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Foreword to the first edition (1970)

This book is being published in the form in which it was originally planned
and written. In some ways, this is not satisfactory : the demands made on the
reader are rather heavy, though this is partly also due to a systematic attempt
at completeness (‘simplified’ proofs have appeared of some of my results, but in
most cases the simplification comes primarily from a loss of generality).

However, the partly historical presentation adopted here has its advantages :
the reader can see (particularly in §5 and §6) how the basic problem of surgery
leads to algebra, before meeting the abstract presentation in §9. Indeed, this
relation of geometry to algebra is the main theme of the book. I have not in
fact emphasised the algebraic aspects of the L-groups, though this is mentioned
where necessary in the text : in particular, I have omitted the algebraic details
of the calculations of the L-groups, since this is lengthy, and needs a different
background. Though some rewriting is desirable (I would prefer to recast several
results in the framework suggested in §17G; also, some rather basic results were
discovered too late to be fully incorporated at the appropriate points – see the
footnotes and Part 4) this would delay publication indefinitely, so it seemed
better for the book to appear now, and in this form.

Chapters 0–9 were issued as duplicated notes from Liverpool University in
Spring, 1967. They have been changed only by correcting minor errors, adding
§1A (which originated as notes from Cambridge University in 1964), and cor-
recting a mistake in the proof of (9.4). Part 2 was issued (in its present form)
as duplicated notes from Liverpool University in May 1968. The rest of the
material appears here for the first time.

Foreword to the second edition

It is gratifying to learn that there is still sufficient interest in this book for
it to be worth producing a new edition. Although there is a case for substan-
tially rewriting some sections, to attempt this would have delayed production
indefinitely.

I am thus particularly pleased that Andrew Ranicki has supplemented the
original text by notes which give hints to the reader, indicate relevant subsequent
developments, and say where the reader can find accounts of such newer results.
He is uniquely qualified to do this, and I am very happy with the result.

The first edition appeared before the days of TEX, so the entire manuscript
had to be re-keyed. I am grateful to Iain Rendall for doing this efficiently and
extremely accurately.

C. T. C. Wall, Liverpool, November 1998.

ix





Editor’s foreword to the second edition

The publication of this book in 1970 marked the culmination of a particularly
exciting period in the history of the topology of manifolds. The world of high-
dimensional manifolds had been opened up to the classification methods of
algebraic topology by

• Thom’s work on transversality and cobordism (1952)

• the signature theorem of Hirzebruch (1954)

• the discovery of exotic spheres by Milnor (1956).

In the 1960’s there had been an explosive growth of interest in the surgery
method of understanding the homotopy types of manifolds (initially in the dif-
ferentiable category), including such results as

• the h-cobordism theorem of Smale (1960)

• the classification of exotic spheres by Kervaire and Milnor (1962)

• Browder’s converse to the Hirzebruch signature theorem for the existence
of a manifold in a simply connected homotopy type (1962)

• Novikov’s classification of manifold structures within a simply connected
homotopy type (1962)

• the s-cobordism theorem of Barden, Mazur and Stallings (1964)

• Novikov’s proof of the topological invariance of the rational Pontrjagin
classes of differentiable manifolds (1965)

• the fibering theorems of Browder and Levine (1966) and Farrell (1967)

• Sullivan’s exact sequence for the set of manifold structures within a simply
connected homotopy type (1966)

• Casson and Sullivan’s disproof of the Hauptvermutung for piecewise linear
manifolds (1967)

• Wall’s classification of homotopy tori (1969)

• Kirby and Siebenmann’s classification theory of topological manifolds (1970).
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The book fulfilled five purposes, providing :

1. a coherent framework for relating the homotopy theory of manifolds to the
algebraic theory of quadratic forms, unifying many of the previous results;

2. a surgery obstruction theory for manifolds with arbitrary fundamental
group, including the exact sequence for the set of manifold structures
within a homotopy type, and many computations;

3. the extension of surgery theory from the differentiable and piecewise linear
categories to the topological category;

4. a survey of most of the activity in surgery up to 1970;

5. a setting for the subsequent development and applications of the surgery
classification of manifolds.

However, despite the book’s great influence it is not regarded as an ‘easy read’.
In this edition I have tried to lighten the heavy demands placed on the reader
by suggesting that §§ 0, 7, 8, 9, 12 could be omitted the first time round – it is
possible to take in a substantial proportion of the foundations of surgery theory
in Parts 1 and 2 and the applications in Part 3 without these chapters.

Readers unfamiliar with surgery theory should have the papers of Milnor [M12],
Kervaire and Milnor [K4] at hand, and see how the construction and classifica-
tion of exotic spheres fits into the general theory. Also, the books of Browder
[B24] and Novikov [N9] provide accounts of surgery from the vantage points of
two pioneers of the field.

My own experience with reading this book was somewhat unusual. I was a
first-year graduate student at Cambridge, working on Novikov’s paper [N8],
when the book reached the bookshops in early 1971∗. When I finally acquired
a copy, I was shocked to note that the very last reference in the book was to
[N8], so that in effect I read the book backwards. The book accompanied me
throughout my career as a graduate student (and beyond) – I always had it with
me on my visits home, and once my mother asked me : ‘Haven’t you finished
reading it yet?’ My own research and books on surgery have been my response
to this book, which I have still not finished reading.

Preparing the second edition of the book was an even more daunting experience
than reading the first edition. It would be impossible to give a full account of
all the major developments in surgery which followed the first edition without
at least doubling the length of the book – the collections of papers [C7], [F10]
include surveys of many areas of surgery theory. In particular, I have not even
tried to do justice to the controlled and bounded theories (Quinn [Q6], Ferry and
Pedersen [F9]), which are among the most important developments in surgery

∗I have a vivid memory of telephoning the Foyles bookshop in London in search of a copy,
and being directed to the medical department.
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since 1970. But it is perhaps worth remarking on the large extent to which the
formal structures of these theories are patterned on the methods of this book.

In preparing this edition I have added notes at the beginnings and ends of
various chapters, and footnotes; I have also updated and renumbered the refer-
ences. All my additions are set in italic type. However, I have not modified the
text itself except to correct misprints and to occasionally bring the terminology
into line with current usage.

A. A. Ranicki, Edinburgh, January 1999.





Introduction

This book represents an attempt to collect and systematise the methods and
main applications of the method of surgery, insofar as compact (but not nec-
essarily connected, simply connected or closed) manifolds are involved. I have
attempted to give a reasonably thorough account of the theoretical part, but
have confined my discussion of applications mostly to those not accessible by
surgery on simply connected manifolds (which case is easier, and already ade-
quately covered in the literature).

The plan of the book is as follows. Part 0 contains some necessary material
(mostly from homotopy theory) and §1, intended as a general introduction to
the technique of surgery. Part 1 consists of the statement and proof of our main
result, namely that the possibility of successfully doing surgery depends on
an obstruction in a certain abelian group, and that these ‘surgery obstruction
groups’ depend only on the fundamental groups involved and on dimension
modulo 4. Part 2 shows how to apply the result. §10 gives a rather detailed
survey of the problem of classifying manifolds with a given simple homotopy
type. In §11, we consider the analogous problem for submanifolds : it turns out
that in codimension � 3 there are no surgery obstructions and in codimensions
1 and 2 the obstructions can be described by the preceding theory. Where
alternative methods of studying these obstructions exist, we obtain calculations
of surgery obstruction groups; two such are obtained in §12. In part 3, I begin
by summarising all methods of calculating surgery obstructions, and then apply
some of these results to homeomorphism classification problems : my results on
homotopy tori were used by Kirby and Siebenmann in their spectacular work
on topological manifolds. In Part 4 are collected mentions of several ideas, half-
formed during the writing of the book, but which the author does not have time
to develop, and discussions of some of the papers on the subject which have
been written by other authors during the last two years.

The order of the chapters is not artificial, but readers who want to reach the
main theorem as quickly as possible may find the following suggestions useful.
Begin with §1, and read §4 next. Then glance at the statements in §3 and skip
to §9 for the main part of the proof. Then read §10 and the first half of §11.
Beyond this, it depends what you want : for the work on tori (§15), for example,
you first need §12B, (13A.8) and (13B.8).

The technique of surgery was not invented by the author, and this book clearly
owes much to previous work by many others, particularly Milnor, Novikov and
Browder. I have tried to give references in the body of the book wherever a
result or proof is substantially due to someone else.
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Part 0

Preliminaries



Note on Conventions

Throughout this book we follow the convention (customary among topologists)
of writing the operator before the operand, and thus writing compositions from
right to left. Since the linear (and quadratic) algebra in this book is intimately
related to the topology, we are forced to adopt the corresponding conventions
there, with the following consequences.

Scalar multiplication in a module (which commutes with linear operators) is
written on the right, thus we habitually study right modules. Given a linear
map between free modules

α : V →W

where {ei} is a basis of V and {fj} a basis of W , we write

α(ei) =
∑
j

fjaji

and make α correspond to the matrix A with (A)ji = aji. Frequently we denote
an operator and its matrix by the same symbol, when the bases are understood.
We also use matrix notation more generally for maps into or from a direct sum
of modules, as e.g. in(

a1
a2

)
: V →W1 ⊕W2 , ( b1 b2 ) : W1 ⊕W2 → X .

The composite map is to be evaluated by the usual rule for matrix products,
not forgetting that we write composites from right to left. Thus, for example,
the composite of the two maps above is

( b1 b2 )

(
a1
a2

)
= b1a1 + b2a2 : V → X .

For our sign conventions see the beginning of §2.

2



0. Basic Homotopy Notions

First-time readers may omit this chapter, proceeding directly to §1.
We will make much use of the standard notions of CW complex and CW pair

(consisting of a complex and subcomplex [W44]). We also need more compli-
cated arrangements of spaces. CW lattices in general are discussed in several
papers by E. H. Spanier and J. H. C. Whitehead : see Vol. IV pp. 104–227 of
the latter’s collected works. We confine ourselves here to CW n-ads. A CW
(n+1)-ad consists, by definition, of a CW complex and n subcomplexes thereof.
In studying such an object, we are forced to consider the intersections of various
families of subcomplexes : there are, of course, 2n such. It is desirable to intro-
duce a systematic notation. We must index all these complexes by reference to
a standard model.

Consider an (n + 1)-ad in general as a set (the ‘total’ set) with n preferred
subsets. We can specify the intersections by a function S on the set of subsets
of {1, 2, . . . , n}, whose values are sets, and which preserves intersections (and
hence, we note, S is compatible with inclusion relations). Then S{1, . . . , n}
is the set, and the n preferred subsets are the values of S on the subsets of
{1, . . . , n} obtained by deleting one of its members. We denote S{1, . . . , n} by
|S|. If |S| is a topological space, the subsets inherit topologies, and we speak
of a topological (n + 1)-ad. For a CW (n + 1)-ad we require not merely that
|S| be a CW complex, but that the subsets be subcomplexes. We speak of a
finite CW (n + 1)-ad if |S| is a finite complex. We can also regard the lattice
of subsets of {1, . . . , n} as a category 2n (the morphisms are inclusion maps) :
S is then an intersection-preserving functor from 2n to the category of sets or
spaces or CW complexes, and appropriate maps. We thus obtain categories of
(n+ 1)-ads : in the CW case we permit any continuous maps here.

There are many operations on (n + 1)-ads. The most natural ones arise as
composition with an intersection-preserving functor 2m → 2n : for example,

(1) Permutations (we introduce no special notation here).

(2) Given an injective map f : {1, . . . ,m} → {1, . . . , n}, take the induced
map of subsets. This includes (1), but we are more interested in the maps
∂i : 2

n−1 → 2n (1 � i � n) induced by

j �→ j (j < i) j �→ j + 1 (j � i) .

The corresponding functor from (n+1)-ads to n-ads corresponds to taking
number i of the n subspaces as total space, and using the intersections of
the others with it as subsets.

3



4 preliminaries

(3) We define a functor δi : 2
n−1 → 2n by δi(α) = ∂i(α) ∪ {i}. This corre-

sponds just to omitting the ith subset.

(4) Given f as in (2), we can take the inverse image of subsets. In particular,
∂i defines si : 2

n → 2n−1 (1 � i � n). This corresponds to introducing
|S| as new ith subset.

(5) In a category with initial object (the empty set or a base point), we can
introduce this object as new ith subset. We will denote the corresponding
operation on n-ads by σi : we can define σn simply by

σnS(X) = 0

σnS(α ∪ {n}) = S(α)

⎫⎬⎭α ⊂ {1, . . . , n− 1} .

The operations ∂i, δi, si, σi satisfy four analogues of the usual semi-
simplicial identities, with minor changes.

(6) Given an (m+ 1)-ad S and an (n+ 1)-ad T we define an (m+ n+ 1)-ad
S×T . If (for simplicity) we adjust notation so that T is defined on subsets
of {m+ 1, . . . ,m+ n}, then for α ⊂ {1, . . . ,m}, β ⊂ {m+ 1, . . . ,m+ n},
we define simply

S × T (α ∪ β) = S(α)× T (β) .
One can regard sn and σn as the operations of multiplying by the 2-ads
(pairs) ({P}, {P}) and ({P}, ∅) respectively, where P is a point.

(7) If S is an (n+1)-ad, we can form an n-ad by (e.g.) amalgamating the last
two subspaces. We will only use this construction in the case where these
two subspaces are disjoint, and will denote the n-ad by cS.

There are many other operations, and many further relations between these :
we will not attempt to list them here.

We next give a straightforward analogue of the usual mapping cylinder con-
struction for converting maps into inclusion maps. Suppose X a functor from 2n

to the category of topological spaces : we will define the mapping cube, M(X),
a topological (n+ 1)-ad. Begin with the disjoint union⋃

{X(α)× Iα′ : α ∈ {1, 2, . . . , n}} ,

where α′ denotes the complement of α in {1, . . . , n}. Now for i : α ⊂ β, we have
β′ ⊂ α′ and will identify each (x, t) ∈ X(α)×Iβ′ with (X(i)(x), t

) ∈ X(β)×Iβ′ .
Let |M(X)| be the identification space. There is a well-defined projection

p2 : |M(X)| → I{1,2,...,n} .

For t ∈ I{1,2,...,n}, we set t−1{0} = {i : 1 � i � n and t(i) = 0}, and similarly
for t−1{1}. Then p−1

2 (t) can be identified with X(t−1{0}). Define M(X)(α) =
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p−1
2 {t ∈ I{1,2,...,n} : t−1{1} ⊃ α′}. Then M(X)(α) ∩ M(X)(β) is defined by
t−1{1} ⊃ α′ ∪ β′ = (α∩ β)′, so equalsM(X)(α ∩ β). Thus we have a topological
(n + 1)-ad. There is a canonical inclusion X(α) ⊂ M(X)(α) : we define the t-
coordinate (uniquely) by t(α) = 0, t(α′) = 1. Moreover, in the diagram valid
for i : α ⊂ β,

X(α)

X(i)

��

� � �� M(α)
� �

��
X(β)

� � �� M(β)

there is a canonical homotopy making the diagram commute : viz. leave the x-
coordinate and the coordinates in α ∪ β′ fixed, but let each coordinate in β−α
have value t at stage t. In the case where X takes values in CW complexes and
cellular maps, it is easily verified by induction that M(X) is a CW (n+ 1)-ad.
Finally, X(α) is a deformation retract ofM(α) : we deform the coordinates in α
linearly to 0. In the case of finite CW complexes, this is even a cellular collapse,
so we have simple homotopy equivalences.

The above construction permits us to define homology, homotopy etc. of topo-
logical objects of type 2n (= functors from 2n to topological spaces) by con-
sidering only topological (n + 1)-ads. Our definitions will be self-consistent,
for if X is already a topological (n + 1)-ad, we have a well-defined projection
p1 : |M(X)| → |X | with each inverse image a cube, andM(X)(α) ⊂ p−1

1

(
X(α)

)
a homotopy equivalence. Thus in the CW case, p1 is a homotopy equivalence
of (n+ 1)-ads; in general, it is a singular homotopy equivalence.

We define the homology of a CW (n + 1)-ad K by chain groups : we take
the chains of |K| modulo the union (denoted by |∂K|) of all K(α) with α a
proper subset of {1, . . . , n}. For this we can use any coefficient module over the
group ring of π1(|K|), or analogously if |K| is not connected. The short exact
sequences of chain complexes

0→ C∗(∂iK)→ C∗(δiK)→ C∗(K)→ 0

induce the usual homology exact sequences of the (n + 1)-ad. Analogous ob-
servations apply to cohomology; for a topological (n + 1)-ad we use singular
chains.

Now let K be an (n+1)-ad in the category of based topological spaces. Define
F (K) as the function space of all maps I{1,...,n} → |K| such that Iα × 0α

′ →
K(α) for each α ⊂ {1, . . . , n}, and all proper faces with some coordinate 1 map
to the base point. Of course, we give F (K) the compact open topology, and
base point the trivial map. Now for r � 0, define πn+r(K) = πr

(
F (K)

)
: it is a

group for r � 1, abelian for r � 2.

The face operator ∂i induces (compose with Iδi) a projection F (K)→ F (∂iK).
This is a fibre map : the fibre is the subspace of maps sending the ith face to
a point. This is just F (σiδiK). We observe that this is the loop space (with
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respect to the ith variable) of F (δiK). Hence we have homotopy exact sequences

· · · → πr(∂iK)→ πr(δiK)→ πr(K)→ πr−1(∂iK)→ . . .

(indeed, we could map in any space, not just spheres).

We can also define bordism groups and obtain corresponding exact sequences.
We adopt the philosophy of [W13]. We first define the boundary (n + 1)-ad,
∂K, of K by

∂K(α) =
⋃
{K(β) : β ⊂ α, β �= α} .

We call an (n+1)-adM a manifold (n+1)-ad if for each α ⊂ {1, 2, . . . , n},M(α)
is a manifold with boundary ∂M(α). We obtain correspondingly PL manifold
(n + 1)-ads and smooth manifold (n + 1)-ads : in the latter case, we usually
assume that each M(α) and M(β) meet transversely at M(α ∩ β), so we have
a ‘variété à bord anguleux’ in the sense of Cerf [C12] or Douady [D3].

Note that the contracted n-ad cM is again a manifold n-ad. In the case when
|∂n−1M | and |∂nM | are disjoint, we regard either M or cM as a cobordism
between the n-ads ∂n−1M and ∂nM : the latter are effectively (n− 1)-ads since
∂n−1M = σnδn(∂n−1M); similarly for ∂nM .

For cobordism purposes we will always assume |M | (and hence each M(α)
)

compact. One can study cobordism of manifold (n + 1)-ads in general : this
study is meaningful only if we impose various restrictions on the manifolds
and cobordisms considered, with stronger restrictions on each |∂iM | than on
|M |. For example we have the plain bordism groups of an (n + 1)-ad, K.
Consider maps φ : M → K with M a (smooth, compact) manifold (n + 1)-
ad, dim |M | = m. Using disjoint unions of M gives the set of such (M,φ) the
structure of an abelian monoid. We set (M, ∅) ∼ 0 if there is a manifold (n+2)-
ad N with M = ∂n+1N , and an extension of φ to a map ψ : N → sn+1K of
(n + 2)-ads. Then set (M1, φ1) ∼ (M2, φ2) if (M1, φ1) + (M2, φ2) ∼ 0 (cf. the
definition of cobordism above). The usual glueing argument (note the utility
here of our corners) shows that this is an equivalence relation; it is evidently
compatible with addition. We thus obtain an abelian group Nm(K). Clearly
Nm(L) = Nm(σiL) : the inclusions ∂iK ⊂ δiK, σiδiK ⊂ K, and restriction
define sequences

· · · → Nm(∂iK)→ Nm(δiK)→ Nm(K)→ Nm−1(∂iK)→ . . .

which are easily seen to be exact. Since excision holds for unoriented bordism,
it is easily seen that Nm(K) ∼= Nm(|K|, |∂K|). This remark will not, however,
apply to all the generalisations which we will need.

We introduce a convention for the oriented case which will be useful later on.
Observe that for manifold (n+1)-ads in general, dimM(α)−|α| is independent
of α (we ignore cases M(α) = ∅ here). We denote this number by dimM{ } :
of course if M{ } is empty, this is a convention. Suppose |M | orientable : then
so is ∂|M | = ∪{M(α) : |α| = n− 1}; by downward induction on |α|, we deduce
that allM(α) are then orientable. More precisely, an orientation of |M | induces
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one on each M(α) in the following way : Let [M ] ∈ Hm(|M |, ∂|M |) be the
fundamental class. Let Λ|M | = ∪{M(α) : |α| � n− 2}. Then the image of [M ]
under

Hm(|M |, ∂|M |) ∂∗→ Hm−1(∂|M |) j∗→ Hm−1(∂|M |,Λ|M |)
∼= ⊕

1�i�n

Hm−1(|∂iM |, ∂|∂iM |)

(where j∗ is the inclusion map) shall be denoted by
∑

1�i�n(−1)i[∂iM ]. Now by
induction we obtain fundamental classes for eachM(α); the usual combinatorial
argument which shows that ∂2 = 0 in a simplicial complex demonstrates that
the class so obtained depends only on α (and not on any choice of construction).



1. Surgery Below the Middle Dimension

In order to decide if a space X is homotopy equivalent to a manifold it is
convenient to start with a normal map (φ, F ) : M → X from a manifold M ,
and to consider the possibility of converting (φ, F ) to a homotopy equivalence by
a sequence of surgeries. By definition, a normal map (φ, F ) is a map φ :M → X
together with a vector bundle ν over X and a stable trivialisation F of τM⊕φ∗ν.
This chapter describes the basic procedure of surgery on a normal map : an
element α ∈ πr+1(φ) can be killed by surgery on (φ, F ) if α can be represented
by an embedding f : Sr ×Dm−r → Mm such that (φ, F ) extends to a normal
bordism (ψ,G) : (N ;M,M+)→ X with

M+ = (M − f(Sr ×Dm−r)) ∪ Dr+1 × Sm−r−1 ,

N = M × I ∪f Dr+1 ×Dm−r .

The effect of the surgery is the bordant normal map (φ+, F+) : M+ → X given
by the restriction of (ψ,G). The relative homotopy groups in dimensions � r+1
are such that

πq(ψ) =
{ πq(φ)

πr+1(φ)/〈α〉 for
{ q � r

q = r + 1

with 〈α〉 ⊆ πr+1(φ) the Z[π1(X)]-submodule generated by α. Moreover, (φ, F )
can be obtained from (φ+, F+) by a complementary surgery killing an element
α+ ∈ πm−r(φ+). The main result of §1 is that every normal map (φ, F ) :M →
X can be made highly connected by surgery below the middle dimension, i.e. is
bordant to a normal map (φ′, F ′) :M ′ → X with

πr+1(φ
′) = 0 for 2r < m .

In this chapter, in addition to obtaining some useful theorems, we try to de-
scribe what surgery is about. Let X be a topological space (usually a CW com-
plex, and eventually a finite simplicial complex), M a manifold and φ :M → X
a map. Then the problem is to perform geometrical constructions onM (and φ)
to make φ as near to a homotopy equivalence (eventually, simple) as possible.

Here we only discuss one construction, which has variously been called spher-
ical modification [W36], χ-equivalence [M12], and Morse reconstruction [N4]
by different authors : we follow Milnor [M10] in calling it surgery. Let f :
Sr × Dm−r → Mm be an embedding. We will replace M by the manifold
M+ formed by deleting the interior of the image of f , and glueing in its place
Dr+1 × Sm−r−1. We must also do something with φ. The following seems to
be a better description of the process. We form a new manifold from the union

8
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of M × I and Dr+1 ×Dm−r by attaching Sr ×Dm−r to its image under f × 1.
Then M or rather M × 0 appears at the ‘lower’ end of N , and M+ at the ‘top’.
We describe this process as attaching an (r + 1)-handle to M × I.∗

M+

M × 0

M × 1

We will extend φ to a map ψ of all of N , not just the ends. This is (as is
well-known) a homotopy problem, and up to homotopy, we may regard N as
formed from M by attaching an (r+1)-cell, with attaching map f = f |Sr × 0.
So up to homotopy the construction is defined by

(i) The map f : Sr →M

(ii) A nullhomotopy of φ ◦ f .

But equivalence classes of such pairs define the relative homotopy group πr+1(φ).
Hence given α ∈ πr+1(φ), we may speak of surgery on the class α.

We now consider what conditions to impose in order to obtain results. Given
α, we would like to be able to do surgery on it. This requires a technique for
constructing embeddings f of Sr×Dm−r inMm. At the time of writing, no such
technique is known for a topological manifold:† we will assume, then, that M
is either a smooth or a piecewise linear manifold. Even in these cases, we need
a condition. Observe that Sr ×Dm−r is parallelisable. Thus if the embedding
f has the homotopy class of f : Sr → M , we must have f

∗
τM trivial (recall

that τM is the tangent bundle of M). As we are given f nullhomotopic in X ,
we can ensure this by requiring that τM be induced (by φ) from a bundle over
X . In fact, we will require less : namely, that there exists a bundle ν over X
(a vector bundle if M is smooth, a PL bundle if M is PL) such that φ∗ν is
(essentially) the stable normal bundle of M : a convenient way to express this
(suggested by J. F. Adams) is to give a stable trivialisation F of τM ⊕φ∗ν. We
will want this condition not only at the outset but at each stage of the surgery;

∗Every cobordism (W ;M1,M2) has a handle decomposition, so that it is a union of ele-
mentary cobordisms of the type (N ;M,M+) (Milnor [M12]).

†Recent results of Kirby, Siebenmann and Lees have now (1969) provided such a technique.
All our methods now extend to the topological case, with only trivial alteration. See [K9]
[K10], [L11], [K11].



10 preliminaries

the convenient way to do this is to impose the additional requirement that F
extend to a stable trivialisation of τN ⊕ ψ∗(ν) (where we identify τN |M with
the direct sum of τM and the trivial line bundle).

This leads us to the formulation which we will adopt for the remainder of this
book. Suppose given the space X , bundle ν, and an integer m. Consider the
set of triples (M,φ, F ): M a closed m-manifold (smooth or PL), φ : M → X
a map, F a stable trivialisation of τM ⊕ φ∗ν. Disjoint union gives an addition
operation on this set, which is commutative, associative, and has a zero (M
empty). Write (M1, φ1, F1) ∼ (M2, φ2, F2) if there exists a compact (m + 1)-
manifold N with ∂N = M1 ∪ M2, a map ψ : N → X extending φ1 and φ2,
and a stable trivialisation of τN ⊕ ψ∗ν extending F1 and F2. Some convention
is necessary here to frame the normal bundles of M1, M2 in N : we use the
inward normal along M1 and the outward normal along M2. It is now clear
that this is an equivalence relation : we write Ωm(X, ν) for the set of equivalence
classes. Clearly the above addition passes to equivalence classes; moreover, using
∂(M × I) =M × 0 ∪ M × 1 we see that (M,φ, F ) has inverse

(
M,φ, F ⊕ (−1)),

so that Ωm(X, ν) is an abelian group.

The following terminology was introduced by W. Browder [B21], [B24]. A
triple (φ, ν, F ) defines a normal map fromM to X ; and (N,ψ,G) gives a normal
cobordism.

The above equivalence is the same as equivalence by a sequence of surgeries.
This follows at once from the fact (see e.g. [M12]) that N can be obtained from
M × I by attaching a (finite) sequence of handles. We now give the theorem
which shows how we can do surgery.

Theorem 1.1. Let Mm be a smooth or PL manifold (perhaps with boundary),
φ : M → X a continuous map, ν a vector bundle or PL bundle over X, and
F a stable trivialisation of τM ⊕ φ∗ν. Then any α ∈ πr+1(φ), r � m − 2,
determines a regular homotopy class of immersions Sr ×Dm−r →M . We can
use the embedding f : Sr ×Dm−r → M to do surgery on α if and only if f is
in this class.

Proof First choose a representative for α, say

Sr

f1
��

� � i �� Dr+1

g1

��
M

φ �� X

The stable trivialisation F of τM ⊕ φ∗ν induces by f1 a stable trivialisation
of f∗

1 τM ⊕ f∗
1φ

∗ν = f∗
1 τM ⊕ i∗g∗1ν. But as Dr+1 is contractible, we obtain a

canonical trivialisation of g∗1ν, which induces a trivialisation of i∗g∗1ν. Putting
these two together gives a stable trivialisation of f∗

1 τM , i.e. a stable isomorphism
with it of the (trivial) tangent bundle of Sr ×Dm−r ⊂ Rm.
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We now appeal to the immersion classification theorems of Hirsch [H15] in the
smooth case and Haefliger-Poenaru [H3] in the PL case; or rather to a later
mild improvement by Haefliger [H6], as follows:†

Proposition. Let V v and Mm be smooth or PL manifolds, f : V → M
a map. Suppose V has a handle decomposition with no handle of dimension
> m− 2, and v � m. Then regular homotopy classes of immersions homotopic
to f correspond bijectively (by the tangent map) to stable homotopy classes of
stable bundle monomorphisms τV → f∗τM .

Thus if r � m − 2, our stable trivialisation determines a regular homotopy
class of immersions.

Now let f be an embedding. If we can use it to do surgery on α, it must belong
to the homotopy class ∂∗α: we suppose this. Then we can take f1 above to be
f |Sr × 0. We can certainly construct the manifold N as described above, and
use g1 to extend φ over it. The only remaining problem is whether F extends
to a stable trivialisation of τN ⊕ ψ∗ν.

Certainly it induces such a trivialisation on M × I: since the handle Dr+1 ×
Dm−r is contractible, we have a unique trivialisation there also. We must see
whether these agree on the intersection Sr × Dm−r – or equivalently, on Sr.
But the first stable trivialisation is f∗F ; the second is induced by a contraction
of Dr+1 and the isomorphism df of f∗τM and the trivial tangent bundle of
Sr×Dm−r. We saw above that these agree precisely when f lies in the specified
regular homotopy class. This completes the proof of (1.1).

Corollary. If m > 2r, we can do surgery on α.

For then we may suppose by a general position argument that the immersion f
defines an embedding of Sr × 0. It must then also embed some neighbourhood,
so we can obtain an embedding by shrinking the fibres.

This corollary resembles the original results of Milnor [M12] more closely than
the theorem does, so it may seem that in spite of the apparent generality r �
m − 2 we have gained little. The fact is that in the case m = 2r it is useful
to have the class of immersions and even when m = 2r + 1 we know that the
embedding f can be varied by a regular homotopy (but no more). Also, we do
not have to discuss structure groups of bundles and their Stiefel manifolds : this
is all taken care of by the appeal to the Proposition above.

We can deduce a theorem, like [W18, (1.4)].

Theorem 1.2. Assume the hypotheses of (1.1) with M compact and X a finite
simplicial complex. Then we can perform a finite sequence of surgeries on M
(with handles of dimensions � k) to make φ k-connected provided that m � 2k.
Thus every m-dimensional normal map is normally cobordant to a k-connected
one.

Proof Replace X by the mapping cylinder of φ, so that φ is an inclusion. We

†For the topological case see Lees [L11].
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must first show by induction on i that if Xi is a sequence of subcomplexes of
X , formed by attaching one at a time the simplices of X − M of dimension
� k (X0 = M), we can perform i surgeries on M to obtain a manifold Ni

and a homotopy equivalence ψi : Ni → Xi (N0 = M × I). Assume this for
i − 1: set ∂Ni−1 = M ∪ Mi−1, ψi−1 |Mi−1 = φi−1 : Mi−1 → X . The ith
simplex, of dimension (r + 1), say, determines an element α of πr+1(X,Xi).
Now Ni−1 is formed from M by attaching handles of dimension � k. Turning
this upside down, it is formed from Mi−1 by attaching handles of dimension
� (m + 1 − k) � k + 1 � (r + 2), so (Ni−1,Mi−1) is (r + 1)-connected. Thus
πr+1(φi−1) ∼= πr+1(X,Xi): we choose α′ mapping to α, and (by the corollary)
perform surgery on α′. This completes the induction step. At the end of the
induction we have Xj =M ∪ Xk, so (X,Xj) is k-connected. By the argument
above, (Nj ,Mj) is k-connected and Nj � Xj , so φj : Mj → X is also k-
connected. This proves (1.2).

We must now consider in more detail the case of manifolds with boundary :
note however that both statement and proof of (1.1) and (1.2) are already valid
for manifolds with boundary, where the boundary is left fixed by the surgeries.
In fact a manifold and its boundary are in this sense (homotopy type up to just
below half the dimension) independent. Thus we will prescribe a pair (Y,X) of
spaces, and manifold N with boundary, and sharpen φ to a map of pairs

φ : (N, ∂N)→ (Y,X) .

The bundle ν over Y and stable trivialisation F of τN ⊕ φ∗ν are given as be-
fore. We define a cobordism group as before (cf. [W13]). Set (N1, φ1, F1) ∼
(N2, φ2, F2) if there is a manifold Q with ∂Q = N1 ∪ P ∪ N2, ∂P = ∂N1 ∪ ∂N2,
an extension of φ1 ∪ φ2 to ψ : (Q,P ) → (Y,X), and an extension of F1 and
F2 (with the same convention as before) to a stable framing of τQ ⊕ ψ∗ν. This
provides a group Ωn(Y,X, ν) (if we consider manifolds with dimN = n). Also,
by [W13, VA, 2.3], there is an exact sequence

· · · → Ωn(X, ν)→ Ωn(Y, ν)→ Ωn(Y,X, ν)→ Ωn−1(X, ν)→ Ωn−1(Y, ν)→ . . . ,

where the homomorphisms are the obvious ones. We note in passing that it is
a simple matter to extend the definition to cobordism groups of (n+ 1)-ads X :
we give the details in §3.
We must, however, consider the relation between cobordism of manifolds with

boundary and surgery as described above. It turns out that we can perform
a cobordism in two stages, doing surgery first on the boundary and then on
the interior. Note that surgery on M produces eventually a cobordism P with
∂P = M ∪ M ′. If ∂N = M , we define a corresponding cobordism of N . Form
V by attaching P to N along M (so ∂V = M ′): then the cobordism is V × I,
with the corner along M ′ × 0 rounded and one introduced along M × 0 instead
(in the smooth case : in the PL case there is no need for this, but we must still
specify in what way V × I is regarded as a cobordism; here, of N × 0 to V × I).
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V × 1

M × I M ′ × I

N × 0 P × 0

M × 0

We now assert that any cobordism may be regarded as one of the type above,
followed by a sequence of surgeries leaving the boundary fixed. For let Q be
a cobordism of N to N ′, with ∂N = M, ∂N ′ = M ′, ∂Q = N ∪ P ∪ N ′ and
∂P =M ∪ M ′. We first construct V as above and the cobordism V × I of N to
V . We can then (see figure) reinterpret Q as a cobordism of V to N ′ with the
boundary (M ′) fixed. We do not write down the details (which would involve a
collar neighbourhood of M ′). Analogous remarks go for (m+1)-ads in general.

The above description is asymmetrical as regards the two ends of the cobor-
dism. To restore this symmetry somewhat, we remark that the first step above,
‘adding’ P to N , has an inverse operation of a new type : ‘subtracting’ P from V
(the cobordism is the same V × I as above, but now interpreted in the opposite
sense). The processes of adding handles to the boundary of N and performing
surgery on the interior are adequately described by (1.1). For subtraction, how-
ever, we need a little more.

N ′
M ′

Q P

V

N M

Theorem 1.3. Let (N,φ, F ) define an element of Ωm(Y,X, ν). Write ψ for
the quadruple

∂N
� � ��

��

N

��
X � � �� Y
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Then any α ∈ πr+1(ψ), r � m − 2, determines a regular homotopy class of
immersions

(Dr
− ×Dm−r, Sr−1 ×Dm−r)→ (N, ∂N) .

We can use an embedding f to do surgery on α if and only if f is in this class.

Proof The argument which shows that α determines a class of immersions is
the same as in (1.1) except that details are more complicated. Using f∗F and
contractibility of the model Dr+1 ×Dm−r we can see that if f1 : (Dr

−, S
r−1)→

(N, ∂N) represents the appropriate ∂∗α, we can define a stable trivialisation of
(f1 |Sr−1)∗(τ∂N ) which extends to a stable trivialisation of f∗

1 τN . An appeal to
the relative version of the immersion classification theorem now proves the first
assertion.

For the second, the picture is a little different. Note that α provides a nullho-
motopy

(Dr+1 ×Dm−r, Dr
+ ×Dm−r)→ (Y,X)

of φ ◦ f . We regard this as a nullhomotopy of φ | Im f (as map of pairs), and
extend it to a homotopy of φ. Thus we can assume that φ(Dr− ×Dm−r) = ∗,
and that the nullhomotopy is constant at ∗ (at the base point in X).

Form N0 from N by deleting the interior of f(Dr− ×Dm−r): then φ induces a
map φ0 : (N0, ∂N0)→ (Y,X), and N is obtained from N0 by adding an (m−r)-
handle. We can regard N × I (with corners adjusted) as a cobordism of (N,φ)
to (N0, φ0): it remains, then, to check the stable framing. But as in (1.1), it
is trivial that the given stable framing agrees on Dr

− ×Dm−r with one induced
by a contraction of the model if and only if the tangent map of f is stable as
described above, which implies that f is in the class we have defined.

Corollary. If m > 2r, we can do surgery on α.

Again this follows by a simple general position argument.

We now obtain an analogue of (1.2) for bounded manifolds : the details are
necessarily a little more complicated. One difficulty is that although it is rea-
sonable to study only connected manifolds, we still wish to permit them to have
disconnected boundaries. We can regard (1.2) as covering this case if we require
a k-connected map M → X (k � 1) to induce a bijection π0(M) → π0(X) of
components and, in addition, a k-connected map of each corresponding pair of
components. An equivalent condition is that φ be 0-connected (i.e. surjective
on components) and also also k-connected in the ordinary homotopy sense with
respect to each possible base point in M (one in each component is enough).
One can make analogous definitions for maps of pairs, triads, etc., but unless
the members of the pair have isomorphic fundamental groups, the notion does
not seem to be a very useful extension of the one in the absolute case. If
φ : (N,M) → (Y,X) is a map of pairs, we will use instead the homological
connectivity of φ

(
with coefficients A = Z[π1(Y )]

)
.
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Theorem 1.4. Let (Y,X) be a finite simplicial pair, ν a vector bundle or PL
bundle over Y . Any element ξ of Ωn(Y,X, ν) has a representative (N,φ, F )
such that :

if n = 2k, φ induces a k-connected map N → Y and a (k − 1)-
connected map ∂N → X, hence is (homologically) k-connected,
if n = 2k + 1, φ induces k-connected N → Y and ∂N → X: more-
over, φ is homologically (k + 1)-connected.

Proof Choose an arbitrary representative (N,φ, F ) of ξ. Then (∂N, φ | ∂N,
F | ∂N) represents ∂ξ, and by (1.2) we can find a cobordism, (P, ψ, F0) say, of
this to a (k−1)-connected normal map (M,φ′, F ′) according as n = 2k or 2k+1.
By adding P to N we obtain a cobordism of N to (N ′, φ′′, F ′′), where φ′′ has
the desired connectivity on M = ∂N ′. Next we apply (1.2) to N ′ itself, keeping
M fixed. This shows that we can do surgeries to make φ′′ k-connected thus
obtaining, say, (N ′′′, φ′′′, F ′′′). This concludes the proof in the case n = 2k, and
for n = 2k + 1 all is proved but the last clause, which is the interesting part,
and which we obtained originally in [W18, (7.2)] by a different method.

Now the proof of (1.2) shows that, if φ′ denotes the map N → Y induced
by φ, then πk+1(φ

′) is represented by a finite collection of cells, and so is a
finitely generated Λ-module. We choose a finite set of generators; by Theorem
1, Corollary, we can represent each by a framed embedding of Sk. Connect each
of these by a tube to ∂N (e.g. all to the same component), so that we have
framed embeddings of Dk. Now perform handle subtraction as above : we claim
that this achieves the desired result.

For let H denote the union of the handles, N0 the constructed manifold, φ0 :
(N0, ∂N0) → (Y,X) the resulting map, and note that (N0, ∂N0) → (N,H ∪
∂N0) is an excision map. Thus we have an exact sequence (with coefficients Λ
throughout)

Hk(H ∪ ∂N0, ∂N)→ Hk+1(φ)→ Hk+1(φ0)→ Hk−1(H ∪ ∂N0, ∂N) .

Clearly the lower relative homotopy (and homology) groups of φ0 vanish as
for φ. Also, (H,H ∩ ∂N) → (H ∪ ∂N0, ∂N) is an excision map too, and
(H,H ∩ ∂N) is a collection of copies of (Dk × Dk+1, Sk−1 × Dk+1), so has
vanishing homology except in dimension k (thus the final term in our sequence
vanishes). In dimension k, we have the classes of the original k-discs, which
we choose to represent images in Hk+1(φ) of a set of generators of πk+1(φ

′) ∼=
Hk+1(φ

′). But Hk+1(φ
′) → Hk+1(φ) is surjective (we have a k-connected map

∂N → X), so the first map of our exact sequence is surjective too. It follows
that Hk+1(φ0) vanishes, as claimed.
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Our proof yields the following strengthening of the asserted result, which we
will have occasion to use.

Addendum. In the case n = 2k+1, if ∂N → X is already k-connected, future
alterations of ∂N can be made in a prescribed (non-empty) open subset, and
on ∂N have the effect of surgery on trivial framed embeddings of Sk−1 in ∂N .



1A. Appendix : Applications

Even the rather simple results of §1 have useful applications in differential
topology. We first consider cobordism theory. Following Lashof [L2], given a
space X and map f : X → BO, we define an X-structure on a manifold M
(with normal bundle νM ) to be a homotopy class of factorisations through f of
the classifying map of νM . We then investigate cobordism for manifolds with
X-structure, say X-manifolds. This notion can be reformulated by noting that
according to Milnor [M7] we can regard the loop space ΩX as a topological
group, and Ωf : ΩX → O as a homomorphism. Then an X-structure is a
reduction to ΩX of the structural group of the stable normal bundle.

We now suppose that X is a CW complex with finite skeletons. Then it follows
from (1.2) that given an X-manifold Mm we can perform surgery to make the
classifying map M → X k-connected, provided m � 2k; moreover, if M has
boundary, the surgery can be chosen to leave the boundary fixed.

Our first application of this remark depends, really, only on the techniques of
1-connected surgery.

Proposition 1.5. In dimensions � 2 (resp. 5), cobordism groups defined by
oriented 1-connected (resp. 2-connected, resp. 3-connected) manifolds map iso-
morphically to oriented (resp. spinor) cobordism groups.

Proof Take X = BSO (resp. BSpin) in the above. Then X is 1-connected
(resp. 3-connected). Apply the above remark, noting that if m � 2(i + 1) we
can make M → X (i+ 1)-connected, so that if X is i-connected, so is M . This
shows that the map defined in the proposition is surjective in these dimensions :
for injectivity, it suffices to do surgery similarly on cobordisms between them.

It remains to consider low dimensions. But the oriented cobordism group
vanishes in dimensions 2 and 3, as does the spinor one in dimensions 5, 6 and 7.
Also, the surgery argument above applies to cobordisms of i-connected (2i+1)-
manifolds (i = 1, 2, 3). Finally, any 1-connected 2-manifold or 3-connected 5-
or 6-manifold is already a sphere.

In still lower dimensions, the result breaks down : 2- (or 3-) connected cobor-
dism of 4-manifolds gives h-cobordism of homotopy spheres; the group is zero.
But the signature invariant is nonzero on the spinor cobordism group.

Our next application concerns characteristic numbers. Recall that for any
manifold Mm with X-structure g : Mm → X , and any class ξ ∈ Hm(X),
ξ(M) = g∗(ξ)[M ] is a cobordism invariant (here [M ] is an orientation of M for
the homology theory H∗, presumed to be obtained from the X-structure).

17
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Theorem 1.6 Let k be a field, ξ ∈ Hi(X ; k), Mm (m � 2i− 2) an X-manifold
such that for all η ∈ Hm−i(X ; k), ξη(M) = 0. Then there is an X-cobordism
of M to a manifold M ′ with g′∗ξ = 0.

Proof Perform surgery on g : M → X till we obtain an (m − i + 1)-connected
map g′ : M ′ → X . Suppose for simplicity X (hence also M ′) connected. Then
g′∗(ξη) = 0 for all η ∈ Hm−i(X ; k). But g′∗ is an isomorphism in dimension
(m − i), so (g′∗ξ).ζ = 0 for all ζ ∈ Hm−i(M ; k). Now by Poincaré duality,
g′∗ξ = 0.

This result may well extend to more general homology theories. More interest-
ing would be to know exactly what happens in the next dimension m = 2i− 1.
Interesting special cases are obtained by taking X = BO, k = Z2 (when the
problem of orientation does not arise) and ξ = wi. The result holds here also
when i = 1 [W4], and a full statement concerning the case i = 2 can be deduced
from [B33]. In the unitary case, since BU is torsion free it is not necessary to
take coefficients from a field : the result applies with k = Z. Here the result is
false for ξ = c1 [B36].

We can also apply §1 to prove the following

Theorem 1.7. Let (K,L) be a CW -pair of dimension r, such that K =
L ∪f e2, and K is contractible. Then if m � 2r − 1, m � 5, there is a smooth
embedding of Sm−2 in Sm, with complement C, and an (m− r)-connected map
ψ : C → L.

Proof In the notation of §1, setMm = S1×Dm−1, X = L, define φ by φ(x, y) =
f(x), and let F be the obvious framing. Since r � 2 necessarily, we may suppose
(altering (K,L) if necessary by a homotopy equivalence) that f identifies S1 with
a 1-cell of L which forms a loop. Now we need only attach the remaining cells
of L to M to make φ a homotopy equivalence : since m � 2r− 1, the Corollary
to (1.1) asserts that we can do this. Let V be the manifold, and ψV : V → L
the map so constructed; and let N = ∂+V .

Now Mm ⊂ Sm = ∂Dm+1, and – up to homotopy – Dm+1 is formed from
Mm by attaching a 2-cell. The definition of φ admits a natural extension which
maps this to the 2-cell of K. We can regard the handles which form V as
attached to ∂Dm+1; let the union be W . Then again ψV : V → L extends to
ψW : W → K; since ψV is a homotopy equivalence, and W and K are each
formed by attaching a 2-cell, by maps which correspond, ψW is a homotopy
equivalence. ThusW is contractible. Also,W is formed fromDm+1 by attaching
handles of dimensions � r � m− 2, so ∂W is simply connected. Hence (Smale
[S10]), W is diffeomorphic to Dm+1.

Now Sm = (S1 × Dm−1) ∪ (D2 × Sm−2) = M ∪ (D2 × Sm−2), where the
boundaries are attached by the identity map. So we have 0×Sm−2 ⊂ Sm. This
sphere also lies in ∂W , since all the handles were attached to its complement.
Clearly, C = ∂W −Sm−2 has N as deformation retract. Now ψV is a homotopy
equivalence, and V is formed from N by attaching handles of dimension �
m+ 1− r. Hence ψV |N is (m− r)-connected. Since ∂W ∼= Sm, this completes
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the proof of the theorem.

Remark. The proof is valid throughout for the case r = 2, m = 4, except in
the application of Smale’s theorem. So the result holds in that case if Sm is
replaced by an unknown homotopy sphere Σ4.

Corollary 1.8. (Kervaire [K2]) A group G can appear as fundamental group
of some C = Sm−Sm−2 (m � 5) if and only if G is finitely presented, H1(G) ∼=
Z, H2(G) = 0, and G has an element α whose conjugates generate the whole
group.

Proof Since C has the homotopy type of a finite complex, G must be finitely
presented; since C can be made contractible by adding a 2-cell, if α is the
homotopy class of the attaching map then its conjugates generate G; and the
spectral sequence of the universal cover of C gives H1(C) ∼= H1(G) and an exact
sequence

π2(C)→ H2(C)→ H2(G)→ 0

whence, since C is a homology circle, H1(G) ∼= Z, H2(G) = 0.

Conversely, let G have the properties stated. Use a finite presentation to
construct a finite 2-complex P with fundamental group G. Then H1(P ) ∼=
H1(G) ∼= Z, and we can attach a 2-cell (by α) to make P simply connected.
This will kill H1(P ), but leave H2(P ) unaltered; hence H2(P ) is free abelian.
The exact sequence

π2(P )→ H2(P )→ H2(G) = 0

shows that we can pick a base of H2(P ), represent each element by a map of a 2-
sphere, and attach corresponding 3-cells. This gives a complex L with H2(L) =
H3(L) = 0 and still π1(L) ∼= G. If we now attach a 2-cell by α, we obtain a
simply connected complex K with no homology; hence K is contractible.

Now apply the theorem with r = 3, m � 5; then ψ is at least 2-connected, so
induces an isomorphism of fundamental groups. The result follows.

Corollary. For m � 5, we can choose π1(C) ∼= Z and π2(C) non-finitely
generated (as abelian group); for m � 7, we can have π1(C) ∼= Z, π2(C) = 0,
and π3(C) non-finitely generated.

Proof π2(S
1 ∨S2) is the direct sum of a sequence of copies of π2(S

2) ∼= Z (with
generator a), obtained by action of the fundamental group of the inclusion
S2 ⊂ S1∨S2. Attach a 3-cell by 2ag−a (where g generates π1(S

1)
)
, forming L.

Then π2(L) is isomorphic to the additive group of rationals with denominator
a power of 2, and if we attach a 2-cell to span the S1, the result is simply
connected, and hence contractible. Now if ψ : C → L is (m − 3)-connected,
π1(C) ∼= π1(L), and π2(C) maps onto π2(L) (isomorphically, if m � 6), so the
result follows from the theorem.

The second part is obtained similarly, by considering S1 ∨ S3.

The last corollary gives an example which shows that some theorems of B.
Mazur [M4] are incorrectly formulated.
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We recall a definition of [M4]. Suppose K ⊂ M is a subcomplex in some
smooth triangulation of M . Then a submanifold U of M , containing K in its
interior, is a simple neighbourhood of K in M if

(a) the inclusion of K in U is a simple homotopy equivalence;

(b) π1(U −K, ∂N) = 0 = π2(U −K, ∂U).

Mazur’s ‘simple neighbourhood theorem’ states that if U1, U2 are simple neigh-
bourhoods of K in M , then there is a diffeotopy of M rel K which carries U1

into U2 provided dimM � 6. We shall provide a counterexample to this by tak-
ing M = Sm, K a knotted Sm−2 as constructed in Corollary 2.4.2, and finding
two simple neighbourhoods U1, U2 such that U1 −K and U2 −K do not have
the same homotopy type.

We take U1 to be a tubular neighbourhood of Sm−2. Then U1 − Sm−2 has
the homotopy type of Sm−2 × S1. Now let S1 be a circle in L linking Sm−2

once (for example, a fibre in the normal sphere bundle of Sm−2 in Sm), let N
be a tubular neighbourhood of S1, and let U2 be the closure of Sm −N . Then
U2− Sm−2 is the closure in C of C −N , and has the homotopy type of C −S1,
hence the (n − 3)-type of C. Thus if any π1(C) with 1 � i � n− 3 is nonzero,
U1 − Sn−2 and U2 − Sn−2 have different homotopy types.

It remains to see whether U2 is a simple neighbourhood of Sm−2 (it is clear
that U1 is). Since N is a tubular neighbourhood of a (necessarily unknotted)
S1, U2 is diffeomorphic to Sm−2 ×D2. Since Sm−2 links S1 once, the inclusion
Sm−2 ⊂ U2 induces an isomorphism of (m− 2)nd homology groups, from which
it follows at once that this inclusion is a simple homotopy equivalence. In our
case, condition (b) likewise reduces to the requirement that π2(U2 − K) = 0,
and hence (n � 5) that π2(C) = 0. But according to Corollary 2.4.2 we may
certainly have π2(C) = 0, π3(C) �= 0, if n � 7.

Mazur’s proof of his theorem appeared in [M4]. It is a straightforward deduc-
tion from his ‘relative non-stable neighbourhood theorem’. We conclude that
our example is a counterexample to this theorem also. The proof of this latter
theorem has not been published : it is stated in [M6] that the proof is similar to
that for the absolute case, given in [M5]. However, it is not difficult to see how
to prove the relative non-stable neighbourhood theorem under the additional
hypothesis that (in the notation of Mazur), the inclusion Q ⊂ M induces an
isomorphism of fundamental groups. Likewise, it is easy to prove the simple
neighbourhood theorem provided the codimension of K is � 3, indeed, condi-
tion (b) in the definition of simple neighbourhoods can then be weakened to

(b′) the inclusion of ∂U in U induces an isomorphism of fundamental groups.

The simple neighbourhood theorem in this case is now a straightforward conse-
quence of the s-cobordism theorem.



2. Simple Poincaré Complexes

The basic problem of surgery theory is to decide whether a given finite CW
complex X is simple homotopy equivalent to a manifold. A first necessary con-
dition is that X should be a simple Poincaré complex.

We have defined a Poincaré complex in [W18, §2] and [W21], essentially as a
CW complex satisfying an appropriate form of the Poincaré duality theorem.
In those papers, we permitted complexes dominated by a finite complex. The
reader of [W18] may have wondered why we did not simply require our complexes
to be finite. We can now justify our earlier hesitation on this point by giving a
definition which is altogether more satisfactory for our purposes. We will not
presuppose reading of these earlier papers.

Let X be a finite connected CW -complex (with base point ∗). let w : π1(X)→
{±1} be a homomorphism. Loops having class α with w(α) = +1 are to
be thought of as orientation-preserving; if with w(α) = −1, as orientation-
reversing. Also, w is equivalent to a class inH1(X ;Z2) (the first Stiefel-Whitney
class). Write Λ for the integral group ring of π1(X): elements of Λ are finite
formal integer linear combinations of elements g of π1(X), which we can write
as

∑
n(g)g. We define the symbol ‘bar’ by∑

n(g)g =
∑

w(g)n(g)g−1 ;

it is simple to verify that bar is an involutory anti-automorphism (involution
for short) of the ring Λ.

We now define the chain complex of X , C∗(X). This is the complex of cellular

chains (in the ordinary sense) of the universal covering space, X̃, of X . We
endow it with two additional structures. First, as π1(X) acts (on the right)

cellularly on X̃, it acts on the chain complex C∗(X), which may thus be regarded
as a complex of Λ-modules. Indeed, we have free Λ-modules, and bases can be
obtained as follows : order the cells of X (of a given dimension r), orient each,

and choose a lifting of each one to an r-cell of X̃. Then we have a free Λ-basis of
Cr(X). This is unique up to order, sign, and multiplication of the basis elements
by elements of π1(X).

We now define the homology and cohomology of X with respect to a (right)
Λ-module B by

H∗(X ;B) = H
(
HomΛ(C∗(X), B)

)
Ht

∗(X ;B) = H
(
C∗(X)⊗Λ B

)
.

In order to define the tensor product above, we must endow B with a left Λ-
module structure : we do this using the involution bar – i.e. set λc = cλ. This

21
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differs from the usual conventions : the affix t indicates this fact. When we omit
the coefficients, the module B = Λ is always to be understood.

We will define duality with respect to a ‘fundamental’ class [X ] ∈ Ht
n(X ;Z),

for suitable n. Here, we give Z a Λ-module structure by making π1(X) act
trivially. (Note : with other conventions – i.e. using the anti-automorphism
g �→ g−1 of Λ instead of the above – Ht

n(X ;Z) becomes Hn(X ;Zt), where Zt

is the group Z with a right Λ-module structure induced by w). We must define
cap products : we will do this at the chain level with a representative cycle
ξ ∈ Cn(X)⊗Λ Z for [X ], and so define

ξ ∩ : C∗(X)→ C∗(X)(
in fact, Cr(X)→ Cn−r(X)

)
, where C∗(X) = HomΛ

(
C∗(X),Λ

)
. First suppose

π1(X) finite : then X̃ is a finite covering space of X . The transfer tr is then de-

fined, and tr ξ ∈ Cn(X̃) has homology class tr [X ] ∈ Ht
n(X ; Λ) = Hn(X̃). Also

in this situation, we can identify C∗(X) and C∗(X) respectively with C∗(X̃)

and C∗(X̃). The above cap product is then defined as cap product with tr ξ

in the ordinary sense as chains on X̃ (a finite CW complex). One could write
down an explicit formula using values on cells, and a chain approximation to
the diagonal map. If π1(X) is infinite, it can be verified without undue difficulty
that the same formula again works : the justification is necessarily different, as
(for example) tr ξ is an infinite chain.

We have called [X ] a fundamental class, and X a Poincaré complex, with
formal dimension n, when

[X ]∩ : Hr(X)→ Ht
n−r(X)

is an isomorphism for all r. The map ξ ∩ is then a chain homotopy equivalence.
Note that a change in our choices (of the representative cycle ξ and of the chain
approximation to the diagonal map) will only affect ξ ∩ by a chain homotopy.

We now need the theory of Whitehead torsion. The most convenient ac-
count for our purposes is Milnor’s survey article [M14] (other references will
be found there). We refer specifically to paragraphs 2-5, but replacing K1(A)
by Wh

(
π1(X)

)
throughout. Suppose f : C∗ → D∗ a chain homotopy equiva-

lence of chain complexes of free (finitely generated, left) Λ-modules, each with
a preferred base. The algebraic mapping cone of f, C (f) has

Cn(f) = Cn−1 ⊕Dn

and boundary operator

Cn ⊕Dn+1

(
d 0

(−1)nfn d

)
�� Cn−1 ⊕Dn .

It is acyclic; its torsion τ
(
C (f)

)
is thus defined, and is called the torsion of f .

(cf. Milnor [M14, p. 382]). If it vanishes, we call f a simple equivalence.
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We call X a connected simple Poincaré complex ∗ if it is a finite connected CW
complex with a fundamental class [X ], represented by ξ, such that the chain
homotopy equivalence

ξ ∩ : C∗(X)→ C∗(X)

is simple. Here we refer to the basis of C∗(X) given by cells and the dual basis
of C∗(X). Generally, a finite CW complex is a simple Poincaré complex if each
component is, and the fundamental classes all have the same dimension.

Analogous considerations go for Poincaré pairs (Y,X). A representative cycle
η for a class

[Y ] ∈ Ht
n(Y,X ;Z)

induces (by cap product) a chain map

η ∩ : C∗(Y )→ C∗(Y,X) .

The understood group of coefficients is the integral group ring of π1(Y ). We
say the finite CW pair (with, in the first instance, Y connected) is a simple
Poincaré pair if η ∩ is a simple equivalence and X is a simple Poincaré com-
plex with fundamental class ∂∗[Y ]. Note that this condition implies that the

homomorphism w for X is the composite π1(X)
i∗→ π1(Y )

ω→ {±1}. If Y is not
connected, we require this of each component. (Note that X = ∅ is permitted).

The following result shows why this notion will be important for our subsequent
investigations. Note that a smooth manifold gives rise (by smooth triangulation)
to an essentially unique PL manifold, and that a compact PL manifold has PL
triangulations, any two of which admit a common subdivision.

Theorem 2.1. Let Mm be a compact triangulated homology manifold (resp.with
boundary ∂M). Then M is a simple Poincaré complex (resp. (M,∂M) is a
simple Poincaré pair) with formal dimension m.

Proof The standard proof of Poincaré duality for M (see e.g. Lefschetz [L12,
Chapter VI]) proceeds as follows. Let K be the finite simplicial complex (with
simplices σr) which triangulates M , K ′ the derived complex. Then the vertices
of K ′ are the barycentres σ̂r of the simplices of K, and its simplices have the
form

σ̂i0 σ̂i1 . . . σ̂is

where, for each j, σij is a face of σij+1 . Moreover, the simplex σr of K is
the union of the simplices of K ′ which ‘end’ with σ̂r . The dual complex K∗

is now defined : its cells σr∗ correspond bijectively to the simplices σr of K,
and σr∗ is the union of the simplices of K ′ which begin with σ̂r. Since M is a
homology manifold, the σr∗ are indeed homology cells; since K ′ is a common
subdivision, we can use chains of K or ofK∗ as the chains ofM (for a proof that
such operations do not disturb torsion, see Milnor [M14, (5.2)]). Now evidently,
dim(σr∗) = m−r, and σr and σr∗ intersect only in σ̂r. More precisely, using the
natural fundamental cycle ξ (which is unique up to sign), one can show that for

∗In the first edition a simple Poincaré complex was called a finite Poincaré complex.
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a suitable chain approximation to the diagonal in K×k∗, ξ ∩ takes the cochain
on K∗ dual to σr∗ to the chain σr on K. This argument lifts to the universal
cover (in fact, it works for any non-compact manifold), so we see that

ξ ∩ : C∗(K∗)→ C∗(K)

takes basis elements to basis elements. Hence it is a simple equivalence.

The argument in the bounded case is similar, using the usual proof (loc. cit.)
of the Lefschetz duality theorem.

Corollary. Suppose X a finite simplicial complex, M a closed PL manifold,
φ : M → X a simple homotopy equivalence. Then X is a simple Poincaré
complex.

For we have a (chain-homotopy-) commutative diagram

C∗(M)
[M ]∩

��
��

φ∗

C∗(M)

φ∗
��

C∗(X)
φ∗[M ]∩

�� C∗(X)

with sides and top simple equivalences. Since τ is additive for compositions
[M14, (7.8)], the lower edge also is a simple equivalence.

This is a trivial corollary : a more detailed study, including a comparison
of simple with general Poincaré complexes, is desirable. The above merely
underlines that if we seek necessary and sufficient conditions that a (finite)
simplicial complex be (simply) homotopy equivalent to a closed smooth or PL
manifold, it is sensible to restrict attention at the outset to simple Poincaré
complexes.

From time to time we need more general notions. If (Y ;X−, X+) is a finite
CW -triad with X− ∩ X+ = W , we call it a simple Poincaré triad if (X−,W ),
(X+,W ), and (Y,X− ∪ X+) are simple Poincaré pairs with

j∗∂∗[Y ] = [X+]− [X−] ,

where

Hn(Y,X− ∪ X+)
∂∗→ Hn−1(X− ∪ X+)

j∗→ Hn−1(X− ∪ X+,W )

∼= Hn−1(X+,W )⊕Hn−1(X−,W ) .

Again this last condition implies that the homomorphisms w for (the compo-
nents of) X− , X+ , X− ∪ X+ and W are induced from w for Y .

More generally, we have the following. A (finite) CW (n+1)-adX is a (simple)
Poincaré (n+ 1)-ad if
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(a) for each α ⊂ {1, 2, . . . , n}, (X(α), ∂X(α)
)
is a (simple) Poincaré pair, with

fundamental class [X(α)],

(b) for each α = {i1, . . . , is} with 1 � i1 < i2 < · · · < is � n, we have

j∗∂∗[X(α)] =
s∑

t=1

(−1)t[X(α− {it})] ,

where j is the appropriate inclusion map.

Clearly this includes manifold (n+ 1)-ads; condition (b) is here not merely a
sign convention, but also again ensures that the various maps w are all induced
from w for |X |. Again, dim[X(α)]− |α| is independent of α.
This completes our list of definitions : we now turn to a number of properties

of maps of degree 1 which will be needed below. A map is called of degree 1 if
it preserves fundamental homology classes : by (b) above, if [|X |] is preserved,
so are all of the [X(α)].

Lemma 2.2. Let M, X be connected Poincaré complexes, φ : M → X a map
of degree 1, B a Z[π1(X)]-module, φ∗B the module over Z[π1(M)] induced by
φ∗ : π1(M)→ π1(X). Then the diagram

Hr(M ;φ∗B)

[M ]∩
��

�� φ∗
Hr(X ;B)

[X ]∩
��

Ht
m−r(M ;φ∗B)

φ∗ �� Ht
m−r(X ;B)

is commutative, so [M ]∩ induces an isomorphism of the cokernel Kr(M ;φ∗B)
of φ∗ on the kernel Kt

m−r(M ;φ∗B) of φ∗. Thus if φ is k-connected, φ∗ and
φ∗ are isomorphisms for r < k and for r > m− k.
Similarly let φ : (N,M)→ (Y,X) be a map of degree 1 of Poincaré pairs. Then
φ∗ gives split surjections of homology groups M → X, N → Y and (N,M)→
(Y,X) with kernels K∗, and split injections of cohomology with cokernels K∗.
The duality map [N ]∩ induces isomorphisms

K∗(N)
∼=→ K∗(N,M), K∗(N,M)

∼=→ K∗(N) .

The homology (cohomology) exact sequence of (N,M) is isomorphic to the di-
rect sum of the sequence for (Y,X) and a sequence of groups K∗ (K∗).

Analogous results hold for maps of degree 1 of Poincaré n-ads.

Proof (cf. [W18, (2.1) and (2.2)]). Commutativity of the first diagram follows
from naturality of cap products. The other assertions in the first paragraph are
immediate consequences. The same goes for the second paragraph up to the
remark about exact sequences : this is justified by noting that φ∗ and φ∗ are
morphisms of exact sequences, so the sequence operations preserve K∗ (or K∗).
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For n-ads, we observe that if φ∗[|M |] = [|X |], then it follows by downward
induction on |S| (using (b)

)
that for all S ⊂ {1, 2, . . . , n}, φ∗[M(α)] = [X(α)].

We can then apply the preceding to each Poincaré pair
(
X(α), ∂X(α)

)
.

Lemma 2.3. Let φ : (N,M)→ (Y,X) be a map of CW pairs with Y connected
(not necessarily M and X, which may also be empty). Suppose, with Λ =
Z[π(Y )] as coefficients, that Hi(φ) = 0 for i < r. Then

(a) If Hr+1(φ;B) = 0 for every Λ-module B, then Hr(φ) is a projective
Λ-module.

(b) If N and Y are finite, Hr(φ) is finitely generated.

(c) If, in addition to (a) and (b), we suppose Hi(φ) = 0 for i �= r, then Hr(φ)
is stably free, and has a preferred equivalence class of s-bases.

(For the terms ‘stably free’ and s-base see Milnor [M14, §4]).
Proof By replacing (Y,X) (if necessary) by the mapping cylinder of φ, we may
suppose that φ is an inclusion, and that M = N ∩ X . The homology groups
of φ are then calculated from the chain complex C∗(φ) = C∗(Y,N ∩ X). The
lemma is thus reduced to a proposition about chain complexes. We abbreviate
Ci = Ci(φ); let Zi be the submodule of cycles, Bi of boundaries.

Now for i � r we have a short exact sequence

0→ Zi → Ci → Zi−1 → 0 .

Also Z0 = C0. By induction on i, Zi is projective, and the above sequence splits.
Thus C∗ is chain homotopy equivalent to the complex obtained by replacing the
terms of degree � r by Zr,

· · · → Cr+2 → Cr+1 → Zr → 0 (1).

Now (a) follows as in [W14] or [W15] by deducing from the hypothesis that
the (r + 1)-cocycle Cr+1 → Br is a coboundary, so that the inclusion Br ⊂ Zr

splits. For (b), note that Zr is a direct summand of the module Cr , which is
now finitely generated, and Hr(φ) is the quotient module Zr/Br.

Finally for (c) we observe that Zr
∼= Br ⊕Hr, and the complex (of projective

modules)
· · · → Cr+2 → Cr+1 → Br → 0 (2)

has zero homology, so is contractible, and (1) is chain homotopy equivalent to
the complex 0→ Hr → 0, being its direct sum with the contractible complexes
(2) and (3)

0→ Zr−1 → Cr−1 → · · · → C0 → 0 (3).

But for a contractible complex A∗ of projective modules, we have
⊕
A2i
∼=⊕

A2i+1. Applying this to the direct sum of (2) and (3), we have

Br ⊕ Zr−1 ⊕
⊕
i�=0

Cr+2i
∼=⊕

i

Cr+2i+1
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or, adding Hr, ⊕
i

Cr+2i
∼= Hr ⊕

⊕
i

Cr+2i+1 .

Thus Hr is stably free. An explicit isomorphism here would give an s-base for
Hr, but the treatment above is not careful enough to prove uniqueness. Choose
an s-base for Hr. Then [M14, §3 and §4], τ(C) is defined. If we change the
s-base {a} of Hr to another, {b} such that the identity map of (Hr, {a}) to
(Hr, {b}) has torsion τ , then by [M14, (3.2)] the torsion of C becomes τ(C)± τ
(the sign depends only on r). Now it is clear that {b} can be chosen with τ
arbitrary, thus if we stipulate that τ(C) = 0, the s-base of Hr is determined up
to equivalence. This completes the proof of the lemma.

Corollary. If N and Y are finite the same applies to cohomology.

For in this case we also have C∗(X) = HomΛ

(
C∗(X),Λ

)
, etc., and the whole

argument dualises. In this case, the hypothesis Hr+1(φ;B) = 0 becomes
Hr−1(φ;B) = 0.

We will sometimes use the following terminology. If P is an s-based Λ-module,
then another s-base is called preferred if the identity map of P , regarded as a
morphism between these s-based modules, is a simple isomorphism. We can
always replace the given s-base by a preferred one. A short exact sequence

0→ P → Q→ R→ 0

of s-based Λ-modules will be called a based short exact sequence if, regarded as
a chain complex, it has zero torsion. An equivalent condition is that if {αi} is
the s-base of P , and the s-elements {βj} of Q lift to the s-base {β′

j} of R, then
{αi, βj} is a preferred s-base of Q. A short exact sequence of (s-) based chain
complexes over Λ is based if it is so in each dimension.

Lemma 2.4. Let 0 → C′
∗ → C∗ → C′′

∗ → 0 be a based short exact sequence
of free based chain complexes over Λ, each with finite total rank. Assume that
Hi(C) = 0 for i �= r, Hi(C

′′) = 0 for i �= r + 1 and Hr+1(C;B), Hr+2(C′′;B)
vanish for any Λ-module B. Then C′ satisfies the same condition as C, so
by (2.3) Hr+1(C

′′), Hr(C
′) and Hr(C) each have a preferred class of s-bases.

Moreover, the exact homology sequence

0→ Hr+1(C
′′)→ Hr(C

′)→ Hr(C)→ 0

is based.

Proof The assertions about C′ are immediate consequences of the exact ho-
mology and cohomology sequences of the given exact sequence of chain com-
plexes. Since the s-bases of the homology modules are defined so as to make
τ(C′′) = τ(C′) = τ(C) = 0, the last assertion follows from Milnor [M14, Theo-
rem 3.2].

Of course we could prove similar results if the exact homology sequence
collapsed – for example – to

0→ Hr(C
′)→ Hr(C)→ Hr(C

′′)→ 0 ,
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but the above is the case we will need.

Corollary. Let φ : (N,M) → (Y,X) be a map of finite CW -complexes with
Y connected, Λ = Z[π1(Y )] be the coefficient module and suppose that Hi(φ) = 0
for i �= r+1; if φ′ : N → Y and φ′′ :M → X are induced by φ, that Hi(φ

′) = 0
for i �= r, and that Hr+2(φ;B), Hr+1(φ′;B) vanish for all Λ-modules B. Then
the following is a based short exact sequence :

0→ Hr+1(φ)→ Hr(φ
′′)→ Hr(φ

′)→ 0 .

For we may replace φ by an inclusion map, and apply (2.4) to the sequence

0→ C∗(X,M)→ C∗(Y,N)→ C∗(Y,N ∪ X)→ 0 .

Lemma 2.5. Suppose given a commutative diagram of (s-)based chain complexes
each of finite total rank,

0 �� C′
∗

��

�� C∗

��

�� C′′
∗

��

�� 0

0 �� D′
∗ �� D∗ �� D′′

∗ �� 0

whose rows are based short exact sequences. If two of the vertical maps are
simple equivalences so is the third.

Proof Taking the algebraic mapping cones of the vertical maps, we get a based
short exact sequence of acyclic complexes, say

0→ E′
∗ → E∗ → E′′

∗ → 0 .

The hypothesis implies that two of these have zero torsion : [M14, (2.3)] implies
that the third also does. Hence the third vertical map in the above diagram is
a simple equivalence (that it is an equivalence follows, of course, from the exact
homology sequence of the E’s).

Lemma 2.6. Let φ : (N,M)→ (Y,X) be a map of degree 1 of simple Poincaré
pairs which satisfies the assumptions of (2.3 (c)). Then the induced map ψ :
N → Y also satisfies those assumptions for cohomology, with r replaced by
s = dim[Y ]− r + 1. Moreover, the duality map

[N ]∩ : Hs(ψ) = Ks(N)→ Kr−1(N,M) = Hr(φ)

is a simple isomorphism with respect to preferred s-bases. Similarly if φ and ψ
are interchanged.

Proof As usual, we may suppose φ an inclusion. Then we have the commutative
diagram of based short exact sequences of based chain complexes of finite total
rank

0 C∗(ψ)�� C∗(N)��

[N ] ∩ −
��

C∗(Y )��

[Y ] ∩ −
��

0��

0 �� C∗(N,M) �� C∗(Y,X) �� C∗(φ) �� 0
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in which, by hypothesis, the vertical maps are simple equivalences. Now replace
C∗(N,M) by a suitable equivalent complex such that C′∗(N,M) → C∗(Y,X)
is surjective, with kernel D∗(φ), say

(
this is the chain complex with homology

groups K∗(N,M)
)
. Then there is a simple equivalence of degree 1, C∗(φ) →

D∗(φ), and the diagram shows that [N ]∩ induces another simple equivalence
(unique up to chain homotopy) C∗(ψ)→ D∗(φ). The desired result now follows
as in (2.5).

We conclude this chapter by recapitulating some geometrical facts concerning
Poincaré complexes and pairs from [W21, Chapter 2]. These will be needed
especially in §9. Small changes need to be made, since we are interested here
only in simple Poincaré complexes.

Proposition 2.7. Let (Z;Y, Y ′) be a CW -triad, with Y ∩ Y ′ = X, Z con-
nected, and w : π1(Z) → {±1} defining twistings for all four. Let [Z] ∈
Ht

m(Z;Z) have image [Y ] + [Y ′] in Ht
m(Y,X ;Z)⊕Ht

m(Y,X ′;Z).

(i) If (Y,X) and (Y ′, X) are simple Poincaré pairs with fundamental classes
[Y ] and [Y ′], Z is a simple Poincaré complex with fundamental class [Z].

(ii) If Z is a simple Poincaré complex with fundamental class [Z], and (Y ′, X)
a simple Poincaré pair with fundamental class [Y ′], and if for each com-
ponent Yi of Y Z[π1(Yi)] can be regarded as a π1(Z)-module inducing the
natural left action of π1(Yi) then (Y,X) is a simple Poincaré pair with
fundamental class [Y ].

Proof Apply (2.5) to the diagram

0 �� C∗(Y,X) ��

[Y ]∩
��

C∗(Z) ��

[Z]∩
��

C∗(Y ′) ��

[Y ′]∩
��

0

0 �� C∗(Y ) �� C∗(Z) �� C∗(Y ′, X) �� 0

where the coefficients are Z[π1(Z)] for (i), and the various Z[π1(Yi)] (taken in
turn) for (ii). The idea of this proof comes from [B16].

As in [W21] the above has various extensions proved by the same method, e.g.

2.7 Addendum. Let N , N ′ be simple Poincaré (n + 1)-ads with ∂n−1N =
∅, ∂nN = ∂n−1N

′, and ∂n−1N
′ ∩ ∂nN

′ = ∅: suppose |N | ∩ |N ′| = |∂nN |.
Define N ′′ by ∂n−1N

′′ = ∂n−1N , ∂nN
′′ = ∂nN

′, and for {n − 1, n} ⊂ α ⊂
{1, 2, . . . , n}, N ′′(α) = N(α) ∪ N ′(α). Then N ′′ is a simple Poincaré (n+ 1)-
ad with ∂n−1N

′′ ∩ ∂nN ′′ = ∅.

The next result is a re-statement of [W21, (2.3.2) and (2.3.3)]: in the case of
finite complexes, the proof given in [W21] does give a simple homotopy equiva-
lence.
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Lemma 2.8. Let X be a simple Poincaré complex, n = dim[X ] � 4. Then
X is simply homotopy equivalent to a complex X ′ obtained from a subcomplex
Z of dimension � n − 2 (or, in case n = 4, dominated by a 2-complex ) by
attaching along ∂H a smooth manifold H which is formed from Dn by attaching
1-handles. Inclusion induces a surjective map π1(H)→ π1(X).

We will not repeat the proof : we observe, however, that a similar statement
and proof are valid for a Poincaré pair (Y,X): that we can replace Y by Y ′ =
Y0 ∪∂H H , where now Y0 has X as subcomplex and dim(Y0 −X) � (n− 2).

The proof is modified mainly by noting that the bottom cells of Y are dual to
the top cells of Y mod X .

The following is essentially [W21, (2.4)].

Lemma 2.9. Let X be a simple Poincaré complex, n = dim[X ] � 3. Then X
is simply homotopy equivalent to a complex K ∪f en with dimK � n− 1 (or,
in case n = 3, K dominated by a 2-complex ). The pair (K, f) is unique up to
homotopy type of K, and homotopy and orientation of f .

Lemma 2.10. The product of a (simple) Poincaré (m + 1)-ad and a (simple)
Poincaré (n+ 1)-ad is a (simple) Poincaré (m+ n+ 1)-ad.

Proof We must verify that various sub-pairs are simple Poincaré pairs : each of
these has the form (Y1×Y2, Y1×X2 ∪ X×Y2) where (Y1, X1) and (Y2, X2) are
simple Poincaré pairs. We may suppose Y1, Y2 connected; then

π1(Y1 × Y2) = π1(Y1)× π1(Y2) ,
C∗(Y1 × Y2) = C∗(Y1)⊗Z C

∗(Y2) ,

C∗(X × Y2, Y1 ×X2 ∪ X1 × Y2) = C∗(Y1, X1)⊗Z C∗(Y2, X2) .

Since the tensor product of two simple equivalences is another (an easy result,
generalised in [K17]), the result follows (cf. [W21, (2.5)]).
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3. Statement of Results

We now describe the problem to which our work is directed. We seek, in fact, a
characterisation of the simple homotopy types of compact manifolds. As shown
in §1, our methods necessitate simultaneous description of the (stable) tangent
bundle. Thus let X be a finite simplicial complex and ν a bundle over X . We
seek normal maps (M,φ, F ) with M a manifold, φ : M → X a map, and F a
stable trivialisation of τM ⊕φ∗ν, such that φ is a simple homotopy equivalence.
Again, we explained in §1 that it is convenient to classify normal maps (M,φ, F )
(not necessarily satisfying the last condition) into bordism classes, and then
study one such class at a time.

A first necessary condition (on X) that there should exist a normal map
(M,φ, F ) with φ a simple homotopy equivalence was found in (2.1): that X be
a simple Poincaré complex. A second such condition concerns ν: if the induced
bundle over M agrees (stably) with the normal bundle of an embedding in Eu-
clidean space, then it follows by a standard application of the Thom-Pontrjagin
construction (shrinking the complement of a tubular neighbourhood to a point)
that the Thom space of ν is (stably) reducible. Thus ν must be stably fibre
homotopy equivalent to the ‘Spivak normal fibration’ of the Poincaré complex
X , as described in [S5] and [W4]. One simple and useful deduction from this
is that the first Stiefel-Whitney class w1 of ν must coincide with w1(X) – the
cohomology class corresponding to the homomorphism w : π1(X)→ {±1}. For
the Thom isomorphism corresponding to ν must take [X ] to a spherical (and
hence untwisted) class.

Our third necessary condition restricts the bordism class. For if φ : M → X
is a simple homotopy equivalence, then (if [X ] is chosen with appropriate sign)
it has degree 1. Now consider any bordism ψ : (N ;M−,M+) → X . We have
∂∗[N ] = [M+]− [M−], and applying ψ∗, it follows that ψ∗[M+] and ψ∗[M−] give
the same homology class in X . Thus if one map in the bordism class has degree
1, so have they all. We thus restrict consideration to those classes which consist
of maps of degree 1. We will see in §10, when we give a fuller discussion, that
for a given (X, ν) such classes exist if and only if ν is stably fibre homotopy
equivalent to the Spivak normal fibration of X .

We have defined bordism groups Ωm(X, ν). The above shows for (M,φ, F ) in
a class α ∈ Ωm(X, ν) that φ∗[M ] ∈ Ht

m(X ;Z) depends only on α
(
where the

twisting is by w1(ν)
)
. Thus taking fundamental classes defines an augmentation

– clearly a homomorphism –

ε : Ωm(X, ν)→ Ht
m(X ;Z) .

Our classes are those in ε−1([X ]): they do not form a subgroup, but a coset of
one, so the set has a natural affine structure.

