interest to mathematicians working on the Novikov conjecture. Recall that
the discrete group Γ is said to be of type (FP ) if there is a finite resolution
of the trivial module Z by finitely generated projective module, and of type
(FF ) if each of these projective modules may be taken to be free. The group
Γ is said to be an oriented PDn-group if

(i) Γ is of type (FP ) and

(ii) Hi(Γ,ZΓ) =
{

0 if i 6= n

Z if i = n.
In the relative case let ∆ be a subgroup of Γ, and give ZΓ/∆ the natural
structure of left Γ-module with the cosets x∆ as generators. There is a left
module homomorphism ε : ZΓ/∆−−→Z which is such that ε(x∆) = 1 for all
x, and whose kernel B is a left Γ-module. Then (Γ, ∆) is a PDn-pair if

(i) Γ is of type (FP ) and

(ii) Hi(Γ,ZΓ) =
{

0 if i 6= n− 1
B if i = n− 1.

Note that ∆ is a PDn−1-group, and that the definition can be generalised
to allow ∆ to have several components. Thus if ∆ =

⋃
i

∆i ZΓ/∆ is to

be interpreted as the free Z-module on the cosets ∆ig. These conditions
are equivalent to the more familiar ones in terms of homology/cohomology
pairings, see [3], and by twisting the coefficients one can generalise the
definitions to cover the non-oriented case. However in this paper we shall
assume that all groups and manifolds are oriented. From the geometric point
of view, if Γ satisfies the stronger conditions (FF ), then Γ can be realized
as the fundamental group of an n-dimensional Poincaré complex K(Γ, 1),
and in dimensions ≥ 5, subject perhaps to further restrictions on Γ one can
hope to show that K(Γ, 1) is homotopy equivalent to a topological manifold,
see [15]. However, what is the situation in dimensions 2 and 3?

In [6] and [5] it is shown that PD2-groups are surface groups, and building
on this result it is clear there is a strong relation between PD3-groups and
the fundamental groups of irreducible 3-manifolds. (A connected, closed,
compact oriented 3-manifold M3 is said to be irreducible if every embed-
ded 2-sphere bounds a 3-ball. Such manifolds either have finite fundamen-
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tal group or M3 = K(Γ, 1), as above.) The classification of PD3-groups
now proceeds in parallel with Thurston’s geometrisation programme for 3-
manifolds. Indeed, one can mimic Thurston’s “flow chart” [19, p.211] in the
algebraic setting.
Notation: The discrete group Γ is said to be almost P for some property P
if Γ contains a subgroup of finite index Γ1 such that Γ1 is P .

Γ = PD3

u
Is Γ almost abelian?

u

No

wYes Euclidean flat

Finite cover equals S1 × S1 × S1

Is Γ almost nilpotent?

u

No

wYes Infranil manifolds

Finite cover fibres over S1with fibre T 2

Is Γ almost solvable?

u

No

wYes Infrasolv manifolds

Finite cover fibres over S1with fibre T 2

Does Γ have a normal
infinite cyclic subgroup?

u

No

wYes? P̃SL(2,R) or H2 × E1

Seifert Manifolds

Does Γ contain
a copy of Z× Z?

u
...

Remarks: The geometries S3 and S2 × E1 do not occur, since the corre-
sponding complexes are not acyclic. But see Section 2 below. (Yes?) above
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refers to the question hanging over PD3 (as opposed to manifold) groups
with finite abelianisation.

We are left with the (large) residual class of groups containing those of
hyperbolic type. As explained in the next section, assuming that Γ satisfies
the maximal condition on centralizers Max-c, see [12], Γ can be split along
embedded rank 2 abelian subgroups. This leaves a collection of PD3-pairs
(Γi, ∆i =

⋃
j ∆ij), which are either covered by the relative version of some

previous step or are algebraically atoroidal in the sense that any free abelian
subgroup of rank 2 in Γ is conjugate to a subgroup of some “bounding”
subgroup ∆ij . At present this is as far as one can go, although the partial
solution of the Novikov Conjecture suggests how to proceed.

The paper is organised as follows. Section 1 contains a commentary on the
flow chart above, Section 2 summarises what is known about 3-complexes
with finite fundamental group, and Section 3 is devoted to a previously un-
published argument for non-finitely generated solvable groups. This answers
a question which was originally posed to me by David Epstein. However in a
sense the entire paper shows the influence which he had on me as a graduate
student.

1. Explanation of the flow chart

(a) If Γ is a solvable PD3-group, then by [2, 2.3] Γ is a torsion-free polycyclic
group, which contains a subgroup Γ1 of finite index with a presentation of
the form

1 −−→ ZB ⊕ ZC −−→ Γ1 −−→ ZA −−→ 1 .

The generator A acts on the subgroup 〈B, C〉 via some (2 × 2) unipotent
integral matrix. It follows that Γ1 is isomorphic to the fundamental group
of a torus bundle over the circle S1. Either by explicit enumeration of the
possibilities or by an appeal to [1] we see that Γ is also a 3-manifold group.
The abelian and nilpotent cases are included in this argument.
(b) Next suppose that Γ is given as an extension of the form

1 −−→ ZA −−→ Γ −−→ Q −−→ 1 .

The result which we would like to apply states that if cd(Q) < ∞, then up to
finite index (compare Γ1 in (a)) Q is a PD2-group. Unfortunately in general
it is far from obvious when Q has finite cohomological dimension, and more
roundabout methods must be used. At the time of writing the complete
answer is not known, although it has recently been settled in the affirmative
for 3-manifold groups by A.Casson and D.Jungreis, using earlier work by
G.Mess, see [4] and also [9]. (I am grateful to C.T.C.Wall for directing my
attention to the second reference.) Geometrically we distinguish between
Haken and non-Haken manifolds; a sufficient condition for M3 to be Haken
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is that H1(M ;Z) to be infinite. That the Seifert fibre space conjecture holds
for Haken manifolds has been known for a long time - see the references in
[4]. The true interest of the Casson-Jungreis construction is that it does
not start from the existence of a “good” embedded surface. Algebraically
the analogue of this is infinite abelianisation, and subject to this restriction
J. Hillman has proved the conjecture, [11]. The idea behind his argument
is as follows: eliminating a number of easy cases we consider the following
situation:

K ′ = free

u
1 w K w Γ w Z w 1

ZA = central

u

with K ′ ∩ ZA = {1}. Using the structure of K/K ′ as a finitely generated
Z[G/K]-module we can find a subgroup H of K such that H ≡ H/ZA×ZA.
From this it follows that cd(H/ZA) is finite, and passing to Γ, that there is
a subgroup Γ1 of finite index defined as an extension

1 −−→ ZA −−→ Γ1 −−→ Q −−→ 1 ,

with Q an HNN -extension of H/ZA, still having cd(Q) < ∞. See also [18]
for further results of this kind.
(c) Splitting a group Γ of residual type. The strongest result in this direction
is:

Theorem 1. If the PD3-group Γ (i) has no infinite cyclic normal subgroup
and (ii) does contain some rank 2 free abelian subgroup, then either (a) Γ
is a non-trivial free product with amalgamation, Γ = K ∗H Λ, or (b) Γ is an
HNN -extension Γ = B∗H,t, where cd(H) = 2 and H has an infinite cyclic
subgroup which is commensurable with all of its conjugates.

For a proof and discussion of the relation with the geometric Torus Theorem,
see [13]. The latter is proved using transversality and 3-dimensional surgery,
neither of which has an immediate analogue in the category of Poincaré
complexes. This explains why, without some restriction, one cannot take
the splitting subgroup H to be again abelian of rank 2. We have already
mentioned Max-c (implying that every increasing chain of centralizers in Γ
terminates) as one such, which also has the advantage of being satisfied by
3-manifold groups. Hence subject to Max-c the splitting theorem reduces
the classification of PD3-groups to those Γ which are neither of Seifert
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type, nor splittable. This brings us to the Novikov Conjecture: is such a Γ
a group to which the known results, for example the final theorem in [15]
apply? In particular does Γ satisfy the “no flat criterion” in [10, page 175 et
seq.], which would suffice to make Γ word hyperbolic. Given that there is no
embedding of Z×Z in Γ this amounts to finding a decomposition of K(Γ, 1)
by means of hyperbolic polyhedra, for example copies of the dodecahedron
with suitable identifications. Together with the Casson-Jungreis theorem
this possibility is plausible enough for one to formulate the

Conjecture. If Γ is a PD3-group satisfying Max-c, then either Γ is a 3-
manifold group or Γ contains an algebraically atoroidal subgroup Γ1 which
is geometrically realisable by a manifold Xn+3 ' K(Γ1, 1)× Sn, n ≥ 2.

Note that even if this conjecture is true it leaves open the possibility that
there may exist groups Γ which are not manifold realisable in dimension
3, even though all algebraic obstructions to their existence vanish, This
would be analogous to a phenomenon for finite groups discussed in the next
section.
The essentially algebraic discussion above clarifies some problems with the
geometrisation programme for 3-manifolds. Starting from the unique prime
decomposition of M3 one leaves on one side copies of S2 × S1 and man-
ifolds with finite fundamental group. The remaining prime manifolds are
classified by our flow chart up to the final class of hyperbolic type. (Given
[4] there is no need to make any Haken assumption until this point.) Any
prime manifold which splits according to the Torus Theorem is amenable to
geometrisation, so, apart from the unresolved elliptic question, it remains
to clarify the status of closed atoroidal manifolds with finite first homology
group.

2. Poincaré complexes with finite fundamental group

The 3-dimensional spherical space form problem concerns the classifica-
tion of manifolds covered by S3. The geometrisation conjecture says that
such a manifold admits a metric of constant positive curvature, and hence
is classified by representation theory, see [17] for what is known. In the cat-
egory of Poincaré complexes one starts from the result of R. Swan which
states that a finite group π with cohomological period 4 is geometrically
realised as the fundamental group of a complex Y 4k−1 = Σ4k−1/π. Here
Σ4k−1 ' S4k−1 and k divides the order of π, see [16]. If we do not require
Y to be finite, then there is no problem in taking k = 1, otherwise it is a
question of determining the order of the so-called finiteness obstruction in
the reduced projective class group K̃0(Zπ). Although there is no systematic
account of everything that is known in the literature techniques are avail-
able (a) to classify groups of period 4, (b) to determine the best value of k
and (c) prove
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Theorem 2. Let π be a finite group of cohomological period 4 such that the
optimal value k0 of k above equals 1. Then the oriented homotopy classes of
finite complexes Y 3 realising π are in 1-1 correspondence with a subset of
the orbits of the induced Aut(π)-action on H4(π;Z).

A familiar example of this result is that the lens spaces L(p, q) and L(p, q′)
are oriented homotopy equivalent if and only if there exists some x with
q′ ∼= x2q(modp). Its interest from our point of view is that the class of
Poincaré complexes Y 3 is certainly larger than that of manifolds S3/π. Thus
Swan gives an example in the Appendix to [16] with dihedral fundamental
group D6 which has since been generalise to the group D2n for all values
of n. Since D2n contains non-central elements of order 2, there is a surgery
obstruction to replacing Y 3 by a manifold.
More interesting are the groups Q(8r, s) ∼= Z/rsoQ(8), where r and s are
distinct odd primes, and Q(8) is the quaternion group of order 8. The semidi-
rect product is determined by the structural map φ : Q(8)−−→Aut(Z/rs)
which has kernel of order 2. Q(8r, s) has period 4 and acts freely and linearly
on S7. Furthermore there exist pairs (r0, s0) for which the finiteness obstruc-
tion multiple k0 = 1. More interestingly one can specialise still further, and
determine pairs (r1, s1) such that the surgery obstruction to replacing Y 3

by a manifold vanishes. Of course the dimension is so low that this tells us
nothing about the actual existence of such a manifold, which would indeed
be a counterexample to the full geometrisation conjecture. But it follows
that if this is true, then there exist Poincaré complexes which are not ho-
motopy equivalent to manifolds for specifically low-dimensional reasons. Put
another way, by using a join-like construction on S7 and the universal cover
Ỹ , and allowing Q(8r1, s1) to act on the resulting 11-dimensional complex,
we obtain a quotient space which is homotopy equivalent to a manifold. This
is analogous to the case of the residual groups of hyperbolic type in Section
1 - some of which may only be “stably” realisable as manifold groups. The
reader is referred to [14] for more information on this question, and in par-
ticular for the arithmetic conditions which determine the pairs (r0, s0) and
(r1, s1).

3. Non-finitely generated solvable groups

In [7] D. B. A. Epstein constructed an example of a non-compact 3-
manifold with fundamental group isomorphic to Q+, the additive group
of rationals. He went on to show that subgroups of Q+ were the only
non-finitely generated abelian groups to arise as fundamental group in 3-
manifold theory. In this section we prove algebraically that replacing the
property “abelian” by “solvable” introduces no new groups. The result it-
self is not new, see for example Theorem 3.1 of [8]. Thus
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Theorem 3. If M3 (oriented but possibly non-compact) has an infinite
solvable fundamental group Γ, then either Γ is Thurston geometric or Γ is
a subgroup of the additive group Q+.
Proof. Let the solvable group Γ have the composition series

Γ = Γ0 . Γ1 . Γ2 . . . . . Γn = {1}

where Γk−1/Γk is abelian, and define

h(Γ) =
n∑

k=1

dimQ(Γk−1/Γk ⊗Q) .

Then h(Γ) = hd(Γ) and cd(Γ) ≤ hd(Γ) + 1. (Indeed it can be shown that
cd(Γ) = hd(Γ) if and only if Γ is of type (FP ).) Now let the non-compact
manifold M3 have fundamental group Γ; if Γ is finitely generated (hence
as a 3-manifold group is also finitely presented) Γ has already been listed.
Since Γ does not split as a free product, a non-compact variant of the Sphere
Theorem shows that there exists an aspherical manifold with the same fun-
damental group as M , and non-compactness implies that cd(Γ) ≤ 2. Hence
our problem reduces to classifying non-finitely generated groups of cohomo-
logical dimension 2. The restrictions show that if Γ is non-abelian, Γ must
be a (split) extension of the form

1 −−→ N −−→ Γ −−→ Z −−→ 1

where N is torsion free abelian of rank 1. If x denotes a generator of the
quotient, then the finiteness of the cohomological dimension implies that
N is of type [p∞1 p∞2 . . . p∞s ] and that x acts on N by multiplication by
±pα1

1 pα2
2 . . . pαs

s , 0 6= αi ∈ Z, i = 1, 2, . . . , s, see [3, Section 7.4].
(Recall that the terminology means that p−k

i ∈ N for all values of k, i =
1, 2, . . . , s. For example the localised integers Z(q) = [p∞ : p 6= q] and
Z[ 1p ] = [p∞].)
If all the exponents have the same sign then Γ is actually a finitely generated
1-relator group with cd(Γ) ≤ 2. This contradicts the assumption of non-
finite generation. Otherwise cd(Γ) = 3; the simplest example occurs when
N = Z[ 16 ] and x acts by multiplication by 2

3 . In either case the form of the
group extension shows that Γ has a non-compact 4-dimensional geometric
realisation. Hence in our case Γ must be abelian.
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Orthogonal complements and
endomorphisms of Hilbert modules
and C*-elliptic complexes

Evgenii V. Troitsky

1. Introduction

In the present paper we discuss some properties of endomorphisms of C∗-
Hilbert modules and C∗-elliptic complexes. The main results of this paper
can be considered as an attempt to answer the question: what kinds of
good properties can one expect for an operator on a Hilbert module, which
represents an element of a compact group? These results are new, but we
have to recall some first steps made by us before to make the present paper
self-contained.