32
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We now relativise the above : the most interesting case is that of pairs, but it
is no harder to discuss (n + 1)-ads. Let X be a simple Poincaré (n + 1)-ad, ν
a (vector or PL) bundle over |X |, and consider normal maps (M,φ, F ) where
M is a compact (smooth or PL) manifold (n + 1)-ad, φ : M → X a map of
(n+ 1)-ads of degree 1, and F a stable trivialisation of τ|M| ⊕ φ∗ν. We arrange

these in bordism classes as follows : a bordism of normal maps (M,φ, F ) to
(M ′, φ′, F ′) is a normal map (N,ψ,G) with N a compact manifold (n + 2)-ad
with ∂n+1N = M + (−M ′) (the disjoint union with the sign of [M ′] changed),
ψ : N → sn+1X a map of degree 1 of (n + 2)-ads extending φ and φ′, and
G a stable framing of τ|N | ⊕ ψ∗ν extending F and F ′ in the sense that one

extra stabilising vector is identified with the inward (outward) normal to N
along M(M ′). With these conventions, bordism is an equivalence relation; as
discussed in §1, it can be generated by ‘surgeries’.

Various modifications of the above will be needed from time to time; we may,
for example, restrict φ by requiring it to induce a simple homotopy equivalence
of n-ads ∂iM → ∂iX for some i. One would require correspondingly that in
a bordism, ψ induced a simple homotopy equivalence of (n + 1)-ads ∂iN →
∂isn+1X = sn∂iX . Or alternatively, some ∂jX may be already a manifold;
then we would require φ to induce a (smooth or PL) homeomorphism of n-ads
∂jM → ∂jX and correspondingly ψ a homeomorphism ∂jN → ∂jX × (I, ∂I).
We may of course require conditions of both types simultaneously (with i �= j).

The problem, then, is : given a bordism class of normal maps satisfying the
above conditions, to classify those of its members for which φ is a simple homo-
topy equivalence. We will confine ourselves to the problem of existence of such
a number. We can then consider uniqueness by taking a cobordism N with ∂nN
a union of two members each mapped by a simple homotopy equivalence to X ,
taking a product map N → X × (I, ∂I), and attempting surgery on this, with
∂nN fixed : this was one possibility referred to above. If such surgery can be
performed, N will be an ‘s-cobordism’, and the s-cobordism theorem [K3] will
give us uniqueness up to diffeomorphism. Of course, it may happen that N is
not surgerable even though its ‘ends’ are diffeomorphic, thus care is needed to
obtain a complete numerical result in any particular case.

Another apparently reasonable extension of our problem would be, to suppose
that φ :M → X induces a simple homotopy equivalence of certain subcomplexes
of M and X , and to consider surgery leaving fixed the subcomplex of M . We
do not achieve quite this. However, in the case when X is a manifold also, and
φ transverse regular on the subcomplex in question, we have an induced simple
homotopy equivalence of a regular neighbourhood of it, which is a manifold, and
of the corresponding boundaries. Thus if the subcomplex has codimension � 3
(so that troubles about the fundamental group of its complement do not occur)
we are reduced to a problem already discussed. We can treat similarly the case
of a map of triads

φ : (M{12},M{1},M{2},M{ })→ (X{12}, X{1}, X{2}, X{ })
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in which the induced map M{ } → X{ } is a simple homotopy equivalence
and we wish to do surgery leaving M{ } fixed. Here, we write L = M{ },
choose a product neighbourhood L × I of L in M{1} (which we may suppose
φ maps to X{ } = W , say), and then replace |∂X | by the simple homotopy
equivalent complex |∂X ′| = X{1} × 0 ∪ W × I ∪ X{2} × 1 and (|X |, |∂X |)
by a corresponding pair (|X ′|, |∂X ′|). Set M ′′{1} = M{1} − L × [0, 1); then
φ
∣∣|∂M | and the projection of L× I on I combine to define a map |∂M | → |∂X ′|

which takes M ′′{1} to X{1} × 0, L× I to W × I, and M{2} to X{2} × 1: use
homotopy extension to extend to M{12} → |X ′|. But this defines a map of
triads φ′ : M ′ → X ′ where |M ′| = |M | and

M ′{1} = M ′′{1} ∪ M{2}, M ′{2} = L× I, M ′{ } = L× ∂I
X ′{1} = X{1} × 0 ∪ X{2} × 1, X ′{2} = W × I, X ′{ } = W × ∂I ;

moreover, φ′ gives a simple homotopy equivalence of pairs ∂2M
′ → ∂2X

′. Ad-
justing tangential data appropriately, we are again back to a problem already
discussed. We leave to the reader further extensions of this trick, which shows
that our level of generality is useful to work at.

So much for the problem : now we describe the results. Consider first the
simplest case, of closed connected manifolds and Poincaré complexes. Then a
first statement of our results is as follows. First, an algebraic assertion.

There exist abelian groups Lm

(
π1(X), w

)
depending only on the group π1(X),

the homomorphism w : π1(X)→ {±1}, and the value of m modulo 4.

Next the geometrical result. Let X be a simple Poincaré complex, ν a bundle
over X , M a closed manifold, φ : M → X a map of degree 1, and F a stable
trivialisation of τM⊕φ∗ν; let x be the bordism class of the normal map (M,φ, F ),
and m = dimM .

There is an obstruction θ(x) ∈ Lm

(
π1(X), w

)
defined by (M,φ, F ) but de-

pending only on x, which vanishes if x contains a simple homotopy equivalence.
Conversely, if θ(x) = 0 and m � 5, x has a representative (M0, φ0, F0) with
φ0 a simple homotopy equivalence.

Such a result is of course somewhat unsatisfactory, as it is necessary to know
the groups Lm for the purposes of any computations. The problem of calculating
Lm is of considerable difficulty, but we will be able to give some results : we
postpone these till after the proof of the main theorem (§13A).
The result in the general case is of a similar nature, but naturally the details are

more complicated. First of all we drop the assumption that X be connected : as
it is a finite complex, it will only have a finite number of components, and if we
choose a base point in each we find a finite number of fundamental groups, each
finitely presented. It seems neater to consider instead the fundamental groupoid
π(X) of X : this, we note, is a category (with all morphisms equivalences). The
components of π(X) (as groupoid) correspond to the (path-) components of
the space X , and the vertex groups [H6] of π(X) are the fundamental groups
of X based at the points of X . Picking one point from each component of X
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determines an equivalent (skeletal) subcategory. We call a groupoid of finite
type if it has a finite number of components and each vertex group is finitely
presented.

We now introduce the homomorphism w; we regard this as defining an element
±1 for each closed loop in X (to do more would involve too many arbitrary
choices). Clearly, for closed loops α1, α2 with the same base point, we have
w(α1α2) = w(α1)w(α2), and if β is any path with αβ defined (where α is a loop),
w(β−1αβ) = w(α). The first identity expresses that w is a homomorphism of
each vertex group; the second gives the change of base point formula, so there
are no other identities. We define a category Gpd as follows. An object is
a groupoid of finite type, together with a function w as above. A morphism
F : π → π′ is a functor such that for any ‘closed loop’ α in π (i.e. a morphism
whose domain and codomain coincide) we have w(Fα) = w(α). This can be
regarded, if the reader prefers, as a collection of homomorphisms between vertex
groups.

If X is a Poincaré complex, we have the fundamental groupoid π(X): we
associate with it the w which is part of the definition, and so regard π(X)
as an object of Gpd. Similarly if (Y,X) is a Poincaré pair, π(X) and π(Y )
are both objects of this category, and (by definition) the induced morphism of
groupoids π(X) → π(Y ) is a morphism in the category. More generally, let X
be a Poincaré (n + 1)-ad. Then for any α ⊂ {1, 2, . . . , n}, (X(α), ∂X(α)

)
is a

Poincaré pair, and in particular π
(
X(α)

)
is an object of Gpd. If β ⊂ α, we have

an inclusion-induced functor π
(
X(β)

) → π
(
X(α)

)
: that these are compatible

with w has been noted as a consequence of our definitions. Thus X determines
an object π(X) of type 2n in the category Gpd.

Our main algebraic result now states that we have functors Ln from the cate-
gory F (2n,Gpd) to the category A b of abelian groups, and with these the exact
sequences commonly associated (see §0) with objects of type 2n. A precise
statement must take into account the interplay here between different values of
n.

Theorem 3.1. There are symmetric functors Lm : F (2n,Gpd) → A b, nat-
ural transformations ∂∗ : Lm(π) → Lm−1(∂nπ), and natural equivalences α :
Lm(π) → Lm(σn+1π) such that if π is a groupoid of type 2n, the inclusions

∂nπ
i→ ∂nπ, σnδnπ

j→ π induce an exact sequence

· · · → Lm(∂nπ)
Lm(i)−−−−→ Lm(δnπ)

Lm(j)◦α−−−−−→ Lm(π)
∂m→ Ln−1(∂nπ)→ . . .

Moreover, all are periodic in m with period 4.

A word of explanation is in order here. The functors σn use the initial object
in Gpd: the empty groupoid. We call a functor on F (2n,C ) symmetric if it is
invariant under permutations of the factors of 2n. This permits us to discuss
the exact sequence associated with the nth suffix and deduce the others by
symmetry.
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The above result is fairly powerful, and we will spell out one or two of its more
elementary consequences, since they are perhaps obscured by the generality of
the above statement.

Corollary 3.1.1. If f : π → π′ is an equivalence in Gpd, then for each m,
Lm(f) = 0.

For in the exact sequence of f ,

· · · → Lm(π)
Lm(f)−−−−→ Lm(π′)

Lm(j)◦α−−−−−→ Lm(f)
∂m−→ Lm−1(π)

Lm−1(f)−−−−−→ Lm−1(π
′) ,

the morphisms Lm(f), Lm−1(f) are equivalences since f is. The result follows
by exactness.

Analogous deductions can be made if f has a left or a right inverse; since they
do not generally imply a vanishing theorem, they are less interesting:

Corollary 3.1.2. Given an object P of type 2n in Gpd,

π1
f1 ��

g1
��

π2

g2
��

π3
f2 �� π4

if f1 is an equivalence Lm(P ) ∼= Lm(f2), and if f2 is an equivalence Lm(P ) ∼=
Lm−1(f1). If both are, Lm(P ) = 0.

This follows from the preceding corollary and the exact sequence

Lm(f1)→ Lm(f2)→ Lm(P )→ Lm−1(f1)→ Lm−1(f2) .

Corollary 3.1.3. Given two composable morphisms π
f→ π′ f ′→ π′′ in Gpd, we

have an exact sequence

· · · → Lm(f)→ Lm(f ′f)→ Lm(f ′)→ Lm−1(f)→ . . . .

Indeed, using the preceding corollary, we may obtain this as the (horizontal)
exact sequence of either of the two objects

π
1 ��

f
��

π

f ′f
��

π′ f ′
�� π′′

or

π
f ��

f ′f
��

π

f ′
��

π′′ 1 �� π′′

These remarks show that we have (in particular) an Eckmann-Hilton functor in
the sense of Pressman [P6]. However, his methods are of no use in relativising
our result : the functors Lm do not appear to be effaceable.
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We now state the geometrical part of our results.

Theorem 3.2. Let X be a simple Poincaré (n+1)-ad, M a compact manifold
(n+1)-ad, φ :M → X a map of degree 1; ν a bundle over |X |, F a stable trivi-
alisation of τ|M|⊕φ∗ν. Then there is an obstruction θ in Ldim |M|

(
π(X)

)
which

depends only on the bordism class of (M,φ, F ) and vanishes if that class con-
tains a simple homotopy equivalence; conversely, if dimM{ } > 4, its vanishing
is sufficient.

If we suppose also that φ induces a simple homotopy equivalence ∂jM → ∂jX,
and keep ∂jM fixed in the surgeries, then the appropriate obstruction lies in
Ldim |M|

(
δjπ(X)

)
, and its vanishing suffices if dimM{ } � 4.

In each case, the surgery obstruction for the induced map ∂nM → ∂nX is ∂∗θ.
Moreover, θ is natural for inclusion maps.

We now formulate what we mean by the naturality for inclusion maps. Let
X, ν, M, φ, F be as in the theorem, with ∂nM → ∂nX a simple homotopy
equivalence of n-ads; let N be a manifold (n + 2)-ad with ∂nN = σn+1∂nM
(and thus |∂nN | ∩ |∂n+1N | empty). We form a new manifold (n+1)-ad M ′ by
∂nM

′ = δn∂n+1N and

M ′(α) = M(α) ∪ N(α ∪ {n+ 1}) for n ∈ α ⊂ {1, 2, . . . , n} .

MN (glue along common face) .

Similarly form X ′ by glueing N to X via the simple homotopy equivalence
∂nM → ∂nX . Thus φ induces a map (of degree 1) of (n+1)-ads M ′ → X ′; the
usual tangential conditions are easily verified, and the induced map ∂nM

′ →
∂nX

′ is a simple homotopy equivalence. Clearly ifM → X is a simple homotopy
equivalence, so isM ′ → X ′. Our naturality for inclusions says generally that the
surgery obstruction forM → X , which lies in Lm

(
δnπ(X)

)
maps, under the map

induced by inclusion δnX ⊂ δnX
′, to the surgery obstruction in Lm

(
δnπ(X

′)
)

for the map M ′ → X ′.

The above does not exhaust the list of properties of surgery obstructions that
we possess, but it does at least make it clear in what sense they are obstructions,
and the proof of the theorems will clear the way for a more detailed study, of
which some aspects will be presented in the later parts of this book.

One corollary of (3.2)
(
following (3.1.1)

)
is particularly noteworthy : in some

cases we can say that surgery is certainly possible.
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Theorem 3.3 Let X be a simple Poincaré pair, with dim |X | � 6, such that
inclusion induces an isomorphism π(X{ })→ π(X{1}). Then given a bundle ν
over X, a compact manifold pair M , a map φ : M → X of degree 1, and a stable
framing of τ|M| ⊕ φ∗ν, we can perform surgery to make φ a simple homotopy
equivalence of pairs. Similarly if X is a simple Poincaré triad, we have the
isomorphism π(X{2}) → π(X{12}), and we restrict to maps φ : M → X
inducing simple homotopy equivalences ∂2M → ∂2X .

Follows at once from (3.2) and (3.1.1). In logistic order, its place is less simple;
as it seems to be the most important case of our result, we give a direct proof
of it in §4.
Corollary 3.3.1. With the assumptions of (3.3), the constructed (M0, φ0, F0)
with φ0 a simple homotopy equivalence is unique (in its bordism class) up to
diffeomorphism.

An argument above shows that we must do surgery with X replaced by X × I,
andX×∂I already covered by a simple homotopy equivalence. But such surgery
is possible by the relativised (3.3), and the result follows by the s-cobordism
theorem [K3].

The proof of our main result is organised as follows. In §4 we prove (3.3). In
the next two chapters we give direct proofs of the results in the ‘absolute case’
(i.e. where all of ∂|M | is to be kept fixed by surgery), together with an explicit
expression for the corresponding groups Lm in algebraic terms. Then §7 and §8
attempt to do the same in the relative case. Our results here cover only surgery
of pairs, and even so, §8 is inconclusive; these two chapters are not necessary for
the main theorem, but do (we hope) give extra insight into the algebra. Finally
in §9 we give an argument based on general principles in which all our problems
are collected in one big cobordism group, and the main result deduced by using
§4 and also a little surgery on Poincaré complexes. The more detailed results of
§5 and §6 are needed to establish the periodicity in m.
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The important special case is the ‘π-π theorem’ (3.3): for m � 6 a nor-
mal map (φ, F ) : (N,M) → (Y,X) from an m-dimensional manifold with
boundary to a simple m-dimensional Poincaré pair with π1(X) ∼= π1(Y ) is
normal bordant to a simple homotopy equivalence of pairs. The general case
(including a rel ∂ version) is considered in §§ 5, 6, 7, 8 below – for any mor-
phism of groups π → ρ there are defined algebraic L-groups L∗(π → ρ) ; a
normal map (φ, F ) : (N,M) → (Y,X) determines a surgery obstruction ele-
ment θ(φ, F ) ∈ Lm

(
π1(X) → π1(Y )

)
such that θ(φ, F ) = 0 if (and for m � 6

only if ) (φ, F ) is normal bordant to a simple homotopy equivalence of pairs.
From this point of view, the special case follows from the algebraic result that
L∗(π → ρ) = 0 for an isomorphism π ∼= ρ. However, the special case is techni-
cally easier, since no obstruction to surgery is encountered.

This chapter is devoted to the proof of Theorem 3.3. Since ∂2M and ∂2X are
fixed throughout, they will play no rôle in the proof. So we will only discuss the
map δ2M → δ2X . It is then notationally simpler to denote this map of pairs by

φ : (N,M)→ (Y,X) .

Our hypothesis is that π1(X) ∼= π1(Y ), and that dim[Y ] � 6. The argument is
somewhat different according as dim[Y ] is even or odd.

Proof when dim[Y ] = 2k.

The argument here was anticipated in [W18, (7.1)]: we follow the earlier ver-
sion closely, with modifications to cover the simple homotopy condition.

By (1.4), we can perform surgery on φ to make the induced map M → X
(k − 1)-connected and N → Y k-connected. Since k � 3, all four fundamental
groups are now isomorphic. By (2.3 (c)) Kk(N,M) is stably free and s-based.
Now perform surgery on a trivial (k − 1)-sphere in M . This has the effect of
replacing N by its boundary-connected sum with a copy of Sk×Dk, and thus of
adding to Kk(N,M) a free module of rank 1, with the natural basis. Iterating
this construction, we may suppose Kk(N,M) free and based : let {ei} be a
preferred base.

As the fundamental groups are isomorphic, we can apply a theorem of Namioka
[N1] to the universal cover of the quadruple φ to deduce that the Hurewicz map
defines an isomorphism

πk+1(φ) ∼= πk+1(φ̃)→ Hk+1(φ̃) = Hk+1(φ; Λ) = Kk(N,M) .

Thus the ei determine classes in πk+1(φ); by Theorem 1.3, these determine
immersions

fi : (D
k ×Dk, ∂Dk ×Dk)→ (N,M)

39
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and we can perform surgery on any embeddings regularly homotopic to these.

In fact the fi are regularly homotopic to disjoint embeddings. It is enough to
show this for the restricted immersions f i : (D

k, ∂Dk)→ (N2k,M2k−1), for we
can then use small enough neighbourhoods of the resulting discs. Our assertion
follows from a standard sort of ‘piping’ argument (cf. [Z1, lemma 48], [M13,
p. 71]), so we give only an indication here. Put the maps f i in mutual general
position. The only intersections and self-intersections are then isolated points P
in the interior of N , at each of which two branches of the same disc or different
discs meet transversely. Choose arcs α, α′ from P along these branches to M ,
meeting no other singularities on the way. Then α ∪ α′ is an arc in N with
both ends on M ; since (N,M) is 1-connected, we can find a singular triangle δ
in N with edges α, α′ and α′′, where α′′ lies in M . Put δ in general position :
since k � 3, it is then embedded, disjointly from all the discs f i(D

k), except
along α and α′. One can now (see especially [M13, pp. 73–84]) construct a
regular homotopy of the f i which leaves fixed all except a neighbourhood of the
arc α, and ‘pulls’ this across δ to the ‘other side’ of α′, thus getting rid of the
intersection point P and introducing no new undesirable points. Proceeding in
this manner, we convert the f i (and the fi) into disjoint embeddings.

Now perform handle subtraction : let N0 be obtained from N by deleting the
interiors of the fi(D

k ×Dk): let U be the union of the images of the fi: let M0

be obtained from M . By construction, we have simple isomorphisms

Hk+1(U,U ∩ M) ∼= Hk+1(U ∪ M,M)→ Kk+1(N,M)

and as C∗(U,U ∩ M) and D∗(φ) have zero homology in other dimensions it
follows

(
by the definition of the s-base on Kk+1(N,M) and using the natural

cells for (U,U ∩M)
)
that C∗(U,U ∩M)→ D∗(φ) is a simple equivalence. Here,

D∗(φ) is the natural chain complex of φ (regarded e.g. as an inclusion), re-graded
by +1

(
since Hr+1(φ) = Kr(N,M)

)
. Up to chain homotopy equivalence, we

now have a commutative diagram, with rows based short exact sequences,

0 �� C∗(U ∪ M,M)

��

�� C∗(N,M) �� C∗(N,U ∪ M)

��

�� 0

0 �� D∗(φ) �� C∗(N,M) �� C∗(Y,X) �� 0 .

The first two maps are simple equivalences; by (2.5), so is the third. By excision,
C∗(N0,M0) = C∗(N,U ∪M). So φ induces a simple equivalence C∗(N0,M0)→
C∗(Y,X).

Now the diagram

C∗(N0)

[N0]∩
��

C∗(Y )
φ∗��

[Y ]∩
��

C∗(N0,M0)
φ∗ �� C∗(Y,X)
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is (chain homotopy-) commutative, since φ∗[N0] = [Y ]. Three maps are simple
equivalences (the vertical ones since we have simple Poincaré pairs), hence so
is the lower φ∗. Taking duals, we see that φ∗ : C∗(N0) → C∗(Y ) is a simple
equivalence too, hence N0 → Y is a simple homotopy equivalence.

Finally, applying (2.5) to the diagram

0 �� C∗(M0)

��

�� C∗(N0)

��

�� C∗(N0,M0)

��

�� 0

0 �� C∗(X) �� C∗(Y ) �� C∗(Y,X) �� 0 ,

we deduce that C∗(M0)→ C∗(X) is a simple equivalence; since the fundamental
groups are all the same (so the group ring of π1(X) is the same as the coefficients
used throughout), the map M0 → X is a simple homotopy equivalence as well.

Proof when dim[Y ] = 2k + 1.

This time, (1.4) permits us to suppose that φ induces k-connected maps M →
X and N → Y , and moreover that Kk(N,M) is zero. By the Corollary to (2.4),
we now have a based short exact sequence of s-based modules

0→ Kk+1(N,M)→ Kk(M)→ Kk(N)→ 0 .

As before, we can perform surgery on trivial (k − 1)-spheres in M , thus taking
the boundary-connected sum with copies of Sk ×Dk+1; again, this allows us to
convert all the s-bases into actual bases.

The reader may perhaps now expect us to represent the basis elements of
Kk+1(N,M) by disjoint embeddings and then proceed as above. But we need
(N,M) to be 2-connected for the desired embedding theorem (at least, with the
present state of knowledge), and I do not wish to assume this. We can, however,
again say that πk+2(φ) ∼= Kk+1(N,M), and apply (1.4) to represent the basis
elements by framed immersions fi : (D

k+1, ∂Dk+1)→ (N,M).

We assert, however, that we can at least modify the fi by regular homotopies
so that their boundaries define disjoint embeddings Sk →M . For again, put the
fi in general position and consider the intersections and self-intersections. These
are 1-dimensional, and along each of them two branches meet transversely (see
[A5], [W45], or – preferably – [R17] for the PL case). Thus they form certain
circles (which do not concern us here) and arcs α with both ends onM . Now we
can find in each branch at α a disc δi whose other side αi lies in M . Moreover,
the loop α1 ∪ α2 spans the disc δ1 ∪ δ2 in N , so is nullhomotopic in N , hence
also

(
as π1(M) = π1(N)

)
in M . We can thus span the loop by a disc δ in M :

now since k � 3 (this is the crucial use of this hypothesis), we may suppose
that δ is embedded, and meets the images of the fi only in α1 ∪ α2. Now by
[M13, p. 71] we can deform a neighbourhood of α1 across δ so as to get rid of
the intersections at the two ends. Proceeding in this way, we get rid of all the
intersections and self-intersections on M .
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The reader who returns to this point after §5 will recognise Kk+1(N,M) as a
lagrangian (in fact, this follows from (5.7), short-circuiting the preceding para-
graph). A quicker conclusion to the proof is then found by choosing a comple-
mentary lagrangian, and attaching handles corresponding to a preferred base,
to kill Kk(N). The proof may then be completed as in the first case. We prefer,
however, to derive the result independently of the algebra of the next chapter.

For the rest of the proof, all homology groups will be free and based in such
a way that the Whitehead torsion of chain complexes with respect to these
homology bases is zero. As the chain complex is in these cases simply equivalent
to the complex formed by the homology groups (with zero differential), we may
safely replace it by this. The condition holds with the assumptions above;
moreover, by (2.6), we have a simple isomorphism

[N ]∩ : Kk(N)→ Kk+1(N,M) ,

where Kk(N) is dual to Kk(N), with the dual base.

We have represented a preferred base of Kk+1(N,M) by disjoint framed em-
beddings Sk → M . Attach corresponding (k + 1)-handles to N , thus perform-
ing surgery. Let U be the union of the added handles, and the pair (N,M)
be replaced by (N ′,M ′). Since our spheres are nullhomotopic in N , Kk(N) is
unaltered : in fact N is replaced (up to simple homotopy) by its bouquet with
corresponding (k + 1)-spheres, so we acquire a free module Kk+1(N

′).

Dually, the exact sequence of the triple M ′ ⊂ M ′ ∪ U ⊂ N ′ reduces (using
excision) to

0→ Kk+1(N
′,M ′)→ Kk+1(N,M)→ Kk(U,U ∩ M ′)→ Kk(N

′,M ′)→ 0 .

The module Kk(U,U ∩ M ′) is free, with one basis element corresponding to
each handle (represented by the core of the dual handle). The map to it of
Kk+1(N,M) is dual to the map Kk+1(U,U ∩ M) → Kk(N) representing the
attaching maps, and so is zero. Thus Kk+1(N,M) is unaltered and we acquire
a free (based) module Kk(N

′,M ′) dual to Kk+1(N
′).

The attached handles correspond (by construction) to a preferred base of
Kk+1(N,M), hence the map

Kk+1(N
′)→ Kk+1(N

′,M ′)

is a simple isomorphism. It follows that the map of the dual modules Kk(N
′)→

Kk(N
′,M ′) also is, and hence that Kk(M

′) vanishes (by the exact sequence).
In fact (as we will see below) the trivial base for 0 = Kk(M

′) is preferred, so
that the map M ′ → X is already a simple homotopy equivalence.

Now choose a preferred base of Kk(N
′), and

(
using (1.1), Corollary

)
perform

surgery on the elements of πk+1(φ
′) corresponding to the base elements under

the Hurewicz-Namioka isomorphism. Write P for the cobordism so obtained of
N ′ to N ′′, say, and consider the induced map of degree 1 of Poincaré triads (in
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the relative case, there will be tetrads)(
P ;N ′ ∪ (∂N ′ × I), N ′′)→ (Y × I;Y × 0 ∪ X × I, Y × I) :

we will identify N ′ ∪ (∂N ′ × I) with N ′. In the exact sequence

0→ Kk+1(N
′)→ Kk+1(P )→ Kk+1(P,N

′) d→ Kk(N
′)→ Kk(P )→ 0 ,

the map d is, by construction, a simple isomorphism, so Kk(P ) vanishes (with
trivial preferred base) and Kk+1(N

′)→ Kk+1(P ) is a simple isomorphism. Now
in the sequence

0→ Kk+1(N
′′)→ Kk+1(P )→ Kk+1(P,N

′′)→ Kk(N
′′)→ 0

the middle map is dual to d, so is a simple isomorphism, hence all Ki(N
′′)

vanish, with trivial preferred bases.

So we have a simple homotopy equivalence N ′′ → Y . Arguing as in the first
case, it follows that we have a simple homotopy equivalence of pairs (N ′′,M ′)→
(Y,X). This completes the proof of the theorem.
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The even-dimensional surgery obstruction groups L2k(Λ) of a ring with involu-
tion Λ are Witt groups of stable isomorphism classes of (−1)k-hermitian forms
over Λ, where stability is with respect to hyperbolic forms. These L-groups are
constructed by analogy with the projective class group K0(Λ), but using forms in-
stead of modules. A k-connected 2k-dimensional normal map (φ, F ) :M2k → X
determines a (−1)k-hermitian intersection form (λ, μ) on the kernel Z[π1(X)]-
module Kk(M) = πk+1(φ). The surgery obstruction is the class of the intersec-
tion form

θ(M,φ, F ) = (Kk(M), λ, μ) ∈ L2k

(
Z[π1(X)]

)
.

For k � 3 the normal map (φ, F ) is bordant to a homotopy equivalence if and
only if θ(M,φ, F ) = 0, i.e. if and only if the form (Kk(M), λ, μ) is stably
hyperbolic. The surgery obstruction of an arbitrary 2k-dimensional normal map
(M,φ, F ) is obtained by first applying (1.2) to make φ k-connected by surgery
below the middle dimension. See the notes at the end of section 17G for the
chain complex method of Ranicki [R5], which obtains θ(M,φ, F ) directly from
the normal map, without preliminary surgeries below the middle dimension.

We commence our proof of the main theorem by considering the case of surgery
on an even-dimensional manifoldM , leaving the boundary fixed : this was essen-
tially solved in our paper [W18], but we repeat the details here for the reader’s
convenience, and because we wish to introduce some terminology which will be
needed in later chapters.

Suppose given a Poincaré complex X of formal dimension 2k � 4, a bundle
over X , and a normal map (M,φ, F ) such that φ : M → X has degree 1. By
(1.2), we may suppose φ k-connected. Then (2.3) and (2.6) show that

Lemma 5.1. G = Kk(M) = πk+1(φ) is a stably free, stably based Λ-module
where Λ = Z[π1(X)]. So is G∗ = Kk(M), and Poincaré duality induces a
simple isomorphism of G and G∗.

We can identify G∗ with HomΛ(G,Λ) since φ is k-connected. Thus the map of G
to G∗ transposes to give a map λ : G×G→ Λ. This is induced by intersection
numbers. We next study intersections and self-intersections geometrically. For
this we do not need such strong hypotheses.

Let M2k (k � 2) be a connected smooth or PL manifold with fundamental
group π, E the total space of the bundle associated to the tangent bundle of M
with fibre the Stiefel manifold Vk,k (in the PL case we will use the stable Stiefel
manifold Vk instead : see [H6] and [H3]). Then regular homotopy classes of
immersions Sk →M correspond bijectively to elements of πk(E) – this follows

44
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from the Proposition in §1. We have an exact sequence

πk(Vk,k)→ πk(E)→ πk(M)→ {1} ;

the first term is cyclic of order∞ or 2 according as k is even or odd. Projection
induces π1(E) ∼= π1(M) = π: thus π operates (on the right) on πk(E). We
represent elements of πk(E) as immersions f : Sk →M which do not necessarily

preserve the base point, hence some convention is necessary. Let M̃ be the
universal covering space of M : we can either specify a lifting f̃ : Sk → M̃ , or
(equivalently) a (homotopy) class of paths in M joining the base point ∗ to (1):
we shall sometimes use a lifting, sometimes a path. Note that π operates via
its operation on M̃ , or equivalently by composing the path with a loop on ∗.
Addition of two immersed spheres Sk in M̃ is represented by joining by an arc,
which is then thickened to a copy of Dk × I (with ends Dk × ∂I on the two
spheres), and we use ∂Dk × I to form the connected sum of the spheres.

Write G for any Λ-module provided with a Λ-homomorphism G → πk(E), so
that elements of G are represented by immersed spheres in M .

Theorem 5.2. Intersections define a map λ : G×G→ Λ such that

(i) for x ∈ G fixed, y �→ λ(x, y) is a Λ-homomorphism G→ Λ.

(ii) λ(y, x) = (−1)kλ(x, y) (x, y ∈ G).

Write Qk for the quotient group Λ/{ν−(−1)kν : ν ∈ Λ}. Then self-intersections
define a map μ : G→ Qk such that

(iii) λ(x, x) = μ(x) + (−1)kμ(x) + χN (x) (x ∈ G),
(iv) μ(x + y)− μ(x)− μ(y) = λ(x, y) (x, y ∈ G),
(v)∗ μ(xa) = aμ(x)a (x ∈ G, a ∈ Λ).

If k � 3, x is represented by an embedding if and only if μ(x) = 0†.

∗Peter Teichner has pointed out that the formula μ(xa) = aμ(x)a is only correct in general
if a = ng ∈ Λ (n ∈ Z, g ∈ π1(X)), or if χN (x) = 0. In fact, for an arbitrary a =

∑
i nigi ∈ Λ

there is a correction term involving the Euler number χN (x) ∈ Z

μ(xa) = aμ(x)a +
(∑
i<j

ninjw(gi)gj(gi)
−1

)
χN (x) ∈ Qk .

†Thus for k � 3 it is possible to kill x ∈ G by surgery on (φ, F ) if and only if μ(x) = 0.
The effect of the surgery is a bordant normal map (φ′, F ′) : M ′ → X with kernel Λ-modules

Kk(M
′) = 〈x〉⊥/〈x〉 , Kk−1(M

′) = Coker(λ(x,−) : G → Λ)

where

〈x〉 = {xa : a ∈ Λ} ⊆ 〈x〉⊥ = Ker(λ(x,−) : G → Λ) = {y ∈ G : λ(x, y) = 0 ∈ Λ} ⊂ G .

The normal map (φ′, F ′) is k-connected if and only if x generates a direct summand 〈x〉 ⊂ G.
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Notes. In (iii), although μ(x) ∈ Qk, μ(x) + (−1)kμ(x) is a well-defined element
of Λ. We use χN (x) for the normal Euler number of an immersion representing
x. In (iv), we should really replace λ(x, y) by the element of Qk it determines.
As to (v), although the group Qk is not a Λ-module, the symbol aba is well-
defined for a ∈ Λ, b ∈ Qk.

Proof Let S1, S2 be two immersed k-spheres in M ; we may suppose that they
meet in general position, i.e. transversely in a finite set of points P . To each
such P we assign an element gP ∈ π, and a sign εP = ±1 as follows. In terms
of paths, gP is the class of the loop at ∗ which starts along the path to the base
point of S2, round S2 (avoiding other singularities) to P , round S1 to its base

point, and back along the given path to ∗. In terms of prescribed lifts to M̃ ,
if P̃ is the point of S̃1 lying over P , gP is that element of π such that S̃2g

−1
P

passes through P̃ .

To define εP we must orient M at ∗ (it may be globally nonorientable), and
transport the orientation to P by the path for S1. Then εP is the sign of the
intersection of S1 and S2 with respect to this orientation at P . Equivalently,
the orientation at ∗ orients M̃ , and εP is the sign of the intersection of S̃1 and

S̃2g
−1
P at P̃ .

We now define λ(S1, S2) =
∑

P εPnP over all intersection points P . If we write
the sum as ∑

g∈π

n(g)g

(note, however, that it is finite), then n(g) is the intersection number of S̃1

and S̃2g
−1 in M̃ , so depends only on the homotopy classes; thus it is certainly

well-defined for elements of G, so λ : G ×G→ Λ is defined. The fact that λ is
linear over Z is evident (we can ignore the connecting tubes); also that

λ(S1, S2g) = λ(S1, S2)g

(for we must replace each gP by gP g). Thus (i) is established. As to (ii), we have
the same intersection points, but must recompute εP and gP . But π acts on

M̃ by homeomorphisms, so if S̃1 meets S̃2g
−1
P , then S̃1gP meets S̃2 : g′P = g−1

P .
The sign of the intersection changes by (−1)k on interchanging the order of the

two spheres; there is a further change if gP changes the orientation of M̃ . Hence
ε′P = (−1)kw(gP )εP , which proves (ii).

This completes the properties of λ; we come now to μ, which is more compli-
cated, and will be a constant source of extra snags for the rest of the book. Let
S1 be an immersed sphere in general position, so that it has only a finite set
of self-intersections, all transverse. At each such point P , two branches of S1

cross. If we impose an order on these branches, we can compute εP and gP as
before. Moreover, by the argument above, if we interchange the order εP gP is re-
placed by (−1)kw(gP )εP g−1

P = (−1)kεP gP . Consider
∑

P εP gP , where at each
self-intersection point P we choose arbitrarily an ordering of the two branches.
Then if μ(S1) is the element of Qk defined by

∑
P εP gP , alteration of our choices
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will not affect μ(S1). Let us now change S1 by a regular homotopy. If this is
generic (see Cerf [C13]), the self-intersections, and hence μ, vary continuously
except at a finite set of points where two self-intersections appear (or disappear)
together. At such a birth or death point, the two self-intersections determine
the same gP and opposite values of εP ; thus μ is constant. So we obtain a map
μ : G→ Qk.

Now (iv) is immediate, since the self-intersections of the connected sum of two
spheres S1 and S2 are just the self-intersections of S1, and those of S2, together
with the intersections of S1 with S2. For (iii), note that λ(x, x) is the mutual
intersection of two different spheres S1, S

′
1 representing x. We choose S1 as

above; then take a tubular neighbourhood, and take S′
1 as a cross-section of

the normal bundle of S1 (with fibre Dk). This will intersect S1 (the zero cross-
section) with intersection number χN (x). In addition, each self-intersection P
of S1 gives rise to two intersections of S1 with S′

1: for one, the two branches
at P correspond to S1 and S′

1 respectively, for the other they correspond to S′
1

and S1. This proves (iii).

In view of (iv), it is sufficient to prove (v) when a = g is an element of π, and
in this case it is immediate (see (i) above). Thus it remains to show only that
if k � 3 and μ(x) = 0 we can find an embedding representing x. Note that (for
all k � 2) μ(x) = 0 is clearly a necessary condition for x to be representable
by an embedding; also that for k = 2 it is known [K4] to be insufficient. Now
if μ(x) = 0, we can put the self-intersections of a sphere S representing x in
pairs (Pi, Qi) such that (with appropriate choices of order of the two branches
at each intersection) g(Pi) = g(Qi) and ε(Pi) = −ε(Qi) = 1. Join Pi to Qi by
an arc αi along one branch and an arc βi along the other; then the loop defined
by αi and βi is nullhomotopic, and the two intersections Pi, Qi have opposite
signs on it. The result now follows from [M13, 6.6].

Remark 5.2.1. The fact that M̃ is the universal covering of M is not essen-
tially used in the above. We can consider the more general case when M ⊂ N ,
N connected (but M need no longer be), and we use the covering of M induced
from the universal covering of N . Since this is not connected, we must permit
an element of G to be represented by a finite union of spheres in M̃ , and per-
mit these to be varied by regular homotopies, and by replacing two spheres in
the same component by their connected sum. The above proof shows that λ
and μ are unchanged by such operations. All assertions of the Theorem then
remain valid except, of course, our criterion for embeddings (which assumes M̃
connected and simply connected).

In the situation of (5.1), we can apply (5.2). The map λ is induced by in-
tersection numbers, so is the same (i.e. up to sign-convention) as the map
which corresponds to Poincaré duality. We define Aλ : G → HomΛ(G,Λ) by
Aλ(x)(y) = λ(x, y): with our conventions, this is a map of Λ-modules; indeed,
a simple isomorphism of stably free and stably based Λ-modules. When G is
free and based, we call (G, λ, μ) a simple hermitian form∗ (or, more precisely,

∗In the first edition a simple hermitian form was called a special hermitian form.
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(−1)k-hermitian). Note that as our immersions are now always framed, (5.2 (iii))
simplifies as χN ≡ 0. Correspondingly, we can apply (5.2.1) with an appropriate
Λ and again obtain a simple hermitian form.

Suppose given a free Λ-module G with base {ei}. Choose arbitrarily elements
bi ∈ Qk, aij ∈ Λ (i < j). Then there is a unique (G, λ, μ), satisfying (5.2 (i)–
(v)), with λ(ei, ej) = aij for i < j and μ(ei) = bi. However, Aλ will in general
not be a simple isomorphism. It is in the case when the base has two elements
{e, f}, and we set

μ(e) = μ(f) = 0 λ(e, f) = 1 .

The resulting form we call the standard plane, and a direct sum of copies of it
– or any isomorph – a hyperbolic form∗.

(
Observe that given simple hermitian

forms (G1, λ1, μ1) and (G2, λ2, μ2) we can form their orthogonal direct sum
(G1 ⊕G2, λ1 ⊕ λ2, μ1 ⊕ μ2)

)
.

Lemma 5.3. A simple hermitian form (G, λ, μ) is hyperbolic if and only if G
has a free based submodule H, with a preferred base extending to one of G, and
so defining a preferred class of bases of G/H, such that

λ(H ×H) = 0 , μ(H) = 0 ,

and the map G/H → HomΛ(H,Λ) induced by λ is a simple isomorphism.

Such a submodule H we will henceforth call a lagrangian†.

Proof Let {ei} be a preferred base of H . There is a dual base of HomΛ(H,Λ),
which induces (by the above isomorphism) a base of G/H : we choose represen-
tative elements f ′

i in G. By hypothesis, {ei, f ′
i} is a preferred base of G, and we

have

μ(ei) = 0 λ(ei, ej) = 0 λ(ei, f
′
j) = δij .

Now choose μi ∈ μ(f ′
i) and make the elementary basis change

fj = f ′
j + (−1)k−1

(
ejμj +

∑
i<j

eiλ(f
′
i , f

′
j)
)
.

We obtain

μ(fi) = 0 λ(ei, fj) = 0 and λ(fi, fj) = 0

thus G is a hyperbolic form, as asserted : the base {ei, fi} provides an isomor-
phism of G with a direct sum of standard planes. Since {ei} could be any
preferred base of the lagrangian H , our argument shows

∗In the first edition a hyperbolic form was called a kernel, being a generalisation of a Witt
kernel. The kernel terminology was introduced in [W9].

†In the first edition a lagrangian was called a subkernel. The lagrangian terminology
was introduced by Novikov [N8], who related surgery obstruction theory to the formalism of
hamiltonian physics.
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Corollary 5.3.1. Suppose for i = 1, 2, Hi is a lagrangian in the simple her-
mitian form (Gi, λi, μi). Then any simple isomorphism H1 → H2 extends to a
simple isomorphism of (G1, λ1, μ1) on (G2, λ2, μ2).

We call two lagrangians H1, H2 in (G, λ, μ) complementary if they are com-
plementary submodules, i.e.

H1 ∩ H2 = {0} , H1 +H2 = G .

There is then an obvious simple (Noether) isomorphism of H2 on G/H1, and
in (5.3) above we can choose the f1 (lifting a base of G/H1) to lie in H2: no
further adjustment is then necessary. So any two complementary lagrangians
are isomorphic to the pair described above (with bases {ei}, {fi} respectively,
1 � i � r, for suitable r).

Lemma 5.4. If (G, λ, μ) is a simple hermitian form, then (G, λ, μ)⊕(G,−λ,−μ)
is a hyperbolic form.

Proof Let {ei} be a preferred base of G: write e′i, e
′′
i for the corresponding

elements of the two summands. We have

λ(e′i + e′′i , e
′
j + e′′j ) = λ(e′i, e

′
j) + λ(e′′i , e

′′
j )

= λ(ei, ej)− λ(ei, ej) = 0

and
μ(e′i + e′′i ) = μ(e′i) + μ(e′′i )

= μ(ei)− μ(ei) = 0 .

To show that the submodule H of G ⊕ G freely generated by the e′i + e′′i is a
lagrangian, it remains only to verify that the map of (G⊕G)/H to HomΛ(H,Λ)
induced by λ is a simple isomorphism. Now the classes of the e′i give a basis of
the former module; and for the latter we use the dual basis of {e′j + e′′j }. Thus
our map has matrix (aij), where

aij = λ(e′i, e
′
j + e′′j ) = λ(ei, ej) .

But this is also the matrix of the map of G to HomΛ(G,Λ) which is, by hypoth-
esis, a simple isomorphism. The result follows from 5.3.

We now define a group Lm(π) when m = 2k. Consider the semigroup under ⊕
of simple hermitian forms. Write X ∼ X ′ if there are hyperbolic forms K, K ′

such that X⊕K and X ′⊕K ′ are isomorphic : since the sum of hyperbolic forms
is a hyperbolic form, this is an equivalence relation, and it is clearly compatible
with addition, so we have a quotient semigroup. But by (5.4) (G,−λ,−μ) is
inverse to (G, λ, μ) modulo the equivalence relation, so our quotient semigroup
is a group : we call it Lm(π).

If we relax the conditions that G be free and based to require merely an s-base,
we appear to get a different group. But given such a (G, λ, μ), we can add a
hyperbolic form of large dimension 2r: if r is big enough, this makes G free,
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and if r is even larger, the resulting s-base will be equivalent to an actual base.
Thus if we define an equivalence relation as above, we get the same equivalence
classes as before.

The reason why hyperbolic forms are ignored in our equivalence relation is
explained by

Lemma 5.5. Assume the hypotheses preceding (5.1), and perform surgery on a
further (k − 1)-sphere. Then the effect on (G, λ, μ) is to add a standard plane.

Proof Since πk(φ) = 0, we are doing surgery on the zero element of πk(φ). Thus
our (k−1)-sphere is regularly homotopic, and so (by general position) isotopic to
an unknotted one inside a disc Dm ⊂ M , with the standard framing. Surgery
now replaces M by the connected sum M#(Sk × Sk): G is correspondingly
replaced by a direct sum – evidently an orthogonal one – and if e, f are the
classes of Sk × 1 and 1 × Sk respectively, we have a preferred base, and λ and
μ are as for a standard plane.

We can make Lm(π) into a functor. For if r : π → π′ is a homomorphism
compatible with w, it induces r : Λ → Λ′ compatible with bar, and any simple
hermitian form (G,Λ, μ) over Λ induces by tensoring a simple hermitian form
(with carrier G ⊗Λ Λ′) over Λ′: indeed, we can map the matrix elements of λ
by r, and analogously for μ. This preserves direct sums, so induces a homomor-
phism Lm(π)→ Lm(π′).

Theorem 5.6. Let (X,W ) be a connected simple Poincaré pair with formal
dimension m = 2k, ν a bundle over X, M a compact manifold with bound-
ary, φ : (M,∂M) → (X,W ) a map of degree 1 inducing a simple homotopy
equivalence ∂M → W , F a stable trivialisation of τM ⊕ φ∗ν. If k � 2 we
define θ ∈ Lm

(
π1(X)

)
by performing surgery rel ∂M till φ is k-connected and

then taking the class of Kk(M). Then θ depends only on the bordism class
of (M,φ, F ) relative to ∂M ; if k � 3, the class has a representative with φ a
simple homotopy equivalence if and only if θ = 0. The obstruction θ is natural
for inclusion maps.

Note that this is stronger than the result announced in §3, for we have a precise
definition of θ which is not beyond the reach of computation. We will proceed
analogously for m odd and for pairs, though the algebraic definitions of the Lm

get progressively more complicated.

Proof We must show that θ depends only on the bordism class. So suppose
given bordant normal maps (M−, φ−, F−) and (M+, φ+, F+), with φ− and φ+
each k-connected : let (N,ψ, F ) be the cobordism. We can write ∂M− = ∂M+

and take N to be a manifold triad : we regard ψ as a map of triads,

ψ : (N ;M−,M+)→ (Y ;X × 0 ∪ W × I,X × I) .

By (1.2) we can do surgery rel ∂N to make the map N → Y k-connected.

We wish to have Kk(ψ) = 0. Theorem 1.4 states that we can ensure this by
performing suitable handle subtractions, and the addendum shows that (e.g.)
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M− can be kept fixed. By (5.5), the only effect onKk(M+) is to add a hyperbolic
form [which does not affect class in L2k

(
π1(X)

)
].

At this stage we know that all groups Ki ofM−, M+ vanish except with i = k;
likewise for ∂N . In fact all groups Ki of ∂N , N and (N, ∂N) vanish except(
cf. (1.4)

)
those in the exact sequence

0→ Kk+1(N, ∂N)→ Kk(∂N)→ Kk(N)→ 0 .

Now we can make Kk(M−) and Kk(M+) free and based by adding hyperbolic
forms of large enough rank : by (5.5) again, we can achieve this by adding
enough k-handles to N along M− or M+. Also, each such addition adds a free
module (with its natural basis) to Kk+1(N, ∂N) andKk(N), so we may suppose
each of these free and based. By (2.4), Corollary, the exact sequence is based
(i.e. as chain complex, it has zero torsion).

Since j∗∂∗[N ] = [M+]− [M−], and Kk(∂N) = Kk(M+)⊕Kk(M−), (with coef-
ficients Λ = Z[π1(X)] understood : note that π1(X) �= π1(∂N) here), the simple
hermitian form defined on Kk(∂N) by (5.2.1) is the sum of a form representing
the surgery obstruction for M+ and the negative of a corresponding form for
M−. So to prove these are equal, it suffices to show that Kk(∂N) is a hyperbolic
form. By (5.3), it will be enough to show that Kk+1(N, ∂N) is a lagrangian.
This result is important enough for us to be worth stating as a separate lemma.

Lemma 5.7. Let φ : (N,M) → (Y,X) be a map of degree 1, where N is a
compact manifold with boundary M and (Y,X) is a simple Poincaré pair with
Y connected; suppose ν and F as usual. Let dimN = 2k + 1 � 5, and suppose
φ induces k-connected maps M → X and N → Y and that Kk(N,M) = 0
(with coefficients Λ = Z[π1(Y )] understood). Assume that the stable base of
Kk+1(N,M) given by (2.3) is equivalent to an actual base. Then Kk+1(N,M)
is a lagrangian of Kk(M).

We emphasise again that the coefficients are Z[π1(Y )] and not Z[π1(X)]. We
will conclude the proof of (5.6) using this result, and then return to prove (5.7).

We have seen that (5.7) implies that θ depends on the bordism class; clearly
it vanishes for a simple homotopy equivalence. Suppose, conversely, that θ
vanishes and that k � 3. Using (5.5) as above, we see that we may suppose
Kk(M) a hyperbolic form, with standard base, say {ei, fi : 1 � i � r}. As
μ(er) = 0, the class er ∈ Kk(M) ∼= πk+1(φ : M → X) is represented by an
embedded sphere Sr in M , by (5.2) (here we use k � 3). By (1.1), we can now
do surgery on M using this sphere. Let N be the support of the surgery : up to
homotopy, N �M ∪ ek+1, and if M+ is the resulting manifold, N �M+ ∪ ek.
The homomorphism

Kk(M)→ Hk(N)→ Hk(N,M+) ∼= Λ

has an immediate geometrical interpretation by intersection numbers with er;
since λ(er, fr) = 1, it is surjective. So φ+ is still k-connected, the surgery on
M+ to return to M is made on a trivial (k − 1)-sphere, and

(
cf. (5.5)

)
M ∼=
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M+#(Sk × Sk). We claim
(
cf. [W18, (3.3)]

)
that Kk(M+) may be identified

with the hyperbolic form with base {ei, fi : 1 � i � r − 1}: the desired result
then follows by induction on r. But this can be seen from the commutative
exact diagram

0
��

���
��

��
��

��
Kk+1(N,M)

er

��

���
��

��
��

Kk(M)

∩ er
��

���
��

��
��

Kk(N,M+)
��

���
��

��
��

�
0

0

����������

���
��

��
��

��
Kk+1(N, ∂N)

���������

���
��

��
��

Kk(N)

���������

���
��

��
��

�
0

�����������

0

����������

��
Kk(M+)

���������
		 0

�����������

in which Kk+1(N,M) and Kk(N,M+) can be identified with Λ: we can identify
Kk+1(N, ∂N) with the submodule of Kk(M) generated by all ei and fi except
fr, and Kk(M+) with the quotient of this by er. Moreover, these identifications
preserve preferred classes of bases, as is evident since the isomorphisms with Λ
correspond geometrically to cells : in fact this construction is simply the reverse
of the preceding (i.e. of taking connected sums with Sk × Sk).

To complete the proof of (5.6) it remains to show naturality. Write ∂M = L;
let ∂M ′ = L ∪ L′, and suppose given a simple homotopy equivalence φ′ :
(M ′;L,L′) → (X ′;W,W ′) of triads, with associated ν and F , extending φ |L
etc. Then we must consider the combined map

M L M ′ L′

φ′′ : (M ∪M ′, L′)→ (X ∪X ′,W ′) .

But since φ′ is a simple homotopy equivalence we have Kk(M ∪ M ′) = Kk(M)
with, however, different coefficients. Since we can use the same spheres to
calculate λ and μ, we must get the same results, composed with the map
Z[π1(X)] → Z[π1(X ∪ X ′)] induced by inclusion. Hence we obtain the im-
age of the simple hermitian form φ under the associated map, so θ too behaves
naturally.
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Proof of (5.7).
(
cf. [W18, (7.3)]

)
. It follows from our assumptions that the

only non-vanishing K-groups are those in the sequence

0→ Kk+1(N,M)→ Kk(M)→ Kk(N)→ 0 .

By (2.4), Corollary, this is a based short exact sequence of s-based modules.
By (2.6), duality induces a simple isomorphism of Kk+1(N,M) on Kk(N) ∼=
HomΛ

(
Kk(N),Λ

)
. Since, by hypothesis, the s-base ofKk+1(N,M) is equivalent

to a base, the same holds for Kk(N), and hence also for the dual module Kk(N).
To check the conditions (5.3) that Kk+1(N,M) be a lagrangian, it remains
only to show that λ and μ vanish identically on it. This can easily be shown
algebraically in the case of λ, but we give a geometrical argument which covers
μ also.

Since the restricted map of φ :M → X is k-connected, it follows that although
Λ
(
= Z[π1(Y )]

)
is not closely related to the fundamental groups of the compo-

nents of X , neverthelessKk(M) is generated as Λ-module by classes represented
by maps of spheres. (One can regard M as a subcomplex of X containing the
k-skeleton; the relative (k + 1)st homology module is then generated by the
classes of the (k + 1)-cells of X −M). Indeed, we have used spheres to define
(5.2.1) the simple hermitian form on Kk(M). Now let x ∈ Kk+1(N,M). We
represent ∂x ∈ Kk(M) as a sum of maps of spheres : these maps may be taken

to be framed immersions (e.g. just one in each component of M̃ where ∂x has

a nonzero summand). These spheres have classes in πk(Ñ). I say that the sum
of these classes is zero. For the image in Kk(N) is zero by the homology exact

sequence, and πk+1(φ̃) ∼= Hk+1(φ̃) = Kk(N) maps to πk(N). Hence there is a

map into Ñ of a (k + 1)-sphere, with discs removed, whose boundary spheres
are mapped by our framed immersions. More precisely it can be seen

(
arguing

as in (1.3)
)
that the framed immersions in M̃ of the spheres Sk extend to a

framed immersion in Ñ of the punctured (k + 1)-sphere, representing x.

Let T be the immersed punctured (k+1)-sphere representing x ∈ Kk+1(N,M);
let T ′ similarly represent x′. We may suppose that T and T ′ meet transversely :
i.e. in a finite set of circles (which do not concern us) and arcs with both ends
representing intersections of ∂x and ∂x′. Hence (homologically) all such intersec-
tions cancel in pairs, so λ(∂x, ∂x′) = 0. Similarly consider the self-intersections
of T : along each arc, we choose an order of the two branches of T meeting there,
and note that the self-intersections of ∂T at the two ends determine the same
g ∈ π1(Y ), but opposite signs : so the self-intersections cancel in pairs too, and
μ(∂x) = 0. This proves Lemma 5.7.

We have now proved the main theorem in the special case considered in this
paragraph, but before we leave it, we wish to show that the groups Lm(π)
defined above are not too large, in that all elements do occur as obstructions to
surgery problems.
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Theorem 5.8. Let m = 2k � 6; let Xm−1 be a connected compact smooth or
PL manifold with fundamental group π and stable normal bundle ν. Then we
can find a compact manifold triad (M ; ∂−M,∂+M), a map

φ : (M ; ∂−M,∂+M)→ (X × I;X × 0 ∪ ∂X × I,X × I)
of degree 1, and a stable framing F of τM ⊕ φ∗ν, such that

(i) φ | ∂−M is an identity map, ∂−M → X × 0 ∪ ∂X × I,
(ii) φ | ∂+M is a simple homotopy equivalence and

(iii) the surgery obstruction for φ keeping ∂M fixed is a prescribed element of
Lm(π). More precisely the bordism set for all (M,φ, F ) satisfying (i) and
(ii) is mapped bijectively to Lm(π) by θ.

Proof By definition, any element of Lm(π) is represented by a simple hermi-
tian form : let {ei} be a preferred base, 1 � i � r. Choose r disjoint discs
D2k−1

i ⊂ Int X ; let f0 : Sk−1 × Dk → D2k−1 be the standard embedding,
so by composition we obtain r disjoint embeddings f0

i : Sk−1 × Dk → Int X ,

and choose lifts to X̃ (such embeddings are called unknotted and unlinked).
We now subject the f0

i to simultaneous regular homotopies ηi, to new disjoint
embeddings f1

i .

We can regard ηi as a framed immersion Sk−1 × I → X × I with boundary
embedded. We can thus count intersections and self-intersections exactly as in
(5.2). I say (cf. [W18, p. 247]) that we can choose the self-intersections of the
ηi, and the intersections of ηi with ηj (i < j), arbitrarily and independently.
Since all is additive under composition of regular homotopies, it is sufficient
to be able to introduce a single (self-) intersection with invariant ±g, g ∈ π.

To do this, we join f̃0
i (S

k−1)g to f̃0
j (S

k−1) by an arc in X̃ , projecting to an
arc in X in a prescribed homotopy class, move part of the latter sphere along
the arc till it is close to the former, and then deform across a disc Dk meeting
f̃0
i (S

k−1)g transversely. If care is taken with orientation (in fact, we have room
for manoeuvre along the arc), one sees that either sign can be achieved. The
argument is valid for i � j.

Now attach k-handles to X × I with attaching maps f1
i × 1. Since we chose

trivial spheres to start with, we can regard this as a surgery on the identity map
X → X . Let M be the resulting manifold. All assertions of the Theorem up to
(i) are clear. To obtain (ii) and (iii) we use our simple hermitian form; in fact,
we choose

self-intersection of ηi = μ(ei)

intersection of ηi with ηj = λ(ei, ej) (i < j):

it follows as for (5.2) (ii) and (iii) that the second line then holds for all i and j.
Clearly Kk(M) = Kk(M,∂−M) has as preferred basis the classes of the cores of
the attached bundles. We complete these to spheres Si by adjoining the images
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in X × I of the ηi, and discs in the D2k−1
i spanning the images of the f0

i , and
(in the smooth case) rounding the resulting corners.

D1 D2

X × 1

X × 0

Then Si ∩ Sj = ηi ∩ ηj , and similarly for self-intersections, so we recover
the given simple hermitian form. Its associated simple isomorphism G →
HomΛ(G,Λ) can be identified with the natural map

Kk(M)→ Kk(M,∂+M) ,

so (by the exact sequence) all Ki(∂+M) vanish. M is formed from ∂+M by
attaching k-handles, so ∂+M has fundamental group π, too (here is the only
place in the proof where the hypothesis k > 2 is used. The result is known to
be false if k = 2). Hence φ induces a homotopy equivalence ∂+M → X ; using
(2.4) Corollary we see that this is simple. We have already seen that the surgery
obstruction is represented by the prescribed simple hermitian form.

As to the last part, suppose (M,φ, F ) and (M ′, φ′, F ′) correspond to the same
surgery obstruction. We glue M to M ′ along X × 0, correspondingly for the
two copies of X × I (so change one of them the X × [0,−1]), and modify φ,
F appropriately. In the result, we still have a simple homotopy equivalence on
the boundary. The surgery obstruction is zero, since the two original ones were
equal (note that the sign of [M ′] was changed for the glueing). We thus find a
manifold N , an extended ψ : N → X × [−1, 1]× I and stable framing G; ψ is a
simple homotopy equivalence on all faces of the boundary except X× [−1, 1]×0.
But we can regard (N,ψ,G) as the required bordism, by reinterpreting [−1, 1]×I
so that [−1, 0]× 0 becomes the ‘lower end’, [0, 1]× 0 becomes the ‘top’ and the
rest of ∂([−1, 1] × I) becomes a ‘side’. In the smooth case, this requires some
adjustment of corners.

Note that in particular the bordism provides an s-cobordism of M+ to M ′
+

(viz. the ‘side’ mentioned above). By the s-cobordism theorem, we actually have
a (smooth or PL) homeomorphism between these two. We make no assertion
about the nonexistence of such a homeomorphism if the surgery obstructions
for M and M ′ differ.



56 the main theorem

Plumbing. The construction in (5.8) of a k-connected 2k-dimensional nor-
mal map (φ, F ) : M → X realising a prescribed element of L2k

(
π1(X)

)
is

a non-simply connected generalisation of the plumbing construction of (k − 1)-
connected 2k-dimensional manifolds with prescribed intersection form due to
Milnor [M10]. In particular, the generator (Z8, E8) ∈ L8({1}) = Z (13A.1)
is realised in the differentiable category as the rel ∂ surgery obstruction of a
4-connected 8-dimensional degree 1 normal map (φ, F ) : (W 8,Σ7) → (D8, S7)
with W 8 the 3-connected 8-dimensional manifold of signature 8 obtained by
the E8-plumbing of 8 copies of τS4 , with boundary an exotic sphere Σ7, and
Σ7 → S7 a homotopy equivalence.



6. The Odd-dimensional Case

The odd-dimensional surgery obstruction groups L2k+1(Λ) of a ring with involu-
tion Λ are stable unitary groups of automorphisms of hyperbolic (−1)k-hermitian
forms over Λ. The construction of these L-groups is motivated by the White-
head torsion group K1(Λ) in algebra, but using forms instead of modules, and
by the duality properties of handlebody splittings of odd-dimensional manifolds
in topology.
Every odd-dimensional manifold M is a twisted double∗, i.e. M = W ∪h W

for a manifold with boundary (W,∂W ) and an automorphism h : ∂W → ∂W of
the even-dimensional boundary. The model for this is a Heegaard splitting of a
connected 3-dimensional manifold

M3 = (#rS
1 ×D2) ∪h (#rS

1 ×D2)

expressing M as a twisted double of an r-fold connected sum of a solid torus
S1 ×D2, with

h : ∂(#rS
1 ×D2) = #rS

1 × S1 → #rS
1 × S1

an automorphism of the boundary surface of genus r. A Heegaard decomposition
is not unique, and h can be changed by elementary moves of the following type
without changing M :

(H1) h can be replaced by (∂g)−1h(∂f) for any automorphisms

f, g : #rS
1 ×D2 → #rS

1 ×D2 ,

(H2) h can be replaced by the stabilisation

h#σ : #r+1S
1 × S1 → #r+1S

1 × S1

with

σ =

(
0 1
1 0

)
: S1 × S1 → S1 × S1 ; (x, y) �→ (y, x)

such that
S3 = (S1 ×D2) ∪σ (S1 ×D2) .

The odd-dimensional surgery obstruction theory developed here is based on an
algebraic analogue of a Heegaard decomposition, obtained by viewing an odd-
dimensional normal map as a twisted double and considering the automorphism

∗This is one of the many consequences of the surgery obstruction theory in this book, see
Ranicki [R13, Chapter 30].

57



58 the main theorem

of a hyperbolic form induced by the twisting. Given a k-connected (2k + 1)-
dimensional normal map (φ, F ) : M2k+1 → X it is possible to realise every
choice of Z[π1(X)]-module generators {x1, x2, . . . , xr} ⊂ Kk(M) = πk+1(φ) by
an embedding U = ∪r Sk ×Dk+1 ⊂M2k+1 such that

(φ, F ) = (φ0, F0) ∪ (φ1, F1) : M = M0 ∪ U −→ X = X0 ∪ D2k+1

with (φ0, F0), (φ1, F1) null-bordisms of a k-connected 2k-dimensional normal
map (φ, F ) | : ∂U → S2k, corresponding to an automorphism α : H → H of the
hyperbolic (−1)k-hermitian form on the kernel Z[π1(X)]-module Kk(∂U) = H.
The surgery obstruction

θ(M,φ, F ) = [α] ∈ L2k+1

(
Z[π1(X)]

)
is the equivalence class of the α’s which arise from all the choices of generators
{x1, x2, . . . , xr} ⊂ Kk(M).
The surgery obstruction θ(M,φ, F ) of an arbitrary (2k + 1)-dimensional nor-

mal map (φ, F ) : M → X is obtained by first applying (1.2) to make φ k-
connected by surgery below the middle dimension. See the note at the end of
§17G for the chain complex formulation of the odd-dimensional surgery theory,
which does not require preliminary surgeries below the middle dimension.

In §5, we were able to give a comparatively minor reformulation of the results of
[W18, §3]. In the odd-dimensional case, however, a completely fresh approach
is needed. Again we will simplify the exposition by omitting mention of the
boundary, which can be mapped by a simple homotopy equivalence throughout
and will not affect the argument.

Suppose then X a connected Poincaré complex of formal dimension m = (2k+
1) � 5, ν a bundle over X , M a compact manifold, φ : M → X of degree 1,
and F a stable framing of τM ⊕ φ∗ν, so that (M,φ, F ) represents an element of
degree 1 of Ωm(X, ν). By (1.2), we may suppose φ k-connected. These notations
will be fixed for the subsequent discussion.

Choose a set of generators of πk+1(φ) = Kk(M ; Λ) with Λ = Z[π1(X)]: by
the usual general position argument, we can represent them by disjoint framed
embeddings fi : S

k ×Dk+1 → M , each joined by a path to the base point : or
equivalently, by f̃i : S

k ×Dk+1 → M̃ . Let U be the union of the images of the
fi, M0 = M − Int U . Since the fi are trivial in X with given nullhomotopies,
we can replace φ by a homotopic map and so suppose φ(U) = ∗, the base point
in X (and the nullhomotopies constant).

Now by (2.9) we may suppose that dimX = m and X has only one m-cell,
so that by (2.7) we have a simple Poincaré pair (X0, S

m−1), and X = X0 ∪
Dm. Using a cellular approximation of φ|M0, we may suppose after a further
homotopy that φ is a map of degree 1 of Poincaré triads,

φ : (M ;M0, U)→ (X ;X0, D
m) .

We combine the exact sequences (2.2) of groups Ki (with coefficients Λ =
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Z[π1(X)] throughout) in the diagram∗
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Kk+1(M,U) = Kk+1(M0, ∂U)

����������

��
Kk(U)

����������
�� 0

We can say something about the groups in this diagram. Since φ maps (U, ∂U)
to (Dm, Sm−1), which has zero absolute and relative homology in the middle
dimensions, we can replace the groups Kk+1(U, ∂U), Kk(∂U) and Kk(U) by the
straight homology groupsHi (with coefficients Λ). Also, by (2.3 (c)) the modules
Kk+1(M0, ∂U) and Kk(M0) are stably free and s-based, and by (2.4), Corollary,
the short exact sequences through H = Kk(∂U) are based. In fact, (5.7) shows
that Kk(∂U) is a hyperbolic form, and that Kk+1(U, ∂U) and Kk+1(M0, ∂U)
are lagrangians : in the case of Kk+1(U, ∂U), this is obvious a priori, as U is a
disjoint union of copies of Sk × Sk, and we take the classes of the Sk × 1 and
1× Sk as basis. The above assumes that Kk+1(M0, ∂U) is free and based : but
since we can always adjoin an extra fi, and this clearly replaces Kk+1(M0, ∂U)
by its direct sum with Λ, this assumption is not inconveniently restrictive.

We use the base of Kk(∂U) = H above to identify H with a standard hyper-
bolic form. By (5.3.1) any (simple) isomorphism of the lagrangianKk+1(U, ∂U)
onto Kk+1(M0, ∂U) extends to an automorphism of H : let α be the correspond-
ing automorphism of the standard hyperbolic form. Our plan is to use α to find
our surgery obstruction. We will have to check the effect on α of all the choices
made hitherto. First, however, we need some more algebraic notation.

Recall that the standard hyperbolic form has basis {ei, fi : 1 � i � r}; that
μ vanishes on all these basis elements, and that λ vanishes on all pairs of them
except for λ(ei, fi) = (−1)kλ(fi, ei) = 1 (1 � i � r). We write SUr(Λ) for
the group of automorphisms of this standard hyperbolic form : that is, module
automorphisms preserving λ, μ, and the preferred class of bases, hence simple.
Write TUr(Λ) for the subgroup leaving the lagrangian with base {ei} invariant,
and inducing a simple automorphism of it; UUr(Λ) for the subgroup leaving each

∗The kernels are the homology Λ-modules K∗(M) = H∗(C) of the based f. g. free Λ-module
chain complex

C : · · · → 0 → Kk+1(M,U) → Kk(U) → 0 → . . .

which is simple chain equivalent to its (2k + 1)-dual C2k+1−∗ = HomΛ(C,Λ)
2k+1−∗.
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element of this lagrangian fixed. Denote the group of simple automorphisms of
the lagrangian by SLr(Λ) (note : our notation conflicts with that of [B5] in the
commutative case): then inclusion and restriction homomorphisms clearly give
an exact sequence

1→ UUr(Λ)→ TUr(Λ)→ SLr(Λ) :

moreover, the last map is surjective, as we can define a splitting homomorphism

SLr(Λ)
H→ TUr(Λ). For if A = (aij) is the matrix of an element of SLr(Λ),

A∗ = (aji) the conjugate matrix, also (clearly) giving a simple automorphism,
and B = (A∗)−1 we use

H(A) : ei �→ ejaji fi �→ fjbji .

Note that * is an involutory anti-automorphism ofMr(Λ), hence also of SLr(Λ).
We will also need a matrix description of UUr(Λ): an element here induces the
identity on the submodule of the {ei}, hence also on the dual module, which is
the same as the quotient module, so has the form

ei �→ ei fi �→ fi + ejcji .

This transformation preserves λ only if we have C + (−1)kC∗ = 0: for it to
preserve μ we need further that C have the form D − (−1)kD∗: note that this
further restriction affects only the diagonal elements.

Now given the embeddings fi (or rather, f̃i), the lagrangians are already de-
termined. Thus β satisfies the same condition as α if and only if βα−1 preserves
the lagrangian {ei} corresponding to Kk+1(U, ∂U), and preserves the preferred

class of bases on it, hence lies in TUr(Λ). So the sequence {f̃i} determines
uniquely a right coset TUr(Λ)α of TUr(Λ) in SUr(Λ).

We next investigate the effect of changing the embeddings f̃i in their regular
homotopy classes. Now a regular homotopy of Sk in M2k+1 is an immersion of
Sk × I in M2k+1 × I. As, moreover, the ends are embedded, we can calculate
the self-intersection invariant (in Qk+1) of a regular homotopy or the mutual
intersection (in Λ) of two such, as in §5. Denote the regular homotopy by {ηi}:
let the self-intersection of ηi be νi, and the intersection of ηi with ηj be ρij .
Then ρii = νi + (−1)k+1ν−i , and ρij = (−1)k+1ρ−ij for all 1 � i, j � r. Thus

the ρij form a general matrix P of the form D − (−1)kD∗. By the above, this
determines an element γ of UUr(Λ). We claim that α is replaced by αγ as a
result of the regular homotopy.

Consider the diagram (1). The regular homotopy evidently leaves unchanged
the exact sequences of (M,U) and of (U, ∂U), and hence all the modules in
the diagram are replaced by isomorphic copies : in fact the exact sequence of
(M,M0) is isomorphic by duality with the cohomology sequence of (M,U). The
maps in the exact sequence of (M0, ∂U), however, will change. In fact, given
an element of Kk+1(M0, ∂U), its boundary in ∂U will alter, although of course
its image in Kk(U) will not. The spheres 1 × Sk in ∂U bound discs in U ,
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and are evidently not essentially changed. The ith sphere Sk × 1, however, is
subjected to the regular homotopy ηi (translated along a normal vector). This
has intersection number ρij with the core of the jth handle, as does

∑
ρij(1×

Dk+1): the difference of these two chains lies inM0. Thus if x ∈ Kk+1(M0, ∂U),
then ∂x ∈ Kk(∂U), expressed as a linear combination of the standard basis
elements, will change by altering the spheres (Sk × 1) by the formula above.
This amounts to composing with γ, as asserted.

So far we have proved that a sequence of r elements of G = πk+1(φ) =
Kk(M ; Λ), which generate G, determine the double coset

TUr(Λ)αUUr(Λ) ⊂ SUr(Λ) ,

and that α can be replaced by any element of the double coset.

Now suppose given a sequence of s elements which together generate G: sup-
pose our two sequences are {x1, . . . , xr} and {y1, . . . , ys}. We will go from the
first to the second by a sequence of operations. Write yi =

∑
xjλji (possible as

the x’s generate G). Then

{x1, . . . , xr}→ {x1, . . . , xr, 0} → {x1, . . . , xr, y1}
→ {x1, . . . , xr, y1, 0} → {x1, . . . , xr, y1, y2} → . . .

→ {x1, . . . , xr, y1, . . . , ys} → {y1, . . . , ys, x1, . . . , xr}
→ · · · → {y1, . . . , ys} .

Each of these operations has one of the following types:

(T1) Adjoin (or delete) a zero.

(T2) Permute the elements.

(T3′′) Add to the last element a linear combination of the others.

We can simplify this last type of operation by adding the terms in turn:

(T3′) Replace the last element by its sum with ± an element of π1(X) times
one of the other elements.

A further simplification using (T2) reduces this to two operations

(T3) Replace the first element by its product with ± an element of π1(X).

(T4) Replace the first element by the sum of the first two.

It remains to investigate the effect of each of (T1)–(T4) on α.

(T1) Geometrically, this means adjoining an embedding of Sk × Dk+1 whose
image lies in a disc D2k+1 disjoint from the remaining tubes. This takes
the direct sum of (1) with the diagram
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The maps are easy to compute (e.g. the maps Λ → Λ are identity maps), and
we conclude:

The effect of (T1) is to form the direct sum of α with the matrix

σ =

(
0 1

(−1)k 0

)
.

(T2) This has the effect only of altering the defining basis of H, and thus of
conjugating α, by a permutation of the Λ2. Clear.

(T3) This also only alters the basis of H, and thus conjugates α, by the direct

sum of

(±g 0
0 ±w(g)g

)
and the identity.

(T4) First join the two copies of Sk ×Dk+1 in M by an arc (in the right ho-

motopy class : we really join them in M̃): and thicken the arc, so as to
obtain an embedding of the trivial handlebody of type H (2k + 1, 2, k)
[W7]. We effect our change by performing an appropriate diffeomorphism
of the handlebody; in fact the one constructed in [W8, p. 272]. Adjoining
the thickened arc to U does not affect (1), and now the diffeomorphism
will change the preferred basis of H , and hence conjugate α, by the au-
tomorphism

e′1 = e1 + e2 f ′
1 = f1

e′2 = e2 f ′
2 = f2 − f1 .

We can combine the effects of (T2), (T3) and (T4) as follows. They rep-
resent (formally) all the elementary basis changes of rΛ, and thus generate
the subgroup Er(Λ) [B5]. Thus for any ξ ∈ Er(Λ) we can conjugate α by
H(ξ) ∈ TUr(Λ). As we have already shown that α is equivalent to any member
of the double coset TUr(Λ)αUUr(Λ), we can deduce already if Er(Λ) = SLr(Λ)
that the effect of all our operations excluding (T1) is to replace α by an arbitrary
element of the double coset TUr(Λ)αTUr(Λ) ⊂ SUr(Λ). Thus here we have as
invariant just the isomorphism class of a pair of lagrangians, which recalls the
main problem treated in [W9]∗.

∗See the note on forms and formations at the end of this chapter.



6. the odd-dimensional case 63

The effect of (T1) is to stabilise, but in a somewhat unexpected way : α �→
α ⊕ σ instead of α ⊕ 1. At any rate, the distinction between Er and SLr

disappears stably. In terms of lagrangians, we can say : the k-connected map
φ : M → X of degree 1 (plus ν, F ) determines a pair of lagrangians up to
stable isomorphism, where we stabilise by taking orthogonal direct sums with
a system of two complementary lagrangians. Note for later reference that this
is an invariant of the map, but is not a surgery invariant. For group theory, we
have natural inclusions

SUr(Λ) ⊂ SUr+1(Λ) ⊂ . . .
We denote the limit by SU(Λ): the (infinite) simple unitary group∗ over Λ. We
have different injective maps SUr(Λ) → SUr+1(Λ) by taking direct sums with
σ. This is not a group homomorphism, but it is compatible with the natural
left and right actions of SUr(Λ), with respect to each of which it is a principal
homogeneous space. Our invariant is the equivalence class of α ∈ S′U(Λ) under
the product action of TU(Λ)×TU(Λ). The set S′U(Λ) has a natural base point
Σ: the direct sum of copies of σ.

We now define RU(Λ) to be the subgroup of SU(Λ) generated by TU(Λ) and
the element σ ∈ SU1(Λ).

Lemma 6.1. Surgery can be performed if and only if α is equivalent to Σ under
the 2-sided action of RU(Λ).

Proof We first investigate the effect on α of a single surgery. We can choose
the framed embeddings of Sk × Dk+1 on which surgery is to be performed as
the first of those used in calculating α. It follows that the effect of surgery is to
leave the exact sequence

0→ Kk+1(M0, ∂U)→ Kk(∂U)→ Kk(M0)→ 0

unchanged, but the basis of Kk(∂U) must be reinterpreted, as the rôles of the
first Sk × 1 and 1 × Sk are interchanged. The effect on α is to replace it by
ασ. It follows that the class of α under RU(Λ) is invariant under surgeries
on k-spheres. To prove it a surgery invariant, we now show that if, in fact,
φ : M → X and φ′ : M ′ → X (with F , F ′) are cobordant k-connected maps,
we can go from one to the other by surgeries on k-spheres. For let (N,ψ,G)
be a cobordism. By (1.2), we can suppose ψ (k + 1)-connected. Hence the
pairs (N,M) and (N,M ′) are k-connected. By [W13, IV, 5.5], N has a handle
decomposition based onM with no handles of dimension � k, and another with
no handles of dimension > k + 1. We must prove that both conditions can be
satisfied simultaneously. Now by the argument of (2.3), Kk+1(N,M) is stably
free and s-based. Performing surgery on a trivial k-sphere in N changes N
to N#(Sk+1 × Sk+1), and adds to this module a free module of rank 2. Do
this enough times to make Kk+1(N,M) free and based, and represent the basis
elements by handles attached to M . The rest of N is an s-cobordism of the
result to M ′, and hence diffeomorphic to M ′ × I. Our assertion is proved.

∗In the first edition the simple unitary group was called the special unitary group.
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Necessity of the stated condition now follows from the observation that if φ is
a simple homotopy equivalence, take U = ∅: α is a 0 × 0 matrix, and so stably
α = Σ.

Now suppose, conversely, that our condition is satisfied : for ξ, η ∈ RU(Λ),
α = ξΣη. Choose r so large that ξ and η belong to RUr(Λ). We have α =
ξΣη = Σ(Σ−1ξΣ)η. But Σ operates on Λ2r as a finite product of conjugates

(
by

permutations of the summands, which belong to TUr(Λ)
)
of copies of σ, hence

is in RUr(Λ): thus so is Σ−1ξΣ. Thus α = Σβ for β ∈ RUr(Λ). We can thus
suppose (increasing r if necessary) that β is a product of elements of the form :
σ, ν ∈ UUr(Λ), and H(ε) for ε ∈ Er(Λ) an elementary matrix. It was shown
above that multiplying α on the right by σ corresponds to a surgery; by one of
the other elements, merely to altering some arbitrary choices : for ε is a product
of matrices of the types involved in (T2), (T3) and (T4). Thus (by induction on
the length of the expression for β) we can suppose α = Σ. But this implies that
the map Kk+1(M,U) = Kk+1(M0, ∂U) → Kk(U) is a simple isomorphism. It
follows, by (2.4), Corollary, that φ :M → X is a simple homotopy equivalence,
as desired.

Our argument shows, more generally, that under the equivalence relation gen-
erated by surgery only the class of α under operation on the left by TU(Λ) and
on the right by RU(Λ) is invariant.

Now return to the groups of finite rank. We stabilised above by adding σ. But
(using a permutation of the coordinates) we now have

α⊕ σ ∼ σ ⊕ α ∼ (σ ⊕ α)σ = 1⊕ α ∼ α⊕ 1 ,

so that the image of α in SU(Λ)
(
rather than S′U(Λ)

)
has a well-defined equiv-

alence class, and the
(
TU(Λ), RU(Λ)

)
-double coset of α is our surgery obstruc-

tion. But to obtain a neat result, we need more : that RU(Λ) is a normal
subgroup of SU(Λ); in fact, it contains the commutator subgroup. We will next
give an algebraic proof of this fact.