In §2 we define the Lefschetz numbers “of the first type” of C∗-elliptic
complexes, taking values in K0(A)⊗C, A being a complex C∗-algebra with
unity, and prove some properties of them.

The averaging theorem 3.2 was discussed in brief in [15] and was used
there for constructing an index theory for C∗-elliptic operators. In this the-
orem we do not restrict the operators to admit a conjugate, but after aver-
aging they even become unitary. This raises the following question: is the
condition on an operator on a Hilbert module to represent an element of a
compact group so strong that it automatically has to admit a conjugate?

The example in section 4 gives a negative answer to this question. Also
we get an example of closed submodule in Hilbert module which has a
complement but has no orthogonal complement.

In §5 we define the Lefschetz numbers of the second type with values
in HC0(A). We prove that these numbers are connected via the Chern
character in algebraic K-theory. These results were discussed in [18] and we
only recall them.

In §6 we get similar results for HC2l(A). We have to use in a crucial way
the properties of representations.

Acknowledgment. I am indebted to A. A. Irmatov, V. M. Manuilov,
A. S. Mishchenko and Yu. P. Solovyov for helpful discussions. This work
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I am grateful to the organizers of the Meeting “Novikov conjectures, index
theorems and rigidity” at Oberwolfach for an extremely nice and helpful
week in September 1993, especially to J. Rosenberg for very useful help in
the preparation of the final form of the present paper.

2. Preliminaries

We consider the Hilbert C∗-module l2(P ), where P is a projective module
over a C∗-algebra A with unity (see [10, 4, 13, 15]).

2.1. Lemma. Let P+(A) be the positive cone of the C∗-algebra A. For
every bounded A-homomorphism F : l2(P ) → l2(P ) and every u ∈ l2(P )
we have

〈Fu, Fu〉 6 ‖F‖2 〈u, u〉
in P+(A).

Proof. For c ∈ P+(A) we have c 6 ‖c‖ 1A. So if 〈u, u〉 = 1A, then

〈Fu, Fu〉 6 ‖Fu‖2 1A 6 ‖F‖2 〈u, u〉 .
Let now 〈u, u〉 be equal to α ∈ P+(A), where α is an invertible element of
A. We put v = (

√
α)−1

u. Then u =
√

α v and 〈v, v〉 = 1A. So

〈Fv, Fv〉 6 ‖F‖2 〈v, v〉 ,
〈Fu, Fu〉 =

√
α 〈Fv, Fv〉 (√α

)∗ 6
√

α ‖F‖2 〈v, v〉 (√α
)∗ = ‖F‖2 〈u, u〉 .

Elements u with invertible 〈u, u〉 are dense in l2(A) (this is a consequence
of Lemma 2 of [4]), so the continuity of the A-product gives the statement
for l2(A). For l2(P ) we have to use the stabilization theorem [10]. ¥

Let us recall the basic ideas of [16, 17].

2.2. Definition. Let p : F → X be a G-C-bundle over a locally com-
pact Hausdorff G-space X. Let Λ(p∗F, sF ) be the well known complex of
G-C-bundles (see [5]) with, in general, non-compact support. Let a com-
plex (E, α) represent an element a ∈ KG(X; A) (see [15, sect. 1.3]); then
(p∗E, p∗α) ⊗ Λ(p∗F, sF ) has compact support and defines an element of
KG(F ; A). We get the Thom isomorphism of R(G)-modules

ϕ = ϕF
A : KG(X;A) → KG(F ;A).

If we pass to K1
G by the Bott periodicity [15, 1.2.4], we can define

ϕ : K∗
G(X;A) → K∗

G(F ; A).
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2.3. Theorem. If X is separable and metrizable, then ϕ is an isomorphism.

With the help of this theorem we can define the Gysin homomorphism
i! : KG(TX; A) → KG(TY ;A) and the topological index

t-indX
G = t-indX

G,A : KG(TX;A) → KG(A)

in a way similar to the case A = C [5]. Here i : X → Y is a G-inclusion of
smooth manifolds and TX, TY are (co)tangent bundles.

We need the following property of the Gysin homomorphism.

2.4. Lemma. Let i : Z → X be a G-inclusion of smooth manifolds, N its
normal bundle. Then the homomorphism

(di)∗i! : KG(TZ; A) → KG(TZ; A)

is the multiplication by

[λ−1(N⊗RC)] =
∑

(−1)i[Λi(N ⊗R C)] ∈ KG(Z),

where Λi are the exterior powers, and we consider KG(TZ; A) as a KG(Z)-
module in the usual way.

2.5. Theorem. Let a-indD ∈ KG(A) be the analytic index of a pseudo
differential equivariant C∗-elliptic operator [15] , σ(D) ∈ KG(TX; A) its
symbol’s class. Then

t-indX
G,A σ(D) = a-ind D.

Now for the completeness of this text we recall a generalization of the
result of [1]. Let, as above, G be a compact Lie group, X a G-space, Xg the
set of fixed points of g : X → X, i : Xg → X the inclusion.

2.6. Definition. Let E be a G-invariant A-complex on X, σ(E) its se-
quence of symbols (see [15]) , u = [σ(E)] ∈ KG(TX;A), indX

G,A(u) ∈
K0(A)⊗R(G). The Lefschetz number of the first type is

L1(g, E) = indX
G,A(u)(g) ∈ K0(A)⊗ C.

2.7. Theorem. Using the notation as above we have

L1(g,E) = (indXg

1,A⊗1)
(

i∗u(g)
λ−1(Ng ⊗R C)(g)

)
.

Also we need the following theorem from [12].
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2.8. Theorem. Let M be a countably generated Hilbert A-module. Then
we have a G-A-isomorphism

M ∼= ⊕π HomG(Vπ,M)⊗C Vπ,

where {Vπ} is a complete family of irreducible unitary complex finite di-
mensional representations of G, non-isomorphic to each other. In

HomG(Vπ,M)⊗C Vπ,

the algebra A acts on the first factor and G on the second.

3. An averaging theorem

Let us recall some facts about the integration of operator-valued functions
(see [9, §3]). Let X be a compact space, A be a C∗-algebra, ϕ : C(X) → A
be an involutive homomorphism of algebras with unity, and F : X → A be
a continuous map, such that for every x ∈ X the element F (x) commutes
with the image of ϕ. In this case the integral

∫

X

F (x) dϕ ∈ A

can be defined in the following way. Let X = ∪n
i=1Ui be an open covering

and
n∑

i=1

αi(x) = 1

be a corresponding partition of unity. Let us choose the points ξi ∈ Ui and
compose the integral sum

∑
(F, {Ui}, {αi}, {ξi}) =

n∑

i=1

F (ξi)ϕ(αi).

If there is a limit of such integral sums then it is called the corresponding
integral.

If X = G then it is natural to take ϕ equal to the Haar measure

ϕ : C(X) → C, ϕ(α) =
∫

G

α(g) dg
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(though this is only a positive linear map, not a ∗-homomorphism) and to
define for a norm-continuous Q : G → L(H)

∫

G

Q(g) dg = lim
∑

i

Q(ξi)
∫

G

αi(g) dg.

If we have Q : G → P+(A) ⊂ L(H), then, since
∫

G

αi(g) dg > 0,

we get ∑

i

Q(ξi) ·
∫

G

αi(g) dg ∈ P+(A)

and ∫

G

Q(g) dg ∈ P+(A)

(the cone P+(A) is convex and closed). So we have proved the following
lemma.

3.1. Lemma. Let Q : G → P+(A) be a continuous function. Then for the
integral in the sense of [9] we have

∫

G

Q(g) dg > 0. ¥

3.2. Theorem. Let GL be the group of all bounded A-linear automor-
phisms of l2(A) (see [14]). Let g 7→ Tg (g ∈ G, Tg ∈ GL) be a representa-
tion of G such that the map

G× l2(A) → l2(A), (g, u) 7→ Tgu

is continuous. Then on l2(A) there is an A-product equivalent to the original
one and such that g 7→ Tg is unitary with respect to it.

Proof. Let 〈 , 〉′ be the original product. We have a continuous map

G → A, x 7→ 〈Txu, Txv〉′

for every u and v from l2(A). We define the new product by

〈u, v〉 =
∫

G

〈Txu, Txv〉′ dx,
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where the integral can be defined in the sense of either of the two definitions
from [9, p. 810] because the map is continuous with the respect to the norm
of the C∗-algebra. It is easy to see that this new product is a A-sesquilinear
map l2(A)× l2(A) → A. Lemma 3.1 shows that 〈u, u〉 > 0. Let us show that
this map is continuous. Let us fix u ∈ l2(A). Then

x 7→ Tx(u), G → l2(A)

is a continuous map defined on a compact space and so the set {Tx(u)|x ∈ G}
is bounded. Hence by the principle of uniform boundedness [2, v. 2, p. 309]

(1) lim
v→0

Tx(v) = 0

uniformly with respect to x ∈ G. If u is fixed then

‖Tx(u)‖ ≤ Mu = const

and by (1)

‖ 〈u, v〉 ‖ = ‖
∫

G

〈Tx(u), Tx(v)〉′ dx‖ ≤ Mu·vol G·sup
x∈G

‖Tx(v)‖ → 0 (v → 0).

This gives the continuity at 0 and hence everywhere. For

Txu = (a1(x), a2(x), . . . ) ∈ l2(A),

the equation 〈u, u〉 = 0 takes the form

∫

G

∞∑

i=1

ai(x)a∗i (x) dx = 0.

Let A be realized as a subalgebra of the algebra of all bounded operators in
the Hilbert space L with inner product ( , )L. For every p ∈ L we have

0 =

((∫

G

∞∑

i=1

ai(x)a∗i (x) dx

)
p, p

)

L

=
∫

G

( ∞∑

i=1

ai(x)a∗i (x)p, p

)

L

dx =
∫

G

( ∞∑

i=1

(ai(x)p, a∗i (x)p)L

)
dx

(cf. [9]). Hence ai(x) = 0 almost everywhere, and thus ai(x) = 0 for every
x because of the continuity, and Txu = 0. In particular, u = 0.
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Since every Ty is an automorphism, we have (cf. [9])

〈Tyu, Tyv〉 =
∫

G

〈Txyu, Txyv〉′ dx =
∫

G

〈Tzu, Tzv〉′ dz = 〈u, v〉 .

Now we will show the equivalence of the two norms and, in particular,
the continuity of the representation. There is a number N > 0 such that
‖Tx‖′ ≤ N for every x ∈ G. So by [9]

‖u‖2 = ‖ 〈u, u〉 ‖A = ‖
∫

G

〈Txu, Txu〉′ dx‖A ≤
(

sup
x∈G

‖Txu‖′
)2

≤ N2(‖u‖′)2.

On the other hand, applying 2.1 and 3.1 we have

〈u, u〉′ =
∫

G

〈
Tg−1Tgu, Tg−1Tgu

〉′
dg ≤

∫

G

‖Tg−1‖2 〈Tgu, Tgu〉′ dg

≤
∫

G

N2 〈Tgu, Tgu〉′ dg = N2

∫

G

〈Tgu, Tgu〉′ dg = N2 〈u, u〉 .

Then
(‖u‖′)2 = ‖ 〈u, u〉′ ‖A ≤ N2‖ 〈u, u〉 ‖A = N2‖u‖2. ¥

3.3. Remark. l2(P ) is a direct summand in l2(A), so 3.2 holds for l2(P ).

4. Complements and orthogonal complements

Let us recall some preliminary statements.

4.1. Lemma. 1. An A-linear operator F : M → HA always admits a
conjugate if M ∈ P(A) — the category of finitely generated projective
modules.

2. Let 0A ≤ α < 1A. Then ‖α‖ < 1.

3. Let α ≥ 0, α = ββ∗, 1− α > 0. Then 1− β is an isomorphism.

Here the strong inequality means that the spectrum of the operator is
bounded away from zero.

4.2. Example. Let A = C[0, 1], {ei} be the standard basis of HA. Let

ϕi(x) =





0 on [0, 1
i ] and [ 1

i−1 , 1],

1 at xi = 1
2

(
1
i + 1

i−1

)
,

linear on [ 1i , xi] and [xi,
1

i−1 ],
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i = 2, 3, . . . . Let

hi =
ei + ϕie1

(1 + ϕi
2)1/2

(i = 2, 3, . . . )

be an orthonormal system of vectors which generates H1 ⊂ HA, H1
∼= HA.

Then H1 ⊕ spanA(e1) = HA. Indeed, all ei ∈ H1 + spanA(e1), and if

x = (α1, α2, . . . ) ∈ H1 ∩ spanA(e1),

x = (α1, 0, . . . ) =
∞∑

i=2

βihi,

then all βi = 0, x = 0. However the module H1 does not have an or-
thogonal complement. More precisely we have the following situation. Let
y =

∑∞
j=1 αjej be in H⊥

1 . Then
〈∑∞

j=1 αjej , hi

〉
= 0 for i = 2, 3, . . . , so

αi + α1ϕi = 0 (i = 2, 3, . . . ), and αi = −α1ϕi, hence

y = (α1,−α1ϕ2,−α1ϕ3, . . . ).

This is possible if and only if the function α1 vanishes at 0: α1(0) = 0. If
H1⊕H⊥

1 = HA, then for some α1 we have e1 = y+
∑∞

i=2 βihi. In particular
the series

∑∞
i=2 βiβ̄i converges and

1 = α1 +
∞∑

i=2

βiϕi

(1 + ϕi
2)1/2

.