We first develop some purely algebraic properties of the group RU(Λ), valid
for any ring Λ with involution. First we observe that we obtained an inverse in
§5 by changing orientation, and hence the signs of λ and μ. If we do this to a
hyperbolic form, the given base is no longer of standard type : we restore it by
changing the signs of the fi. Now if A is a simple automorphism of the standard
hyperbolic form H , denote by (H ′, A′) the hyperbolic form and automorphism
obtained by changing signs. Then A⊕A′ is a simple automorphism of H ⊕H ′,
and leaves invariant the diagonal submodule, which is a lagrangian. Let M be
an automorphism of H ⊕H ′ which takes the lagrangian {ei, e′i} to the diagonal
lagrangian {ei + e′i, fi + f ′

i}. Then the conjugate of α ⊕ α′ by M is in TU(Λ).
To describe M , we can take i = 1 (and, in general, use the orthogonal direct
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sum). We may, e.g., take

M =

⎛⎜⎜⎜⎜⎝
1 0 0 0

1 0 0 (−1)k+1

0 1 1 0

0 −1 0 0

⎞⎟⎟⎟⎟⎠ .

It is easy to show that M ∈ RU(Λ); or one can observe that M ∈ SU(Z) =
RU(Z). (This follows from [B10] or from (6.1), (6.5), and the fact that surgery
can always be performed [K5] in the simply connected, odd-dimensional case).

Lemma 6.2. Let A ∈ SUr(Λ). Then there are matrices T , T ′ in TU2r(Λ) such
that T (Σ⊕A−1) = (A′ ⊕ Σ)T ′. Hence A⊕A′ ∈ RU(Λ).

Proof We will write down an identity of the desired form. Note that A is already
a 2r × 2r matrix : we partition it into r × r blocks

A =

(
α β
γ δ

)
.

Since A is a simple unitary matrix, we have

A−1 =

(
δ∗ (−1)kβ∗

(−1)kγ∗ α∗

)
.

We point out, as a consequence, various identities involving α, β, γ and δ. In
particular αβ∗, γδ∗, β∗δ and α∗γ are (−1)k+1-symmetric : using the fact that
A preserves μ as well as λ we can show in fact that each of these matrices has
the form ε− (−1)kε∗.
Our identity involves 4r × 4r matrices, or 4× 4 blocks of size r × r. We order

these by making the standard lagrangian correspond to the first two blocks
(order ei, e

′
i, fi, f

′
i in the above notation), so in Σ⊕A−1, Σ will correspond to

rows and columns 1 and 3; A−1 to 2 and 4. Then we have
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⎛⎜⎜⎜⎜⎝
−β α (−1)kα 0

−δ γ 0 δ

0 0 (−1)k+1γ δ

0 0 −α (−1)kβ

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

0 0 I 0

0 δ∗ 0 (−1)kβ∗

(−1)kI 0 0 0

0 (−1)kγ∗ 0 α∗

⎞⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎝
α αδ∗ −β (−1)kαβ∗

0 0 −δ I

−γ (−1)kδγ∗ 0 δα∗

(−1)k+1α βγ∗ 0 (−1)kβα∗

⎞⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎝
α 0 −β 0

0 0 0 I

−γ 0 δ 0

0 (−1)kI 0 0

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

I δ∗ −δ∗β 0

−α (−1)kβγ∗ 0 βα∗

0 0 (−1)kγ∗β α∗

0 0 −δ I

⎞⎟⎟⎟⎟⎠ .

It is easily checked that the first and last matrices are in TU2r(Λ), by writing
each as a product H(x)(y), where x ∈ SL2r(Λ) and y (partitioned into blocks
2r square) has the form (

I w + (−1)k+1w∗

0 I

)
.

As to the last assertion, we have already shown that A⊕A′ is in RU(Λ), hence
so (in turn) are A⊕A′ ⊕ Σ,

(A⊕A′ ⊕ Σ)(1⊕ T ′) = (1⊕ T )(A⊕ Σ⊕A−1) ,

A⊕ Σ⊕A−1, and (permuting coordinates and destabilising) A⊕A−1.

Perhaps a word about the discovery of the above identity is in order, since it
took the author nearly two years to find it. The above seems in any case simpler
than to show directly that A ⊕ A−1 is in RU(Λ) – whereas for the analogous
problem with the general linear group, this is comparatively easy [B5]. I then
noticed that in the construction below (6.5) of an (M,φ, F ) determining A,
if we change the orientation it is natural to replace A by A′, whereas if we
interchange the two ends of M , A is replaced by A−1. This can be achieved by
suitable application of (T1), (T3) and (T4): we introduce r new trivial copies of
Sk ×Dk+1; then (to move them into the right homotopy class) add “δ∗ times”
the others, then subtract from the first “α times” the new ones and then remove
the first r copies of Sk×Dk+1, which by now are trivial. This suggested looking
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for an identity with

T ′ = H

((
I 0
−α I

)(
I δ∗

0 I

))
· y ;

and from this it is not too hard to arrive at the above.

Theorem 6.3. RU(Λ) contains the commutator subgroup [SU(Λ), SU(Λ)]; the
quotient RU(Λ)/[SU(Λ), SU(Λ)] is generated by σ, so has order at most 2.

Proof If A, B ∈ SUr(Λ), we have

A−1B−1AB ⊕ I =
(
(BA)−1 ⊕BA)(A⊕A−1

)(
B ⊕B−1

)
,

and each term on the right is in RU(Λ) by (6.2). Now since σ2 ∈ TU(Λ), and
RU(Λ) is (by definition) generated by TU(Λ) and σ, the second assertion follows
from the inclusion

TU(Λ) ⊂ [SU(Λ), SU(Λ)] .

Any element of TU(Λ) can be written as a product H(X) ·Y with X ∈ SL(Λ)
and Y ∈ UU(Λ): we consider X and Y separately. Now it is well known that
SL(Λ) equals its commutator subgroup (see e.g. [B5]), so X is a product of
commutators. Since H is a homomorphism, H(X) is a product of commutators
when X is.

We will now complete the proof by showing that UU(Λ) is contained in the
commutator subgroup of TU(Λ). We have(

I B
0 I

)(
C 0
0 C∗−1

)(
I −B
0 I

)(
C−1 0
0 C∗

)
=

(
I B − CBC∗

0 I

)
;

this is also more neatly noted sinceB is the matrix of a simple (−1)k+1-hermitian
form, and conjugating the first matrix above by the second merely expresses this
form with respect to a different basis. Since products in UU(Λ) correspond to
addition of matrices B, it is enough to show that for any matrix P with a single
non-zero entry, P − (−1)kP ∗ can be written as a sum of matrices B − CBC∗,
with B of the form D − (−1)kD∗. Now taking

C =

⎛⎝ 1 0 −1
0 1 0
0 0 1

⎞⎠ , B =

⎛⎝ 0 0 0
0 0 P
0 (−1)kP ∗ 0

⎞⎠

we find B − CBC∗ =

⎛⎝ 0 (−1)kP ∗ 0
P 0 0
0 0 0

⎞⎠
and see that by terms of this type we can deal with off-diagonal elements : the
diagonal ones are reduced to these by taking

C =

(
1 1
0 1

)
B =

(
0 0
0 Q

)
with CBC∗ −B =

(
Q Q
Q 0

)
.
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This completes the proof of the Theorem. Our result seems to pave the way for
an analysis of the unitary and simple unitary groups similar to that performed
for the general linear group in [B5].∗

We now define the group Lm(π) when m = 2k + 1 as the quotient group
SU(Λ)/RU(Λ): we have shown that this is an abelian group. Given a homo-
morphism r : π → π′ which is compatible with w, r induces a homomorphism of
group rings Λ→ Λ′ compatible with the involution, and hence (evaluating term
by term) homomorphisms of matrix rings, of the group SU(Λ), and so finally,
Lm(r) : Lm(π)→ Lm(π′). Clearly, this makes Lm a functor.

Theorem 6.4. Let (X,W ) be a simple Poincaré pair with formal dimension
m = 2k + 1 � 5, ν a bundle over X, M a compact manifold with boundary,
φ : (M,∂M) → (X,W ) a map of degree 1 inducing a simple homotopy equiv-
alence ∂M → W , F a stable trivialisation of τM ⊕ φ∗ν. We define a class
θ ∈ Lm

(
π1(X)

)
by performing surgery rel ∂M till φ is k-connected, and then

taking the class of a matrix α as constructed above. Then θ depends only on
the bordism class of (M,φ, F ) relative to ∂M , and the class has an element
with φ a simple homotopy equivalence if and only if θ = 0. The obstruction θ
is natural for inclusion maps.

Proof We showed in (6.1) that the class of α modulo RU(Λ) was a surgery
invariant; since by (6.1) RU(Λ) is a normal subgroup, this class is just θ. We
also proved in (6.1) that surgery was possible if and only if θ = 0. It remains to
show naturality. Let L = ∂M, ∂M ′ = L ∪ L′, and suppose φ|∂M extended to
a simple homotopy equivalence (M ′;L,L′)→ (X ′;W,W ′) so that glueing gives
a map (M ∪ M ′, L′)→ (X ∪ X ′,W ′) with the same properties as φ. Then to
compute the surgery obstruction for φ′ we can use the same U , for the groups
Ki are changed only by replacing π1(X) by π1(X ∪ X ′). We obtain also the
same matrix α with this coefficient change. But by definition, this represents
the image of θ.

We conclude this chapter with a construction technique giving a result analo-
gous to (5.8).

Theorem 6.5. Let X2k be a compact smooth or PL manifold, with nor-
mal bundle ν, k � 3. Let A ∈ SUr(Λ). Then we can find a manifold triad
(M,∂−M,∂+M), a map φ : (M,∂−M,∂+M)→ (X× I,X× 0 ∪ ∂X× I,X× 1)
of degree 1, and a stable framing F of τM ⊕φ∗ν, such that φ is the identity on
∂−M , a simple homotopy equivalence on ∂+M , is k-connected, and has A as
invariant. Moreover, θ maps the bordism set (rel ∂M) of all such M bijectively
to Lm

(
π1(X)

)
.

Remark, If k = 2, the proof breaks down : it seems that using the methods of
[W10] one might realise any A ∈ RU(Λ), but of course these do not lead to
surgery obstructions.

Proof First perform surgery on the identity map of X to “kill” r trivial (k− 1)-

∗Such results were subsequently obtained by Bak [B1], [B3], Vaserstein [V1] and Sharpe
[S7].
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spheres
(
if A ∈ SUr(Λ)

)
. This replaces X × I by its boundary-connected sum

with r copies of Sk × Sk: thus the resulting Kk is a hyperbolic form, the sum
of r standard planes. We regard A as a (simple) automorphism of Kk. Thus
the classes A(1×Sk) generate a lagrangian; by (5.2) we can perform surgery on
them, and by the proof of (5.6), the result is mapped to X by a simple homotopy
equivalence.

We are more interested in the trace M of the surgeries. All assertions of
the lemma are immediate, except that M has invariant A. Now it is clear
that Kk(M) is generated by the classes of the k-handles, i.e. by the copies of
Sk × Dk+1 mentioned above. We remove these (or strictly speaking, smaller
concentric copies – but this does not alter the homotopy type) to obtain M0.
Now a preferred base of Kk+1(M0, ∂U) is clearly given by the classes of the
attached (k + 1)-cells. These, by definition, have boundaries A(1 × Sk). Thus
the automorphism A does indeed take a preferred base of Kk+1(U, ∂U) to one
of Kk+1(M0, ∂U), and A is the invariant, as asserted. The proof of the last
assertion is identical with that of the corresponding part of (5.8).

We can obtain some further information about the structure of the group
RU(Λ) by considering more closely its relation to surgery. For suppose that
surgery can be done : then by (6.1) we need only do surgery on k-spheres, and a
general position argument shows that these may be chosen disjoint and all the
surgeries done simultaneously. But we can use these k-spheres to calculate our
invariant α. Surgery will replace it by αΣ (recall, Σ denotes the direct sum of
copies of σ), and since this corresponds to a complementary pair of lagrangians,
it must lie in TU(Λ)ΣTU(Λ). Hence α lies in TU(Λ)ΣTU(Λ)Σ−1. Since our
invariant was only determined up to 2-sided multiplication by TU(Λ), we have
shown

Theorem 6.6. For any α ∈ RUm(Λ) we can find n such that α⊕ (n copies of
σ) has the form t1Σt2Σ

−1t3 with each ti ∈ TUm+n(Λ).

Although we have presented the argument in geometrical terms, it can be para-
phrased algebraically, so that the above holds without the restrictions imposed
on Λ in the geometrical case.

Note also that in the geometrical case this shows that with a suitable choice
of framed k-spheres we can take α = Σt2Σ

−1 with t2 ∈ TU(Λ). This remark
will be needed later on.

Forms and formations. A ‘(−1)k-hermitian formation’ (G, λ, μ;H1, H2) over
a ring with involution Λ is a (−1)k-hermitian form (G, λ, μ) over Λ together
with an ordered pair of lagrangians H1, H2 (which in general need not be free).
Formations were introduced by Wall [W9], as ‘pairs of subkernels’, in the purely
algebraic context of the classification of quadratic forms on finite abelian groups.
Novikov [N8] initiated the reformulation of the automorphism odd-dimensional
surgery obstruction theory of the first edition of this book in terms of formations,
which was completed in Ranicki [R1].
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By Corollary 5.3.1, for any formation (G, λ, μ;H1, H2) with based f. g. free
lagrangians H1, H2 there exists an automorphism α : (G, λ, μ)→ (G, λ, μ) send-
ing H1 to H2. Conversely, every automorphism α of a hyperbolic form (G, λ, μ)
determines a formation (G, λ, μ;H,α(H)), for any lagrangian H. Thus forma-
tions with free lagrangians are essentially equivalent to automorphisms of hy-
perbolic forms. By definition, a formation is simple if the lagrangians are based
f. g. free and the automorphism α is simple.

An isomorphism f : β ∼= β′ of formations

β = (G, λ, μ;H1, H2) , β
′ = (G′, λ′, μ′;H ′

1, H
′
2)

is an isomorphism of forms f : (G, λ, μ) ∼= (G′, λ′, μ′) such that

f(H1) = H ′
1 , f(H2) = H ′

2 .

By definition, a formation (G, λ, μ;H1, H2) is trivial if the lagrangians H1, H2

are complementary, with G = H1 ⊕H2. A stable isomorphism [f ] : β ∼=s β
′ of

formations is an isomorphism f : β ⊕ γ ∼= β′ ⊕ γ′ with γ, γ′ trivial.

Given a k-connected (2k+1)-dimensional normal map (φ, F ) :M → X and a
choice of Z[π1(X)]-module generators {x1, x2, . . . , xr} ⊂ Kk(M) = πk+1(φ) let
U = ∪r (Sk×Dk+1) ⊂M etc. The choice determines a simple (−1)k-hermitian
formation β = (G, λ, μ;H1, H2) with

G = Kk(∂U) , H1 = Kk+1(U, ∂U) , H2 = Kk+1(M0, ∂U) .

The Z[π1(X)]-module G is f. g. free of rank 2r, H1 is f. g. free of rank r, H2 is
stably f. g. free of rank r, and

H1 ∩ H2 = Kk+1(M) , G/(H1 +H2) = Kk(M) .

The stable simple isomorphism class of β is an invariant of (φ, F ) which is
independent of the choice of generators.

The boundary of a (possibly degenerate) (−1)k+1-hermitian form γ = (K,λ, μ)
over Λ is the (−1)k-hermitian formation

∂γ = (H,λH , μH ;K,Γλ)

with (λH , μH) the hyperbolic (−1)k-hermitian form on H = K ⊕K∗

K∗ = HomΛ(K,Λ) , λH
(
(x, f), (y, g)

)
= f(y) + (−1)kg(x) ∈ Λ ,

μH(x, f) = f(x) ∈ Qk (x, y ∈ K, f, g ∈ K∗)

and Γλ = {(x, λ(x)) : x ∈ K} ⊂ H the graph lagrangian.

From the formation point of view L2k+1(Λ) is the Grothendieck group of equiv-
alence classes of simple (−1)k-hermitian formations β over Λ, subject to the
equivalence relation

β ∼ β′ if there exists a stable simple isomorphism

β ⊕ ∂γ ∼=s β
′ ⊕ ∂γ′

for boundary formations ∂γ, ∂γ′ .
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The surgery obstruction of a k-connected (2k + 1)-dimensional normal map
(φ, F ) :M → X is the equivalence class of the associated simple (−1)k-hermitian
formations β over Λ = Z[π1(X)]

θ(M,φ, F ) = [β] ∈ L2k+1

(
Z[π1(X)]

)
.

The next two paragraphs describe an alternative (but equivalent) method of ob-
taining a formation to represent the surgery obstruction of an odd-dimensional
normal map, by replacing the choice of generators for Kk(M) with the trace of
the surgeries killing the generators.

Suppose given a (k + 1)-connected (2k + 2)-dimensional normal bordism

(ψ,G) : (N2k+2;M,M ′)→ X × (I; {0}, {1})
between k-connected (2k + 1)-dimensional normal maps

(φ, F ) = (ψ,G) | : M2k+1 → X , (φ′, F ′) = (ψ,G) | : M ′2k+1 → X .

The Z[π1(X)]-module morphisms induced by inclusions

i : Kk+1(N) = L → Kk+1(N,M
′) = K ,

j : Kk+1(N) = L → Kk+1(N,M) = K∗

are the components of the inclusion of a lagrangian(
i

j

)
: L→ H = K ⊕K∗

in the hyperbolic (−1)k-hermitian form (λ, μ) on H, such that β = (H,λ, μ;K,L)
is a (−1)k-hermitian formation in the stable isomorphism class associated to
(φ, F ), with

K ∩ L = Ker(j) = Kk+1(M) , H/(K + L) = Coker(j) = Kk(M) .

Reversing the roles of i and j gives a (−1)k-hermitian formation β′ = (H,λ, μ;
K∗, L) in the stable isomorphism class associated to (φ′, F ′), with

K∗ ∩ L = Ker(i) = Kk+1(M
′) , H/(K∗ + L) = Coker(i) = Kk(M

′) .

The (−1)k+1-hermitian form

i∗j : L = Kk+1(N)→ L∗ = Kk+1(N)

(the hessian of the lagrangian L, in the hamiltonian terminology of Novikov
[N8]) is the intersection form on the middle-dimensional kernel of (ψ,G) :
N → X × I, with a quadratic refinement determined by the bundle map G as
in Theorem 5.2. The boundary (−1)k-hermitian formation ∂(L, i∗j) is stably
isomorphic to β ⊕−β′, with an exact sequence

0→ Kk+1(M)⊕Kk+1(M
′)→ L

i∗j−−→ L∗ → Kk(M)⊕Kk(M
′)→ 0 .



72 the main theorem

Given a k-connected (2k + 1)-dimensional normal map (φ, F ) : M → X and
a set of Z[π1(X)]-module generators {x1, x2, . . . , xr} ⊂ Kk(M) the trace of
surgeries on representatives x
 : Sk × Dk+1 ⊂ M (1 � � � r) is a (k + 1)-
connected normal bordism extending (φ, F )

(ψ,G) : (N ;M,M ′)→ X × (I; {0}, {1})
with (φ′, F ′) = (ψ,G)| : M ′ → X k-connected. The formation obtained by
working inside M

(Kk(∂U), λ, μ;Kk+1(U, ∂U),Kk+1(M0, ∂U))

is isomorphic to the formation obtained by working outside M

(Kk+1(N,M
′)⊕Kk+1(N,M), λ, μ;Kk+1(N,M

′),Kk+1(N)) .

Moreover, every (k + 1)-connected normal bordism (ψ,G) is the trace of surg-
eries on a set of generators of Kk(M). The surgery obstruction θ(M,φ, F ) ∈
L2k+1

(
Z[π1(X)]

)
is thus represented by a formation which can be obtained either

by choosing a set of generators for Kk(M), or (equivalently) a (k+1)-connected
(2k + 2)-dimensional normal bordism (ψ,G) with (ψ,G)| = (φ, F ) :M → X.

The matrix identity of Lemma 6.2 has a counterpart in the formation identity
of [R1, 3.3]

(G, λ, μ;H1, H2)⊕ (G, λ, μ;H2, H3) = (G, λ, μ;H1, H3) ∈ L2k+1(Λ) .

The formation identity was used in [R1, 5.6] to prove that the odd-dimensional
L-group L2k+1(Λ) = SU(Λ)/RU(Λ) defined using matrices is isomorphic to the
(a priori abelian) L-group L2k+1(Λ) of formations. The identities are cognate
to the formula of Wall [W24] for the non-additivity of the signature. Given a k-
connected 2k-dimensional normal map (φ, F ) :M2k → X with self-intersection
form (λ, μ) on the kernel module G = Kk(M) over Λ = Z[π1(X)] let

ψi : (Ni;M,Mi)→ X × (I; {0}, {1}) (i = 1, 2, 3)

be the three k-connected (2k + 1)-dimensional normal bordisms to homotopy
equivalences

φi = ψi | : Mi → X (i = 1, 2, 3)

with
Kk+1(Ni,M) = Hi ⊂ G .

For (i, j) = (1, 2), (2, 3), (3, 1) define the unions

ψij = ψi ∪ ψj : (Nij ;Mi,Mj) = (Ni ∪M Nj ;Mi,Mj)→ X × (I; {0}, {1}) ,
which are three k-connected (2k + 1)-dimensional normal bordisms with ho-
motopy equivalences on the boundary components, with kernel (−1)k-hermitian
formations (G, λ, μ;Hi, Hj). Constructing the triple union

W 2k+2 = N12 × I ∪ N23 × I ∪ N31 × I
as in the diagram
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N12 × I

N23 × IN31 × I

N1 N2

N3

M1 M2

M3

N12

N23N31

M

there is obtained a (k + 1)-connected (2k + 2)-dimensional normal map

(W,∂W )→ X × (D2, S1)

such that the Λ-coefficient surgery obstruction on the boundary is

(G, λ, μ;H1, H2)⊕ (G, λ, μ;H2, H3)⊕ (G, λ, μ;H3, H1) = 0 ∈ L2k+1(Λ) .

The main result of [R1] is that a (−1)k-hermitian formation β over Λ represents
0 in L2k+1(Λ) if and only if β is stably isomorphic to a boundary ∂γ; this is
the formation version of Theorem 6.6. For the formation

β = (G, λ, μ;H1, H2)⊕ (G, λ, μ;H2, H3)⊕ (G, λ, μ;H3, H1)

the (degenerate) (−1)k+1-hermitian form γ can be taken to be (K,λK , μK) with

K = H1 ⊕H2 ⊕H3 ,

λK
(
(x1, x2, x3), (y1, y2, y3)

)
= λ(x1, y2)− λ(x2, y1) + λ(x2, y3)− λ(x3, y2) + λ(x3, y1)− λ(x1, y3) ,

μK(x1, x2, x3) = λ(x1, x2) + λ(x2, x3) + λ(x3, x1) .

For Λ = Z, k ≡ 1(mod 2) the signature of this symmetric form is the signature
nonadditivity invariant of Wall [W24], which is also known as the Maslov index.

Formations are better suited than automorphisms for describing the kernel
structure of a bounded (2k + 2)-dimensional normal map (N,M) → (Y,X)
such that M → X is k-connected and N → Y is (k + 1)-connected – see §8
below for the relative surgery obstruction theory in this case.
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First-time readers may omit this chapter, proceeding directly to §10.
We will now prove (3.1) and (3.2) for pairs (or triads with a sub-pair fixed) in

the case dim |M | = 2k + 1. This involves breaking less ground than is needed
in §8 for the even-dimensional case. For our groups Lm bear a close relation
to the groups K0 and K1 of [B5], and the relative theory of the K-functors in
dimension 1 has been axiomatised by Heller [H12] (also by Bass [B6]) in a form
adequate for the present application. This helps with the algebra, and many
arguments necessary for the geometry were foreshadowed in [W18, §7].
Before we start, let us observe that although in §5 and §6 we concentrated

only on connected manifolds, the deduction of corresponding results in general is
trivial. For the components of X can be treated independently; thus the surgery
obstruction must lie in the direct sum of groups, one for each component. This
tells us how to define Lm(π) for a groupoid π of finite type. We can similarly
define maps : if π has components with vertex groups πi, and π′ components
with vertex groups π′

j , then a morphism π
r→ π′ determines a map i → j(i) of

indexing sets and homomorphisms πi
ri→ π′

j(i) determined up to conjugacy, and

hence homomorphisms Lm(πi)
Lm(ri)−−−−→ Lm(π′

j(i)) (since conjugating by a group

element induces the identity on Lm(π) : in fact we have explicitly factored out
the effect of conjugations), and the map

ΣiLm(πi) = Lm(π)
Lm(r)−−−−→ Lm(π′) = ΣjLm(π′

j)

is determined by its components :

pj ◦ Lm(r) ◦ ii = 0 j �= j(i)

= Lm(ri) j = j(i) .

If π has vertex groups πi with integer group rings Λi, it is tempting to define
it to have integral group ring

Λ = ΣiΛi ,

with coordinate-wise addition and multiplication. We do not adopt this con-
vention, however, as a morphism of groupoids does not induce one of the corre-
sponding rings. Extensions of results to the groupoid case are always straight-
forward as above; we will not always mention them explicitly, to avoid overmuch
notational complication.

Our setup for the next two chapters will be as follows.

74
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Hypothesis 7.1. We have a map φ : (N ;M−,M) → (Y ;X−, X) of degree
1 of a compact manifold triad to a connected simple Poincaré triad, including
a simple homotopy equivalence of pairs (M−,M− ∩ M) → (X−, X− ∩ X); a
bundle ν over Y , and a stable trivialisation F of τN ⊕ φ∗ν. We wish to do
surgery relative to M to make φ a simple homotopy equivalence of triads.

In this chapter we suppose dimN = 2k + 1 � 5; for our main results we will
need k � 3. We assume Y connected and will use Λ = Z[π1(Y )] for coefficients;
the extension to the disconnected case goes as above. We cannot, however,
assume X connected without losing generality. Let X have components Xi

with fundamental group rings Λi; let Mi = φ−1(Xi).

By (1.4) we may suppose, after preliminary surgeries if necessary, that φ in-
duces k-connected maps N → Y and M → X (hence also Mi → Xi), and
that Kk(N,M) = 0. As in several places above, we can perform more surgeries
to ensure that Kk+1(N,M) and Kk(N) are free based Λ-modules, also that
Kk(Mi; Λi) is a free based Λi-module. By (5.2.1), we have a simple hermitian
form on Kk(M), and by (5.7) Kk+1(N,M) is a lagrangian, so that by (5.3),
Kk(M) is a hyperbolic form.

Now it follows from the proof of (2.3) that the chain complex (with coeffi-
cients Λi) of the map Mi → Xi is chain homotopy equivalent to the single
module Kk(Mi; Λi): indeed, is simply equivalent to it with a preferred basis. It
follows that the natural map Kk(Mi; Λi) ⊗Λi Λ → Kk(Mi) is an isomorphism
respecting bases. Also, we have Kk(M) = ΣiKk(Mi). Finally, the above iso-
morphism respects λ and μ too, since the geometrical definitions are changed
only by the maps of fundamental groups. So the simple hermitian form on
Kk(M) is obtained from those on the Kk(Mi; Λi) by changing coefficients to
Λ and then taking the direct sum. Let θi ∈ L2k

(
π1(Xi)

)
be the surgery ob-

struction for Mi; then Σθi ∈ ΣL2k

(
π1(Xi)

)
= L2k

(
π(X)

)
is (by definition) the

surgery obstruction for M . If r : π(X) → π(Y ) is induced by inclusion, then
as L2k(r)(Σθi) is also induced by tensoring with Λ and taking the direct sum,
it is represented by the above form on Kk(M). As this is a hyperbolic form,
L2k(r)(Σθi) = 0.

Next suppose (N,φ, F ) cobordant to a normal map (N ′, φ′, F ′) with φ′ a sim-
ple homotopy equivalence of triads. Let W be the cobordism, V the induced
cobordism of M , so that

∂V = M ∪ (∂M × I) ∪ M ′, ∂W = N ∪ V ∪ (M− × I) ∪ N ′ .

Write ψ : (W ;M− × I, V ) → (Y ;X−, X) for the corresponding map, and
Vi = ψ−1(Xi). Then (Vi, ψ |Vi) is a cobordism rel ∂Mi of (Mi, φ |Mi) to a sim-
ple homotopy equivalence (M ′

i , φ
′ |M ′

i). Suppose surgery done to make ψ |Vi
k-connected and Kk(Vi,Mi; Λi) = 0, as we may by (1.4); and further, that
Kk+1(Vi,Mi; Λi) is free and based. Then by (5.7), Kk+1(Vi,Mi; Λi) is a la-
grangian in Kk(Mi; Λi). Tensoring with Λ and taking the direct sum, we obtain
the lagrangian Kk+1(V,M) in Kk(M). But we already have one lagrangian,
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namely Kk+1(N,M). Thus given V as above, we can construct a pair of la-
grangians, determining an element of L2k+1

(
π1(Y )

)
. It is reasonable to expect

that this element represents the obstruction to constructing a cobordism W of
V ∪ N (whose whole boundary is mapped by a simple homotopy equivalence)
to an N ′ as above. We next justify this : the main theorem (in the case studied
in this paragraph) will then follow without difficulty.

Lemma 7.2. Let φ : (N ;M−,M) → (Y ;X−, X) and φ′ : (N ′;M+,M) →
(Y ′;X+, X) both satisfy (7.1), with dimM = 2k, where ν and ν′ agree on X,
and φ and φ′, F and F ′ agree on M . Suppose preliminary surgeries as above
already performed, so that φ and φ′ induce k-connected maps, etc. Glue along
M and X to obtain

φ′′ : (N ∪ N ′;M−,M+)→ (Y ∪ Y ′;X−, X+)

and ν′′, F ′′. Then the obstruction to doing surgery
(
rel ∂(N ∪ N ′)

)
to make

φ′′ a simple homotopy equivalence is represented by the pair of lagrangians
Kk+1(N,M) and Kk+1(N

′,M) in Kk(M), with coefficients Λ = Z[π1(Y ∪ Y ′)].

Proof Choose a set of disjoint embeddings fi : S
k × Dk+1 → Int N , and lifts

f̃i whose classes generate Kk

(
N ;Z[π1(Y )]

)
and hence also Kk(N). The classes

generate Kk(N ∪ N ′), too, since we have the exact sequence

Kk(N)→ Kk(N ∪ N ′)→ Kk(N ∪ N ′, N) ;

by excision, the last is Kk(N
′,M), and this vanishes as a consequence of the

preliminary surgeries (1.4). Set N1 =
⋃

Im fi, N0 = N − Int N1, N2 = N ′

and M1 = ∂N1, M2 = M = N ∩ N ′; recall that using (2.9) as in §6 we
have appropriate maps of degree 1 of all these manifolds, pairs and triads.
The surgery obstruction for N ∪ N ′ can be defined by the pair of lagrangians
Kk+1(N1,M1) andKk+1(N0 ∪N2,M1) inKk(M1). We must show that the same
class is defined by the pair of lagrangiansKk+1(N0 ∪N1,M2) andKk+1(N2,M2)
in Kk(M2). We will show that each determines the same class as the pair of
lagrangians

Kk+1(N1 ∪ N2,M1 ∪ M2) = Kk+1(N1,M1)⊕Kk+1(N2,M2)

and Kk+1(N0,M1 ∪ M2) in Kk(M1 ∪ M2) = Kk(M1)⊕Kk(M2). By symmetry
it is enough to prove one of these.

Consider the following diagram :
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0

��

0

��

0

0 �� Kk+1(N0 ∪ N1,M2)

��

�� Kk(M2) ��

��

Kk(N0 ∪ N1) ��

��

0

0 �� Kk+1(N0,M1 ∪ M2) ��

��

Kk(M1 ∪ M2) ��

��

Kk(N0)

��

�� 0

0 Kk(N1)��

��

Kk(M1)��

��
0 0

The horizontal sequences are the usual exact sequences; the first vertical se-
quence is the exact sequence of the triple M2 ⊂ N1 ∪ M2 ⊂ N0 ∪ N1, using the
excision isomorphism Kk+1(N0,M1 ∪ M2) = Kk+1(N0 ∪ N1, N1 ∪ M2); the
second vertical is the exact sequence of the obvious direct sum decomposition of
Kk(M1 ∪ M2), and the other two maps are inclusion maps. It is easy to verify
that the diagram commutes. It follows that we can find a (unique) homomor-
phism s : Kk(N1) → Kk(M1) which (with the maps in the diagram) gives a
morphism between the vertical exact sequences. This must be right inverse to
the inclusion map Kk(M1)→ Kk(N1). On the other hand, by (5.3) we can find
a right inverse s′ : Kk(N1) → Kk(M1) to the inclusion such that the image of
s′ is a lagrangian, complementary to Kk+1(N1,M1).

Now begin with the pair of lagrangiansKk+1(N0 ∪N1,M2) andKk+1(N2,M2)
in Kk(M2). We stabilise by adding the complementary pair of lagrangians
s′Kk(N1) and Kk+1(N1,M1) in Kk(M1); thus obtaining a pair of lagrangians in
Kk+1(N1,M1) ⊕Kk+1(N2,M2) as required. The first member is not yet equal
to Kk+1(N0,M1 ∪ M2), but it will suffice to show that it is equivalent to this
by an elementary transformation

(
i.e. one which preserves some lagrangian, so

– for any standard basis – is in some conjugate of TU(Λ), hence in RU(Λ)
)
.

Choose a standard basis {ei, fi} for Kk(M2) with {ei} a basis for the la-
grangiansKk+1(N0 ∪N1,M2). Extend {ei} to a basis {ei, e′j} for the lagrangian
Kk+1(N0,M1 ∪ M2), with e

′
j λ-orthogonal to fi, and extend all these to a stan-

dard basis {ei, e′j , fi, f ′
j} for Kk(M1 ∪ M2). All these bases, of course, are to be

preferred bases. This induces a basis {e′j , f ′
j} for Kk(M1) regarded as a quotient

module. Now {e′j} is a basis for sKk(N1); a basis for s′Kk(N1) must have the

form {e′j +Σf ′
kakj}

(
as submodule of Kk(M1)

)
; when we lift to Kk(M1 ∪ M2),

this takes the form

{e′j +Σf ′
kakj +Σeibij +Σficij} .
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As we are only interested in Kk+1(N0 ∪ N1,M2) ⊕ s′Kk(N1), we make an
elementary basis change by subtracting multiples of ei from the above to get
rid of the terms eibij . Also, as we do have a lagrangian,

0 = λ(ei, e
′
j +Σf ′

kakj +Σeibij +Σflelj) = eij .

So Kk+1(N0 ∪ N1,M2)⊕s′Kk(N1) has basis {ei, e′j+Σf ′
kakj}, which can indeed

be reduced to the basis {ei, e′j} of Kk(N0,M1 ∪ M2) by an elementary change,
viz.

ei �→ ei, fi �→ fi, e′j �→ e′j − Σf ′
kakj , f ′

j �→ f ′
j .

(That this preserves λ and μ follows since we have a lagrangian). Thus the
lemma is proved.

We have been somewhat careless about the order in which the two lagrangians
are to be taken, but changing the order will change the obstruction only by a
sign, and this does not matter much for our present purposes.

Let r : Λ → Λ′ be a morphism of rings with involution; let η = ±1. Consider
the set of quadruples (G, λ, μ,K), where (G, λ, μ) is a simple η-hermitian form
over Λ, and K is a lagrangian in G ⊗Λ Λ′. Write (G, λ, μ,K) ∼ (G′, λ′, μ′,K ′)
if there is a hyperbolic form H , with lagrangian S, over Λ, such that

(1) (G, λ, μ) ⊕H ⊕ (G′,−λ′,−μ′) = H1 is a hyperbolic form, with lagrangian

S1.

(2) An automorphism of H1 ⊗Λ Λ′ taking S1 ⊗Λ Λ′ to K ⊕ (S ⊗Λ Λ′)⊕K ′ is
(stably) in RU(Λ).

Lemma 7.3. The relation ∼ is an equivalence relation. Direct sum of quadru-
ples is compatible with ∼, and induces an abelian group structure on the set of
equivalence classes.

Proof To show ∼ reflexive, we take H = 0 and S1 the diagonal in H ⊕H (
by

(5.4)
)
. The automorphism for (2) is given by the matrix M of §6 (just before

(6.2)
)
, which was in RU(Λ).

Symmetry is clear : all we need do is to change a few signs where appropriate.
As to transitivity, if G ∼ G′ ∼ G′′, we take the direct sum of the H1 and H ′

1

giving the equivalences, and absorb the term (G′, λ′, μ′)⊕(G′,−λ′,−μ′) into the
“H” term (by proof of reflexivity): the same argument goes for the lagrangians
over Λ′.

The second sentence is immediate : the least obvious point concerns inverses,
and these are provided as usual by changing signs to obtain (G,−λ,−μ,K).
That this is an inverse follows, again, from the proof that ∼ is reflexive.

We christen the group so defined as Lη(r) (here, η is reckoned mod 4). The
case of most direct concern to us is where Λ and Λ′ are integral group rings,
and then we replace r in the notation by the underlying morphism of groups.
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Theorem 7.4. Let r : Λ → Λ′ be a morphism of rings with involution. Then
we have a functorial exact sequence (for η = ±1)

Lη(Λ)
r∗→ Lη(Λ

′)
j→ Lη(r)

∂→ Lη−1(Λ)
r∗→ Lη−1(Λ

′) .

Similarly if Λ denotes a finite set of rings.

Proof The homomorphism ∂ is induced by taking a representative (G, λ, μ,K)
and forgettingK to obtain a simple η-hermitian form over Λ. Equivalent objects
give rise to forms which

(
by (5.3) and (5.4)

)
induce the same element of Lη−1(Λ),

so ∂ is well-defined; clearly, it is a homomorphism.

To define j, let α′ ∈ SUr(Λ
′). Take the standard hyperbolic form (G, λ, μ) of

rank 2r over Λ, with standard lagrangian S, and define

K = α′(S ⊗Λ Λ′) .

If we replace α′ by β′α′, with β′ ∈ RUr(Λ), K is replaced by β′K. This gives
an equivalent object, since if H = G⊗Λ Λ′, then in (H,λ, μ) ⊕ (H,−λ,−μ) we
have K⊕β′K ∼ K⊕K ∼ the diagonal ∼ S⊕S (

under the action of RU2r(Λ
′)
)
.

Stabilising also gives an equivalent object, so j is well-defined. That it is a
homomorphism follows since, modulo RU(Λ′), we know that(

α′ 0

0 β′

)
∼
(
α′β′ 0

0 1

)

and our construction is clearly compatible with direct sums. The naturality of
j and ∂ is evident from their definitions.

Exactness at Lη(Λ
′). If α ∈ SUr(Λ), we represent r∗α by α ⊗Λ Λ′, and jr∗α

by taking a standard hyperbolic form (G, λ, μ) with lagrangian S, and setting
K = r∗α(S⊗ΛΛ

′) = (α⊗ΛΛ
′)(S⊗ΛΛ

′) = α(S)⊗ΛΛ
′. But now (G, λ, μ,K) ∼ 0,

taking in the definition H = 0, S1 = α(S), and the identity automorphism of
G⊗Λ Λ′.

Suppose conversely that α′ ∈ SUr(Λ
′), and j(α′) = 0. Then with (G, λ, μ) over

Λ having lagrangian S, the quadruple
(
G, λ, μ, α′(S ⊗Λ Λ′)

)
is null-equivalent,

so for some hyperbolic form (G1, λ1, μ1) over Λ, with lagrangian S1, we have
a lagrangian S2 of H = (G, λ, μ) ⊕ (G1, λ1, μ1) such that an automorphism of
H⊗ΛΛ

′ taking S2⊗ΛΛ′ to α′(S⊗ΛΛ
′)⊕ (S1⊗ΛΛ

′) is in RU(Λ′). Thus modulo
RU(Λ′), we can replace α′ by any automorphism of H taking (S⊗ΛΛ

′)⊕(S1⊗Λ

Λ′) to (S2⊗ΛΛ′). If α is an automorphism of H taking S⊕S1 to S2

(
this exists

by (5.3.1)
)
, this shows α′ ∼ α⊗Λ Λ′ and so our class is in the image of r∗.

Exactness at Lη(r). First, let α′ ∈ SU(Λ′). Then jα′ is represented by(
G, λ, μ, α′(S ⊗Λ Λ′)

)
, with S a lagrangian in G. So ∂jα′ is represented by a

hyperbolic form (G, λ, μ), hence is zero. Suppose conversely that (G, λ, μ,K) is
such that (G, λ, μ) represents 0 ∈ Lη−1(Λ). Stabilising (add a hyperbolic form
H1, with lagrangian S1, to G and S1 ⊗Λ Λ′ to K) we may suppose (G, λ, μ) a
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hyperbolic form. Choose a lagrangian S. Then if α′ is an automorphism taking
S ⊗Λ Λ′ to K

(
again, this exists by (5.3.1)

)
, (G, λ, μ,K) represents jα′.

Exactness at Lη−1(Γ). This is trivial : a simple η-hermitian form (G, λ, μ) over
Λ determines the zero class over Λ′ if and only if G⊗ΛΛ

′ is (stably) a hyperbolic
form, i.e. if and only if it possesses (stably) a lagrangian K, and so (G, λ, μ)
comes from Lη(r).

This proves the algebraic result
(
a special case of (3.1)

)
: we now go on to

establish (3.2) in the case under consideration. Recall that Λ and Λ′ in the
above will be group rings or finite sets of such, as discussed at the beginning of
the chapter.

Theorem 7.5. Assume (7.1); perform also further surgeries as in (1.4) to make
all Kk zero or stably free, and extra surgeries to make them all free and based(
with the Kk(Mi; Λi) all of the same rank

)
. Let r : π(X)→ π(Y ) be the induced

morphism, dimN = 2k + 1 � 5. Define an obstruction θ in L2k+1(r) as the
equivalence class of

(
ΣiKk(Mi; Λi), λ, μ,Kk+1(N,M)

)
. Then the conclusions

of (3.2) hold, viz. θ depends only on the bordism class of (N,φ, F ), vanishes
for a simple homotopy equivalence and, for k � 3, only if the class contains a
simple homotopy equivalence; ∂θ is the surgery obstruction for φ |M and θ is
natural for inclusion maps.

Proof It is evident that θ vanishes for a simple homotopy equivalence, and ∂θ
is by definition the surgery obstruction for φ |M . Naturality follows, as in (5.6)
and (6.4), from the explicit character of the definition of θ in terms of homology.
The two remaining assertions are the bordism invariance of θ, and that θ = 0
implies the possibility of surgery.

We begin by observing that (7.2), with the discussion preceding it, shows that
if surgery is possible, then θ must vanish. For under this hypothesis we found
a lagrangian over Λ

(
equivalently, set of lagrangians Kk+1(Vi,Mi; Λi) over the

Λi

)
; and observed that the existence of W implied the vanishing of the surgery

obstruction for N ∪ V ; whereas by (7.2) this obstruction is defined by the pair of
lagrangiansKk+1(V,M) and Kk+1(N,M) in Kk(M). Since these are equivalent
under RU

(
Z[π1(Y )]

)
, it follows that the quadruple defining θ is null-equivalent.

We next deduce bordism invariance of θ: to economise notation, we suppress
mention of M−. Let (W,V ) be a cobordism of (N,M) to (N ′,M ′) and ψ :
(W,V ) → (Y,X) extend φ and φ′; G extend F and F ′. Let us suppose all
necessary preliminary surgeries performed already. We change an orientation,
and regard (W,V ) as a cobordism of (N,M) ∪ (N ′,M ′) to the empty set. As
usual, we construct a map h : (W ;N,N ′) → (I; 0, 1), and compute groups Kk

for W , V , etc. using

ψ × h : (W ;N, V,N ′)→ (Y × I;Y × 0, X × I, Y × 1) .

Using again the suffix i to distinguish components of X , we see as above that
Kk+1(Vi,Mi ∪M ′

i ; Λi) is a lagrangian in Kk(Mi; Λi)⊕Kk(M
′
i ; Λi), and that the

corresponding lagrangian Kk+1(V,M ∪ M ′) in Kk(M)⊕Kk(M
′) is equivalent
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(
under RU(Λ′)

)
to Kk+1(N ∪ N ′,M ∪ M ′). This shows at once, taking H = 0

and recalling the change of orientation, that(
ΣKk(Mi), λ, μ,Kk+1(N,M)

) ∼ (
ΣKk(M

′
i), λ, μ,Kk+1(N

′,M ′)
)
,

and so that N and N ′ correspond to the same value of θ.

Finally, let θ = 0. Perform (if necessary) trivial surgeries on the Mi to add
hyperbolic forms to the Kk(Mi; Λi). Then we may suppose given lagrangians
Si ⊂ Kk(Mi; Λi) such that ΣSi⊗Λ′ is equivalent under RU(Λ′) to Kk+1(N,M).
By (5.2), if k � 3 we can represent basis elements of the Si by framed embed-
dings of spheres, and so add handles to the Mi × I, obtaining manifolds Vi. By
the proof of (5.6), the other end of Vi is mapped to Xi by a simple homotopy
equivalence. Now by (7.2), the surgery obstruction for N ∪ V (where V is
the union of the Vi) is represented by the pair of lagrangians Kk+1(N,M) and
Kk+1(V,M) and so, by hypothesis, vanishes. By (6.4) we can do surgery (with
trace W , say) to obtain a simple homotopy equivalence.

Remark 7.6. It is now easy to obtain the result corresponding to (5.8) and
(6.5); viz. that given a compact smooth or PL manifold X of odd dimension
m � 7, with normal bundle ν, then θ induces a bijection onto Lm

(
π(X), π(∂X)

)
of the set of bordism classes of normal maps (M,φ, F ), whereM is a cobordism
of bounded manifolds,

φ : (M ; ∂−M,∂cM,∂+M)→ (X × I;X × 0, ∂X × I,X × I)

is a map of quadruples inducing the identity map ∂−M → X × 0 and a simple
homotopy equivalence (∂+M,∂∂+M) → (X × 1, ∂X × 1), and F is a stable
framing of τM ⊕ φ∗ν extending the natural one on ∂−M . A proof of a more
general result is given in (10.4) below.



8. The Bounded Even-dimensional Case

First-time readers may omit this chapter, proceeding directly to §10.
This chapter was intended to be parallel to §7. However, the algebra is yet

more formidable, and I have been unable to obtain a complete description∗.
This suggests that a different method should be tried; however, I hope that the
present partial account will not be devoid of interest.

Although we showed in §6 that surgery was possible if and only if our obstruc-
tions vanished, we did not give an explicit description of the way the algebraic
properties of the surgery implied that algebraic triviality of the obstruction :
this we must now do. We will suppose through the chapter (except where oth-
erwise specified) hypothesis 7.1 with dimN � 6, and Y connected (as usual,
this is innocuous).

We can suppose that φ induces a (k − 1)-connected map M → X and a k-
connected map N → Y , so that the only nonvanishing groups Ki are those in
the sequence

0→ Kk(M)→ Kk(N)→ Kk(N,M)→ Kk−1(M)→ 0 .

By (2.3), the middle two modules are stably free and s-based; as usual we may
suppose (after preliminary surgeries) that they are free and based; by (2.6) the
bases may be taken as dual bases (with respect to the usual duality map). Thus
the middle map in the above sequence is adjoint to a sesquilinear map

λ : Kk(N)×Kk(N)→ Λ ;

since λ is induced by cap products, or equivalently by intersection numbers, it
is the same as the λ of (5.2), with G = Kk(N). In (5.2) we obtained also a
quadratic map μ : G → Qk which appears again here. Note also that λ is not
here nonsingular : the above sequence shows that its deviation from being so is
measured by the module Kk−1(M).

Related to this is the observation that μ now satisfies some identities other
than those of (5.2): we will not use these, but think it of interest to explain why
this is so. Consider the submodule Kk(M) – or rather, Kk(Mi; Λi). An element
of this determines a framed homotopy class of immersions

f : Sk →Mi .

∗Sharpe [S8] described the relative even-dimensional L-groups L2∗(r : Λ → Λ′) using
unitary Steinberg relations. A more systematic description was given in Ranicki [R7, Chapter
2], using chain complexes (see the notes at the end of §17G).

82
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The self-intersections of such an immersion consist of double circles in Mi: one
of these may be covered by two circles in Sk, or doubly covered by one circle in
Sk. In the former case, we can get rid of the singularity when we allow an extra
dimension, Sk → Mi × I. In the latter we cannot, but find a corresponding
point self-intersection P of Sk in Mi × I, whose gP is the class of the original
double circle in Mi. Clearly g2

P
= 1 (twice the circle comes from Sk, which is

simply connected), and orientation considerations show that w(gP ) = (−1)k+1.
So μ(f) is a sum of each gP . Now the equations of (5.2) show, since the class of
f is in Kk(M) and hence orthogonal (for λ) to all of Kk(N), that λ(f, f) = 0
and hence μ(f) is a sum of elements g ∈ π1(Y ) of order 2 with w(g) = (−1)k+1.
These are the conditions obtained geometrically, except that we found that each
gP ∈ π1(Xi). This extra condition is not easy to formalise in general (we have
not obtained it in full, only a special case of it).

Now suppose for simplicity that π(X) = π(Y ) (so X is connected). We showed
in §4 that surgery was possible in this case : we gave there a geometrical proof;
we will now express it algebraically. As in §4, choose a preferred base {ei}
of Kk(N,M): since fundamental groups are equal, this group is isomorphic to
πk+1(φ), so we can represent the ei by

fi : (D
k ×Dk, Sk−1 ×Dk)→ (N,M) ;

by §4, we may suppose these to be disjoint embeddings. Denote by ∂fi the
restriction to Sk−1×Dk. The classes of these generate Kk−1(M), so we can use
them to compute the invariant ofM . In fact, write V for the union of the images
of the fi, and U for that of the ∂fi (conforming with the notation of §6): then
for M we have the pair of lagrangians Kk(U, ∂U) and Kk(M0, ∂U) in Kk−1(U),
where M0 = M − Int U . Write also N0 = N − Int V and ∂rV = ∂V − Int U
(the ‘relative boundary’ of V ).

M0

N0

∂U

V

N0

U

∂rV

By the construction of V , φ |V is homotopic to a map to the base point. Extend
this homotopy over N . Then adjust somewhat, writing Y = Y0 ∪ D2k, so that
Y0 ∩ D2k is a (2k − 1)-disc on the common boundary and φ : (N ;N0, V,M)→
(Y ;Y0, D

2k, X). We can now extend the Kk notation to N0, V , etc. (as in §6):
note that the homology of D2k etc. vanish in the middle dimensions.
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Now inclusions define a simple isomorphism

Kk−1(∂U) ∼= Kk−1(U)⊕Kk−1(∂
rV )

taking the lagrangiansKk(∂
rV, ∂U), Kk(U, ∂U) to the two summands. We wish

to identify the lagrangian Kk(M0, ∂U), and must first reinterpret the above.
Since our construction is that of §4, φ induces a simple homotopy equivalence
(N0,M0 ∪ ∂rV ) → (Y0, X0 ∪ D2k−1), so that the Ki(N0) and Ki(N0,M0 ∪
∂rV ) vanish, with trivial preferred bases. Hence inclusion induces a simple
isomorphismKk(V, U) ∼= Kk(N,M), and as V is contractible, this is isomorphic
to Kk−1(U). Similarly (using excision etc.) we have simple isomorphisms

Kk(U, ∂U) ∼= Kk(V, ∂
rV ) ∼= Kk(N,N0) ∼= Kk(N) .

Moreover, our combined isomorphisms take the intersection pairing of Kk(N)
with Kk(N,M) to that of Kk(V, ∂rV ) with Kk(V, U) (since they are induced by
inclusion maps) and hence (by an elementary computation in Dk+1 ×Dk+1) to
that of the lagrangians Kk−1(∂rV ) and Kk−1(U) in Kk−1(∂U) (up to sign. In
any case, the sign will change if we alter the order of the modules being paired).

Now we have simple isomorphisms

Kk(M0, ∂U) ∼= Kk(M0 ∪ ∂rV, ∂rV ) ∼= Kk−1(∂
rV )

of our lagrangian onto the second summand above. The projection of the first
summand induces a map

Kk(N) ∼= Kk−1(∂
rV ) ∼= Kk(M0, ∂U)→ Kk−1(∂U)→ Kk−1(U) ∼= Kk(N,M) ;

we claim that the composite is just the map induced by inclusion. For consider
the diagram

Kk(N,N0) Kk(V, ∂
rV )

∼=��

∼=
��

Kk(U, ∂U)

��

∼=�� Kk(V, U)

∼=
��

∼= �� Kk(N,M)

Kk(N)

∼=
��

∼=
��

Kk−1(∂
rV ) Kk−1(∂U) ���� Kk−1(U) Kk(N)

��

∼=
��

Kk(N, V ) Kk(N0, ∂
rV )

∼=��

∼=
��

Kk(M0, ∂U)
∼=�� ∼= ��

��

Kk(M,U)

��

�� Kk(N, V ) .

In this diagram, all maps are induced by inclusion or are boundary maps; all
are simple isomorphisms except the maps involving Kk−1(∂U) and the maps
Kk(M,U) → Kk−1(U), Kk(N) → Kk(N,M). Thus the three squares com-
mute; the two rectangles anticommute, since the paths round them represent
the two alternative definitions of the Mayer-Vietoris boundary maps of the tri-
ads (N ;N0, V ) and (N ;M,V ): although M ∪ V �= N , the relative Ki all van-
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ish. Hence the composite

o �� o

��

o �� o

o

��

o

��

o

��

o �� o �� o

�� equals the composite

o

o

��

o

��

o �� o �� o �� o �� o

�� which, since the maps along the lower edge are

all inclusions, so induce the identity on Kk(N, Y ), proving the result.

This explains the relation of the form λ to the invariant of M , in the case
π(X) = π(Y ). For we have shown that if we define a form onKk(N)⊕Kk(N,M)
by requiring the summands to be complementary lagrangians, and the pairing
between them the natural one, then the invariant of M is the equivalence class
of the pair of lagrangians : Kk(N) itself, and the graph of the natural map
Kk(N)→ Kk(N,M) which (as remarked above) is adjoint to λ. We will denote
it by Aλ and its matrix

(
with respect to a preferred basis of Kk(N) and the

dual basis of Kk(N,M)
)
by A. Then the matrix of a transformation taking the

first lagrangian above to the second is(
I 0
A I

)
.

This lies in ΣTU(Λ)Σ−1, in conformity with the remark at the end of §6. Con-
versely, any element of ΣUU(Λ)Σ−1 has the above form, and A must be (−1)k-
symmetric for the matrix to leave invariant the λ for a (−1)k−1-symmetric
hyperbolic form, and of the form P + (−1)kP ∗ for it to leave invariant μ also.
Note that this is the point where the interchange between symmetry and skew-
symmetry is effected.

We must now establish corresponding results in the general case : the argu-
ment will be similar to the above.

Lemma 8.1 Assume (7.1), with dimN = 2k � 6. Form the invariants (each an
equivalence class of pairs of lagrangians) of the induced maps Mi → Xi; tensor
with Λ and take the direct sum. Then the result is equivalent (in a natural way)
to the pair above, viz. Kk(N) and the graph of Aλ : Kk(N) → Kk(N,M) is a
form on Kk(N) ⊕ Kk(N,M) in which the summands are lagrangians and the
intersection pairing is the natural one.

Proof There is no need to change the algebra in the above argument, but the
geometry breaks down at two points. The first is that the map πk+1(φ) →
Kk(N,M) is no longer an isomorphism; the second, that even if we can choose
homotopy classes lifting the ei, they need not be representable by disjoint em-
beddings. For each i, we choose a (finite) set{xij}of generators ofKk−1(Mi; Λi).
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Let the union of these sets have c elements. Now xij ∈ Kk−1(Mi; Λi) ∼= πk(φi),
where φi :Mi → Xi is the restriction of φ. But the map N → Y is k-connected,
so we can write xij = ∂yij with yij ∈ πk+1(φ): yij has image eij (say) in
Kk(N,M). Perform c trivial surgeries (half as many would suffice, really) on
N to replace it by its connected sum with c copies of Sk × Sk. Denote the
classes of the copies of Sk × 1 and 1 × Sk by aij and bij , so that if originally
Kk(N,M) had a preferred base {ch}, it now has preferred base {aij , bij , ch}.
Replace aij by a′ij = aij + eij : this is an elementary basis change since eij is
a linear combination of the ch. Then ∂aij = ∂e′ij is the image of xij . But the
xij are generators. Thus we can subtract suitable linear combinations of the aij
from the ch to convert them to elements c′h with ∂c′h = 0.

Now by construction, ∂aij is the image of xij in Kk−1(Mi). Let φ : (N,M)→
(Y,X) induce ψ0 : M → X and ψ1 : N → Y . Consider the map of exact
sequences, with base-point in Mi,

πk+1(ψ0) ��

��

πk+1(ψ1)

∼=
��

�� πk+1(φ) ��

��

πk(ψ0)

��

�� πk(ψ1) = 0

0 �� Kk(M) �� Kk(N) �� Kk(N,M) �� Kk−1(M) �� Kk−1(N) = 0 .

By diagram-chasing, we deduce an exact sequence

πk+1(ψ0)→ Kk(M)→ πk+1(φ)→ Kk(N,M)⊕ πk(ψ0)→ Kk−1(M)→ 0 .

Thus a′ij ∈ Kk(N,M) and xij ∈ πk(ψ0) have a common precursor in πk+1(φ),
unique modulo the image of Kk(M). And b′ij , ch are in the image of Kk(N) ∼=
πk+1(ψ1). So all our classes come from homotopy groups. Observe for the first
ones that our argument implies that any map Sk−1 → M representing xij can
be extended to (Dk, Sk−1)→ (N,M) representing aij . As to the other classes,
we can now introduce a (trivial) boundary in any desiredMi, so as to have maps
of discs instead of spheres. This overcomes the first difficulty mentioned above.

As to the second, we can now apply (1.3) to represent our classes by framed
immersions (of discs – in some cases, if preferred – spheres). If these are in
general position, the intersections and self-intersections will form a finite point
set. Ignoring them in the above argument will only affect K1 and K2k−1; as
far as the middle dimensions go, we reach the same conclusion, provided we use
coefficients Λ throughout.

The above result is somewhat analogous to (5.7). We now seek an analogue
(8.4) to (7.2): to show how, given two manifolds N with the same boundary
M , to combine their properties to find the simple hermitian form on the union.
We will fix notation as follows. We have simple Poincaré triads (Y1;W1, X)
and (Y2;W2, X) meeting in X , so that glueing gives a simple Poincaré triad
(Y1 ∪ Y2;W1,W2): we write Y = Y1 ∪ Y2. We have a bundle ν over Y ; maps
of degree 1

φa : (Na;La,M)→ (Ya;Wa, X) (a = 1, 2)
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where Na is a manifold, N1 ∩ N2 = M and N1 ∪ N2 = N , say. The induced
maps La →Wa are to be simple homotopy equivalences, and the maps φa agree
on M , so combine to give a map φ : N → Y . Finally, we have a stable framing
F of τN ⊕ φ∗ν. Our problem is, to calculate the surgery obstruction for φ in
terms of invariants associated to φ1 and φ2. In the course of the argument, we
will find another proof (8.4.1) that forms on appropriate Kk(N1) and Kk(N2)
induce (stably) isomorphic pairs of lagrangians.

We will also need some notation for all the components and fundamental
groups. Let X have components Xi, with fundamental group rings Ri. Let
Ya (a = 1, 2) have components Yaj , with fundamental group rings Λaj. We sup-
pose Y connected, and denote its fundamental group ring by Λ. Choose base
points xi ∈ Xi, yaj ∈ Yaj . Each Xi is on the boundary of one Y1j and one Y2j :
join xi to the corresponding points yaj by paths in Y . By ‘general position’, we
may suppose these paths embedded disjointly except at their ends; they form
a graph Γ with vertices the yaj and edges corresponding to the xi. The paths
induce homomorphisms

π1(Xi) = π1(Xi;xi)→ π1(Yaj ;xi) ∼= π1(Yaj ; yaj) = π1(Yaj)

of fundamental groups, and hence of their group rings. We can use van Kam-
pen’s theorem to compute π1(Y ) in terms of the others. Note also that Γ is a
retract of Y , and hence connected. Approximately, we can map a collar neigh-
bourhood Xi × I of Xi, via projection on I, onto the edge through Xi, and
the rest of Yaj onto yaj (rigorously, this involves replacing Y by a homotopy
equivalent complex, and then applying homotopy extension several times).

We will also write Naj = φ−1
a (Yaj); we may suppose Naj connected, and

construct a graph Γ as above in N .

Lemma 8.2. After performing preliminary surgeries on M and N1, we may
suppose that φ induces a (k − 1)-connected map M → X and a k-connected
map N1 → Y1, and that Kk(N1,M ; Λ1) has a free (preferred) basis represented
by framed immersions (Dk, Sk−1) → (N1,M) whose boundaries are disjoint
embeddings Sk−1 →M whose classes generate the groups Kk−1(Mi;Ri).

This follows immediately from (1.4) and the proof of (8.1). Note that we can
start with any (finite) set of disjoint framed embeddings Sk−1 → M whose
classes give generators, and use only these and some further trivial embeddings.
Observe also that connectedness of N1 is not important : we can, as usual, take
the components separately.

We can now argue in the same way with N2 (further surgeries can be supposed
to keep M fixed), and extend the same framed embeddings Sk−1 → M on the
‘other side’.

Lemma 8.3. After preliminary surgeries, we may construct a (finite) set of
framed immersions

(Sk;Dk
−, D

k
+;S

k−1)→ (N ;N1, N2;M)
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such that the induced framed embeddings Sk−1 →M generate the groups Kk−1

of the various components of M ; and for each component Naj of N1 or N2,
the immersions which meet Naj provide a preferred free base for Kk(Naj , Naj ∩
M ; Λaj).

Proof By (8.2), if we start with framed embeddings Sk−1 →M which generate
the appropriateKk−1 groups, we can extend to framed immersions (Dk, Sk−1)→
(Naj ,M) giving a preferred free base of Kk(Naj , Naj ∩ M ; Λaj) at the expense
of performing some surgeries to replace Naj by its connected sum with some
copies of Sk × Sk, and adjoining trivial framed embeddings of Sk−1 in some
components (we may choose where) of Naj ∩ M .

To complete the matching up, we must just be careful how many trivial em-
beddings of Sk−1 we want in each component of M . Choose a maximal tree
T in the graph Γ, and order the Yaj so that T is formed by starting with the
first, and attaching at each stage an edge joining the existing tree to the first
vertex not in it. At present, we have plenty of framed immersions of (Dk, Sk−1),
but some trivial spheres in M span a disc only in N1 or N2, but not both. We
start with the last Naj , add to it a suitable number of copies of Sk × Sk, each
increasing the rank of Kk(Naj , Naj ∩ M ; Λaj) by 2, and thus requiring two new
discs. One of these can be attached to each trivial sphere in Naj ∩ M which
does not already span a disc in Naj ; as we were forced to have an even number,
there may be one left over, which we assign to have boundary in that Mi such
that xi is the last edge of T .

Proceed thus with the Naj, till we have done the operation with the second.
As each edge xi has two ends, eachMi has now been considered, and all spheres
span a disc on each side, with the possible exception of one sphere in the com-
ponent Mi corresponding to the first edge of the tree T . We show that this
exceptional case cannot occur.

For if it does, the total number of discs is odd. But this is the sum of the ranks
of the Kk(Naj , Naj ∩ M ; Λaj), or equivalently, of the Kk(Naj , Naj ∩ M), and
hence of Kk(N1,M) and Kk(N2,M). But this latter is dual to Kk(N2), and the
short exact sequence

0→ Kk(N2)→ Kk(N)→ Kk(N1,M)→ 0

now shows thatKk(N) has odd rank, contradicting [W18, (4.7)]. This concludes
the proof of the lemma.

We will from now on use the immersions provided for us by (8.3). We may
suppose given paths joining the images of Sk−1 to the base points in the Mi;
and paths joining base points giving an embedding of Γ in N as we had in Y . As
each Γ ∩ Naj is contractible, we can regard it as a somewhat enlarged base point
for Naj , and hence obtain lifts of our discs. But Γ is not in general contractible :
we will restrict ourselves for simplicity to the case when it is, as this suffices for
our application. Then our immersions and paths do define elements of Kk(N),
Kk(N1,M) andKk(N2,M): we will use the bases ofKk(N1,M) andKk(N2,M)
provided by these elements; by construction these are preferred bases. We use
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the dual bases of Kk(N1) and Kk(N2): since the duality for Na is defined over
the rings Λaj , these bases come from bases of Kk(Naj ; Λaj).

Now we have a hermitian form (λ, μ) on Kk(Na): we will denote by Aa the
matrix of λa, which is also the matrix of the map Kk(Na) → Kk(Na,M) with
respect to the chosen bases.

Lemma 8.4. The immersions define elements of Kk(N), which split the exact
sequence

0→ Kk(N1)→ Kk(N)→ Kk(N2,M)→ 0

and thus define a preferred basis of Kk(N). With respect to this basis, inter-
sections λ on Kk(N) have a matrix

A =

(
A1 I

(−1)kI (−1)kB

)
,

where B has the form C +(−1)kC∗. Moreover, if D = I −BA1, then D is the
matrix of a simple isomorphism and A1 = −A2D.

Proof The leading term is the matrix of intersection numbers on Kk(N1), which
is by definition A1. The upper right hand entry is the unit matrix, since we
chose the basis of Kk(N1) dual to the basis provided by our immersions

(
for

Kk(N1,M)
)
. The lower left hand entry appears by symmetry. If we now denote

the remaining term by (−1)kB, it follows by (5.2) that B has the form stated.

It also follows from §5 that A is the matrix of a simple isomorphism. Since(
I 0

(−1)k−1B I

)(
A1 I

(−1)kI (−1)kB

)
=

(
A1 I

(−1)k(I −BA1) 0

)
,

it follows that D = I − BA1 also defines a simple isomorphism. It also follows
that

A−1 =

(
0 (−1)kD−1

I (−1)k−1A1D
−1

)(
I 0

(−1)k−1B I

)

=

(
−D−1B (−1)kD−1

I +A1D
−1B (−1)k−1A1D

−1

)
.

Now the dual of the above exact sequence is

0← Kk(N1,M)← Kk(N)←→Kk(N2)← 0 .

Note, however, that this splitting does not coincide with that induced by our
geometrically constructed map Kk(N1,M)→ Kk(N), and the matrix A−1 itself
represents the change of basis. Thus intersection numbers with respect to the
new basis have matrix (A−1)∗A(A−1) = (−1)kA−1. In particular, the matrix
A2 of intersection numbers on Kk(N2) is −A1D

−1.
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Corollary 8.4.1. Take the pairs of lagrangians provided by (8.1) from N1

and N2; change the orientation of N2. Then the matrix

(
I −B
0 I

)
gives a

(simple) isomorphism of hyperbolic forms taking the first pair to the second.

For since B has the form C + (−1)kC∗, our matrix does give a (simple) iso-
morphism of hyperbolic forms, which clearly takes the (standard) lagrangian
Kk(N1) to Kk(N2) (even preserving the chosen bases). That it takes the graph
of Aλ1 to that of −Aλ2 follows from the identity(

I −B
0 I

)(
I

A1

)
=

(
I −BA1

A1

)
=

(
I

−A2

)
D .

We have not discussed above the corresponding forms μ. As usual, it is suf-
ficient to describe what happens on basis elements. On those coming from
Kk(N1), of course, we have the form μ1. The rest determine the diagonal terms
of a suitable matrix C above; they must be calculated geometrically.

In applying this result, we need to know something about the matrix B
of intersections of the immersions constructed in (8.3); also about their self-
intersections. Since the equatorial spheres Sk−1 are disjointly embedded, these
each split as a sum of two terms, one coming from intersections in N1, the other
from intersections in N2. With the definitions above, the first term comes from
the relevant Λ1j ; the second from some Λ2j: we do not get arbitrary elements
of Λ. Also if (for example) π1(X1) ∼= π1(Y2i) for some i, then we can (by §4)
manoeuvre each framed immersion (Dk, Sk−1)→ (Y2i, Xi) to be an embedding,
and all these are disjoint, at the expense of introducing extra intersections in
the ‘N1-part’ of the corresponding spheres.

I do not see at present how to avoid these geometrical difficulties. One possi-
ble procedure is as follows. Given the (connected) manifold N1, one should not
regard λ1 and μ1 as an adequate system of invariants. Instead, choose framed
immersions (Dk, Sk−1) → (N1,M) as in (8.2), with boundaries disjointly em-
bedded, and defining a preferred basis of Kk(N1,M ; Λ1). One can then take
the intersections and self-intersections of these discs as extra invariants. These
are not well-defined, even by the homotopy classes of the discs : some intersec-
tions

(
coming from π1(Mi)

)
can be ‘pushed off the edge’ Mi of N . Also, they

are not independent of each other and of λ1 and μ1: thus further investigation
is needed. I will not pursue such investigations : as mentioned earlier, I now
believe that there is probably a better way around these difficulties. See §17G.
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First-time readers may omit this chapter, proceeding directly to §10.
We now introduce an entirely different approach to our main theorem. We

begin by defining a rather complicated bordism group, and then proceed to
interpret it. Our main theorem will then follow by applying the special case in
§4. We start with the simplest case.

Let us define an ‘object’ to consist of the following:

a simple Poincaré pair (Y,X) and bundle ν over Y , compact manifold N
with boundary M , with dimN = n,

a map φ : (N,M) → (Y,X) of pairs of degree 1, including a simple
homotopy equivalence M → X ,

a stable framing F of τN ⊕ φ∗ν, and finally

a map ω : Y → K, such that wY factorises as π1(Y )
ω∗→ π1(K)→ {±1}.

Here K is a CW complex which will usually be taken to be an Eilenberg-
MacLane space of type (π, 1); but is, anyway, fixed. The fundamental classes
[N ], [Y ] (with φ∗[N ] = [Y ]) constitute part of the structure of the object θ:
if we change their signs, we obtain a new object which I will denote by −θ.
Given two objects θ1, θ2 (all the above, except K, acquire subscripts 1, 2 in
our notation), we may suppose after inessential changes that the various sets
involved are disjoint, and then define θ1 + θ2 by taking the unions for Y , X , N
andM , and the obvious bundles and maps for ν, φ, F and w. The sum operation
is commutative and associative, and admits a zero element : the object with Y
(hence, also, N , M and X) empty.

We will now define a relation on our sets of objects. We write θ ∼ 0 to denote
that we can construct the following:

a simple Poincaré triad (Z;Y, Y+) with Y ∩ Y+ = X , and a bundle μ over
Z extending ν,

a compact manifold triad (P ;N,N+) with N ∩ N+ =M ,

a map ψ : (P ;N,N+)→ (Z;Y, Y+) of degree 1 extending φ, and inducing
a simple homotopy equivalence N+ → Y+,

a stable framing G of τP ⊕ψ∗μ, stably extending F , and an extension of ω
to a map Ω : Z → K, such that wZ factorises as π1(Z)

Ω∗→ π1(K)→ {±1}.
We further write θ1 ∼ θ2 if θ1 + (−θ2) ∼ 0. Observe that this is consistent with
our former definition in the case θ2 = 0, for θ1 + (−0) ∼ 0 means just θ1 ∼ 0.

Lemma 9.1. ∼ is an equivalence relation.

91
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Proof By multiplyingN ,M , Y andX by I, we see that∼ is reflexive. Symmetry
follows by changing the orientation of P . Now we merely need the usual glueing
argument which shows that any sort of cobordism gives an equivalence relation
(cf. [W13, VA, 1.1]). Here, given constructs as above (suffixed by 1 and 2) to
show θ1 + (−θ2) ∼ 0 and θ2 + (−θ3) ∼ 0 respectively, we can set Z3 = Z1 ∪ Z2

(assuming that Z1 ∩Z2 = Y2 with no superfluous intersection), Y+3 = Y+1 ∪ Y+2

(where Y+1 ∩ Y+2 = X2). Since μ1 and μ2 both extend ν2 on the intersection,
they combine to give a bundle μ3. So we have a triad (Z3;Y1 ∪ Y3, Y+3), which
is a Poincaré triad by (2.7). Similarly we construct a compact manifold triad
(P3;N1 ∪ N3, N+3) as for ordinary cobordism. The maps ψ1 and ψ2 agree on
P1 ∩ P2 = N2, so combine to give a map ψ3; similarly we get G3 and ω3, and
it is immediate that N+3 → Y+3 is a simple homotopy equivalence. The result
is then established.

We denote the set of equivalence classes by L 1
n (K)∗. Evidently, the relation

∼ is compatible with + (defined by disjoint union), so the set L 1
n (K) inherits

a commutative and associative addition operation with a zero. Moreover, the
‘−’ operation gives additive inverses, so L 1

n (K) is an additive abelian group.
If f : K → L is a continuous map, then replacing a representative object over
K by one over L in which ω is altered to f ◦ ω is compatible with + and ∼,
so defines a homomorphism L 1

n (f) : L 1
n (K) → L 1

n (L). Evidently we have a
covariant functor from CW complexes to abelian groups. Moreover, only the
homotopy class of f is relevant – since if θ2 differs from θ1 only by changing ω1

in its homotopy class, θ1 ∼ θ2. To prove this, we multiply (Y,X) and (N,M)
by I, extend ν, φ and F by product maps, and extend ω1 ∪ ω2 by a homotopy :
this constructs a cobordism of the desired kind.

Next, suppose K connected and consider the set of objects which satisfy the
additional requirements:

Y is connected, and the map ω∗ : π1(Y )→ π1(K) is an isomorphism.

We call such objects restricted objects. On these we impose stricter relations.
Write θ ≈ 0 if we have the data for θ ∼ 0 but, in addition, Z is connected, and
the map Ω∗ : π1(Z)→ π1(K) is an isomorphism. Analogously we write θ1 ≈ θ2
if we have the data for θ1 + (−θ2) ∼ 0 satisfying these two extra conditions.
Here, there is no object 0, and so no overlap between our two uses of the symbol
≈.
Lemma 9.2. ≈ is an equivalence relation. The objects θ with θ ≈ 0 constitute
an equivalence class.

Proof The verification of the first assertion proceeds as for Lemma 1: the only
difference is that a certain map must be shown to be an isomorphism : the proof
is immediate, using van Kampen’s theorem. For the second, we must show that
θ1 ≈ θ2 ≈ 0 implies θ1 ≈ 0. Almost the same argument applies here : we glue

∗See Farrell and Hsiang [F5, p.102] for a revised definition of L 1
n (K) in the nonorientable

case, replacing the orientation map w : π1(K) → {±1} by a principal Z2-bundle over K. This
ensures that the isomorphism of 9.4.1 is functorial.
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together systems representing ‘cobordisms’ of θ1 to θ2 and of θ2 to zero.

We write L 2
n (K) for the set of equivalence classes of restricted objects under ≈.

We make no claims yet concerning group structure here, but content ourselves
to note that there is a natural map L 2

n (K)→ L 1
n (K), defined by forgetting the

extra conditions. The relevance of all this to our problem can now be indicated.
If θ is an object, then (N,M, φ, F ) defines a class ξ(θ) of degree 1 in Ω∗(Y, ν)
relative to φ |M .

Theorem 9.3. Let θ be a restricted object with n � 5. Then ξ(θ) has a
representative with φ a simple homotopy equivalence of pairs if and only if θ ≈
0.

Proof First suppose ξ(θ) has such a representative. Then the cobordism between
it and (N,M, φ, F ) consists of a manifold triad (P ;N,N+), an extension of φ to
a map ψ′ : (P,M)→ (Y,X) inducing a simple homotopy equivalence N+ → Y ,
and a (stable) extension of F to a stable framing G of τP ⊕ ψ∗ν. Now define
a Poincaré triad by taking Y × I, and identifying X × I with X (so obtaining
the mapping cylinder rel X of the identity map of Y ) giving Z, say : take
(Z;Y × 0, Y × 1). It is now easy (invent a map P −M → I) to cover ψ′ by a
map ψ : (P ;N,N+)→ (Z;Y × 0, Y × 1) of degree 1 of triads. Defining Ω to be
the composite of ω and the projection of Z on Y , we have now constructed a
cobordism which shows θ ≈ 0.

Conversely, let θ ≈ 0: use the notation of the definition. Consider the map

ψ : (P ;N,N+)→ (Z;Y, Y+) :

a map of degree 1 of Poincaré triads, provided with the usual bundle μ over Z
and stable framing G of τP ⊕ ψ∗μ. We have induced simple homotopy equiv-
alences M → X and N+ → Y+; moreover, inclusion induces an isomorphism
of π1(Y ) on π1(Z). Hence by Theorem 3.3, as n � 6 we can perform surgery
to make ψ a simple homotopy equivalence of triads. In particular, we can do
surgery for φ too. This proves the theorem.

This shows that L 2
n (K) is of interest for our problem, whereas we saw above

that L 1
n (K) has good algebraic and functorial properties. The crucial step in

the present development is to show that these two are essentially the same.

Theorem 9.4. Let n � 4, and let K have a finite 2-skeleton. Then the natural
map L 2

n (K)→ L 1
n (K) is a bijection.

Proof We first consider surjectivity. Suppose given (Y,X, ν,N,M, φ, F, ω) rep-
resenting an element of L 1

n (K): we seek another representative for which Y is
connected and ω∗ : π1(Y ) → π1(K) is an isomorphism. We will construct this
by performing surgery on Y . The crucial result for this is (2.8), or rather its
relativisation.

The first step in our simplification of the given object is to replace (Y,X) by
(Y ′, X) where Y ′ = Y0 ∪∂H H is as in the comment following (2.8), and modify
appropriately the various maps and bundles : clearly, we obtain an equivalent
object (cf. the argument above that ω can be replaced by a homotopic map).
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We will next perform surgery on the map ω′ = ω |H : H → K. Let η be
the line bundle over K determined by the homomorphism w : π1(K) → {±1}.
Since H has the homotopy type of a graph, it follows easily that τH ⊕ ω′∗η
is trivial : choose a framing f . We can now apply (1.2), and deduce that by a
finite sequence of surgeries (adding 1- and 2-handles to H×I, to give a manifold
J) we can change H to a manifold H ′ such that the map H ′ → K induces an
isomorphism of fundamental groups.

Let Z = Y0 × I ∪ J = Y × I ∪ 1-handles and 2-handles; ∂Z = Y × 0 ∪ X ×
I ∪ Y+ × 1, where Y+ = Y0 ∪ H ′. The map ω : Y → K restricted to H was
shown above

(
using (1.2)

)
to extend over J , thus we obtain a map Ω : Z → K.

We will identify X × I to X in Z, and still write Z for the result. I claim that
Ω∗ : π1(Y+)→ π1(K) is an isomorphism. For we have maps

π1(K) ∼= π1(H
′)→ π1(Y+) = π1(Y0) ∗π1(∂H) π1(H

′) Ω∗→ π1(K) ,

whose composite is the identity. The first map is surjective since by (2.8)

π1(∂H) = π1(H)→ π1(Y
′) = π1(Y0)

is surjective. It follows at once that Ω∗ is an isomorphism.

We also claim that (Z;Y, Y+) is a simple Poincaré triad. For it follows from
(2.7) that (Y0, ∂H) is a simple Poincaré pair. But Z is obtained by glueing
(Y0, ∂H)× I to J along ∂H × I, and all the required dualities now follow from
(2.10), which permits multiplying by I, and (2.7)(i), which permits glueing.

We must extend ν over Z. But there is an s-isomorphism of ν |H with ω′∗η
(since bundles over a 1-complex are classified by the first Stiefel-Whitney class),
and the construction of J provided an extension of this bundle. Glueing, we
have the desired extension of ν.

Finally, we must construct a cobordism P of N to some N+, and appropriate
extensions ψ of φ and G of F . It will be simpler to describe this construction
in the case when J is obtained from H × I by attaching a single 1- or 2-handle;
the argument, however, is the same in the general case. First replace φ by a
homotopic map (this is clearly permissible) which is transverse regular on the
attaching sphere, S0 or S1, of the handle. The preimage of this sphere is then
a framed submanifold S of dimension 0 or 1. Since φ is then automatically
t-regular on some neighbourhood of S0 or S1, we can assume after, if neces-
sary, shrinking the neighbourhood S0 ×Dn or S1 ×Dn−1 on which surgery is
performed, that φ is t-regular on all of this set, and that its preimage has com-
ponents homeomorphic to Dn or to S1 ×Dn−1. Moreover, the restriction of φ
to a component of type Dn is a diffeomorphism onto a component of S0 ×Dn,
and the restriction to S1×Dn−1 is represented by the product of an immersion
S1 → S1 and the identity map of Dn−1.

We first consider a 1-handle. Since φ has degree 1, and is t-regular at S0, the
total multiplicity of the preimage of each component is +1. Let S0 = {x, y}:
choose ξ ∈ φ−1{x}, η ∈ φ−1{y} each with multiplicity +1, perform surgery on
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the corresponding discs, and extend φ using the identity map onD1×Dn, and F
as usual. The other points of the preimage can be arranged in complementary
pairs, the two members of a pair having the same image, but mapped with
opposite degrees. We add a further copy of D1 ×Dn along each such pair, and
extend φ by the projection on Dn, composed with Dn ⊂ H . Since the degrees
were opposite, we can again extend F .

Now consider a 2-handle : this comes from a framed embedding of S1 in Y , and
we suppose φ transverse to S1, so that the preimage is a framed 1-submanifold
of N . Since N is connected, any two components of this can be joined by an arc
α; since π(N) → π1(Y ) is surjective (because φ has degree 1) we can suppose
that α projects to a nullhomotopic loop in Y . A standard argument now shows
how to modify φ (first do a homotopy to make φ(α) a point) so that φ−1(S1)
has one less component. Eventually, we can suppose T = φ−1(S1) connected.
Since φ is transverse to S1, the map T → S1 has the same degree as N → Y ,
viz. 1; so a final homotopy makes φ |φ−1(S1 × Dn−1) a homeomorphism. We
can now attach a 2-handle to N by the ‘same’ attaching map, and there is a
unique extension of ν over this handle such that F also extends.

This completes the proof that our map is surjective. We will not go into the
detailed proof of injectivity, for the same arguments suffice. In fact, if we are
given two restricted objects which are equivalent in the unrestricted sense, we
must construct a restricted equivalence. This construction is the same as above,
only we must do surgery on Z and P instead of Y and N : the same arguments
are used to justify the steps. The theorem follows.

We pause here to note that the above proof is not valid if K is a space other
than a CW complex with finite 2-skeleton; clearly however, the important con-
dition is that π1(K) be finitely presented.

Corollary 9.4.1. The group L 1
n (K) is isomorphic to Ln

(
π1(K), w

)
if n � 5.

Proof We have a bijection L 2
n (K)→ L 1

n (K), by the theorem. We can also de-
fine a homomorphism L 1

n (K) → Ln

(
π1(K), w

)
as follows : given an object θ,

we perform surgery on φ to make it k-connected (where n = 2k or 2k+ 1), and
then compute (by §4 or §5) a surgery obstruction in Ln

(
π1(Y ), w ◦ ω∗

)
, and

take its image by ω∗ in Ln

(
π1(K), w

)
: this amounts to computing the surgery

obstructions with coefficients in Z[π1(K)]. The result is evidently additive for
disjoint unions, and changes sign on going from θ to −θ. Thus to obtain a
homomorphism of the group L 1

n (K), it is sufficient to show that if θ ∼ 0 we
must necessarily obtain the zero surgery obstruction. But by (5.7) and (8.1)
the surgery obstruction has zero image in Ln

(
π1(Z), w ◦ Ω∗

)
, so a fortiori in

Ln

(
π1(K), w

)
.

Now Theorem 3 shows that the composite map

L 2
n (K)→ L 1

n (K)→ Ln

(
π1(K), w

)
is injective, hence (by Theorem 4) so is the second factor. As to surjectivity,
let us begin with a constant map Sn−1 → K, and perform surgery (using the
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bundle η on K) to obtain a map a : An−1 → K for which a∗ : π1(A) ∼= π1(K)
(and w satisfies the usual condition). Now by (5.8) and (6.5), any element of
Ln

(
π1(A), w ◦ a∗

)
is represented by a map of the type

φ : (B,A ∪ A′)→ (A× I, A× 0 ∪ A× 1)

(with appropriate ν and F ). Set ω = a ◦ p1 : A × I → K: then we obtain an
object (of restricted type) with the given image in Ln

(
π1(K), w

)
.

At this stage, we have merely achieved a reformulation – indeed a weakening
– of our original results. However, we now extend the above in three ways, all
possible because we have arranged the totality of problems in a convenient way.
First, we will relativise. This will enable us to complete the proofs of (3.1) and
(3.2), except for periodicity. Next, we will consider the natural transformations
of functors induced by multiplying K (and the other complexes) by some fixed
closed compact manifold. Finally, we will consider some particular natural
transformations induced by taking maps transverse regular on a submanifold of
K, in the case when K itself is a manifold : very special cases of these ideas are
used in §12 to obtain some computational results.

Let K be a CW n-ad, w1 ∈ H1(|K|;Z2)
(
if |K| is connected, w1 is equivalent

to a homomorphism w : π1(|K|)→ {±1}
)
. An object (of type n) over (K,w1)

shall consist of:

a simple Poincaré (n + 1)-ad X , a bundle ν over |X |, and a compact
manifold (n+ 1)-ad M ,

a map φ :M → X of (n+1)-ads of degree 1 inducing a simple homotopy
equivalence of n-ads ∂nM → ∂nX ,

a bundle μ over |X | and a stable framing F of τ(|M |)⊕ φ∗μ, and
a map ω : X → snK of (n+ 1)-ads with w1(|X |) = ω∗w1.

Changing the signs of the fundamental classes in an object θ gives a new object
−θ. Given two objects θ1, θ2 over (K,w1) we define the object θ1+θ2 by taking
the disjoint union of the corresponding X , M , φ, ν and F , and using the two
maps ω from θ1 and θ2. We set θ ∼ 0 if we can find:

a simple Poincaré (n + 2)-ad Y , and a compact manifold (n + 2)-ad N
with X = ∂n+1Y , M = ∂n+1N ,

an extension of φ to a map ψ : N → Y of degree 1 inducing a simple
homotopy equivalence of (n+ 1)-ads ∂nN → ∂nY ,

a bundle ν over |Y | extending μ, and an extension of F to a stable framing
G of τ(|N |) ⊕ ψ∗ν, and

a map Ω : Y → s2nK of (n+ 2)-ads, extending ω, with w1(|Y |) = Ω∗w1.

Again writing θ1 ∼ θ2 for θ1 + (−θ2) ∼ 0 gives an equivalence relation, and the
set L 1

m(K,w1) of equivalence classes has a natural abelian group structure : the
proof is the same as before. Clearly, L 1

m is a functor on the category of CW
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n-ads (with map w1) and homotopy classes of maps.

An object will be called restricted if for each α ⊂ {1, 2, . . . , n − 1} the maps
ωαn : Xαn → K ′

αn = Kα induce equivalences π(ωαn) of corresponding funda-
mental groupoids. Again, if θ is a restricted object, we write θ ≈ 0 if we have
the data above for θ ∼ 0 satisfying the additional requirement that for each
α ⊂ {1, 2, . . . , n− 1} the map

Ωα,n,n+1 : Tα,n,n+1 → s2nKα,n,n+1 = Kα

induces equivalences of corresponding fundamental groupoids. We define θ1 ≈
θ2 analogously. As before, one shows that ≈ is an equivalence relation and that
the objects ≈ 0 form an equivalence class. We obtain a natural map of the set
L 2
m(K,w1) of equivalence classes to L 1

m(K,w1).

Theorems 9.3 and 9.4 generalise to

Theorem 9.5. If m − n � 3, and |K| has finite 2-skeleton, the natural map
L 2
m(K,w1) → L 1

m(K,w1) is a bijection. If m − n � 4, then given a restricted
object θ we can perform surgery to make φ a simple homotopy equivalence of
(n+ 1)-ads if and only if θ ≈ 0 (⇐⇒ θ ∼ 0, by the first part).

Proof These results follow by induction from Theorems 3 and 4. In each case
we wish to perform surgery on an (n + 1)-ad : to perform surgery on X(α)

(or M(α)), we may suppose by induction that for all β ⊆ α we have already
performed surgery on X(β) (or M(β)). Then considering X(α) (or M(α)) modulo
∂X(α) or ∂M(α), we have the hypotheses necessary for the proof in Theorem 9.3
or 9.4. Our assertions now follow.

We now obtain the first payoff for our cobordism approach with a painless
derivation of exact sequences.

Theorem 9.6. For any CW (n+ 1)-ad K, and 1 � i � n, we have a natural
exact sequence

· · · → L 1
m(∂nK,w

1)
i∗→ L 1

m(δnK,w
1)

j∗→ L 1
m(K,w1)

d∗→ L 1
m−1(∂nK,w

1)→ . . .

More precisely, i∗ is induced by inclusion, j∗ is the composite of a natural equiva-
lence L 1

m(δnK,w
1)

α→ L 1
m(σnδnK,w

1) and a morphism induced by the inclusion
σnδnK ⊂ K. The sequence is functorial in (K,w1).

Proof The natural transformation α is obtained by regarding an object of type
(n − 1) as an object of type n by adjoining (as new distinguished subset) the
empty set. It is immediate that this is a natural equivalence. Similarly we define
d∗ by taking a map φ : M → X of (n + 1)-ads, and considering the restriction
∂nφ : ∂nM → ∂nX : the same construction goes for cobordism, as we have a
map of equivalence classes, clearly a homomorphism. It thus remains only to
prove exactness of the sequence.

This is now a standard argument [W13, Part VA, (2.3)] obscured only by the
complexity of our definitions. An object of type (n − 1) over ∂nK is trivial,
when regarded as object over δnK, if and only if there is a cobordism to the
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empty set. But such a cobordism can be regarded just as an object of type n
over K, with the given object as boundary. This proves exactness at ∂nK.

Exactness at K follows since ∂∗j∗ = 0 (trivially), and if an object of type n
over K has trivial boundary, we can take a cobordism to zero of the boundary
and glue it to the object

(
as in §1, glueing of Poincaré complexes (and (n+ 1)-

ads) is justified by (2.7)
)
to obtain a new object, cobordant to the given one,

which has ∂nM empty and so is the image by α of an object of type (n − 1)
over δnK.

Finally j∗i∗ = 0, for if φ : M → X is (part of) an object of type (n− 1) over
∂nK, and we consider its image, an object of type n over K, then a cobordism
to zero is provided by φ× 1 :M × I → X × I, where we set

∂j(M × I) = ∂jM × I 1 � j � n− 1

∂n(M × I) = M × 1

∂n+1(M × I) = M × 0, and similarly for X .

Conversely, an object of type (n− 1) over δnK is in the kernel of j∗ if, regarded
as an object of type n over K, it admits a cobordism ψ : N → Y to zero.
Since ∂n∂n+1ψ is empty, ψ defines a cobordism (over δnK) of the given object
(essentially ∂n+1ψ) to an object represented by ∂nψ. But the latter is an object
over ∂nK.

This proves the theorem : functorial character is obvious. As in §3, we could
use faces other than ∂iK to obtain exact sequences : the proof is the same, apart
from indexing complications. Also note that boundary operators corresponding
to different faces commute : they do so already at the level of representative
objects. The above proof could also be carried out for restricted objects and
the functor L 2, but by (9.5) this gives nothing new.

Let π be a groupoid (of finite type) of type 2n. We define an Eilenberg-
MacLane (n + 1)-ad K of type (π, 1) to be a CW (n + 1)-ad such that each
K{α} is a (finite) disjoint union of Eilenberg-MacLane spaces of type (G, 1) for
appropriate groups G, such that π(K) = π. Existence of these follows from the
existence of Eilenberg-MacLane spaces, and from the mapping cube construction
of §0. It also follows easily that for any CW n-ad K, there is a map of n-ads,
unique up to homotopy, from K to any n-ad of type

(
π(K), 1

)
; in particular,

these last are unique up to homotopy.

If π is a groupoid of type 2n−1 (with each π{α} of finite type), and w a func-
tion as in §3, we define Lm(π,w) by choosing a CW n-ad K(π, 1) of type (π, 1)
and setting Lm(π,w) = L 1

m

(
K(π, 1), w

)
.

Lemma 9.7. Let m− n � 4, and K be a CW (n+ 1)-ad. Then the homomor-
phism L 1

m(K,w1)→ Lm

(
π(K), w

)
is an isomorphism.

Proof We use induction on n. If n = 1, m � 5. Here, K is just a CW complex;
as usual, the components act independently and we may suppose K connected.
In this case, the result was proved as (9.4.1) above (where we also showed that
this definition of Lm agrees with the old one when n = 0).
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The general case now follows by induction on n on applying the Five Lemma
to the commutative exact diagram

L 1
m(∂iK)

��

�� L 1
m(δiK)

��

�� L 1
m(K)

��

�� L 1
m−1(∂iK)

��

�� L 1
m−1(δiK)

��
Lm

(
π(∂iK)

)
�� Lm

(
π(δiK)

)
�� Lm

(
π(K)

)
�� Lm−1

(
π(∂iK)

)
�� Lm−1

(
π(δiK)

)
.

We may now conclude the proof of (3.1) and (3.2), except for the statement
concerning periodicity. Indeed, (3.1)

(
with the above definition of Lm(π)

)
is an

immediate consequence of (9.6).

Proof of (3.2). Given (X, ν,M, φ, F ) we define a restricted object by taking
K = K

(
π(X), 1

)
and ω the canonical map. If X is an n-ad, then to conform

with our definition we must make M , X and K into (n + 1)-ads by applying
σn (i.e. defining ∂n = φ in each case). By (9.5), surgery is possible if and only
if this object defines the zero element of L 2

m(K); but again
(
again by (9.5)

)
,

it suffices to consider the corresponding element of L 1
m(K) = Lm

(
π(X)

)
. If,

however, X is an (n+1)-ad, and ∂nφ a simple homotopy equivalence, we simply
take K = K

(
π(X), 1

)
and ω canonical, and have at once a restricted object.

The result again follows by (9.5).

The surgery obstruction for ∂nφ follows at once from this argument. It remains
to show naturality for inclusion maps. Suppose that M ⊂ M ′, X ⊂ X ′, and
φ′ : M ′ → X ′ induces φ : M → X (as in the statement in §3). Then φ defines
an object θ over K

(
π(X), 1

)
, and φ′ an object θ′ over K

(
π(X ′), 1

)
. Also, φ

defines an object θ′′ over K
(
π(X ′), 1

)
. The usual glueing argument now shows

that θ′ ∼ θ′′, and the class in Lm

(
π(X ′)

)
defined by φ′ is that of θ′, hence of

θ′′, which is the image under the natural map of the class of θ in Lm

(
π(X)

)
, as

required.

We now introduce products for the Lm(π). Our principal objective is to obtain
an adequate geometrical formulation of the periodicity phenomenon.

First observe that if θ is an object (of any type) over K, and L is a closed
(smooth or PL) manifold, we obtain an object θ×L of the same type overK×L
by multiplying X andM by L, φ and ω by the identity map of L, and modifying
μ, F and w appropriately. In fact more generally, if θ has type n and L is a
manifold (m + 1)-ad, multiplication produces an object of type (m + n). One
might perhaps expect to obtain an object of type (m+n) by multiplying objects
of types m and n, but this does not happen with our definitions : we do not then
have a simple homotopy equivalence on a face of codimension one, only on one
of codimension two. It may perhaps be possible to refine our results to obtain
a product structure by ‘blowing up’ this face to a prismatic neighbourhood (as
in an example in §3), but we will not attempt this here.

We return to the simplest case, when L is a closed oriented manifold. By
projecting K×L on K, we can then regard θ×L as an object over K. If θ ∼ 0,
multiplying by L shows that (θ × L) ∼ 0. Also if L bounds a compact oriented



100 the main theorem

(smooth or PL) manifold R, we can multiply the (n+ 1)-ads M and X by the
2-ad (R,L) to obtain (n + 2)-ads N and Y ; using again the obvious ψ, ν, G
and Ω, this again implies (θ × L) ∼ 0. As our product clearly distributes over
disjoint unions of θ’s or L’s, it follows that

Proposition 9.8. For any (K,w1) there is a natural bilinear map

Ωr × L 1
s (K,w1)→ L 1

r+s(K,w
1) .

We will not determine the pairing in this paper∗. We think that if ‘objects’ were
generalised to permit M also to be a simple Poincaré (n+ 1)-ad, the groups L
would be changed only by isomorphisms. If this is the case, Ωr can be replaced
by the cobordism group of oriented Poincaré complexes, which is probably much
smaller. It may well be that only the signature of L is relevant;† certainly this is
the case modulo torsion (as can be seen by modifying the proofs below). Here,
we confine ourselves to studying periodicity.

Theorem 9.9. Suppose m � 5 and π a group. Then the map

Lm(π)→ Lm+4(π)

induced by multiplying by P2(C) coincides with the periodicity isomorphism of
§5 or §6.
Proof First take m = 2k. Any element of Lm(π) can be represented by a map
φ : M → X of degree 1 (with ν and F as usual) inducing a simple homotopy
equivalence on the boundary. We may suppose φ k-connected and Kk(M) free,
so the obstruction is represented by a simple hermitian form on Kk(M). We
choose a preferred basis of Kk(M), and represent it by immersions fi : Sk ×
Dk →M in general position.

Now multiply by P = P2(C). By the Künneth theorem (over Z), Ki(M × P )
vanishes except for i = k, k + 2, k + 4, and

Kk(M × P ) ∼= Kk+2(M × P ) ∼= Kk+4(M × P ) ∼= Kk(M) .

We will first perform surgery to kill the basis elements of Kk(M × P ) and
show that this leads to a manifold N whose only nonvanishing group Ki is
Kk+2(N) = Kk+2(M ×P ) ∼= Kk(M). Next we will show that this isomorphism
preserves simple hermitian forms; the result will clearly follow from this.

The fi induce immersions

fi × 1 : Sk ×Dk × P →M × P .
Let S2 ⊂ P be a projective line, with tubular neighbourhood N (the normal
bundle, of course, is nontrivial). We have induced immersions of Sk ×S2 which
are not, however, in general position. Since two projective lines in P intersect

∗See the notes at the end of §17G for the surgery product formula.
†It appears that the Euler characteristic of L is relevant also : see §13, especially (13a.5).

For Poincaré cobordism, see §17C.
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just once with intersection number +1, we can move these to immersions gi :
Sk × S2 →M × P in general position, with intersections and self-intersections
corresponding exactly to those of the fi inM . We may also suppose the gi(S

k×
1) disjointly embedded : they inherit framings from the framings of the fi and
of a point in P .

Next perform framed surgery on the spheres gi(S
k × 1): suppose W formed

by attaching corresponding (k+1)-handles to M ×P : W is a cobordism of this
to N , say. By construction,

Kk+1(W,M × P )→ Kk(M × P )
is an isomorphism (and a simple one); since other Ki(W,M × P ) vanish, the
only nonvanishing Ki(W ) are with i = k + 2, k + 4. By duality,

Kk+4(M × P ) ∼= Kk+4(W )→ Kk+4(W,N)

is also a (simple) isomorphism. We deduce that the only nonvanishing Ki(N)
is Kk+2(N) ∼= Kk+2(W ) ∼= Kk+2(M × P ) ∼= Kk(M).

The proof will now be concluded by showing that the surgery ‘converts’ our
immersions gi into framed immersions of Sk+2, with the same intersection and
self-intersection invariants as the gi. As these represent the corresponding ho-
mology classes, it will follow that our isomorphism of Kk(M) on Kk+2(N) pre-
serves simple hermitian forms.

Recall that the definition of the framing of the framed immersions fi
(
in(1.1)

)
was by compatibility of framings on an added disc Dk+1, mapped to X by a
component of the relative homotopy class defining fi. Since S2 has nontrivial
normal bundle in P , if we contemplate attaching to M × P × I a thickening
of Dk+1 × S2, this also will have to have nontrivial normal bundle, but it is
induced by projection on S2.

In fact we attach Dk+1 × S2 in two stages, each Dk+1 ×D2. We performed
framed surgery on gi(S

k × 1), using the framing fi and the normal framing
of 1 in P . Decompose the latter as the sum of a normal framing of 1 in S2

(with neighbourhood D2
−, say) and a normal framing of D2

− in P . The resulting
(k + 1)-handle is a thickening of Dk+1 × 1, but can also be thought of as a
thickening of Dk+1×D2

−. Thus gi in M ×P is converted to the sphere gi(S
k ×

D2
+) ∪ (Dk+1 × ∂D2

+) in N (in the smooth case, we will have to round off a
number of corners for this argument). This is framed as follows. To construct
‘ν’ for X × P , we must take the direct sum of the original ν, and a normal
bundle ρ for P . Correspondingly to F we add a trivialisation of τP ⊕ ρ. Over
each of D2

−, D
2
+ the latter becomes (stably) the natural framing of the tangent

bundle; hence also over each of Dk+1×D2
−, D

k+1×D2
+, which are thus framed

to satisfy the conditions of (1.1). Hence we do have framed immersions in N ,
as stated.

Now suppose m is odd; write m = 1, k � 3. We represent an element of Lm(π)
by a (k − 1)-connected map φ : M → X , and Kk1(M) by disjoint embeddings
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fi : Sk−1 × Dk → M , with images forming U and M0 = M − Int U . Then,
algebraically, the element is represented by the pair of lagrangians Kk(U, ∂U)
and Kk(M0, ∂U) in Kk−1(∂U).

On multiplying by P we find that Ki(M × P ) is nonzero for k − 1 � i �
k + 4. As above, we perform surgery on spheres fi(S

k−1)× point, thus killing
Kk−1(M × P ) and again this converts the fi(S

k−1) × S2 into framed spheres
gi(S

k+1 × Dk+2), whose classes generate Kk+1 of the resulting manifold N ′,
which is naturally isomorphic to Kk+1(M × P ) ∼= Kk−1(M).

We cannot yet compute in N ′, as Kk(N
′) �= 0: we must next kill this. We

claim that Kk(N
′) is stably free and based; in fact, is canonically isomorphic to

Kk(M0, ∂U) = Kk(M,U). For if W ′ is the cobordism of M ×P to N ′, then W ′

is formed from M × P × I by adding k-handles via the fi, i.e. to the k-cells of
U . Thus Kk(W

′) = Kk(M × P,U) ∼= Kk(M,U). As W ′ is formed from N ′ by
adding (k + 4)-handles, Kk(W

′) = Kk(N
′).

We may suppose, as usual, Kk(M0, ∂U) free and based; then so is Kk(N
′).

Perform surgery on the elements of a free basis, choosing our spheres disjoint
from the gi, thus obtaining a cobordism W of N ′ to N , say. As, by construc-
tion, Kk+1(W,N

′) → Kk(N
′) is an isomorphism, and by duality Kk+3(N

′) →
Kk+3(W ) also is, we find that Ki(N) vanishes except for i = k + 1, k + 2; and
in these dimensions,

Ki(N) ∼= Ki(W ) ∼= Ki(N
′) ∼= Ki(W

′) ∼= Ki(M × P ) ∼= Ki−2(M) .

Since the surgery from N ′ to N left the gi alone, these still define embeddings
in N , which generate Kk+1(N) = Kk+1(N

′). Let the union of their images
be V . We define an isomorphism of Kk−1(∂U) on Kk+1(∂V ) by taking the
class of fi(S

k−1 × 1) to that of gi(S
k+1 × 1), and the class of fi(1 × Sk−1)

to that of gi(1 × Sk+1). Clearly, this carries Kk(U, ∂U) to Kk+2(V, ∂V ) by a
simple isomorphism. If we can show that it does the same for Kk(M0, ∂U) and
Kk+2(N0, ∂V ), the result will be established.

Well, consider (M0, ∂U)×P . Certainly the natural isomorphism Kk−1(∂U) ∼=
Kk+1(∂U × P ) induces a (simple) isomorphism of Kk(M0, ∂U) on Kk+2(M0 ×
P, ∂U ×P ) = Kk+2(M ×P,U ×P ). Here we can replace U ×P by the product
of U with a (tubular or regular) neighbourhood T of S2 in P . Now surgery is
performed inside U×T , and has the effect of replacing each copy of Sk−1×Dk×T
by a manifold V ′ of the homotopy type of S2 ∨ Sk+1 ∨ Sk+3: here, the 2-sphere
comes from T , the (k + 3)-sphere is the transverse sphere of the surgery, and
the (k + 1)-sphere is the one constructed earlier, and used to define V . If we
shrink the tubes V a little to have V in the interior of V ′, then V ′− Int V gives
a cobordism of ∂V to ∂V ′. It is easily verified that the inclusion of either end
in this cobordism induces an isomorphism of (k + 1)st homology (which is free
of rank 2). More precisely, the generators of Hk+1(∂V

′) = Hk+1

(
∂(U × T )

)
represented by Sk−1×1×S2 and 1×Sk−1×S2 correspond by this isomorphism
to the generators of Hk+1(∂V ) represented by Sk+1 × 1 and 1× Sk+1: we have
exactly the isomorphism above. Moreover, it follows that Kk+2(M × P,U × T )
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is the isomorphic image of

Kk+2

(
M × P − Int (U × T ), ∂(U × T )) = Kk+2(N

′ − Int V ′, ∂V ′)
∼= Kk+2(N

′ − Int V, ∂V ) .

Now write W0 = W − (Int V ) × I. Since W0 is obtained from N ′
0 by adding

(k + 1)-handles, and hence from N0 by adding (k + 3)-handles, it follows that
any element of the above lagrangian is also in the image of Kk+2(N0, ∂V ), and
hence that the two lagrangians coincide.

Finally, the induced isomorphismKk(M0, ∂U)→ Kk+2(N0, ∂V ) is simple. For
firstly, the K∗(M) are the homology groups of the chain complex

0→ Kk(M0, ∂U) = Kk(M,U)
d→ Kk−1(U)→ 0

and (by definition of the preferred base for the first module), if we regard this as
a based complex, it has the right simple homotopy type. Hence for K∗(M ×P ),
we may take the sum of three copies of this complex (with dimensions shifted
by 0, 2, 4). Surgery to obtain W ′ abolished Kk−1(U) in dimension k − 1; by
duality, if (instead of the above) we use the dual chain complex

0→ Kk(U, ∂U) = Kk(M,M0)
d∗→ Kk−1(M0)→ 0

in dimensions k + 4, k + 3, to get N ′ we abolish the former. Thus to compute
K∗(N ′) we use the based chain complex

0→ Kk−1(M0)
0→ Kk(M0, ∂U)

d→ Kk−1(U)
0→ Kk(M0, ∂U)→ 0

in dimensions k+3, k+ 2, k+ 1 and k. Now we performed surgery to get from
N ′ to N precisely by killing the elements of a preferred base of Kk(M0, ∂U):
thus we can abolish this from the chain groups, to find ones suitable for K∗(W ).
Dually, to go from here to K∗(N) we abolish Kk−1(M0). Thus K∗(N) is to be
computed from the base chain complex

0→ Kk(M0, ∂U)
d→ Kk−1(U)→ 0 .

As we used the given base of Kk−1(U) ∼= Kk+1(V ) for our construction, the
preferred class of bases of Kk+2(N0, ∂V ) ∼= Kk(M0, ∂U) must also coincide
with that induced by the isomorphism. This completes the proof.

Theorem 9.10. Let π be an object of type 2n of Gpd. Then for m � n + 5,
multiplication by P2(C) induces an isomorphism Lm(π)→ Lm+4(π).

Proof For n = 0, the result follows from (9.9) by taking a direct sum, one
term from each component of π. For higher values of n, the result follows by
induction and the Five Lemma, applied to the diagram

Lm(∂nπ)

��

�� Lm(δnπ)

��

�� Lm(π) ��

��

Lm−1(∂nπ) ��

��

Lm−1(δnπ)

��
Lm+4(∂nπ) �� Lm+4(δnπ) �� Lm+4(π) �� Lm+3(∂nπ) �� Lm+3(δnπ)
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in which the sequences are exact by (9.6), the vertical morphisms are all induced
by multiplication with P2(C), so the diagram commutes; and the outer four
vertical maps are isomorphisms by the induction hypothesis.



Part 2

Patterns of Application



10. Manifold Structures on Poincaré Complexes

In this chapter we describe the main application of the results of §3: to the
classification of smooth or PLmanifolds with a given simple homotopy type.The
general theory is given here; some more detailed calculations will be found in
later chapters. This application is originally due to Browder [B15] (for the
existence statements) and to Novikov [N5] (for the uniqueness results): both
these authors, however, considered only closed, simply connected manifolds.
The results were extended by the author [W17] to manifolds with boundary,
and reformulated by Sullivan (Princeton thesis, 1965, see also [S20], [S21], [S22];
again for the uniqueness results only), in an improved version which we will use(
cf. the difference between (10.1) and (10.2) below

)
. Compare also [W2].

First, some notation. Let X be a simple Poincaré complex (or pair, or n-ad),
with formal dimension m. Then a simple homotopy equivalence φ : M → X ,
where M is a compact smooth (or PL) manifold (or manifold n-ad) will be
said to define a smooth (or PL) structure on X . (Sullivan calls PL structures
h-triangulations). The map φ′ :M ′ → X defines the same structure if there is a
diffeomorphism (PL homeomorphism) h :M →M ′ such that φ � φ′◦h. Thus a
structure is an equivalence class of pairs (M,φ). We denote the set of structures
on X by S Diff(X)

(
resp. by S PL(X)

)
, or, if we do not wish to distinguish,

simply by S (X)∗. Sometimes when X is a pair, ∂X (or if X is an (n+ 1)-ad,
∂nX) may already be a manifold (manifold n-ad), and we wish to consider only
those φ which induce diffeomorphisms (or PL homeomorphisms) of ∂M on ∂X
(or ∂nM on ∂nX). We say these define smooth (or PL) structures of X relative
to ∂nX . In this case, for φ : M → X and φ′ : M ′ → X to define the same
structure we require a diffeomorphism (PL homeomorphism) h : M →M ′ such
that φ � φ′ ◦ h rel ∂M (or rel |∂nM |). Let S (X, ∂X)

(
or S (X, ∂nX)

)
denote

the set of equivalence classes.

Our primary objective is to compute the sets S (X) and S (X, ∂X) in all
cases. The reader should be warned that in spite of the simplifications which
occur when all the spaces are simply connected, there seems to be no natural
procedure in the general case for endowing these sets with group structures.
Our computation, such as it is, depends on the results of §3; thus to construct
an element of S (X), we must first construct an object (M,φ, ν, F ). The discus-
sion at the beginning of §3 collected these into bordism classes forming groups
Ωm(X, ν), and showed that we need only consider bordism classes of degree 1.

∗The generalised Poincaré conjecture (Smale [S10]) in the PL and TOP categories gives
S PL(Sm) = S TOP (Sm) = {∗} for m � 5. The classification of exotic spheres by Kervaire
and Milnor [K5] gives S Diff(Sm) = θm = πm(PL/O) for m � 5.

106
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Lemma 10.1A. For any finite simplicial complex X, and vector bundle (PL
bundle) νk over X, there is a natural isomorphism between the bordism group
Ωm(X, ν) and the stable homotopy group of the Thom space {Sm+k : Xν}.
Moreover, if X is a Poincaré complex and w1(ν) = w1(X), the isomorphism
preserves degree.

Proof We use standard transversality arguments, first applied to this problem by
Novikov and Browder. Let χ ∈ Ωm(X, ν) have a representative (M,φ, F ). Then
F is a stable trivialisation of τM ⊕φ∗ν: add to ν a trivial bundle of large enough
dimension to make this a trivialisation, and also to make k > m+1. Let E be the
total space of the disc bundle overM associated to φ∗ν (in the PL case we have
a disc bundle by [H16] since we have added a trivial bundle): the tangent bundle
of E can be identified with τM ⊕ φ∗ν, so is trivialised by F . By the immersion
classification theorem [H15], [H3], there is a corresponding immersion of E in
Rm+k. As k > m + 1, if we deform this to be in general position, the zero
cross-section M will be embedded; hence also some neighbourhood of it. We
now shrink E down into this neighbourhood, so can suppose E itself embedded.
Now E ⊂ Rm+k ⊂ Sm+k, so we have a map which collapses ∂E and everything
outside E to a point, thus Sm+k → E/∂E = Mφ∗ν . Also, φ induces a map
Mφ∗ν → Xν ; composing, we have Sm+k → Xν. We can add a further trivial
bundle ε1 to ν; this will replace E by E × I, F by the product framing, the
embedding by the product embedding E × I ⊂ Rm+k × I ⊂ Sm+k+1, and
hence also replaces Sm+k →Mφ∗ν by the suspended map Sm+k+1 → ΣMφ∗ν =
Mφ∗ν+ε.

A similar construction shows that the (stable) homotopy class of the result
depends on the bordism class of X but not on any intervening choices. For
given two sets of choices (the second denoted by primes) we have a bordism
∂W =M ∪ M ′, ψ :W → X ; a stable framing of τW ⊕ψ∗ν extending the given
framings; again we add trivial bundles to ν (we have already seen that we need
only suspend the corresponding final maps on account of this); obtain a disc
bundle D over W which has framed tangent bundle, and then an immersion,
and hence an embedding, of D in Rm+k × I extending the given embeddings
E ⊂ Rm+k × 0, E′ ⊂ Rm+k × 1. The Thom construction now provides a
homotopy Sm+k × I →Mφ∗ν between the two maps previously constructed.

We have defined a map Ωm(X, ν) → {Sm+k, Xν}; next we prove it a homo-
morphism. If we start with a disjoint union of manifolds Mi mapped to X , we
obtain a disjoint union of bundles Ei, which we can embed in different hemi-
spheres of Sm+k. The map from E1 sends (say) the upper hemisphere to the
base point in Mφ∗ν ; that from E2 collapses the lower hemisphere. The map
obtained from the union is given by combining the two above; but this is a
standard definition of addition in homotopy theory.

We can replace X by a homotopy equivalent open manifold – for example, an
open regular neighbourhood for some simplicial embedding of X in Euclidean
space – which has smooth and PL structures. Then Xν is also a manifold,
except at the point at infinity. Thus given a map Sm+k → Xν , we can make it
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transversal to the zero cross-section X [T2], [W45]. The preimage M is then a
manifold mapping to X , with normal bundle induced from ν. If we suppose ν
a disc bundle (as we may, on adding a trivial bundle), we can take E to be a
tubular neighbourhood ofX and the collapsing map c : Sm+k → E/∂E to agree
with the (transversalised) f in a neighbourhood of M . Since the complement
of M is mapped to a contractible set, c � f . Hence our map is onto. As in
the first part of the proof, we can relativise the argument to show our map an
isomorphism : if (M,φ, F ) gives rise to a nullhomotopic map f , by making the
nullhomotopy transverse to X we obtain an (N,ψ,G) which has it as boundary.

The fact that our isomorphism preserves degree follows, since a collapsing map
Sm+k → E/∂E = Mφ∗ν has degree 1, from the commutative diagram (with Z
coefficients)

Hm+k(M
φ∗ν) �� Hm+k(X

ν)

Ht
m(M)

∼=
��

φ∗ �� Ht
m(X)

∼=
��

in which the vertical maps are Thom isomorphisms.

The relative forms of this result can be proved by the same method (indeed,
once we have connected maps, the Five Lemma can be used to prove them
isomorphisms). A remark in §0 shows that bordism of n-ads is really bordism
of suitable pairs.

Lemma 10.1B. For any finite simplicial (n + 1)-ad X and vector bundle (PL
bundle) νk over |X |, there is a natural isomorphism between the bordism group
Ωm(X, ν) and the stable homotopy group πs

m+k(|X |ν , |∂X |ν). This preserves
degree when the latter is defined.

Lemma 10.1C. Given a manifold n-ad Mm−1, map φ :M → ∂nX, and stable
trivialisation F of τ|M| ⊕ φ∗ν, we have a corresponding natural bijection of

Ωm(X, ∂nX, ν) on the set of s-homotopy classes of s-extensions

(Dm+k+1;Dm+k
+ , Dm+k

− )→
(
|X |ν ;

⋃
1�i�n|∂iX |ν , |∂nX |ν

)
of the map of Dm+k

− obtained by applying (10.1B) to (M,φ, F ).

We omit the proofs of these results, and turn to their application to our prob-
lem. First consider the simplest case of (10.1A). By a result of Spivak [S14], if
X is a Poincaré complex, there exists a spherical fibration νX

k over X , unique
up to suspension and fibre homotopy equivalence, such that πs

m+k(X
ν) contains

maps of degree 1. Thus by (10.1A), for a smooth or PL bundle ν, Ωm(X, ν)
contains maps of degree 1 if and only if ν is stably fibre homotopy equivalent
to νX . More precisely, by [W21, 3.6], a class of degree 1 in πs

m+k(X
ν) induces

a stable fibre homotopy equivalence of ν on νX , unique up to fibre homotopy,
and the set of such classes maps bijectively to the set of stable fibre homotopy
equivalences of ν on νX .
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This leads to a reformulation of the theory, in which ν is no longer fixed, and
use is made of νX . For instead of considering pairs (ν, x): ν a vector or PL
bundle over X , x ∈ πs

m+k(X
ν), we are now led to consider pairs (ν, h): ν as

before, h a (stable) fibre homotopy equivalence of ν on νX . We wish to consider
h as a reduction of the structural group of νX . Some notation is needed first.

Write Gk for the space of homotopy equivalences of Sk−1 on itself, BGk for its
classifying space [S19]. Let PLk and BPLk be as in Milnor’s paper [M11], and
Ok be the orthogonal group, BOk its classifying space. With suspension, these
define three sequences; we denote the limits (“mapping telescopes”) as k → ∞
by omitting the k. Then we have a commutative diagram of maps of classifying
spaces

BOk
ak ��

��

BPLk
bk ��

��

BGk

��
BO

a �� BPL
b �� BG

where ak corresponds to the functor from vector bundles to PL bundles defined
by triangulating the bundle [L3], and bk to the functor from PL bundles (iden-
tifiable with microbundles by [K16]) to spherical fibrations defined by deleting
the zero cross-section; a and b are limits (non-unique) as k →∞.

In this chapter we are concerned only with the stable classifying spaces on the
lower row. It will make for convenience in notation and expression to write as
though O → PL → G were inclusions of topological groups. Such arguments
can always be justified by referring back to the maps of classifying spaces above.
In particular, we think of νX as a bundle with group Gk – or rather, stably, as
having group G. To give a vector bundle or PL bundle ν, and a stable fibre
homotopy equivalence h : ν → νX , is now the same as reducing the structural
group of νX from G to O or PL. Such reductions correspond bijectively to
homotopy classes of sections of the associated bundle with fibre G/O or G/PL.

The reductions contain the information about tangent spaces necessary for
considering the structure problem. Thus we call them tangential structures on
X , and denote the set of them all by T Diff(X) and T PL(X)

(
or, ambiguously,

T (X)
)
. Similarly if X is a Poincaré (n + 1)-ad, we can regard (|X |, |∂X |) as

a Poincaré pair and obtain a Spivak fibration νX over |X |; we write T Diff(X)
and T PL(X) for the sets of equivalence classes of reductions of the structural
group of νX from G to O resp. PL. Slightly more complicated is the relative
case, in which we suppose given (or deduce from other data) a reduction of the
structural group over ∂nX . We then define T (X, ∂nX) as the set of homotopy
classes rel ∂nX of sections of the appropriate bundle over X (with fibre G/O or
G/PL) which extend the given section over ∂nX .

To fit our notation with a good notation for smoothing theory, it is perhaps
desirable to regard S Diff(X), S PL(X), T Diff(X) and T PL(X) as abbrevia-
tions for S G/O(X), S G/PL(X), T G/O(X) and T G/PL(X). One then has the
obvious notations S PL/O for concordance classes of smoothings of PL struc-
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tures and T PL/O for corresponding reductions of the tangent bundle. The
main result of smoothing theory (see e.g. [H6]) then asserts that the natural
map S PL/O(X) → T PL/O(X) is bijective. This chapter can be regarded as
stating the corresponding results for G/PL and G/O. This notation also fits
well with the topological case : observe that one of the main results of Kirby
and Siebenmann [K9] is that S TOP/PL(X) → T TOP/PL(X) is bijective, for
dimX � 5 (6 if X has boundary)∗.

We can now reformulate (10.1). If X is a Poincaré complex, we define the
degree 1 bordism set of X , say Ωd(X), to be the set of equivalence classes of
quadruples (M,φ, ν, F ) : M a smooth (PL) manifold, φ : M → X of degree 1,
ν a vector (PL) bundle over X , and F a stable trivialisation of τM ⊕φ∗ν. Here
we regard two quadruples (suffixed by 1 and 2) as equivalent if we can find a
bordism ∂N = M1 −M2, ψ : N → X extending φ1 and φ2; and, in addition, a
stable isomorphism of ν1 on ν2 and a stable trivialisation of τN⊕ψ∗ν, extending
F2 and also (with respect to the above stable isomorphism) F1. Similarly we
define the degree 1 bordism sets of pairs and (n+ 1)-ads : the definition differs
from that of Ωm(X, ν) only in staying with degree 1 maps, and allowing ν to
vary.

Proposition 10.2. If X is a Poincaré complex or (n+1)-ad, there is a natural
bijection of Ωd(X) on T (X). If also we are given a representative (M,φ, ν, F )
of an element of Ωd(∂nX), defining (by the above) an element of T (∂nX), we
obtain a bijection of the corresponding sets Ωd(X, ∂nX) and T (X, ∂nX).

This follows from (10.1) on reformulating the result in the manner described
above. We will now abandon the notation Ωd, and regard an element of T (X)
both as a class of sections of a bundle and as a bordism class of degree 1 maps.
We now apply the results of §3.
Let X be a simple Poincaré (n+ 1)-ad, with formal dimension m.

Theorem 10.3. There is an exact sequence provided m � n+ 5,

S (X)
η→ T (X)

θ→ Lm

(
π(X)

)
.

Moreover, if ∂nX has already a manifold structure the sequence

S (X, ∂nX)
η→ T (X, ∂nX)

θ→ Lm

(
π(δnX)

)
is exact, if m � n+ 4.

Proof If we identify T (X) with the degree 1 bordism set, there is an obvious
(forgetful) map from S (X) to T (X). Theorem 3.2 states that a given element
of T (X) is in the image if and only if a certain obstruction in Lm

(
π(X)

)
,

depending only on the class in T (X), is zero. But this defines a map θ and
proves exactness. Exactly the same argument is valid in the relative case. Note
that the relative case implies the other (taking ∂nX empty).

∗Moreover, Kirby and Siebenmann [K11] showed that TOP/PL 	 K(Z2, 3), so that
S TOP/PL(X) = T TOP/PL(X) = H3(X;Z2).
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Since the sets S and T are not in general groups∗, it is worth emphasising
that the meaning of exactness is that the image of η is exactly θ−1(0).

The above result does not constitute a computation of the set S (X), even
theoretically, since we have as yet no estimate of when two elements of S (X)
have the same image under η. However, given two structures which induce
the same tangential structure, we can apply the relative form of (10.2) to X ×
I
(
an (n + 1)-ad if X is an n-ad

)
to obtain a degree 1 map N → X × I

(with corresponding ν, F ) such that φ | ∂N defines the given structures at X ×
0 and X × 1. The surgery obstruction for φ (relative to these parts) lies in
Lm+1

(
π(X)

)
; if this vanishes, we can perform surgery (keeping the ends fixed)

to obtain a simple homotopy equivalence. This provides an s-cobordism between
the ends : by the s-cobordism theorem (see [M5], [K3], [S17] or [W13, IV])
we have a diffeomorphism, so the two structures are the same. Both these
arguments depend, as usual, on the relevant dimensions exceeding four. To
deduce an exact sequence formally, we modify this argument slightly.

Theorem 10.4. Let X be a manifold (n + 1)-ad of dimension m � n +
4, with stable normal bundle ν, and consider normal maps (N,φ, F ): N a
manifold (n+3)-ad, φ : N → X×(I; 0, 1) of degree 1, inducing diffeomorphisms
(PL homeomorphisms) ∂n+1N → X × 0 and ∂nN → ∂nX × I and a simple
homotopy equivalence ∂n+2N → X × 1, and F a stable trivialisation of τN ⊕
φ∗ν extending the natural trivialisation over ∂n+1N . Then with the obvious
definition of bordism for such normal maps (N,φ, F ) the set of bordism classes
is mapped bijectively by the surgery obstruction (rel |∂nN | ∪ |∂n+1N | ∪ |∂n+2N |)
onto the group Lm+1

(
π(δnX)

)
. If m = n+ 3, the map is bijective.

In the ‘obvious’ definition of bordism we follow our usual convention (of [W13,
VA, Chapter 1]) of imposing restrictions on the bordisms precisely analogous to
those imposed on the manifolds.

Proof We proceed by induction on n. For n = 1, the result was established in
(5.8) (m odd) and (6.5) (m even). Thus we may assume n > 1, and the result
already established for (n− 1). Let θ ∈ Lm+1

(
π(δnX)

)
.

By the induction hypothesis, applied to ∂n−1X , we can construct an (n+2)-ad,
which we label ∂n−1N , ∂n−1N → ∂n−1X × I of degree 1 and F , with surgery
obstruction ∂n−1θ. Attach X to ∂n−1N along the intersection of ∂n−1X : the
result defines an object mapping to X ∪ (∂n−1X×I) (which is simply homotopy
equivalent to X), inducing simple homotopy equivalences on ∂n−1 and on ∂n.
By naturality, the surgery obstruction for this object is i∗∂n−1θ = 0, where
i : ∂n−1δnX → δn−1δnX . Thus we can perform surgery to obtain a manifold
(n+1)-ad X ′ simply homotopy equivalent to X . Denote the trace of the surgery
by N ′.

Define a map N ′ → I with X → 0, X ′ → 1, and ∂n−1N
φ′n−1−−−→ ∂n−1X×I → I.

Then N , and the compound N ′ φ′→ X × I of the maps into X and I already

∗See the note at the end of this chapter for the group structure in the topological category.
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constructed, are the first two members of a normal map of the type under
consideration. Moreover, if θi is the surgery obstruction for N ′, then ∂n−1θ

′ =
∂n−1θ, so by (3.1) we have θ−θ′ = α◦j∗(θ′′) for some θ′′ ∈ Lm+1

(
π(δn−1δnX)

)
.

We now apply the induction hypothesis again, this time to X ′, regarded as
an n-ad by amalgamating the former ∂n−1 and ∂n (both of which are now
to be kept fixed). We obtain a normal map (N ′′, φ′, F ′′), mapped to X ′ × 1,
with surgery obstruction θ′′. Now form N by glueing N ′ along X ′ to N ′′. We
have natural maps to X and to I (mapping N ′ to [0, 12 ] and N ′′ to [ 12 , 1]),
and a corresponding F , also obtained by glueing; by naturality, the surgery
obstruction for N ′′, regarded as (n+ 3)-ad, is α ◦ j∗(θ′′); that for N is the sum
of this with the surgery obstruction, θ′ for N , i.e. θ. This proves surjectivity.
Injectivity follows from a relativised form of the same argument, (constructing
a cobordism) which we leave to the reader. The dimensional condition can be
weakened by one for this.

As a corollary to this theorem we find that the exact sequence of (10.3) can
be extended a term to the left, as follows.

Theorem 10.5. Let X be a simple Poincaré (n+1)-ad of dimension m � n+4,
with a prescribed structure on ∂nX. Then the group Lm+1

(
π(δnX)

)
operates

on S (X, ∂nX) so that two elements are in the same orbit under the group if
and only if they have the same image (by η) in T (X, ∂nX).

Proof Given a structure x on (X, ∂nX), we represent it by a manifold M : given
also θ ∈ Lm+1

(
π(δnX)

)
, construct N as in (10.4), starting with M and having

surgery obstruction θ. Then ∂n+2N depends, up to s-cobordism and hence
up to diffeomorphism, only on the bordism class θ and the original structure
x, and hence determines a new structure, (x + θ) say, on (X, ∂nX). Since
surgery obstructions add for unions, (x + θ) + θ′ = x + (θ + θ′), and clearly
x + 0 = x, so we have a genuine group operation. The exactness statement
was established in the remarks preceding (10.4). Note that if m = n + 3,
one has a partial operation. A result is still obtained, provided the definition
of equivalence for manifold structures is weakened to s-cobordism, no longer
known to imply diffeomorphism.

In the proof of (10.4) Poincaré complexes have vanished from the scene. In
fact, it is convenient here to distinguish two problems. First, we wish to know
whether X is simply homotopy equivalent to a smooth or PL manifold at all
– i.e. whether S (X) is empty or not. Second, if it is not empty, we wish
to compute it. Now (10.3) gives the full story about the first question – we
have to compute the set T (X) and the map θ and determine whether the
image contains zero or not (or correspondingly in the relative case). The second
question leads further. Note that in discussing it we may choose a manifold
structure φ : M → X , and then replace X by M in the subsequent discussion.
Thus from here on we may suppose X a manifold (n + 1)-ad.

(
This can be

regarded as choosing a base point in S (X)
)
.

The new viewpoint leads to some simplification. First we consider tangential
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structures : these are homotopy classes of sections of a certain bundle. If this
were a principal bundle, we could argue that existence of a section implied
triviality of the bundle and more precisely, that choosing a section gave rise to
a natural bijection between classes of sections and classes of maps from base to
fibre.

Rather than embark on technicalities necessary to discuss these bundles, we
outline a direct argument. First observe that taking direct sums of bundles, or
joins of spherical fibrations, leads to (weakly) homotopy associative and homo-
topy commutative (weak) H-space structures on BO, BPL and BG. Clearly,
the natural maps BO → BPL→ BG are (weak) H-maps. Hence the mapping
fibres G/O and G/PL have induced (weak) H-space structures, with the same
properties, i.e., for any finite complex X , the sets of homotopy classes of maps
[X,G/O] and [X,G/PL] have the structure of abelian groups.

Now a reduction of the (stable) structural ‘group’ of a spherical fibration ξ
from G to O or PL is defined by giving a vector bundle or PL bundle ν, and a
fibre homotopy equivalence h : ν → ξ⊕εr (for some r). Write, temporarily, R(ξ)
for the set of equivalence classes of such reductions. Then R(εr) = [X,G/O] or
[X,G/PL], where X is the base space of εr, and contains the natural reduction
O as the zero element of the group. More generally, taking direct sums gives
a natural map R(ξ) × R(η) → R(ξ ⊕ η) and this ‘addition’ is commutative
in a natural sense, and associative. Now for any x ∈ R(ξ), defined say by
j : ν → ξ ⊕ εr, we can choose an inverse bundle τ to ν (assuming, say, X is a
finite complex) and a bundle isomorphism t : τ ⊕ ν → εm (for some m), which
is then also a fibre homotopy equivalence. Consider τ as a spherical fibration;
the identity map defines an element y of R(τ), and x+ y is represented by

1⊕ h : τ ⊕ ν → τ ⊕ ξ ⊕ εr

and hence also by k = (1 ⊕ h) ◦ t−1 : εm → τ ⊕ ξ ⊕ εr. If we use k itself to
identify τ ⊕ξ⊕εr with the trivial fibration εm, we can write x+y = 0. Since all
our reductions are defined only up to stable equivalence, it is now easy to verify
that adding x and y respectively defines inverse bijections between R(εm) and
R(ξ). A corresponding argument applies also to the relative case.

The special case in which X is a (perhaps bounded) manifold, and we take x
the reduction of structural groups defined by the normal bundle, gives

Lemma 10.6. For X a smooth manifold (n+ 1)-ad, we have natural bijections
of T Diff(X) on [X,G/O] and of T Diff on the set of homotopy classes rel ∂nX
of maps X → G/O which take ∂nX to the base point. The corresponding result
holds also in the PL case.

Using this bijection, one can give an attractive definition of the map η :
S (X) → T (X) ∼= [X,G/O] or [X,G/PL], following [S22]. Let φ : M → X
be a simple homotopy equivalence of manifold (n + 1)-ads∗ (for this argument

∗It is enough to have a homotopy equivalence, and use engulfing instead of the s-cobordism
theorem. See [S22].
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again, the cases n � 2 are effectively the same as n = 1).

Let φ−1 be a homotopy inverse to φ, νM the normal bundle of M , ν =
(φ−1)∗νM , so that we can identify νM with φ∗ν, and F the natural framing
of τM ⊕ νM . Then η(M,φ, ν, F ) ∈ T (X) ∼= [X,G/O] or [X,G/PL], as defined
above, is a stable trivialisation of τX ⊕ ν. To obtain this more geometrically, we
approximate (φ, 0) :M → X×Dk (k large enough) by an embedding φ′ with nor-
mal disc bundle ν′, with total spaceE: since τM⊕ν′ ∼= (φ′)∗(τX⊕εk), ν′ is indeed
(stably) equivalent to φ∗(τX ⊕ ν). The inclusion of E in X ×Dk is a simple ho-
motopy equivalence, hence the complement of Int E is an s-cobordism, and so a
collar on ∂E (for this argument, see [W13, IV, Chapter 6]). Thus we can expand
the tube, and take E = X ×Dk. Now the projection ∂E = X × Sk−1 → Sk−1

defines a fibre homotopy trivialisation of ν′; (ν′, h) defines a class of maps of M
to G/O or G/PL, and hence, composing with φ−1, a map of X . It is easy to
show that this is the same class as we constructed above.

We enter here a caveat to the reader. In the situation of (10.6), we have the
map

θ : [X,G/PL]→ Lm

(
π(X)

)
of abelian groups which satisfies, by definition, θ(0) = 0. However, θ is NOT in
general a homomorphism†. The result fails even in the closed, simply connected
case with 4|m, as one readily sees by computing with Pontrjagin classes (the
simplest example is the quaternion projective plane).

However, there is one important case in which θ is a homomorphism. Let X
be a manifold (n + 1)-ad; consider structures on X × I inducing the identity
structure at each end, and correspondingly for tangential structures. We have,
by (10.6), a bijection

(X × I,X × ∂I)→ [X × I/X × ∂I,G/PL] = [ΣX,G/PL] ,

and so can also regard θ as a map from this.

Proposition 10.7. Let Xm be a manifold (n+1)-ad; then θ : [ΣX,G/PL]→
Lm+1

(
π(X)

)
is a homomorphism. More generally, if we consider tangential

structures on X × I inducing the standard structure on X × ∂I ∪ ∂nX × 1, the
corresponding θ : [Σ(X/∂nX), G/PL]→ Lm+1

(
π(δX)

)
is a homomorphism.

Proof It is well known that the same group structure is obtained in [ΣX,G/PL]
whether we use the H-space structure of G/PL or the co-H space structure of
ΣX ; for this proof we will use the latter. Given, then, two maps of ΣX , or rather
of X × I, to G/PL, with X × ∂I → ∗, we combine them by mapping X × [0, 12 ]
using the first, and X × [ 12 , 1] using the second; thus obtaining a product map.
Now we similarly apply transversality

(
as in(10.1)

)
in two stages, and obtain a

cobordism of X to itself which is obtained by glueing together two other such.
But then it is immediate that the surgery obstruction for the sum cobordism is
the sum of the obstructions for the two parts. This proves the result.

†See the note at the end of this chapter for the algebraic properties of the surgery obstruc-
tion function θ in the topological category.
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This case is important because it appears in

Theorem 10.8. Let Xm be a manifold (n + 1)-ad, m � n + 4 (∂nX may be
empty). Then there is an exact sequence

S (X × I,X × ∂I ∪ ∂nX × I) η→ [Σ(X/∂nX), G/PL]

θ→ Lm+1

(
π(δnX)

) ∂→ S (X, ∂nX) .

Proof The exactness of (η, θ) was proved in (10.3) (even with m � n+ 3). The
map ∂ is defined by operating

(
as in (10.5)

)
on the identity structure. Now if we

take an element α of [Σ(X/Xn), G/PL] ∼= T (X× I,X×∂I ∪ ∂nX× I), we can
represent it by φ :M → X×I, inducing a diffeomorphism ontoX×∂I ∪ ∂nX×I.
Then θ(α) is the surgery obstruction, which can be alternatively interpreted,
by (10.4), as a suitable cobordism class. Now ∂θ(α) is defined as the induced
structure on X × I; however, by the above, this is the identity structure.

Suppose conversely that ∂x = 0. Then x is represented by φ : M → X × I,
inducing a diffeomorphism onto X × 0 ∪ ∂nX × I and a simple homotopy
equivalence onto X × I; however, the hypothesis ∂x = 0 implies that we can
suppose the latter also a diffeomorphism. But then the cobordism class (rel
X×∂I ∪ ∂nX× I) defines by (10.2) an element of T (X× I,X×∂I ∪ ∂nX× I)
which maps to x.

Observe that if m = n + 3, the result continues to hold if Lm+1

(
π(δnX)

)
is

replaced by the subset
(
the image in (10.4)

)
on which ∂ is defined. This subset

always contains Im θ.

The results (10.3), (10.5) and (10.8) constitute our theoretical computation of
S (X). We can collect them, mnemonically, into an ‘exact sequence’

S (X × I,X × ∂I ∪ ∂nX × I) η→ [Σ(X/Xn), G/PL]
θ→ Lm+1

(
π(δnX)

)
∂→ S (X, ∂nX)

η→ [(X/Xn), G/PL]
θ→ Lm

(
π(δnX)

)
,

but the reader should refer back for the precise meaning of ‘exactness’ at each
point in the sequence. It is natural to ask whether the sequence can be continued
to the left. It can, and doing so offers no difficulty, but we will not elaborate
further here. I am informed by D. Sullivan that this sequence for X closed,
simply connected is to be found in his (Princeton, 1965) thesis. See also §17A.
We have emphasised above the exact sequence principally useful for computing

S (X). However, we also have the exact sequences (3.1) of the groups L, the
(cohomology-type) exact sequences of maps into G/PL, and (as is easily seen)
exact sequences of structure sets also. These fit together naturally to form
commutative exact diagrams. For example if X = (Mm, ∂M) is a compact
manifold pair of dimension m � 6, and we use the natural structures to give
base points to all our sets, so that we can talk of exact sequences of pointed
sets, we have a commutative exact diagram in the shape of a braid
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Lm+1

(
π(M)

) ��

���
��

��
���

�
S (M,∂M)

��

���
��

��
��

��
S (M)

��

���
��

��
��

��
T (M)

��

���
��

��
��

��
T (∂M)

��
Lm−1

(
π(∂M)

)

Lm+1

(
π(X)

)
��									

���
��

���
��

�
T (M,∂M)

��									

���
��

��
��

��
S (∂M)

��









Lm

(
π(X)

)
��								

Lm

(
π(∂M)

)
��

��									
Lm

(
π(M)

)
��









(of course, this can be extended to the left). Three more exact sequences are
obtained here if we introduce a mixed type of structure, consisting of a (man-
ifold) structure on ∂M and a tangential structure on M . This would appear
in the middle of the diagram. Clearly by such devices a very large number of
exact sequences can be obtained.

The algebraic surgery exact sequence. The classifying space G/TOP has two H-
space structures, the one given by Whitney sum, and the ‘characteristic variety’
structure due to Sullivan [S24]. For a closed m-dimensional manifold X the
surgery obstruction function in the topological category

θTOP : T TOP (X) = [X,G/TOP ]→ Lm

(
π(X)

)
is a homomorphism of abelian groups with respect to the latter structure. Quinn
[Q4] interpreted θTOP as a geometric assembly map A. See Ranicki [R9] for
the algebraic surgery exact sequence

· · · → Hm(X ;L•)
A→ Lm

(
π(X)

)→ Sm(X)→ Hm−1(X ;L•)→ . . .

which is defined for any space X, with L• an Ω-spectrum of simplicial sets
of quadratic forms and formations over Z such that L0 � G/TOP . A nor-
mal map (φ, F ) : M → X of closed m-dimensional manifolds has a nor-
mal invariant [φ, F ]L ∈ Hm(X ;L•) which is the cobordism class of the sheaf
of kernel quadratic forms and formations over Z of the various normal maps
(φ, F ) | : N = φ−1(Y )→ Y (Y ⊂ X submanifold), with

T TOP (X)→ Hm(X ;L•) ; (φ, F )→ [φ, F ]L

a bijection. A simple m-dimensional Poincaré complex X has a total surgery
obstruction s(X) ∈ Sm(X) such that s(X) = 0 if (and for m � 5 only if ) X
is simple homotopy equivalent to an m-dimensional topological manifold. The
image [s(X)] ∈ Hm−1(X ;L•) is the obstruction to a TOP reduction of the
Spivak normal fibration ; if [s(X)] = 0 then the surgery obstructions θ(φ, F ) ∈
Lm

(
π(X)

)
of normal maps (φ, F ) : M → X from closed topological manifolds

define a coset of Im(A) ⊆ Lm

(
π(X)

)
with image s(X) ∈ Sm(X). If X is

an m-dimensional topological manifold the topological surgery exact sequence of
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(10.8) is isomorphic to the algebraic surgery exact sequence

. . . �� Lm+1

(
π(X)

)
�� S TOP (X)

∼=
��

�� T TOP (X)

∼=
��

θTOP
�� Lm

(
π(X)

)

. . . �� Lm+1

(
π(X)

)
�� Sm+1(X) �� Hm(X ;L•)

A �� Lm

(
π(X)

)
.

A simple homotopy equivalence of m-dimensional manifolds f : M → X has a
structure invariant s(f) ∈ Sm+1(X) = S TOP (X), such that s(f) = 0 if (and
for m � 5 only if ) f is homotopic to a homeomorphism.

Rigidity. By definition, a topological manifold X is rigid if any homotopy equiv-
alence of manifolds f : M → X is homotopic to a homeomorphism, or equiv-
alently if S TOP (X) = {1} consists of the unique element 1 : X → X. For
example, every surface is rigid in this sense. One of the early achievements of
surgery (due to Novikov [N5], [N7], originally in the differentiable category) was
the systematic construction of homotopy equivalences of manifolds f : M → X
of dimension � 5 which were not homotopic to homeomorphisms; such X are
not rigid. The first examples were simply connected, e.g. products of spheres
Sp × Sq (p, q � 2) – see §13A for the simply connected surgery obstruction
groups L∗(1). The surgery exact sequence allows the computation of the struc-
ture set S TOP (X) for many classes of non-simply connected manifolds. There
are two types of results:

(a) non-rigidity results, proving that S TOP (X) �= {1} by algebra,

(b) rigidity results, proving that S TOP (X) = {1} by geometry.

The surgery obstruction theory developed in this book has been used to obtain both
types of results for non-simply connected manifolds – see §§ 13, 14 for examples
of non-rigidity with finite fundamental group, and §15 for examples of rigidity
with infinite fundamental group. The strongest form of the Borel and Novikov
conjectures is that every aspherical Poincaré complex X = K(π, 1) is homotopy
equivalent to a rigid topological manifold M . The study of these conjectures
is one of the most active areas of research in the topology of high-dimensional
manifolds – see the notes at the end of §§ 15B, 17H for some references.
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This chapter applies the general theory of Part 1 to the classification of sub-
manifolds using the language of Poincaré embeddings. However, the method is
perhaps best understood in terms of the splitting of simple homotopy equiva-
lences.
Consider first the case of a manifold V and a submanifold M ⊂ V . For any

manifold W every map f :W → V is homotopic to a map (also denoted by f)
which is transverse at M ⊂ V , with N = f−1(M) ⊂W a submanifold. If f is a
simple homotopy equivalence, the restriction f | : N → M need not be a simple
homotopy equivalence (or even a homotopy equivalence). A simple homotopy
equivalence f : W → V is said to split at M ⊂ V if f | : N → M can be
chosen to be a simple homotopy equivalence. For example, if f is homotopic to
a homeomorphism then f splits at M ⊂ V . Thus any obstruction to splitting a
simple homotopy equivalence of manifolds f : W → V at a submanifold M ⊂ V
is an obstruction to f being homotopic to a homeomorphism.
More generally, suppose that V is an (m + q)-dimensional Poincaré com-

plex, and that M ⊂ V is an m-dimensional Poincaré subcomplex, so that
V = C ∪ M(p) for a (q − 1)-spherical fibration ξ over M with projection
p : E →M , and with C ∩ M(p) = E (e.g. V could be a manifold and M ⊂ V
could be a submanifold, as above, with C the closure of the complement of a tubu-
lar neighbourhood of M in V and ξ the sphere bundle of the normal bundle).
By definition, a simple homotopy equivalence f : W → V from an (m + q)-
dimensional manifold W splits at M ⊂ V with respect to a bundle reduction of
ξ if f is homotopic to a map which is transverse regular at M with the restric-
tions f | : f−1(M)→M , f | : f−1(C)→ C simple homotopy equivalences.
The L-groups of Part 1 are generalised in this chapter to the LS-groups, which

are the surgery obstruction groups for splitting simple homotopy equivalences for
m � 5. In the first instance, the LS-groups are defined geometrically, by anal-
ogy with the geometric definition of the L-groups in §9. For the applications to
manifold embedding theorems it is necessary to actually compute the LS-groups,
using appropriate combinations of algebra and topology.
The π-π-theorem of §4 is used to prove that the LS-groups depend only on the

pushout square Φ of fundamental groupoids

π(E) ��

��

π(C)

��

Φ

π(M) �� π(V )

118
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with an exact sequence

· · · → Lm+q+1

(
π(C)→ π(V )

)→ LSm(Φ)→ Lm

(
π(M)

)
→ Lm+q

(
π(C)→ π(V )

)→ . . . .

A simple homotopy equivalence f :W → V (as above) has a splitting obstruction
sM (f) ∈ LSm(Φ), such that sM (f) = 0 if (and for m � 5 only if ) f splits at
M ⊂ V . The splitting obstruction has image the ordinary surgery obstruction of
the m-dimensional normal map given by the restriction of f to the transverse
inverse image at M ⊂ V

[sM (f)] = θ(f | : f−1(M)→M) ∈ Lm

(
π(M)

)
.

See the note at the end of this chapter for the connection with the structure
invariant s(f) ∈ S TOP (V ) = Sm+q+1(V ) in the case when V is an (m+ q)-
dimensional manifold and M ⊂ V is a codimension q submanifold.
For codimension q � 3 π(C) ∼= π(V ) and the splitting obstruction is just the

ordinary surgery obstruction

sM (f) = θ(f | : f−1(M)→M) ∈ LSm(Φ) = Lm

(
π(M)

)
.

See the note at the end of this chapter for a discussion of surgery in codimen-
sion q = 2.
For surgery in codimension q = 1 there are three cases to be considered, which

are dealt with in §12.
We next consider the application of surgery to the problems of construction and

classification of submanifolds of a fixed PL or smooth manifold. The results to
be obtained are again best formulated in terms of a ‘triangulation or smoothing’
of initial homotopy-theoretic data. It is misleading to regard this as a complete
solution to the problem of embeddings : the problems raised seem to the author
in some respects to be harder than the original geometrical problems. We hope
to give more positive results on this point elsewhere.

We need a notion of ‘submanifold’ appropriate for Poincaré complexes. The
definition is found by collecting all the invariants of a submanifold in the PL
or smooth case which are expressible in homotopy terms. This was essentially
done by W. Browder in [B20]. The formulation below has also been made by
N. Levitt (Princeton thesis, 1967. See also [L16] and §17C).
Let Mm, V m+q be (simple) Poincaré complexes. Then an embedding of M in
V shall consist of:

a (q − 1)-spherical fibration ξ, with projection p : E →M ,

an (m+ q)-dimensional (simple) Poincaré pair (C,E), and

a (simple) homotopy equivalence h : C ∪ M(p) → V , where M(p) is the
mapping cylinder of p, and C ∩ M(p) = E.

When other types of embedding are also under discussion, we shall refer to this
as a simple Poincaré embedding.
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In most cases, the above set of conditions is redundant.

Lemma 11.1. Assume either that q � 3 or that q = 2 and ∂ξ : π2(M) →
π1(S

1) is surjective. Then the existence of a (simple) homotopy equivalence
h : C ∪ M(p)→ V implies that (C,E) is a (simple) Poincaré pair.

Proof The hypothesis implies that p∗ : π1(E) → π1(M) is an isomorphism,
hence so is the map of fundamental groups induced by the inclusion E ⊂M(p).
By van Kampen’s theorem, the inclusion C ⊂ C ∪ M(p) also induces an iso-
morphism of fundamental groups. But C ∪ M(p), equivalent to V , is a (simple)
Poincaré complex. By the cutting theorem (2.7 (ii)), to show that (C,E) is an
(m+q)-dimensional (simple) Poincaré pair, it is enough to show that

(
M(p), E

)
is. Now it is shown by Spivak [S14] that for any Poincaré complexM and spher-
ical fibration ξ,

(
M(p), E

)
is a Poincaré pair. Indeed, one can so arrange that

the diagram

Ht
m−∗(M)

Φ

����
���

���
���

��

H∗(M)

[M ]∩
������������� [M(p)]∩ �� Ht′

m+q−∗
(
M(p), E

)
commutes, where Φ is the Thom isomorphism. In describing M(p) and E as
finite complexes, we suppose made the natural choices, so that M ⊂ M(p) is a
simple homotopy equivalence, and the Thom isomorphism is induced by a chain
map C∗(M)→ C∗

(
M(p), E

)
which is a simple equivalence. Then [M ]∩ and Φ

above are induced by simple equivalences of chains, hence so is [M(p)]∩ . Thus
we have a simple Poincaré pair.

The following remark may mitigate any feeling that this proof involves ‘cheat-
ing’. Since ξ is a fibration, E and M(p) are not finite CW complexes, though
we can find a finite complex E0 and homotopy equivalence E → E0, and the
natural map M(p) → M is a homotopy equivalence. We can suppose (using
a mapping cylinder) E0 ⊂ M . Then (W,E0) need not be a simple Poincaré
pair ; let the map C∗(M) → C∗(M,E0) have torsion τ . Then if E0 → E1 is a
homotopy equivalence (of finite complexes) with torsion τ ′, (M,E1) is a simple
Poincaré pair if and only if τ ′ = τ .

We next show how PL and smooth embeddings of manifolds determine
Poincaré embeddings of the underlying Poincaré complexes.

Theorem 11.2. Suppose V m+q a PL or smooth closed manifold, Mm a PL
or smooth submanifold and (in the PL case) that M is locally flat in V (this
is true automatically if q � 3 [Z1]). Then the embedding determines a simple
Poincaré embedding of M in V .

Proof Let N be a regular neighbourhood resp. a (closed) tubular neighbourhood
of M in V , C the closure of its complement, E = ∂N = ∂C. The inclusion of
M in N is a simple homotopy equivalence ; let r be a homotopy inverse (in the
smooth case, we can let r be the projection). We will be finished if we can find
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a spherical fibration ξ with
(
M(pξ), Eξ

) � (N,E). In the smooth case, N is
already a disc bundle over V , and E the corresponding sphere bundle. In the
PL case the existence of ξ follows from the main result of Spivak [S14], if q � 3.
A better proof for our purposes is to observe that N is a block bundle over M
in the sense of Rourke and Sanderson [R17, I], and that any block bundle (with
zero section deleted) is homotopy equivalent to a spherical fibration (see again
[R17]).

Before we can discuss smoothing theorems, we must say a little more about
structure groups. A Poincaré embedding has, as part of the definition, a ‘normal’
spherical fibration, classified by a map into BGq. A smooth submanifold of a
smooth manifold has a normal vector bundle, classified by a map to BOq . A
locally flat PL submanifold of a PL manifold does not in general have a normal
PL bundle [R18], although it does so stably, so to have a good theory we must
use the normal block-bundles referred to above. The functor assigning to a
finite simplicial complex the set of isomorphism classes of q-block bundles over
it is a representable homotopy functor [R17, I] : we denote the classifying space

by BP̃Lq. There are maps, corresponding to natural transformations which we
have already discussed,

BOq → BPLq → BP̃Lq → BGq .

One can form direct sums of block bundles ; also we have lim
q→∞BP̃Lq = BPL.

As in §10, we shall speak of reductions of the structural group of a spherical
fibration from Gq to P̃Lq and Oq. Here there is one extra feature. Given a
Poincaré embedding i of Mm in V m+q, the Spivak normal fibration νM is the
sum of i∗νV and the normal fibration ξ of M in V . For evidently there is a
collapsing map

V h−1 � C ∪ M(p)→ C ∪ M(p)

C
=

M(p)

E
= M ξ

of degree 1. Similarly we obtain V νV →M ξ⊕i∗νV of degree 1. Since the former
is reducible, so is the latter. Now by the argument of (10.6), given stable
reductions of the structural groups of ξ and νV (hence also of i∗νV ) from G to
O or PL, we can add to obtain a corresponding reduction for νM . Observe that

a (non-stable) reduction from Gq to Oq or P̃Lq induces a stable reduction in an
obvious way. The tangential structure on V and a reduction of the group of ξ
from Gq to Oq or P̃Lq induce a tangential structure on M .

We are now ready for the main theorem on smoothing Poincaré embeddings
of codimension q > 2. The idea of this theorem is due to W. Browder [B20].

Theorem 11.3. Suppose given a closed smooth (PL) manifolds Mm, V m+q,
with m + q � 5, q � 2, and a simple Poincaré embedding

(
ξ, (C,E), h

)
of M

in V . If q = 2, assume that (h |C)∗ : π(C) ∼= π(V ). Suppose given also a re-

duction (ν, j) of the structural group of ξ to Oq (P̃Lq) such that the tangential
structure induced on M coincides with the natural one. Then there is a smooth
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(locally flat) PL embedding i : M → V inducing the given Poincaré embedding
and the reduction (ν, j).

Proof We first adjust notation to identify ξ with ν by the fibre homotopy equiv-
alence j, and so let ξ be a smooth vector bundle or PL block bundle, E the
total space of its sphere bundle, andM(p) of its disc bundle, andM ξ the Thom
space M(p)/E.

Consider the map h−1 : V → C ∪ M(p). Now M(p) is a smooth or PL
manifold, andM a submanifold with normal (block) bundle ξ. We can therefore
adjust h−1 to be transverse to M (see [T2] in the smooth case, [R17, II] in the
PL case – or [W45] if ξ is a PL bundle. The transversality of [A5] is of no use
here). Then M has preimage M ′, say, a submanifold of V . The normal bundle,
ξ′, of M ′ in V is induced from ξ. Also, since h−1 is a homotopy equivalence
and the induced map f :M ′ →M was obtained by transversality, f has degree
1. Again, since h−1 is a homotopy equivalence, νV is induced by it from some
bundle over C ∪M(p), and so νV |M ′ is induced by f from the restricted bundle
over M . Thus the tangential conditions are satisfied for (M ′, f) to define an
element of the degree 1 bordism set which we identify by (10.2) with T (M).
Clearly, the tangential structure obtained is the induced structure described
above.

But we assumed that this coincided with the natural tangential structure on
M , so (M ′, f) is cobordant to the identity map. Thus there exist a cobordism L
ofM ′ to M , an extension φ : L→M of f and 1M , and a stable trivialisation of
τL ⊕ φ∗(i∗ν ⊕ ξ). Let A be the total space of the disc bundle (or block bundle)
φ∗ξ: the restriction to M ′ is the normal (block-) bundle of M ′ in V , so we can
identify the part, A′, of A over M ′ with a (tubular or regular) neighbourhood
of M ′ in V . We attach A to V × I by making such an identification in V × I,
obtaining W say.

M

V × 1

A

L

A′

M ′ × 1

V × 0

The idea of the proof is now to do surgery on W . We first define a simple
Poincaré triad Y by letting |Y | be the mapping cylinder of h−1 : V → C ∪M(p),
and Y {1} = V ∪M(p), (where V is at the lower end of the cylinder), Y {2} = C,
and Y { } = E. Correspondingly we regardW as a manifold triad with W{1} =
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V × 0 ∪ M(p), W{ } = E, and W{2} is the rest of the boundary of W , i.e. the
union of (V ×1)−A′ and the sphere bundle of φ∗ξ. A map of triads, g :W → Y
is defined by mapping V × I by the natural map into the mapping cylinder and
A to M(p) by a block-bundle map covering φ: we may suppose that these agree
on A′ (indeed, this requirement was imposed on the identification of A′ with a
subset of V ). Evidently g is a map of degree 1, and ∂2g is a simple homotopy
equivalence (even a smooth or PL homeomorphism). Since |W | is homotopy
equivalent to V , we can take the bundle νV over it, and seek a trivialisation of
τW⊕g∗νV . On V ×I we use the natural trivialisation. On A′, which is homotopy
equivalent to L, we have g∗νV = φ∗i∗νV , and τW = τL ⊕ φ∗ξ (since A′ is the
total space of φ∗ξ) ; moreover, we have stably identified τL with φ∗τM . It is thus
enough to trivialise i∗νV ⊕ ξ ⊕ τM , and this we have already done in discussing
tangential structures on M . Again by this discussion the trivialisations agree
on A′.

We wish to apply Theorem 3.3. For this we need to assume that m + q � 5,
and that π(Y {2}) → π(Y {12}) is an isomorphism, i.e. that π(C) → π(V ) is
so. If q > 2 it follows by van Kampen’s theorem since π(E) → π

(
M(p)

)
is an

isomorphism, using the exact homotopy sequence of the fibration (once for each
component of M). The hypotheses of (3.3) hold, thus by that theorem we can
perform surgery to obtain a simple homotopy equivalence of triads.

Let W ′ be the manifold triad obtained by surgery. Then |W ′| is simply ho-
motopy equivalent to Y , hence to V × I, and so is an s-cobordism of V × 0 to
W ′{2} ∪ M(p). By the s-cobordism theorem [K3], [W13, IV], it is diffeomor-
phic to V . But M ⊂ M(p) is embedded as a locally flat submanifold, hence
also in V , with a normal (block) bundle ξ, and the closed complement is simply
homotopy equivalent to W ′{2}, hence to Y {2} = C ; the attaching map is also
as in Y , hence as prescribed. Our embedding thus induces the given Poincaré
embedding.

The hypotheses can be somewhat simplified in the PL case.

Corollary 11.3.1. Suppose given closed PL manifolds Mm, Vm+q with m+
q � 5, q � 3, and a simple Poincaré embedding of M in V . Then there is a
PL embedding M → V which induces it.

We reduce to the theorem by showing that there is a unique reduction of the
structural group of the normal fibration ξ of the Poincaré embedding from Gq

to P̃Lq such that the tangential structure induced on M coincides with the
natural one. Indeed, our earlier discussion has shown that this last condition
determines a stable reduction from G to PL. Our assertion now follows from
the known result [R17, III] that for q � 3 the diagram

BP̃Lq
��

��

BPL

��
BGq

�� BG
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is, up to homotopy, that of a pullback (induced fibration), so a stable reduction
determines an unstable one.

The corresponding result in the smooth case is only valid in the so-called
metastable range.

Corollary 11.3.2. The result of (11.3.1) holds for smooth manifolds and
embeddings, provided 2q � m+ 3.

For the corresponding diagram

BOq

��

�� BO

��
BGq

�� BG

is exactly (2q − 2)-connected (cf. [H4]).

Remark. The idea of extending (11.3) to cover some of the cases q = 2 is partly
due to A. J. Casson. The result above implies the surgery results obtained in
[C10].

The above discussion concerns only the absolute case, but the results are quite
easy to relativise. Although other definitions are possible, the only type we shall
consider is that of embeddings f : M → V of n-ads. Thus if M has boundary,
we will insist that f(∂M) ⊂ ∂V . Now if M is a Poincaré (n + 1)-ad, and ξ a
spherical fibration p : E → |M |, with M(p) the mapping cylinder of p, then
M(p) supports a Poincaré (n+ 2)-ad N , where if p induces q : M(p)→ M we
set

N{α} = p−1M{α}
if α ⊂ {1, 2, . . . , n} .

N{α, n+ 1} = q−1M{α}
The proof that Poincaré duality holds uses the results of Spivak [S14] and in-
duction. As in (11.1), if M is a simple Poincaré (n + 1)-ad, there is a natural
way to give N the structure of a simple Poincaré (n+ 2)-ad.

Now given (simple) Poincaré (n + 1)-ads Mm, V m+q, a Poincaré embedding
of M in V consists of:

a (q − 1)-spherical fibration ξ over |M |, determining N as above,

a (simple) Poincaré (n+ 2)-ad C, with ∂n+1 = ∂n+1N , and

a (simple) homotopy equivalence h : C ∪ N → V of (n+ 1)-ads,

where |C| ∩ |N | = ∂n+1N and |∂i(C ∪ N)| = |∂iC| ∪ |∂iN | for 1 � i � n. The
above results relativise as follows (the next proof is left to the reader).

Lemma 11.1 relative. In the definition above, the fact that the (n + 2)-ad C
satisfies (simple) Poincaré duality follows from the other conditions, provided
q � 3 or q = 2 and

h|C : π(δn+1C) ∼= π(V ) .
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To abbreviate the next results we define a locally flat embedding of (smooth or
PL) manifold (n+1)-ads to be a (smooth or PL) embedding f :Mm → Vm+q

such that at each point P ∈ |M |, lying on say r of the faces |∂iM |, there is a
(smooth or PL) local coordinate system at f(P ), mapping V to {x ∈ Rm+q :
xi � 0 for 1 � i � r}, f(P ) to 0, the faces of V containing f(P ) to the subsets
xi = 0 (1 � i � r) (so there are r of these), and f(M) to the subset defined by
xi = 0 for m < i � m+ q.