But ‖βi‖A → 0, so for

γ =
∞∑

i=2

βiϕi

(1 + ϕi
2)1/2

we get γ(0) = 0, as well as for α1. We come to a contradiction.
Let us investigate the involution J which determines a representation of

Z2:

J(x) =
{

x if x ∈ H1,
−x if x ∈ spanA e1,

This operator does not admit a conjugate. Indeed, let J∗ exist. Then (J∗)2 =
J2∗ = Id, so J∗ is also an involution.

J∗x = x ⇔ (J∗x, y) = (x, y) ∀y ⇔ (x, Jy) = (x, y) ∀y ⇔
⇔ (x, (J − 1)y) = 0 ∀y ⇔ x⊥ Im(J − 1) ⇔

⇔ x⊥ spanA(e1),
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and J∗x = −x ⇔ x⊥H1. But H1 has no orthogonal complement and
so the involution J∗ can not be defined. Nevertheless for the A-product
averaged by the action of Z2

〈x, y〉2 = 1/2(〈x, y〉+ 〈Jx, Jy〉)

we get if x ∈ H1, y ∈ spanA(e1) : 〈x, y〉2 = 1/2(〈x, y〉 + 〈x,−y〉) = 0, so
the + and − subspaces of the involution are orthogonal to each other, and
J∗(2) = J .

Let us recall the definition of A-Fredholm operator [11, 13]. The theorem
which will be proved is the crucial one for the possibility of construction of
Sobolev chains in the C∗-case.

4.3. Definition. A bounded A-operator F : HA → HA admitting a con-
jugate is called Fredholm, if there exist decompositions of the domain of
definition HA = M1⊕N1 and the range HA = M2⊕N2 where M1, M2, N1,
N2 are closed A-modules, N1, N2 have a finite number of generators, and
such that the operator F has in these decompositions the following form

F =
(

F1 0
0 F2

)
,

where F1 : M1 → M2 is an isomorphism.

4.4. Lemma. Let J : HA → HA be a self adjoint injection. Then J is
an isomorphism. Here injection means an injective A-homomorphism with
closed range.

Proof. Let us consider J1 = J : HA → J(HA). It is an isomorphism of
Hilbert modules admitting a conjugate J∗1 = J∗|J(HA) = J |J(HA). Let

J2 = J(J∗1 J1)
−1/2; then 〈J2x, J2y〉 = 〈x, y〉 for every x, y ∈ HA. We

have J2(HA) = J(HA) and J∗2 J2 = 1. Let z ∈ HA be an arbitrary element.
Then

z = J2J
∗
2 z + (z − J2J

∗
2 z), J2J

∗
2 z ∈ J2(HA)

and
J∗2 (z − J2J

∗
2 z) = J∗2 z − (J∗2 J2)J∗2 z = J∗2 z − J∗2 z = 0,

so (z − J2J
∗
2 z) ∈ Ker J∗2 , but

x ∈ KerJ∗2 ⇔ ∀y : 〈J∗2 x, y〉 = 0 ⇔
⇔ ∀y : 〈x, J2y〉 = 0 ⇔ x ∈ J2(HA)⊥.
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Hence J2J
∗
2 z ∈ J2(HA), (z − J2J

∗
2 ) ∈ J2(HA)⊥, and

HA = J2(HA)
⊕̂

J2(HA)⊥ = J(HA)
⊕̂

J(HA)⊥.

So, if J(HA)⊥ = 0, then J is an isomorphism. Let x ∈ J(HA)⊥, then
x ∈ J∗(HA)⊥, so ∀y : 〈x, J∗y〉 = 0 or ∀y : 〈Jx, y〉 = 0, and x ∈ Ker J .
But J is an injection, and so, x = 0. ¥

4.5. Lemma. Let F : M → HA be an injection admitting a conjugate.
Then

F (M)
⊕̂

F (M)⊥ = HA.

Proof. We can assume by the stabilization theorem that M = H1
A
∼= HA.

Then F ∗F : H1
A → H1

A is a self adjoint operator. Let ‖x‖ = 1, then

‖Fx‖2 = ‖ 〈Fx, Fx〉 ‖ > c2

by injectivity and

‖F ∗Fx‖ = ‖F ∗Fx‖ ‖x‖ > ‖ 〈F ∗Fx, x〉 ‖ = ‖ 〈Fx, Fx〉 ‖ > c2.

So F ∗F : H1
A → H1

A is a self adjoint injection and it is an isomorphism
by the previous lemma. Moreover, F ∗F > 0, and so, (F ∗F )−1/2 can be
defined. Hence U = F (F ∗F )−1/2 : M → HA (which is an injection with
U(M) = F (M)) is well defined. We have U∗U = IdM . Let z ∈ HA be an
arbitrary element. Then

z = UU∗z + (z − UU∗z),

U∗(z − UU∗z) = U∗z − (U∗U)U∗z = U∗z − U∗z = 0.

Since y ∈ KerU∗ ⇔ 〈U∗y, x〉 = 0 ∀x ⇔ 〈y, Ux〉 = 0 ∀x ⇔
y⊥ ImU we get

U∗Uz ∈ Im U = Im F, (z − UU∗z) ∈ (Im U)⊥.

The proof is finished because z is an arbitrary element. ¥
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4.6. Lemma. Let HA = M ⊕ N , p : HA → M be a projection, N be a

finitely generated projective module. Then M
⊕̂

M⊥ = HA if and only if p
admits a conjugate.

Proof. If there exists p∗, then there exists (1 − p)∗ = 1 − p∗, so by [11]
Ker(1− p) = M is the kernel of a self adjoint projection.

To prove the converse statement let us start from the case where N is a
free module and let us prove first that HA = N⊥ + M⊥. By the Kasparov
stabilization theorem we can assume that

N = spanA 〈e1, . . . , en〉 , N⊥ = spanA 〈en+1, en+2, . . . 〉 .

Let gi be the image of ei by the projection of N on M⊥:

e1 = f1 + g1, . . . , en = fn + gn, fi ∈ M, gi ∈ M⊥.

This projection is an isomorphism of A-modules N ∼= M⊥, so the ele-
ments g1, . . . , gn are free generators and 〈gk, gk〉 > 0A. Hence, if

fk =
∞∑

k=1

f i
kei, then ek − fk

k ek =
∑

i 6=k

f i
kei + gk.

On the other hand

1 = 〈ek, ek〉 = 〈fk, fk〉+ 〈gk, gk〉 , 1− (fk
k )(fk

k )
∗ > 〈gk, gk〉 > 0.

Then by 2.1 the element 1− fk
k is invertible in A,

ek =
1

1− fk
k


∑

i 6=k

f i
kei + gk


 ∈ N⊥ + M⊥ (k = 1, . . . , n),

so, N⊥ + M⊥ = HA. Let x ∈ N⊥ ∩M⊥. Every y ∈ HA = M ⊕N has the
form y = m+n, so 〈x, y〉 = 〈x,m〉+ 〈x, n〉 = 0, in particular, 〈x, x〉 = 0 and
x = 0. Hence, HA = N⊥ ⊕M⊥. Let us consider

q =

{
1 on N⊥,

0 on M⊥.

It is a bounded projection because HA = N⊥ ⊕ M⊥. Let x + y ∈ M ⊕
N, x1 + y1 ∈ N⊥ ⊕M⊥. Then

〈p(x + y), x1 + y1〉 = 〈x, x1 + y1〉 = 〈x, x1〉 ,
〈x + y, q(x1 + y1)〉 = 〈x + y, x1〉 = 〈x, x1〉 .
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Hence, there exists p∗ = q.

To prove the general case let H̃A = HA

⊕̂
Ñ with N

⊕̂
Ñ a free module.

Then, by the previous case,

M
⊕̂

M̃ = H̃A,

M
⊕̂

(M⊥⊕̂
Ñ) = HA

⊕̂
Ñ ,

M
⊕̂

M⊥ = HA. ¥

4.7. Theorem. In the decomposition in the definition of A-Fredholm op-
erator we can always assume M0 and M1 admitting an orthogonal comple-
ment. More precisely, there exists a decomposition for F

(
F3 0
0 F4

)
: HA = V0 ⊕W0 → V1 ⊕W1 = HA,

such that V ⊥
0

⊕̂
V0 = HA, V ⊥

1

⊕̂
V1 = HA, or (by the previous lemma it is

just the same) such that the projections

p0 : V0 ⊕W0 → V1, p1 : V1 ⊕W1 → V1

admit conjugates.

Proof. Let W0 = N0, V0 = W⊥
0 . This orthogonal complement exists by

[4], and F |W⊥
0

is an isomorphism. Indeed, if xn ∈ W⊥
0 , then let xn =

xn
1 + xn

2 , xn
1 ∈ M0, xn

2 ∈ W0, ‖xn‖ = 1. Let us assume that ‖Fxn‖ → 0.
Then ‖Fxn

1 + Fxn
2‖ → 0, and, since Fxn

1 ∈ V1, Fxn
2 ∈ W1, V1 ⊕W1 = HA,

then this means that ‖Fxn
1‖ → 0 and ‖Fxn

2‖ → 0, and, since F1 is an
isomorphism, then ‖xn

1‖ → 0. If a1, . . . , as are the generators of W0 = N0,
then

0 = 〈xn, aj〉 = 〈xn
1 , aj〉+ 〈xn

2 , aj〉 ,

‖ 〈xn
2 , aj〉 ‖ = ‖ 〈xn

1 , aj〉 ‖ 6 ‖xn
1‖ ‖aj‖ → 0 (n →∞)

for any j = 1, . . . , s. Hence, since xn
2 ∈ N , we have xn

2 → 0 (n → ∞)
and xn = xn

1 + xn
2 → 0, but this contradicts the equality ‖xn‖ = 1. This

contradiction shows that F |W⊥
0

is an isomorphism.

Let V1 = F (V0). Since W0 = N0, we can assume that W1 = N1. Indeed,
any y ∈ HA has the form y = m1 +n1 = F (m0)+n1, where m1 ∈ M1, n1 ∈
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N1, m0 ∈ M0. On the other hand, m0 = v0 +n0, where v0 ∈ V0, n0 ∈ W0 =
N0, and

y = F (v0 + n0) + n1 = F (v0) + (F (n0) + n1) ∈ V1 + N1.

Hence, HA = V1 + W1.
Let y ∈ V1 ∩W1 = V1 ∩ N1, so that n1 = y = F (v0), n1 ∈ N1, v0 ∈ V0.

Let us decompose v0 + n0, where m0 ∈ M0, n0 ∈ N0. Then

n1 = F (m0) + F (n0),

F (m0) = n1 − F (n0), F (m0) ∈ M1, n1 − F (n0) ∈ N1.

Hence F (m0) = 0, n1−F (n0) = 0, and since F : M0
∼= M1, then m0 = 0.

We have v0 ∈ V0 = N⊥
0 and hence,

0 = 〈v0, n0〉 = 〈m0 + n0, n0〉 = 〈n0, n0〉 , n0 = 0.

So, v0 = m0+n0 = 0, y = F (v0) = 0. Hence V1∩W1 = 0 and HA = V1⊕W1.

By 4.5 V1 has an orthogonal complement V ⊥
1 , V1

⊕̂
V ⊥

1 = HA, and this
completes the proof. ¥

4.8. Remark. If we do not restrict the operator F to admit a conjugate,
we can assert that there exists a decomposition

F : N⊥
0 ⊕N0 → M1 ⊕ Ln,

where Ln = spanA(e1, . . . , en), but M1 may have no orthogonal comple-
ment. This result was proved in [6].

5. Lefschetz numbers with values in HC0(A)

5.1. Definition. Let {e1, e2, . . . } be an A-orthobasis of HA = l2(A) (the
Hilbert module over A) with A-inner product ( , ). Let S ∈ End∗A HA (the
A-linear endomorphisms of HA admitting an adjoint) and S(ei) = 0 (i > k).
We define the trace of S by

t(S, {ei}, k) =
∞∑

i=1

f((Sei, ei)) =
k∑

i=1

f(Si
i),

where f : A → A/[A,A] = HC0(A), ‖Si
j‖ is the matrix of S with respect to

{ei}, Si
j ∈ A.
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5.2. Lemma. t(S, {ei}, k) = t(S, {ei}, l) := t(S, {ei}) for l > k.

The proofs of this lemma and the other statements of this Section can
be found in [18].

5.3. Lemma. Let S, {ei}, k be as in 5.1 and {hj} a new A-basis of HA (in
general non-orthogonal). Then the series

∞∑
r=1

f((Sh)r
r)

converges to t(S, {ei}), where (Sh)p
r are the matrix elements of S with re-

spect to {hi}.
Let us note that a basis of HA is a system of elements {hi}, such that

hi = Bei, where B ∈ GL∗ (automorphisms admitting a conjugate). The
matrix of S with respect to the {hi} is the matrix of B−1SB with the
respect to {ei}, i.e., (Sh)i

j = (B−1SB)i
j =

〈
B−1SBei, ej

〉
.

So we can give instead of 5.1 the following correct definition.

5.4. Definition. Let S ∈ End∗A HA, M and N Hilbert submodules of HA,
N finitely generated, HA = M ⊕ N, S|M = 0. For an arbitrary basis {ei}
we define

t(S) =
∞∑

i=1

f(Si
i).

5.5. Lemma. Let M, N, S be as in 5.4, and Ñ be a countably generated

Hilbert A-module, H̃A = HA

⊕̂
Ñ ∼= HA,

S̃ =
(

S 0
0 0

)
: HA

⊕̂
Ñ → HA

⊕̂
Ñ .

Then t(S) = t(S̃).

5.6. Lemma. Let M , N , S be as in 5.4, M ∼= HA, N = N̄ ⊕ ¯̄N, S| ¯̄N = 0.
Then

t(S) = t(pSp),

where p : M ⊕ N̄ ⊕ ¯̄N → M ⊕ N̄ is a projection, and the sum on the right
is in the space M ⊕ N̄ ∼= HA. Let us notice, that if we denote by

q : M ⊕N → M, p1 : N → N̄

the projections, then they admit conjugates. Hence, the projection p =
q + p1(1− q) admits one, too.
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5.7. Corollary. If in 5.5 M ⊕ N̄ is orthogonal to ¯̄N , and {hi} is an A-
orthobasis of M ⊕ N̄ , then

t(S) =
∞∑

i=1

f(〈Shi, hi〉). ¥

Definition. Let F : HA → HA be an A-Fredholm operator (admitting an
adjoint),

(
F1 0
0 F2

)
: HA = M0 ⊕N0 → M1 ⊕N1 = HA (D)

a corresponding decomposition, restricted to satisfy the condition as in 4.7
(we always will assume this without specification). Let S0 and S1 be oper-
ators from End∗A HA, such that the diagram

HA
F−−−−→ HA

S0

y
yS1

HA
F−−−−→ HA.

commutes. Let

S̃0 =
{ 0 on M0,

S0 on N0,
S̃1 =

{ 0 on M1,
S1 on N1.