Theorem 11.2 relative. Any locally flat (PL or smooth) embedding of (PL or
smooth) manifold (n+ 1)-ads determines a simple Poincaré embedding.

The necessary relative form of the tubular neighbourhood theorem was shown
by Cerf [C12]; in the PL case one uses the results about regular neighbourhoods
[H29] and block bundles [R17, I] in bounded manifolds, and induction.

Theorem 11.3 relative. Given (PL or smooth) manifold (n + 1)-ads Mm,
V m+q with m+ q � n+ 4, q � 2; a simple Poincaré embedding (ξ, C, h) of M

in V ; and a reduction of the structural group of ξ to P̃Lq or Oq such that the
induced tangential structure on M coincides with the natural one, then provided
if q = 2 that (h |C)∗ : π(δn+1C) ∼= π(V ), there is a locally flat (PL or smooth)
embedding of M in V inducing the given Poincaré embedding and reduction of
ξ.
Further, if such an embedding is already given for ∂nM → ∂nV , it can be

extended to one of M in V , if m+ q � n+ 3, q � 2, and (if q = 2)

(h |C)∗ : π(δnδn+1C) ∼= π(δnV ) .

As this is a substantial extension of (11.3), we outline the proof. Clearly the
first version is a consequence of the second and induction on n. More thoroughly,
we can induct on all faces, and see that it is enough to extend toM an embedding
already constructed on the union of all its faces. Amalgamating the faces (and,
in the smooth case, rounding some corners), this shows that it suffices to consider
the case of a Poincaré pair. The proof of this case follows that given above for
(11.3) with the following modifications. The map h, hence also h−1, can be
taken to be a (smooth or PL) homeomorphism on the boundary. We can make
this transverse to M leaving it fixed on the boundary. Then ∂M ′ = ∂M , and
M and M ′ have the same tangential structure relative to the boundary. So we
can find a manifold tetrad L with |∂2L| =M ′, |∂1L| = ∂M × I, and |∂0L| =M ;
again form the block bundle A over L inducing A′ over L′. When we glue this
to V × I to obtain a manifold tetrad W , one face is obtained from ∂V × I by
glueing along B = (A′ ∩ ∂V ) × I a copy of B × I. The result (apart from
rounding corners in the smooth case) is homeomorphic again to ∂V × I. This
face will be kept fixed in the surgery; the rest we treat as before. At the final
stage of the argument we use the relative form of the s-cobordism theorem.

Corollary 11.3.1 relative. If q � 3, then the reduction of the structural group
of ξ is redundant in the PL case; also in the smooth case if 2q � m+ 3.

The proof of this is as before. For the last clause, m can be replaced by the
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geometrical dimension of |M | (or of |M | relative to |∂nM | in the case when we
are extending an embedding) – this is the least dimension of a CW complex ho-
motopy equivalent to |M | (or, of a CW complex rel |∂nM | homotopy equivalent
rel |∂nM | to |M |).

Corollary 11.3.3. The embeddings obtained in (11.3) are unique up to con-
cordance. They are unique up to isotopy if q � 3 in the PL case, or if
2q � m+ 4 in the smooth case.

Uniqueness up to concordance follows from the relative case by extending
embeddings of M × ∂I to M × I. We now appeal to [H27] in the PL case and
[H1] in the smooth case to obtain isotopies.

Another important special case (discovered during the summer of 1966 by
Casson and Sullivan; also by Browder and Haefliger [H5], all in the simply
connected case) is

Corollary 11.3.4. Let Mm and V m+q be compact PL manifolds, q � 3,
∂M = ∅, and f : M → V a homotopy equivalence. Then f is homotopic to a
PL embedding.

Ifm � 2, the result holds by a general position argument. Now if we replace the
inclusion ∂V ⊂ V by an equivalent fibration, the fibre is homotopy equivalent
to Sq−1, as in [S14]. Let ξ be the induced spherical fibration over M . Then
taking C = ∂V × I, E = ∂V × 0 and h to be induced by the projection of ξ, we
have defined a (not simple) Poincaré embedding ofM in V . We must construct
a simple Poincaré embedding; the result will then follow from (11.3.1). Let f
have Whitehead torsion τ . Construct homotopy equivalences h1 : ∂V → A,
h2 : A→ B with torsions (−1)m+q−1τ∗, −τ respectively; let C be the union of
the mapping cylinders of h1, h

−1
2 . Setting ∂2C = B, ∂1C = ∂V , we find that C

is a simple Poincaré triad. There are induced homotopy equivalences of B with
the total space E of ξ and of

(
M(p) ∪ C, ∂V ) with (V, ∂V ). The latter is simple,

since M → M(p) ∪ C also has torsion τ (by construction). The argument of
the cutting theorem (2.7) now shows that the homotopy equivalence B → E is
simple. Thus we have a simple Poincaré embedding and the result follows.

Corollary 11.3.4 relative. Let Mm be a compact PL (n + 1)-ad, V m+q a
compact PL (n + 2)-ad, q � 3, and f : M → ∂n+1V a homotopy equivalence
whose restriction ∂nM → ∂nδn+1V is a locally flat embedding. Then f is
homotopic rel ∂nM to a locally flat embedding.

In all the above results we have given a Poincaré embeddingM → V and man-
ifold structures onM and V and sought to construct a locally flat embedding of
M in V . A different version of the problem is when V has a manifold structure
but no manifold structure on M is prescribed in advance, and we seek a mani-
fold structure on M , and a locally flat embedding of it, with that structure, in
V .

In the case q � 3 it is simple to describe the relation between these two
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problems, using the proof of (11.3). We suppose given a reduction (ν, j) of
the group of the normal spherical fibration ξ to Oq or PLq. This induces a
tangential structure χ on M . For further progress to be possible, it is necessary
and sufficient that χ correspond to a manifold structure, i.e. (if m � 5) that
θ(χ) = 0. If this condition is satisfied, we can apply (11.3) to M with some
manifold structure inducing the tangential structure χ, and obtain a locally flat
embedding.

We turn now to consideration of the cases q = 1, 2. Before commencing our
detailed discussion, it is important to remark that – in contrast to the properties
of P̃Lq used in (11.3.1) when q � 3 – we have :

For q = 1 or 2, the maps

BOq → BPLq → BP̃Lq → BGq

are homotopy equivalences.

The case q = 1 is trivial ; that BO2 → BG2 is a homotopy equivalence is
well-known. The case of P̃L2 follows from [W19] on noting that (see [R17])

lim
m→∞BPLm+q,m = BP̃Lq, up to homotopy. The result on PL2 is due to Akiba

[A1] and G. P. Scott [S1]. Thus there is no need to reduce the structural group
of ξ in discussing these cases. In particular, a tangential structure on V induces
one onM . This shows that a more satisfactory result is obtained by considering
the case where no manifold structure on M is given in advance.

Let us now consider the problem of smoothing embeddings in codimension 1
or 2 using the method of (11.3). We assume given, then, a closed PL man-
ifold V m+q and a simple Poincaré embedding

(
ξ, (C,E), h

)
of Mm in V . As

observed above, this induces a tangential structure χ on M ; we assume fur-
ther that θ(χ) = 0 ∈ Lm

(
π(M)

)
, and that m � 5. Then M has manifold

structures inducing χ. (Of course, for m � 4 we may simply suppose given a
manifold structure on M for the next part of the argument). We now construct
a cobordism L, a block bundle A, and a manifold – or rather manifold triad –
W .

We now wish to perform surgery as in (11.3) to obtain an s-cobordism. How-
ever, we must now appeal to (3.2) rather than (3.3) to see that there is an
obstruction in Lm+q+1

(
π(C)→ π(V )

)
to performing the desired surgery.

We next investigate the effect of the choices made in the construction on the
cobordism class of W . Thus suppose the entire construction performed twice,
and let us try to construct a cobordism between them. Transversality extends
easily to give a cobordism of M ′

1 to M ′
2. Now we have cobordisms Li of the

manifolds M ′
i to manifolds Mi. Glueing these three together, we have a cobor-

dism (with ν, F as usual) fromM1 to M2, and wish to perform surgery to make
it an s-cobordism. For m � 4, the obstruction to this lies in Lm+1

(
π(M)

)
. If

this vanishes, the support of the surgeries gives a cobordism of suitable char-
acter from L1 to L2, and we glue a block bundle (or, as q � 2, disc bundle)
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over this to V × I × I to obtain the desired cobordism from W1 to W2. Now
the cobordism class ofW determines an obstruction in Lm+q+1

(
π(C)→ π(V )

)
,

and if this vanishes (and m � 4) we can perform the final surgery and obtain
our embedding.

Observe that (if m � 5) by (10.4) any element of Lm+1

(
π(M)

)
can occur

above (we glue a suitable cobordism ofM1 onto L1 to define L2). Thus in order
to obtain a complete result, we must investigate the effect of the choice of an
element of Lm+1

(
π(M)

)
on the final surgery obstruction in Lm+q+1

(
π(C) →

π(V )
)
.

The above arguments suggest that there exists an obstruction group G for our
problem and an exact sequence

· · · → Lm+1

(
π(M)

)→ Lm+q+1

(
π(C)→ π(V )

)→ G→ Lm

(
π(M)

)→ . . . .

We propose to give a direct proof of this, using the methods of §9: we wish
to define an obstruction group G which depends only on the dimension, funda-
mental groupoids, and maps w involved. We must begin by listing these, and
studying the extent of their mutual dependence.

Note that we have two different functions w for π(M): that obtained from the
Poincaré structure on M , which we denote by wM , and one induced from V

(
or

equivalently, from M(p)
)
, which we denote by wV . The product wMwV = wξ,

say, corresponds in the manifold case to the first Stiefel class of the normal
bundle; in general to that of ξ. All other w are induced (as in Part 1) from
wV . The spaces we have are M itself, the total space E of a (q − 1)-spherical
fibration ξ overM (as q = 1 or 2, the fibre is then S0 or S1), C (which contains
E), and V � C ∪E M(p). Thus π(M) is closely related to π(E); π(C) only by
a morphism π(E) → π(C), and π(V ) is then determined by the van Kampen
theorem (see e.g. Brown [B38]), which states that the diagram

Φ :

π(E) ��

��

π(C)

��
π(M) �� π(V )

is a ‘pushout’ diagram of groupoids.

As to the relation of π(E) to π(M), we may consider components of M sep-
arately, and choose base points in them. If q = 1, there are two cases : if ξ is
trivial, E has two components E1, E2, each homotopy equivalent to M (this is
the case wξ = 1); if ξ is not trivial, E is connected, and is (homotopy equivalent
to) a double covering of M , with π1(E) = Ker(wξ). If q = 2, we have an exact
homotopy sequence

π2(M)
∂→ π1(S

1)→ π1(E)→ π1(M)→ 1 ;

the elements x ∈ π1(M) act on π1(S
1) ∼= Z as automorphisms via wξ(x) = ±1.

Some care is needed to see that the second homotopy group is not really relevant.
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Proposition 11.4. Suppose there exists a (q− 1)-spherical fibration (q = 1, 2)
whose projection induces the homomorphism f : A→ B of fundamental groups
and with first Stiefel class w : B → {±1}. Then there exists a universal P :
X → Y as above, so that given any (q − 1)-spherical fibration p : E → M ,
and isomorphisms h1 : π1(E) → A, h2 : π1(M) → B with fh1 = h2π1(p) and
w(p) = wh2, there exists a unique homotopy class of fibrewise maps of p to P
inducing the stated isomorphisms.

Proof In the case q = 1, it suffices to take Y = K(B, 1) and X the indicated
double covering. We may act similarly if q = 2 when Ker f is infinite cyclic : the
characteristic class in H2(B;Z) (with coefficients twisted by w) of the extension
determines a unique bundle over K(B, 1) with fibre S1. The difficult case is
that in which Ker f has finite order n, say (it is of course cyclic). Note that the
case n = 1 was the one covered by the argument in (11.3).

We may thus suppose given an exact sequence

0→ Z
n→ Z→ A

f→ B → 1

of groups. Let us first suppose w trivial. Then the above induces exact sequences
of spaces (in the sense of Spanier [S13])

0→Z
n→Z→Zn→S1 n→S1→K(Zn, 1)→K(Z, 2)→K(Z, 2)→ K(Zn, 2) ,

0→Zn→A
f→B→K(Zn, 1)→K(A, 1)→K(B, 1)→K(Zn, 2) .

Let Y be the pullback of K(Z, 2) → K(Zn, 2) and K(B, 1) → K(Zn, 2). We
then obtain four exact sequences of spaces, forming the diagram

S1
��

��






K(A, 1)

��

��






K(B, 1)

��







K(Zn, 1)

����������

���
��

��
��

�
Y

�����������

���
��

��
��

��
K(Zn, 2) ;

B

��










��
K(Z, 2)

��










n

��
K(Z, 2)

��









we claim that the fibration S1 → K(A, 1) → Y has the desired universal
property. Note that Y itself is not a K(π, 1) ; indeed, the other fibration
K(Z, 2)→ Y → K(B, 1) is precisely its Postnikov decomposition.

Given p : E → M as above, the bundle has a classifying map M → K(Z, 2)
and h2 induces a map M → K(B, 1). We must show that these give homotopic
maps M → K(Zn, 2); it will then follow that they have a common lift M → Y .
Now the cohomology class of the map K(B, 1)→ K(Zn, 2) is, by construction,
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the characteristic class in H2(B;Zn) of the extension A of Zn by B. But we
assume that the fibration induced by M → K(Z, 2) has fundamental group A,
hence also that induced by M → K(Zn, 2). Thus the two maps to K(Zn, 2) are
homotopic.

The homotopy class of the lift M → Y depends on the choice of an explicit
homotopy M × I → K(Zn, 2): two such differ by an element of H1(M ;Zn) ∼=
H1(A;Zn). We claim that this choice is fixed for us by h1. For if we choose
a homotopy carelessly, the bundle map covering our map M → Y induces h′1
making the diagram

1 �� Zn
�� π1(E)

h′1
��

p �� π1(M)

h2
��

�� 1

1 �� Zn
i �� A �� B �� 1

commute. Thus h′1h
−1
1 = idp for some homomorphism d : π1(M)→ Zn, deter-

mining an element ofH1(M ;Zn). It is now clear that by changing the homotopy
in K(Zn, 2) using this element, we can make h′1 = h1.

The above argument assumed wξ = 1. However, if we use cohomology classes
rather than maps, we find that much the same holds in the general case. The
maps K(B, 1) → K(Zn, 2) and Y → K(Z, 2) must be replaced by cohomology
classes twisted by wξ; similarly in the last part of the argument the classes
in H1(M ;Zn) are so twisted. The construction of Y is changed : in fact, if
ε ∈ H2(B;Zn) is the class of the extension, and βn the Bockstein belonging to
the sequence

0→ Z
n→ Z→ Zn → 0 ,

we take βn(ε) as the k-invariant of Y : this has order (at most) n. There are
then exact sequences of groups (twisted by wξ)

0 �� H2(B;Z) ��

��

H2(Y ;Z)

��

�� Z

��

βn(ε) �� H3(B;Z)

��
0 �� H2(B;Zn) ��

βn
��

H2(Y ;Zn) ��

βn
��

Zn
�� H3(B;Zn)

H3(B;Z) �� H3(Y ;Z)

The class ε ∈ H2(B;Zn) maps to zero in H3(Y ;Z) since Y has k-invariant
βn(ε), hence its image in H2(Y ;Zn) lifts to a class in H2(Y ;Z). Choose this
class to have image n ∈ Z (possible since the image in Zn is zero), and denote
it by κ : this we take as the class of our 1-spherical fibration; it is determined
only modulo nH2(B;Z), but as any two choices are equivalent, we fix one.
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Now given M as above, since we have a circle fibration inducing the given
fundamental groups, the image of ε in H2(M ;Zn) is in the image of H2(M ;Z)
and hence annihilated by βn. Thus the map M → K(B, 1) lifts to a map
M → Y , and two lifts differ by an element of H2

(
M ;π2(X)

)
. Now the class

induced from κ differs from the class of the circle bundle over M by an element
of Ker

(
H2(M ;Z)→ H2(M ;Zn)

)
= nH2(M ;Z). Thus we can re-choose the lift

M → Y so that κ induces the class of the circle bundle over M and this lift is
determined uniquely modulo

Ker
(
H2(M ;Z)→ H2(M ;Z)

)
= ImH1(M ;Zn) .

The rest of the argument is the same as in the simpler case first discussed.

Remark. The last version of the proof shows that the only condition to be
satisfied by the extension

1→ Zn → A→ B → 1

in order to be realised by circle fibrations is that the action of B on the normal
subgroup Zn must be induced from an action on Z. Similarly, the fibration
S1 → X → Y has the universal property in question if, and only if, X is an
Eilenberg-MacLane space.

The above results extend immediately to the disconnected case on taking dis-
joint unions.

For the next results, we suppose given a pushout diagram Φ of groupoids

Φ :

A ��

��

C

��
B �� D

together with a universal (q − 1)-spherical fibration p : X → Y inducing A →
B∗. Let Z be a K(C, 1) meeting the mapping cylinder MY of p in X ; then
MY ∪ Z has fundamental groupoid D. We will write K(Φ) for the triad (MY ∪
Z;MY , Z;X). A Φ-object shall consist of:

a simple Poincaré pair (Nn,M) and a manifold pair (Wn+q, V );

a simple Poincaré embedding (N,M)→ (W,V );

a ‘smoothing’ of the embedding M → V ;

and a map of triads

( Mn−1 ��

��

V n+q−1

��
Nn �� Wn+q

)
−→

( X ��

��

Z

��
K(Φ)

MY
�� MY ∪ Z

)

∗Here q = 1 or 2. Note that Φ includes an implicit choice of orientation character
wΦ = w(Y ∪ Z) : D = π(Y ∪ Z) → {±1}.
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compatible with w(Y ∪ Z). The object will be called restricted if the map of
triads induces isomorphisms of fundamental groupoids.

As in §9 there exist natural definitions of cobordism of Φ-objects, and of re-
stricted cobordism, leading to a cobordism group LS 1

n (Φ) depending functo-
rially on Φ, a restricted cobordism set LS 2

n (Φ), with preferred base element,
and a forgetful map LS 2

n (Φ)→ LS 1
n (Φ). These results, analogous to (9.1) and

(9.2), are trivial, and we leave the proofs to the reader. More interesting is the
analogue to (9.3), which is still an easy corollary of (3.3), using the methods of
(11.3):

If the above Φ-object is restricted, it is cobordant to zero in the restricted sense
if and only if the given smoothing of the Poincaré embedding M → V can be
extended to a smoothing of the Poincaré embedding (N,M)→ (W,V ); provided
n � 5.

It follows at once from this that we have a good obstruction theory for our
smoothing problem, with obstruction groups the LS 1

n (Φ), provided we prove
the analogue of (9.4), viz.

Theorem 11.5. Let n � 4, and assume the groupoids of Φ of finite type. Then
the map LS 2

n (Φ)→ LS 1
n (Φ) is bijective.

This result is not trivial, and we give the proof of surjectivity; injectivity
follows as usual by presenting the problem as a relative case of surjectivity.

Proof Suppose given a Φ-object, in the notation above. First consider the map
N → Y : exactly as in (9.4) we can perform surgery, leaving the boundary (M)
fixed to make this 2-connected. This gives a simple Poincaré cobordism of N
to N ′, say, with a (q − 1)-spherical fibration induced over it by the map to Y .
Now

(
as in the proof of (11.3)

)
we attach the mapping cylinder of this fibration

to
(
M(p) ∪ C

) × I along M(p) × 1, to obtain a (simple) Poincaré cobordism
of the larger Poincaré complex, say to M(p′) ∪ C′. Next, apply (9.4) again to
perform surgery on C′ to make the induced map into Z 2-connected, and to
leave the boundary (V ) alone.

We have thus constructed a cobordism of simple Poincaré embeddings, starting
with the given embedding, and such that the fundamental groupoids are as
desired at the end. It remains to show that the cobordism ofM(p) ∪ C is simply
homotopy equivalent to a manifold cobordism of W ; the desired result clearly
follows from this. Now our cobordism was constructed by adding 1-handles and
2-handles only : for this one needs a (Poincaré or manifold) embedding of S0

or S1, with a trivialisation of the normal spherical fibration, block bundle, or
vector bundle. But since On, P̃Ln and Gn all have the same 1-type, a fibre
homotopy trivialisation induces a unique bundle trivialisation, and now since
the dimension is at least 5 it follows

(
e.g. by (11.3)

)
that a Poincaré embedding

determines a manifold embedding for S0 or S1. This shows that the Poincaré
surgeries can be smoothed in turn to give a manifold cobordism of W , and thus
completes the proof of the theorem.
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The computation of these groups is now established by

Theorem 11.6. There exists an exact sequence, natural for maps of triads Φ
as above,

· · · → Ln+1(B)
p→ Ln+q+1(C → D)

q→ LSn(Φ)
r→ Ln(B)→ . . .

Proof We first define the homomorphisms. For p, take an object over Y rep-
resenting χ ∈ Ln+1(B): this is possible by (9.4.1). Over Y there is a universal
(q − 1)-spherical fibration, or equivalently, bundle or block bundle. Taking the
induced (Dq, Sq−1)-bundle over the object gives a relative object defining an
element of Ln+q+1(A→ B): our construction is evidently additive, cobordism-
invariant, and natural, so gives a natural homomorphism∗

p0 : Ln+1(B)→ Ln+q+1(A→ B) .

Define p by composing p0 with the map Ln+q+1(A → B) → Ln+q+1(C → D)
induced by Φ (regarded as a map of pairs of groupoids).

We define r by taking the surgery obstruction (relative to ∂M) for the tan-
gential structure induced on M . Now pr = 0, for given a Φ-object representing
χ, let N ′ ⊂ W (with ∂N ′ = M) be obtained by transversality as in (11.3).
Then r(χ) is the surgery obstruction for N ′ → N , and p0r(χ) for the induced
map of D2-bundles. But using the fact that N ⊂ W ⊂ W × I, we see that the
surgery problem forD2-bundles is induced from one for triads, with fundamental
groupoid Φ

(
cf. (11.3) again

)
. The exact sequence

Ln+q+2(Φ)→ Ln+q+1(A→ B)→ Ln+q+1(C → D)

now implies that pr(χ) = 0.

Conversely, suppose given an object N ′ → N etc. representing an element
of Ker p (throughout this paragraph, all manifolds will have a boundary, sup-
pressed in the notation, which is to be fixed). The Dq-bundle defined (as we
have seen) by the map A → B gives a relative object (M ′, E′) → (M,E) with
surgery obstruction on the kernel of the second, hence in the image of the first
map above. So we can embed this in a more relative object (W ′;M ′, C′;E′)→
(W ;M,C;E). Now since Φ is a pushout, π(M ∪ C) ∼= π(W ). Thus, if M ′ and
C′ are amalgamated, we can do surgery

(
by (3.3)

)
to obtain a simple homotopy

equivalence (of pairs) (W ′′, V ′′)→ (W,M ∪ C). Now N is Poincaré embedded
in M ∪ C; hence, using this equivalence, in V ′′. Our constructions (plus using
transversality on the surgery we did) show that the induced tangential structure
on N is that defined by the object N ′ → N , which is thus in Im r, as required.

The definition of q needs some care, as although we have already observed that
if the induced tangential structure on N comes from a manifold structure, we

∗Warning : the copy of the ring B = Z[π(Y )] in Ln+q+1(A → B) has the wB-twisted
involution, with wB : B → D → {±1} the restriction of the orientation character wΦ :
D → {±1} (see previous footnote), while the copy of B in Ln+1(B) has the w(p)wB-twisted
involution, with w(p) the orientation character of the (q − 1)-spherical fibration p : X → Y .
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have an obstruction in Ln+q+1(C → D) to obtaining N as a smooth submani-
fold; this obstruction need not be determined by the smoothing of N , essentially
since the map Ln+1(B)→ S (N) is not usually injective.

The only way round this seems to be to give a new interpretation of
Ln+q+1(C → D) as a cobordism group, using yet another definition of ‘object’.
We will attempt to treat this informally. Suppose given a Poincaré embed-
ding (ξ, C,E, h) : Mn → V n+q, with fundamental groupoids as above. Using
transversality as in (11.3) we construct a submanifold Mm ⊂ V n+q. Now again
as in (11.3) suppose we have a cobordism L of M to M ′; then we can attach a
disc (block) bundle A over L to V × I to form a manifold W , which we regard
as a manifold triad. In fact we generalise this by permitting M and V to have
boundaries, but assume the Poincaré embedding induced by a given embedding
on the boundary, and L a product ‘along the boundary’, and thenW a manifold
tetrad. Given all this data, we have a surgery obstruction in Ln+q+1(C → D);
this obstruction is unchanged if everything is altered by a cobordism, and con-
versely we claim : if two different set-ups have the same surgery obstruction,
they are cobordant. This is the crucial point to verify : once Ln+q+1(C → D)
is identified as the cobordism set, we can define q by ignoring all but the given
Poincaré embedding of manifolds, with boundary induced by a manifold embed-
ding. Exactness of (q, r) will then be immediate. Since the exactness of (p, q)
was proved in all essentials in the discussion preceding (11.4), the proof of (11.6)
will then be complete.

Assume then (ξi, Ci, Ei, hi) : Mn
i → V n+q

i (i = 1, 2) Poincaré embeddings
of manifolds; that transversality gives M ′

i ⊂ V n+q
i , and we have cobordisms

Li of Mi to M
′
i such that the two eventual surgery obstructions coincide. We

first construct a cobordism of M1 to M2, mapping into Y
(
the Y of (11.4)

)
:

as no restriction is yet imposed on the boundary, we can for instance take
M1× I ∪ M2× I. Now perform surgery to make the map 2-connected, thus ob-
taining a cobordismN , say. Glue theDq-bundle induced overN to (V1 ∪ V2)×I,
to obtain a cobordism of Poincaré embeddings, as in the figure

M1 × I N M2 × I

V1 × 0 V1 × 1 V2 × 1 V2 × 0
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We now construct a manifold mapping into the above : in fact, we just glue
together W1, W2, and the same disc bundle over N in the natural way. As
usual (we have suppressed details above, in the interests of brevity and ease of
reading) we have corresponding bundles and stable trivialisations. Our map is
the identity on (V1× 0) ∪ (V2× 0), and on ∂Vi× I. And our hypothesis implies
that the surgery obstruction for our map induces zero in Ln+q+1(C → D),
since we have glued, with opposite orientations, two problems with the same
obstruction. It follows that we can find a cobordism to the empty set, whose
fundamental groupoid is C → D.

In the cobordism of the figure above to ∅, we simply take the induced bound-
ary cobordism, and glue to the original figure : the result, reinterpreted in the
obvious way, is a cobordism of the two original Poincaré embeddings. Since
Φ is a pushout, it has the same fundamental groupoid as the support of the
cobordism. Thus we can perform surgery (not keeping the disc bundle over N
fixed) to obtain a simple homotopy equivalence. We do not use this to change
the object, but can now regard the Poincaré embedding as going into a manifold
W , a cobordism of V1 to V2. By transversality using the Poincaré embedding,
we can find a cobordism N ′ ⊂W of M ′

1 to M ′
2. It remains to find a cobordism

of L1 to L2 which gives N ∪ N ′ on the boundary. But L1 ∪ N ∪ L2 is embedded
in the manifold first constructed (W1 ∪ W2 ∪ disc bundle over N), and hence
in the manifold from which W was obtained by surgery. The desired cobordism
is thus found by using transversality on the trace of this surgery.

This completes the construction of the desired cobordism and, with it, that of
(11.6).

Corollary 11.6.1. Multiplication by P2(C) induces isomorphisms for n � 5

LSn(Φ)→ LSn+4(Φ) .

This follows by the naturality of the sequence of (11.6) and the Five Lemma,
using (9.10).

We conclude this chapter with an analogue of (10.4) which will be used in the
next chapter.

Theorem 11.7. Let Mm ⊂ V m+q be a (smooth or PL) submanifold, q = 1
or 2, and let Φ be the diagram of fundamental groupoids of the corresponding
Poincaré embedding. Suppose m � 5, and let x ∈ LSm+1(Φ). Then there exists
a smoothing M ′ ⊂ V of the same simple Poincaré embedding such that the ob-
struction to extending M ×0 ∪M ′×1 to a smoothing N ⊂ V ×I of the product
embedding is precisely x.

Proof First consider r(x) ∈ Lm+1

(
π(M)

)
: by (10.4) we can find a cobordism N

ofM toM ′, retracting toM , so thatM ′ →M is a simple homotopy equivalence
and the surgery obstruction for N → M × I is r(x). Form the bundle B with
fibre Dq over N induced by the retraction from the normal disc bundle A of M
in V : then the surgery obstruction for B → A× I is p0r(x), with the notation
of (11.6). Attach B along A× 1 to V × I to give W
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A′

B

A× 1

V × I
V × 0

and round corners as indicated in the figure. There is an obvious retraction of
W on V × I; we wish to do surgery keeping V × 0 and A′ fixed. By naturality,
the surgery obstruction is ip0r(x) = pr(x) = 0, so surgery can be performed
to obtain a simple homotopy equivalence. W has then been converted to an
s-cobordism; by the s-cobordism theorem the upper end is diffeomorphic to V ,
and we haveM ′ ⊂ A′ ⊂ V . If y is the obstruction to extendingM×0 ∪M ′×1 to
a smoothing of the product Poincaré embedding, we evidently have r(u) = r(x),
so x = y + q(z) for some z.

Using the additive property of surgery obstructions, we now see that it is
enough to prove the result with the additional assumption x = q(z). For this
case we apply (10.4) to say that there is a cobordism of V ×I, keeping (V ×0)∪A
fixed, and retracting on V × I, such that the upper end is mapped by a simple
homotopy equivalence, and the surgery obstruction (rel V ×0 ∪ A) for the whole
is z. Now by the same argument as above, the upper end of this cobordism is an
s-cobordism of V × 0, so can again be identified with V × I, and V × 1 contains
A ⊃M : we claim that this gives the desired embedding of M in V . Indeed, the
calculation of the obstruction to extending the two embeddings of M in V to
an embedding of M × I in V × I amounts to reversing the constructions above,
which yields q(z).

Remark. It is possible to obtain a more precise result, analogous to (10.4);
however, we do not need this, and the detailed statement would have to be very
technical.

The LS-groups and the surgery exact sequence. The surgery exact sequence of
§10 and the codimension q surgery exact sequence of §11 are related as follows.
The algebraic surgery exact sequence for a space V with a decomposition V =
C ∪ E(p) and the exact sequence for LS∗(Φ) of Theorem 11.6 (with p the
projection of a (q − 1)-spherical fibration ξ over a subspace M ⊂ V and Φ the
pushout square of fundamental groups) are related by a natural transformation

. . . �� Lm+q+1(V )

��

�� Sm+q+1(V ) ��

��

Hm+q(V ;L•) ��

��

Lm+q(V )

��

�� . . .

. . . �� Lm+q+1(V,C) �� LSm(Φ) �� Lm(M) �� Lm+q(V,C) �� . . .
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with
L∗(V ) = L∗

(
π(V )

)
, L∗(M) = L∗

(
π(M)

)
,

L∗(V,C) = L∗
(
π(C)→ π(V )

)
and

Hm+q(V ;L•)→ Hm+q(V,C;L•) ∼= Hm(M ;L•)→ Lm(M) .

If V m+q is an (m + q)-dimensional manifold and Mm ⊂ V is a codimension
q submanifold, the structure invariant s(f) ∈ Sm+q+1(V ) = S TOP (V ) of a
simple homotopy equivalence f :W → V from an (m+q)-dimensional manifold
W has image the splitting obstruction sM (f) ∈ LSm(Φ) ([R7, 7.2]).

Codimension 2 and homology surgery. A codimension 2 manifold embedding
Mm ⊂ V m+2 is a generalised knot. The general philosophy for applying surgery
theory to codimension 2 embeddings is to classify the homotopy types of mani-
folds within a homology type. For example, the complement of a knot k : S1 ⊂
S3 has the homology type of S1, by Alexander duality ; by Dehn’s lemma k is
unknotted if and only if the complement has the homotopy type of S1. Motivated
by the classification of high-dimensional Z2-invariant knots (using the invari-
ant of Browder and Livesay [B29]) López de Medrano [L22] posed the problem
of deciding if a normal map is normal cobordant to a homology equivalence.
Cappell and Shaneson ([C9], et.al.) went on to develop homology surgery the-
ory and many of its applications to codimension 2 embeddings. In this theory
the surgery obstruction groups L∗(π) for homotopy equivalences of manifolds
with fundamental group π are replaced by the algebraic Γ-groups Γ∗(F ) for Λ-
coefficient homology equivalences of manifolds with fundamental group π, with
F : Z[π]→ Λ a morphism of rings with involution. See Ranicki [R7, 7.8], [R13]
for accounts of the surgery method in high-dimensional knot theory, including the
analogues ΓS∗(Φ) of the codimension 2 LS-groups LS∗(Φ). The codimension
2 LS-groups LS∗(Φ) with π1(M) ∼= π1(V ) are identified in [R7, 7.8.12] with
the algebraic L-groups of Z[π1(C)] with an antistructure, analogous to the iden-
tification in Theorem 12.9 of the LS-groups LS∗(Φ) = LN∗

(
π1(C) → π1(V )

)
in the norientable codimension 1 case with π1(M) ∼= π1(V ) with the algebraic
L-groups of Z[π1(C)] with an antistructure. See Levine and Orr [L15] for a
survey of the applications of surgery theory to knots and links.
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First-time readers may omit this chapter, proceeding directly to §13.
Our discussion in §11 gave a reasonably complete picture of the obstructions

encountered in smoothing Poincaré embeddings in codimensions 1 and 2, in
terms of the groups Lm(π). It follows that any other account, on comparison
with this one, will yield information about these groups. Our present intention
is to survey all known techniques for the submanifold problem, and to see what
information can be deduced.

The only direct attack on the smoothing problem in the case q = 2 known to
me is that of Casson [C10]. The results of this paper are all contained in our
(11.3), and it seems probable that the methods would yield no more than that
result. Thus we consider only the case q = 1.

We divide cases when M has codimension one in V into three types, in in-
creasing order of difficulty.

(A) M separates V , i.e. C is disconnected.

(B) M is 2-sided in V (i.e. ξ is trivial) but does not separate it.

(C) M is 1-sided in V .

The three cases are illustrated by the following diagrams

(A) C1 C2M ×D1

138
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(B)

M ×D1

C

(C)

E(ξ)

C

Here is a brief summary of the algebraic expressions of the codimension 1 split-
ting obstruction groups LS∗(Φ) in the three cases.

(A)+(B) In 12.4.1 the LS-groups are identified with the triad L-groups

LS∗(Φ) = L∗+2(Φ) .

In case (A) there is defined a pushout square of fundamental groups

Φ :

π1(M)
i1 ��

i2
��

π1(C1)

��
π1(C2) �� π1(V )
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by van Kampen’s theorem, with C1, C2 the two components of C (assuming
M,V connected) and i1 : π1(M) → π1(C1), i2 : π1(M) → π1(C2) the mor-
phisms induced by the inclusions i1 : M → C1, i2 : M → C2. The fundamental
group of V is the amalgamated free product

π1(V ) = π1(C1) ∗π1(M) π1(C2)

and the codimension 1 splitting groups LS-groups LS∗(Φ) are the obstructions
to the existence of a Mayer-Vietoris exact sequence in the L-groups

· · · → Ln+1

(
π1(V )

) ∂→ Ln

(
π1(M)

) (i1 i2)−−−−→ Ln

(
π1(C1)

)⊕ Ln

(
π1(C2)

)
→ Ln

(
π1(V )

) ∂→ Ln−1

(
π1(M)

)→ . . . .

For injective π1(M) → π1(V ) (or equivalently injective i1 : π1(M) → π1(C1),
i2 : π1(M)→ π1(C2)) Waldhausen [W3] obtained an exact sequence in algebraic
K-theory

· · · → Wh2
(
π1(V )

) ∂→Wh
(
π1(M)

)⊕ Ñil2(Φ)

(i1 i2)⊕0−−−−−−→Wh
(
π1(C1)

)⊕Wh
(
π1(C2)

)
→Wh

(
π1(V )

) ∂→ K̃0

(
Z[π1(M)]

)⊕ Ñil1(Φ)→ . . .

with Wh∗
(
π1(V )

) → Ñil∗(Φ) split surjections. Cappell [C4] defined algebraic
UNil-groups UNil∗(Φ) for injective π1(M)→ π1(V ), such that

LSn(Φ) =

Ĥn+1

(
Z2; Ker

(
(i1 i2) :Wh

(
π1(M)

)→Wh
(
π1(C1)

)⊕Wh
(
π1(C2)

)))
⊕UNiln+2(Φ) ,

and used the realisation theorems (5.8), (6.5) to obtain geometrically an exact
sequence

. . . → Ln+1

(
π1(V )

) ∂→ L′
n

(
π1(M)

)⊕UNiln+1(Φ)

(i1 i2)⊕0−−−−−−→ Ln

(
π1(C1)

)⊕ Ln

(
π1(C2)

)→ Ln

(
π1(V )

)
∂→ L′

n−1

(
π1(M)

)⊕UNiln(Φ)→ . . .

with L∗
(
π1(V )

)→ UNil∗(Φ) split surjections and L′
∗
(
π1(M)

)
the intermediate

L-groups (see §17D) associated to the ∗-invariant subgroup

Im

(
Wh2

(
π1(V )

)→Wh
(
π1(M)

))
= Ker

(
(i1 i2) :Wh

(
π1(M)

)→Wh
(
π1(C1)

)⊕Wh
(
π1(C2)

)) ⊆Wh
(
π1(M)

)
.
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In case (B) the fundamental group of V is the HNN extension

π1(V ) = π1(C) ∗π1(M) {t}
determined by the morphisms i1, i2 : π1(M)→ π1(C) induced by the two inclu-
sions i1, i2 :M → C, and the codimension 1 splitting groups LS∗(Φ) = L∗+2(Φ)
are the obstructions to the existence of a Mayer-Vietoris exact sequence in the
L-groups

· · · → Ln+1

(
π1(V )

) ∂→ Ln

(
π1(M)

) i1−i2−−−→ Ln

(
π1(C)

)
→ Ln

(
π1(V )

) ∂→ Ln−1

(
π1(M)

)→ . . . .

For injective π1(M)→ π1(V ) (or equivalently injective i1, i2 : π1(M)→ π1(C))
there is an exact sequence in algebraic K-theory

· · · → Wh2
(
π1(V )

) ∂→Wh
(
π1(M)

)⊕ Ñil2(Φ)

(i1−i2)⊕0−−−−−−→Wh
(
π1(C)

)→Wh
(
π1(V )

) ∂→ K̃0

(
Z[π1(M)]

)⊕ Ñil1(Φ)→ . . .

([W3], generalising the splitting theorem of Bass, Heller and Swan [B9] for
the Whitehead group of a polynomial extension). The algebraic UNil-groups
UNil∗(Φ) of [C4] are such that

LSn(Φ) = Ĥn+1

(
Z2; Ker

(
i1−i2 :Wh

(
π1(M)

)→Wh
(
π1(C)

)))⊕UNiln+2(Φ)

and there is defined an exact sequence

. . . → Ln+1

(
π1(V )

) ∂→ L′
n

(
π1(M)

)⊕UNiln+1(Φ)

(i1−i2)⊕0−−−−−−→ Ln

(
π1(C)

)→ Ln

(
π1(V )

) ∂→ L′
n−1

(
π1(M)

)⊕UNiln(Φ)→ . . .

with L∗
(
π1(V )

)→ UNil∗(Φ) split surjections and L′
∗
(
π1(M)

)
the intermediate

L-groups associated to the ∗-invariant subgroup

Im

(
Wh2

(
π1(V )

)→ Wh
(
π1(M)

))
= Ker

(
i1 − i2 :Wh

(
π1(M)

)→Wh
(
π1(C)

)) ⊆Wh
(
π1(M)

)
.

(C) If π1(M) → π1(V ) is an isomorphism then π1(C) = π′ → π1(V ) = π is
the injection of a subgroup of index 2, and the codimension 1 splitting groups
LS∗(Φ) = LN∗(π′ → π) are identified in §12C with the algebraic L-groups of
Z[π] with an antistructure.

See Ranicki [R7, 7.6], [R8], [R9, §23], [R10] for a further discussion of the de-
velopment of codimension 1 splitting obstruction theory since the first edition of
the book. In particular, the combination of [R7, pp. 666–685] and [R10, §8] gives
a purely algebraic treatment of the Cappell UNil-groups using chain complexes
with Poincaré duality.
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We begin our discussion of type (A) with the simplest case, when no surgery
obstructions are encountered. This case was first discussed by Browder [B18],
and his results improved by Wagoner [W1] and Sullivan (unpublished), but all
assuming all spaces involved to be 1-connected.

Theorem 12.1. Let (Y1, X) and (Y2, X) be simple Poincaré pairs, with

Y1 ∩ Y2 = X , Y1 ∪ Y2 = Y ,

and i∗ : π(X) ∼= π(Y1). Let V v be a closed (smooth or PL) manifold, v � 6,
and φ : V → Y a simple homotopy equivalence. Then there exists a submanifold
V v
1 with boundary Mv−1 of V , such that if V2 = V −Int V1, φ is homotopic to a

map φ1 which induces a simple homotopy equivalence of triads (V ;V1, V2;M)→
(Y ;Y1, Y2;X).

Proof Replacing Y1, Y2 by mapping cylinders if necessary, we may assume that
X has product neighbourhoods X × [−1, 0], X × [0, 1] in them; in particular,
we have a collapsing map π : Y → ΣX → [−1, 1]. Make π ◦ φ transverse to 0,
moving only points in φ−1

(
π−1(− 1

2 ,
1
2 )
)
: then we can modify φ correspondingly

(keeping the projection on X constant where it is defined), and so suppose φ
such that π ◦ φ is transverse to 0. Set M ′ = φ−1(X), V ′

i = φ−1(Yi) (i = 1, 2).

Choose a homotopy inverse φ−1 to φ. Choose also an inverse to the tangent
bundle τV – i.e. a bundle νV and trivialisation F of τV ⊕ νV . Set ν = (φ−1)∗νV :
then we can identify νV = φ∗ν. Now apply (3.3) to

(φ |V ′
1 ) : (V

′
1 ,M

′)→ (Y1, X)

with ν |Y1 and F |V ′
1 . Thus there is a cobordism

ψ : (Q,P )→ (Y1, X)

of this pair to a pair (V1,M) mapped by a simple homotopy equivalence, and
also a stable trivialisation F ′ of τQ ⊕ ψ∗ν extending F .

Now construct a manifold W by glueing V × I to Q along V ′
i × 1. The maps

(φ × id) and ψ combine to give a map ψ′ : W → Y × I; F and F ′ combine to
give a stable trivialisation F ′′ of τW ⊕ ψ′∗ν.

142
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W

V1 M

Q P

V ′
1 × 1 M ′ × 1 V ′

2 × 1

V × I

V × 0

In the smooth case, we must round the corner at M ′ × 1. Now
(
as in (11.3)

)
we define triads by

X{1, 2}=W ,

Z{1, 2}= Y × I ,
X{1}= (V × 0) ∪ V1 ,
Z{1}= (Y × 0) ∪ (Y1 × 1) ,

X{2}= (V ′
2 × 1) ∪ P ,

Z{2}= (Y2 × 1) .

Then ψ′ induces a map of degree 1 of triads X → Z and a simple homotopy
equivalence ∂2X → ∂2Z; we constructed ν, F ′′ above. To apply (3.3), we need
only check that π(Y2 × 1) → π(Y × I) is an isomorphism. But by hypothesis
π(X)→ π(Y1) is an isomorphism, and we have Y1 ∩ Y2 = X , Y1 ∪ Y2 = Y , so by
van Kampen’s theorem π(Y2)→ π(Y ) is an isomorphism as required. Thus by
(3.3) we can perform surgery (leaving ∂2X fixed) to obtain a simple homotopy
equivalence. Thus

(
as in (11.3)

)
the resulting manifold is an s-cobordism of

V , hence is diffeomorphic to V × I. But the upper end is split into M1 and
M2 = X ′{2}, which are mapped by simple homotopy equivalences, as desired.

Like the earlier embedding theorems, (12.1) can easily be relativised – one
must start with Poincaré (n + 1)-ads Y1, Y2, a simple homotopy equivalence
X = ∂nY1 → ∂nY2 (which, using a mapping cylinder, we take as the identity,
and then assume |Y1| ∩ |Y2| = |X |) and a manifold structure on the glued n-ad
Y . If inclusion induces an isomorphism π(X)→ π(δnY1), and if dimX � 5, we
can proceed. Of course the result has a relative form : given manifold structures
on ∂n−1Yi which fit on ∂n−1X , we can extend them. The proof extends in
the same way as that of (11.3). As for (11.3.3) we deduce uniqueness up to
concordance.

One can also combine (12.1) with (11.3.4) to obtain a new proof of (11.3)
(
this

presupposes an alternative proof of (11.3.4)
)
, and this method was at one time

used by Browder [B18]. However, his later and more direct argument seems
preferable.

We now drop the hypothesis that π(X) → π(Y1) is an isomorphism in the
above. We find that an obstruction appears, but that it is expressible by our
earlier theory.
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Theorem 12.2A. Let (Y1, X) and (Y2, X) be simple Poincaré pairs with

Y1 ∩ Y2 = X , Y1 ∪ Y2 = Y .

Let V v be a closed (smooth or PL) manifold, v � 6, and φ : V → Y a sim-
ple homotopy equivalence. Then there is a single, well-defined obstruction to
smoothing X to a locally flat submanifold of V , and it lies in Lv+1

(
π(Z)

)
,

where Z is the triad (Y ;Y1, Y2;X).

Proof We proceed as in the proof of (12.1) to define V ′
i , M

′, ν′ and F . We now
have a Poincaré tetrad W :

|W | = Y × I , |∂2W | = Y × 0 , |∂1W | = Y1 × 1 , |∂3W | = Y2 × 1 ,

a corresponding manifold tetrad U , and a map (induced by φ) ψ : U → W of
tetrads inducing a simple homotopy equivalence ∂2U → ∂2W . The only choice
in defining this was the application of transversality. Hence the bordism class of
(U,ψ, ν, F ) is uniquely determined. Thus the obstruction to performing surgery
rel ∂2U to obtain a simple homotopy equivalence is well-defined, and lies in
Lv+1

(
π(δ2U)

) ∼= Lv+1

(
π(Z)

)
, since Z × 1 ⊂ δ2U is a homotopy equivalence. If

surgery can be performed, then as in (12.1) we can smooth X to a locally flat
submanifold M of V .

This is not yet adequate for the applications to be made later of this idea.
We must first relativise, and then show that each element of the suggested
obstruction group does occur as an obstruction for the relativised problem.
Relativising is perfectly straightforward, and the only extension we need is when
V has a boundary, already split into two parts, and we seek to extend the
splitting to V in a particular way.

Theorem 12.2B. Let V1, V2 be manifold triads with M = ∂2V1 = ∂2V2,
and V v the manifold pair formed by glueing them. Let π be the fundamental
groupoid of the triad (V ;V1, V2), x ∈ Lv+2(π), and v � 6. Then there exists a
new smoothing M ′ ⊂ V of the Poincaré embedding defined by M ⊂ V (relative
to ∂M ⊂ ∂V ) such that the obstruction to extending (M×0)∪ (∂M×I) ∪ (M ′×
1) ⊂ ∂(V ×I) to a smoothing of the product Poincaré embedding M ×I ⊂ V ×I
is x.

Proof Define a tetrad U
(
as in (12.12A)

)
by

|U | = V ×I , |∂3U | = V ×0 ∪ ∂V ×I , |∂2U | = V1×1 , |∂1U | = V2×1 .

Thus dim |U | = v+1, and x ∈ Lv+2

(
π(δ3U)

)
. Regard (I, ∂I) as a pair, and form

the product pentad U × I. By (12.1), there exists a degree 1 map of pentads
φ : W → U × I, inducing simple homotopy equivalences on ∂3 and ∂4 (indeed,
the identity on U × 0) and having surgery obstruction x.

Now amalgamate ∂1(U×I) and ∂2(U×I), obtaining V ×1×I; correspondingly
with W , to obtain a map φ : aW → a(U × I) = aU × I of amalgamated tetrads.
By (3.3) we can perform surgery (relative to ∂3 and ∂4) to obtain a simple
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homotopy equivalence of tetrads. The surgery gives a cobordism mapped into
V × I × I, with first face mapped into V × 1 × I. Make this map transverse
to M × 1 × I (leaving it fixed on W ): thus we obtain a cobordism of pentads.
Replacing W (if necessary) by the other end of the cobordism, which of course
has the same surgery obstruction x, we see that we may assume that φ : W →
U × I is such that the induced map of the amalgamated tetrads aW → aU × I
is a simple homotopy equivalence.

It follows that |W | is an s-cobordism, relative to the boundary, of |U | = V × I,
hence we can identify it with V × I× I, and |∂1W ∪ ∂2W | with V ×1× I. Thus
W{3, 4} is identified with a submanifoldN of V ×1×I, with boundary (M×0) ∪
(∂M × I) ∪ (M ′× I) (for, by construction, all is canonical on V × 0 ∪ ∂V × I).
The induced simple homotopy equivalence of the subdivided V × 1 shows that
M ′ and M smooth the same Poincaré embedding. But our construction shows
that the obstruction to extending (M×0) ∪ (∂M×I) ∪ (M ′×1) to a smoothing
of the product Poincaré embedding is precisely x.

Pentads occurred here in discussing a non-relativised theorem; this shows that
the discussion of n-ads in general is avoidable only at the cost of extra compli-
cations in cases like this. Of course, (12.2) can be systematically relativised too,
but we will not need this.

Let Φ be a pushout diagram of finitely presented groups

Φ :

B
b1 ��

b2

��

C1

c1

��
C2

c2 �� D

and write Ψ for the groupoid triad

Ψ :

B ∪ B b1 ∪ b2��

1 ∪ 1

��

C1 ∪ C2

c1 ∪ c2
��

B
c1b1 �� D

deduced from it. Comparing the discussion above with (11.5), it is clear that
LSn(Ψ) ∼= Ln+2(Φ). Moreover, we can identify Ln(B) = Ln+1(B ∪ B → B) in
a natural way, and (11.6) is then simply one of the exact sequences of the triad
Ψ. Thus in the case when M separates V , our theory of (11.5)–(11.6) reduces
entirely to the former one.

We can combine (12.2) with the theory of §11 in a different way.∗ For given a
simple Poincaré embedding (ξ, C,E, h) : Mm → V m+q, with V a manifold, we

∗The discussion includes non-separating submanifolds. In particular, the definition of
LNn(φ) further below includes the non-separating case.
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apply (12.2) to h : V →M(ξ) ∪ C. We then find an obstruction to obtaining a
corresponding splitting of V . If this obstruction vanishes, we split V : one part,
say N , is simply homotopy equivalent to M , and we can then treat separately
the problem of embedding M in N

(
cf. (11.3.4)

)
. This leads to the following.

Set A = π(E), B = π(M), C = π(D), D = π(V ) as before, and

Φ :

A ��

��

C

��
B �� D

Ψ = s2∂2Φ :

A ��

��

A

��
B �� B

Proposition 12.3. We have a commutative diagram of exact sequences∗

Ln+1(B)

p0

���
��

��
��

��
�

p

��
Ln+q+1(C → D)

q

���
��

��
��

��
�

j

��
Ln+q+1(Φ)

∂2

���
��

��
��

��
�

Ln+q+1(A→ B)

i

������������

q0

���
��

��
��

��
�

LSn(Φ)

u

������������

r

���
��

��
��

��
�

Ln+q(A→ B)

Ln+q+2(Φ)

∂2

������������

s

��
LSn(Ψ)

t

������������

r0

��
Ln(B)

p0

������������

Proof Theorem (11.6) gives exactness of (p, q, r), also of (p0, q0, r0), which is a
special case; (3.2) gives a third sequence (i, j, ∂2). We now define s = q0∂2, t is
induced by a map of triads, and u is induced, as in the description above, by
taking the obstruction to splitting V as indicated by the Poincaré embedding.
Triangles involving p and s are commutative by definition; rt = r0 by naturality.
The definition of q shows that j = uq. We have qi = tq0 by naturality; finally,
∂2u(x) = p0r(x) since if x is the class of a Poincaré embedding (ξ, C,E, h) :
M → V , and the splitting V = N ∪ C′ is obtained by transversality, each of
∂2u(x) and por(x) represents the surgery obstruction for (N, ∂N)→ (

M(ξ), E
)
.

Since our diagram is commutative and three sequences are exact, by [W16]
exactness of the fourth sequence follows if ut = 0. But this follows, since
Ln+q+1(Ψ) = 0, from the commutative diagram

LSn(Ψ) ��

u0
��

LSn(Φ)

u
��

Ln+q+1(Ψ) �� Ln+q+1(Φ) .

∗The diagram is defined for all q � 1, but for q � 3 it collapses, since in that case A = C,
B = D, L∗(Φ) = 0, LS∗(Ψ) = LS∗(Φ).
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This fourth sequence, hinted at in the discussion preceding the lemma, shows
how to ‘localise’ the problem of smoothing an embedding by looking at LSn(Ψ),
which depends only on A → B; namely, first (assuming the obstruction in
Ln+q+1(Φ) vanishes), we embed in V m+1 a manifold Nm+1 with relative bound-
ary E′, such that

(
M(ξ), E

)→ (N,E′) is a simple homotopy equivalence; then
try to embed M in N . If q = 1 and ξ is trivial, M(ξ) = M × I, E = M × ∂I,
so N is an s-cobordism, and we can certainly embed M .

Let us abbreviate our notation for these more important LSn(Ψ), and write

LNn(Φ) = LSn(s2Φ) .

The preceding remark now leads to

Lemma 12.4. LNn(B ∪ B → B) = 0.

A direct proof from the definition can easily be given using (12.1). Substituting
in (12.3), we find that

Corollary 12.4.1. Suppose q = 1 and ξ trivial. Then

u : LSn(Φ) ∼= Ln+2(Φ) .

Notice particularly that this result does not assume that V separatesM . In the
case where it does, comparison with our earlier result yields an isomorphism
(also deducible a priori) of the L-groups of the triads

B

��

�� C1

��
C2

�� D

and

B ∪ B

��

�� C1 ∪ C2

��
B �� D

Our method of proof of (12.1) and (12.2) differs from the original method of
Browder (which appeared first in [B18]). Thus in spite of our success, there is
still room for hope that the original method, with suitable modification, may
lead to a theorem different from (though not, of course, contradicting) the above.
In particular, we make the

Conjecture. Let

Φ :

A ��

��

C

��
B �� D

be a pushout diagram of groups, with all maps injective. Then Ln(Φ) ≡ 0.

A weaker conjecture is that Ln(Φ) is a subquotient of the Whitehead group
Wh(A): cf. (12.5) below. It is easy to give examples to show that some condition
such as injectivity is necessary; for an example, let A→ C be ×2 : Z→ Z and
B (hence also D) trivial.
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Although (×2) does not induce ×2 : Li(Z) → Li(Z) for all i, it does so for
L4k+1(Z) ∼= Z, and so is certainly not an isomorphism.

For recent results see §17E.
Cappell [C2], [C3], [C4], [C5] showed that these conjectures are false in general,
using the groups UNil∗(Φ) of unitary nilpotent hermitian forms. The UNil-
groups were defined for the pushout square Φ of any amalgamated free product

π1(V ) = π1(C1) ∗π1(M) π1(C2)

with π1(M) → π1(C1), π1(M) → π1(C2) injective. (See the notes at the end
of the previous section of §12 for some of the properties of the UNil-groups).
Specifically, for any k ≥ 1 let

M4k
0 = S4k ⊂ V 4k+1

0 = P4k+1(R)#P4k+1(R) ,

so that
π1(M0) = {1} ⊂ π1(V0) = D∞ = Z2 ∗ Z2

with D∞ the infinite dihedral group. The UNil-groups of the corresponding
pushout square of groups

Φ0 :

{1} ��

��

Z2

��
Z2

�� D∞

were shown to be non-zero, with⊕
∞

Z2 ⊆ UNil4k+2(Φ0) .

Every non-zero element x �= 0 ∈ UNil4k+2(Φ0) was realized as the splitting
obstruction of a simple homotopy equivalence of (4k+1)-dimensional manifolds
f : W 4k+1 → V0

sM (f) = x �= 0 ∈ LS4k(Φ0) = L4k+2(Φ0) = UNil4k+2(Φ0) .

The UNil-groups were shown to be 2-primary in general

UNil∗(Φ)[ 12 ] = 0 ,

with UNil∗(Φ) = 0 for amalgamated free products which are ‘square root closed’,
i.e. such that

{gi ∈ π1(Ci) : (gi)
2 ∈ π1(M)} = π1(M) (i = 1, 2) .

Similarly in the two-sided case (B) considered in the next section.
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We next consider two-sided but non-separating manifolds. The only such case
which has previously been studied by surgery is that which leads to the fibration
theorem of Browder and Levine [B27] and the subsequent extension of this by
Farrell (thesis, Yale University, 1967). I had originally planned an exposition
along the lines of Farrell’s thesis; then, the penultimate paragraph in his ap-
pendix hinted at a clearer result, which I proved by an extension of the same
method. It appears, however, that the result can also be proved by a simple
trick, which I introduced in [W12].

Suppose given a short exact sequence

(∗) 1→ π
i→ Π

j→ Z→ 0

of finitely presented groups. Choose g ∈ Π with j(g) = 1, and let conjugation
by g induce the automorphism α of π. We write Wh(π) for the Whitehead
group of π, and (Whπ)α for the subgroup of α∗-invariant elements. Now Z2

operates on Wh(π) by taking conjugate (under x �→ x) transposed matrices; α∗
commutes with this action, so we can regard (Whπ)α as a Z2-module.

We also need some notation for groupoids, since we cannot represent our
pushout diagram below using only disjoint unions of groups. Denote by I the
connected groupoid with two vertices 0, 1 and trivial vertex groups (this is the
category with objects 0, 1 in which each Hom(A,B) contains just one mor-
phism). We denote by Φ the diagram of groupoids below (which is a pushout)
(cf. [B38]):

π ∪ π (1, α)
��

� �

��

π
� �

��
π × I β �� Π

where β is defined by β(1, 01) = g and β(x, 00) = x for all x ∈ π.
Theorem 12.5. We have a natural isomorphism, for n � 6,

LSn(Φ) ∼= Ĥn+1
(
Z2; (Whπ)α

)
.

Proof It is easy to construct a smooth or PL fibration Ln−1 ⊂ Un → S1

whose induced exact sequence of fundamental groups coincides with (∗). Now
by (11.7), for n � 6 we can find another smoothing L′ ⊂ U of the same simple
Poincaré submanifold† such that the obstruction to extending (L×0) ∪ (L′×1)

†i.e. the same simple Poincaré embedding

149
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to a smoothing of the product Poincaré embedding is a prescribed element of
LSn(Φ).

Let Ũ denote the covering space of U induced from the universal covering of S1

by R. The inclusion of L in U lifts to an inclusion in Ũ : more precisely, we can
regard U as formed from L×I by attaching L×1 to L×0 by a homeomorphism
G inducing α on π1(L). Then Ũ is naturally identified with L×R; the group of
covering transformations is generated by T with T (x, t) =

(
G(x), t + 1

)
. Since

L′ ⊂ U smooths the same Poincaré embedding, it also lifts to an embedding
h : L′ ⊂ L×R, which we may choose to lie to the right of L× 0. Let W be the
compact submanifold of L ×R bounded by L × 0 and h(L′): it is well known
that such a W is an h-cobordism. Let it have Whitehead torsion τW . We are
now ready to play our trick.

Lemma 12.6. There is an embedding e :W → U × I, with
∂e(W ) = (L× 0) ∪ (L′ × 1) .

Proof We construct e as the projection of an embedding ẽ in the universal cover
Ũ × I ∼= (L × R) × I, of W ′ = W ∪ (L′ × I). Define the first component of
ẽ |W to be the inclusion W ⊂ L ×R. Let p : W → R be the projection, and
let K exceed the least upper bound of p(W ). Define the second component of
ẽ |W to send w to p(w)/K.

L× 0× I

W × 1

ẽ(W )

ẽ(L′ × I)

h(L′)× 0 L×R× 0

It is clear that W is embedded by ẽ in (L × R) × I, and moreover that the
projection into U × I is still embedded. More, ẽ(L′) ⊂ h(L′)× I. We now define
ẽ on L′ × I as indicated in the diagram above : the image is the submanifold
of h(L′) × I bounded by ẽ(L′) and h(L′) × 1. (One could easily write down
a formula for a topological embedding, but this would not be PL, and would
need smoothing at the corner anyway). Again, it is clear that ẽ induces, by
projection, an embedding of L′ × I in U × I.
We must now verify that the projections of ẽ(W ) and ẽ(L′ × I) intersect only

along ẽ(L′×0). Suppose that ẽ(w) and ẽ(m, t) have the same projection. Then,
for some i ∈ Z, ẽ(M, t) = (T i × 1)ẽ(w), and so h(m) = T i(w). Now for j > 0,
T j
(
h(L′)

)
is connected and disjoint from h(L′) (for L′ is embedded in U), so it

lies completely to the right ofW . Hence i � 0. But p(m) = i+p(w), so if i > 0,
the second coordinate of ẽ(m, t) is � p(m)/K > p(w)/K, the second coordinate
of (T i × 1)ẽ(w). Thus overlap only occurs if i = 0, and along ẽ(L′ × 0). Our
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embedding is already PL (in the PL case); in the smooth case, one must round
the corner (e.g. by the Cairns-Hirsch theorem) to define e.

This direct construction, replacing an existence proof by surgery, shortens our
proof considerably. It is clear thatW smooths the product Poincaré embedding.
It may not quite be true thatW extends the given smoothing by (L×0) ∪ (L′ ∪
1): the inclusion in U×I need not be homotopic (rel ∂W ) to the given map. But
this is easily corrected by isotoping L round U and extending to an isotopy of
U × I. Now the only thing which hinders us from smoothing the product simple
Poincaré embedding is the torsion τW . Hence τW determines the obstruction in
LSn(Φ). If we glue two copies of U × I end to end, both surgery obstructions
and Whitehead torsions are additive. It follows that we have an isomorphism
from some subquotient of Wh(π) onto LSn(Φ).

Since the natural map Ln−1 → L′n−1 is a simple homotopy equivalence, the
torsion τW must satisfy τ∗

W
= (−1)n+1τW . Further, when U is cut along L we

obtain an s-cobordism. The same must hold true for L′. But the new cobordism
is obtained from the old by adding W at one end and removing it at the other.
Also, the fundamental group is mapped by the identity at one end and by α at
the other. It follows that α∗(τW ) = τW . Conversely, let τ satisfy

α∗(τ) = τ , τ∗ = (−1)n+1τ . (1)

Split a collar neighbourhood L×I of L in U as a product of h-cobordisms with
torsions ±τ , with common boundary L′ (for n � 6, this is known to be possible :
see e.g. [M14]). Then the duality condition on τ implies that the natural map
L → L′ is a simple homotopy equivalence; the first condition deals with the
simple homotopy type of the complement, and so L′ and L define the same
simple Poincaré embedding. Thus the relevant subgroup of Wh(π) is precisely
that defined by (1).

Next, let τ define zero in LSn(Φ). Then, with the notations above, we can
extend (L × 0) ∪ (L′ × 1) to a smoothing X ⊂ U × I of the product Poincaré

embedding. Lift X to Ũ × I: the result may meet ẽ
(
W ∪ (L′ × I)

)
but is

isotopic (rel ∂X) to an embedding meeting it only in ∂X : this is easily seen

by engulfing, or by finding an h-cobordism of L× 0 to L′ × 1 in Ũ × I disjoint
(except at the ends) from both the above – e.g. a translate of X , together with

pieces in Ũ × ∂I – and then noting that this is h-cobordant rel the boundary
both to X and to Im ẽ, so that we can isotope either into a neighbourhood of it
disjoint from the other. The region between X and Im ẽ is now an h-cobordism,
so is determined by its torsion.

L× 0× 1

W × 1 h(L′)× 1

T (X)

L× 0× 0 L× 1× 0

S Im ẽ

X
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Thus we can embed X in a small neighbourhood of Im ẽ in U×I, by embedding
in this an h-cobordism with the given torsion. This embedding also smooths
the product simple Poincaré embedding.

Now the shaded region S in the figure evidently collapses onto W × 1, and the
torsion of L× 1 ⊂W × 1 is τ , hence so is the torsion of L× I ⊂ S. Moving one
to the right, the inclusion of L × I × I in the larger region, hence also that of
L× I, has torsion α∗τ . Thus the h-cobordism of ẽ(W ) has torsion α∗τ − τ = 0.
If we now translate ẽ(W ) to X by a (small) h-cobordism with torsion σ, the
corresponding h-cobordism of X to itself will (similarly) have torsion α∗σ − σ.
Now we need τ = σ + (−1)n+1σ∗ for X to be an s-cobordism, and α∗σ = σ
for X to smooth the product Poincaré embedding. These conditions are both
necessary and sufficient. Since, for a Z2-module A on which Z2 operates by
a �→ a∗, one can identify Ĥn+1(Z2;A) with

{a ∈ A : a∗ = (−1)n+1a}
{b∗ + (−1)n+1b : b ∈ A} ,

the theorem now follows.

Corollary 12.5.1. Suppose given a simple Poincaré embedding of Mn in a
manifold V n+1, with M , V and the complement C connected and such that each
inclusion i0, i1 : M → C induces an isomorphism of π1, and ∂M is embedded
in ∂V , and n � 5. Then we can smooth it to obtain a manifold embedding,
provided an obstruction ∈ Ĥn+1

(
Z2;Wh

(
π1(M)

)α)
vanishes, α = (i1∗)−1(i0∗).

This is merely a restatement, in geometrical terms, of the theorem. Now we
will use it more algebraically. First we apply (12.3). The corresponding LSn(Ψ)
vanish by (12.4). We thus obtain isomorphisms

(
or directly by (12.4.1)

)
Ln+2(Φ) ∼= LSn(Φ) ∼= Ĥn+1

(
Z2; (Whπ)α

)
.

Theorem 12.6. There is a commutative exact diagram

Lm(π)

��








t

��
Lm(π)

a2

��








a1

��
Lm(Π)

��








Lm+1(π → Π)

∂

�������������

���
��

��
��

��
��

Mm

�������������

���
��

��
��

��
��

� Lm(π → Π)

Lm+1(Π)

�������������

��
Ĥm

(
Z2; (Whπ)α

)
a3

�������������

a4

��
Lm−1(π)

�������������

and the map t = 1− w(g)α∗.
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Proof The sequence containing a1 is the exact sequence of π → Π. The sequence
containing a4 is one of the (isomorphic) sequences of the triad Φ, on identifying
Lm+1(π ∪ π → π) with Lm(π)

(
essentially the diagonal subgroup of Lm(π) ×

Lm(π)
)
in the obvious way. To define Mm, and obtain the sequence with a3, we

convert {Π} into a triad σ1σ1(Π), which maps naturally into Φ, and take the
exact sequence of this map. Thus we define M as the L-group of

φ ��

����
���

��

��

φ

����
���

��

��
π ∪ π ��

��

π

��
φ ��

����
���

��� Π

����
���

�

π �� Π .

Now another exact sequence containing M is induced by the map of triads

φ ��

��

φ

��
π ∪ π �� π

��

φ ��

��

Π

��
π �� Π

But each of these has the same L-groups as π (we can remove the top row of
the first, and the right column of the second). We have now defined all our
sequences : the tedious but trivial verifications of commutativity we leave to the
reader (some care is needed in making the correct identifications).

To compute the composite t, we use the commutative diagram

Lm(π) ∼= Lm+1

(
(1, 1) : π ∪ π → π

)
��

∂ �� Lm(π ∪ π)

(1, α)∗
��

Lm+1(π → Π)
∂ �� Lm(π) .

Thus Lm(π) is identified with {x,−x} ∈ Lm(π ∪ π) ∼= Lm(π)× Lm(π).

Now {x,−x} appears to be mapped into x − α∗x. However, our map is not
induced by a map of groups, and it is seen on inspection that if w = −1,
the orientation of a fundamental class is changed. Thus the correct formula is
x− w(g)α∗(x), as asserted.

We will find this result very useful in the next chapter.

Codimension 1 splitting in the non-separating two-sided case (B).
Let V be an (n + 1)-dimensional manifold with a codimension 1 submanifold
Mn ⊂ V n+1 of type (B), with trivial normal bundle M × [0, 1] ⊂ V and comple-
ment C = cl.(V −M × [0, 1]), such that V,M,C are connected. By definition,
a homotopy equivalence f : W → V from an (n + 1)-dimensional manifold W
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h-splits at M ⊂ V if f is h-cobordant to a map which is transverse regular
at M with the restrictions f | : f−1(M) → M , f | : f−1(C) → C homotopy
equivalences. In the special case when the inclusions i0, i1 : M → C induce
isomorphisms i0∗, i1∗ : π1(M) ∼= π1(C) let α = (i1∗)−1i0∗ : π1(M) = π → π, so
that

π1(V ) = Π = π ×α Z

and as above there is an exact sequence

1→ π
i→ Π

j→ Z→ 0 .

Farrell and Hsiang [F4] proved that in this case a homotopy equivalence f :
W → V from an (n + 1)-dimensional manifold W is such that τ(f) ∈ Im

(
i :

Wh(π) → Wh(Π)
)
if (and for n � 5 only if ) f h-splits at M ⊂ V . The

Whitehead groups of π,Π fit into the exact sequence of Bass [B7, Chapter XII]
and Farrell and Hsiang [F3]

· · · → Wh2(π)
i→Wh2(Π)

∂→Wh(π)⊕ Ñil1
(
Z[π]

)⊕ Ñil1
(
Z[π]

)
(1−α)⊕0⊕0−−−−−−−→Wh(π)

i→Wh(Π)
∂→ K̃0

(
Z[π]

) ⊕ Ñil0
(
Z[π]

) ⊕ Ñil0
(
Z[π]

)
(1−α)⊕0⊕0−−−−−−−→ K̃0

(
Z[π]

) i→ K̃0

(
Z[Π]

)→ . . .

extended to the left to include the Wh2-groups. The geometrically defined iso-
morphism of Theorem 12.5 is given algebraically by

LSn(Φ)
∼=→ Ĥn+1

(
Z2; (Whπ)α

)
; sM (f) �→ ∂τ2(f) ,

with sM (f) ∈ LSn(Φ) the splitting obstruction of a simple homotopy equivalence
f : W → V and

τ2(f) = (−1)nτ2(f)∗ ∈ Ker
(
∂ :Wh2(Π)→Wh(π)

)
the Wh2-invariant of f . The groups L∗(π → Π), M∗ in Theorem 12.6 are
given by the intermediate L-groups of π decorated by Wh(π)α ⊆Wh(π)

Lm+1(π → Π) = LWh(π)α

m (π)

and the intermediate L-groups of Π decorated by Im
(
i :Wh2(π)→Wh2(Π)

) ⊆
Wh2(Π)

Mm = LWh2(π)
m (Π)

– see §17D for intermediate L-theory, and Hsiang and Sharpe [H25], Weiss
and Williams [W43] for the Wh2-variant of surgery obstruction theory. See
Novikov [N8], and Ranicki [R2], [R3] for the algebraic L-theory of the twisted
Laurent polynomial extension Z[Π] = Z[π]α[z, z

−1], generalising the algebraic
K-theory methods and results of [B7], [F3]. Cappell [C4], [C5] has also defined
UNil-groups for type (B) codimension 1 splitting, assuming that the morphisms
i0∗, i1∗ : π1(M) → π1(C) are injections – see the notes at the ends of the
previous two sections of §12. The UNil-groups vanish in the case Π = π ×α Z
([C5, Chapter VI].)



12C. One-sided Submanifolds

Finally we consider the problem of 1-sided submanifolds. This seems to be
less tractable than the other cases considered above – not only does the general
case lead to complicated formulae, but even those special cases where the result
can be neatly expressed do not seem to admit a direct geometrical argument.
We follow the general lines of the treatment by Browder and Livesay [B29] of a
special case of the problem.

In the notation introduced earlier in this chapter, our problem is as follows.
Let π′ ⊂ π be a subgroup of index 2. Compute LNn(π

′ → π). Compared with
the solution in (12.4) for two-sided submanifolds, the results in this case are
complicated, and we will have no further computations of groups LSn in this
chapter. We end up with a group whose definition resembles that of Ln(π

′),
and in one case coincides with it.

We will adopt the following notation. V v is a compact manifold with corner
dividing the boundary into two parts ∂0V , ∂1V ; the latter is the total space of
a (smooth or PL) bundle with fibre D1. We are given a double covering Ṽ of
V , trivial on ∂0V , which is an s-cobordism between the two copies of ∂0V . Let
∂M ⊂ ∂1V be the zero cross-section : we wish to extend this to a submanifold
of V whose inclusion is a simple homotopy equivalence. We will write T for the
nontrivial covering transformation of Ṽ over V .

As a first step, let W be the mapping cylinder of the projection Ṽ → V , alias
the associated bundle with fibre D1 = [−1, 1]. There is a section over ∂0V of
the double covering (with fibre {−1, 1}): extend to a section V → W . Over
∂1V there is a natural way to do this, so that this section is transverse to the
zero section, and meets it in ∂M × 0. Now deform the section (rel ∂1V ) to be
transverse to the zero section, and denote by M the submanifold of V which is
the locus of zeros of the section.

Since Ṽ is an s-cobordism, (Ṽ , ∂1Ṽ ) is simply homotopy equivalent to
(∂0V, ∂∂0V ), and so is a simple Poincaré pair (of formal dimension v−1). Hence
also (V, ∂1V ) is a simple Poincaré pair. The homology class of (M,∂M) is dual
to the cohomology class (rel ∂0V ) of the covering; it follows that (M,∂M) →
(V, ∂1V ) is a map of degree 1. Perhaps it is only really clear that the degree is
odd, but we will discuss this point more fully below.

It will be seen that ∂1V plays no essential rôle above, nor will it in the ar-
guments below. To economise notation, we set ∂1V = ∅, ∂V = ∂0V , on the
understanding that all would be equally well justified if ∂1V were to be reintro-
duced.

Now we can regard the identity map of V as corresponding to a simple Poincaré
embedding, which we seek to smooth. Our technique is to perform surgery on

155
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the manifold M we have just constructed, or rather, equivariant surgery on
its double covering. We want M̃ ⊂ Ṽ to be a homotopy equivalence, and so
must kill the relative homotopy groups. The pattern of the argument closely
resembles that of §5 and §6, but many details are different.

Lemma 12.7. If v > 2k, we can do surgery on M inside V to make the
inclusion M → V k-connected.

Proof We proceed by induction on k, treating the cases k � 2 individually. We
first describe what we mean by ‘surgery on M inside V ’. Suppose given an
embedding

f : (Dr, ∂Dr)×Dv−r → (V,M)

with f−1(M) = ∂Dr ×Dv−r. Then we say that the manifold

M ′ = M − f(∂Dr ×Dv−r) ∪ f(Dr × ∂Dv−r)

is obtained from M by surgery, using f . It is easy to construct, using f , a
cobordism from M × 0 to M ′ × 1 lying in V × I;

Image f

M× 0

M

M ′ × 1

in fact, cobordism is the equivalence relation which interests us. It can be shown,
as in the previously discussed cases, that cobordism (as equivalence relation)
within V is generated by surgeries inside V , together with isotopies. We will not
need this result, but use below a ‘surgery’ of a somewhat different form to this,
which nevertheless gives a cobordism. (Even this can easily be avoided). In the
smooth case, the above description should be completed by rounding the corner
which appears at f(∂Dr × ∂Dv−r): this is easily accomplished using a model.
We observe that it suffices to give an embedding f : (Dr, ∂Dr)→ (V,M), since f
can then be constructed by taking a suitable (tubular or regular) neighbourhood.

We may suppose V connected; it is then clear that M ⊂ V is 0-connected
(M �= ∅ as its mod 2 homology class is nonzero). Now recall that M was the
locus of zeros of a section, transverse to the zero section, of the arc bundle over
V associated to the double covering Ṽ . Lifting this to Ṽ by the projection, M̃
is the locus of zeros of a section s, transverse to the zero section, of the bundle
Ṽ × [−1, 1]→ Ṽ . Define A+ (resp. A−) to be the set of P ∈ Ṽ such that s(P )
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has second coordinate � 0 (resp. � 0). Then Ṽ = A+ ∪ A− and M̃ = A+ ∩ A−;
also T (A+) = A−.

Ṽ M̃ V
M

A+

A−

−→

It is now clear in what sense the inclusion M ⊂ V has degree 1: we must
orient M̃ as ∂∗[A+], where A+ inherits its orientation (possibly with twisted

coefficients) from Ṽ .

Now Ṽ is an s-cobordism; let α be an arc joining the ends, and disjoint from its
image by T . If now α meets more than one component of M̃ , some component
arc β of α ∩ A+ or α ∩ A− must have its ends on different components of
M̃ . We thicken β to obtain an embedding (D1, ∂D1)×Dv−1 → (Ṽ , M̃); if the
transverse disc Dv−1 is small enough, this projects to an embedding in V , which
we use to perform surgery. This decreases the number of components of M̃ by
one (at least); by induction we may suppose M̃ connected.

Since i : M → V has degree 1, the induced map i∗ : π1(M) → π1(V ) is
surjective (else one could lift i to some covering space of V ). Hence i is 1-
connected. We next wish to make π1(i) bijective : now by (1.2) we can do
this by adding a finite set of 2-handles, whose classes are given by maps fi :
(D2, ∂D2)→ (V,M).

We are treating the case k = 2, so our hypothesis is v � 5, so these maps
can be assumed to be disjoint embeddings, moreover, we may take them to
meet M transversely. Choose lifts f̃i : D2 → Ṽ : then f−1

i (M) gives a finite

set of disjoint simple closed curves in D2, separating D2 into R+ = f̃−1
i (A+)

and R− = f̃−1
i (A−). We choose the f̃i so that the region meeting ∂D2 is a

component of R+.

R− is shaded .
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Now thicken fi to an embedding Fi : D2 × Dv−2 → V in such a way that
F−1
i (M) = f−1

i (M) × Dv−2. We delete, for each i, M ∩ Im fi from M , and
replace it by

(R− × ∂Dv−2) ∪ (
S1 × (Dv−2 − 1

2D
v−2)

) ∪ (
D2 × ∂(12Dv−2)

)
,

where 1
2D

v−2 denotes the disc concentric with Dv−2 with radius 1
2 . The subset

deleted has skeleton a collection of circles, of codimension � 3, so this deletion
does not affect the fundamental group. The attachments add various relations
between the generators; in particular, we have killed the desired elements. This
argument is a modification of the original one of Browder [B17] (he used only
ordinary surgeries). We may thus suppose that i∗ induces an isomorphism of
fundamental groups. Now by (2.2) the induced map

π2(M) ∼= H2(M ; Λ)→ H2(V ; Λ) ∼= π2(V )

is surjective, so i is 2-connected.

Finally we treat the case k > 2, supposing inductively that i is already (k−1)-
connected. Then van Kampen’s theorem implies that

π1(M̃) ∼= π1(A
+) ∼= π1(A

−) ∼= π1(Ṽ ) = π′ .

The next remark is trivial enough, but it (and extensions) will be used so fre-
quently in the sequel that it is useful to have a reference.

Lemma 12.8. In the situation above, we have isomorphisms for all r

Kr−1(M ; Λ) = Hr(V,M ; Λ) = Hr(Ṽ , M̃ ; Λ′) = Hr(A
+, M̃ ; Λ′)⊕Hr(A

−, M̃ ; Λ′) .

Moreover,

Kr−1(A
+; Λ′) = Hr(Ṽ , A

+; Λ′) = Hr(A
−, M̃ ; Λ′) .

If, further, i : M → V is (r − 1)-connected, then

πr(i) ∼= Kr−1(M ; Λ) ,

and

πr(A
+, M̃) = Hr(A

+, M̃ ; Λ′) .
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The proof is immediate (given what we have already done in §2). We return
to the proof of (12.7). Taking r = k in the lemma, we have

πk(i) = πk(A
+, M̃)⊕ πk(A−, M̃) ,

and the two summands are interchanged by T . Now πk(i) is finitely generated

over Λ by (1.2) (or rather, by its proof), hence over Λ′, hence so is πk(A
+, M̃).

We choose a finite set of generators, and represent by maps fi : (D
k, ∂Dk) →

(A+, M̃). Since v > 2k we may suppose by general position that these, and
their projections in V , are disjoint embeddings. We now use them to perform
surgery. Since we are below the middle dimension, this has the effect of killing
the classes of the ∂fi in Kk−1(M ; Λ). But we chose these to be Λ′-generators
of Kk(A

+, M̃ ; Λ′) and hence (T interchanges the summands) Λ-generators of

Hk(Ṽ , M̃ ; Λ′), so we have killed the whole group, and made i k-connected. This
proves the lemma.

We must now consider what happens in the middle dimensions; here, the even
and odd dimensional cases have to be considered separately. First let v = 2k+1,
so that dimM = 2k is even. Then the only remaining nonvanishing homology
or cohomology group of (A+, M̃), with any coefficient module, is the (k + 1)st.

By Lemma 2.3, H+ = Hk+1(A
+, M̃ ; Λ′) is a finitely generated projective Λ′-

module, which is stably free and s-based. Now by performing surgery on further
(k− 1)-spheres in M , we add free modules to this

(
cf. (5.5)

)
, so may suppose it

free and based. We write also H− = Hk+1(A
−, M̃ ; Λ′) and

H = H+ ⊕H− = Hk+1(Ṽ , M̃ ; Λ′) = Hk+1(V,M ; Λ) .

First consider the simple hermitian form (on H) over Λ′, arising from in-

tersections and self-intersections in M̃ : then H+ and H− are complementary
lagrangians. That they are lagrangians follows from (5.7) (take N = A+). Next
we consider the simple hermitian form over Λ, using intersections inM . Choose
t ∈ (π − π′). Then for x, y ∈ H+ we have λ(x, y) = tλ0(x, y), say, where
λ0(x, y) ∈ Λ′.

Similarly, μ(x) = tμ0(x), where μ0 lies in a certain quotient group of Λ′ (to be
described below). Notice that since H+ = H−t, the maps λ0 and μ0 entirely
determine λ and μ.
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We next determine the relations satisfied by λ0 and μ0. Notice that we are
working entirely over Λ′: however, some account needs to be taken of t, and we
write

g0 = t2 , gα = t−1gt (g ∈ π′) , and gα = w(g)t−1g−1t :

then w(g0) = 1 and w(gα) = w(g) .

(Q1) λ0(x, y) is Λ
′-linear in y (this is clear).

(Q2) λ0(y, x) = t−1λ(y, x) = (−1)kt−1λ(x, y)

= (−1)kt−1tλ0(x, y) = (−1)kt−1λ0(x, y) t

= (−1)kw(t)λ0(x, y)αg−1
0 .

(Q3) μ0(x+ y) −μ0(x)− μ0(y) = λ0(x, y) (clear)

(Q4) λ0(x, x) = t−1λ(x, x) = t−1
(
μ(x) + (−1)kμ(x))

= t−1
(
tμ0(x) + (−1)kw(t)μ0(x)t

−1
)

= μ0(x) + (−1)kw(t)μ0(x)
α
g−1
0 .

(Q5) μ0(xr) = t−1rμ(x)r

= t−1rtμ0(x)r = rαμ0(x)r.

and we should add that (by a similar calculation) μ0 lies in the quotient of Λ′

by the group of elements of the form

y − (−1)kw(t)yαg−1
0 .

Also note that duality in M at the chain level extends to a simple equivalence
C∗(V,M) → C∗(V,M). In the double covers, this splits as a direct sum of

two equivalences over Λ′, the first being C∗(A+, M̃) → C∗(A−, M̃). This is

a simple equivalence, being the composite of Lefschetz duality C∗(A+, M̃) →
C∗(A+, ∂V ), a dimension shifting isomorphism (recall that Ṽ is an s-cobordism)

C∗(A+, ∂V ) → C∗(Ṽ , A+), and excision. In our case, the chain complex is
simply equivalent to the (k+1)st homology group (with appropriate basis), and
the above coincides with the duality given by λ0, composed with multiplication
by t0. It follows that the ‘hermitian’ form λ0 is simple.
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In our case this makes better algebraic sense : if t2 = g0 = 1, we have precisely
a simple (−1)kw(t)-hermitian form with respect to the anti-involution

x �→ xα = t−1xt

of the ring Λ′. If, in particular, t is central these coincide with the forms used
above to define L0(π

′) and L2(π
′)
(
precisely, L2k+1−w(t)(π

′)
)
.

We can now enunciate the main result of this part of the chapter.

Theorem 12.9. The surgery obstruction groups LNn(π
′ → π), for n � 5, are

determined from the class of simple ‘hermitian’ forms just described by the same
algebraic process as we used in §5 for n even or in §6 for n odd (in this case
we will assume the existence of t ∈ π − π′ of order 2).

One interesting case is when π′ is abelian, and α takes each element to its
inverse : here our hermitian forms specialise to be orthogonal or symplectic.

For the particular case when t is central we have the

Corollary 12.9.1. LNn(π
′ → π′ × Z−

2 )
∼= Ln(π

′) ,

LNn(π
′ → π′ × Z+

2 )
∼= Ln+2(π

′) .

Here, Z+
2 and Z−

2 denote groups of order 2 with w trivial resp. nontrivial : not
that π(V ) = π′ × Z−

2 implies π(M) = π′ × Z+
2 since the normal bundle is non-

trivial. We now deduce

Corollary 12.9.2. We have an isomorphism of exact sequences

Ln+1(π
′×Z+

2 )
p0 ��

s

��

Ln+2(π
′→π′ × Z−

2 )
q0 ��

��

LNn(π
′→π′ × Z−

2 )
r0 ��

b

��

Ln(π
′×Z+

2 )

s

��
Ln+1(π

′×Z+
2 )

�� Ln+1(π
′→π′ × Z+

2 )
�� Ln(π

′) �� Ln(π
′×Z+

2 )

where the upper sequence of maps comes from (11.6), the lower sequence from
(3.2), b is the isomorphism of (12.9.1), and s is induced algebraically by the
ring automorphism sending the nontrivial element T of Z2 to −T .
Commutativity of the third square follows at once from the definitions of s, b

and r0. Since j is injective (the retraction π′ × Z+
2 → π′ induces a left inverse

for it), so is r0, and we have an induced isomorphism of their cokernels.
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We now begin the proof of (12.9), for the case when n is even. We must show
that the surgery obstruction groups LNn(π

′ → π) are obtained from the forms
above by the same process as in §5. We can use the same definitions of hyperbolic
form and lagrangian as there, and hence define a Grothendieck group G of forms
modulo hyperbolic forms. We have shown that a representative surgery problem
for an element of LNn(π

′ → π) defines (after suitable preliminary surgeries)
an element of G : we thus have a correspondence between LNn(π

′ → π) and
G which is clearly additive. Next we prove that this is a well-defined map
LNn(π

′ → π)→ G .

Since the correspondence is additive, it suffices to show that if the geometrical
obstruction to a problem vanishes, then we have (at least stably) a hyperbolic
form. So we can assume there exists a cobordism N ⊂ V ×I ofM×0 toM ′×1,
withM ′ ⊂ V a simple homotopy equivalence. By Lemma (12.7), we can perform
surgery on N in V × I to make the inclusion map k-connected. It then follows
thatN has a handle decomposition based onM ′ with only k-handles and (k+1)-
handles : we wish to get rid of the latter, by killing Hk(N,M ; Λ). Now as in

(12.8), if we write B+, B− for the parts into which Ñ separates Ṽ × I, with
A+ ⊂ ∂B+, we have

A′+ A′−

B+ B−

A+ A−

Ñ

M̃ ′

M̃

Hk(N,M ; Λ) = Hk(Ñ , M̃ ; Λ′) = Hk+1(Ṽ × 1, Ṽ × 0 ∪ Ñ ; Λ′)

= Hk+1(B
+, A+ ∪ Ñ ; Λ′)⊕Hk+1(B

−, A− ∪ Ñ ; Λ′)

= K+ ⊕K− , say.

If we write also Φ+ for the triad (B+;A+, Ñ), then K+ = πk+1(Φ
+) by

Namioka’s relativisation [N1] of the Hurewicz theorem.
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Since K+⊕K− is finitely generated over Λ′, so is K+; select a finite set of gen-
erators,

(
which then also generate Hk(N,M ; Λ) over Λ

)
, and represent by maps

fj : (D
k+1, Dk

+, D
k
−, S

k−1)→ Φ+. If these are put in general position, they have
only isolated intersections and self-intersections, which are easily disposed of by
our usual method; hence we may suppose them disjoint embeddings. We now
thicken the images and perform corresponding surgery (in Ṽ × I) on N rela-
tive to M . By (1.4), this kills Hk(N,M ; Λ). Since the fj(S

k−1) are necessarily

trivial in M , it is easily verified (as in §5) that the effect on Hk+1(A
+, M̃ ; Λ′)

is to add a hyperbolic form. But for the new M , ∂∗Hk+2(B
+, A+ ∪ Ñ ; Λ′) is a

lagrangian in Hk+1(A
+, M̃ ; Λ′). We will not write out the proof in detail : it is

closely analogous to that of (5.7). Thus our original form was stably hyperbolic.
Hence our correspondence is in fact a homomorphism.

We next show that it is injective, in other words, that if we have a hyperbolic
form, surgery is possible. The formulae above show that if {e1, . . . , er} is a
preferred Λ′-base of a lagrangian of (λ0, μ0), then the same elements of H+ ⊂ H
form a preferred Λ-base of a lagrangian for (λ, μ). Hence if we can perform
surgery on these classes, we do indeed obtain a simple homotopy equivalence
M → V . Now represent these classes by maps f̃i : (D

k+1, Sk)→ (A+2k+1, M̃2k).
We wish to arrange that not only these, but also the projected maps fi into
(V,M), are disjoint embeddings – for then we can use them to perform surgery
on M to obtain the desired conclusion.

It will suffice, in fact, to make f1 : (Dk+1, Sk)→ (V,M) an embedding, for we

can then perform surgery using this, and proceed by induction. Consider f̃1:
since (A+, M̃) is k-connected, and k � 3, a theorem of Hudson [H28] allows us

to suppose f̃1 an embedding. Now if T : Ṽ → Ṽ is the covering transformation,
since T f̃1 maps Dk+1 into A−, its image can only overlap that of f̃1 on M̃ ,
corresponding to a double point of f̃1 : Sk → M . But since the class e1 of f1
has μ(e1) = 0, the last part of (5.2) shows us how to remove such double points,
by ‘pushing’ an arc α of Sk across a disc inM . We can now extend this push to
an isotopy of Dk+1 which introduces no new singularities, as follows. Choose a
coordinate neighbourhood of the disc in M across which the push is to be made
(viz. the product of the new model used in [M13, 6.6] and an arc normal to M).
We may suppose

α

that a neighbourhoodNα of α inDk+1 corresponds to the product (Nα ∩M)×I.
If now ht is the isotopy of Nα ∩ M , we extend it by

ht(P, u) = ht(1−u)(P )

to the disc. Clearly this extension has the desired properties : in the PL case,
we cannot use the same equations, but it is not difficult to arrange details to
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give the same geometrical picture. (Less attractively, we can use the above
to obtain a smooth embedding of the model situation, and approximate this
by a PL embedding, using the techniques of [L3]). This concludes the proof
that if we have a hyperbolic form, we can do surgery : injectivity of the map
LNn(π

′ → π)→ G follows.

It remains to show the map surjective – i.e. to realise any simple hermitian
form by a surgery problem. We can do this following the techniques of (5.8)
and (6.5). Namely, let M2k−1

0 (k � 3) have fundamental group π; let V 2k
0 be

the bundle over it with fibre [−1, 1] corresponding to the subgroup π′ ⊂ π, and
identify M0 ⊂ V0 with the zero cross-section. Let M̃0 ⊂ Ṽ0 be the coverings
with fundamental group π.

Lemma 12.10. Given any simple ‘hermitian’ form satisfying (Q1)–(Q5), there
exists N2k ⊂ V0 × I with M0 = N ∩ (V0 × 0), such that M1 = N ∩ (V0 × 1) ⊂
V0× 1 smooths the same simple Poincaré embedding, and such that N ⊂ V0× I
is k-connected, and determines the given simple hermitian form.

Proof Suppose the form has rank 2r. We first construct N . We can write
down a simple hermitian form over Λ, related to the given form as above. Now
by (5.8) we can construct a cobordism N of M (satisfying various ancillary
conditions) such that Kk(N ; Λ) defines precisely this simple hermitian form. To
be explicit, if our given form is on the free Λ′-module H+ with basis {ei}, and
has λ0(ei, ej) = aij , μ0(e0) = bi, this form is on the free Λ-moduleH ⊃ H+ with
the same basis, and has λ(ei, ej) = taij , μ(ei) = tbi. Thus H+ is a lagrangian

in Kk(Ñ ; Λ′). We attach (k+1)-handles to Ñ × I, along Ñ × 1, by embeddings
representing the classes ei: call the result A+. We let A− be a homeomorphic
copy of A+, attached to it along Ñ×0 by the map corresponding to the covering
transformation of Ñ over N : set W̃ = A+ ∪ A−. This construction is due to
López de Medrano [L20].

The homeomorphism of A+ on A− induces a fixed point free involution of W̃
(since it is free on Ñ): let the orbit space be W ⊃ N . All will be proved if we
can show thatW is an s-cobordism of V0, and hence identify it with V0×I. Now
up to simple homotopy, N was formed from M by attaching a certain number
of k-cells, and W from V0 ∪ N by attaching the same number of (k + 1)-cells.
It will suffice, then, to show that the matrix of incidence numbers (over Λ) of
these cells is (stably) a product of elementary matrices. In fact we can take it
to be the identity, since the {ei} were a preferred base of the given form, and
hence can be taken to be the classes of the attached k-cells; and the (k+1)-cells
were attached with boundary classes precisely {ei}.
We now turn to the proof of (12.9) in the case when n is odd. We must

consider the case v = 2k + 2, and dimM = (2k + 1) odd. Again by (12.7) we

can assume M ⊂ V k-connected, and hence M̃ ⊂ A+ also k-connected. Select
a finite set of Λ′-generators for Kk+1(A

+, M̃ ; Λ′): we claim that these can be

represented by disjoint framed embeddings f̃i : (D
k+1, Sk)×Dk+1 → (A+, M̃).

Indeed, we could take generic maps, and “push the singularities away across
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the boundary” since (A+, M̃) is 1-connected; or (perhaps better) appeal to the
theorem of Hudson [H28] which formalises this idea. We can also suppose, by

a general position argument, that the f̃i(S
k × Dk+1) are disjoint from their

images by the covering transformation, or equivalently that they project to
disjoint embeddings fi in M .

Delete from A+ the interiors of the images of these embeddings forming A+
0 ,

say : let W+ denote the union of the images, U+ =W+ ∩ M̃ , X+ =W+ ∩ A+
0 ,

so U+ =
⋃
f̃i(S

k × Dk+1) and X+ =
⋃
f̃i(D

k+1 × Sk); similarly with −
for +. Let M0 = M − ⋃

f̃i(S
k × Int Dk+1), with double covering M̃0 =

M̃0 − Int (U+ ∪ U−). Similarly we define U ⊂ M and X ⊂ W ⊂ V , with

Ũ = U+ ∪ U−, etc.

A+
0M̃0

U− X+

U+ W+

X+

X−

W− U− U+

A−
0 X−

We have repeated on M the construction of §6, which led us to consider a
diagram (1), and the pair of lagrangians Hk+1(U, ∂U ; Λ) and Kk+1(M0, ∂U ; Λ)
in Hk(∂U ; Λ). We now show – as in (12.8) – that this splits as a direct sum.

Lemma 12.11. The diagram (1) of §6, viz.

0

���
��

��
��

��
��

�

��
Kk+1(M,M0) = Kk+1(U, ∂U)

���
��

��
��

��
��

��
Kk(M0)

��

���
��

��
��

��
��

0

Kk+1(M)

�������������

���
��

��
��

��
��

Kk(∂U)

���
��

��
��

��
��

�������������
Kk(M)

��������������

���
��

��
��

��
��

�
(1)

0

��������������
��

Kk+1(M,U) = Kk+1(M0, ∂U)

�������������

��
Kk(U)

�������������
�� 0

with coefficients Λ throughout, splits over Λ′ as the direct sum of two sub-
diagrams interchanged by T , of which the first is
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0



�
��

��
��

��
��

��
Kk+1(A

+, A+
0 ) = Kk(X

+)



�
��

��
��

��
��

��
Kk(A

+
0 )

��



�
��

��
��

��
��

0

Kk+1(A
+)

�����������



�
��

��
��

��
��

Kk(U
− ∪ X+)



�
��

��
��

��
��

�����������
Kk(A

+)

�����������



�
��

��
��

��
��

�
(2)

0

������������
��Kk+1(A

+, U−)

�����������

��Kk(U
−)

�����������
�� 0

with coefficients Λ′ throughout.

Proof The splitting of K∗(M) is provided by (12.8). Also, Ũ is the disjoint
union U+ ∪ U−. It is now easy to see that the lower sequence splits as asserted.
For the rest, we first observe that each component of W (or W̃ , W+, W−) is
contractible, and that

Kk(∂U ; Λ) = Kk(U ; Λ)⊕Kk(X ; Λ) ,

admitting a further split into components with affixes ±. We also have isomor-
phisms

Kk(X ; Λ) ∼= Kk+1(U, ∂U ; Λ) ∼= Kk+1(M,M0; Λ) ,

Kk(X
+; Λ′) ∼= Kk+1(W

+, X+; Λ′) ∼= Kk+1(A
+, A+

0 ; Λ
′) ,

using the explicit definitions of W , X , U and excision isomorphisms. Next,
since the complement of A+

0 ∪ A−
0 is Int W , a union of contractible sets, we

have Ki(A
+
0 ∪ A−

0 ) = 0 for if i = k, k+1; now as A+
0 ∩ A−

0 = M̃0, the splitting
of Kk(M0; Λ) follows using the Mayer-Vietoris sequence.

Since our isomorphisms are induced by inclusions and boundary maps, it is
easy to check that the obvious maps in (2) are indeed induced by splitting
diagram (1), and hence that (2) commutes.

We can now parallel the discussion of §6. First observe that Kk(U
− ∪ X+),

as submodule of Kk(∂U), can be treated like the H+ arising in the even dimen-
sional case above. It admits a nonsingular form satisfying (Q1)–(Q5), which is
even a hyperbolic form for – as is readily seen – Kk(X

+) is a lagrangian. In
fact, the splitting above, with the knowledge that Kk+1(M0, ∂U) is a lagrangian
in §6, shows that Kk+1(A

+, U−) is another lagrangian here†. Retaining the no-
tation of the even-dimensional case, we now assume t2 = 1. It should not be
difficult to develop an analogous theory without this hypothesis, but since we
have no applications in mind for this case, we forbear from doing so.

†Strictly speaking, we must also check preferred bases over Λ′. This needs a new argument
which is, however, not essentially different from the one in (5.7).
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The point of the assumption is that we now have a simple hermitian or skew-
hermitian form in the original sense, so can use the general algebraic results of
§6, in particular (6.2) and (6.3): we also use the same notation.

Now the choice of the embedding of W+ determines a coset TUr(Λ
′)α ⊂

SUr(Λ
′): this is immediate. Next we will show that the embedding M ⊂ V

determines a stable double coset TU(Λ′)αTU(Λ′) ⊂ S′U(Λ′). The effect of a
surgery, deleting a component of U , say Uα from M and replacing it by Xα,
changes A+ to A+ −W+α ∪ W−α, so the old W+α now lies in A−, so U+α,
X+α are renamed X−α, U−α; similarly if we interchange ±. Thus our kernel
Kk(U

− ∪ X+) is unchanged, but our standard base is altered by σ (in the
position α). So when we include surgery in the equivalence relation, only the
class of α in the quotient group SU(Λ′)/RU(Λ′) is determined; conversely, if
this class is zero, surgery is possible.

In order to complete the proof that the group LNn(π
′ → π) in question is

isomorphic to SU(Λ′)/RU(Λ′), it remains to show first, that the element we have
constructed in this group is invariant under cobordism (not just the surgeries
above), and second, that any element of this group can appear as an obstruction(
cf. (6.5)

)
.

Our next task is to investigate the effect on α of changing the choice of the
submanifold W of V . The argument closely parallels (and uses) that of §6.
Now W+ is the image of a set of disjoint embeddings fi : D

k+1× (Dk+1, Sk)→
(A+, M̃), which determine homology classes in Hk+1(A

+, M̃ ; Λ′). Given another
such set of embeddings gi, determining the same homology classes, we claim that
there are disjoint isotopies Hi of fi to gi. For as k � 2, (A+, M̃) is 2-connected,
and the assertion follows from [H28]. However, the projected embeddings in V
need not be disjointly isotopic, as the projections of the Hi need not be disjoint
embeddings in V × I: Hi may meet THj. This shows that the ρij of §6 have
values in tΛ′ ⊂ Λ; and correspondingly for the νi. We claim that they can take
arbitrary values subject to this restriction : indeed, we need only subject the
spheres fi(0× Sk) ⊂M to regular homotopies constructed in §6, and note that

these lift to disjoint isotopies in M̃ , which we can then extend to Dk+1×Dk+1.
Now the effect of this on α was computed in §6; translating back to the present
context, it means that α is multiplied on the right by an arbitrary element of
UUr(Λ

′).

To investigate the effect of changing the homology classes, we refer again to §6,
noting the single difference that only Λ′ (and so π′) may be used for coefficients,
not the whole of Λ. Now the argument of §6 shows that such changes will
stabilise α, and that they multiply it on the right by elements of TUr(Λ

′). To
show that we can get arbitrary such elements, it is only necessary to check the
construction for (T4) (the others are trivial). Here, we have two embeddings

f1, f2 : (Dk+1, Sk)×Dk+1 → (A+, M̃), and join them by an arc in M̃ which is

then thickened to obtain a disc in A+ meeting M̃ in a trivial handlebody. Our
construction then consisted of performing the diffeomorphism of [W8, p. 272]
on the handlebody; now this diffeomorphism was constructed as the restriction
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of a rotation of euclidean space, and so certainly extends to our disc.

Next, we show the cobordism invariance of the class of α modulo RU(Λ′):
we cannot here use the argument of (6.1) since we have not shown that cobor-
dism (as equivalence relation) is generated by surgeries. Since we evidently
have an additive correspondence between the groups LN2k+1(π

′ → π) and
SU(Λ′)/RU(Λ′) it is sufficient to assume M cobordant to an M ′ with i′ :
M ′ ⊂ V a simple homotopy equivalence, and then show that α ∈ RU(Λ′).
Let N ⊂ V × I be a cobordism; by (12.7) we can suppose this inclusion (k+1)-
connected, so that we have the exact sequence

0→ Kk+1(M ; Λ)→ Kk+1(N ; Λ)→ Kk+1(N,M ; Λ)→ Kk(M ; Λ)→ 0

in which, by (2.3), the two middle terms are stably free and s-based (and may,
as usual, be assumed free and based). We claim that – as in (12.8) and (12.11)
– this sequence splits over Λ′ as the direct sum of two sequences which are
interchanged by T . For introduce B+, B− as in the proof of the corresponding
assertion in the even dimensional case; then one summand is the sequence

0→ Kk+1(A
+; Λ′)→ Kk+1(B

+; Λ′)→ Kk+1(B
+, A+; Λ′)→ Kk(A

+; Λ′)→ 0 .

Again, as usual, we may suppose

Hk+2(B
−, A− ∪ Ñ ; Λ′) = Hk+1(B

+, A+; Λ′)

free and based over Λ′. Now consider the triad Φ = (B−;A−, Ñ). We have A− ∩
Ñ = M̃ , and (Ñ , M̃) is k-connected, (A−, M̃) also. By Namioka’s relativisation
[N1] of the Hurewicz theorem, we have πk+2Φ ∼= Hk+2(B

−, A− ∪ N ; Λ′). We
choose a preferred basis, and represent by maps

fi : (D
k+2;Dk+1

− , Dk+1
+ ;Sk)→ (B−;A−, Ñ ; M̃) .

By Hudson’s embedding theorem [H28], these maps may be supposed disjoint
embeddings (we apply the theorem first to the restriction to the union of the
Dk+1

+ , then, keeping that fixed, to the rest). We can thicken (multiplying by
Dk+1), again obtaining embeddings. Since, by the sequences above, the fi(S

k)
generate the summand Kk(A

+; Λ′) of Kk(M ; Λ), we can set

W− =
⋃

fi(D
k+1
− ×Dk+1) ,

and correspondingly for all the others introduced above.

Now observe that if we perform surgery on M using the embeddings U we
obtain precisely the cobordism N of M to a simple homotopy equivalence.
Thus the lagrangians Kk+1(M0, ∂U ; Λ) and Kk+1(X, ∂U ; Λ) ∼= Kk(U ; Λ) of
Kk(∂U ; Λ) are complementary. Using the splitting (12.11), it follows that
Kk+1(A

+, U−; Λ′) and Kk+1(X
−, ∂U−; Λ′) ∼= Kk(U

−; Λ′) are additively com-
plementary in Kk(U

− ∪ X+; Λ′).
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Now our construction has identified the free based modules Kk+1(B
+, A+; Λ′)

in (3) and Kk(U
−) in (2). Comparing (3) with the lower sequence in (2), we

see that the induced isomorphism of Kk+1(B
+; Λ′) on Kk+1(A

+, U−; Λ′) also
preserves preferred bases; and these bases are dual to those in the preceding
sentence. It follows that Kk+1(A

+, U−; Λ′) and Kk(U
−; Λ′) are complementary

even when we take preferred bases into account. Hence the stable class of α lies
in RU(Λ′), as asserted (cf. end of §6).
Finally, we produce a construction analogous to that of (12.10) for the odd

dimensional case : this will complete the proof of (12.9).

Lemma 12.12. Let M2k
0 (k � 3) have fundamental group π: let V 2k+1

0 be
the bundle over it with fibre [−1, 1] associated to the subgroup π′ ⊂ π; let α ∈
SUr(Λ

′). Then there exists M2k+1 ⊂ V0×I with ∂M =M0×0 ∪M1×1, where

M1 ⊂ V smooths the same simple Poincaré embedding as M0, and W ⊂ Ṽ0 × I
which, with the notation above, determines α.

Proof First embed r disjoint copies of (Dk+1, Dk
+) in (V0,M0), and perform

surgeries using the Dk
− on M0 inside V0: this surgery determines a cobordism

N0 ⊂ V0× [0, 12 ] ofM0×0 toM2× 1
2 , say;M2 is the connected sum ofM0 with r

copies of Sk×Sk. The surgery gave (we see by explicit calculation) a lagrangian
Kk+1(B

+
0 , A

+
2 ; Λ

′) inKk(A
+
2 ; Λ

′). Applying α gives a new lagrangian. Represent

its basis elements by framed embeddings (Dk+1, Sk) → (A−
2 , M̃2) and again

perform surgeries to obtain a cobordism N1 ⊂ V0 × [ 12 , 1] of M2 × 1
2 to M1 × 1.

It is clear that M0, M1 smooth the same simple Poincaré embedding. We must
show that α determines the surgery obstruction for N = N0 ∪ N1. This follows
on general principles by an argument along the lines of (7.2), which we leave to
the reader.

However, we can also argue directly, as in (6.5). For each copy of Dk+1 we
started with, we have a nontrivial sphere Sk ⊂ N0; let U be the union of
neighbourhoods of these, and obtain W from discs spanning them in Dk+1 ×
Dk × I (these may be constructed explicitly). We can then identify Kk(A

+
2 ; Λ

′)
with Kk(U

− ∪ X+), and Kk+1(B
+
0 , A

+
2 ; Λ

′) corresponds to Kk(X
+). But

Kk+1(N,U) is freely spanned by the classes of the attached (k + 1)-cells; cor-
respondingly for the summand Kk+1(B

+, U−); and these were defined as the
images by α of the basis of the first lagrangian. The result follows.

See Ranicki [R7, pp. 687–735],[R6] for a chain complex treatment of codimension
1 splitting obstruction theory in the one-sided case (C). See Hambleton, Taylor
and Williams [H10] and Muranov [M23] for the application of the theory to the
computation of the L-groups of finite groups.
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13A. Calculations : Surgery Obstruction Groups

Up to now, the groups Lm(π) have been defined and treated in a purely ab-
stract fashion, and we have given no discussion of them, beyond mentioning
that they are abelian. For applications, however, more precise information is
necessary, and we now compute a few of the groups explicitly, and give some
further calculation based on the results of §12. We will then discuss in the same
cases how surgery obstructions are to be computed as elements of these groups.

Theorem 13A.1. Let π be of order 1 or 2. Then the groups Lm(π) are given
by the following table :

m = 0 m = 1 m = 2 m = 3

|π| = 1 : π = 1 Z (σ/8) 0 Z2(c) 0

|π| = 2, w = 1 : π = Z+
2 Z⊕ Z (σ/8, σ̃/8) 0 Z2(c) Z2(d)

|π| = 2, w = −1 : π = Z−
2 Z2(c) 0 Z2(c) 0

Explanation. The first column defines the class of groups π; the second gives
the shorthand notation which we will use for that class. The symbol in paren-
theses after each group denotes the isomorphism of Lm(π) onto that group; in
particular, c denotes the Kervaire-Arf invariant [W18, 4.7], σ the signature, and
σ̃ the signature of the double covering.

Proof In the case when m is even, the definition of the groups L0 and L2 is the
same as that of the group G in [W18, §4], except for reference to a preferred class
of bases. However, since Wh(π) (the Whitehead group : see [M14]) is trivial for
the groups in question, this makes no difference. The results for m even thus
follow from [W18, 4.13–14]. In the case |π| = 1, the calculation is much older :
the result is implicit in [M10], [K5].

When m is odd, we cannot use the formulation of [W18, §5] directly. However,
it was shown there that if π = 1 or Z−

2 , there is no obstruction to successful
completion of surgery : the case π = 1 again goes back to [K5], and for Z−

2 see
[W18, §6]. Since, by (6.5), every element of Lm(π) occurs as obstruction to a
surgery problem, we can conclude in these cases that Lm(π) vanishes.

The remaining cases π = Z+
2 , m ≡ ±1 (mod 4) must be considered in more

detail. Here we have two alternative methods : to follow up [W18, §6], or to
use the results of (12.9). We prefer to do both, and check that they lead to the
same result. For the former, we know that there is at most one obstruction, and
that mod 2, to performing surgery. It turns out that this is genuine if m ≡ 3
(mod 4) and bogus when m ≡ 1.

First let m = 4k − 1, k � 2. Then by [W18, (6.1)], given any corresponding
surgery problem φ :M → X , we can do surgery to make φ (2k − 1)-connected,

172
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and K2k−1(M) finite. By [W18, (5.7)], the obstruction to performing further
surgeries to obtain a homotopy equivalence lies in a certain group G ∼= Z2.
It follows from the theory of §9 that we have an isomorphism of L3(Z

−
2 ) on

a subgroup of G (that the natural map respects group structure follows since
both surgery obstructions add for disjoint unions). An example to show that
the map is onto is easily found : since one appears naturally in (13A.9) below,
we will not repeat it here.

For the case m = 4k + 1, if φ : M → X is a 2k-connected map representing
a surgery problem, we know by [W18, (6.5)] that if G = K2k(M) is finite, we
can do surgery to kill it; and by [W18, (6.1)] that the parity of the rank of G is
a surgery invariant, and that if this rank is even, we can do surgery to make G
finite. It is enough, then, to assume this rank odd, and derive a contradiction.
By the same result, we can do surgery to reduce rank G to 1. An examination
of the proof of [W18, (6.2)] now shows that if K2k(M) contains an element x
with |xΛ| finite and > 2, we can (as there) do two surgeries with the net effect of
reducing the order of the torsion subgroup. So we can assume there is no such x.
Then it is easily seen that K2k(M) is a direct sum of cyclic modules generated
by elements x0, xi such that the annihilator of x0 is 〈T − 1〉 or 〈2T − 2〉 and
that of xi is 〈T − 1, T + 1〉. If there are any such xi (�= x0), then the Λ-module
K2k(M) cannot be defined by a presentation with the same number of relations
as of generators. But this, with [W18, (5.4) and (6.3)], leads to a contradiction.
Thus K2k(M) admits a single generator. Now perform the construction of §6
above : we then have the hyperbolic form {e, f}, the lagrangian {e}, and another
lagrangian, generated say by

e′ = e(a+ bT ) + f(c− cT ) ,
where c = 1 or 2 (recall that the annihilator of f modulo e′ is the ideal deter-
mined above). Since e′ generates an additive direct summand, we must have
〈a+ bT, c− cT 〉 = 〈1〉; in particular, a and b have opposite parity. Also,

0 = μ(e′) = (a+ bT )(c− cT ) = c(a− b)(1 − T ) (mod 0) ,

so c(a− b) = 0. But c �= 0, hence a = b. This gives a contradiction : the result
is established

We now check our result by the second method alluded to above : here we
take the Li(1) and Li(Z

−
2 ) as given. First compute Lm(1 → Z−

2 ) by the exact
sequence. We need to compute L0(1) → L0(Z

−
2 ) and L2(1) → L2(Z

−
2 ). The

first is zero, since by [W18, (4.13, Complement)], c vanishes on L0(1). The
second is an isomorphism, since c maps each group isomorphically to Z2. The
exact sequence now shows

L0(1→ Z−
2 )
∼= L0(Z

−
2 )
∼= Z2 , L1(1→ Z−

2 )
∼= L0(1) ∼= Z ,

L2(1→ Z−
2 ) = 0 = L3(1→ Z−

2 ) .

If we use the isomorphism Li(1 → Z+
2 )
∼= Li+1(1 → Z−

2 ) of (12.9.2), and the
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known values of Li(1), the exact sequence for 1→ Z+
2 now reduces to

0→ L3(Z
+
2 )→ Z2 → Z2 → L2(Z

+
2 )→ 0 ,

0→ L1(Z
+
2 )→ 0→ Z→ L0(Z

+
2 )→ Z→ 0 .

Since 1 is a retract (preserving w) of Z+
2 , L2(1) ∼= Z2 is a retract of L2(Z

+
2 ),

which thus cannot vanish. Hence the map Z2 → Z2 above is zero. The values
of the Li(Z

+
2 ) (up to isomorphism) now all follow.

We next reconsider the multisignature as defined in [W18, 4.9], and obtain a
new formulation of this invariant, which clarifies its functorial properties. Most
of the arguments are taken from the (Liverpool) Ph.D. thesis of D. W. Lewis
(see [L19]), where further discussion will be found. Several of the ideas have also
been discovered by Ted Petrie [P3]. We assume throughout that π is a finite
group.

The multisignature was defined as follows. Decompose the real group ring
R[π] as a direct sum of matrix rings (there is one summand corresponding
to each class of irreducible real representations of π). The group ring has an
anti-involution

∑
g∈π λgg �→

∑
g∈π w(g)λgg

−1; under this, the summands are
preserved or interchanged in pairs. Now simple anti-involuted algebras were
classified by Weil [W40]; we will refer instead, however, to [W22]. Here they are
classified, according to the centre, into 5 types : (C+C, s), (C, 1), (C, c), (R+
R, s) and (R, 1). In each type we have a ‘Brauer’ group, isomorphic respectively
to 1, Z2, 1, Z2 or Z2 ⊕ Z2; we label the elements of these groups, according to
the simple real Lie group obtained from the anti-involuted algebra by setting
U(A, ∗) = {a ∈ A : a∗a = 1}, as GL(C); O(C), Sp(C); U ; GL(R), GL(H);
O(R), Sp(R), O(H), Sp(H). The isomorphism classification of the simple anti-
involuted algebra is determined by : class in the Brauer group, dimension over
R, and – for the types O(R), U and Sp(H) only – a further invariant which can
be regarded as a signature.

Next one must observe that the classification of (non-singular) hermitian or
skew-hermitian forms over an anti-involuted algebra depends only on the class
of this algebra in the Brauer group. Lewis proved this ad hoc, but it follows also
from the general theory of Fröhlich and McEvett [F12]. Aside from the rank,
the only invariant needed for classification is the signature, which appears only

for hermitian forms, for types U , O(R), Sp(H) ,

for skew-hermitian forms, for types U , Sp(R), O(H) .

The multisignature is the collection of signatures arising from the relevant direct
summands of R[π].

This account is valid for any semisimple algebra over R (and hence for ones
over Q); we now take stock of the simplifications arising from the fact that we
have a group ring. Suppose first that we take the orientable case : w = 1. Here
Lewis makes the simple but important observation that we have a positive anti-
involution in the sense of Weil [W40]. For we see at once, taking the elements
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of π as a basis, that

trace

(∑
g∈π

λgg

)
= |π|λ1

and so

trace

{(∑
g∈π

λgg

)(∑
g∈π

λgg
−1

)}
= |π|

∑
g∈π

λ2g > 0

unless each λg is 0. Thus for hermitian forms we have a signature for each
irreducible real representation; for skew-hermitian forms, only for those of type
C.

We can now reformulate the multisignature in the orientable case in the style
of Atiyah and Singer [A8, pp. 578–579]. From λ : H × H → Z[π] we pick
out the constant term, giving a (−1)k-symmetric bilinear map (for manifolds of
dimension 2k). Extend this to Hc = H ⊗Z C (using the same matrix on a base
of H ⊂ Hc) as a (−1)k-hermitian form φ in the ordinary sense. Thus

φ(y, x) = (−1)kφ(x, y) , φ(xg, yg) = φ(x, y)

(Hc inherits from H a π-module structure). Now choose a positive definite π-
invariant hermitian form 〈 , 〉 on Hc: this is unique up to homotopy. Consider
the eigenvalue problem :

φ(x, y) = β〈x, y〉 for all y .

The eigenvalues β all satisfy β = (−1)kβ, as follows from the first property
above; thus they are real (k even) or pure imaginary (k odd), nonzero since
φ is nonsingular. Thus Hc = Hc

+ ⊕ Hc−, where Hc
ε (ε = ±1) is the sum of

eigenspaces corresponding to positive multiples of ε or εi. It follows from the
second property above that this decomposition is π-invariant.† Now take the
element of R[π] given by the character of Hc

+ minus that of Hc− as our new
invariant.

It follows easily that the constructed character is real for k even and pure
imaginary for k odd. Lewis shows that its components in terms of irreducible
representations coincide (up to sign) with the multisignature as previously de-
fined, except for a factor of 2 in the case of quaternionic representations (in
fact for k even our character corresponds to a real representation). However,
naturality properties are much easier to obtain with the representation form of
the definition. In particular, χ is multiplicative for products. This is observed
in [A8, p. 580]; see also [C16, p. 39], particularly for signs.

We turn now to the nonorientable case. First tensor the anti-involuted algebra
by (C, c). The effect on types is that summands of type (C+C, s) or (C, c) are
twinned; those of type (C, 1) or (R+R, s) become of type (C+C, s); those of

†If this is carried through in the nonorientable case, it turns out that orientation-reversing
elements of π interchange Hc

+ and Hc
−.
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type (R, 1) become of type (C, c). Hence (checking cases) the number of result-
ing summands of type (C, c) is the sum of the numbers of signatures for hermi-
tian and skew-hermitian forms. But for C[π] the direct summands correspond
to irreducible complex representations of π; the anti-involution

∑
g∈π λgg �→∑

g∈π λgg
−1 preserves each of these, as we have just seen, so the anti-involution∑

g∈π λgg �→
∑

g∈π w(g)λgg
−1 interchanges the summands corresponding to

characters χ and w · χ. Thus the summands of type (C, c) (i.e. the fixed ones)
correspond to irreducible complex characters χ of G such that χ(g) = 0 for all
g with w(g) = −1.
Let H = Ker w; let α be the class mod inner automorphisms of the automor-

phisms induced on H by conjugating by an element of G−H . Then α acts on
the set of representations of H ; if ψ is an irreducible representation of H and
ψα ∼ ψ, ψ extends to a representation of G; otherwise the induced represen-
tation ψG is irreducible. The representations we want are those of the latter
sort.

We now again reformulate the multisignature in representation-theoretic terms,
this time in the nonorientable case. All we need do is take the multisignature
of the orientation double covering (i.e. consider only the action of H). For
consistent choice of signs, we suppose chosen a base point and an orientation
at that point, which thus lifts to an orientation of the double covering. Now a
covering transformation induces an automorphism of H of class α, and changes
the orientation, so our character ψ of H must satisfy ψα = −ψ. Using the
above results it is not difficult to see that such characters specify precisely the
multisignature as defined above.

We extend this character by 0 on G − H so as to regard it as a function on
G. It then satisfies the identity ψ(x−1yx) = w(x)ψ(y). We call such functions
twisted class functions on G: note that (taking x = y) they all vanish outside
H . The space (over C) of such functions has the same dimension as the group
(over Z) of our characters, which we call twisted characters.

We can summarise much of the above in

Theorem 13A.2. The multisignature function on L2n(G) is equivalent to the
representation defined above : in the orientable case it is a (virtual) represen-
tation of G with character real (n even) or pure imaginary (n odd); in the
nonorientable case a representation (as above) of H = Ker w satisfying also
ψα = −ψ.
We conclude our discussion by showing that the multisignature is not trivial.

In fact we obtain the following, in slightly sharper form.

Theorem 13A.3.The cokernel of the multisignature map L2k(π) → αZ is a
finite 2-group.

Proof The multisignature classified forms over R: we must lift these back to
forms over Q and, ultimately over Z. To lift to Q we use Galois cohomology.
Start with a hyperbolic form over Z of sufficiently large rank. Its algebraic
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automorphism group is of a type determined above (if the form is hermitian,
take the type of the anti-involuted algebra; if skew-hermitian, take this and
interchange “O” and “Sp”). For factors not of type O(R), U , Sp(H), do not
twist. For these, take the connected and simply connected almost-simple group
mapping to them : Spin, SU , Sp(H). For these, according to Kneser [K15],
Galois cohomology is determined by its behaviour at the infinite prime; the
effect of twisting here is to introduce a signature, which can take any value
divisible by 8, 4, 2 in the three cases. (The signature is congruent mod 2 to the
rank; going from O, U to SO, SU imposes a condition on the determinant and
hence congruence mod 4; similarly going from SO to Spin we must watch the
Clifford algebra).

Twist the hyperbolic form over Q by the chosen cohomology class. By con-
struction, this is trivial in all p-adic fields, so over each of these we still have a
hyperbolic form : choose a standard basis at each, and intersect to get a lattice
over Z. As Z[π]-module, this is flat and locally free, hence projective : call it
P . We have yet to make P free, and to find a base with respect to which it
is simple hermitian. We accomplish both these in one step, at the expense of
doubling the chosen value of the multisignature.

Write the dual module of P as P ∗ = HomZ[π](P,Z[π]); let e : P → P ∗ be
the adjoint isomorphism for the chosen nonsingular sesquilinear form; by this
isomorphism, we can regard it as a form on P ∗. Choose an inverse module Q
to P and a basis for the free module F = P ⊕ Q: invest F ∗ = P ∗ ⊕ Q∗ with
the dual basis. Now take the orthogonal direct sum of two copies of the original
form and the hyperbolic form on Q: regard this as a form on

P ⊕ P ∗ ⊕ (Q ⊕Q∗) ∼= F ⊕ F ∗

and give this the free basis above. Its adjoint is an isomorphism of F ⊕ F ∗ on
F ∗ ⊕ F , i.e. an automorphism of F ⊕ F ∗, which I claim is simple. For it is the
direct sum of (±) the identity maps of Q and Q∗, and the automorphism of

P ⊕ P ∗ with matrix

(
0 α
α−1 0

)
, which is well known to be simple.

Finally note that since our form is trivial (by construction) over the 2-adic
integers, there is no difficulty in finding a quadratic map μ with the desired
properties.

As to further direct calculations, we will not give details here since they involve
technical knowledge of algebraic number theory, and algebraic K-theory, and
because results are being rapidly developed at the time of writing. We confine
ourselves instead to a description of some results.

Theorem 13A.4. (i) For all finite π, the kernel of the multisignature is a finite
2-group.

(ii) Let π be cyclic of odd order; write L2k(π) = L2k(1)⊕ L̃2k(π): then multisig-

nature maps L̃ to characters trivial on 1. This last map has zero kernel, and
the image consists of the characters (real or imaginary as appropriate) divisible
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by 4.

(iii) For all finite π, the transfer τ : L0(π)→ L0(1) is surjective.

We will also need the classification of non-simple hermitian forms over Zπ –
i.e. all as above, except the requirement that the isomorphism Aλ be simple.
Suppose π cyclic of odd order – hence in particular commutative. Then the
determinant of Aλ with respect to a preferred basis is a unit D′ of Zπ: if the
form has rank 2r define the discriminant D = (−1)rD′. Note that when π is
trivial, D is always +1: thus in general D has augmentation +1. Also, since
the form is hermitian, D = D. Write U for the group of units D of Zπ with
ε(D) = 1 and D = D. Let χ generate the (Pontrjagin) dual of G.

Theorem 13A.5. The form φ is determined up to stable isomorphism by D(φ)
and the multisignature

σ(φ) =

(N−1)/2∑
0

2αr

(
χr + (−1)kχ−r

)
and, for k odd, by c(φ). The only relation between these is that

sign
(
χr(D)

)
= (−1)αr .

Finally, I conjecture that if π is finite, L2k+1(π) is also finite. See §17E.
Next, the result of [W18, 4.11] can be somewhat improved.

Proposition 13A.6. Suppose all elements x ∈ π with x2 = 1 and
w(x) = (−1)k−1 commute (and so generate an elementary 2-group). Then any
hyperbolic plane with zero Arf invariant is standard.

Proof Let {e, f} be a basis with λ(e, e) = λ(f, f) = 0, λ(e, f) = 1. Then
μ(e) =

∑{x : x ∈ I1} is a sum of certain elements x ∈ π with x2 = 1 and
w(x) = (−1)k−1, as above, each with multiplicity 1 (mod 2); similarly μ(f) =∑{x : x ∈ I2}, say. Since we have zero Arf invariant, I1 or I2 – say I1 – has
even order. Now set

e′ = e+
∑
{fx : x ∈ I1} .

Then λ(e′, f) = 1, so it remains to compute

μ(e′) = μ(e) +
∑
{x : x ∈ I1}+ (

∑
{x : x ∈ I1})μ(f)(

∑
{x : x ∈ I1}) .

The first two terms cancel and x = w(x)x−1 = (−1)k−1x. Now for x �= y ∈ I1,
terms involving xzy and yzx above cancel, since all our elements of π commute;
the remaining terms have the form xzx = x2z = z, so the whole reduces to
|I1|μ(f), which vanishes mod 2 since |I1| is even. Now μ(e′) = 0, and the result
follows easily.

Further calculation along these lines suggests that in the first non-abelian case
(of order 6), new invariants analogous to c will be needed in order to deal with
μ.
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We next draw some deductions from the functorial character of the Lm(π).
If π is a retract of ρ (both inclusion and retraction commuting with w, of
course), then Lm(π) is a summand of Lm(ρ). Thus Lm(1) is a summand of
any orientable Lm(ρ). More generally, if w(ρ) = 1, Lm(π) is a summand of
Lm(π × ρ). In the nonorientable case, one naturally thinks of Z−

2 . Here we can
give a mild improvement of the periodicity theorem.

Proposition 13A.7.We have a natural isomorphism

Lm(π × Z−
2 )
∼= Lm+2(π × Z−

2 ) .

Remark. Ker w ⊂ π × Z−
2 → π is an isomorphism, and π × Z−

2 is the direct
product of the subgroups Ker w and Z−

2 . Thus we may suppose w(π) = 1
without loss of generality.

Proof We note that the periodicity theorem was obtained by multiplying by
P2(C), and P2(C) ∼ P2(R)× P2(R). Now consider

Lm(π × Z−
2 )

×P2(R)−−−−−→ Lm+2(π × Z−
2 × Z−

2 )→ Lm+2(π × Z−
2 ) ,

where the third map is induced by identifying the copies of Z−
2 . Denote the

composite by r. If we show that r2 coincides with the periodicity isomorphism,
it will follow that r is injective and surjective, and hence an isomorphism. Now
consider the diagram

Lm+4(π × Z−
2 )

Lm+2(π × Z−
2 )

×P2(R) �� Lm+4(π × Z−
2 × Z−

2 )

��















Lm+2(π × Z−
2 × Z−

2 )
×P2(R) ��

��

×P2(R) �� Lm+4(π × Z−
2 × Z−

2 × Z−
2 )

��

���
��

��
��

��
��

��
�

Lm(π × Z−
2 )

×P2(R)

������������� ×P2(C) �� Lm+4(π × Z−
2 )

�� Lm+4(π × Z−
2 × Z−

2 )

��
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in which the diagonal map from Lm+4(π × Z−
2 × Z−

2 × Z−
2 ) is induced by iden-

tifying the last two copies of Z−
2 , and the vertical map by identifying the first

two copies. Then the two squares clearly commute, and the composite map
Lm(π × Z−

2 ) → Lm+4(π × Z−
2 ) is just r2. Since we can find a cobordism from

P2(R) × P2(R) to P2(C) which is (necessarily) nonorientable, and has funda-
mental group Z2 (e.g. by doing surgery on the classifying map of the tangent
bundle of an arbitrary cobordism), the lower part of the diagram commutes.
But the composite Lm+4(π × Z−

2 ) → Lm+4(π × Z−
2 ) is the identity. Thus r2

coincides with multiplication by P2(C).

In the case π = 1, this naturally confirms part of (13A.1). The argument
appears to admit generalisation, with ρ for π × Z−

2 , but needs an orientation-
reversing central involution x ∈ ρ; and then ρ = (Ker w) × Z−

2 (x).

We next quote from §12
Theorem 12.6. Let 1 → π → Π → Z → 0 be an exact sequence of finitely
presented groups; let g ∈ Π map to 1 ∈ Z, and induce (by inner automorphism)
the automorphism α of π. Then we have a commutative exact diagram :

Lm(π)

��








1− w(g)α∗

��
Lm(π)

��








��
Lm(Π)

Mm+1

���
��

��
��

��
��

�������������
Lm+1(π → Π)

∂

�������������

���
��

��
��

��
��

Mm

�������������

���
��

��
��

��
��

�

Lm+1(Π)

�������������

��
Ĥm

(
Z2; (Whπ)α

)
�������������

��
Lm−1(π)

Thus if Ĥm
(
Z2; (Whπ)α

)
= 0 – e.g. if Whπ = 0 – we can identify Lm+1(π →

Π) with Lm(π) and ∂ with 1−w(g)α∗. Note also that for Π = π×Z+ we have
splittings Lm+1(Π) = Lm+1(π)⊕Lm+1(π → Π) andMm+1 = Lm+1(π)⊕Lm(π).

Applying this, we obtain

Theorem 13A.8. In the orientable case,

Lm(Zr) ∼=
⊕

0�i�r

(
r

i

)
Lm−i(1) .
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Further, we have the following table of Lm(π):

π m 0 1 2 3

Z, orientable (Z+) Z Z Z2 Z2

Z, nonorientable (Z−) Z2 0 Z2 Z2

Z+ ⊕ Z+
2 Z⊕ Z⊕ Z2 Z⊕ Z Z2 Z2 ⊕ Z2

Z+ ⊕ Z−
2 (∼= Z− ⊕ Z−

2 ) Z2 Z2 Z2 Z2

Z− ⊕ Z+
2 Z2 ⊕ Z2 ⊕ Z2 0 Z2 Z2 ⊕ Z2

Z+ ⊕ Z− Z2 ⊕ Z2 Z2 Z2 Z2 ⊕ Z2

K = Gp{x, y | y−1xy = x−1}, w = 1 Z⊕ Z2 Z⊕ Z2 Z2 Z2 ⊕ Z2

K, w(x) = 1, w(y) = −1 Z2 ⊕ Z2 Z Z⊕ Z2 Z2 ⊕ Z2

Note. The result for Zr has been announced by J. Shaneson [S4], [S6].

The first result follows by induction on r. All the others are also direct appli-
cations, which we leave to the reader, noting that in each case the corresponding
group Wh(π) = 0 (for π = Z2 or is free abelian). These examples show clearly
that the preceding theorem is our most effective method yet for computing new
groups Lm(π). The fact that the groups Lm(π) computed so far are all sums of
copies of Z and Z2 is merely due to the fact that we have only treated simple ex-
amples. In this table, unlike (13A.1), we have not described the automorphisms;
however, we will shortly be describing how to compute some obstructions. Here
first is a final little calculation.

Lemma 13A.9. L3(Z
+)→ L3(Z

+
2 ) is an isomorphism.

The result will follow easily from the calculations of surgery obstructions in
(13B.7) and (13B.8), but some readers may be interested to see some direct
manipulations of matrices.

Proof Let e1, f1, e2, f2 be a standard basis for a skew-hermitian hyperbolic
form over Z[Z] = Z[T, T−1]. Define

e′′1 = e1(1 + T ) + f1T + e2(1 + T ) + f2

f ′′
1 = e1(1 + T ) + f1(1 + T ) + e2T

e′′2 = e1T + f1(−1 + T ) + e2(1 + 2T ) + f2(1 + T )

f ′′
2 = − f1 + e2(1 + T ) + f2(1 + T ) .

A little calculation shows that we have another standard basis, so we have indeed
defined an automorphism. Now the matrix is also defined over the polynomial
ring, so its image under the isomorphism L3(Z

+)→ L2(1) is represented by the
cokernel of this map over Z[T ]. The following calculation is not really necessary
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for the proof, but seems worth inserting.

Now write e′1= e1 + e2 + f2 f ′
1 = e1 + f1

e′2= e1 + f1 + e2 f ′
2 = e2 + f2 ;

then e′′1= e′1 + e′2T f ′′
1 = f ′

1 + e′2T

e′′2= (e′1 − f ′
1) + (e′2 + f ′

2)T f ′′
2 = (e′1 − f ′

1) + f ′
2T

and e1= e′1 − f ′
2 f1 = −e′1 + f ′

1 + f ′
2

e2= e′2 − f ′
1 f2 = −e′2 + f ′

1 + f ′
2

So e′1, f
′
1, e

′
2, f

′
2 span the whole module and e′1, f

′
1, e

′
2T , f

′
2T form a basis for

the image of the map over Z[T ]. Thus its cokernel admits the images of e′2, f
′
2

as a basis. But these give a hyperbolic plane, with μ(e′2) = μ(f ′
2) = 1, so the

Arf invariant is 1. Thus we have the nonzero elements of L2(1), L3(Z
+).

Now take the image in L3(Z
+
2 ) by setting T 2 = 1. The surgery obstruction

is represented by the pair of lagrangians e1 = f2 = 0 and f ′′
1 = f ′′

2 = 0. The
quotient by these is generated by f1 and e2 subject to

f1(1 + T ) + e2T = 0

−f1 + e2(1 + T )= 0

and so by e2 with e2(2 + 3T ) = 0. Compute the surgery obstruction by the
recipe at the end of [W18, §6]. The determinant of our module is 2 + 3T , or,
normalised, −3 − 2T . The obstruction is the class of −1 (mod 2), which is
nontrivial. Thus the homomorphism is nonzero.

Corollary. If N is even, L3(Z
+
N ) has Z2 as direct summand.

For the map of the lemma then factorises as

L3(Z
+)→ L3(Z

+
N )→ L3(Z

+
2 ) .

The proof of (13A.1) illustrates well enough how to use diagram chasing to
deduce relative L-groups from absolute ones. It seems worth, however, pointing
out that some of the groups for submanifolds may be similarly obtained.

Proposition 13A.10.

LNn(A ∪ A→ A) = 0

LNn(A→ A× Z−
2 )
∼= Ln(A)

LNn(A→ A× Z+
2 )
∼= Ln+2(A)

LNn(A× Z+ → A) ∼= Ĥn+1(Z2;WhA) .

Proof The first three results are (12.4) and (12.9.1). For the fourth – which
corresponds to codimension 2 – we first note that since A is a retract of A×Z+,
we can write

Ln+1(A× Z+) = Ln+1(A) ⊕Xn+1(A) ,
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where the second summand∗ can be equivalently interpreted as

Ln+1(A→ A× Z+) or Ln+2(A× Z+ → A) .

Now compare the exact sequences of (11.6) and (12.6):

Lm+1(A)
p �� Lm+3(A× Z+ → A)

q ��

��

LNm(A× Z+ → A)
r ��

t

��

Lm(A)

Lm+1(A) �� Lm+2(A→ A× Z+) �� Ĥm+1(Z2;WhA) �� Lm(A) .

The desired result will follow by the Five Lemma if we can define t to make
the diagram commute. That such t exists can be seen geometrically by repre-
senting the element of LNm as the obstruction to finding Mm in Nm+2, simply
homotopy equivalent to N , and then taking the map ∂N → S1 induced by pro-
jecting the fundamental group on Z, and taking the obstruction given by (12.5)
to representing this as a fibre map.

Note. The reader may try computing LNn(Z
2→ Z) (q = 1) – the difficulty here

is determining maps in exact sequences – and LNn(Z → Zm) (q = 2), which I
conjecture to be 0, and will mention further below in connection with fake lens
spaces (see §17E).
There has been much progress in the computations of L∗(π) for finite π since the
first edition, starting with Wall’s own sequence of papers [W28]–[W33], and con-
tinuing with the work (in alphabetic order) of Bak, Carlsson, Connolly, Hamble-
ton, Kolster, Milgram, Pardon, Taylor, Williams and others. The computation
techniques combine specific results in the classical theory of quadratic forms,
algebraic number theory, algebraic groups and representation theory (e.g. the
induction of Dress [D5]) with general results in algebraic K- and L-theory. See
Ranicki [R8], [R9, Chapter 22] for some of the general algebraic L-theory re-
sults involving localisation and completion : for any group π the natural maps
L∗
(
Z[π]

) → L∗
(
Q[π]

)
are isomorphisms modulo 8-torsion, and there is defined

a Mayer-Vietoris sequence

· · · → Ln

(
Z[π]

)→ Ln

(
Ẑ[π]

)⊕ Ln

(
Q[π]

)→ L′
n

(
Q̂[π]

)→ Ln−1

(
Z[π]

)→ . . .

(with L′
∗ the appropriate intermediate L-groups) for the localisation-completion

‘arithmetic square’ of rings with involution

Z[π] ��

��

Q[π]

��
Ẑ[π] �� Q̂[π]

∗In fact, Xn+1(A) = Lh
n(A) is the free L-group of A – see §17D.
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with
Ẑ = lim←−

m
Z/mZ

the profinite completion of Z, and Q̂ the profinite completion of Q (= quotient

field of Ẑ). See Hambleton and Taylor [H9] for a survey of the computations of
L∗(π) for finite π.
See the notes at the end of §15B for the L-theory of infinite groups.



13B. Calculations : The Surgery Obstructions

This chapter is concerned with the multisignature part of the surgery obstruc-
tion with finite fundamental group, and with characteristic class formulae for
the surgery obstructions of normal maps of closed manifolds.
For finite π the surgery obstruction of an even-dimensional normal map φ :
M → X is given modulo 2-primary torsion by the difference of the multisigna-
tures of M and X, which for closed manifolds M ,X are shown to be just the
ordinary signatures.
Hirzebruch used multiplicative properties of bordism to construct the �-genus
� ∈ H4∗(BO;Q), and to identify the signature of a 4k-dimensional manifold
M with the evaluation of �(M) = (τM )∗(�) ∈ H4∗(M ;Q) on the fundamen-
tal class [M ] ∈ H4k(M). Similarly, multiplicative properties of the surgery
obstructions are used to identify the Kervaire invariant of a normal map of
closed (4k + 2)-dimensional manifolds with an evaluation of a universal class
κ ∈ H4∗+2(G/PL;Z2).

We come now to the second problem, that of calculating the surgery obstruc-
tion for a given problem. This is somewhat easier when the manifolds concerned
have no boundary (in contrast to the general theory, where a boundary makes
no difference). Also, integer obstructions are rather easier to compute than
obstructions in finite groups; thus we begin by considering the multisignature.

If X2k is an oriented Poincaré complex, π1(X) → π a homomorphism∗, then
by considering the action of π on the induced regular covering X̃ of X with
group π, and in particular on Hk(X̃), we obtain a character on σ(π,X). Now

let φ : M → X have degree 1. Since
(
see (2.2)

)
Kk(M̃) is orthogonal to

φ∗Hk(X̃) ⊆ Hk(M̃), the multisignature for the kernel – which is a surgery
obstruction – is the difference of those for M and X . The rôle of this surgery
obstruction is further clarified by

Proposition 13B.1. (see also §14B). Let M2k be a closed PL manifold,
π1(M)→ π compatible with w1(M). Then σ(π,M) is a multiple of the character
of the regular representation – i.e. it vanishes on elements g �= 1 of π.

An equivalent formulation is that all components of the multisignature are
equal (up to signs depending on conventions). Unless k is even and w = 1, the
result implies that σ is zero.

Proof For smooth manifolds, this can be deduced from the Atiyah-Bott fixed
point theorem [A7]. However, the arguments necessary to obtain the PL case
from this are strong enough to yield an independent proof, so we give this. It

∗π is finite here

185
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suffices to consider the orientable cases, as the rest follow by taking a double
covering.

The characteristic map M → K(π, 1) can be regarded as defining a bordism
class. Now the signature is well-known to be a cobordism invariant, and an
extension of the usual proof

(
cf. (5.7), which is another extension

)
shows that

multisignature is an invariant of bordism class in ΩPL
2k

(
K(π, 1)

)
. This invariant

is clearly additive, so defines a homomorphism

ΩPL
2k

(
K(π, 1)

)
= ΩPL

2k ⊕ Ω̃PL
2k

(
K(π, 1)

)→ R(π)

where R(π) is the character ring of π. Now R(π) is torsion free. Since π is finite,
Hp(π; Ω

PL
2k ) is finite also for p > 0, so by the spectral sequence of ΩPL

∗ it follows

that Ω̃PL
2k

(
K(π, 1)

)
is finite, hence is annihilated by the multisignature. But an

element of the summand ΩPL
2k is represented by a trivial map M → K(π, 1),

and so by a trivial covering M × π → M . However in this case Hk(M̃) =
Hk(M) ⊗ R[π] with the hermitian form induced from Hk(M), and the result
follows easily.

The argument extends to the topological case, and will be further discussed in
§14B.
It follows from this proposition that if X is a simple Poincaré complex, a

necessary condition that X have the homotopy type of a closed PL manifold is
that σ(π,X) vanish for each g �= 1 in π∗. And if X does satisfy this condition,
and φ : M → X represents a surgery problem, then the multisignature surgery
obstruction will vanish if and only if we have equality of the usual signature.
The reader should be warned not to discard the multisignature on account of
this : indeed, the exact sequence (10.8) shows that most of it plays a non-trivial
rôle in classifying odd-dimensional manifolds.

We obtain further information as follows. Observe first that the definition of
σ(π,X) extends without difficulty to any compact manifold X – or any Poincaré
pair (X, ∂X) – with π1(X) → π. The only small difference is that φ is no
longer nonsingular, and our eigenvalue decomposition becomes Hc = Hc

+ ⊕
Hc

0 ⊕Hc
−, where the middle term corresponds to the zero eigenvalue. This does

not contribute to σ(π,X), which is defined as before. The idea of using these
signatures (at least, ignoring π) is due to S. P. Novikov. I am grateful to Dennis
Sullivan for drawing my attention to it.

Observe again that in a surgery problem with boundary fixed, with a degree
1 map M → X , the multisignature surgery obstruction is given by σ(π,M) −
σ(π,X). Some information can also be obtained when the boundary is not fixed.

∗If X is a 4k-dimensional Poincaré complex satisfying this condition the signature of
a finite cover X̃ of degree d must be d· signature(X). See Wall [W21] for the explicit
construction of 4-dimensional simple Poincaré complexes X with cyclic fundamental group
π1(X) = π = Zd (d prime), such that signature(X̃) �= d· signature(X) for the universal cover

X̃. These X do not satisfy the condition, and are not homotopy equivalent to a PL (or TOP )
manifolds. See also [R9, Chapter 22].
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Now let L2k−1 be a closed PL manifold, π1(L) → π. As before it defines
a bordism class, and as in (13B.1) but using also finiteness of ΩPL

2k−1, due to
Williamson [W45], this class has finite order s, say. Write sL = ∂V as singular
manifold in K(π, 1). We now define ρ(π, L) as the restriction to π − {1} of
s−1σ(π, V ). We must show that this is independent of the choices of s and V .
Since rsL = ∂(rV ), and σ(π, rV ) = rσ(π, V ), independence from s is clear.
Now suppose also that sL = ∂W . Glueing along sL, we obtain a closed singular
manifold V −W in K(π, 1). But by the proposition the restriction to π−{1} of
σ(π, V −W ) vanishes. The desired independence follows. A related argument
has been independently discovered by Conner [C16].

We now summarise the basic properties of the invariant ρ.

Theorem 13B.2. Given a closed PL manifold L2k−1 and π1(L)→ π, π finite,
we can define an invariant ρ(π, L) : π−{1} → C. The class of ρ(π, L) modulo
(restricted) twisted characters is an invariant of bordism class in

Ω̃PL
2k−1

(
K(π, 1)

)
, and defines a homomorphism of this group. For each k, the

ρ(π, L) form a group of functions on π−{1}, containing (for k � 3) the 16-fold
multiples of (twisted) characters which are real (imaginary) for k even (odd)
as a subgroup of finite index. Thus ρ(π, L) is a twisted class function taking
only real (imaginary) values for k even (odd).

Proof We have defined ρ; it is clearly additive for disjoint unions. As to bordism
invariance, let sL = ∂V and L−M = ∂W . Glue s copies of W along L to V so
that ∂(V −sW ) = sM . By additivity, σ(π, V −sW ) = σ(π, V )−sρ(π,W ), hence
ρ(π, L)− ρ(π,M) = σ(π,W ) comes from a (twisted) character. Realisability of
16-fold multiples follows from (13A.3) an (5.8); that these have finite index

follows from the finiteness of the bordism group Ω̃PL
2k−1

(
K(π, 1)

)
. Finally, a

class in ΩPL
2k−1 is represented by an L with trivial covering; then we can write

sL = ∂V with trivial covering, and as in (13B.1), σ(π, V ) must vanish on π−{1}.
It is perhaps appropriate to remark here that Andrew Casson had proved prior

to the work of Kirby and Siebenmann that ρ is a topological invariant.

We now begin some calculations proper∗. For M a closed PL manifold,
T (M) ∼= [M,G/PL] by (10.6), and we have the surgery obstruction map θ :
T (M) → Lm

(
π(M)

)
. More generally, forM compact we have θ : T (M,∂M)→

Lm

(
π(M)

)
, and T (M,∂M) is the group of homotopy classes of maps (M,∂M)→

(G/PL, ∗), which we will denote by [(M,∂M), (G/PL, ∗)]. Following Sullivan
[S22], we reinterpret this by varying M .

Theorem 13B.3. The surgery obstructions define a homomorphism

θ : ΩPL
m

(
K(π, 1)×G/PL,K(π, 1)× ∗)→ Lm(π) ,

natural in π.

Proof Represent a given bordism element by a triple (M, f, g) with Mm a com-
pact PL manifold, f : M → K(π, 1) and g : (M,∂M) → (G/PL, ∗). Then

∗for arbitrary groups π
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g determines {g} ∈ T (M,∂M), θ{g} ∈ Lm

(
π(M)

)
, and we set θ(M, f, g) =

f∗θ{g} ∈ Lm(π). The construction is evidently additive for disjoint unions,
and if (M ′, f ′, g′) represents the same bordism element there is a cobordism
(W, f ′′, g′′) between them

(
here, ∂W = M ∪ V ∪ M ′ and g′′ : (W,V ) →

(G/PL, ∗)). Then g′′ determines {g′′} ∈ T (W,V ) and

θ{g′′} ∈ Lm+1

(
π(M) ∪ π(M ′)→ π(W )

)
with ∂θ{g′′} = (θ{g′},−θ{g}) .

By the exact sequence (3.1), θ{g} and θ{g′} have the same image in Lm

(
π(W )

)
,

and hence a fortiori also (by f ′′) in Lm(π). Thus the obstruction depends only
on the bordism class, as asserted.

It follows from the theorem that the maps θ in question are determined if we
know them for closed manifolds.

This result gives considerable simplification to the problem of computing surgery
obstructions; note, however, that it is of no help for deciding whether a given
Poincaré complex comes from a manifold or not∗, but fits instead into the frame-
work of the latter part of §10.
The rest of this chapter is devoted to the calculation of θ, in terms of char-

acteristic classes, in some cases where we know the group Lm(π). For the case
π = 1 this was done by Sullivan [S22]. Two cases arise here : in the simpler,
4|m and 1

8σ : L0(1) → Z is an isomorphism. Now the signature is relatively
well understood, and we will merely quote Sullivan’s result.

The maps G/PL → BPL ← BO induce homotopy and homology isomor-
phisms mod the class of finite groups, hence in particular rational cohomology
isomorphisms. In H∗(BO;Q) we have the Pontrjagin classes pi and also the
Hirzebruch classes �i which are expressed in terms of the pi by certain known

polynomials [H18]. Write �(M) =
∞∑
1
�i(M) for the total Hirzebruch class of

the tangent bundle of a PL manifold M . Write also �i(G/PL) for the cor-

responding classes in H4∗(G/PL;Q) and �(G/PL) =
∞∑
1
�i(G/PL). Then for

g : (M,∂M)→ (G/PL, ∗) we have for m = 4k

σ
(
θ(M, g)

)
= �(M)g∗�(G/PL)[M ] ∈ L4k(1) = Z .

Sullivan [S22] also goes on to show that the classes 1
8 �i(G/PL) can be lifted

to classes λi(G/PL) ∈ H4∗(G/PL;Z(odd)) with coefficient group the rationals

with odd denominators†, but we will not need this result.

∗An m-dimensional Poincaré complex is homotopy equivalent to a PL manifold if and
only if the Spivak normal fibration is PL reducible and the surgery obstruction of any normal
map M → X belongs to Im(θ) ⊆ Lm

(
π1(X)

)
.

†See Morgan and Sullivan [M20] for the definitive treatment of the classes λi(G/PL),
using the bordism of manifolds with singularities.
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In the other case we have the isomorphism c : L2(1) → Z2, given by the
Kervaire-Arf invariant. Sullivan has [S22] a formula for c on orientable mani-
folds, which we will discuss, and modify to cover the general case. First note that
since (for any k) c gives an isomorphism of L2k(Z

−
2 ) with Z2, we can identify

c for a general L2k(π) as the map L2k(π) → L2k(Z
−
2 ) induced by w (regarded

as a homomorphism π → Z−
2 ). Next, if w1(M) is the mod 2 reduction of an

integral class x, evaluation on x defines a map π(M) → Z− through which w
factors. But we have already seen that L4k(1) → L4k(Z

−) is surjective and
L4k(1) → L4k(Z

−
2 ) is zero. Thus if M4k has w1(M) coming from an integral

class, c will vanish on [M,G/PL].

The key to Sullivan’s proof is the following product formula.

Lemma 13B.4. Let L, M be closed even-dimensional PL manifolds, and
g :M → G/PL. Then c(L×M, gp2) = χ(L)c(M, g).

Here, c denotes the Kervaire-Arf invariant and χ the Euler characteristic. A
word about the proof is in order, since I have not yet seen a complete proof,
though the result has been known for at least three years. Sullivan’s original
proof used the work of Brown and Peterson [B33] relating c to spinor cobordism,
together with a number of ingenious arguments which gradually generalised their
[B35, 1.6 and A2] to the result above. A much simpler proof was announced by
Rourke and Sullivan, and a sketch is given in [R20]. Finally, Browder claims that
the result follows easily from his version [B22] of the Kervaire-Arf invariant.†

It seems that the result can be generalised : take any surgery problem and
multiply by the closed manifold L so that the result has even dimension. Its
Kervaire-Arf invariant c vanishes if dimL is odd; otherwise equals χ(L) times c
of the original problem. Another generalisation (same references for proofs) is:

Let L, M be closed PL manifolds; f : L→ G/PL, g :M → G/PL.

Then c(L×M, fg) = χ(L)c(M, g) + χ(M)c(L, f).

We now give the proof of Sullivan’s formula and of our generalisation of it :
these also appear in [R20].

Theorem 13B.5. There is a unique class κ=
∞∑
1
κ2i, with κ2i∈H2i(G/PL;Z2),

such that for any closed PL manifold M2n and g :M → G/PL, we have

c(M, g) = w(M)g∗κ[M ] .

The class κ is of the form (1 + Sq2 + Sq2Sq2)k, where

k =

∞∑
i=0

k4i+2, k4i+2 ∈ H4i+2(G/PL;Z2) .

Both k and κ are primitive.

†This is now available as [B24, Chapter III, §5].
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Proof The bordism invariance of c shows that it defines homomorphisms
N PL

2n (G/PL) → Z2. Suppose inductively κ2i defined for i < n so that the
formula holds in lower dimensions. We claim that

c(M, g)−
n−1∑
i=1

g∗κ2iw2n−2i[M ]

vanishes on decomposable elements and hence (see treatment of N PL∗ in [B28])
factors through H2n(G/PL;Z2); thus defining (by duality) a unique κ2n ∈
H2n(G/PL;Z2) such that the formula is valid for 2n-manifolds.

Our claim is now verified by a simple calculation. Given closed manifolds A2k,
B2n−2k and g : A2k → G/PL, we have

c(A×B, gp1) = χ(B)c(A, g) by the product formula

= w2n−2k(B)[B]
k∑

i=1

g∗κ2i · w2k−2i(A)[A]

by inductive hypothesis

= (g∗κ⊗ 1) · w(A×B)[A ×B]

by the Whitney sum formula,

so the formula holds in this case. If A and B both have odd dimension, each
side of the equation is zero, so it is still true.

Next, primitivity of κ follows from the formula for c(L × M, fg). Now set
k =

∑
i�0 k2i = (1 + Sq2 + Sq2Sq2Sq2)κ. Then k is primitive, κ = (1 + Sq2 +

Sq2Sq2)k, and it remains only to check that k4i = 0. It suffices to show that
each such class can be represented by a map of a manifold with w1(M) the mod
2 reduction of an integral class x(M): Z2-manifolds in the terminology of [R20],
[S22]. Recall the observation above that if M4k is a Z2-manifold, then for any
f : M → G/PL we have c(M, f) = 0.

Lemma 13B.6. Let X be a space, ξ =
∑
i�0

ξi with ξ ∈ H4i+2(X ;Z2).

Then for any Z2-manifold M2n and f :M → X, we have

w(M)f∗(ξ + Sq2ξ + Sq2Sq2ξ)[M ] = 0 (n even)

= w(M)f∗(ξ)[M ] (n odd)

Corollary. Assume (inductively) k4i = 0 for 2i < n. Then for any Z2-
manifold M2n and f :M → G/PL, we have

c(M, f) = w(M)f∗(κ)[M ] = w(M)f∗(k)[M ] (n odd)

c(M, f) = 0 = w(M)f∗
( ∑

i<n

k2i

)
[M ] (n even)

Thus if n is even f∗(k2n)[M ] = 0. So k4i = 0 inductively.
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The first assertion gives a simpler formula for c for Z2-manifolds : this is
Sullivan’s original formula. The last assertion follows since, by the lemma,

0 = w(M)f∗
( ∑

i<n

k2i

)
[M ] = w(M)f∗(1 + Sq2 + Sq2Sq2)

( ∑
i<n

k2i

)
[M ]

= w(M)f∗
( ∑

i�n

κ2i + k2n

)
[M ]

= w(M)f∗(κ)[M ] + f∗k2n[M ]

= c(M, f) + f∗k2n[M ] = f∗k2n[M ] .

This completes the proof of (13B.5).

Proof of 13B.6. Write

w(2) =
∑
i�0

w2i(M) , w(4) =
∑
i�0

w4i(M) .

The desired result is equivalent to showing that for all Z2-manifolds M ,

w(2)(M)f∗(ξ + Sq2ξ + Sq2Sq2ξ)[M ] = w(4)(M)(ξ)[M ] .

According to Brown and Peterson [B34], it is sufficient to know that, modulo
the ideal generated by w 2

1 (which vanishes for Z2-manifolds), the class

w(2) ⊗ (ξ + Sq2ξ + Sq2Sq2ξ)− w(4) ⊗ ξ

lies in the kernel of

H∗(BO;Z2)⊗Z2 H
∗(X ;Z2)→ H∗(BO;Z2)⊗A2

H∗(X ;Z2) ,

and for this it is clearly sufficient to show that

w(4) = w(2)(1 + Sq2 + Sq2Sq2) ,

or equivalently
w(2) = w(4)(1 + Sq2 + Sq2Sq2Sq2)

modulo the ideal generated by w 2
1 .

Now the right action of Sq2 on H∗(BO;Z2) is given by the following formula,
in which Φ, U refer to the Thom isomorphism and the Thom class for the
“normal bundle” (defined as a limit)

xSq2 = Φ−1
(
χ(Sq2)Φ(x)

)
= Φ−1

(
Sq2(xU)

)
= Φ−1(Sq2x · U + Sq1x · w1U + x · w2U)

= Sq2x+ w1Sq
1x+ w2x

≡ (Sq2 + w1Sq
1 + w2)x mod w 2

1 .



192 calculations and applications

Using the Wu relations [W49] for Sqiwj , we deduce that (modulo w 2
1 )

wjSq
2 = w1wj+1 +

(
j − 1

2

)
wj+2

(w1wj)Sq
2 =

(
j − 1

2

)
w1wj+2

Hence
w4iSq

2 = w1w4i+1 + w4i+2

w4iSq
2Sq2 = 0 + w1w4i+3

w4iSq
2Sq2Sq2 = w1w4i+5 .

Collecting these results, we have

w(4)(1 + Sq2 + Sq2Sq2Sq2) =
∑
i�0

(w4i + w4i+2 + w1w4i+1 + w1w4i+5)

=
∑
i�0

(w4i + w4i+2) = w(2) .

For the other terms cancel in pairs, except for w 2
1 = 0.

We have now shown how to compute the θ of (13B.3) for each of the Lm(π)

given in (13A.1) with the exception of L4k+3(Z
+
2 )

d∼= Z2. Here we find, with
α1 ∈ H1

(
K(Z2, 1);Z2

)
the universal element,

Theorem 13B.7. Let F : L → M of degree 1 represent an element of
L4k+3(Z

+
2 ). Let W 4k+2 ⊂ M4k+3 represent the map M → K(Z2, 1); suppose

F transversal on W , and F−1(W ) = V . Then the surgery obstruction (in Z2)
of F equals that of F |V : V →W .

Hence dθ : ΩPL
4k+3

(
K(Z2, 1)×G/PL

)→ L4k+3(Z
+
2 )→ Z2

is given by

dθ(M ; f, g) = cθ(W, g |W )

= w(W )(g |W )∗(k + Sq2k + Sq2Sq2k)[W ]

= w(M)f∗
( ∑

i>0

αi
1

)
g∗(k + Sq2k + Sq2Sq2k)[M ] .

Proof By the second proof of (13A.1), we had isomorphisms

L4k+2(Z
−
2 )

p→ L4k+3(1→ Z+
2 ) ,

L4k+3(Z
+
2 )→ L4k+3(1→ Z+

2 ) .

The first states that the surgery obstruction for V → W equals that of the
D1-bundles representing their neighbourhoods in L, M respectively; the second
then shows that this equals the surgery obstruction for F .
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This gives the first equation for computing dθ; the second follows from (13B.5),
and the third since W represents the homology class dual to f∗(α) in M , and

i∗w(M) = w(W )
(
1 + (f |W )∗α1

)
.

Next (13B.1) shows that the obstructions in L2k(Zp)
(
computed in (13A.4)

)
reduce in the context of (13B.3) to the simply connected obstructions, which
we have already seen how to compute. Our final list of computations is given
in (13A.8). We concentrate on the case where π is free abelian; it will be clear
that some of the considerations below extend to the other cases also. Note that
we can take K(Zr, 1) = T r, the r dimensional torus.

Proposition 13B.8. The surgery obstruction

θ : ΩPL
m (T r ×G/PL)→ Lm(Zr) ∼= ⊕

0�i�r

(
r

i

)
Lm−i(1)

∼= ⊕
0�i�rHi

(
T r;Lm−i(1)

)
is determined by its adjoint maps

φ : ΩPL
m (T r ×G/PL)⊗Hi(T r;Z)→ Lm−i(1)

which are given by

φ(M ; f, g;x) = 0 m− i odd
1
8�(M)f∗(x)g∗�(G/PL)[M ] m ≡ i (mod 4)

w(M)f∗(x)g∗k[M ] m ≡ i+ 2 (mod 4)

Proof Our determination of Lm(Zr) was by induction, based on the formula
Lm(π × Z) = Lm(π) ⊕ Lm−1(π)

(
valid when Wh(π) = 0

)
. Moreover, the

injection of the second summand was defined by multiplying a surgery problem
by S1. Thus the projection on it is obtained by taking a surgery problem
f : L→M , making the maps to K(Z, 1) = S1 transverse to a point, and taking
preimages of that point.