Let us define
L(F, S,D) = t(S̃0)− t(S̃1).

5.9. Lemma. Let

HA = M0 ⊕N0 → M1 ⊕N1 = HA, (D)

HA = M̃0 ⊕N0 → M̃1 ⊕N1 = HA (D̃)

then
L(F, S,D) = L(F, S, D̃).

5.10. Lemma. Let

HA = (M0 ⊕N0)⊕K0 → (M1 ⊕N1)⊕K1 = HA, (D1)

HA = M0 ⊕ (N0 ⊕K0) → M1 ⊕ (N1 ⊕K1) = HA (D2)

be two decompositions for F . Then L(F, S, D1) = L(F, S, D2).
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5.11. Lemma. Let

HA = M0 ⊕N0 → M1 ⊕N1 = HA (D)

and
HA = M̄0 ⊕ N̄0 → M̄1 ⊕ N̄1 = HA (D̄)

be two decompositions for F . Then L(F, S,D) = L(F, S, D̄). So L does not
depend on D and we denote it by L(F, S).

5.12. Remark. By the stabilization theorem and Lemma 5.5, we can define
L(F, S) for any countably generated Hilbert A-module instead of HA.

5.13. Definition. Let T = {Ti} be an endomorphism of an A-elliptic com-
plex E:

0 −→ Γ(E0)
d0−→ Γ(E1) −→ . . .

↓ T0 ↓ T1

0 −→ Γ(E0)
d0−→ Γ(E1) −→ . . .

,

Ti+1di = diTi, Ti ∈ End∗A Γ(Ei).

Assume the following

5.14. Condition. Sobolev products in Γ(E) can be chosen in such a way
that

Tid
∗
i = d∗i Ti+1.

We take Eev = ⊕E2i, Eod = ⊕E2i+1,

F = d + d∗ : Γ(Eev) → Γ(Eod).

Then F is an A-Fredholm operator and the diagram stated below commutes,
where

S0 = ⊕T2i, S1 = ⊕T2i+1.

Γ(Eev) F−−−−→ Γ(Eod)

S0

y
yS1

Γ(Eev) F−−−−→ Γ(Eod).

We define the Lefschetz number of the second type as

L0(E, T, m) = L(F, S) ∈ HC0(A),

where m denotes the dependence on inner products (via d∗).
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5.15. Lemma. Let T = Tg, g ∈ G as in §2. Then the condition 5.14 is
fulfilled.

5.16. Theorem. If T = Tg, g ∈ G, then

L0(E, Tg,mG) = C̃h
0

0(L1(g, E)),

where Ch0
0 is the Chern character

Ch0
0 : K0(A) → HC0(A)

(see [3, 7, 8]), and

C̃h
0

0(a⊗ z) = Ch0
0(a)z, z ∈ C.

In particular, L0 does not depend on mG.

Proof. We have

L1(g, E) = indX
G,A([σ(E)])(g) = indX

G,A(F )(g).

Let
Mo ⊕N0 → M1 ⊕N1 (D)

be a decomposition for F . Then by 2.8 and [15]

N0 =
K⊕

k=1

Vk ⊗ Pk, N1 =
L⊕

l=1

Wl ⊗Ql,

where Vk and Wl are C-vector spaces of irreducible representations of G, Pk

and Ql are G-trivial projective finitely generated A-modules. Then (repre-
sentations are unitary)

indX
G,A(F ) =

K∑

k=1

[Pk]⊗ χ(Vk)−
L∑

l=1

[Ql]⊗ χ(Wl)

and

(2) L1(g, E) =
K∑

k=1

[Pk]⊗ Trace(g|Vk)−
L∑

l=1

[Ql]⊗ Trace(g|Wl).

The end of the proof see in [18]. ¥
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6. Lefschetz numbers with values in HC2l(A)

Let W ∗A be the universal enveloping von Neumann algebra of the algebra
A with the norm topology. Let U be a unitary operator in the Hilbert module
An. Then

(3) U =
∫

S1
eiϕ dP (ϕ),

where P (ϕ) is the projection valued measure valued in the space of matrices
M(n,W ∗A), and the integral converges with respect to the norm. Let us
associate with the integral sum

∑

k

eiϕkP (Ek)

the following class of the cyclic homology HC2l(M(n,W ∗A)):

∑

k

P (Ek)⊗ . . .⊗ P (Ek) · eiϕk .

Passing to the limit we get the following element

T̃U =
∫

S1
eiϕ d(P ⊗ . . .⊗ P )(ϕ) ∈ HC2l(M(n,W ∗A)).

Then we define
T (U) = Trn

∗ T̃U ∈ HC2l(W ∗A).

6.1. Lemma. Let J : M = Am → N = An be an isomorphism, UM :
M → M, UN : N → N be A-unitary operators and JUM = UNJ . Then

T (UM ) = T (UN ).

Proof. If

UM =
∫

S1
eiϕ dP (ϕ),

then

UN = JUMJ−1 =
∫

S1
eiϕ dJPJ−1(ϕ).



C∗-elliptic complexes 327

To verify the equality T (UM ) = T (UN ) it is sufficient to verify that

Trm
∗

[∑

k

P (Ek)⊗ . . .⊗ P (Ek) · eiϕk

]
=

= Trn
∗

[∑

k

JP (Ek)J−1 ⊗ . . .⊗ JP (Ek)J−1 · eiϕk

]
∈ HC2l(W ∗A),

but this follows from well-definedness of the Chern character

Ch0
2l : K0(B) → HC2l(B)

(see [3, 8]). ¥

Let now U be equal to Ug, i.e. an operator representing g ∈ G. Then (3)
turns to be the sum associated with the decomposition from 2.8 and [15]

An ∼=
M⊕

k=1

Qk ⊗ Vk,

where Vk
∼= CLk , and Qk are projective A-modules of finite type. Then

Ug

(
M∑

k=1

xk ⊗ vk

)
=

M∑

k=1

xk ⊗ uk
g vk =

M∑

k=1

Lk∑

l=1

xk ⊗ eiϕk
l vl

kfl,

where f1, . . . , fLk
is the diagonalizing basis for uk

g ; vk =
∑

vl
kfl. Then we

can define

(4) τ(Ug) =
M∑

k=1

Lk∑

l=1

Ch0
2l[Pk] · Trace(uk

g) ∈ HC2l(A).

We have T (Ug) = i∗(τ(Ug)), where i : A → W ∗A.
A similar technique can be developed for a projective module N instead

of An. For this purpose we take N = q(An),

U ⊕ 1 : An ∼= N ⊕ (1− q)An → N ⊕ (1− q)An ∼= An,

T̃U =
∫

S1
eiϕ d(qPq ⊗ . . .⊗ qPq)(ϕ).

The well-definedness is an immediate consequence of Lemma 6.1.
Let us consider a G-invariant A-elliptic complex (E, d), and let the Sobolev

A-products be chosen invariant, so that Tg = Ug are unitary operators (see
§3).
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6.2. Lemma. We can choose a decomposition for the A-Fredholm operator

F = d + d∗ : Γ(Eev) → Γ(Eod),

F : M0 ⊕ Ñ0 → M1 ⊕ Ñ1, F : M0
∼= M1,

such that
Ñ0 = ⊕iN2i, N2i ⊂ Γ(E2i),

Ñ1 = ⊕iN2i+1, N2i+1 ⊂ Γ(E2i+1),
where Nm are projective invariant modules.

Proof. Let us assume that the complex consists of operators of the degree m,
so F = d+d∗ is an A-Fredholm operator in the spaces Hm(Eev) → H0(Eod).
We can choose the basis in Hm(Eev) (or the decomposition into modules Pj

in l2(P )) in such a way that ems+j ∈ Γ(E2j), where E0, E2, . . . , E2j , . . . , E2m

are all non-zero terms of the complex, s ∈ N, j = 0, . . . ,m (and in a similar
way for Pj). As usual, without loss of generality we can assume that

Ñ0 = spanA(e1, . . . , en0), M0 = spanA(en0+1, en0+2, . . . ),

and M1 = F (M0) has in H0(Eod) the A-orthogonal complement M⊥
1 . Then

for every x ∈ M1, y ∈ Ñ0

(5) 〈x, Fy〉 = 〈Fx, y〉0,
where the first brackets mean the pairing of a functional and an element. So,
F (Ñ0) ⊂ M⊥

1 and taking Ñ1 = M⊥
1 , we get a decomposition F : M0⊕Ñ0 →

M1 ⊕ Ñ1.
Let

y = y1 + y3 + · · ·+ y2m+1 ∈ Ñ1 ⊂ H0(Eod), y2j+1 ∈ H0(E2j+1),

and

x = x0 + x2 + · · ·+ x2m ∈ M0 ⊂ Hm(Eev), x2j ∈ Hm(E2j).

Then 〈Fx, y〉0 = 0, where

Fx = d∗x0 +
∑m

i=1(dx2i−2 + d∗x2i) + dx2m ∈
∈ 0 ⊕ ⊕m

i=1H
0(E2i+1) ⊕ 0.

Since (E, d) is a complex, d2 = 0 and

〈du, d∗v〉 =
〈
d2u, v

〉
= 0,

so
〈y2j+1, dx2j〉 = 0, 〈y2j+1, d

∗x2j + 2〉 = 0 (j = 0, 1, . . . , m)
〈y2j+1, dx〉 = 0, 〈y2j+1, d

∗x〉 = 0.

Hence e2j+1 ∈ F (M0)
⊥ = M⊥

1 = Ñ1, and

Ñ1 = ⊕i(Ñ1 ∩ Γ(E2i+1)) = ⊕iN2i+1.

¥
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6.3. Definition. The Lefschetz number L2l we define as

L2l(E,Ug,mG) =
∑

i

(−1)i τ(Ug|Ni) ∈ HC2l(A),

where mG denotes the dependence on inner products (via d∗).

Remark. For more general situations we hope to use T instead of τ .

6.4. Lemma. The definition of L2l is correct, i.e. this number does not
depend on the choice of decompositions in Lemma 6.2.

Proof. For any two decompositions we can by use of projection (as in
[13, 15]) replace Ñ0 by a module inside spanA(e1, . . . , en) for a sufficiently
great n (we use the notation of Lemma 6.2). By 6.1 τ(Ug|Ni) does not
change under this replacement. So we can assume that we have to compare
the decomposition as in 6.2 and the decomposition

F : M̄0 ⊕ ˜̄N0 →M̄1 ⊕ ˜̄N1,

˜̄N0 = ⊕iN̄2i, N̄2i ⊂ N2i ⊂ Γ(E2i),
˜̄N1 = ⊕iN̄2i+1, N̄2i+1 ⊂ Γ(E2i).

Hence by (5), N̄2i+1 ⊂ N2i+1. Let Ki = (N̄i)⊥Ni
. Then F : K2i

∼= K2i+1 and
by Lemma 6.1 we get τ(Ug|K2i) = τ(Ug|K2i+1). Hence

∑

i

(−1)i τ(Ug|Ni) =
∑

i

(−1)i
(
τ(Ug|N̄i) + τ(Ug|Ki)

)
=

=
∑

i

(−1)i (τ(Ug|N̄i). ¥

6.5. Theorem. Let C̃h
0

2l(a⊗ z) = Ch0
2l(a) · z, where z ∈ C. Then

L2l(E, Ug,mG) = C̃h
0

2l(L1(g, E)),

in particular, L2l does not depend on mG.

Proof. We get the statement immediately from (2) and (4). ¥
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Assembly

Michael Weiss and Bruce Williams

Abstract. The goal of assembly is to approximate homotopy invariant
functors from spaces to spectra by homotopy invariant and excisive functors
from spaces to spectra. We show that there exists a best approximation,
characterized by a universal property.

1. The Ordinary Assembly Map

We adopt a very category theoretic point of view in describing assembly
maps. It has been formulated explicitly by Quinn in the appendix to [Q],
and more implicitly in Quinn’s thesis, in [QGF], in [And] and in articles of
Waldhausen, e.g. [Wa1], [Wa2]. See also [QAB]. From this point of view, the
goal of assembly is: Given a homotopy invariant functor F from spaces to
spectra, to approximate F from the left by an excisive homotopy invariant
functor F%.

In this section, all spaces are homotopy equivalent to CW–spaces, all
pairs of spaces are homotopy equivalent to CW–pairs, and all spectra are
CW–spectra.

A functor F from spaces to spectra is homotopy invariant if it takes
homotopy equivalences to homotopy equivalences. A homotopy invariant
F is excisive if F (∅) is contractible and if F preserves homotopy pushout
squares (alias homotopy cocartesian squares, see [Go1], [Go2]). The exci-
sion condition implies that F preserves finite coproducts, up to homotopy
equivalence. Call F strongly excisive if it preserves arbitrary coproducts, up
to homotopy equivalence.

If F is strongly excisive, then the functor π∗F from spaces to graded
abelian groups is a generalized homology theory—it has Mayer–Vietoris se-
quences, and satisfies the strong wedge axiom. Conversely, homotopy theo-
rists know that any generalized homology theory satisfying the strong wedge
axiom is isomorphic to one of the form π∗F where F (X) = X+ ∧Y and Y
is a fixed spectrum. Such an F is of course strongly excisive.

1991 Mathematics Subject Classification. Primary 55P65; Secondary 55N20, 55P42,
19D10, 19E20.
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1.1. Theorem. For any homotopy invariant F from spaces to spectra,
there exist a strongly excisive (and homotopy invariant) F % from spaces to
spectra and a natural transformation

α = αF : F % −→ F

such that α : F %(∗) → F (∗) is a homotopy equivalence. Moreover, F % and
αF can be made to depend functorially on F .

Preliminaries. We are going to use homotopy colimits in the proof. Here is
a description: Let Z be a functor from a small category C to the category
of spaces. For n ≥ 0 let [n] be the ordered set {0, 1, . . . , n} ; we view this
as a category, with exactly one morphism from i to j whenever i ≤ j, and
no morphism from i to j if i > j. The homotopy colimit of Z, denoted
hocolim Z, is the geometric realization of the simplicial space

n 7→
∐

G:[n]→C

Z(G(0))

where the coproduct must be taken over all covariant functors G from [n]
to C. We hope the face and degeneracy maps are obvious. See [BK] for
more details. It is often convenient to use informal notation for a homotopy
colimit, e.g.

hocolim
C in C

Z(C)

instead of hocolim Z. This is particularly true when the values of the functor
have “names” and the functor as such has not been named.

A special case of special interest: When Z(C) is a point for every C in
C, then clearly hocolim Z is the classifying space of C. (We shall also say:
the nerve of C ; strictly speaking, the nerve of C is a simplicial set, and the
classifying space of C is the geometric realization of the nerve of C.) More
generally, when Z is a constant functor, then hocolim Z is the product of the
classifying space of C with the constant value of Z. In some examples below,
C is the category of faces of an incomplete simplicial set ; then the classifying
space of C is the barycentric subdivision of the incomplete simplicial set. (An
incomplete simplicial set is a simplicial set without degeneracy operators.)

In general, a key property of homotopy colimits is their homotopy in-
variance. Suppose that f : Z → Z ′ is a natural transformation between
functors from C to spaces. If fC from Z(C) to Z ′(C) is a homotopy equiva-
lence for every C in C, then f∗ from hocolim Z to hocolim Z ′ is a homotopy
equivalence.
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Variations: The above formula for hocolimZ remains meaningful when
Z is a functor from C to spaces or spectra. Bear in mind that the geometric
realization of a simplicial pointed space or simplicial spectrum [n] 7→ Xn is
given by a formula of type

(∐
n ∆n

+ ∧Xn

)
/ ∼ where ∼ stands for the usual

relations.

First proof of 1.1. For a space X, let simp(X) be the category whose objects
are maps ∆n → X where n ≥ 0, and whose morphisms are commutative
triangles

∆m f∗−→ ∆n

↘ ↙
X

where f∗ is the map induced by a monotone injection f from {0, 1, . . . ,m}
to {0, 1, . . . , n}. Let FX from simp(X) to spectra be the covariant functor
sending g : ∆n → X to F (∆n), and let

F %(X) := hocolim FX .

For each g : ∆n → X in simp(X) we have g∗ : F (∆n) → F (X). Letting g
vary, we regard this as a natural transformation from FX to the constant
functor with value F (X). It induces

α : F %(X) −→ F (X) .

Clearly α is a homotopy equivalence when X is a point. For arbitrary X,
and g : ∆n → X in simp(X), we have the map ∆n → ∗ which induces
F (∆n) → F (∗), a homotopy equivalence. We regard this as a natural trans-
formation from FX to the constant functor with value F (∗) ; by the homo-
topy invariance of homotopy colimits, the induced map of homotopy colimits
is a homotopy equivalence

F %(X) −→ |simp(X)|+ ∧ F (∗) .

It is an exercise to show that | simp(X)| ' X. Thus F %(X) is related to
X+ ∧ F (∗) by a chain of natural homotopy equivalences. ¤

Second proof of 1.1. We compose F with the geometric realization functor
from incomplete simplicial sets to spaces, and henceforth assume that F is
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a functor from incomplete simplicial sets to spaces. For an incomplete sim-
plicial set X, we define simp(X) much as before: objects are the simplicial
maps ∆n → X, for arbitrary n. (These are in bijection with the simplices
of X.) We define FX from simp(X) to spectra much as before. We let

F %(X) = hocolim FX

as before, and we define α : F %(X) → F (X) as before. Then we observe
that F %(X) has a natural filtration:

F %(X) =
⋃

k

F %(Xk)

where Xk is the k–skeleton. Applying the homotopy invariance of F to the
constant map from a simplex to a point, one finds that

F %(Xk)/F %(Xk−1) '
∨
z

Sk ∧ F (∗)

where z runs over the k–simplices of X. Hence the natural filtration of
F %(X) leads to a spectral sequence converging to the homotopy groups of
F %(X), with

E2
p,q = Hp(X;πqF (∗))

as E2–term. But if the E2–term is already homotopy invariant, then so is
the E∞–term, which implies the homotopy invariance of F %. Also, we see
that α : F %(X) → F (X) is a homotopy equivalence for X = ∗. Further, we
see that the functor

X 7→ F %(Xk)/F %(Xk−1)

takes squares of simplicial sets of the form

X1 ∩ Y2 −−−−−−→ X1y
y

X2 −−−−−−→ X1 ∪X2

to homotopy pushout squares, and preserves arbitrary coproducts (up to
homotopy equivalence). Using induction on k, we conclude that the functors

X 7→ F %(Xk)

have these properties, too ; then F % itself has these properties. Together
with homotopy invariance this implies that F % is strongly excisive. ¤
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1.2. Observation. F %(X) is naturally homotopy equivalent to X+∧F (∗).

This is clear from the first proof of 1.1. We have not included it in Theo-
rem 1.1 because it does not generalize well, as we shall see. In fact, our first
proof does not generalize well ; that is why we have a second proof.

1.3. Observation. If F is already excisive, then α : F %(X) → F (X) is a
homotopy equivalence for any X which is homotopy equivalent to a compact
CW–space. If F is strongly excisive, then α is a homotopy equivalence for
all X.

Proof. By arguments going back to Eilenberg and Steenrod it is sufficient
to verify that α is a homotopy equivalence for X = ∗. ¤

We want to show that α = αF is the “universal” approximation (from
the left) of F by a strongly excisive homotopy invariant functor. Suppose
therefore that

β : E −→ F

is another natural transformation with strongly excisive and homotopy in-
variant E. The commutative square

E% αE−−−−→ E
yβ%

yβ

F % αF−−−−→ F

in which the upper horizontal arrow is a homotopy equivalence by 1.3,
shows that β essentially factors through αF . Note that if β : E(∗) → F (∗)
happens to be a homotopy equivalence, then αE : E%(X) → E(X) and
β% : E%(X) → F %(X) are homotopy equivalences for all X, by the usual
Eilenberg–Steenrod arguments.

Applications. Carlsson and Pedersen [CaPe] have used this “universal” ap-
proximation property to identify their forget control map with the assembly
map for linear algebraic K-theory. Similarly Rosenberg [Ro] has used the
“universal” approximation property to identify the Kasparov index map β
with the assembly map in L-theory after localizing at odd primes. Ran-
icki has a construction of an assembly map for homotopy invariant functors
from simplicial complexes to spectra [Ra, 12.19]. His construction may be
identified with the one above by universality.

In many applications to geometry, assembly is the passage from local to
global. For example, the normal invariant of a surgery problem f : M → N



Assembly 337

(with closed n–manifolds M and N , where n ≥ 5, and some bundle data
which we suppress) is an element in πnF %(N), where F is the functor
taking a space X to the L-theory spectrum L(Zπ1(X)) (details below). The
normal invariant vanishes if and only if the surgery problem is bordant to
another surgery problem f1 : M1 → N where f1 is a homeomorphism. The
image of the normal invariant under assembly is the surgery obstruction ;
it vanishes if and only if the surgery problem is bordant to another surgery
problem f1 : M1 → N where f1 is a homotopy equivalence.

For another illustration, we mention the Whitehead torsion of a homo-
topy equivalence f : X → Y between compact euclidean neighborhood re-
tracts. This is an element in the cokernel of α∗ : π1F

%(Y ) → π1F (Y ), where
F is the functor taking Y to the algebraic K-theory spectrum K(Zπ1(Y ))
(details below). The torsion of f depends only the homotopy class of f , and
it vanishes when f is a homeomorphism. This is of course the topological
invariance of Whitehead torsion, due to Chapman. See [Ch] and [RaYa].

2. Examples

2.1. Linear K-theory

Recall that Quillen has defined a functor K : Exact → Spectra where Exact
is the category of exact categories. Alternatively, one can note that an exact
category M determines a category with cofibrations and weak equivalences
in the sense of Waldhausen by letting the cofibrations be the admissible
monomorphisms and letting the isomorphisms be the weak equivalences.
Then Waldhausen’s S• construction yields a functor K which is naturally
homotopy equivalent to Quillen’s K. Let Spaces∗ be the category of spaces
homotopy equivalent to CW-spaces which are equipped with nondegenerate
base points. Then K(Zπ1(X, ∗)) is a functor from Spaces∗ to Spectra. In
order to apply the construction of the assembly map from section 1 we have
to show that this functor factors through the functor Spaces∗ → Spaces
which forgets basepoints. The point of view is due to Quinn [QA], but the
language we use is that of Lück and tom Dieck, [Lü, ch. II], [tD]. See also
[Mitch].

Following a suggestion of MacLane [MaL], we use the word ringoid to
mean a small category in which all morphism sets come equipped with an
abelian group structure, and composition of morphisms is bilinear. Notice
that a ringoid with one object is just a ring.

Any small category C gives rise to a ringoid ZC having the same objects
as C. The set of morphisms from x0 to x1 in ZC is the free abelian group
generated by the set of morphisms from x0 to x1 in C.
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In particular, taking C to be the fundamental groupoid π1(X) of a space
X, as in [Spa], we obtain a ringoid Zπ1(X). Objects in Zπ1(X) are points
of X, and a morphism from y0 to y1 is a finite formal linear combination
Σng · g, where the g are path classes beginning in y0 and ending in y1, and
the ng are integers.

Let R be a ringoid. A left R–module is a covariant functor from R to
abelian groups which is homomorphic on morphism sets; a right R–module
is a left Rop–module. A left R–module is free on one generator if it is rep-
resentable (that is, isomorphic to a morphism functor hom(x,−) for some
object x in R). It is finitely generated free if it is isomorphic to a finite direct
sum of representable ones, and just free if it is isomorphic to an arbitrary
direct sum of representable ones. It is projective if it is a direct summand
of a free one, and finitely generated projective if it is a direct summand of a
f. g. free one.

Left R–modules form an abelian category in which the morphisms are
natural transformations. Exercise for the reader: prove that a left R–module
P is projective if and only if any R–module epimorphism with target P splits.
The subcategory PR of finitely generated projective modules is then an exact
category. For a space X, let K(X) = K(PR) where R = Zπ1(X). Since a
homotopy equivalence between spaces induces an equivalence between their
fundamental groupoids, our functor K is a homotopy functor and section 1
yields an assembly map for linear algebraic K-theory.

2.2. A-theory

Since Waldhausen has shown that his functor X 7→ A(X) is a homotopy
functor [Wa1, Prop. 2.1.7] we can directly apply Section 1 to get an assem-
bly map for A-theory. (We use boldface notation, A(X), for the spectrum
associated with the infinite loop space A(X).)

2.3. L-theory

Recall that Ranicki [Ra, Ex. 13.6] [Ra, Ex. 1.3] has defined functors

L• : {additive categories with chain duality} −→ Spectra ,

{rings with involution} −→ {additive categories with chain duality} .

We write L for the first functor, rather than L•, to be consistent. The
second functor sends a ring R with involution j to the triple (PR, T, e) where
• PR is the category of f.g. projective left R-modules;
• T is the functor PR → PR which sends a module M to homR(M, R)

where the involution j is used to convert this right R-module to a left
R-module; and
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• e is the inverse to the natural equivalence η : id → T 2 that maps a
module M to T 2(M) by taking the adjoint of the pairing

homR(M, R)×M → R

which maps (f, m) to j(f(m)).
If X is a space with base point ∗, then Zπ1(X, ∗) is equipped with the
standard involution that takes an element g ∈ π1(X, ∗) to g−1. Thus we
again get a functor Spaces∗ → Spectra which we have to factor through
the forgetful functor Spaces∗ → Spaces.

A ringoid with involution is a ringoid R together with a ringoid isomor-
phism

j : R −→ Rop

such that the composite functor R
j−→ Rop jop

−→ R is the identity. Notice
that a ringoid with involution, with one object, is just a ring with involution.

For any space X, the ringoid Zπ1(X) has a standard involution. The
involution is trivial on objects, and maps

∑
ngg : x0 −→ x1 (a typical

morphism) to ∑
ngg

−1 : x1 −→ x0.

Thus we are done if we can show Ranicki’s functor

{rings with involution} → {additive categories with chain duality}

factors through the category of ringoids with involution.
Henceforth we assume the ringoid R comes equipped with an involution j.

Then a left R–module P can also be regarded as a right R–module P t (com-
pose with j−1 = jop). Similarly a right R–module P can also be regarded
as a left R–module.

Notice that for any object x in R, the functor homR(x,−) is a left R-
module, and homR(−, x) is a right R-module. For any two left R-modules,
M and N , let HOMR(M, N) be the abelian group of natural transformations
from M to N .

For any left R-module M , consider the contravariant functor from R

to abelian groups which sends an object x to HOMR(M, homR(x,−)). We
let T (M) be the left module obtained by using j to make this functor
covariant. Notice that if M = homR(y,−), then the Yoneda lemma implies
T (M) is just homR(−, y) converted into a left module via j. Explicitly,
T (M)(x) ∼= hom(j(x), y) ∼= hom(j(y), x). Thus T sends f.g. free modules to
f.g. free modules and f.g. projective modules to f.g. projective modules.
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Fix a left R-module M . Then for any pair of objects x and y in R, we
get the pairing

HOMR

(
M, homR(y,−)

)×M(x) → homR(x, y)

which sends (f, m) to j(f(m)). The adjoints of these pairings determine a
natural transformation from the identity functor to T 2. If we restrict this
natural transformation to the category of f.g. projective modules it is a
natural equivalence, and we let e be the inverse natural transformation.
Then (PR, T, e) is an additive category with (0-dimensional) chain duality
and we are done.

2.4. The Novikov Conjecture

The Novikov conjecture, for a homotopy invariant functor F from spaces to
spectra and a discrete group π, is the hypothesis that

α∗ : π∗F %(Bπ)⊗Q −→ π∗F (Bπ)⊗Q

is injective. It was originally formulated by Novikov for the L-theory functor,
2.3 above, and for all groups. The L-theory Novikov conjecture has been
verified for many groups with a finite dimensional classifying space. See
[RaNo] for details. Bökstedt, Hsiang and Madsen [BHM] proved the Novikov
conjecture for the algebraic K-theory functor, 2.1 above, and all groups π
such that Hi(Bπ;Z) is finitely generated for all i.