But when this holds, any formula for surgery obstructions in the Li(π) leads
to one in the Li(π × Z). For let f : M → K(π, 1), f ′ : M → K(Z, 1) = S1

and g : (M,∂M) → (G/PL, ∗). Obtain W ⊂ M by making f ′ transversal
at a point. Then the two components of the obstruction are θ(M, f, g) and
θ(W, f |W, g |W ) and if this last is expressible as a(W )(f |W )∗b(g |W )∗c[W ]
with a a characteristic class, then (the normal bundle of W in M being trivial)
it is also a(M)f∗b(f ′)∗xg∗c[M ], since (f ′)∗x is dual toW . The proposition now
follows by induction on r: our statement synthesises results obtained piecemeal.

Remark. If we ignore potential difficulties with Whitehead groups (or simply
work modulo the class of abelian 2-groups of finite exponent), the same induction
gives a computation for Lm(π × Zr). The above shows that this should be
interpreted as

Lm(π × Zr) ∼=⊕
0�i�rHi

(
T r;Lm−i(π)

)
.
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In the case of signatures, it was observed first by Novikov [N7] that exterior
algebra appeared in surgery obstructions. See also §17H.
There has been much progress in understanding the relationship between the

surgery obstructions of closed manifolds, characteristic classes, the fundamental
group and the surgery product formula since the first edition.
Madsen and Milgram [M1] provided a complete account of the homotopy and

bordism theoretic properties of the surgery classifying spaces G/PL,G/TOP
and characteristic classes for simply connected surgery obstructions.
Sullivan’s combination of the surgery product formula and the bordism of man-

ifolds with singularities was extended by Wall [W34] to obtain characteristic
classes for the non-simply connected surgery obstruction of normal maps of
closed manifolds, in the sense of factorising the homomorphism of Theorem
13B.3

θ : ΩPL
m (K(π, 1)×G/PL,K(π, 1)× ∗)→ Lm(π)

through the homology of π at the prime 2 and the KO-theory of K(π, 1) at the
odd primes.
The assembly map. The topological surgery obstruction map factors through

the assembly map A of Quinn [Q3] and Ranicki [R9]

θTOP : ΩTOP
m (K(π, 1)×G/TOP,K(π, 1)× ∗)→ Hm(K(π, 1),L•)

A→ Lm(π) .

The first morphism is onto, so that

Im(θTOP ) = Im(A) ⊆ Lm(π)

is the subgroup consisting of the surgery obstructions θ(φ, F ) ∈ Lm(π) of the
normal maps (φ, F ) :M → N of closed m-dimensional manifolds with π1(N) =
π ; it is necessary to determine these subgroups of the L-groups in order to
apply L-theory to the surgery classification of manifolds. Taylor and Williams
[T3] used A to obtain the characteristic class formulae in a purely L-theoretic
context. See Hambleton, Milgram, Taylor and Williams [H8] for the solution of
the ‘oozing conjecture’ on the image of A for finite π : only the simply connected
surgery obstructions along submanifolds of codimension � 3 are needed to detect
the surgery obstructions of normal maps of closed manifolds.



14. Applications : Free Actions on Spheres

14A. General Remarks

In making explicit applications of our theory, it is necessary to know the rele-
vant groups Lm(π), and also to be able to solve any homotopy-theoretic prob-
lems that arise. As examples we choose the problems where π is “the only”
nontrivial part of the homotopy theory, and our manifold has universal cover
a sphere or euclidean space. There is, indeed, an analogy between this clas-
sification problem and the space-form problems of [W47]. In this chapter we
study manifolds L2n−1 with fundamental group G and universal cover homo-
topy equivalent, hence homeomorphic to S2n−1. This is equivalent to studying
free actions of G on S2n−1. Since we need the groups Li(G), we will assume
G cyclic, though we also study for comparison purposes free actions on S1. A
discussion of known facts for G non-abelian will be found in [W26] and [T4];
see also §17E.
The following problems are of interest. Give constructions for free actions on

spheres and invariants to distinguish the actions. Find enough invariants for
topological or PL classification of actions, and determine all relations between
the invariants. Compute the invariants on all known examples. Which free
actions of H extend to free actions of G ⊃ H? Which actions are equivalent to
smooth actions? We will study all of these but the last.

In §14A we introduce the concepts which will dominate our work; in §14B
we extend the result of Atiyah and Singer, which we will need to justify a key
calculation. Then we begin our classifications : in §14C for G = S1, in §14D for
G of order 2, and finally in §14E we study the general case, though the main
results will only be valid for G of odd order. The classification uses ideas from
many sources, which we will try to acknowledge as appropriate.

The Lefschetz fixed point theorem shows that only Z2 can operate freely on
even-dimensional spheres : the case of Z2 has been, in fact, the case most stud-
ied.

A particular feature of these actions is the join construction, which we now
describe. Free actions of G on spheres Sm−1 and Sn−1 induce (via the diagonal)
an action of G on the join Sm−1 ∗ Sn−1 = Sm+n−1, which is again free. This
construction respects PL (though not differentiable) structures. As an operation
on equivalence classes of actions, it is commutative and associative; and natural
on passing to subgroups of G. Since G ⊂ S1, it acts on S1 by translations :
taking the join with this action is called suspension. In the case G = Z2, it also
acts freely on S0 giving a suspension which increases dimensions by one (see
Browder and Livesay [B29]). The join of this action with itself is the antipodal
(i.e. natural) action on S1; it follows by associativity of the join that double
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suspension in this sense is suspension in the original sense.

In the case when G is finite we have for these, as for all odd-dimensional free
G-actions, the invariant ρ of (13B.2), which we regard as a complex- valued
function on G− {1}. This is natural in that if we restrict the action to H ⊂ G
we obtain the restriction of ρ. Now this is also definable for free actions of S1,
though here it is necessary to use the Atiyah-Singer form of the definition with
the given free action bounding an (in general non-free) action of S1. This is
valid in the PL (and topological) cases, provided we restrict the actions as in
§14B. Now a free action of S1 onM bounds the induced action onM×S1D2, so
the invariant is always defined, and can be computed by formula (7.9) of [A8].
It follows from 14B that we still have naturality of ρ for subgroups.

Theorem 14A.1. Given free actions of G on S2m−1, S2n−1, the value of ρ
for the join action is the (pointwise) product of the values of ρ for the given
actions.

Proof First suppose G finite. Then for some r, r times the action on S2m−1

bounds a free action on some M2m. By adding cones to the boundary com-
ponents, we get an action on a closed manifold M . Then the G-signature of
this (clearly the same as that of M) was defined to be rρ1. Similarly, s times
S2n−1 bounds a free action on N2n: add cones to get N . The product action on
M ×N has G-signature the product of those on M and N : rsρ1ρ2. Moreover,
this action is free except at rs points, and near each of these we have D2m×D2n

with the action of G the product of conewise extensions of the given actions.
The induced action on the boundary is thus the join, and on the rest is the cone
on this : thus the G-signature ofM ×N is (by definition) rs times ρ for the join
action. The result follows.

Now let G = S1. Consider f : S1 − {1} → C given by the difference between
ρ for the join action and the product of the ρ’s. By the above, and naturality,
f is zero on each element of finite order in S1. Since each ρ is a rational, hence
continuous function, and points of finite order are dense, it follows that f = 0,
as stated. This result is the reason for our choice of sign in the definition of ρ.

Note that the proof for S1 depends on rationality, and hence on [A8, 7.9] which
is only justified in 14B below for tame actions (orbit space a manifold). It is
interesting to observe that joined actions are always tame. For if their orbit
spaces are Q2n1−2

1 , Q2n2−2
2 then a neighbourhood in the joined orbit space Q of

x1 ∈ Q1 is homeomorphic to U ×R2n2 (U open in Q1) which is euclidean since
U ×S1 is, as open subset of S2n1−1. It follows easily that Q is locally euclidean
everywhere.

The next result shows that a knowledge of actions of S1 is likely to be very
useful in describing other actions. Suppose given a free action of S1 on S2n−1

with orbit space Q; let G ⊂ S1 be the subgroup of order N , S2n−1/G = L2n−1.

There is an induced fibration S1 → L
p→ Q. Let X → Q be the associated

bundle with fibre D2.



14A. general remarks 197

Lemma 14A.2. Every map L2n−1 → G/PL (or G/TOP ) extends to X (and
so factors, up to homotopy, through Q).

Proof The obstructions to extension lie in

Hi+1
(
X,L;πi(G/PL)

)
.

By the Thom isomorphism theorem, this group is isomorphic to
Hi−1

(
Q;πi(G/PL)

)
. But πi(G/PL) vanishes for i odd and Q � Pn−1(C), so

Hi−1(Q;A) vanishes (for any A if i is even. Thus there are no obstructions to
the desired extension.

A version of this lemma is due to Lee [L8]; for N = 2 it is due to López de
Medrano [L20] (with the above proof).

We conclude our general remarks by noting a simple fact about the normal in-
variant of a suspension, which is important in studying the homotopy projective
spaces.

Let G be a finite cyclic group or circle acting freely on S2n−1 with orbit space
Xn−1; the suspended action on S2n+1 then has orbit space Xn ⊃ Xn−1. Each
element of S (Xn−1) gives a homotopy equivalence Y n−1 → Xn−1, and Y
corresponds to another free action of G on S2n−1 which we can suspend, and
take the orbit space to get a homotopy equivalence Y n → Xn. So suspension
induces Σ : S (Xn−1)→ S (Xn).

Lemma 14A.3. The following diagram is commutative

SPL(X
n−1)

η−−−−→ [Xn−1, G/PL]⏐⏐"Σ

#⏐⏐r

SPL(X
n)

η−−−−→ [Xn, G/PL]

where Σ denotes suspension and r restriction.

Proof Write M for a regular neighbourhood of Xn−1 in Xn. The suspension
construction gives a PL manifold homotopy equivalent to M embedded in that
for Xn, with codimension zero; clearly the normal invariant for this is the re-
striction of that for Xn. Thus it suffices to consider the diagram

SPL(X
n−1)

η−−−−→ [Xn−1, G/PL]⏐⏐" #⏐⏐r

SPL(M)
η−−−−→ [M,G/PL]

The first vertical map here is induced by taking the total space of a disc bundle.
But now the lemma becomes a special case of a general proposition about disc
bundles.

Recall the definition of η: replace a homotopy equivalence Y n−1 → Xn−1

by an embedding ε : Y n−1 → Xn−1 × Rk; take its normal bundle, and the
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fibre homotopy trivialisation induced by projection on Rk. But ε induces an
embedding of the corresponding disc bundles : the normal bundle and fibre
homotopy trivialisation of this are effectively the same as those for ε itself. The
result follows.

Note. Both result and proof are also valid for simple suspension, when G = Z2.

See Madsen, Thomas and Wall [M2] and Wall [W35] for the classification of
finite groups π with free actions on high-dimensional spheres.



14B. An Extension of the Atiyah-Singer

G-signature Theorem

Probably the most useful application to differential topology of the Atiyah-
Singer index theorem is their G-signature theorem [A8, (6.12)], which is stated
as follows:

Theorem 14B.1. “Let X be a compact oriented (smooth) manifold of dimen-
sion 2l, and let the compact Lie group G act (differentiably) on X preserving
the orientation. Then G acts on H l(X ;R) preserving the bilinear form. Let
sign(G,X) be the character of G defined from this action by (6.7) for l even
and by (6.9) for l odd. Let sign(g,X) be the value of sign(G,X) on an element
g ∈ G. Let Xg be the fixed-point set of g, Ng the normal bundle of Xg in X,
and

Ng = Ng(−1)⊕
∑

0<θ<π

Ng(θ)

the decomposition of Ng determined by the eigenvalues of g. Then Ng(−1) is
a real vector bundle of even dimension and Ng(θ) is a complex vector bundle.
Let 2t = dimXg, 2r = dimNg(−1), s(θ) = dimCN

g(θ). Finally let L be the
stable characteristic class of the orthogonal group given by (6.5), and M θ the
stable characteristic class of the unitary group given by (6.11). Then we have

sign(g,X) =
{
2t−r

∏
0<θ<π

(i tan θ/2)−s(θ)L (Xg)L
(
Ng(−1))−1

e
(
Ng(−1))

∏
0<θ<π

M θ
(
Ng(θ)

)}
[Xg] . (ASGSF)

Here e
(
Ng(−1)) denotes the “twisted” Euler class of Ng(−1), and [Xg] is the

“twisted” fundamental class of Xg, both twistings being defined by the local
coefficient system of orientations of Xg. (A summation over components of
Xg is implicit).”

We wish to generalise this to topological actions, using the idea in the proof of
(13B.1). For the assertion of the theorem to remain meaningful, it is necessary
to suppose that there is a G-vector bundle Ng over the fixed point set Xg of g in
X , and an equivariant homeomorphism of its total space onto a neighbourhood
of Xg in X . For the proof it is necessary to assume in addition not only that Xg

is a manifold but also the corresponding results for any g′ ∈ G and, in addition,
that the linear structures of the Ng′ are compatible in some sense with each
other.

To avoid such complicated assertions we confine ourselves to the only case
which will be needed for our applications : that of semi-free actions – i.e. actions
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where there is a fixed point set F = Xg for all g ∈ G, so the action on X − F
is free. A semi-free action will be called tame if F is a manifold, there is a
G-vector bundle N over F equivariantly homeomorphic to a neighbourhood of
F in X and if, in addition, (X − F )/G is a manifold. Then our main extension
of (14B.1) is

Theorem 14B.2. The identity (ASGSF ) holds for tame, semi-free actions on
topological manifolds, X2l.

Proof Denote by CTop
2l (G) the cobordism group of tame semi-free actions of

G on oriented topological manifolds (the cobounding actions are of course also
assumed tame and semi-free), CDiff

2l (G) the corresponding group formed from
differentiable actions. There is a natural forgetful homomorphism

φ : CDiff
2l → CTop

2l (G) .

Since a cobordism of (G,X) carries with it ones of F , N and since the Hirze-
bruch class �(F ) is well-defined for topological manifolds, each side of the for-

mula (ASGSF) defines a homomorphism CTop
2l (G) → C. Now (14B.1) states

that these agree on the image of φ. Our assertion is thus an immediate corol-
lary of

Lemma 14B.3. The map φ : CDiff
2l (G)→ CTop

2l (G) has finite kernel and coker-
nel.

Proof Let ρ run through equivalence classes of orthogonal representation of G
on Rd (d = deg ρ) which are free on Rd−{0}. For each such ρ, let C(ρ) denote
the centraliser of ρ(G) in Od. Then by a result of Conner [C15] there is an exact
sequence

· · · → ΩDiff
n (G)→ CDiff

n (G)→
∑

k+deg ρ=n

ΩDiff
k

(
C(ρ)

)→ ΩDiff
n−1(G)→ . . . ,

where ΩDiff
n (G) is the corresponding cobordism group of free oriented actions.

The proof may be found in [C18] or [W13, VA, Chapter 7]: the idea is that
to compute the relative cobordism group of free modulo semi-free actions one
can concentrate on a neighbourhood of F : but the class ρ is constant over each
component of F , so the group N can be reduced to C(ρ).

This is all just as valid in the topological case, provided the semi-free actions
are tame. We now see that φ extends to a map of exact sequences

. . . �� ΩDiff
n (G) ��

��

CDiff
n (G) ��

��

∑
k+deg ρ=n

ΩDiff
k

(
C(ρ)

)

��

�� ΩDiff
n−1(G)

��

�� . . .

. . . �� ΩTop
n (G) �� CTop

n (G) �� ∑
k+deg ρ=n

ΩTop
k

(
C(ρ)

) �� ΩTop
n−1(G)

�� . . .
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Since, for any compact Lie G, the bordism Ω∗(G) of free G-actions can be
identified with the bordism groups of K(G, 1), we now see that (by the 5-
lemma) it will suffice to show that for any CW complex X with finite skeletons,
the kernel and cokernel of ΩDiff

n (X) → ΩTop
n (X) are finite. But for n �= 4, this

is the map of homotopy groups of spectra

πn(X ∧MSO)→ πn(X ∧MSTOP)

and the result follows by a simple spectral sequence argument, since BSO →
BSTOP is known [K9] [K6] to be a homotopy equivalence modulo the class of
finite groups.

If n = 4, we cannot use transversality to show that the natural map

ΩTop
4 (X)→ π4(X ∧MSTOP)

is an isomorphism, but transversality does show it injective, and the image is
at least as large as that of

ΩDiff
4 (X) ∼= π4(X ∧MSO) ,

which has finite index (in fact index 2, if X is connected).

It follows, as on [A8, p. 590], that if we have a tame semi-free action of a finite
group G on X2l which is free on the boundary ∂X , we can use it to compute
ρ(∂X/G). Note that ρ is minus the invariant σ of [A8]. And here there is no
longer any need to restrict G to be finite in order to define ρ: in particular, for
free actions on S1, ρ is always defined and can be computed by [A8, 7.9]. The
restriction of ρ to a subgroup then gives the value of ρ for the induced action.
For this method of calculating, I am indebted to Ted Petrie [P3].

See Dovermann and Schultz [D4] and Weinberger [W41, §13] for an account of
the progress in equivariant surgery theory since the first edition of this book.
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If Q is the orbit space of a free (tame) action of S1 on S2n−1, and

f : Q→ P∞(C) = B(S1)

the map inducing the given principal bundle, then since dimQ = 2n − 2 we
may assume f cellular, and so f : Q → Pn−1(C). We have an induced map of
bundles

S2n−1
f̃ ��

��

S2n−1

��
Q

f �� Pn−1(C) :

now H2n−1(f̃) ∼= π2n−1(f̃) (relative Hurewicz theorem)
∼= π2n−1(f) (exact sequence of fibration)
∼= H2n−1(f) (Hurewicz again)

= 0 (dimQ = 2n− 2)

so f̃ has degree 1: the homotopy properties of fibrations now show f a homotopy
equivalence. Thus (Q, f) ∈ S

(
Pn−1(C)

)
: we refer to Q as a fake complex

projective space. Conversely, of course, given a homotopy equivalence f : Q→
Pn−1(C), the induced principal bundle has total space S2n−1. Thus we can
identify S

(
Pn−1(C)

)
with the set of free (tame) actions of S1 on S2n−1.

We next compute [Pn−1(C), G/PL]. We have the exact sequence

π2k(G/PL)→ [Pk(C), G/PL]→ [Pk−1(C), G/PL]→ π2k−1(G/PL) = 0 ;

moreover, θ : [Pk(C), G/PL]→ L2k(1) ∼= π2k(G/PL) splits the first map in the
sequence if k �= 2: for k = 2, a special argument shows that the sequence is
isomorphic to

Z
×2−→ Z→ Z2 → 0 .

We deduce inductively the following, due to Sullivan [S22].

Lemma 14C.1. For f : Pn(C) → G/PL, define s2r(f) = θ
(
f |Pr(C)

)
: thus

s4k(f) ∈ Z and s4k+2(f) ∈ Z2. Then s2(f) is the mod 2 reduction of s4(f),
and the s2i for 2 � i � n give a bijection of [Pn(C), G/PL].

If G/PL is replaced by G/TOP the result is the same except that s2 ceases
to play an exceptional rôle. The formulae of §13B give the splitting invariants
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s2r in terms of characteristic numbers :

s4k+2(f) =
∑

0�i�k

w4(k−i)

(
P2k+1(C)

)
f∗(k4i+2)[P2k+1(C)]

=
∑

0�i�k

(
k + 1

i+ 1

)
[k4i+2](f) ,

where
[k4i+2](f) = f∗k4i+2 · αn−2i−1

2 [Pn(C)] ,

with α2 ∈ H2
(
Pn(C);Z

)
the standard generator;

8 s4k(f) =
∑

0�i�k

�(k−i)

(
P2k(C)

)
f∗�i[P2k(C)]

=
∑

0�i�k

ck,i[�i](f) , say ,

where
[�i](f) = f∗�i · αn−2i

2 [Pn(C)]

and the ck,i are certain rational numbers with odd denominators which are easily
computed in principle (not in practice), but at least we have ck,k = 1.

It is now easy to classify the actions.

Theorem 14C.2. The invariants s2i ∈ Z2 (n odd), ∈ Z (i even) for 2 � i < n
define a bijection of SPL

(
Pn(C)

)
.

It suffices to refer to the exact sequence

0 = L2n+1(1)→ SPL
(
Pn(C)

)→ [Pn(C), G/PL]
θ→ L2n(1) ,

to the statement of the lemma, and to the fact that (by definition) θ(f) = s2n(f).

We obtain an analogous result for tame topological actions. I conjecture that
even in the wild case the calculations can be interpreted to give a correct result.
I will not discuss the smooth case : apart from [S22] and early work in [H21] the
main reference seems to be [B40]

The next result follows easily.

Proposition 14C.3. The suspension Σ : SPL
(
Pn−1(C)

) → SPL
(
Pn(C)

)
is

injective; its image is the kernel of s2(n−1).

The main point is to note that for i � n − 1 we have s2i(ΣQ) = s2i(Q): this
follows from (14A.3) or indeed from the definition. The invariant s2(n−1) is
sometimes known as the desuspension obstruction.

The next calculation is crucial for our account of free actions of cyclic groups :
using it has enabled me to simplify several of my earlier arguments.
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Theorem 14C.4. Let h : Q → Pn−1(C) be a homotopy equivalence with
splitting invariants s2i. Then the corresponding free (tame) action of S1 on
S2n−1 has

ρ(t) = fn +
∑

1�r�[n/2]−1

8 s4r(f
n−2r − fn−2r−2) ,

where f(t) = (1 + t)/(1− t).
Proof By (14B.2), the Atiyah-Singer formula is applicable : now (7.9) on p. 594
on [A8] gives

ρ(t) = δ − 2n−1

(
tex + 1

tex − 1

)
L (Q)[Q] ,

where δ = 0 (n odd) or 1 (n even) and x ∈ H2(Q;Z) is the generator. In
particular, ρ is linear in the coefficients of L (Q), and hence in its splitting
invariants, and depends only on the s4r: say

ρ = an + b 1
n s4 + b 2

n s8 + · · ·+ b r
n s4r , r = [n/2]− 1 .

Now for the action of S1 on itself (Q = point), we have

ρ = − t+ 1

t− 1
= f .

Since ρ is multiplicative for joins, we multiply by f on suspending. Now the s4r
are unaltered by suspension. Hence

an = fn (all n)

b r
n = fn−2r−2b r

2r+2 (all r, n � 2r + 2) .

It remains to show that

b r
2r+2 = 8(f2 − 1) = 32t/(1− t)2 .

Thus let n = 2r + 2: we seek the coefficient of s4r in L (Q); let it be αrx
2r. If

W 4r ⊂ Q is dual to x, its signature is

σ(W ) = 22rL (W )[W ] = 22ri∗L (Q) · (L (ν)
)−1

[W ] .

The constant term in L (ν) is 1: thus the coefficient of s4r in this is 22rαr.
By definition, σ(W ) = 1 + 8s4r, thus αr = 23−2r. Substituting in the original
formula we see that

b r
2r+2 = 23−2r · −22r+1 · coefficient of x in

tex + 1

tex − 1
;

this reduces to give the formula sought.

We can use this theorem to compute s4r for joins.
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Corollary. Let given free actions of S1 on spheres have splitting invariants
a2r, b2r. Then for the join we have

s4r = a4r + b4r + 8
∑

i+j=r

a4ib4j − 8
∑

i+j=r−1

a4ib4j .

Proof Multiply out for ρ, and equate coefficients of powers of f .

Problem How can one compute s4r+2 for the join of the given actions?

It seems clear that s2 = a2 + b2, but whether or not a4b2 appears as a term
in s6, or indeed whether the formula is bilinear at all is uncertain. I guess that
s4r+2 = a4r+2 + b4r+2 for all r � 0.

See Madsen and Milgram [M1, Chapter 8C] for a more recent account of the
construction of exotic complex projective spaces.
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The orbit space of any free action of Z2 on Sn is homotopy equivalent to
Pn(R), as we will see in (14E). We will now determine SPL

(
Pn(R)

)
for n � 5,

using the methods of §10. The first step is to compute [Pn(R), G/PL]. Now
Pn(R) has only 2-torsion, and Sullivan [S22] shows that, if groups of odd (finite)
order are neglected, the only nonzero k-invariant of G/PL is the first, which is
δSq2, so that if

Y = K(Z2, 2)×δSq2 K(Z, 4) ,

we have
G/PL � Y ×

∏
i�2

(
K(Z2, 4i− 2)×K(Z, 4i)

)
modulo groups of odd order.

Now [Pn(R), Y ] = [P5(R, Y ] for n � 5, and by (14A.2) the composite map

s4 : Z ∼= [P2(C), Y ]→ [P5(R), Y ]

is surjective. Thus the latter group is cyclic of order 4: let y denote the isomor-
phism with Z4 induced by s4 reduced mod 4.

Projections on the other factors are induced by the fundamental classes of the
Eilenberg-MacLane spaces : Sullivan shows that these can be taken as k4i−2

(i � 2)
(
this is the same k as in (13B.5)

)
and 1

8�i: say λi.

Lemma 14D.1. Let i � 0. Then we have bijections

[P2i+5(R), G/PL]
r∼= [P2i+4(R), G/PL]

X∼= Z4

⊕i
j=1Z2 ,

where the components of X are y, [k2j+4] (j odd) and [λ 1
2 j+1] (j even), with

[k2j+4](f) = f∗k2j+4 · α2i−2j
1 [P2i+4(R)]

(similarly for λ), with α1 ∈ H1
(
Pn(R);Z2

)
the generator.

This follows at once from the remarks above. We must now compute the
surgery obstruction θ. There are 4 cases to consider, depending on the value of
n mod 4. By (13A.1), the relevant obstruction group is

n (mod 4) 0 1 2 3

orientability − + − +

Ln(Z2) Z2 0 Z2 Z2

invariant c − c d
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Thus for n = 4r + 1, θ maps to a zero group. For n = 4r + 2 we have, by
(13B.6),

c
(
P4r+2(R), f

)
= (1 + α1)

4r+3(1 + Sq2 + Sq2Sq2)f∗(Σk4i+2)[P4r+2(R)] .

Note here first, that we can ignore terms of odd dimension; second, that Sq2Sq2

is always zero in H∗(Pn(R);Z2

)
; and third, that on terms of dimension 4i+ 2,

Sq2 acts by multiplying by α 2
1 . Thus

c
(
P4r+2(R), f

)
= (1 + α1)

4r+2(1 + α 2
1 )f∗(Σk4i+2)[P4r+2(R)]

= (1 + α 4
1 )r+1f∗(Σk4i+2[P4r+2(R)]

=
r∑

i=0

(
r + 1

i+ 1

)
[k4i+2](f) .

For n = 4r + 3 we have, by (13B.7),

d
(
P4r+3(R), f

)
= c

(
P4r+2(R), f |P4r+2(R)

)
=

r∑
i=0

(
r + 1

i+ 1

)
[k4i+2](f) .

Finally for n = 4r + 4 we use (13B.6) again, and the same remarks to simplify.

c
(
P4r+4(R), f

)
= (1 + α1)

4r+5(1 + Sq2 + Sq2Sq2)f∗(Σk4i+2)[P4r+4(R)]

= (1 + α1)
4r+4(1 + α 2

1 )f∗(Σk4i+2)[P4r+4(R)]

= (1 + α1)
4r+4α 2

1 f
∗(Σk4i+2)[P4r+4(R)]

(the other terms have the wrong dimensions), and now we see that this coincides
(again) with c

(
P4r+2(R), f |P4r+2(R)

)
.

This computes the map θ in all cases : it is a homomorphism with respect to
the obvious group structures, nonzero except when n ≡ 1 (mod 4). We have
obtained Lemma 3 of [W23] by direct calculation : this is a new proof of it.
Since the leading term of the formula is [k4r+2(f)], a new notation is suggested
in terms of splitting invariants : we proceed as follows.

By (14A.2), the Hopf map π : P2k+1(R) → Pk(C) induces a surjection
π∗ : [Pk(C), G/PL] → [P2k+1(R), G/PL]. We express this in the notation
of (14D.1). For f : Pk(C) → G/PL, we have y(f ◦ π) = s4(f) (mod 4) by
definition and, for i � 0,

[k4i+2](f ◦ π) = π∗f∗(k4i+2)α
2k−4i−1
1 [P2k+1(R)]

= π∗f∗(k4i+2)[P4i+2(R)]

= f∗(k4i+2)[π∗P4i+2(R)]

= f∗(k4i+2)[P2i+1(C)] (mod 2)

= f∗k4i+2 · α k−2i−1
2 [Pk(C)] (mod 2)

= [k4i+2](f) (mod 2) ,
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and a precisely similar calculation shows that [λi](f ◦π) is the mod 2 reduction
of 1

8 [�i](f). Using the formulae for the splitting invariants in the complex case,
we now define ones in the real case by setting, for f : Pn(R)→ G/PL,

r4k+2(f) =
∑

0�i�k

(
k + 1

i+ 1

)
[k4i+2](f)

r4k(f) =
∑

0�i�k

ck,i[λi](f) .

Since ck,k = 1, we are transforming by a unitriangular matrix, so the new
invariants are as good as the old : (14D.1) leads to a new bijection if X is
replaced by R with components y and r2j+4 (1 � j � i). But the new
invariants have two advantages. The first (from the definition) determines
π∗[Pk(C), G/PL]→ [P2k+1(R), G/PL] by

y(π∗f) = s4(f) (mod 4)

r4r(π
∗f) = s4r(f) (mod 2) 1 � r � k/2

r4r+2(π
∗f) = s4r+2(f) 0 � r < k/2 .

Secondly, the obstruction map θ : [Pn(R), G/PL] → Z2 is now given if n =
4r + 2, 4r + 3 or 4r + 4 by the splitting invariant r4r+2.

We now complete the evaluation of SPL
(
Pn(R

)
.

Theorem 14D.2. The map η : SPL
(
Pn(R)

) → [Pn(R), G/PL] (n � 5) is
surjective for n ≡ 1 (mod 4); otherwise its image is the kernel of r4r+2, where

r = [(n− 2)/4]. The map η is injective except when n ≡ −1 (mod 4), when 1
8ρ

maps each fibre bijectively to Z.

Note that ρ is a function on G− {1}: when G only has two elements, we can
identify ρ with the (unique) value which it takes.

Proof The first assertion follows, since by (10.3) the image of η is the kernel of θ,
from the above determination of θ. Next, by (10.5), two elements of SPL(Pn)
have the same image under θ if and only if one can be obtained from the other by
the operation of Ln+1(Z2). Now the image of Ln+1(1) always operates trivially;
this holds for any manifold Xn, and follows from the commutative diagram

[Sn+1, G/PL]
∼ ��

��

Ln+1(1)

��
[ΣX,G/PL] �� Ln+1(πX)

and the fact that
(
by exactness, (10.8)

)
the image of [ΣX,G/PL] always oper-

ates trivially.

According to (13A.1), the group Ln+1(Z2) is given by
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n (mod 4) 0 1 2 3

orientability − + − +

Ln+1(Z2) 0 Z2 0 Z⊕ Z

invariant − c − (σ/8, σ̃/8)

Since Ln+1(Z2) vanishes in two cases, and Ln+1(1) maps onto it in a third, we
conclude that η is injective for n �≡ −1 (mod 4).

In the case n ≡ −1 (mod 4) we must use our invariant ρ. First observe that
for a compact oriented 4k-manifold W with fundamental group Z2, the Z2-
signature of W̃ is 2σ(W )− σ(W̃ ), as follows by decomposing the corresponding
forms over R. Thus if W is a cobordism of Q1 to Q2, we have

ρ(Q2)− ρ(Q1) = 2σ(W )− σ(W̃ ) .

Suppose in particular W a normal cobordism between fake projective spaces. If
these have the same value of ρ, then 2σ = σ̃. But this equation characterises
the image of L4k(1)→ L4k(Z

+
2 ). Hence Q1 and Q2 are PL homeomorphic.

It follows that fibres of η are mapped injectively by ρ, and that if η(Q1) =
η(Q2), then ρ(Q1) − ρ(Q2) is an integer divisible by 8. To conclude, we must
show that for any fake projective space Q, ρ(Q) is divisible by 8; it will suffice
to show that each normal cobordism class contains a Q with ρ(Q) = 0. The
following direct proof is essentially due to López de Medrano [L20], [L21].

By (14D.1), restriction gives a bijection

r : [P4r+3(R), G/PL]→ [P4r+2(R), G/PL] .

By the calculations above, θ
(
r(x)

)
= θ(x). Now recall the commutative diagram

of (14A.3):

SPL
(
P4r+2(R)

)
Σ
��

η �� [P4r+2(R), G/PL]

SPL
(
P4r+3(R)

) η �� [P4r+3(R), G/PL]

r

��

and we see that each element of SPL
(
P4r+3(R)

)
is normally cobordant to a

suspension
(
Ση−1rη(Q): the η−1 can be taken since the surgery obstruction

vanishes
)
. Now given a suspended action, interchanging the two suspension

points gives an orientation-reversing homeomorphism of it onto itself. But re-
versing orientation changes the sign of ρ. Hence ρ = 0 for a suspension. This
concludes the proof.

It follows that ρ, together with splitting invariants r2i (and y), gives a complete
set of invariants for oriented PL homeomorphism classification; and if we change
orientation (e.g. by harmonic inversion) only the sign of ρ is altered. Note that
if the same is carried through in the topological case, the only difference is the
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absence of the low dimensional anomaly. Thus (in dimensions � 5) a topological
homotopy Pn(R) admits a PL structure if and only if r2 = r4

(
for homotopy

Pn(C): if and only if s2 is the mod 2 reduction of s4
)
, and the PL structure is

determined by choosing y ∈ Z4 reducing to r2 mod 2
(
for Pn(C), it is unique

)
.

This was first noted by Siebenmann.

We now use our results to study the relation between homotopy real and com-
plex projective spaces.

Proposition 14D.3. The map π� : SPL
(
Pn−1(C)

) → SPL
(
P2n−1(R)

)
(re-

stricting the action on S2n−1 from S1 to Z2) is given by

y(π�Q) = s4(Q) (mod 4)

r4r(π
�Q) = s4r(Q) (mod 2)

r4r+2(π
�Q) = s4r+2(Q)

and, if n = 2k is even,

1

8
ρ(π�Q) = −s4k−4(Q) .

Consequently, the image of π� is characterised by

(n = 3) y= 0

(n = 4) y= − 1
8ρ (mod 4)

(n = 2k + 1 > 3) r4k= 0

(n = 2k + 2 > 4) r4k=
1
8ρ (mod 2) .

Remark. The last relations characterise those homotopy P2n+1(R) which fibre
over a homotopy Pn(C), or equivalently, those free actions of Z2 on S

2n+1 which
extend to free circle actions.

Proof The first three formulae have already been obtained by computing π∗.
As to ρ, we know that it is natural when we restrict actions to subgroups. We
can thus apply (14C.4), and take t = −1, hence f = 0. We obtain 0 (n odd),
−8s4(k−1) (n = 2k).

The characterisation of the image of π� follows by inspection. Note that al-
though π∗ is surjective, if n = 2k + 1 we have the surgery obstruction s4k
leading to a fibration obstruction; if n = 2k+ 2, the surgery obstructions s4k+2

and r4k+2 are essentially the same, but we now have ρ as well as the normal
invariant, and for the fibred case they are related by

1
8ρ = −s4k = r4k (mod 2) .

Our other main explicit construction for fake projective spaces was the join –
particularly the suspension. Our main result here is the following.

Theorem 14D.4. The commutativity (14A.3) determines all the invariants of
a suspension except for

n = 4r nothing n = 4r + 1 r4r+2(ΣQ) = 0

n = 4r + 2 ρ(ΣQ) = 0 n = 4r + 3 r4r+4(ΣQ) = r4r(Q) + 1
8ρ(Q) .
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Hence Σ is injective except for n = 4r + 3, where two elements have the same
suspension iff they have the same normal invariant, and values of ρ of the same
parity. If n is odd, Σ is surjective. The image is given for n = 4r+2 by ρ = 0
and for n = 4r by r4r−2 = 0.

Proof Our computation of SPL
(
Pn(R)

)
shows that the above are indeed the

only invariants not determined by rη; it remains to show that the above are
the correct values. The statements about kernel and image of Σ then follow by
inspection.

For n = 4r, there is nothing to show; for n = 4r+1 resp. 4r+2 we have already
seen that r4r+2 resp. ρ vanishes on suspended elements. The main assertion of
the theorem is thus the calculation of r4r+4(ΣQ).

First assume that r4r(Q) + 1
8ρ(Q) = 0 (mod 2). Then by (14D.3) Q is in

π�
(
SPL

(
P2r+1(C)

))
: say Q = π�(X).

Now r4r+4(ΣQ) = r4r+4(Σ
2Q)

= r4r+4(Σ
2π�X)

= r4r+4(π
�ΣX) (naturality of joins)

= s4r+4(ΣX) (mod 2)

= 0 ,

so the formula holds in this case.

Now suppose r4r(Q) + 1
8ρ(Q) = 1 (mod 2). Choose a normal cobordism of Q

to Q′ so that ρ(Q′) − ρ(Q) = 8. By the above, r4r+4(ΣQ
′) = 0. It is sufficient

to show ΣQ �∼= ΣQ′, since only the invariant r4r+4 can differ, so r4r+4(ΣQ) = 1
follows. So the result will follow once we prove that

ΣQ ∼= ΣQ′ ⇒ 1

8

(
ρ(Q)− ρ(Q′)

)
is even .

Given a PL homeomorphism h : ΣQ→ ΣQ′, we use transversality to construct
a cobordism V 4r+4 of Q×0 to h−1(Q′)×1 in ΣQ×I. Attempting to do surgery
to get an s-cobordism embedded in ΣQ× I meets an obstruction θ in

LN4r+4(1→ Z−
2 )
∼= L4r+4(1) ∼= Z

whose image (by r0) in L4r+4(Z
+
2 ) is the obstruction to doing surgery, forgetting

the embedding. Define γ : L4r+4(Z
+
2 ) → Z as the signature of the quadratic

form on the Z2-invariant part minus that on the Z2-skew part, i.e. the Z2-
signature. Comparing with the definition of ρ, we have

γr0(θ) = ρ(Q′)− ρ(Q) .

The result thus follows from the fact that the composite

Z ∼= LN4r+4(1→ Z−
2 )

r0→ L4r+4(Z
+
2 )

γ→ Z
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is multiplication by 16, which follows since by (12.9.2) this is the composite

Z ∼= L4r+4(1)
j→ L4r+4(Z

+
2 )

τ→ L4r+4(Z
+
2 )

γ→ Z

and γτ gives the sum of the signatures on the invariant and skew parts, i.e. σ̃.
For this argument cf. [L20, IV, 4.2], also [B11].

It is interesting to observe that it follows that if we keep suspending, all new
invariants s4k+2 are 0 and all new ones r4k are equal to each other : if they are 0,
all the (odd dimensional) suspensions fibre over homotopy complex projective
spaces; if they are 1, none do. One can ask more generally for invariants of
joins : it is not hard to deduce from (14D.3) and (14C.4, Corollary) that r4k
is additive (apart from the effect of ρ), but we cannot yet deal with r4k+2. Of
course ρ itself is multiplicative.

To conclude, I must acknowledge indebtedness to many authors for some of
the details above. Another approach which has become more traditional started
from the paper [B29] by Browder and Livesay in which as well as defining sus-
pension, they investigated obstructions to existence and uniqueness of desus-
pension : from our point of view, the groups LN(1 → Z2): and obtained the
corresponding special case of (12.9). The desuspension obstruction is then an
invariant, β say. The identity β(Q4r+3) = 1

8ρ(Q
4r+3) (an easy consequence of

the above) was obtained in unpublished work by Sullivan; a modified version
appears in [L20], and a direct and natural proof in [H20] (with terminology
appropriate to the smooth case, but valid in general). For the case when Q is
fibred, β equals (14D.3) the desuspension obstruction for the fake complex pro-
jective space : this was shown directly by Montgomery and Yang [M19] (again
referring unnecessarily to the smooth case). Our treatment (14D.4) is complete
and independent of these. It is interesting to note (as we did in [W23], which has
however sometimes been misquoted) that the obstruction of [B29] to uniqueness
of desuspension of Q4r+2 is, in fact, bogus.

Much work has also been done on the smooth case, where matters are much
more complicated. The main difference lies, of course, in the homotopy theory
rather than the surgery : the application of our methods to this problem is ade-
quately discussed in [L20]. The most interesting examples are those of Brieskorn
(see [H19]), whose homotopy theory is clearly expounded in Giffen [G2].

See also López de Medrano [L21, Chaps. IV,V] for the combinatorial and smooth
classifications of involutions on homotopy spheres.
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By ‘fake lens space’ we mean a manifold with cyclic fundamental group and
universal cover a sphere. These give the best examples for application of our
techniques, but the problem is of substantial complexity : this section has re-
peatedly held up completion of the book. At present, results are still only
partial, for we sometimes need to assume the fundamental group of odd order,
though a substantial number of results can be obtained without this restriction.
Compared with §14D we find ρ plays a more important part, and that we also
must watch Reidemeister torsion. We begin by investigating this.

Let G be a cyclic group of order N with preferred generator T : let χ be the
faithful representation χ : G → S1 with χ(T ) = exp(2πi/N). The standard
action of S1 ⊂ C on S2n−1 ⊂ Cn is given by multiplying each coordinate.
Restrict the action (via χ) to G: the orbit space is the standard lens space
L 2n−1
0 (N), or L0 when no confusion is to be feared. This has CW structure

with one cell in each dimension : the odd skeletons are the images of the spheres
S2i−1 ⊂ C

(
last (n− i) coordinates zero) and the 2i-cell the image of the subset

of S2i+1 with last coordinate real and � 0.

For any (triangulated) fake lens space, Milnor [M14] defines a Reidemeister
torsion as follows. Choose orientations for the cells of L, and liftings of them
to cells in the universal cover L̃: the result gives a free ZG-base for C∗(L̃).
Let Z ∈ ZG be the sum of all group elements, RG be the quotient of ZG
by the ideal generated by Z (which is just the set of integer multiples of Z),
QRG = Q⊗RG = QG/〈Z〉. Then

C∗(L̃)⊗ZG QRG

is acyclic, with a preferred base. Thus it has Reidemeister torsion Δ(L), which is
a unit of QRG, and is determined uniquely up to sign, and up to multiplication
by elements of G.

To obtain further information, we utilise our knowledge about the homotopy
type of L, and argue following the idea at the beginning of (14C). The iso-
morphism π1(L) → G induces a homotopy class of maps L → K(G, 1). We
may suppose L mapped into the (2n − 1)-skeleton of K(G, 1): but this is just
L 2n−1
0 (N), so

f : L→ L0 .

Since L̃ is (2n− 2)-connected, f is (2n− 1)-connected. It follows by elementary
obstruction theory that on the (2n− 2)-skeleton we can construct

g : L 2n−2
0 (N)→ L ,

213
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unique up to homotopy, with fg homotopic to the inclusion. Then g is (2n −
2)-connected, so all homology and cohomology groups of g, with respect to
any coefficient bundle, vanish in dimensions other than (2n − 1). By (2.3 (a)),
H2n−1(g;ZG) is a projective ZG-module. Since both complexes are finite, by
(2.3 (c)) it is stably free. Now by a result of Swan [S25] it is a free module; it
clearly has rank 1. Thus (see [W14]) there exist a map φ : S2n−2 → L 2n−2

0 (N)
and an extension of g to a homotopy equivalence

g′ : L 2n−2
0 (N) ∪φ e2n−1 → L .

Now
(
see [B7, (7.3), p. 623]

)
the natural map from the units of ZG to K1(ZG)

is an isomorphism. Thus by re-choosing the generator of the above free ZG-
module π2n−1(g) = H2n−1(g;ZG) we can arrange that g′ is a simple homotopy
equivalence. This gives a normal form for L which we can use to calculate
torsions.

For L 2n−1
0 (N), with the cells above, we have the chain complex

∂2i+1e2i+1 = e2i(T − 1) ∂2ie2i = e2i−1Z .

In QRG, Z becomes zero, so

Δ
(
L 2n−1
0 (N)

)
= (T − 1)n .

Now for L, normalised as above, only the top cell is attached differently. And
even here, both boundary maps ∂2n−1 have the same image : viz. Ker ∂2n−2,
since H2n−2(L;ZG) = H2n−2

(
L 2n−1
0 (N);ZG

)
= 0. This image is isomorphic

to RG. So one value of ∂2n−1e2n−1 differs from the other by multiplying by a
unit u of RG. hence Δ(L) = (T − 1)nu.

Conversely, since Ker ∂2n−2
∼= H2n−2

(
L̃ 2n−2
0 (N)

)
∼= π2n−2

(
L 2n−2
0 (N)

)
,

to any unit u of RG we have the spherical homology class e2n(T − 1)u, and can
attach a (2n−1)-cell to obtain a complex L with fundamental groupG, universal
cover homotopy equivalent to S2n−1 and torsion (T −1)nu. Note moreover that
if cells of L 2n−1

0 (N) are oriented, then all cells of L are oriented except the top

one; but an orientation of this gives one of L̃. Thus if we prescribe an orientation
of L̃, we lose the ambiguity in sign of Δ(L): suppose this done from now on.

Now we have the commutative diagram of ring epimorphisms, which is in fact
a pullback diagram :

ZG
η ��

ε

��

RG

ε′
��

Z
η′ �� ZN
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with ε the augmentation map. The kernel of each horizontal map is infinite cyclic
(generated by Z and ε(Z) = N respectively); the kernel IG of ε is generated by
T −1 and is mapped isomorphically by η onto Ker ε′. We deduce first, an exact
sequence of groups of units

0→ (ZG)× → R×
G ⊕ Z× → Z×

N ,

so units in ZG mapped by ε to 1 are sent isomorphically by η onto Ker(R×
G →

Z×
N ). Also R×

G maps onto Z×
N : for if, say, dr = 1 + kN then

(1 + T + T 2 + · · ·+ T d−1)(1 + T d + T 2d + · · ·+ T (r−1)d) = 1 + kZ

in ZG, so (1 + T + · · ·+ T d−1) is a unit in RG mapping to the unit d in ZN .

I now claim that the homotopy type of L above is determined by the unit ε′(u)
of ZN . For if η(x) = u, we have a map of L to L0 which is the identity on the
(2n − 2)-skeleton, and maps the chain e2n−1 to xe2n−1. The induced map of
universal covers then has degree ε(x). It is now well known that the homotopy
type is determined by (and determines) the reduction

η′ε(x) = ε′η(x) = ε′(u) :

if we have L, L′ corresponding to u, u′ they have the same homotopy type if
and only if ε′(u) = ε′(u′). There is then a (unique) unit of ZG mapping by η to
u′/u: this clearly represents the Whitehead torsion of a homotopy equivalence
L′ → L (compute the chain map as above).

We can make the homotopy statement more explicit by determining the first
k-invariant of L (which, in this case, suffices for homotopy classification). This
lies in H2n(G;Z). Now there are natural isomorphisms

IG/I
2

G
∼= G ∼= H1(G;Z) ∼= Ĥ−2(G;Z) .

Also IG is an invertible ideal in QRG, since 1− T has inverse

−N−1(1 + 2T + 3T 2 + · · ·+NTN−1) .

We can thus identify

I n
G /I n+1

G
∼= Ĥ−2n(G;Z) for all n ∈ Z .

Lemma 14E.1. Δ(L) ∈ I n
G : its class mod I n+1

G corresponds to the inverse of
the first k-invariant of L.

Proof First consider L 2n−1
0 . Here, Δ = (T − 1)n. This comes from raising to

the nth power (T − 1) ∈ IG, which corresponds under the above isomorphisms
to T ∈ G and its image in H1(G;Z). Now the natural multiplicative pairing of

Ĥ−2(G;Z) and Ĥ2(G;Z) to

Ĥ0(G;Z) ∼= ZN
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can be identified via the Bockstein isomorphism

β : H1(G;ZN )→ H2(G;Z)

with the Kronecker product

〈 , 〉 : H1(G;Z) ⊗H1(G;ZN )→ ZN .

For the case n = 1, L � S1 but is presented as base of a fibration G → S1 →
L whose “k-invariant” is β(ι), where ι ∈ H1(G;ZN ) ∼= Hom(G,ZN ) satisfies
ι(T ) = 1. Hence the Kronecker product 〈T, ι〉 = ι(T ) = 1, so the class T is
indeed dual to β(ι), as asserted. For n > 1, the k-invariant of L 2n−1

0 (N) is the
nth power of the above, which also agrees with our claim.

For general L, we have Δ(L) = (T − 1)nu: the class in Ĥ−2n(G;Z) is thus
ε′(u) times that for L0. We also have a map L → L0 such that the induced
map of universal covers has degree d, with η′(d) = ε(u). It follows that the first
k-invariant of L0 is d times that of L. This completes the proof.

It remains to discuss duality. Each of the complexes L discussed above is a
Poincaré complex : this is trivial, since duality certainly holds in L̃. Indeed,
each is homotopy equivalent to a classical lens space : if η′(d) = ε′(u), one can
choose

L2n−1(N ; d, 1, . . . , 1) .

I assert moreover that each L is a simple Poincaré complex. Use an asterisk
to denote the involutions of ZG, RG etc. induced by T �→ T−1. Now in case
ε′(u) = 1, so we have a homotopy equivalence f : L → L0, and u = η(x) for a
unique unit x which represents the Whitehead torsion of f , consider the diagram

C∗(L̃)

[L] ∩ −
��

C∗(L̃0)
f∗

��

[L0] ∩ −
��

C∗(L̃)
f∗ �� C∗(L̃0) .

Since L0 is a closed smooth manifold, and so a simple Poincaré complex, [L0]∩
is a simple equivalence. But f∗ has torsion x−1. By duality (the dimension being
odd), the torsion of f∗ is x∗. Thus if u is as above, [L]∩ has torsion x/x∗. We
obtain a similar result in the other cases on replacing L0 by a suitable lens
space. The assertion now follows from

Lemma 14E.2. Any unit of ZG is of the form T iv, where v∗ = v.

Proof Let x be the given unit. For each complex nth root of 1, ζ say, T �→ ζ
defines a homomorphism φ : ZG → Z[ζ], and φ(x) is a unit of Z[ζ]. The
involution T �→ T = T−1 induces an involution ζ �→ ζ−1; the field Q[ζ] is
totally complex, and the fixed field under the involution is totally real. Thus
φ(x∗) and φ(x) have the same value at all infinite primes; hence φ(x∗/x) is of
finite order (see proof of the Dirichlet unit theorem).
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The set of all φ as above defines a monomorphism of ZG (in fact QG is
isomorphic to a direct sum of Q[ζ]’s), so x∗/x itself has finite order. By a
theorem of Higman [H14], x∗ = ±xT j for some j.

Write x =
N−1∑
0
aiT

i. Then the above gives

N−1∑
0

aiT
−i = ±

N−1∑
0

aiT
i+j .

If we took the minus sign, it would follow that
∑
ai = 0, i.e. ε(x) = 0, contra-

dicting the hypothesis that x is a unit. If we can solve j = 2i (mod N), then
writing v = T−ix gives the desired conclusion : this is always possible if N is
odd. If, finally, N is even and j odd we find, equating coefficients, that ar = as
for r + s = −j. Since we cannot have r = s here, all ai are equal in pairs, so
ε(x) =

∑
ai is even, again contradicting the fact that x is a unit.

As well as proving the desired result, this lemma suggests normalising powers
of T by imposing some restriction such as v∗ = v. For N odd, we normalise Δ
by requiring Δ(L) to satisfy δ∗ = δ (we call δ real) when n is even, and δ∗ = −δ
(when δ is termed ‘imaginary’) when n is odd : there is then no indeterminacy
left. For N even we can fix δ∗ = δ or −Tδ, but an indeterminacy of TN/2 still
remains. (Check the possibility of this normalisation for n = 1, Δ = T r − 1, r
prime to N : products then give the classical lens spaces, and multiplication by
a real unit of ZG the general case).

We can summarise our results so far as follows.

Theorem 14E.3. Let L be a finite CW complex with a generator T (of order

N) of π1(L) = G and a homotopy equivalence e : L̃→ S2n−1: we refer to (T, e)
as a polarisation of L. There exist φ and a simple homotopy equivalence

f : L 2n−2
0 (N) ∪φ e2n−1 → L

preserving the polarisation; these are unique up to homotopy and the action of
G. The chain map is ∂2n−1e2n−1 = e2n−2(T − 1)U , where U ∈ ZG maps to a
unit u of RG unique up to powers of T ; there is a bijection between classes of
u and simple homotopy types L. L is a simple Poincaré complex, with torsion
Δ(L) = (T − 1)nu which can be normalised as described above. The homotopy
type of L is determined by ε′(u), as made precise in (14E.1).

We now consider our key problem of classifying fake lens spaces. This can be
done in the following stages : first, the simple homotopy classification (we have
already done this), next, the normal invariant, then the surgery obstruction for
existence and finally that for uniqueness. For the normal invariant we have also
several techniques : use of Sullivan’s determination [S22] of the homotopy type
of G/PL, direct application of his ‘characteristic variety theorem’, comparison(
using (14A.2)

)
with fake Pn−1(C), and ad hoc arguments involving ρ. We aim

to show how these all fit together.
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For the homotopy type of G/PL at odd primes, we have the same as BO.
The spectral sequence for KO0(L2n−1) gives [(n − 1)/2] factors each cyclic of
order N (modulo the class of 2-groups), but the extensions are not trivial : if
N = 2r+1 is prime, for example, there are only r cyclic summands, with orders
Nx, x = [(n+2i− 3)/(N− 1)], 1 � i � r. At the prime 2, we have a product as
described in §14D, and thus a string of splitting obstructions t2i ∈ Z2 (i odd,
N even) ∈ ZN (i even), i < n, except that t2 and t4 combine (in the PL case)
to give an invariant in Z2N .

The above tells us little more than the order of the group [L0, G/PL]. We
next describe more explicit invariants, with which we ought to be able to com-
pute, though our results will not in fact be expressed in these terms. Note
that for any lens space L = L 2n−2

0 (N) ∪φ e2n−1 as above, and any map f :
L 2n−1
0 (N)→ G/PL, then f |L 2n−2

0 (N) extends to a map L→ G/PL, unique
up to homotopy; thus we have a natural bijection [L0, G/PL]→ [L,G/PL], and
can concentrate on L0.

Write N = 2eM , with M odd. We define invariants for the 2-primary part
of [L0, G/PL], following §14D, as follows. Let f : L 2n−1

0 → G/PL factorise as
g ◦ π, g : Pn−1(C)→ G/PL.

Define t4r(f) = s4r(g) (mod 2e) 1 � r � (n− 1)/2

t4r+2(f) = s4r+2(g) ∈ Z2 (e � 1) 0 � r � (n/2)− 1

T(f) = s4(g) (mod 2e+1)(
the latter is needed in the PL, though not the topological case, and then

t2(f) = T(f) (mod 2)
)
. As before, these invariants (with the specified relations

in low dimensions) give a bijection of the 2-primary part of [L0, G/PL].

For the odd part, we refer to Sullivan’s notion of characteristic variety [S22].
Recall that, regarding Z as Ω∗-module via the signature, Sullivan constructs a
natural isomorphism

Ω∗(X)⊗Ω∗ Z[
1
2 ]→ KO∗(X)⊗ Z[ 12 ]

of Z4-graded functors. One then seeks a basis of the odd torsion part of
KO−1(X), representative manifolds V 4k−1

α → X giving bordism classes of finite
orders rα, and bordisms W 4k

α → X , ∂Wα = rαVα. Then given f : X → G/PL
one can construct a normal map e : X ′ → X , make it transversal toWα to induce
eα :W ′

α →Wα, and define the splitting obstruction sα(f) as
1
8

(
σ(W ′

α)−σ(Wα)
)

(mod rα), or rather (for our purposes) as(
σ(W ′

α)− σ(Wα)
)
/8rα (mod 1) .

In our case, while there are complications in obtaining an explicit basis with
elements of given orders, it is easy to specify generators : since the classes
of the sub-lens-spaces L 2k−1

0 generate the H2k−1(L
2n−1
0 ;Z), they generate

Ω∗(L 2n−1
0 ) as Ω∗-module. Thus we can take the V∗ to be the L 4k−1

0 , 1 �
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k � n/2. The bordism spectral sequence shows that these do have finite or-
der (again, it is somewhat complicated to determine the orders exactly), so
appropriate Wα can be constructed.

As all our manifolds are mapped into L 2n−1
0 , and thence into K(G, 1) we can,

instead of just taking the signature, lift to the universal cover and take the
G-signature : σ(W̃ 4k, G). This is a function on G. Since ∂W̃ 4k = rkṼ

4k−1,
the restriction to G − {1} of σ is rkρ(V

4k−1). Also, σ(W 4k) is the coefficient

of the trivial representation, which is the mean value of σ(W̃ 4k, G) on all the
elements of G; so the term in the splitting obstruction for f , σ(W 4k)/8rk, is (one

eighth of) the mean value of ρ(V 4k−1) plus σ(W̃ 4k)/Nrk. As we are studying
odd torsion, the factor 8 is innocuous. If we can ignore this last term, we then
get the expression {(8N)−1× sum of values of ρ(V ′ 4k−1) − ρ(V 4k−1)} (mod

1) for the splitting invariant. In fact, though we can show that σ(W̃ 4k)/rk is
an integer, it need not be divisible by N : nor is ρ(V ′ 4k−1) well-determined by
transversality, though modulo representations it appears to be obtained from
ρ(L) by multiplying by the appropriate power of f−1.

Hence although this strongly suggests a connection between ρ and the normal
invariant, we will use a different method to obtain it.

We next study the surgery obstructions. Our discussion of the obstruction
to existence is based on an inductive argument due to Browder [B23] (see also
[B30]): for the purpose of starting the induction we have to go back to homo-
topy type rather than simple homotopy type. Some discussion of this modified
surgery problem will be found in §17D; we also show that for an odd dimen-
sional surgery problem with fundamental group cyclic of odd order, if surgery
is possible to get a homotopy equivalence, then one can get a simple homotopy
equivalence. I conjecture that this is also true for N even.

If we are only studying homotopy types, we do know that in each one there is
a classical lens space L2n−1. Thus it suffices to compute θ(f) for f : L2n−1 →
G/PL (or G/TOP ).

Theorem 14E.4. Let L2n−1 be a lens space with fundamental group of order N ,
f : L2n−1 → G/PL a map. Then the obstruction to surgery on a corresponding
normal map to get a homotopy equivalence vanishes unless n and N are even,
and in this case it equals t2n−2(f) ∈ Z2.

Proof First suppose n, N even. Then the image of the surgery obstruction
under

L2n−1(ZN )→ L2n−1(Z2)
d→ Z2

can be calculated by (13B.7): we find

dθ(f) = w(L2n−1)
∑
i>0

α i
1
f∗(k + Sq2k + Sq2Sq2k)[L2n−1] ,

where αi ∈ Hi(L2n−1;Z2) is the non-zero class : we have α2αi = αi+2 if i+2 �
2n − 1, and α 2

1
= α2

(
N ≡ 2 (mod 4)

)
or α 2

1
= 0

(
N ≡ 0 (mod 4)

)
. Thus
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Sq2α4k−2 = α4k, Sq
2α4k = 0. Also, w(L2n−1) = (1 + α2)

n. Thus

dθ(f) =
∑
i>0

α i
1
(1 + α2)

n+1f∗(k)[L2n−1]

and the first term is α1 if N ≡ 0 (mod 4); otherwise, its odd dimensional
component is α1(1 +α2)

−1. Since n is even, say n = 2r, we can ignore terms of
the wrong dimension, and find

dθ(f) = α1(1 + α4)
rf∗(k)[L2n−1]

=
∑(

r

i+ 1

)
[k4i+2](f) = t4r−2(f) = t2n−2(f) .

Thus for n, N even, t2n−2(f) certainly is an obstruction to surgery. Now
let n = 2. Then [L3, G/PL] is trivial for N odd : for N even, t2 defines an
isomorphism of it with Z2. Thus the theorem is true in this case.

Now suppose the theorem proved for n: consider a sub-lens-space L2n−1 ⊂
L2n+1 f→ G/PL. Let M be a tubular neighbourhood of L2n−1 in L2n+1. We
have the surgery obstruction θ(f |L2n−1) for the sub-lens-space; that for M is
p
(
θ(f |L2n−1)

)
, where

p : L2n−1(ZN )→ L2n+1(Z→ ZN )

is the map defined in (11.6). We will see below that p
(
θ(f |L2n−1)

)
= 0. Thus

one can do surgery to get a homotopy equivalence on M . Now by exactness of

L2n+1(Z)
α→ L2n+1(ZN )→ L2n+1(Z→ ZN )

it follows that θ(f) ∈ Imα. Since this holds inductively, to justify the assertion
above, it will suffice to prove

(14E.5 (a)) L2n−1(Z)
α→ L2n−1(ZN )

p→ L2n+1(Z→ ZN ) is zero .

It then remains to investigate α. We will show

(14E.5 (b)) The map α : L2n−1(Z)→ L2n−1(ZN ) is zero unless n, N are even.

Since, in this case, the composite

L2n−1(Z)→ L2n−1(ZN )→ L2n−1(Z2) ∼= Z2

is an isomorphism
(
by (13A.9)

)
, it follows that the only obstruction to surgery

is as described in the theorem. It thus remains only to prove (14E.5).

Lemma 14E.5.

(a)L2n−1(Z)
α→ L2n−1(ZN )

p→ L2n+1(Z→ ZN ) is zero .

(b)L2n−1(Z)
α→ L2n−1(ZN ) is 0 except when n, N are even .
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Proof of (b). This is equivalent to showing

L2n(Z→ ZN )
∂→ L2n−1(Z)

surjective; it suffices to prove the composite

L2n−2(ZN )
p→ L2n(Z→ ZN )

∂→ L2n−1(Z) ∼= L2n−2(1)

surjective. Now p is defined by taking the universal D2-bundle : for ∂ we take
its boundary S1-bundle, and then split along a submanifold generating H1,
which can be chosen to be the N -fold cover of what we started with. Thus
the composite is the transfer. Under this, Arf invariants are multiplied by N :
this proves the result when n is even. For n odd, it is stated in (13A.4) that
τ : L0(ZN )→ L0(1) is surjective.

Proof of (a). Because of (b), we can suppose n even so that L2n−1(Z) ∼= Z2.
In view of the above geometrical interpretation of (a), it will suffice to give one

example of lens spaces and maps L2n+1 f→ G/PL for which θ(f |L2n−1) �= 0,
but θ(f) – and thus a fortiori pθ(f |L2n−1) – vanishes. We choose the standard
lens space fibred over Pn−1(C) ⊂ Pn(C), and choose a map g : Pn(C)→ G/PL
with s2n(g) = 0, s2n−2(g) �= 0. Then one can do surgery on g, hence on f = g◦π,
but

dθ(f |L2n−1) = s2n−2(f) = s2n−2(g) �= 0 .

The result follows.

Note that the one reason we cannot work with simple homotopy type through-
out is the difficulty of starting the induction.

We will now assume N odd, and outline another proof of (14E.4): the new
proof is somewhat more constructive, and also shows that the normal invariant
of a fake lens space with N odd is determined by the invariant ρ, but it does
not apply when N is even.

We have seen that there are φ(N) (the order of the multiplicative group of ZN )
different homotopy types of lens spaces L2n−1 with fundamental group of order
N , and for each of these, [L2n−1, G/PL] has orderNa, with a = [(n−1)/2]. Now
given two lens spaces L1, L2 with the same homotopy type and the same normal
invariant, there is a normal cobordism W 2n between them. Then

(
cf. (13B.2)

)
,

ρ(L1)− ρ(L2) equals the G-signature of W̃ ; in particular, it is the restriction of
an actual representation of G. We will prove

Proposition 14E.6. There exist (at least) φ(N)Na (a = [(n − 1)/2]) fake
lens spaces L 2n−1

i such that if i �= j, ρ(Li) − ρ(Lj) is not the restriction
representation of G.

It follows that no two Li are in the same normal cobordism class; since there
are so many Li, every normal cobordism class contains one of them. Thus
surgery is possible in each normal cobordism class, which re-proves (14E.4) for
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this case. It also follows that for any two fake lens spaces M , M ′ in different
normal cobordism classes we can find i, j (i �= j) so that Li and M are in the
same class, as are Lj and M ′. Then

ρM − ρM ′ = (ρM − ρLi) + (ρLi − ρLj) + (ρLj − ρM ′) :

the first and third terms here are restrictions of representations; the middle is
not. Hence nor is ρM − ρM ′. Thus ρ(M) determines the normal cobordism
class of M .

Corollary. For any fake lens space M , ρ(M) determines the odd torsion part
of the normal cobordism class of M .

For if H is the 2-complement in the fundamental group G of M , and L the
corresponding covering space, ρ(M) determines ρ(L) by restriction; this deter-
mines the normal cobordism class of L as above, and [M,G/PL]→ [L,G/PL]
is an isomorphism modulo the class of finite 2-groups.

Proof of Proposition 14E.6. Recalling the definition of ρ, we can rephrase
it as follows. Let Ĝ = HomZ(G,Q/Z) be the Pontrjagin dual of G: it is

cyclic, generated by χ. The representation ring of G is ZĜ. Restricting to
G − {1} means factoring out the regular representation – i.e. defining R

̂G by
1 + χ + · · · + χN−1 = 0. Finally, ρ lies in QR

̂G. For the natural action
of G on S1, by (14C.4), ρ = (1 + χ)/(1 − χ). By (14A.1), ρ is multiplied
by this factor on taking suspensions. Since N is odd, 1 + χ is invertible in
R

̂G (its inverse is 1 + χ2 + χ4 + · · · + χN−1). Hence if Li, Lj are fake lens
spaces with suspensions ΣLi, ΣLj such that ρ(ΣLi) − ρ(ΣLj) = λ ∈ R

̂G, then
ρ(Li)− ρ(Lj) = λ(1− χ)/(1 + χ) belongs to R

̂G too.

We will prove the proposition inductively. If it is true in dimension 4k + 1
(n = 2k + 1), then the ΣLi provide the right number of examples in dimension
4k+3 and, by the remark above, have the desired property. In dimension 3, we
can take the standard lens spaces : there are just enough of them. Finally we
must show that from each Li in dimension 4k− 1 we can construct N examples
in dimension 4k+1. Subject Li to normal cobordisms given by the xj ∈ L0(G)
with signatures

σ(xj) = 4j(χ+ χ−1) (0 � j � N) :(
this is possible by (13A.4)

)
.

We get fake lens spaces Lij with ρ(Lij) = ρ(Li) + 4j(χ+ χ−1), and thus

ρ(ΣLij) = ρ(ΣLi) +
4j(χ+ χ−1)(1 + χ)

(1 − χ) .

Since

4(χ+ χ−1)(1 + χ)

(1− χ) =

{
8

N−1∑
1

(
1− 2t

N

)
χt

}
− 4(χ+ χ−1) ,
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no two of these are congruent mod R
̂G, as claimed.

This fails in the lowest dimension k = 1, since we are unable to construct the
normal cobordism. There are several ways to get round this technical difficulty;
none are very neat. Here is one. By (14E.4), we can find fake lens spaces in
the normal cobordism classes, so all we need do is compute ρ for them.

(
One

can also argue avoiding (14E.4), but this is not necessary here
)
. For classes

homotopy equivalent to L 5
0 (N), we have the examples of manifolds fibred over

fake complex projective spaces : for these, ρ is computed by (14C.4). For the
rest

(
as in (14E.9) below

)
take the join of L5 with the free action of G on

S1 given by χ4, where d is chosen that the result is homotopy equivalent to
L 7
0 (N), and hence normally cobordant to a fake lens space which fibres over

P3(C). Since [L 7
0 (N), G/PL] → [L5, G/PL] is bijective, we can represent all

normal cobordism classes this way.
Thus

χd + 1

χd − 1
ρ(L) ≡

(
χ+ 1

χ− 1

)4

+
32χ

(χ− 1)2
s4 (mod R

̂G) .

where s4 can take any integral value, as L varies. The desired result follows, by
an easy algebraic exercise.

We have now a complete set of invariants which determine the normal invariant
of fake lens spaces : in fact, combining the results above we find that for N =
2eM and L2n−1 with fundamental group G of order N , invariants are :

t4r ∈ Z2e (1 � r � (n− 1)/2) , t4r+2 ∈ Z2 (e � 1, 0 � r � (n/2)− 1) ;

in the PL case T ∈ Z2e+1 with reductions t4 mod 2e and t2 mod 2; and
ρ ∈ Q[χ | 1+χ+χ2+ · · ·+χN−1 = 0] = QR

̂G: ρ mod Z[χ] is part of the normal
invariant. We also have the torsion

Δ ∈ Q[T | 1 + T + · · ·+ TN−1 = 0] = QRG

which determines the simple homotopy type of L. Given two fake lens spaces L,
L′ for which all these invariants agree, there is a normal cobordismW 2n between
them. If we wish to do surgery on W so as to obtain an s-cobordism between L
and L′, we meet a surgery obstruction in L2n(G) ∼= L2n(ZN ). We need to know
this group before we can proceed further. At the time of writing, the answer
is known for N odd but not for N even; although I conjecture that the answer
takes the same form for N even, all the other details are more complicated then,
so I now restrict to the case when N is odd.

By (13A.4), if we write

L2n(G) = L2n(1)⊕ L̃2n(G) ,

the multisignature maps the second summand isomorphically to the subgroup
of R

̂G consisting of real elements (n even) or imaginary elements (n odd). Now
as observed in the proof of (14D.2), the image of L2n(1) acts trivially on the set
of fake lens spaces. Also, if W 2n is, as above, a normal cobordism from L to
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L′, then ρ(L′)− ρ(L) = σ(W̃ ), the G-signature of W̃ . Thus if ρ(L) = ρ(L′), the
class of W in L2n(G) lies in the summand L2n(1), hence L and L′ are (PL)-
homeomorphic. This proves the first part (for which see also [B30]) of

Theorem 14E.7. Let L2n−1 and L′2n−1 be oriented fake lens spaces, with fun-
damental group G cyclic of odd order N . Then there is an orientation preserving
homeomorphism L→ L′ inducing the identity on G if and only if Δ(L) = Δ(L′)
and ρ(L) = ρ(L′).

Given Δ ∈ RG, ρ ∈ QR
̂G, there exists a corresponding fake lens L2n−1 if and

only if

(i) Δ and ρ are both real (n even) or imaginary (n odd).

(ii) Δ generates I n
G , ρ ∈ I −n

̂G
.

(iii) The classes of ρ mod I −n+1
̂G

, (−2)nΔ mod I n+1
G correspond under

I −n
̂G

/I −n+1
̂G

∼= Ĥ2n(Ĝ;Z) ∼= Ĥ−2n(G;Z) ∼= I n
G /I n+1

G .

(iv) ρ ≡ − ∑
φ∈ ̂G,φ �=1

sign
(
inφ(Δ)

)
φ (mod 4) .

Note. The isomorphism in (iii) comes since Ĥ2n(G;Z) is dually paired with both

Ĥ−2n(G;Z) and Ĥ2n(Ĝ;Z): under it, (χ− 1)−n corresponds to (T − 1)n. The
congruence in (iv) can be interpreted in R

̂G localised at 〈χ− 1〉, or equivalently
at 〈N〉: it can also be written

ρ ≡ −
N−1∑
r=1

sign
(
inχr(Δ)

)
χr (mod 4) .

Proof By (14E.3), simple homotopy types of polarised CW complexes L corre-
spond bijectively with generators Δ of I n

G which are real (n even) or imaginary
(n odd). Each such L is a simple Poincaré complex, with homotopy type as
described in (14E.1).

For each Δ there exist normal invariants and
(
since by (14E.4) the surgery

obstructions vanish
)
also fake lens spaces which, by the above, are classified by

ρ. From the definition of ρ, it is real for n even and imaginary for n odd. By
(13A.4), with normal cobordisms from L2n(G) we can add to ρ an arbitrary
real resp. imaginary element of 4R

̂G. It remains to determine, in each normal
cobordism class (with Δ given) the class of ρ mod 4R

̂G.

To determine ρ we need a construction (direct or indirect) for all the fake lens
spaces, which must be fairly explicit, and a calculation of the effect on ρ of our
constructions. We will give these in reverse order, and then return to the proof
of the theorem.
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Proposition 14E.8.

(a) The invariants Δ(L) ∈ RG, ρ(L) ∈ QR
̂G are invariant under change of

generator of G. Both change sign under a change of orientation.

(b) Let W 2n be a normal cobordism from L to L′ whose class in Lh
2n(G) has

invariants D, σ. Then

Δ(L′) = DΔ(L) , ρ(L′) = σ + ρ(L) .

(c) If L2n−1 is fibred over Q � Pn−1(C), with invariants s2r, then

Δ(L) = T n(N−1)/2(T − 1)n ,

ρ(L) = fn +
∑

1�r�[n/2]−1

8 s4r(f
n−2r − fn−2r−2) , f =

1 + χ

1− χ .

(d) If L is constructed by the join of actions defining L1, L2 then

Δ(L) = Δ(L1)Δ(L2) ρ(L) = ρ(L1)ρ(L2) .

Proof The statements (a) are immediate from the definitions. In (b), the formula
for ρ was obtained in the proof of (13B.2). The formula for Δ amounts to saying
that D is the (Whitehead) torsion of the homotopy equivalence L → L′. Now
W is obtained from L by attaching n-cells and from L′ by attaching the dual
cells. But D is (up to sign) the determinant of the change of basis from the cells
to their duals (this is the algebraic interpretation of the intersection numbers,
cf. [W13, IV]); the result follows, for the sign is + since ε(D) = 1 and we have
the same homotopy type. As to (c), the second assertion is (14C.4). For the
first, we note that Q→ Pn−1(C) is a simple homotopy equivalence, hence so is
L→ L 2n−1

0 (N): the power of T is inserted to make Δ(L) real. The value of ρ
in (d) is given by (14A.1). It remains to determine Δ for (d).

Let L1, L2 come from (free) actions of G1, G2 on S1, S2 respectively : consider
G-triangulations. The corresponding chain complex for S1∗S2 has a subcomplex
coming from S1 ∪ S2, and the quotient can be identified with the tensor product
of chain complexes for S1, S2. But each of S1, S2 has zero Euler characteristic.
By the standard multiplicative property of torsion [K17], this quotient has zero
torsion as based complex of (G1 ×G2)-modules, hence also as G-modules (G ∼=
G1
∼= G2 diagonally embedded). Hence the torsion of S1 ∗ S2 equals that of

S1 ∪ S2, the product of the torsions of S1 and S2.

Note that the proof above makes no reference to the parity of N . We now need
a construction to make (14E.4) more explicit : as is shown even more clearly in
(14E.6), the idea there is that L is obtained from S1 by repeatedly suspending
and taking normal cobordisms. Here, partly for variety and partly to avoid the
messy induction with special arguments for n = 5, we proceed differently.
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Lemma 14E.9. (i) Let L2n−1 be a fake lens space. We can choose d uniquely
such that if L∗ is the join of L with the free action on S1 given by χd,
L∗ � L 2n+1

0 (N).

(ii) Let L2n−1 � L0. If n is even, L is normally cobordant to a fake lens space
which fibres over a fake complex projective space. Thus if n is odd, the same
holds for ΣL.

Proof (i) Δ(L∗) = T a(T d′ − 1)Δ(L) by (14E.8), where dd′ ≡ 1 (mod N).
Now T d′ − 1 ≡ d′(T − 1) (mod I 2

G ). Thus if Δ(L) ≡ d(T − 1)n (mod I n+1
G ),

Δ(L∗) ≡ (T − 1)n+1 (mod I n+2
G ), so by (14E.1) L∗ � L 2n+1

0 (N). Since both
Δ(L) and (T − 1)n generate I n

G , and I n
G /I n+1

G is cyclic, this must hold for a
unique (mod N) d prime to N .

(ii) We know that the map L0 → G/PL corresponding to the homotopy equiva-
lence factors through Pn−1(C). The obstruction to surgery to produce a corre-
sponding homotopy equivalence Q2n−2 → Pn−1(C) is s2n−2. Now suppose n is
even. If N is even, s2n−2 = 0 by (14E.4), since there is no surgery obstruction
to the existence of L2n−1. If N is odd, alter the map Pn−1(C)→ G/PL on the
top cell to change s2n−2 to 0: this does not alter the class of the composite map

L 2n−1
0 → G/PL. Hence in either case we may suppose s2n−2 = 0, and that Q

exists. The total space of the induced bundle over Q is then normally cobordant
to L2n−1, since both correspond to homotopic maps L 2n−1

0 (N)→ G/PL.

Proof of 14E.7. Recall that N is odd, 1 + χ is invertible in R
̂G. We first show

that for L2n−1, (1−χ)nρ ∈ R
̂G, i.e. that ρ ∈ I−n

̂G
, and moreover that (14E.7 (iii))

holds.

First let L fibre over Q2n−2 � Pn−1(C). By (14E.8 (c)), ρ(L) ∈ I −n
̂G

and is

congruent mod I −n+2
̂G

to (1+χ)n/(1−χ)n, and hence mod I −n+1
̂G

to (−2)n(χ−
1)−n. Now the class of Δ(L) mod I n+1

G is that of (T − 1)n, and the classes of
(T − 1) and of (χ− 1)−1 correspond under our isomorphism, so the result holds
for this case. If L′ is normally cobordant to such an L, then ρ(L′)− ρ(L) ∈ RG,
and Δ(L′)/Δ(L) = η(D), where D is a unit in ZG with ε(D) = 1, and hence
ε′
(
η(D)

)
= η′

(
ε(D)

)
= 1, so η(D) − 1 ∈ IG, and Δ(L′) − Δ(L) ∈ I n+1

G .
Hence the formula holds for L′. By (14E.9), it remains only to show that if the
result holds for L∗, it holds for L (this includes desuspension as a special case).
Combining results of (14E.8), and writing dd′ = 1 (mod N), we have

ρ(L∗) =
1 + χd

1− χd
ρ(L)

Δ(L∗) = T
1
2d
′(N−1)(T d′ − 1)Δ(L) .

Now Δ(L∗) = (T − 1)n+1 mod I n+2
G , and T d′ − 1 ≡ d′(T − 1) mod I 2

G ; it
follows that Δ(L) ≡ d(T − 1)n mod I n+1

G , as in the proof of (14E.9). Similarly,
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ρ(L∗) ≡ (−2)n+1(χ− 1)−(n+1) mod I −n
̂G

and

1− χd

1 + χd
≡ −d

2
(χ− 1) mod I 2

G ,

whence
ρ(L) ≡ (−2)nd(χ− 1)−n mod I−n+1

̂G
,

establishing the assertion.

It follows in particular that ρ has odd order modulo R
̂G, so we can discuss this

class independently of the condition at the prime 2. Now of the Nn classes in
I −n
̂G

/R
̂G, just N

[n/2] are real and N [(n+1)/2] imaginary, so if n = 2k there are

Nk real classes and if n = 2k−1, Nk imaginary ones. The above condition cuts
this down by a factor of N , so in each homotopy class there are Nk−1 values
of ρ mod R

̂G, which is just the right number for the normal invariant. Hence
there are no further congruence conditions mod R

̂G. It thus remains only to
prove (14E.7 (iv)), where the congruence may be interpreted in the localised
ring (R

̂G)
〈1−χ〉, or equivalently, in R

̂G[N
−1].

Part of the assertion is that ρ− 1 is divisible by 2, say ρ is odd. Note that if
α, β are both odd, then (α − 1)(β − 1) ≡ 0 (mod 4); also that α−1 is odd. Let
L1 and L2 have join L3: write dimLi = 2ni− 1, ρ(Li) = ρi and Δ(Li) = Δi for
i = 1, 2, 3 so that (14E.8) gives Δ1Δ2 = Δ3 and ρ1ρ2 = ρ3. If two of the ρi are
odd so is the third, and ρ3 +1 ≡ ρ1 + ρ2 (mod 4). As to the right hand sides of
the equations,

N−1∑
1
{sign (in1χr(Δ1)

)
+ sign

(
in2χr(Δ2)

)}χr

=
N−1∑
1
{sign (in1+n2χr(Δ1Δ2)

)
+ 1}χr (mod 4)

=
N−1∑
1

sign
(
in3χr(Δ3)

)
χr − 1 ,

so if the formula holds for two of the Li, it holds for the third.