3. Easy Variations

3.1. Variation. We can still do assembly when the functor F is defined
on the category of spaces over a reference space B. (For example, B could
be BG, the classifying space for stable spherical fibrations.) By abuse of
notation, a map between spaces over B is a homotopy equivalence if it
becomes a homotopy equivalence when the reference maps to B are omitted.
A square of spaces over B is a homotopy pushout square if it becomes a
homotopy pushout square when the reference maps are omitted. We call F
homotopy invariant if it takes homotopy equivalences (over B) to homotopy
equivalences. We call a homotopy invariant F excisive if it takes the empty
set to a contractible spectrum and if it takes homotopy pushout squares
(over B) to homotopy pushout squares. We call it strongly excisive if in
addition it preserves arbitrary coproducts up to homotopy equivalence. —
For any homotopy invariant F defined on spaces over B we have

α : F % −→ F ,
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natural in F , where F % is homotopy invariant, strongly excisive and

α : F %(∗ ↪→ B) −→ F (∗ ↪→ B)

is a homotopy equivalence for any point ∗ in B. If F is already strongly
excisive, then α is a homotopy equivalence for all spaces over B. Prove this
using the methods developed in the second proof of 1.1.

Example: Classical twisted L-theory. Let B = K(Z/2, 1). Then a map X →
B determines a double covering w : X\ → X. Unfortunately w does not,
as one might expect, determine an involution on the ringoid Zπ1(X). But
it does determine an involution on an equivalent category Zwπ1(X). The
objects of Zwπ1(X) are the points of X\, not X ; a morphism from x0 to
x1 in Zwπ1(X) is the same as a morphism from w(x0) to w(x1) in Zπ1(X).
The involution is trivial on objects, and maps

∑
ngg : x0 −→ x1 (a typical

morphism) to ∑
sign(g) · ngg

−1 : x1 −→ x0,

where the sign of a path class g from w(x0) to w(x1) is +1 if g lifts to a path
class from x0 to x1 in X\, and −1 otherwise. — Refining 2.3 we let L(X→B)
be the L-theory spectrum of the ringoid with involution Zwπ1(X).

Example: Tate Cohomology and the Ξ transformation. Let B = BG, the
classifying space for stable spherical fibrations. Any map X → B determines
an action of Z/2 on a spectrum A(X→B) which is homotopy equivalent to
Waldhausen’s A-theory spectrum A(X). See [Vog3] and [WW2]. Thus we
can consider the functor sending X to the Tate cohomology spectrum

ĤH(Z/2; A(X→B))

(see [WW2] for details). In [WW2] we construct a natural transformation

Ξ : L(X c1−→B1) −→ ĤH(Z/2; A(X c−→B))

where c1 is the composition of c with the Postnikov projection B → B1 =
K(Z/2, 1). Together with the appropriate assembly maps, Ξ is used to study
automorphisms of manifolds. See [WW1], [WW3] for the manifolds.

3.2. Example. Let G be a topological group with classifying space BG, and
suppose that G acts on a spectrum T . For a space over BG, say f : X → BG,
let Xf be the pullback of

X
f−→ BG ← EG.
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The functor from spaces over BG to spectra given by

(f : X → BG) 7→ Xf
+ ∧G T

is strongly excisive. (The example is “typical”, but we shall not go into
details.)

3.3. Variation. There is a variant of assembly which applies to functors
defined on pairs of spaces. Let F be such a functor, from pairs (X, Y ) to
spectra. We call F homotopy invariant if it takes homotopy equivalences of
pairs to homotopy equivalences. We call a homotopy invariant F excisive if
it takes the empty pair to a contractible spectrum, and if it takes homotopy
pushout squares of pairs to homotopy pushout squares. (A square of pairs

(X1, Y1) −−−−→ (X2, Y2)y
y

(X3, Y3) −−−−→ (X4, Y4)

is a homotopy pushout square if the two squares made from the Xi and
the Yi, respectively, are homotopy pushout squares.) Finally F is strongly
excisive if it is excisive and respects arbitrary coproducts, up to homotopy
equivalence. — For any homotopy invariant F from pairs of spaces to spec-
tra, there exist a strongly excisive (and homotopy invariant) F % from pairs
of spaces to spectra and a natural transformation

α = αF : F % −→ F

such that

α : F %(∗, ∅) → F (∗, ∅) , α : F %(∗, ∗) −→ F (∗, ∗)

are homotopy equivalences. Moreover, F % and αF can be made to depend
functorially on F . If F is already strongly excisive, then α is a homotopy
equivalence for every pair (X, Y ). Here is a brief description of F %: For a
pair (X,Y ) we have simp(Y ) ⊂ simp(X), and we define F %(X, Y ) as the
homotopy pushout (double mapping cylinder) of

hocolim
g:∆n→X

F (∆n, ∅) ←− hocolim
g:∆n→Y

F (∆n, ∅) −→ hocolim
g:∆n→Y

F (∆n,∆n)

where the homotopy colimits are to be taken over simp(X), simp(Y ) and
simp(Y ), respectively.
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3.4. Remark. Let T be a spectrum ; then the functor

X 7→ X+ ∧ T

is homotopy invariant and strongly excisive. Any homotopy invariant and
strongly excisive functor F from spaces to spectra has this form, up to
a chain of natural homotopy equivalences (observations 1.2 and 1.3). The
appropriate T is of course F (∗). Next, let f : T1 → T2 be a map of spectra.
Then the functor

(X,Y ) 7→ homotopy pushout of
(
Y+ ∧ T2

f∗←− Y+ ∧ T1 ↪→ X+ ∧ T1

)

is strongly excisive. Any strongly excisive functor F from pairs of spaces to
spectra has this form, up to a chain of natural homotopy equivalences. The
appropriate T1 is F (∗, ∅), the appropriate T2 is F (∗, ∗), and the appropriate
f is induced by the inclusion of (∗, ∅) in (∗, ∗).

It follows that a strongly excisive F defined on pairs need not take ev-
ery collapse map (X, Y ) → (X/Y, ∗) to a homotopy equivalence. It does,
however, if F (∗, ∗) is contractible ; then F has the form (X, Y ) 7→ (X/Y )∧
F (∗, ∅) up to a chain of natural homotopy equivalences.

Equivariant versions of assembly are currently being developed by J.
Davis and W. Lück [DaLü].

4. Assembly with Control

For the purposes of this section, a control space is a pair of spaces (X̄,X)
where X̄ is compact Hausdorff, X is open dense in X̄, and X is an ENR.
Informally, the set X̄ rX is the singular set, whereas X is the nonsingular
set. A morphism of control spaces is a continuous map of pairs f : (X̄, X) →
(Ȳ , Y ) such that f−1(Y ) = X.

It seems that the use of control in topology began with Connell and
Hollingsworth [CoHo]. For a survey of applications until 1986, see [QLA].
Through the influence of [Q], controlled topology led to bounded algebra and
controlled algebra, [QA], [PW1], [PW2], [ACFP], and a plethora of functors
from control spaces to spectra. Most of these have some homotopy invariance
properties, i. e., they take homotopy equivalences to homotopy equivalences ;
some of them also have excision properties [PW1], [PW2] [Vog1], [Vog2]. For
applications, see also [CaPe] and [DWW], and many others.

Our goal here is roughly the following. Suppose that F is a homotopy
invariant functor (details follow) from control spaces to spectra. We want
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to construct another functor F % from control spaces to spectra, homotopy
invariant and excisive (details follow), and a natural transformation

α : F %(X̄,X) −→ F (X̄,X)

which is a homotopy equivalence for (X̄, X) = (∗, ∗). Moreover we would
like to say that F %(X̄, X) is related to X• ∧ F (∗, ∗) by a chain of (weak)
homotopy equivalences. Here X• is the one–point compactification, usually
not homotopy equivalent to a CW–space, so that X• ∧ F (∗, ∗) is usually
not homotopy equivalent to a CW–spectrum. (Hence we must allow weak
homotopy equivalences in the chain.)

4.1. Terminology. Two morphisms f0, f1 : (X̄, X) → (Ȳ , Y ) between
control spaces are homotopic if they agree on X̄rX and if they extend to a
continuous one–parameter family of morphisms ft : (X̄, X) → (Ȳ , Y ), where
0 ≤ t ≤ 1, and all ft agree on X̄rX. A morphism f : (X̄, X) → (Ȳ , Y ) is a
homotopy equivalence if there exists another morphism g : (Ȳ , Y ) → (X̄,X)
such that gf and fg are homotopic to the identity. Note that a homotopy
equivalence restricts to a homeomorphism of the singular sets.

A commutative square in the category of control spaces is a homotopy
pushout square if the underlying square of nonsingular sets is a proper ho-
motopy pushout square (details follow) in the category of locally compact
spaces. Details: Recall that a map between locally compact spaces is proper
if it extends to a continuous map between their one–point compactifications.
A commutative square of locally compact spaces and proper maps

X1 −−−−→ X2y
y

X3 −−−−→ X4

is a proper homotopy pushout square if the resulting proper map from the
homotopy pushout of X3 ←− X1 −→ X2 to X4 is a proper homotopy equiva-
lence.

4.2. More terminology. A covariant functor F from control spaces to
CW–spectra is homotopy invariant if it takes homotopy equivalences to
homotopy equivalences. A homotopy invariant F is excisive if it takes ho-
motopy pushout squares of control spaces to homotopy pushout squares of
spectra, and F (∅, ∅) is contractible.

Suppose that F is homotopy invariant and excisive, and let (X̄,X) be a
control space with discrete but possibly infinite X. For any y ∈ X, we have
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a homotopy equivalence

F (X̄ry, Xry) ∨ F (y, y) −→ F (X̄, X)

by excision, and hence a projection F (X̄, X) → F (y, y), well defined up
to homotopy. We call F pro–excisive if these projection maps induce an
isomorphism

πnF (X̄,X) −→
∏

y∈X

πnF (y, y) (n ∈ Z) .

In the following example, let (—)CW be the standard CW approximation
procedure replacing arbitrary spectra by CW–spectra. In detail, if Y =
{Yn | n ∈ Z} is a spectrum with structure maps ΣYn → Yn+1, then the
geometric realizations of the singular simplicial sets of the Yn form a CW–
spectrum (Y )CW . Note that the functor π∗ does not distinguish between Y
and (Y )CW .

Example. The functor (X̄,X) 7→ (X• ∧ S0)CW is homotopy invariant and
pro–excisive. Here S0 is the sphere spectrum. Proof: Transversality and
Thom–Pontryagin construction lead to an interpretation of πn(X• ∧S0) =
πs

n(X•) as the bordism group of stably framed smooth n–manifolds equipped
with a proper map to X. This in turn leads to Mayer–Vietoris sequences
from homotopy pushout squares of control spaces. Excision follows, and
then pro–excision is clear. Warning: Be sure to use the correct topology on
X•. Note that X could be any ENR, such as the universal cover of a wedge
of two circles, or a countably infinite discrete set.

4.3. Proposition. Suppose that Y is a CW–spectrum. Suppose also that
Y is an Ω–spectrum (details below), or the suspension spectrum of a CW–
space. Then the functor (X̄, X) 7→ (X• ∧Y )CW is homotopy invariant and
pro–excisive.

Proof. First suppose that Y is a suspension spectrum Σ∞Y0. If the CW–
space Y0 is finite–dimensional, then we can use the preceding example and
induction on the dimension of Y0 to prove that (X̄, X) 7→ (X• ∧ Y )CW is
homotopy invariant and pro–excisive. If Y0 has infinite dimension, we reduce
to the finite dimensional case by observing that

πn(X• ∧ Y ) ∼= πs
n(X• ∧ Y0) ∼= πs

n(X• ∧ Y n+1
0 )

where Y n+1
0 is the (n + 1)–skeleton of Y0.
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Now suppose that Y is an arbitrary CW–spectrum. Then

πn(X• ∧ Y ) := colim
k

πn+k(X• ∧ Yk) ∼= colim
k

πn+k(X• ∧ Σ∞Yk) .

Using the suspension spectrum case of 4.3, which we have established, we
deduce immediately that the functor (X̄, X) 7→ (X• ∧ Y )CW is homotopy
invariant and excisive. Furthermore, for a control space (X̄, X) with discrete
X, we have

πn(X• ∧ Y ) = colim
k

πn+k(X• ∧ Yk) ∼= colim
k

∏

x∈X

πn+k(Yk) .

Here we want to exchange direct limit and product to get

∏

x∈X

colim
k

πn+k(Yk) ∼=
∏

x∈X

πn(Y ) .

In general this is not permitted. But it is clearly permitted if Y is an Ω–
spectrum—the adjoints of the structure maps ΣYk → Yk+1 are homotopy
equivalences Yk → ΩYk+1. ¤

4.4. Theorem. Suppose that F is a homotopy invariant functor from con-
trol spaces to CW–spectra. Suppose also that F behaves like a pro–excisive
functor on the category of control spaces (X̄, X) with discrete X (details
follow). Then there exists a pro–excisive functor F % from control spaces to
CW–spectra, and a natural transformation α = αF : F % → F such that

α : F %(∗, ∗) → F (∗, ∗)

is a homotopy equivalence. The construction can be made natural in F .

Details. The extra hypothesis on F means that F takes a homotopy pushout
square of control spaces with discrete nonsingular sets to a homotopy push-
out square of spectra, and that, for any (X̄, X) with discrete X, the homo-
morphisms

πnF (X̄,X) −→
∏

y∈X

πnF (y, y)

(defined as in 4.2) are isomorphisms. Carlsson [Car] has shown that functors
of type “controlled algebraic K-theory” satisfy this condition. (Carlsson
seems to have been the first to realize that this requires proof.)
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4.5. Construction. The following teardrop construction will be needed in
the proof of 4.4. Let f : X → Y be a proper map of ENR’s, where Y is
the nonsingular set of a control space (Ȳ , Y ). We note that the diagram of
control spaces

(Ȳ , Y )
collapse−−−−−−→ (Y •, Y )

f←− (X•, X)

has a limit (=pullback) in the category of control spaces ; its nonsingular
set is canonically identified with X, and we denote it by (X̄, X).

4.6. Notation. Suppose that X is the geometric realization of an incom-
plete simplicial set (simplicial set without degeneracies). Then

• Xn is the set of n–simplices in X.
• Xn is the n–skeleton.
• For each monotone injection f : [m] → [n], we write Xf to mean

∆m×Xn. There is a characteristic map from Xf to X, via ∆n×Xn.
Note that this depends on f , not just on m and n. When f equals
id : [n] → [n], we write X[n] instead of Xf .

Proof of 4.4. Let C be the category of all control spaces. A key observation
is that F is sufficiently determined by its restriction to a certain subcategory
C′, which we now describe. An object in C′ is a control space (X̄, X) where
X is the geometric realization of an incomplete simplicial set. Then X is
a CW–space, and we require additionally that X have small cells, which
means the following: For every z ∈ X̄ r X and neighbourhood U of z in
X̄, there exists another neighborhood W of z in X̄ such that any (open)
cell of X intersecting W is contained in U . Note also that since X is an
ENR, the underlying incomplete simplicial set must be locally finite, finite
dimensional and countably generated. A morphism in C′, say from (X̄,X)
to (Ȳ , Y ), is a morphism of control spaces whose restriction to nonsingular
sets is given by a simplicial map. Note that any finite diagram (=finitely
generated simplicial subset of the nerve) in C′ has a colimit.

The standard way to attempt recovery of a functor from its restriction to
a subcategory is by Kan extension, here: homotopy Kan extension. Hence
the following claim: for every (Ȳ , Y ) in C, the canonical map

hocolim
(X̄,X)→(Ȳ ,Y )
(X̄,X) in C′

F (X̄, X) −→ F (Ȳ , Y )

is a homotopy equivalence. The homotopy colimit is taken over the category
whose objects are objects in C′ with a reference morphism to (Ȳ , Y ), and
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whose morphisms are morphisms in C′, over (Ȳ , Y ). We denote this category
by (C′ ↓(Ȳ , Y )).

To prove this claim, we observe that the canonical map in question is a
natural transformation of functors in the variable (Ȳ , Y ). Since every (Ȳ , Y )
in C is a retract of some object (X̄, X) in C′ (with a retraction morphism
(X̄, X) → (X̄, X) which need not belong to C′), it is enough to check the
claim when (Ȳ , Y ) is already in C′. Since any finite diagram in (C′ ↓(Ȳ , Y ))
has a colimit, we have, almost from the definition,

colim
(X̄,X)→(Ȳ ,Y )

π∗F (X̄, X)
∼=−→ π∗

(
hocolim

(X̄,X)→(Ȳ ,Y )
F (X̄,X)

)
.

Hence our claim is proved if we can show that the canonical homomorphism

colim
(X̄,X)→(Ȳ ,Y )

π∗F (X̄,X) −→ F (Ȳ , Y )

is an isomorphism. But this is obvious. We conclude that homotopy invariant
functors on C are sufficiently determined by, and can be recovered from, their
restriction to C′. From now on we regard 4.4 as a statement about functors
on C′.

For (X̄, X) in C′ and a monotone injection f : [m] → [n], we have the
characteristic map Xf → X which we can use to compactify Xf (teardrop).
This compactification is understood in the following definition:

F %(X̄,X) := hocolim
f

F (X̄f , Xf ) .

The homotopy colimit is taken over the category whose objects are mono-
tone injections f : [m] → [n], with arbitrary m,n ≥ 0 ; a morphism from f
to g is a commutative square of monotone injections

[m]
f−−−−→ [n]

y
x

[p]
g−−−−→ [q] .

We can now proceed as in the second proof of 1.1. The filtration of X by
skeletons Xk leads to a filtration of F %(X̄, X) by subspectra F %(X̄k, Xk).
Here another teardrop construction is understood. By inspection,

F %(X̄k, Xk)
/
F %(X̄k−1, Xk−1) ' Sk ∧ F (X̄[k], X[k]) .
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From our extra hypothesis on F , we then get isomorphisms

πn

(
F %(X̄k, Xk)

/
F %(X̄k−1, Xk−1)

) '
∏

x∈Xk

πn−kF (∗, ∗)

for n ∈ Z, and this shows immediately that F % is homotopy invariant and
excisive, and even pro–excisive. (Imitate the second proof of 1.1 ; use homol-
ogy with locally finite coefficients to describe the E2–term of the appropriate
spectral sequence converging to π∗F %(X̄,X).) Finally the assembly map

α : F %(X̄,X) −→ F (X̄,X)

is obvious, and it is an isomorphism when (X̄,X) = (∗, ∗). ¤

4.7. Observation. If F in 4.4. is already pro–excisive, then the assembly
α from F %(X̄,X) to F (X̄, X) is a homotopy equivalence for every (X̄, X).

Proof. Fix F , homotopy invariant and pro–excisive. We lose nothing by
restricting F to C′ (see proof of 4.4). When (X̄,X) = (∗, ∗), the assembly α
is an isomorphism by 4.4. By pro–excision, assembly is then an isomorphism
for any (X̄,X) where X is discrete. For arbitrary (X̄, X) in C′, we can
argue by induction on skeletons: X is the strict and homotopy pushout of
a diagram

Xk−1 ←− ∂∆k×Xk
⊂−→ ∆k×Xk .

Each of the spaces in this diagram has a canonical (teardrop) compactifi-
cation ; two of the spaces in the diagram have dimension < k, the third is
homotopy equivalent (with control) to a discrete space. Note that we use
the condition on small cells at this point. ¤

4.8. Corollary. If F in 4.4. is pro–excisive then there exists a chain of
natural weak homotopy equivalences

F (X̄, X) ' . . . ' X• ∧ F (∗, ∗)Ω

where F (∗, ∗)Ω is an Ω–spectrum envelope of F (∗, ∗).

Proof. We may restrict to C′. We may also assume F is a functor from con-
trol spaces to CW–Ω–spectra. Here it is understood that the morphisms in
the category of CW–Ω–spectra are functions, not maps, in the language of
[Ad, III§2]. Reason for making this technical assumption: the category of
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CW–Ω–spectra has arbitrary and well-behaved products whereas the cate-
gory of CW–spectra does not. Writing 〈' and '〉 for weak homotopy equiv-
alences going in the direction indicated, we have

F (X̄, X) 〈' F %(X̄, X)

= hocolim
f

F (X̄f , Xf )

'〉 hocolim
f :[m]→[n]

F (X̄n, Xn)

'〉 hocolim
f :[m]→[n]

∏

y∈Xn

cofiber
[
F (X̄n r y, Xn r y) −→ F (X̄n, Xn)

]

〈' hocolim
f :[m]→[n]

∏

y∈Xn

F (y, y)

∼= hocolim
f :[m]→[n]

∏

y∈Xn

F (∗, ∗) .

The first '〉 is induced by the projections pf : Xf → Xn, for f from
[m] to [n], where Xn must be compactified in such a way that pf extends
to a morphism of control spaces restricting to a homeomorphism of the
singular sets. Again, this uses the small cells condition. The second of the
weak homotopy equivalences labelled 〈' is an inclusion, and it is a weak
homotopy equivalence by excision.

We conclude that a homotopy invariant and pro–excisive functor F on
C′ is determined, up to a chain of weak homotopy equivalences, by what it
does to the control space (∗, ∗). Hence such an F is related by a chain of
natural weak homotopy equivalences to the functor

(X̄, X) 7→ X• ∧ F (∗, ∗)Ω

whose CW–approximation is homotopy invariant and pro–excisive by 4.3.
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Pro–Excisive Functors

Michael Weiss and Bruce Williams

Abstract. We classify homotopy invariant and pro–excisive functors F
from Euclidean neighbourhood retracts to spectra. The pro–excision axiom
ensures that π∗F is a generalized “locally finite” homology theory.

0. Introduction

Index theorems usually involve some form of homology, as a receptacle for
the symbol . Proofs of index theorems often involve some form of locally fi-
nite homology as well. Locally finite homology is so useful in this connection
because it has some contravariant features in addition to the usual covariant
ones. Thus, a proper map f : X → Y (details below) between locally com-
pact spaces induces a map f∗ in locally finite homology, going in the same
direction ; but an inclusion j of an open subset V ⊂ X induces a wrong way
map j∗ from the locally finite homology of X to that of V . In the case of
singular locally finite homology, this is clear from the definition

H f̀
∗ (X) := lim

U
H∗(X,U)

where the inverse limit is taken over all U ⊂ X with compact complement.
(Note the excision property H∗(X, U) ∼= H∗(V, V ∩ U) which applies when
X r U is compact and contained in V .)

In practice, when locally finite homology makes its appearance in the
proof of an index theorem, or elsewhere, it may not be immediately recog-
nizable as such. If the contravariant features are not needed, then theorem
1.2 below, essentially quoted from [WWA], should solve the problem. A
recognition problem of this sort with a similar solution appears in the work
on the Novikov conjecture of [CaPe]. (To see the similarity, note for example
that a reduced Steenrod homology theory applied to one-point compactifi-
cations of locally compact subsets of some Rn makes a perfectly good locally
finite homology theory.) If the contravariant features are relevant, then the-
orem 1.2 is not good enough and instead theorem 2.1 below should be used.

1991 Mathematics Subject Classification. Primary 55N20; Secondary 55N07, 55P42,
19D10, 57Q10.
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We have used it in [DWW], in the proof of a parametrized index theorem
for the algebraic K-theory Euler class. The proof is outlined below in §3.
We emphasize that this proof is not analytic. It is part of a topological
reply to the paper by Bismut and Lott [BiLo] and to the “Lott challenge”
which asked for an explanation in topological language of a Riemann–Roch
theorem for flat vector bundles [BiLo, Thm. 0.1].

While this may not be directly related to the Novikov conjecture, the
reader should realize that index theorems relating Euler class and Euler
characteristic can often be strengthened by keeping track of Poincaré dual-
ity. For example, the Euler characteristic of a closed smooth oriented man-
ifold M4k may be regarded for simplicity as an element in the topological
K-group Ktop

0 (∗) ∼= Z. Keeping track of the Poincaré duality, one obtains
much more: an element in

Ktop
0 (BZ/2) ∼= Z⊕ Ẑ2

[AtSe] whose first component is the Euler characteristic of M , and whose
second component is the difference of Euler characteristic and signature
divided by two. The relationship between Euler class and L–class is similar.
A strengthened index theorem along these lines, parametrized and with
plenty of algebraic K-theory instead of topological K-theory, is already
implicit in [WW3] and may be more explicit in the next revision.

1. Excision and Proper Maps

Recall that a map f : X → Y between locally compact spaces is proper if it
extends to a continuous pointed map f• : X• → Y • between their one-point
compactifications. Note also that, in general, not every pointed continuous
map X• → Y • is of the form f• for a proper f : X → Y . Let E be the
category of ENR’s (euclidean neighborhood retracts), with proper maps as
morphisms. Let E• be the larger category whose objects are the ENR’s, and
where a morphism from X → Y is a continuous pointed map X• → Y •.
The goal is to characterize functors of the form

(*) X 7→ X• ∧ Y ,

where Y is a CW–spectrum and an Ω–spectrum, by their homotopy invari-
ance and excision properties. (We call Y an Ω–spectrum if the adjoints of
the structure maps ΣYn → Yn+1 are homotopy equivalences Yn → ΩYn+1.)
Reason for setting this goal: π∗(X• ∧ Y ), as a functor in the variable X,
has all the properties one expects from a locally finite homology theory—
details below, just before Thm. 1.3. We may view (*) as a functor from E

to spectra, or as a functor from E• to spectra, so the task is twofold.
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1.1. Terminology. A commutative square of locally compact spaces and
proper maps

X1 −−−−→ X2y
y

X3 −−−−→ X4

is a proper homotopy pushout square if the resulting proper map from the
homotopy pushout of X3 ←− X1 −→ X2 to X4 is a proper homotopy equiva-
lence. A covariant functor F from E to CW–spectra is homotopy invariant
if it takes proper homotopy equivalences to homotopy equivalences. A ho-
motopy invariant F is excisive if it takes homotopy pushout squares in E

to homotopy pushout squares of spectra, and F (∅) is contractible.
Suppose that F is homotopy invariant and excisive, and suppose that X

in E is discrete. For any y ∈ X, we have a homotopy equivalence

F (Xry) ∨ F (y) −→ F (X)

by excision, and hence a projection F (X) → F (y), well defined up to homo-
topy. We call F pro–excisive if these projection maps induce an isomorphism

πnF (X) −→
∏

y∈X

πnF (y) (n ∈ Z) .

Example. Let Y be a CW–spectrum. Assume also that Y is an Ω–spectrum,
or that Y is the suspension spectrum of a CW–space. Then the functor tak-
ing X to the standard CW–approximation of X•∧Y is a homotopy invariant
and pro–excisive functor from ENR’s to CW–spectra. See [WWA, 4.3] for
the proof. Warning: Be sure to use the correct topology on X•. Note that
X can be a countably infinite discrete set, or the universal cover of a wedge
of two circles, or worse. Illustration: Suppose Y is the sphere spectrum.
Then πn(X• ∧ Y ) ∼= πs

n(X•) and this can be interpreted via transversal-
ity as the bordism group of framed manifolds equipped with a proper map
to X. The excision properties follow easily from this interpretation. In the
following theorem we invoke a functorial construction which associates to
each CW–spectrum Y a CW–Ω–spectrum YΩ and a homotopy equivalence
Y → YΩ.

1.2. Theorem. If F from E to CW–spectra is homotopy invariant and pro–
excisive, then there exists a chain of natural weak homotopy equivalences

F (X) ' . . . ' X• ∧ F (∗)Ω .
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Proof. This is contained in Cor. 4.8 of [WWA], which is about homotopy
invariant and pro–excisive functors from control spaces to spectra. A control
space is a pair (X̄, X) where X̄ is compact, X is open dense in X̄, and X
is an ENR. A morphism of control spaces, f : (X̄1, X1) → (X̄2, X2), is a
map of pairs such that f−1(X2) = X1. Writing C for the category of control
spaces, we see that E is a retract of C via

X 7→ (X•, X) (X̄,X) 7→ X .

Hence any homotopy invariant and strongly excisive F on E determines one
on C, and this is covered by Thm. 4.4 of [WWA]. ¤

2. Excision and One-Point Compactification

Here we are interested in functors from E•, the “enlarged” category of
ENR’s, to spectra. Such a functor will be called homotopy invariant and
pro–excisive if its restriction to E has these properties. Before proving any
theorems about pro–excisive functors on E•, we elucidate the structure of
E•. Note that every diagram of ENR’s of the form

(*) X ⊃ V
g−→ Y

where V is open in X and g is proper, gives rise to a continuous pointed
map X• → Y • which agrees with g on V and maps the complement of V
to the base point in Y •. Clearly every continuous pointed map X• → Y •

arises in this way, for unique V and g, so that (*) may be regarded as the
description of a typical morphism in E•. If it happens that V = X in (*),
then the morphism under consideration is in E. If it happens that g = id,
then we must think of the morphism as some kind of reversed inclusion. We
see from (*) that every morphism in E• can be written in the form gh, where
g is in E and h is a reversed inclusion of an open subset. This decomposition
is unique.

A functor F from E• to CW–spectra is therefore a gadget which to every
X in E• associates a CW–spectrum F (X), to every proper map g : X → Y
a map F (X) → F (Y ), and to every inclusion V ⊂ X of an open subset,
a wrong way map F (X) → F (V ) which we think of as a restriction map.
Certain associativity relations and identity relations must hold—after all, a
functor is a functor.

Similarly, a natural transformation τ : F1 → F2 between functors from
E• to spectra is a gadget which to every X in E• associates a map F1(X) →
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F2(X) such that the diagrams

F1(X) τ−−−−→ F2(X)
yg∗

yg∗

F1(Y ) τ−−−−→ F2(Y )

and

F1(X) τ−−−−→ F2(X)
yrestriction

yrestriction

F1(V ) τ−−−−→ F2(V )

commute, for every proper g : X → Y and every inclusion of an open
subset V ⊂ X. In particular, the natural weak homotopy equivalences in
the following theorem 2.1. are gadgets of this type. Thus 2.1 is not a formal
consequence of 1.2.

2.1. Theorem. If F from E• to CW–spectra is homotopy invariant and
pro–excisive, then there exists a chain of natural weak homotopy equiva-
lences

F (X) ' . . . ' X• ∧ F (∗)Ω .

Proof. Let E•1 be the full subcategory of E• consisting of those objects which
are geometric realizations of simplicial sets. Let E•2 be the full subcategory
of E• consisting of the objects X such that X• is homeomorphic to the
geometric realization of a pointed finitely generated simplicial set. Note that
E•2 is equivalent to the category of finitely generated pointed simplicial sets,
where the morphisms are the pointed continuous maps between geometric
realizations. Let ι1 : E•1 → E• and ι2 : E•2 → E• be the inclusion functors.
Our strategy is to show that F ι2 determines F ι1, up to a natural chain of
weak homotopy equivalences. It is comparatively easy to analyze F ι2 and to
recover F from F ι1, up to a natural chain of weak homotopy equivalences.

We shall pretend that E•, E•1 and E•2 are small categories ; the truth is
of course that they are equivalent to small categories. We can also throw in
a few technical assumptions about F , as follows. Each spectrum F (X) is
made up of pointed simplicial sets Fn(X) and simplicial maps from ΣFn(X)
to Fn+1(X), for n ∈ Z. For each morphism X → X ′ in E•, the induced
map F (X) → F (X ′) is in fact a function [Ad, III§2], given by compatible
simplicial maps Fn(X) → Fn(X ′) for all n ∈ Z. Finally, each F (X) is an
Ω–spectrum. These assumptions facilitate the definition of homotopy limits.

Step 1. For Z in E•1 we have the canonical map

(**) F ι1(Z) −→ holim
K

F ι2(Z rK) .

where K runs over all closed subsets of Z such that Z r K is in E•2 and
Z r K has compact closure in Z. We want to think of (**) as a natural
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transformation between functors on E•1, in the variable Z. Thus if Z1 and
Z2 are in E•1, and f : Z•1 → Z•2 is a continuous pointed map, and L ⊂ Z2

is closed, and the closure of Z2 r L in Z2 is compact, we let f∗(L) be the
inverse image of L under f , minus the base point. Then we have

holim
K

F ι2(Z1 rK) −→ holim
L

F ι2(Z1 r f∗L) −→ holim
L

F ι2(Z2 r L) .

Step 2. We shall verify that the codomain of (**) has certain excision
properties. From a strict pushout square of (realized) simplicial sets, all in
E•1, and simplicial maps

(***)

Z1
⊂−−−−→ Z2y

y
Z3

⊂−−−−→ Z4

and a cofinite simplicial subset K ⊂ Z4, we obtain another pushout square

K1 −−−−→ K2y
y

K3 −−−−→ K4

where Ki is the inverse image of K in Zi. Then the spaces Zi r Ki form
a proper homotopy pushout square, so that the spectra F ι2(Zi rKi) form
a homotopy pushout square, alias homotopy pullback square. Passing to
homotopy limits and noting that a homotopy limit of homotopy pullback
squares is a homotopy pullback square, we see that the codomain of (**)
does indeed have certain excision properties: it takes (***) to a homotopy
pullback square alias homotopy pushout square. (We have taken the liberty
to “prune” the indexing categories for the homotopy limits involved. This
is justified by [DwKa, 9.3].)

In particular, the filtration of an arbitrary Z in E•1 by skeletons leads to
a filtration of domain and codomain of (**), and by excision and inspection
the induced maps of filtration quotients are weak homotopy equivalences.
Hence (**) is a weak homotopy equivalence, by induction on the dimension
of Z.

Step 3. The functor F ι2 on E•2 is homotopy invariant and excisive in the
following sense. For any Z in E•2, the map

F ι2(Z×[0, 1]) → F ι2(Z)



Pro–Excisive Functors 359

induced by projection is a homotopy equivalence. The square of spectra

F ι2(Z1 ∩ Z2) −−−−→ F ι2(Z1)y
y

F ι2(Z2) −−−−→ F ι(Z1 ∪ Z2)

is a weak homotopy pushout square provided Z•1 , Z•2 are geometric realiza-
tions of pointed simplicial subsets of a finitely generated pointed simplicial
set. Further, F ι2(∅) is weakly contractible. This follows directly from our
hypotheses on F .

Step 4. The functor F ι2 is related to Z 7→ Z•∧F (∗) by a chain of natural
weak homotopy equivalences. The argument follows the lines of [WWA, §1].
For Z in E•2 let simp(Z•) be the category whose objects are maps ∆n → Z•

and whose morphisms are linear maps f∗ : ∆m → ∆n, over Z•, induced by
some monotone f from {0, 1, . . . , m} to {0, 1, . . . , n}. Let FZ• be the functor
from simp(Z•) to spectra taking g : ∆n → Z• to F (∆n), and let

F %(Z•) := hocolim FZ• .

Each g : ∆n → Z• in simp(Z•) is a morphism ∆n → Z in E•2 which induces
g∗ from F ι2(∆n) = F (∆n) to F ι2(Z). Collecting all these, we have the
assembly

α : F %(Z•) −→ F ι2(Z) .

The domain of α is homotopy invariant and excisive like F ι2, but F %(∅•)
need not be contractible. However, the map of vertical (homotopy) cofibers
in

F %(∅•) α−−−−→ F ι2(∅)y
y

F %(Z•) α−−−−→ F ι2(Z)

is a natural transformation between homotopy invariant and excisive func-
tors in the variable Z, and it is clearly a homotopy equivalence when Z is a
point and when Z is empty. By Eilenberg–Steenrod arguments, it is always
a homotopy equivalence. Further, F %(Z•) can be related to Z•+ ∧ F (∗) as
in [WWA, §1].

Step 5. We must verify that F can be recovered from F ι1. For every X
in E•, the map

F (X) −→ hocolim
Z→X

F (Z)
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is a homotopy equivalence. The hocolim is taken over the category with
objects Z → X, where Z is in E•1. The claim is obvious for X in E•1. The
general case follows because every X in E• is a retract of some object in
E•1. ¤

Remark. Theorems 1.3 and 2.1 are reminiscent of uniqueness and existence
theorems for generalized Steenrod homology theories, [KKS], [EH], [M]. For
variations and applications see [CaPe].

3. An Example

For the purposes of this section, a control space is a pair of spaces (Ȳ , Y )
where Ȳ is locally compact Hausdorff, Y is open dense in Ȳ , and Y is
an ENR. Informally, the set Ȳ r Y is the singular set, whereas Y is the
nonsingular set. A morphism of control spaces is a continuous proper map
of pairs f : (Ȳ , Y ) → (Z̄, Z) such that f−1(Z) = Y . Note that we are less
restrictive here than in [WWA, §4] because we allow Ȳ to be noncompact.
In any case these ideas come from [ACFP].

Fix a control space (Ȳ , Y ). By a geometric module on Y we mean a free
abelian group B with an (internal) direct sum decomposition

B =
⊕

x∈Y

Bx

where each Bx is finitely generated, and the set {x ∈ Y | Bx 6= 0} is closed
and discrete in Y . Given two geometric modules B and B′ on Y , a controlled
homomorphism f : B → B′ is a group homomorphism, with components
fx

y : Bx → By say, subject to the following condition. For any z ∈ Ȳ r Y

and any neighborhood V of z in Ȳ , there exists a smaller neighborhood W
of z in Ȳ such that fx

y = 0 and fy
x = 0 whenever x ∈ W and y /∈ V . Clearly

the composition of two geometric homomorphisms B → B′, B′ → B′′ is a
geometric homomorphism B → B′′.

For a geometric module B on Y and a neighborhood U of Ȳ rY in Y , we
let BU be the geometric submodule of B which is the direct sum of the Bx

for x ∈ U . Given B and B′, as before, a germ of controlled homomorphisms
from B to B′ is an equivalence class of pairs (U, f : BU → B′). Here
(U, f : BU → B′) and (W, g : BW → B′) are equivalent if f and g agree on
BU∩W .

A controlled homomorphism germ as above is invertible if it is an isomor-
phism in the germ category. Geometric modules on Y and invertible germs
of controlled homomorphisms between them form a symmetric monoidal
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category. With this we can associate a K-theory spectrum, using the con-
struction of [Se], say. Since it depends ultimately on (Ȳ , Y ), we denote it by
E(Ȳ , Y ). It is clear that E(Ȳ , Y ) is covariantly functorial in (Ȳ , Y ). Finally
we put

F (X) := E
(
X×[0, 1], X×[0, 1)

)

so that F is a functor from ENR’s and proper maps to spectra. It is well
known [ACFP] that F is homotopy invariant and excisive on the category of
compact polyhedra and piecewise linear maps. It follows immediately that F
is also homotopy invariant and excisive on the category of compact ENR’s,
since every compact ENR is a retract of a compact polyhedron. Using the
result of [Ca], in addition to arguments proving excision as in [ACFP] or
[Vog], one can verify that F is in fact homotopy invariant and pro–excisive
on the category E of all ENR’s and their proper maps. We hope to give
more details elsewhere.

The functor F has an extension to E•, the “enlarged” category of ENR’s.
To understand this extension, recall the canonical decomposition of mor-
phisms X → Y in E• as reversed inclusion X ⊃ V of an open subset,
followed by a proper map g : V → Y . We know already how the proper map
g : V → Y induces g∗ : F (V ) → F (Y ), so that our task now is to produce a
restriction map F (X) → F (V ) which we may (pre–)compose with g∗. Now
the word restriction almost gives it away. Recall that F (X) was constructed
as the K-theory of a certain symmetric monoidal category whose objects
are the geometric modules on X×[0, 1). We can indeed restrict a geometric
module B on X×[0, 1) to V×[0, 1) by discarding all the Bz for z /∈ V×[0, 1).
Similarly, if f : B → B′ is a morphism of geometric modules on X×[0, 1),
we restrict by discarding all the fy

z where y /∈ V ×[0, 1) or z /∈ V ×[0, 1).
Now it is important to realize that restriction, as we have defined it, is

not a functor from the category of geometric modules on X×[0, 1) to the cat-
egory of geometric modules on V×[0, 1). It does not respect composition of
controlled homomorphisms. However, restriction is compatible with passage
to controlled homomorphism germs, and after passage to germs restriction
does respect composition. This is easily verified. Hence we have enough of
a restriction functor to get an induced restriction map F (X) → F (V ).

It is known [ACFP] that F (∗) = E
(
[0, 1], [0, 1)

) ' S1 ∧ K(Z) where
K(Z) is the algebraic K-theory spectrum of Z. Therefore, by theorem 2.1,
there exists a chain of natural weak homotopy equivalences

(**) F (X) ' . . . ' X• ∧ S1 ∧K(Z)
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for X in E•. We stress once again that each of the natural homotopy equiv-
alences in the chain is natural for arbitrary morphisms in E•, not just those
in the subcategory E.

The functor F has a nonlinear version which is used in [DWW] to state
and prove an index theorem. We proceed to explain how, keeping the linear
F for simplicity. A key fact is that F comes equipped with a rule which
selects for each X in E• a point 〈〈X〉〉 in the infinite loop space Ω∞+1F (X),
the microcharacteristic of X. It is a refined sort of Euler characteristic. For
example, when X is compact and connected, then the component of 〈〈X〉〉
in

π0(Ω∞+1F (X)) ∼= Z

(see (**) above) is the “usual” Euler characteristic of X. Note however
that the microcharacteristic is a point, not a connected component. Mi-
crocharacteristics enjoy some naturality. Namely, bending the truth just
a little, we may say that for any open subset V ⊂ X, the restriction
Ω∞+1F (X) → Ω∞+1F (V ) (explained earlier) takes 〈〈X〉〉 to 〈〈V 〉〉.

Let γ : E → X be a fiber bundle whose fibers Ex are homeomorphic to
Rn. We can make another fibration on X, the Euler fibration of γ, with infi-
nite loop space fiber Ω∞+1F (Ex) over x ∈ X. Then x 7→ 〈〈Ex〉〉 determines
a section of the new fibration, which we call the Euler section. It is a refined
sort of Euler class. Note that we have omitted a number of serious technical
points (what is the topology on the total space of the Euler fibration ; why
is the Euler section continuous).

Digression. The geometric significance of the Euler section is clearer in
the nonlinear set-up: when dim(X) < (4n/3)−5, say, the structure group of
γ can be reduced from TOP(Rn) to TOP(Rn−1) if and only if the (nonlinear)
Euler section of γ is nullhomotopic. End of digression.

Let Mn be a closed topological manifold with tangent bundle TM → M .
The tangent bundle is a fiber bundle with distinguished “zero” section and
with fibers homeomorphic to Rn ; we can sufficiently characterize it by
assuming that it comes with an exponential map exp : TM → M which is
left inverse to the zero section and embeds each fiber. There is a map ℘ from
Ω∞+1F (M) to the space of sections of the Euler fibration of the tangent
bundle which takes z ∈ Ω∞+1F (M) to the section

x 7→ res(z) ∈ Ω∞+1F (exp(TxM)) ∼= Ω∞+1F (TxM)

where res means restriction F (M) → F (exp(TxM)). At this point it is nec-
essary to know what the restriction maps do, not just that they exist. This
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is what we have theorem 2.1 for. It follows quite easily that ℘ is a version of
Poincaré duality. In particular, ℘ is a homotopy equivalence. By the natu-
rality property of microcharacteristics, ℘ takes the microcharacteristic 〈〈M〉〉
to the Euler section of the tangent bundle. Hence we have proved a version
of Heinz Hopf’s index theorem: the Poincaré dual of the Euler characteristic
of M is the Euler class of M . This works quite well for families, and then
the advantage of working with algebraic K-theory as opposed to working
with the group K0 becomes apparent.
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