Next, for the standard action on S1,

ρ =
1 + χ

1− χ =

N−1∑
1

(
1− 2r

N

)
χr ≡

N−1∑
1

(−1)rχr (mod 4) .

iχr(Δ) = iχr(T (N+1)/2 − T (N−1)/2)

= i

{
exp

r(N + 1)iπ

N
− exp

r(N − 1)iπ

N

}
= (−1)r+1 2 sin rπ/N ,

so the formula holds here too. Taking repeated joins, we see that it holds for
the standard action defining L 2n−1

0 (N). By (14E.8 (c)), it holds for all fibred
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fake lens spaces. We now show that if L and L′ are normally cobordant and the
formula holds for L, then it holds for L′: (14E.9) then implies that it holds for
all fake lens spaces (since the action by χd on S1 is obtained from the standard
action by changing the preferred generator, and our formula is natural). Let
the normal cobordism have invariants (D, σ). By (13A.5), we have

σ =

N−1∑
1

2αrχ
r , (−1)αrχr(D) > 0 .

By (14E.8 (b)), ρ(L′) = ρ(L) + σ

≡ −
N−1∑
1
{sign (inχr(Δ)

)
+ 2αr}χr (mod 4) ,

sign
(
inχr(Δ′)

) ≡ sign
(
inχr(Δ)

)
+ sign

(
χr(D)

)− 1 (mod 4)

≡ sign
(
inχr(Δ)

)
+ 2αr (mod 4) ,

which proves the result.

Corollary. Σ gives a bijection of the set of homeomorphism classes of fake
lens spaces of dimension 2n− 1 and 2n+ 1 (n � 3) (N odd).

We refer to homeomorphism rather than PL homeomorphism since for N odd,
the obstructions of [K6] to existence and uniqueness of PL structures lie in zero
groups. Injectivity follows from the first assertion of the theorem and the fact
that, by (14E.8d), ρ and Δ for ΣL determine those for L. As to surjectivity, it

is shown in the proof of (14E.7) that if [(1−χ)/(1+χ)]ρ and T
1
2 (N−1)(T − 1)Δ

satisfy the conditions, then so do ρ and Δ.

Observe that Δ(L) ∈ RG, ρ(L) ∈ QR
̂G are invariants of the polarised fake

lens space L. To see if there exists any homeomorphism between L and L′,
by (14E.8 (a)) check if there is an automorphism of G taking Δ(L) to εΔ(L′)
and ρ(L) to ερ(L′) (ε = ±1). For example, L has an orientation reversing
homeomorphism if and only if there exists d

(
prime to N , and with even order

(multiplicatively) modulo N
)
such that if

Δ(L) =
N−1∑
1

aiT
i , ρ(L) =

N−1∑
1

biχ
i ,

then adi = −ai and bdi = −bi for all i, 1 � i < N . There cannot be one inducing
the identity on G.

Now we consider which fake lens spaces fibre over fake complex projective
spaces – or equivalently, which free actions of G on spheres extend to free actions
of S1. (14E.8 (c)) gives a necessary condition : that

Δ(L) = {T 1
2 (N−1)(T − 1)}n :
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we assume this satisfied for the rest of our discussion. If the action does extend,
ρ for G is the restriction of ρ for S1. Now the latter is given by (14E.8 (c)), and
so depends additively on at most [n/2]− 1 parameters whereas ρ for G can vary
by at least the image of L2n(G), so depends on 1

2 (N − 1) additive parameters.
Thus for n � N , there are ‘not enough’ fake complex projective spaces : the fake
space with invariant ρ can be written in the form (14E.8 (c)) and (as is easily
seen, cf. also below) the coefficients s4k are then uniquely determined.

Theorem 14E.10. Let n > N . Then the fake lens space L2n−1 fibres over
a fake complex projective space if and only if its suspension does. The possible
values of ρ − fn lie in a certain free abelian group: L fibres if and only if it
lies in a certain subgroup of finite index such that the invariant factors of the
quotient are 2× 4r, 1 � r � 1

2 (N − 1), and Δ(L) is as above.

Proof If L is fibred then, by (14E.8 (c)),

P (L) ≡ f4−n
(
ρ(L)− fn

)
8(f2 − 1)

=
∑

0�r�[n/2]−2

s4(r+1)(f
−2)r ,

and (14E.7) implies that if P (L) has this form (with Δ as given earlier) then L
is fibred, provided the s4r ∈ Z.

Now by (14A.1), P (ΣL) = P (L); by (14E.7 (i)), P (L) is real. If P (L) can be
written as a polynomial (of any degree) in f−2 with integer coefficients, then
since f−2 satisfies a monic equation over Z of degree 1

2 (N − 1), we can write
P (L) also as a polynomial of degree < 1

2 (N − 1): but since n > N , this is
� [n/2]− 2. The first assertion of the theorem follows.

The equation satisfied by f−2 is obtained on noting that

(f +1)N − (f −1)N =

(
2

1− χ
)N

−
(

2χ

1− χ
)N

=

(
2

1− χ
)N

(1−χN ) = 0 ,

so

1
2 (N−1)∑
r=0

(
N
2r

)
f2r = 0 and so, dividing by fN−1 and setting 2(r + s) = N − 1,

1
2 (N−1)∑
s=0

(
N

2s+ 1

)
(f−2)s = 0

which is of the required form. It is easily seen (cf. below) to be the minimal
polynomial of f−2.

The possible values of ρ(L)
(
subject to Δ(L) being as above

)
are given by

(14E.7): namely

(i) ρ is real (n even) or imaginary (n odd)

(ii) ρ ∈ I −n
̂G
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(iii) (ρ− fn) ∈ I −n+1
̂G

(iv) (ρ− fn) ≡ 0 (mod 4),

the latter two since we know fn satisfies the same congruences as ρ. Clearly
(iii) implies (ii). Moreover, it follows from (i) that (iii) implies the apparently
stronger

(iii)′ (ρ− fn) ∈ I −n+2
̂G

.

Turning to P (L), we note that 8(f2− 1) = 32χ/(1−χ)2, and recall again that
(1 + χ) is a unit of R

̂G. Thus since

P (L) =
(1− χ)n−2

(1 + χ)n−4 · 32χ
(
ρ(L)− fn

)
we see that as

(
ρ(L) − fn

)
runs through the real (imaginary) part of 4I −n+2

̂G
(which is, by the above, its range), P (L) runs through precisely the real part of
1
8R ̂G.

It remains to determine the subgroup of the real part of R
̂G spanned by powers

of f−2. A basis for this real part is given by the (χr + χ−r), 1 � r � 1
2 (N − 1).

Changing base by a unitriangular matrix, we obtain (χ + 2 + χ−1)r, 1 � r �
1
2 (N − 3) with −1, or, reordering, (χ + 2 + χ−1)r, 0 � r � 1

2 (N − 3). Now
χ+2+χ−1 = (1+χ)2/χ is a unit – since (1+χ) is – so multiplying these by the

same real unit [χ/(1+χ)2]
1
2 (N−3) we find that a basis for the real part of R

̂G is
given by the [χ/(1 + χ)2]r, 0 � r � 1

2 (N − 3). On the other hand we have the
(f−2)r, 0 � r � 1

2 (N − 3), and changing base again by a unitriangular matrix
we find they span the same subgroup as the (1 + f−2)r, 0 � r � 1

2 (N − 3).
But 1 + f−2 = 4χ/(1 + χ)2. We can now read off the desired invariant factors,
since we have obtained stacked bases for the group and the subgroup (don’t
forget the extra factor of 8) – and also incidentally shown that the (f−2)r,
0 � r � 1

2 (N − 3), are linearly independent, as mentioned earlier.



15. Applications : Free Uniform Actions on

Euclidean Space

We now consider free actions of groupsG onRm, with compact orbit spaceMm

(by ‘uniform’ I mean that the orbit space is compact). Thus M is a compact
topological manifold, and is an Eilenberg-MacLane space K(G, 1). We first
study the case G free abelian, where Li(G) is known from (12.6) and (13A.8);
then a somewhat more general case, where we can use the problem to compute
Li(G).

The case G free abelian is important in view of the spectacular application in
the work of Kirby and Siebenmann [K9] [K10] [K6] [K7] on topological man-
ifolds. My results were announced in [W25]; an independent discovery was
announced by Hsiang and Shaneson [H23] [H24]. See also [H26].

231



15A. Fake Tori

Let X = T n be a product of n copies of S1. The results of §10 give us an exact
sequence

[ΣX,G/PL]
θ1→ Ln+1(nZ

+)
∂→ SPL(X)

η→ [X,G/PL]
θ→ Ln(nZ

+) .

Here, it is easy to compute the homotopy groups, and (13A.8) computes the
L-groups and (13B.8) the maps θ. We first use these computations to show

Lemma 15A.1. The maps θ and θ1 are injective. The cokernel of θ1 is natu-
rally isomorphic to H3(X ;Z2).

Proof Since the attaching maps of the cells in the natural cell decomposition
(with 2n cells) of T n have trivial suspensions and since G/PL is a loop space
[B12], say of Y , we can write

[T n, G/PL] = [T n,ΩY ] = [ΣT n, Y ] .

But ΣT n has the homotopy type of a wedge of spheres :

(
n

i

)
of dimension i+1.

Hence
[ΣT n, Y ] ∼= [∨Si+1, Y ] ∼=⊕

πi+1(Y ) ∼=⊕
πi(G/PL) ,

with

(
n

i

)
summands πi for each i. But we can write Ln(nZ) as a corresponding

sum
⊕

Li(1), and moreover πi(G/PL) ∼= Li(1) ∼= Z, 0, Z2 or 0, depending on
the value of i modulo 4. More functorially, our first argument shows that we
have an isomorphism

[T n, G/PL] ∼=
⊕

0�i�n

Hi
(
T n;πi(G/PL)

)
.

We can make this explicit as follows. For i odd, our group is zero. For i ≡ 2
(mod 4), the class ki ∈ Hi(G/PL;Z2) induces a nonzero class in Si via the
generator Si → G/PL; hence for f : T n → G/PL, we can take f∗(ki) as our
ith component. For i = 4j, the class λj = 1

8 lj ∈ H4j(G/PL;Q) induces the
orientation class in Si via the generator Si → G/PL, if j > 1; and twice this
class if j = 1. For this, see e.g. [S22]. Thus for f : T n → G/PL, the class
1
8f

∗(lj) is an integral class, and we take it as our (4j)th component, where we
identify π4j(G/PL) with Z for j > 1, but with the subgroup E of even integers
if j = 1.

Now by (13B.8), θ(f) determines the element of

Ln(nZ) ∼=
⊕

0�i�n

Hom
(
Hi(T n), Ln−i(1)

)
232
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given as follows. Let x ∈ Hi(T n;Z). Then

θ(f)(x) = 0 n− i odd
= 1

8�(T
n) · f∗�(G/PL) · x = 1

8f
∗�j · x n− i = 4j

= w(T n)f∗k(G/PL) · x = f∗kn−i · x n− i ≡ 2 (mod 4) .

But Poincaré duality shows that cup product induces isomorphisms

Hn−i(T n;Z2)→ Hom
(
Hi(T n;Z),Z2

)
Hn−i(T n;Z)→ Hom

(
Hi(T n;Z),Z

)
.

Hence our map θ is an isomorphism on all components except that involving l1,
where it is injective.

Repeating the argument for T n × I, we find essentially the same situation,
except for a dimension shift. It follows that θ1 is injective; the cokernel comes
from the component involving l1, where θ1 reduces to the natural map

H3(T n;E) ⊂ H3(T n;Z)→ Hom
(
Hn−3(T n;Z),Z

)
.

The cokernel can be identified with H3(T n;Z2). The lemma is thus established.

It follows immediately from the lemma, and from the exact sequence which
we quoted preceding it, that ∂ induces a bijection H3(T n;Z) ∼= SPL(T n),
for n � 5. We can describe directly how this arises as follows. The lemma
shows that any two fake tori have the same normal invariant, so define the same

element of the degree 1 bordism set of T n. Let Wn+1 g→ T n be an appropriate
bordism. Make g transverse to a factor T 3 of T n; let V 4 = g−1(T 3). If we can
suppose each component of ∂V a torus, then the signature of V depends only
onW and the homology class x of T 3; 1

8σ(V ) is an integer, and its class modulo
2 is 〈x, a〉, where a ∈ H3(T n;Z2) is the invariant discriminating the two ends
of W .

Unfortunately, PL manifolds V as above with 1
8σ(V ) odd do not exist, and in

order to obtain a correct version of the above, one must adopt some trick such
as the following : due, for this problem, to Browder. Multiply W by P2(C). We
can then arrange that each end of the corresponding V 8 is (up to homotopy)
T 3 × P2(C), and the rest of the description is now unchanged.

We next present an extension of this result, which is also used by Kirby and
Siebenmann. In fact, we compute S (T n ×Dk, T n × ∂Dk).

Here, we have the exact sequence

[Σk+1(T n+), G/PL]
θk+1→ Ln+k+1(nZ

+)
∂→ SPL(T n ×Dk, T n × ∂Dk)

η→ [Σk(T n+), G/PL]
θk→ Ln+k(nZ

+) .
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Exactly as before, it is seen that each θk is injective; and we have

SPL(T n)∼= Coker θ1 � H3(T n;Z2)

SPL(T n × I, T n × ∂I)∼= Coker θ2 ∼= H2(T n;Z2)

SPL(T n ×D2, T n × S1)∼= Coker θ3 ∼= H1(T n;Z2)

SPL(T n ×D3, T n × S2)∼= Coker θ4 ∼= H0(T n;Z2) , and

SPL(T n ×Dk, T n × Sk−1)∼= Coker θk+1 = 0 for k � 4 .

This contains most of our result, viz.

Theorem 15A.2. We have bijections, natural for finite coverings,

SPL(T n ×Dk, T n × Sk−1) ∼= H3−k(T n;Z2) for n+ k � 5 .

Proof It remains to show the naturality. Let π : T n → T n be a finite covering,
τ the transfer induced by the corresponding monomorphism of fundamental
groups (see §17). We have the commutative diagram with exact rows

0 �� [Σk+1(T n+), G/PL]

π∗

��

θk+1�� Ln+k+1(nZ
+)

τ

��

∂ �� SPL(T n ×Dk, T n × ∂Dk)

π�

��

�� 0

0 �� [Σk+1(T n+), G/PL]
θk+1�� Ln+k+1(nZ

+)
∂ �� SPL(T n ×Dk, T n × ∂Dk) �� 0

Now (13A.8) gives isomorphisms

Ln+k+1(nZ
+) ∼=

⊕
0�i�n

Hom
(
Hi(T n), Ln+k+1−i(1)

)
which are made more explicit in (13B.8). We claim that if this is written (setting
j = n− i), using duality, as⊕

0�j�n

Hj
(
T n;Lj+k+1(1)

)
,

then τ is the cohomology map induced by π. The theorem will then follow. In
fact, as we are only interested in the L4(1) component, it suffices to consider
only the components Lr(1) ∼= Z.

By (13B.8), if (M ; f, g) defines an element of ΩPL
m (G/PL × T n), then for

x ∈ Hi(T n) we have, for m ≡ i (mod 4),

θ(M ; f, g)(x) = 1
8�(M)f∗(x)g∗�(G/PL)[M ] .

Note that since (by the first part of the theorem) the cokernel of θ is finite for
suitable (bounded) M , and τ is a homomorphism, it is enough to evaluate τ on
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the surgery obstructions θ(M ; f, g). Now if π : T n → T n induces M
πM← M

f→
T n we have

τ
(
θ(M ; f, g)(π∗(x))

)
= θ(M ; f, g ◦ πM )

(
π∗(x)

)
= 1

8�(M)f
∗(
π∗(x)

) · π∗
M
g∗�(G/PL)[M ]

= 1
8π

∗
M
�(M) · π∗

M
f∗(x) · π∗

M
g∗�(G/PL)[M ]

= 1
8�(M)f∗(x)g∗�(G/PL)[πM∗[M ]]

= d θ(M ; f, g)(x) ,

where d is the degree of the covering, so that πM∗[M ] = d[M ]. Let us write
θ′(M ; f, g) for the cohomology class dual to θ(M ; f, g), i.e. defined by the iden-
tity

θ′(M ; f, g) · x[T n] = θ(M ; f, g)(x) .

Then
τ
(
θ′(M ; f, g)

) · π∗(x)[T n] = d θ′(M ; f, g) · x[T n]

= θ′(M ; f, g) · x[π∗(T n)]

= π∗θ′(M ; f, g) · π∗(x)[T n] .

Since π is a finite covering, as x runs through H∗(T n), π∗(x) runs through a
subgroup of finite index. Hence, modulo torsion,

τ
(
θ′(M ; f, g)

)
= π∗(θ′(M ; f, g)

)
,

and as observed above, this suffices to complete the proof of the theorem.

We now concentrate on describing the ‘fake’ tori. One further naturality result
should be noted, which is important for geometrical arguments on fake tori.

Lemma 15A.3. Let (Un, Un−1)
f→ (S1×T n−1, T n−1) be a homotopy equivalence

of pairs; let f have invariant θ(f) ∈ H3(T n;Z2). Then f |Un−1 has invariant
i∗θ(f) ∈ H3(T n−1;Z2).

For since the invariant θ(f) is defined as a quotient of the invariant in Ln+1(nZ)
defined by a normal cobordism, it suffices to consider the latter : the result is
now immediate from the inductive determination of Li(nZ) (based on this same
geometric situation) (13B.8).

Since Wh(nZ) = 0, our results classify all closed PL manifolds homotopy
equivalent to T n. For a PL homeomorphism classification, one must study the
action of the group of self-homotopy equivalences of T n on SPL(T n). These
induce automorphisms of the exterior algebraH∗(T n;Z2) via the natural action
of the general linear group GLn(Z2) ∼= GL

(
H1(T n;Z2)

)
. There appears to be

no known canonical shape for 3-forms analogous to

x1 ∧ x2 + x3 ∧ x4 + · · ·+ x2r−1 ∧ x2r



236 calculations and applications

for 2-forms, but using duality the orbits of the action are easily found for n � 5;
apart from 0 there is one for n = 3, 4 and two for n = 5. For n = 6, there are 6
orbits. I give in each case a representative, and the size of the orbit :

0 (1) x1∧x2∧x3 (1, 395)

x1∧ (x2∧x3 + y2∧y3) (54, 684) x1∧x2∧x3 + y1∧y2∧y3 (357, 120)

Σ (x1∧x2∧y3) (468, 720) Σ (x1∧x2∧y3 + y1∧y2∧ x3) (166, 656)

where Σ denotes symmetrising with respect to the suffices.

Now if n � 2, homotopy equivalence is well known to imply (PL or smooth)
homeomorphism, for closed manifolds. For n = 3, the Stallings fibration theo-
rem [S15] shows that any fake T 3 is the connected sum of a standard one with
a fake 3-sphere. For n = 4, we have shown that s-cobordism classes of fake T 4’s
correspond injectively to H3(T 4;Z2). Since GL4(Z2) has only 2 orbits here, ei-
ther all elements of the group are realised by fake T 4’s or only the zero element
is.

The above discussion concentrates on the PL classification. For topological
manifolds, it is known [H26] that a closed manifold homotopy equivalent to T n

(n � 5) is homeomorphic to it : see also the next section. Similarly, the PL
automorphisms of T n which are not PL concordant to the identity are topo-
logically so, and Siebenmann has given an elegant proof of this. Another easy
argument, which has been observed by Siebenmann and by Hsiang, using these
PL automorphisms in low dimensions, shows that the s-cobordism theorem fails
for PL (or smooth) s-cobordisms of T 3 or of T 4.

Since our fake tori all had the same PL normal invariant, all are parallelisable,
and hence smoothable. The set of smoothings of each corresponds bijectively
to [T n, PL/O]. As above for G/PL, since PL/O is a loop space, this group is
isomorphic to

⊕
i�nH

i(T n; Γi), where Γi = πi(PL/O) as usual.

This has large (but finite) order, and does not seem very interesting. Note,
however, that since these invariants are again natural for coverings, every closed
smooth manifold homotopy equivalent to T n (n � 5) has a finite covering dif-
feomorphic to it.

The assembly maps
A : H∗(T n;L•)→ L∗(nZ+)

are isomorphisms, and the topological structure sets are given by

STOP (T n) ∼= 0 ,

STOP (T n ×Dk, T n × Sk−1) ∼= 0 for k � 1 .

The surgery classification of fake PL tori was an essential step in the key result

TOP/PL � K(Z2, 3)

of Kirby and Siebenmann [K11].
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If A is a class of groups, a group G is said to be a poly-A group if there is a
series of subgroups

1 = Gn < Gn−1 < · · · < G1 < G0 = G ,

each normal in the next, with (Gi−1/Gi) ∈ A for each i. Thus ‘solvable’
is synonymous with ‘polyabelian’, the term polycyclic is defined; and, as we
usually denote infinite cyclic groups by Z, so is the class of poly-Z groups.
Several characterisations of polycyclic groups are summarised (with references)
in a paper by Wolf [W48]. See also [S2, Chapter 12] for some standard group
theory for these groups. Our main result refers only to poly-Z groups.

Let G be a poly-Z group with a series as above, Gi−1/Gi infinite cyclic for
each i, 1 � i � n. Then G is said to have rank n; it is also noetherian (this holds
for any polycyclic group), hence regular. Now Farrell and Hsiang [H22], [F3]
have generalised the work of Bass, Heller and Swan [B9] to non-commutative
polynomial rings and show, by induction on the rank, that if G is a poly-Z group
then K̃0(G) and Wh(G) vanish (this has also been since proved by Waldhausen
[W3]).

For the argument below, it is essential to work with topological surgery : this
is justified by the work of Kirby and Siebenmann [K6] (which depends on §15A,
so we do not obtain an alternative proof of the results there).

Theorem 15B.1. Let G be a poly-Z group of rank n.

(a) There exists a closed n-manifold MG with fundamental group G and uni-
versal cover homeomorphic to Rn.

(b) The surgery obstruction map induces isomorphisms for all i � 0

θ : [ΣiM+
G , G/TOP ]→ Ln+i(G) .

(c) For n �= 3, 4 any homotopy equivalence h : X → MG with X a closed
manifold is homotopic to a homeomorphism.

For n = 3, this holds if and only if X is irreducible.

For n = 4, there is an s-cobordism W of X to MG and a retraction on
MG whose restriction to X is h.

Remarks. This result was announced in [W26]. To avoid confusion, the clas-
sifying space G/TOP should be regarded as a single symbol. The homotopy
classes of maps in (b) do respect base points; the superscript + denotes a base
point added to MG. The result in (c) for n = 3 implies MG irreducible; for
n = 4 it is enough to obtain an h-cobordism of X to MG since Wh(G) = 0.

237
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We have suppressed mention of w: it is the unique homomorphism such that
Hn(MG;Z

t) ∼= Z for the corresponding twisted coefficients Zt.

Proof The proof uses induction on the rank of G. We show that (a) ⇒ (b) ⇒
(c), and that (c) for G1 (defined above) implies (a) for G.

(c) ⇒ (a). Choose g ∈ G which generates G mod G1; let conjugation by g
induce the automorphism α of G1. Then α induces a homotopy self-equivalence
of MG1 which by (c) is homotopic to a homeomorphism α∗ (for n = 4, note
that MG1 is irreducible). We obtain MG from MG1 × I by glueing the two ends
together by α∗: this clearly has fundamental group G. In case n = 5, we glue
the two ends of the h-cobordism W together instead.

(a) ⇒ (b). We have, up to homotopy, a fibration

MG1 →MG → S1

and hence a coexact sequence of spaces

M+
G1
→M+

G → ΣM+
G1
→ ΣM+

G1
→ . . .

in which the last map is easily seen to be 1 ± Σα∗, where α∗ : MG1 → MG1 is
the characteristic map of the above fibration.

We also have the exact sequence of L-groups corresponding to the inclusion
G1 → G, and since Wh(G1) = 0, (12.6) gives isomorphisms

Lm(G1) ∼= Lm+1(G1 ∪ G1 → G1) ∼= Lm+1(G1 → G) .

Hence we have a diagram

[M+
G1
, G/TOP ]

θ
��

[M+
G , G/TOP ]

��

θ
��

[ΣM+
G1
, G/TOP ]

θ
��

�� [ΣM+
G1
, G/TOP ]

θ
��

�� . . .��

Ln−1(G1) Ln(G)�� Ln(G1)�� Ln(G1)�� . . .��

The vertical maps involving G1 are isomorphisms, by the induction hypothesis.
If we can show that the diagram is commutative, it follows by the Five Lemma
that the other vertical maps are also isomorphisms, which is the desired con-
clusion. Strictly, this does not give surjectivity of θ : [M+

G , G/TOP ] → Ln(G),
but this follows since we can extend the sequence a term using ad hoc argu-
ments (G/TOP is a homotopy commutative H-space) or, more simply, using
periodicity of Ln(G) and of G/TOP .

For the first square note that in (12.6) the map Ln(G) → Ln−1(G1) is to be
interpreted as : take the map to K(G, 1) �MG → S1 given by the fundamental
group; make transverse on a point, and take the surgery obstruction of the
preimage. Since MG1 ⊂MG with trivial normal bundle (see construction), this
preimage is just the induced problem for G1: commutativity follows.
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The commutativity of the second square follows similarly from its geometrical
interpretation : from a surgery problem for MG1 × I (with ends fixed), glue the
ends together to obtain one for MG.

I feel that geometry ought to be used for the third square too, but at least it
is easy algebraically : the upper map was computed above, and the lower is, by
(12.6), 1−w(g)α∗ where g ∈ G, α are as above. On inspection, the sign −w(g)
is seen to be that of the ± in the 1± Σα∗ above.

Commutativity of the other squares follows from the same arguments with M
replaced by M ×Dr, relative to M × ∂Dr.

(b) ⇒ (c). The result for n � 2 is trivial, and for n = 3 follows from Stallings
[S15] and Neuwirth [N3] (note that although Neuwirth only asserts existence of
a homeomorphism, the proof gives one inducing a prescribed isomorphism of
fundamental groups). For n � 4 we see, combining (b) with the surgery results
of §10, that there is an s-cobordism of h to the identity map ofMG. This proves
our assertion for n = 4; for n � 5, it follows from the s-cobordism theorem.

We must show inductively that MG has universal cover euclidean space. Now
MG is obtained from MG1 × I (or, if n = 5, from W ) by glueing the ends
together. Thus MG has an infinite cyclic cover MG1 ×R, and the assertion for
G follows from that for G1. In case n = 5 the result follows from the ‘open
h-cobordism theorem’ which implies, in particular, that an infinite composite of
h-cobordisms is a product with R [S16].

It is interesting to study which structures the above manifolds, one for each
G, admit : one expects rich structure. However, I have not obtained any results
other than those which follow trivially from the existence of certain homogeneous
spaces of Lie groups (below): I cannot even show that everyMG is triangulable,
though we may note that for n = 4 they are (the Neuwirth-Stallings theorem
gives PL homeomorphisms).

For Lie group examples, poly-Z groups are not the most natural class to study.
Begin with the larger class of poly- (finite or cyclic) groups. For free action on
Rn, a necessary condition is that the group be torsion-free. But this does
not imply it is poly-Z, for any finite group occurs as quotient group of the
fundamental group of a flat manifold (see e.g. Wolf [W47, p. 110]) so the group
need not even be soluble. And even torsion free polycyclic groups need not be
poly-Z [B14].

At the other end of the scale, the class of fundamental groups of compact
solvmanifolds (homogeneous spaces of connected solvable Lie groups) has been
determined by H. C. Wang [W39]: these are the groups G with normal nilpotent
subgroup N finitely generated and torsion free, and G/N free abelian of finite
rank. Every poly- (finite or cyclic) group has a subgroup of finite index of this
form. But not all poly-Z groups are : one which is not is

G = {w, x, y, z |xw = xz2, yw = y, zw = z, yx = y, zx = zy−1, yz = y−1}
with G3 = {y}, G2 = {y, z}, G1 = {x, y, z}. For if G had this form, N would
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contain the commutator subgroup {y, z2}; since G/N is torsion-free, we would
have z ∈ N . But {y, z} is not nilpotent. Thus MG is not a solvmanifold. But
for every G in the theorem, some finite covering of MG is a solvmanifold.

Better results can be obtained if G is a poly- (finite or cyclic) group which
has a nilpotent subgroup H of finite index. We can suppose H torsion free : it
is then automatically a poly-Z group, and there is a unique natural embedding
(Mal’cev) of H in a 1-connected nilpotent Lie group L, homeomorphic to Rn,
where n is the rank of G. One can then define a ‘pushout’

H ��

��

G

��
L �� L′ ,

and write L′ as a semi-direct product L · F with F finite. Then L′ acts on L
with L acting by translations and F by automorphisms; the isotropy subgroups
are finite. We obtain an induced action of G on L ∼= Rn, which is free if G is
torsion-free, and has compact orbit space. For all this, see [A9], also [Q1, A6].
In particular if G is poly-Z, MG has the structure of a homogeneous space of
L′, and is a (so-called) infranilmanifold, with a preferred smooth structure.

The G above has a nilpotent subgroup of finite index, viz. {w, x, y, z2}. It
is easy to find an example (direct product of above G with {a, b, c | cb = c,
ba = b2c3 , ca = bc2}) which is neither the fundamental group of a solvmanifold
nor of an infranilmanifold, though one can well conjecture that all torsion-free
poly- (cyclic or finite) groups should be fundamental groups of “infrasolvmani-
folds”.

It is easy to use (15B.1) to construct examples of L-groups having torsion : for
example, if

Gc = {x, y, z |xy = x, xz = xn+1yn, yz = xy} ,

then L1(Gc) has a cyclic subgroup of order n.

Polycyclic groups G are Poincaré duality groups, i.e. discrete groups such that
the Eilenberg-MacLane space K(G, 1) is a Poincaré complex. Such groups are
necessarily infinite (or else trivial) and torsion-free. See Davis [D3] for a sur-
vey of Poincaré duality groups. The main result of this chapter verifies that
the assembly maps A : H∗(K(G, 1);L•)→ L∗(Z[G]) are isomorphisms for poly-
cyclic groups G – see Farrell and Jones [F6], [F7] for generalisations (e.g. for
the fundamental groups of compact infrasolvmanifolds and nonpositively curved
manifolds) proved using a combination of algebra, differential geometry and con-
trolled topology. See Stark [S18] for a survey of the computations of the L-groups
of infinite groups. See the notes at the end of §17H for the connection with the
Borel and Novikov conjectures.
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Although the techniques of this book do not apply directly to 4-manifolds, we
can use suitable slight modifications of our ideas to obtain useful results. In this
chapter, we present two techniques, the first proving that any h-cobordism of
S1×S3 to itself is a product. The corresponding result with S1×S3 replaced by
a 1-connected 4-manifold is due to D. Barden [B4]: our proof follows the same
plan. The result was announced by me in [W19]: it has also been published by
J. Shaneson [S5]. It follows, as was shown in [W12], that any submanifold S of
S5, diffeomorphic to S3, such that S5 − S is a homotopy circle, is unknotted.

The other part of the chapter is devoted to a substantial reformulation of the
underlying ideas of [W10], [W11], leading on to a partial extension of my earlier
results to the non-simply connected case.

Theorem 16.1. Any h-cobordism of S3 × S1 to itself is diffeomorphic to
S3 × S1 × I.

We give two proofs, the first following the outline already suggested (which is
part of a general technique), the second using geometrical properties of S3×S1.
The first proof begins with a lemma.

Lemma 16.2. Any self-homotopy equivalence of S1 × S3 is homotopic to a
diffeomorphism.

Proof [S1 × S3, S1 × S3] = [S1 × S3, S1]× [S1 × S3, S3].

The first factor is isomorphic to H1(S1 × S3) ≈ Z. In the second, as S3 is
2-connected, we can shrink S1 × 1 to a point. But S1 × S3/S1 × 1 � S3 ∨ S4,
and

[S3 ∨ S4, S3] = [S3, S3]× [S4, S3] ≈ Z× Z2 .

(Note that [S1 × S3, S1 × S3] is a group, since S1 × S3 is). Now a homotopy
equivalence must at least be a homology equivalence, so the Z-components must
be ±1. Thus there are 8 classes of self-homotopy equivalences. The group of
these is clearly generated by the following 3 diffeomorphisms,

(x, y) �→ (R1x, y) , R1 a reflection of S1 .

(x, y) �→ (x,R2y) , R2 a reflection of S3 .

(x, y) �→ (
x, T (x) · y) , T : S1 → SO3 an essential map .

This proves the lemma. (The proof works for S1 × Sn for any n � 2).

Now let W be an h-cobordism; h0, h1 : S1 × S3 → W diffeomorphisms onto
the two ends. Then h0 and h1 are homotopy equivalences, hence have homotopy

241
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inverses, and h−1
1 h0 is a homotopy equivalence. By the lemma, it is homotopic

to a diffeomorphism f . Replacing h1 by h1f , we can suppose h0 � h1.
DefineM fromW ∪ S1×S3×I by identifying (for x ∈ S1, y ∈ S3) (x, y, 0) with
h0(x, y) and (x, y, 1) with h1(x, y). A homotopy of h0 to h1 in W now defines

part of a map S1×S3×S1 H→M which is clearly a homotopy equivalence. Now
S1×S3 (as a group) is parallelisable. We choose a framing of the stable normal
bundle of S1 × S3 × 0. As h0 and the inclusion in S1 × S3 × I are homotopy
equivalences, it extends uniquely to framings ofW and S1×S3×I. The induced
framings on S1 × S3 × I are homotopic (indeed, to the original framing), so we
may suppose they agree, and define a framing of M . This framing, together
with the map

r :M
H−1−−−→ S1 × S3 × S1 p1×p2−−−−→ S1 × S3 ,

defines an element α of the framed bordism group F 5(S1 × S3).

The element α need not be zero. In fact, by Thom theory, we have an isomor-
phism

Fm(X) ∼= πm+N (ΣNX+)

(for any X) for N large, where X+ is the disjoint union of X and a point. The
suspension ΣN (S1 × S3)+ splits (up to homotopy) as a wedge SN ∨ SN+1 ∨
SN+3 ∨ SN+4, so

F 5(S1 × S3)∼= πN+5(S
N )⊕ πN+5(S

N+1)⊕ πN+5(S
N+3)⊕ πN+5(S

N+4)

∼= 0⊕ 0⊕ Z2 ⊕ Z2 .

We can be more explicit. The last two summands can be identified with

F 5(S3) ≈ F 2(pt) and F 5(S4) ≈ F 1(pt), and the maps as induced by S1×S3 p2→
S3 and S1 × S3 → S1 ∧ S3 ∼= S4. Thus the two invariants of an element of
F 5(S1 × S3) can be computed as follows. First, make M5 r→ S1 × S3 p2→ S3

transverse to P ∈ S3; then take the class of the framed submanifold A2 ⊂M5,
preimage of P . Similarly, make r transverse to (Q,P ) ∈ S1 × S3, and take the
class of the framed submanifold B1 ⊂M5, preimage of (Q,P ).

In our case, we can annihilate the second class be re-choosing the framing.
Indeed, we used a homotopy of framings of S1 × S3. Multiply this homotopy

by a homotopy S1 × S3 × I p3→ I
l→ On, where l is a non-trivial loop in On.

Then the component of B1 meeting S1 × S3 × I acquires the opposite class of
framings, so the class of B1 changes. Hence we can suppose this class zero.

Similarly, we can now make the first class zero, if it is not already so, by re-
choosing the homotopy. For choose a disc D5 ⊂ S1 × S3 × I, disjoint from
A2 and B1, and also from the preimage of Q × S3. We alter the homotopy by
changing it on D5. Keep the component map D5 → S1 the same (thus B1,
and the second obstruction class, are unaltered), but alter the map D5 → S3

so that the difference map represents the nontrivial class in π5(S
3). Then the

preimage A2 of P acquires a new component inside D4, with nonzero Kervaire-
Arf invariant, and so the class of A2 is changed as required. This completes the
proof of
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Lemma 16.3. Let W be an h-cobordism of S1 × S3 to itself. Then we can
attach S1×S3× I to W along the boundary to obtain a closed framed manifold
M , bounding a framed manifold N which has S1 × S3 × 0 as a retract.

For the assertions about N are the geometric formulation of the proposition
that α = 0 in F 5(S1 × S3).

We thus have a commutative diagram

M
� �

��

H−1
�� S1 × S3 × S1

p1 × p2
��

N �� S1 × S3 .

Extend p3 : M → S1 to a map of N to D2. This combines with the above to
give a map of connected bounded manifolds,

φ : (N,M)→ S1 × S3 × (D2, S1) .

Since φ |M has degree 1, so has φ. Since both manifolds are framed, we can take
ν to be any trivial bundle, and define F using the framings. Now φ |M = H−1

is a homotopy equivalence and, since π1(S
1 × S3 × S1) ∼= Z× Z has vanishing

Whitehead group, as follows from [B9], a simple homotopy equivalence : this
also follows from its explicit construction.

By our main theorem (3.2), we can now do framed surgery on φ, leaving
M fixed, to obtain a simple homotopy equivalence, if and only if a certain
obstruction vanishes, θ(φ) ∈ L6(Z), since Z ∼= π1(S

1×S3×D2). By (13A.8) we
have L6(1) ∼= L6Z) ∼= Z2, with the isomorphism defined by the Arf invariant.
But in dimension 6, we can ignore this, for if we take a map of degree 1, φ′ :
S3 × S3 → S6, provided with the natural framing, this has zero Arf invariant.
Change the framing on each sphere by a generator of π3(SOn), however, and
the Arf invariant becomes 1 (cf. [M10]). Replacing φ by its connected sum with
φ′ does not change the boundary, but gets rid of the obstruction. Thus, after
doing this if necessary, we may suppose φ a simple homotopy equivalence of
pairs.

Now introduce corners in M at S1 × S3 × i, for i = 0, 1
3 ,

2
3 , 1. Then we can

regard N as an s-cobordism of W to S1×S3× [ 13 ,
2
3 ], which is a product on the

boundary. By the s-cobordism theorem N is diffeomorphic to a product, and
W to S1 × S3 × [ 13 ,

2
3 ].

Second proof of 16.1. Glue copies of D4×S1 to the two ends of the h-cobordism
M . The resulting manifold, M say, is then homotopy equivalent to S4×S1. We
next seek an embedding S4 →M determining the same Poincaré embedding as
the inclusion S4 × I ⊂ S4 × S1: assume this possible. Cutting M along S4 we
obtain an h-cobordism of S4: if D5 is glued to each end, we have a homotopy
5-sphere, which must be S5; hence this h-cobordism is diffeomorphic (removing
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the two 5-discs again) to S4×I. But, according to Smale [S10], Γ5 = Θ5 = 0, so
any diffeomorphism of S4 preserving orientation is concordant to the identity.
ThusM is diffeomorphic to S4×S1. But by general position, any two homotopic
embeddings S1 ∪ S1 → S4×S1 are isotopic; thus we can suppose the D4×S1’s
attached to M at the beginning of the proof in standard position. Hence M is
diffeomorphic to S3 × S1 × I, as stated.
Now the “obstruction” to constructing the desired embedding of S4 lies in

LS6

⎛⎜⎜⎜⎝
1 ∪ 1 ��

��

I

��
1 �� Z

⎞⎟⎟⎟⎠ ,

which vanishes by (12.5.1)
(
using Wh(Z) = 0

)
and periodicity. Unfortunately,

the theory of §§ 11, 12 does not apply without modification : we now indicate the
necessary modifications. The basic construction of embeddings always follows
the pattern of (11.3), and the only argument here which encounters difficulties
on account of the low dimension is the first, as follows. Make a map M �
S4 × S1 p2→ S1 transverse to a point : its inverse image is then a submanifold
N4 ⊂ M . We wish to have a cobordism A of N4 and S4 so that we can glue
A× I to M × I along N4× I ⊂M × 1, and then proceed as in §§ 11, 12: further,
it is easily seen

(
as in the first proof of (16.1)

)
that M can be framed, and

we need a framed cobordism which retracts on S4. First do ordinary framed
surgery to make N4 1-connected. Now N4 must have zero signature (either
since the surgery obstruction vanishes or, more directly, applying [W20, Lemma
3] in the universal cover of M) so, by [W11] (see also below) it is h-cobordant
to a connected sum of copies of S2 × S2. The rest follows.

As we have already said, it was shown in [W12] that (16.1) had the following
corollary.

Theorem 16.4. A submanifold S of S5, diffeomorphic to S3, is unknotted if
and only if S5 − S is a homotopy circle.

This completes the arguments of [W19] (where the result was announced).

The first proof of (16.1) can be reformulated to clarify the nature of the problem
of showing that an s-cobordism of any 4-manifold V 4 to itself is a product. First,
our techniques only apply with the strengthened hypothesis that W 5 is an s-
cobordism and h0, h1 are diffeomorphisms of V 4 on its boundary components,
which are homotopic as maps from V to W . The homotopy V × I → W is a
simple homotopy equivalence; an inverse defines an element of S (V ×I, V ×∂I).
Now by §10 we have the exact sequence

L6

(
π(V )

)→ S (V × I, V × ∂I)→ [ΣV,G/O]→ L5

(
π(V )

)
so an analysis of the problem from this viewpoint depends on computation of
L6

(
π(V )

)
(which is difficult) and of [ΣV,G/O] ∼= H1(V ;Z2)×H3(V ;Z). Here
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again, the obstructions depend on choice of homotopy and framing – the choice
of framing, for example, can be varied by any element of [V,O]. The full result
is not yet clear.

The next results are not applications of the preceding theory, but extensions
of it. We begin with the simplest case, which is deducible also from [W11]: the
argument below is founded on the same construction but is more explicit.

Theorem 16.5. Let X4 be a closed 1-connected smooth or PL manifold. Then
the sequence of (10.3) is exact :

S (X)
η→ T (X)

θ→ L4(1) .

Remarks. In this dimension, the smooth and PL cases are equivalent. The re-
sult is proved for manifolds but not for Poincaré complexes, even if 1-connected;
however, such Poincaré complexes are classified by nonsingular symmetric bilin-
ear forms over Z, and it follows from [M8] and [R15] that there is a corresponding
manifold, at least if the form is indefinite, provided the necessary condition, that
if the form is even the signature is divisible by 16, is satisfied. If S (X) is de-
fined via s-cobordism classes (rather than diffeomorphism classes) of structures,
partial results were obtained in §10 about extensions of the exact sequence to
the left; since L5(1) is trivial, these imply that η above is injective.

Proof We first calculate T (X) by the method of Sullivan [S22]. Since X is
1-connected, its homology is torsion free, and we obtain a characteristic variety
by choosing submanifolds V 2 representing a base of H2(X ;Z2) – or of the sub-
group annihilated by w2(X) if this is nonzero – together with X itself. Then
an element of T (X), or what is the same a map X → G/PL, is determined by
its splitting invariants, one element of Z2 for each V 2, and an integer

(
an even

integer if w2(X) = 0
)
for X . This integer is the surgery obstruction in L4(1).

Thus what we must show is that given an assignation of elements of Z2 to V 2’s
we can find a corresponding element of S (X). We construct, in fact, a homo-
topy equivalence X → X which is homologous (but not, of course, homotopic)
to the identity.

Choose an embedding D4 ⊂ M . If D4 is shrunk to a point, the result is
homeomorphic to M . Shrink instead ∂D4 to a point to give a map c : M →
M ∨ S4. Now let η2 : S4 → S2 be an essential map and x : S2 → M ; our map
is the composite F of

M
c→M ∨ S4 1∨η2

−−−→M ∨ S2 (1,x)−→ M .

This is clearly homologous to 1M , and so a homotopy equivalence. To com-
pute its splitting invariant along V 2 ⊂ M , assume V disjoint from D4. Then
F−1(V ) = V ∪ W , with W framed in D4, and the splitting invariant is the
Arf invariant of W . Now if x(S2) meets V transversely in nV points, W is the
union of nV preimages of points under η2 : S4 → S2, and each of these has
Arf invariant one. Thus the required F is obtained if the x is dual to a mod
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2 cohomology class assigning to each V 2 the given corresponding element of
Z2: since π2(X) → H2(X ;Z2) is surjective, such an x exists. This proves the
theorem.

Now most of the arguments are evidently valid if X is any closed 4-manifold
– and indeed, up to a point, even for any compact 4-manifold. First, we can
compute [X/∂X,G/PL]. Since the only relevant homotopy groups of G/PL are
π2 ∼= Z2 and π4 ∼= Z, with first k-invariant δSq2, we have an exact sequence

→ H4(X, ∂X ;Z)→ [X/∂X,G/PL]→ H2(X, ∂X ;Z2)→

where the outer maps are easily seen to vanish. Let us assume X connected
and orientable. Then the first term is ∼= Z and maps injectively to L4(1); more-
over, the characteristic class of the extension of abelian groups is, essentially,
w2(X). Thus we seek to realise each element of H2(X, ∂X ;Z2) or, by duality, of
H2(X ;Z2) – orthogonal to w2(X). Now our construction (plus the calculation
above) shows that we can realise the spherical elements. How close this is to
realising all elements is shown by the exact sequence (from terms of low degree
of the spectral sequence of the universal covering of X)

π2(X)→ H2(X ;Z2)→ H2

(
π1(X);Z2

)→ 0 .

The situation in the nonorientable case is much the same, except that here the
term (∼= Z2) corresponding to the top cell cannot be dismissed. Of course in
each case we have ignored the L4

(
π1(X)

)
obstruction. In the nonorientable

case we can use L4(Z
−
2 )
∼= Z2: the obstruction is computed by (13B.5) as

k2w2 + k22 = k2w
2

1 . This does not simplify things, however. We observe merely
that if H2

(
π1(X);Z2

)
vanishes, then so does H2

(
π1(X);Z2

)
and hence also w 2

1 ,

as w1 comes from H1
(
π1(X);Z2

)
.

The best result to be obtained from these ideas seems to be the following

Theorem 16.6. Let X4 be a compact connected oriented smooth or PL 4-
manifold; suppose H2

(
π1(X);Z2

)
= 0. Then the sequence of (10.3) is exact :

S (X, ∂X)→ T (X, ∂X)
θ→ L4

(
π1(X)

)
.

The argument above proves exactness with L4(1) for L4

(
π1(X)

)
, but since the

above has order 2, its exactness follows. This leads to the conjecture that
Im θ ⊂ L4(1) ⊂ L4

(
π1(X)

)
.

The hypothesis on π1(X) is moderately, but not unduly restrictive : it is satis-
fied, for example, if π1(X) is infinite cyclic, finite of odd order, the fundamental
group of a homology sphere

(
or of any space X with H2(X ;Z2) = 0

)
or the free

product of any such. It fails – and so does the whole argument – for Z2 or 4Z,
so we cannot take X = P4(R) or T 4.

There are corresponding extensions of our surgery results for n-ads, when
the lowest dimension for surgery is 4; we do not state these here, but note
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particularly the hypothesis in (16.6) that X is a manifold, not just a Poincaré
complex.

To conclude this chapter, we remark that if the results and ideas of [W10]
on embeddings of S4 in 4-manifolds are fully exploited, the result is that one
can construct normal cobordisms (with just 2- and 3-handles) of 4-manifolds
corresponding to any element of RU(Λ): the most that exist without giving
useful information!

Cappell and Shaneson [C8] established stable surgery theory in dimension 4 : a
normal map (φ, F ) :M4 → X has surgery obstruction θ(φ, F ) = 0 ∈ L4

(
π1(X)

)
if and only if for some integer t � 0 the normal map

(φ′, F ′) = (φ, F )#1 : M##t(S
2 × S2)→ X##t(S

2 × S2)

is normal bordant to a homotopy equivalence.
Freedman proved the 4-dimensional topological Poincaré conjecture in 1982.

This led to the extension of surgery theory to 4-dimensional topological manifolds
with ‘good’ fundamental group – see Freedman and Quinn [F11]. Donaldson
proved in 1982 that 4-dimensional differentiable manifolds must have diagonal-
isable intersection forms on account of the restrictions imposed by gauge theory,
subsequently showing that the h-cobordism theorem fails for 4-dimensional dif-
ferentiable manifolds. Thus surgery theoretic invariants play only a small part
in the classification of 4-dimensional differentiable manifolds – see Donaldson
and Kronheimer [D2].
See Kirby and Taylor [K13] and Quinn [Q8] for recent accounts of 4-dimensional

surgery theory.
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17. Further Ideas and Suggestions :

Recent Work

Thanks are due to the many researchers who have communicated their recent
results to me before publication : the very brief descriptions below are, of course,
intended to advertise these papers, and not in any way to replace them.

17A. Function Space Methods

See the notes at the end of 17B for the applications of surgery to topological
manifolds which motivated the initial development of the function space methods.

Some of our results – particularly those involving exact sequences – can be more
conveniently stated in a ‘functional’ form, using a space L(π) whose homotopy
groups are the surgery obstruction groups Li(π). A preliminary version of this
was developed by Andrew Casson (unpublished) in 1967–68; an account in the
simply connected case, with applications (due to Sullivan) to the homotopy
theory of G/TOP , appears in [R16]. A more satisfactory account is given in
the 1969 Princeton Ph.D. thesis of Frank Quinn [Q2], [Q3]. Here is a summary
of the main results.

For each n-ad K with w1 ∈ H1(|K|;Z2), Lm(K) is the (incomplete) semi-
simplicial complex (alias Δ-set) whose k-simplices are the objects over sk

0
K of

type n+k and dimension (m+k), in the sense of §9. The boundary operators are
the first (k+1) of those of the object. Clearly, π0

(
Lm(K)

)
is the L 1

m(K) of §9. In
fact Quinn follows the argument of our §9 to show that (modulo low-dimensional
difficulties – i.e. assuming m − n + k � 5 or 6) the homotopy type of Lm(K)
depends only on π(K)

(
cf. (9.7)

)
. It is easy to see that Lm+1(K) � ΩLm(K) and

hence πk
(
Lm(K)

) ∼= Lm+k

(
π(K)

)
. I will ignore the low-dimensional difficulties

in the following, and sometimes write Lm

(
π(K)

)
for Lm(K).

One can now interpret (9.6) as giving homotopy fibrations

Lm(∂nK)→ Lm(δnK)→ Lm(K) .

Also the natural extension of the exact sequence of §10 leads to another homo-
topy fibration. Take – for simplicity – a closed manifold M of dimension m � 5
with S-structure (S = TOP , PL, or O – the last corresponding to differential
structure). Let S G/S(M) be the semi-simplicial complex whose k-simplices are
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simple homotopy equivalences X →M ×Δk, X an S-manifold (k+2)-ad, with
the obvious boundary. Then there is a homotopy fibration

S G/S(M)
η→ (G/S)M

θ→ Lm(M) .

Since, by the s-cobordism theorem, X can be identified with M ×Δk, (at least,
if one restricts to the component of S G/S(M) containing the identity map of

M as a 0-simplex), the result can be reformulated. Let S̃(M) be the semi-
simplicial group, a k-simplex of which is an S-automorphism of M × Δk pre-
serving faces, but not necessarily projection on Δk; similarly for G̃(M) (which
is only a monoid). Then there is a homotopy equivalence of the quotient space

G̃(M)/S̃(M)→ S G/S(M) .

These results should be compared with other structure theorems such as

PL̃(M)/Õ(M) � S PL/O(M) � (PL/O)M ,

and similarly for TOP/PL, TOP/O.

This can be interpreted geometrically. Suppose given a homotopy fibration
Mm → Em+b → Bb of (closed) S-manifolds : when does E have the structure
of S-block bundle over B with M as fibre? This can be thought of as reducing
the structural group from G̃(M) to S̃(M). It turns out that a better problem
is to seek an S-block bundle with fibre homotopy equivalent to M . Making
E → B transverse to simplices and attempting to surger their preimages leads
to a surgery obstruction, given by a section over B of a fibration with fibre
Lm(M).

Observe that piecing together simplices from such a section defines an element
of Lm+b(E): clearly zero in the case above. Taking this semi-simplicially, one
obtains a map

ΓB

(
Lm(M)

)→ Lm+b(E)

called by Quinn the ‘assembly’. The construction of this map is technically
one of the most interesting aspects of the function space technique. Very lit-
tle is known about it, beyond some formal properties (compatibility with the
fibrations mentioned above).

Another construction, cases of which have been observed by several other
authors, notably Lopez de Medrano [L20], is a transfer-like homomorphism
coming from bundles. Quinn’s formulation seems particularly neat. “Suppose
π : E → B is a block fibration over a CW n-ad B, with fibre a compact mani-
fold k-ad Mm. If N → X → B is a surgery map over B, then we can form the
pullback fibrations

π∗N ��

��

π∗X ��

��

E

��
N �� X �� B .
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Since the fibre is a compact manifold, this is a surgery map over E, with di-
mension raised by m”. This induces a map

π� : Lj(B)→ Lj+m(E)

called the pullback map. As with the assembly, we get commutative diagrams
(for closed manifolds, say)

S G/S(B) ��

π�

��

(G/S)B ��

π∗
��

Lb(B)

π�

��
S G/S(E) �� (G/S)E �� Lb+m(E) .

Commutativity of the first square holds by the argument of (14A.3); for the
second, it is immediate from the definition. For the second square in a special
(non-trivial) case, compare [M13] and (14D.4).

The first important special case of the pullback is simply the product of §9,
including as a special case the periodicity isomorphism. This has been further
studied by Williamson [W46].

Next is the case when E is a covering space of B, giving the transfer map(
referred to in (13A.4 (iii) and (14E.5 (b)

)
. This has the usual properties of a

transfer [B7, Ch. III] (see also Sylvia de Christ’s thesis, UNAM, Mexico 1967,
and [C14]): indeed Charles Thomas [T3] has shown that for π finite, Lm(π) is a
Frobenius module (in the sense of Lam) over an appropriate Frobenius functor.

Key cases for us too are when the fibre is I or D2: this defines the homomor-
phism p0 of (11.6). In this connexion, we note a problem. In (12.9.2) we give an
isomorphism of exact sequences (caution : an earlier version of this was incor-
rect). We conjecture that another such can be obtained using (13A.7). Indeed,
there are isomorphisms between corresponding terms of two exact sequences,
but I have no proof that any square is commutative∗ :

Li(π × Z−
2 )

p0 ��

(13A.7)
��

Li+1(π → π × Z+
2 )

q0 ��

(12.9.2)
��

LNi−1(π → π × Z+
2 )

r0 ��

(12.9.1)
��

Li−1(π × Z−
2 )

��
Li+2(π × Z−

2 )
�� Li+2(π → π × Z−

2 )
�� Li+1(π) �� Li+1(π × Z−

2 )

I feel that a proper understanding of this diagram would clarify some obscure
points in §14D and lead to substantial generalisation of some of the results there.

There are, of course, function space analogues of the results referring to em-
beddings, and Quinn lays particular stress on splitting theorems of the Farrell
type. One neat result which is immediate from (15B.1) is that for π a poly-Z
group of rank n,

Ln(π) � (G/TOP )Mπ ,

∗The isomorphism of the exact sequences was subsequently obtained by Hambleton [H7]
and Ranicki [R7, Proposition 7.6.4]
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where Mπ � K(π, 1). In general no attempt has been made to determine
the homotopy type in particular cases, but let us note two results. First, the
pullback map corresponding to product with P2(C) gives homotopy equivalences

Ln(K)→ Ln+4(K) ,

so the spaces Ln(K) are all periodic, with period 4: combining with (13A.7) we
see that some have period 2. Now Sullivan’s proof that the 2-adic k-invariants
of L (1) � G/TOP are trivial, with this, shows that all k-invariants of L (Z−

2 )
vanish.

The non-simply connected surgery classifying spaces Lm(Λ) of a ring with in-
volution Λ were defined in Ranicki [R9] as Kan Δ-sets of quadratic Poincaré
n-ads over Λ (see the notes at the end of §17G), such that

πk(Lm

(
Λ)
)
= Lm+k(Λ) , Lm+1(Λ) � ΩLm(Λ) , Lm(Λ) � Lm+4(Λ) .

Thus L•(Λ) = {L−k(Λ) | k ∈ Z} is an Ω-spectrum with homotopy groups

πm
(
L•(Λ)

)
= πm+k

(
L−k(Λ)

)
= Lm(Λ) .

For a space K the surgery obstruction functions define homotopy equivalences

Lm(K) � Lm

(
Z[π1(K)]

)
.

See the notes at the end of §10 for a brief account of the algebraic assembly
map in the special case M = {1} (= the 0-dimensional manifold consisting of a
single point), E = B a closed b-dimensional manifold

A : ΓB

(
Lm(M)

) � B+ ∧ Lm+b(Z)→ Lm+b(B) � Lm+b

(
Z[π1(B)]

)
.

The spectrum L• appearing in the algebraic surgery exact sequence of [R9] is
the 1-connective cover of L•(Z), and the structure space STOP (B) is the fibre
of the assembly map

A : B+ ∧ L• → L•
(
Z[π1(B)]

)
.

The homotopy types of the Ω-spectra L•(Λ) were determined by Taylor and
Williams [T1].
The pullback maps π� : Lj(B)→ Lj+m(E) of a block fibration π : E → B with

fibre a compact m-dimensional manifold M induce the surgery transfer maps in
the L-groups

π� : Lj

(
Z[π1(B)]

)→ Lj+m

(
Z[π1(E)]

)
.

See Lück and Ranicki [L23] for the algebraic description of π�, which depends
on the chain homotopy action of π1(B) on the Poincaré duality chain complex

C(M̃) of the cover M̃ of the fibre M induced from the universal cover Ẽ of the
total space E.



17B. Topological Manifolds

Since Parts 1 and 2 of this book were written, there has taken place the
celebrated breakthrough in the theory of topological manifolds due to Kirby
and Siebenmann, to which reference has already been made at several points
in the text. The ultimate result of this has been that all our arguments can be
justified in the topological category. Since the definitive paper [K12] by Kirby
and Siebenmann is not yet completely written (let alone published), I will now
give an outline of some of the existing results∗.

The fundamental basic theorem seems to be a product theorem (analogous
to the Cairns-Hirsch theorem in ordinary smooth theory) which states, in a
very precise relative form, that for Mm a manifold, m � 5, any PL or smooth
structure onM ×R can be deformed (by a small isotopy) to one induced from a
PL or smooth structure on M . The proof uses induction on handles, the main
diagram of [K6], [K7] and the s-cobordism theorem, but not surgery.

This result has many applications. Combining it with the stable arguments of
Milnor [M11] we see (precisely as in the theory of smoothing PL manifolds) that
concordance classes of smooth (resp. PL structures) on a topological manifold
M correspond bijectively to reductions of the structure group of the tangent
bundle, or equivalently, to homotopy classes of liftings of M → BTOP through
BO (resp. BPL). Since it is also shown that πi(TOP/PL) = 0 for i �= 3 and
has order 2 if i = 3, there is an obstruction in H4(M ;Z2) to existence of a PL
structure; in H3(M ;Z2) to uniqueness. One has the full relative form of these
results. Kirby and Siebenmann have also shown – again as a corollary of the
main product theorem – that concordance of smooth (or PL) structures implies
isotopy.

Next, the theorem implies that a topological manifold of dimension � 6 has
a handle decomposition. The proof is by induction over coordinate patches,
rather like the argument below for transversality.

Third – and this is important for our development – a closed topological man-
ifold Q has in a natural way the structure of a simple Poincaré complex, and
one with boundary a simple Poincaré pair. Here no dimension restriction is
necessary, as we may multiply by a disc if needed to raise the dimension. For
the proof, embed Q in euclidean space with a normal disc bundle D(ν). Its
boundary S(ν) has a product neighbourhood; we can thus deform it to a PL
submanifold, Σ(ν). The deformation takes D(ν) to Δ(ν), say, bounded by Σ(ν);
we assign Q the simple homotopy type of Δ(ν). It is not hard to show that this
is independent of the embedding. One can see this defines a simple Poincaré
complex by using a handle decomposition of Q (to which the argument of §2

∗The paper [K12] was published as Essay I of the book of Kirby and Siebenmann [K11].
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applies) and noting that the simple homotopy type given by the cores of the
handles must coincide with the above.

Finally, one has a transversality theorem. I outline this in a little more detail,
since I have not yet seen the proof written down anywhere∗. Let ξ be a bundle
with fibre (Rn, 0) and projection π : E(ξ)→ X . A map f :Mm → E(ξ) is called
transverse to the zero-section S(X) if f−1

(
S(X)

)
= Lm−n is a submanifold

with normal bundle the pullback of ξ. Then for m − n � 5, any f is close
to a transverse map. The idea is to cover M by charts (hence, smoothable
open sets Uα) whose images lie in trivial sub-bundles of ξ, given say by charts
Xα ×R→ E(ξ): denote by πα the induced local projection on Rn. If now f is
already transversal on the Uβ with β < α, these meet Uα in an open subset Vα;
L ∩ Vα is a submanifold, and we have a local projection on it of a neighbourhood
in Vα, induced from the trivial bundle over Xα. Using the product structure
theorem, construct an isotopy of Vα which takes L∩ Vα to a smooth submanifold
and the local projection to a smooth submersion. We can now (after shrinking
Vα a little) deform f |Uα to be smooth, transverse to Xα× 0 in Xα×Rn in the
smooth sense, and extending the given f |Vα. The result follows by induction.

We also need, for §11, good properties of neighbourhoods of locally flat sub-
manifolds of topological manifolds. Again in codimension 1 or 2 there is no
essential difference from the smooth theory : this follows essentially by Brown
[B37] for codimension 1 and Kirby [K8] for codimension 2. In higher codimen-
sions, germs of ‘neighbourhoods’ of manifolds of codimension k are classified by

a space B˜TOP k such that we have a homotopy pullback diagram

B˜TOP k
��

��

BGk

��
BTOP �� BG

according to a recent paper by Rourke and Sanderson [R19], so the results of
§11 for the PL case carry over here also.

Finally, a word about references. The basic works by Kirby and Siebenmann
at present available are [K7], [K6] and [K9]. The account above is closer to a
talk by Kirby at the 1970 Bonn Arbeitstagung, which follows the paper [K12].

Casson [C11] and Sullivan [S22] used the torus trick of Novikov [N6], the in-
variant of Rochlin [R15] and the simply connected surgery classifying spaces
G/TOP , G/PL to disprove the manifold Hauptvermutung. They showed that
the classifying space for topologically trivialised PL block bundles is TOP/PL �
K(Z2, 3), and proved that for m � 5 a homeomorphism of m-dimensional PL
manifolds h : Nm → Mm is homotopic to a PL homeomorphism† if and only
if the classifying element c(h) ∈ [M,TOP/PL] = H3(M ;Z2) is 0. See also

∗See Marin [M3] and Quinn [Q7].
†through homeomorphisms
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Armstrong, Cooke and Rourke [A3], Kirby and Siebenmann [K11] and Ranicki
[R11], [R12].



17C. Poincaré Embeddings

First we observe that the definition of Poincaré embedding used by Levitt
[L16] is simpler than the one given in §11. For any finite complex K, Poincaré
complex P and map f : K → P we say that f is homotopic to an embedding if
there exist Poincaré pairs (P1, Q) and (P2, Q) (with P1 ∩ P2 = Q) and homotopy
equivalences e : K → P1 and g : P1 ∪ P2 → P with g ◦e � f . Thus in particular
if K is a Poincaré complex, Spivak’s theorem shows that (modulo troubles from
fundamental groups) Q is equivalent to the total space of a spherical fibration
overK, so we can regard the pair (P1, Q) as fibred over K with fibre (Dq, Sq−1),
and thus recover the formulation of §11.
More fundamental work has been done by Lowell Jones in a rather difficult

paper [J1]: again we give a summary, since the main results of this paper
are not mentioned in its introduction. The idea is to replace the study of
Poincaré complexes by that of the more geometrical ‘patch spaces’, which con-
sist of sets of smooth manifolds with some attaching data. The first main result
(Lemma 3.1) states that this replacement is possible in dimensions � 15; there
is also a uniqueness clause. The second main result (Lemma 1.1) states that
for patch spaces the problem of Poincaré embeddings in the middle dimensions
(Kk → P p, |p − 2k| � 1) meets the same obstructions as that for smooth em-
beddings. This shows (and this is the result emphasised by Jones himself), that
the arguments in this book are now directly applicable to Poincaré complexes :
the existence in general of handlebody decompositions, and hence (following
arguments similar to those in [L16]) the traditional embedding theorems for
Poincaré complexes in the metastable range; though at present his results are
only asserted in dimension � 15∗.

Finally both Jones [J1] and Levitt [L17], [L18] have considered bordism of
Poincaré complexes : my impression is that Levitt’s statements can be sim-
plified by using Jones’s results. The general philosophy seems to be that the
obstructions to validity of transversality theorems for Poincaré complexes are
the surgery obstruction groups themselves, and that this carries over to bor-
dism. For example, if M(G, π) denotes the Thom spectrum of the universal
spherical fibration over the pullback of

BG×K(π, 1)
w→ K(Z2, 1) ,

I conjecture an exact sequence

· · · → Ln(π)→ ΩPoinc
n (π)→ πn

(
M(G, π)

)→ Ln−1(π)→ . . .

∗The dimension restriction � 15 in the preprint version of [J1] was improved to � 5 in
the published version.
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The conjectured sequence is a special case of the Levitt-Jones-Quinn exact se-
quence

· · · → Ln(π)→ ΩPoinc
n (K)→ πn

(
M(G,K)

)→ Ln−1(π)→ . . . ,

which is defined for any space K with π1(K) = π and an orientation character
w ∈ H1(K;Z2), and M(G,K) the Thom spectrum of the spherical fibration over
the pullback of

BG×K w→ K(Z2, 1) .

Quinn [Q3] proposed a proof of exactness using a homotopy theoretic approach
to surgery on Poincaré complexes involving the extension of cofibrations to the
left, generalising the Poincaré π1-surgery method of Browder [B25]. Hausmann
and Vogel [H11] proved exactness for n � 5 using manifold surgery methods,
such as the π-π theorem of §4. See Klein [K14] for a survey of Poincaré surgery.



17D. Homotopy and Simple Homotopy

It is now time to mention the version of our theory in which homotopy equiv-
alences are used throughout in place of simple homotopy equivalences. This is
not altogether new : it is, indeed, the theory envisaged in [W18]. It has been
observed by Shaneson [S6], following suggestions of Rothenberg, that on can
develop the whole theory along these lines. For example, the ‘simple unitary’
groups of §6 are replaced by unitary groups. I had originally intended to include
a detailed comparison of theories with slightly differing assumptions. Here is an
outline, probably incorrect : I hope some reader can put it right.

We contemplate three kinds of spaces :

Poincaré complexes,
Those which are finite CW complexes,
Simple Poincaré complexes.

With each of these, there are corresponding notions of Poincaré pair, cobordism,
etc. We can define equivalence in five cases:

A Poincaré complex, homotopy equivalence.
B Finite Poincaré complex, homotopy equivalence.
C Finite Poincaré complex, simple homotopy equivalence.
D Simple Poincaré complex, homotopy equivalence.
E Simple Poincaré complex, simple homotopy equivalence.

In each case we can define ‘objects’ as in §9 (now using Poincaré complexes only,
not manifolds), and define obstruction groups L – or even, following Quinn,
spaces – accordingly. The proof that these depend only on the fundamental
group follows the pattern in §9, once an analogue to the theorem of §4 is estab-
lished. My impression is that the recent results of Levitt and Jones to which I
referred in §17C make this possible : hitherto this has been the difficult point
in validating these ideas.

For a Poincaré complex to be finite, there is an obstruction θ in K̃0

(
Z[π]

)
which satisfies a symmetry condition θ∗ = (−1)mθ coming from duality; only
the class of this modulo elements φ+(−1)mφ∗ is cobordism invariant. The result
is homotopy unique, but the simple homotopy types are classified by Wh(π).
For a finite Poincaré complex to be simple, there is an obstruction φ in Wh(π)
with φ∗ = (−1)mφ; if only the homotopy type is given, this is only determined
modulo elements ψ + (−1)mψ∗.

Such arguments lead us to expect exact sequences, which can be formulated as
follows. The group of order 2 acts on each of K̃0

(
Z[π]

)
, Wh(π) by the duality

map. For any group M with an endomorphism T satisfying T 2 = 1, we define
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a complex by Cn(M) =M , dn = 1− (−1)nT , and use the usual notations

Zn(M) = Ker
(
dn : Cn(M)→ Cn+1(M)

)
,

Bn(M) = Im
(
dn−1 : Cn−1(M)→ Cn(M)

)
for cocycles and coboundaries, with cohomology groups

Ĥn(Z2;M) = Zn(M)/Bn(M) .

Then we expect an exact commutative diagram

0

��

0

��

0

��
Zm+1

(
Wh(π)

)
��

��

LE
m(π) ��

��

LD
m(π) ��

��

0

Wh(π) ��

��

LC
m(π) ��

��

LB
m(π) ��

��

0

Bm
(
Wh(π)

)
�� Zm

(
Wh(π)

)
�� Ĥm

(
Z2;Wh(π)

)
�� 0 .

For a second relation, one expects further groups LF
m(π) coming from general

Poincaré complexes but ‘ordinary’ surgeries (a relative finiteness condition) and
sequences

0→ LB
m(π)→ LF

m(π)→ Zm
(
K̃0(Z[π])

)
,

K̃0

(
Z[π]

)→ LF
m(π)→ LA

m(π)→ 0 .

In fact Shaneson gives [S6, 4.1] an exact sequence of Rothenberg

· · · → Ĥm+1
(
Z2;Wh(π)

)→ LE
m(π)→ LB

m(π)→ Ĥm
(
Z2;Wh(π)

)→ . . .

and we would expect also

· · · → Ĥm+1
(
Z2; K̃0(Z[π])

) → LB
m(π)→ LA

m(π)→ Ĥm
(
Z2; K̃0(Z[π])

) → . . .

Presumably the images in Ĥm
(
Z2;Wh(π)

)
, Ĥm

(
Z2; K̃0(Z[π])

)
depend only on

m modulo 4: it would be interesting to have an algebraic characterisation. In
even dimensions I expect all groups to be equivalence classes of quadratic forms:

A On projective modules, modulo hyperbolic forms H(P ), P projective.
B On free modules, modulo H(F ), F free.
C On based free modules, modulo H(F ), F free and based.
D As E, modulo equivalence given by change of basis.
E Simple forms on based free modules, modulo H(F ), F free and based.
F On projective modules, modulo hyperbolic forms H(F ), F free.

It is not so simple to conjecture algebraic versions in the odd-dimensional case.
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Note that the groups LE are those previously used in this book, and denoted
simply by L. The groups of [W18], [S6] and here denoted by LB. A more usual
notation is to write

Ls = LE , Lh = LB .

Shaneson uses the two families of obstruction groups to give a neat formulation
of the splitting theorem. Namely, there are natural isomorphisms

LE
m(π × Z) ∼= LE

m(π)⊕ LB
m−1(π) .

Note how this fits with the sequence of Rothenberg on the previous page and
with (12.6). This does not apply to our generalisation (12.6), since

Ĥn
(
Z2;Wh(π)

)
is there replaced by Ĥn

(
Z2;Wh(π)α

)
. See also Farrell and

Hsiang [F3].

We observe finally that the necessity of referring to simple equivalences has
sometimes complicated our proofs, so although I prefer the theory as presented
above, it is better to have both. For example, a proof of (11.3.4) ought not
to need the discussion of torsion involved in our argument. Also, the theory
of normal invariants does not need reference to simple equivalence. Finally, we
made crucial use of the LB theory in (14E.4).

Projective L-theory. Novikov [N8] and Ranicki [R1], [R2] defined the projective
L-groups

Lp = LA

using quadratic forms on f. g. projective modules in the even-dimensional case,
and projective formations in the odd-dimensional case – see the notes at the end
of §6 for a brief account of formations. The projective and free L-groups are
related by a Rothenberg-type exact sequence

· · · → Ĥm+1
(
Z2; K̃0(Z[π])

) → Lh
m(π)→ Lp

m(π)→ Ĥm
(
Z2; K̃0(Z[π])

) → . . .

as was conjectured above, with natural isomorphisms

Lh
m(π × Z) ∼= Lh

m(π) ⊕ Lp
m−1(π)

analogous to the natural isomorphisms of Shaneson [S6]

Ls
m(π × Z) ∼= Ls

m(π)⊕ Lh
m−1(π) .

Pedersen and Ranicki [P2] gave a geometric interpretation of the projective
L-groups, using normal maps from compact manifolds to finitely dominated

Poincaré complexes. The lower L-groups L
〈−i〉
∗ (π) of Ranicki [R2], [R8] are

defined for i � 1 by analogy with the lower K-groups K−i of Bass [B7, Chapter
XII], with splitting theorems

L
〈−i〉
∗ (π × Z) = L

〈−i〉
∗ (π)⊕ L〈−i−1〉

∗ (π) (i � 0, L
〈0〉
∗ = Lp

∗)
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and exact sequences

· · · → Ĥm+1
(
Z2; K̃−i(Z[π])

) → L
〈−i+1〉
m (π) → L

〈−i〉
m (π)

→ Ĥm
(
Z2; K̃−i(Z[π])

)→ . . . .

Intermediate L-groups. Cappell [C1] introduced the intermediate L-groups LU
∗ (π),

which are defined for any ∗-invariant subgroup U ⊆ Wh(π) using quadratic
forms and automorphisms (or formations) with torsion in U , in connection
with the extension of the splitting theorem for π×Z to an exact sequence in the
twisted case π ×α Z

· · · → Lm(π)→ Lm(π ×α Z)→ L
Wh(π)α

m−1 (π)
1−α−−−→ Lm−1(π)→ . . .

(obtained algebraically in Ranicki [R3]). There are also intermediate projective

L-groups LU
∗ (π), which are defined for any ∗-invariant subgroup U ⊆ K̃0

(
Z[π]

)
.
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The reader of this section should be particularly cautioned that the topics
discussed are in a state of vigorous development; I have tried to describe the
results known as of the end of July 1970, but this may lead to some results
being anticipated, and others described in an unsatisfactory interim version.

I start with finiteness theorems for the surgery obstruction groups. First note
that since our fundamental groups are all finitely presented, hence countable,
one can count the matrices (even ∞ ×∞) over them, and it follows that all
Li(π) etc. are countable groups. I had originally hoped that all might be finitely
generated. However, a result of Bass and Murthy (see [B7, XII, 10.6]) shows
that, for example, Wh(Z×Z4) has a direct summand which is an infinite direct
sum of cyclic groups of order a power of 2. The exact sequence relating LB and
LE (§17D) then shows that at least one of these for Z × Z4 fails to be finitely
generated, and if it is LB, then some LE for Z× Z× Z4 fails to be.

Since Lk(π) need not be finitely generated for π finitely generated abelian, the
only reasonable class of π to look at is the class of finite groups. For L2k(π), we
gave the result in (13A.4). Now L2k+1(π) is a commutator quotient group of an
infinite unitary group. It follows from a stability theorem of Bak [B1], [B3] that
a finite unitary group already maps onto this, and from a result of Borel and
Harish-Chandra [B13] that these groups are finitely generated. Hence L2k+1(π)
is finitely generated for π finite. Now by a very recent result of Passman and
Petrie [P1], LB

2k+1(π) has exponent dividing 4 when π has odd order. Thus
for π of finite, odd order, the groups L2k+1(π) are finite 2-groups. The same
conclusion is probably valid when π has even order; in fact I would also guess
that L2k+1(π) vanishes when π has odd order∗.

This last conjecture is supported by the recent result of Lee [L9] that L3(Zp)=
0 for p an odd prime. It is rumoured that this can also be extended to groups
with order the product of two distinct odd primes. A comparable, but distinct
result is the recent proof by Petrie [P5] that such groups can act freely and
smoothly on homotopy spheres. More precisely, let G have a cyclic normal
subgroup of odd order, with quotient of odd prime order q. Then Petrie shows,
using surgery in the style of [W18, §6], that G acts freely and smoothly on a
homotopy sphere of dimension 2q − 1. This solves a problem of some years
standing. The result of [P1] has a rather similar proof.

There has been progress, too, on the conjecture following (12.4). The following

∗It was shown by Wall [W32] that the odd L-groups L2∗+1(π) are finite of exponent 8 for
finite groups π, and by Bak [B2] that they vanish for finite π of odd order. See the notes at
the end of §13A for a brief account of the general computation scheme for the L-theory of
finite groups.

263



264 postscript

is due to Lee [L6]. Suppose that

Φ :

A ��

��

C

��
B �� D

is a pushout diagram of groups, with all maps injective. Lee assumes (i) A
is trivial and (ii) B and C contain no element of order 2; and shows that
Ln(Φ) = 0 for all n. The argument needs both conditions, though (ii) can be
somewhat weakened for no extra work. I would expect that condition (i) can be
dispensed with too, but this leads to considerable technical complications. It is
interesting to note here that many times in the development of surgery, trouble
has arisen with π2 (or w2), which can be avoided by such assumptions as (ii) here,
but always it seems that subsequent work has avoided the difficulty altogether.
Cappell has announced [C1] a proof of the full conjecture∗, but I have not had
access to any part of the argument. Strictly speaking, he claims that given a
finite 2-sided Poincaré embedding Mm → V m+1, inducing a monomorphism
of fundamental groups, there is a submanifold M ′ ⊂ V realising it as a (non-
finite) embedding. Thus the corresponding L-group is again a subquotient of
Wh(M) having exponent 2. The result generalises (12.5), and corollaries can
be obtained in essentially the same way : see also [L10], [L7]. There is a general
feeling that this and a general version of (12.6) should hold for K-theory and
L-theory in an abstract algebraic setting. For K-theory, this has been worked
out by Waldhausen [W3]. Another attack on splitting theorems, due to Farrell
and Wagoner (and communicated to me orally), starting from a geometrical
problem on non-compact manifolds, arrived at the following algebraic situation.

Let A be a ring with unit and anti-involution. Define �A to be the ring of
infinite matrices over A with only a finite number of non-zero entries in each
row and in each column; MA to be the ideal in �A of matrices with only
finitely many non-zero entries. Then if λA = �A/MA, there are isomorphisms
LE
n (λA)

∼= LB
n−1(A), L

B
n (λA)

∼= LA
n−1(A), where E, B, A have the meanings

described in the preceding section. There are also results for abstractK-groups;
in particular K1(λA) ∼= K0(A)

†.

Other algebraic ideas on the splitting theorem are contained in Novikov’s recent
papers [N8].

∗The full conjecture is that L∗(Φ) = 0 for any pushout square Φ of groups with injective
morphisms. This is false in general, with

Ln+2(Φ) = LSn(Φ) = Ĥn+1 ⊕ UNiln+2(Φ)

the sum of a Tate Z2-cohomology algebraic K-theory group and the appropriate UNil-group
of Cappell [C2], [C4] – see the notes at the beginning of §12 and at the end of §12A.

†See Farrell, Taylor and Wagoner [F8].



17E. further calculations 265

Added in September, 1970 (after the Congress at Nice)

Hyman Bass, in collaboration with Amit Roy, has obtained further calculations
of the groups Ln(π) with n odd and π finite abelian ([B8]). Work is still in
progress, but here is an interim statement of results.

Their most striking theorem is that for π finite abelian, with Sylow 2-subgroup
π2, in the orientable case, the map L3(π2) → L3(π) is an isomorphism. Since
L3(1) = 0, L3(π) vanishes for π abelian (or, in particular, cyclic) of odd order.
We also have L3(Z2) ∼= Z2. In general, the calculation has been reduced to one
over the group ring Z2[π], so in particular L3(π) is finite : more precisely, it has
exponent 2 or 4.

If π is an elementary 2-group (i.e. all elements have order 2), the results are
more specific. There is an exact sequence

Z2[π]→ L3(π)→ Z2[π]
× → 0 ,

where the invariant of a unitary matrix in the group of units of Z[π] is the
spinor norm of the orthogonal matrix obtained by reduction mod 2. For the
same groups π, L1(π) is the subgroup of elements of order 2 in the Picard group
Pic(Z2[π]).

This is probably the most appropriate place to mention another idea which
helps in such calculations. In the situation of (11.5) and (11.6) we can define
new groups, in which we consider surgery both on the large manifold and on
the submanifold : denote these obstructions to ‘surgery of pairs’ by LPn(Φ). By
forgetting one or other of the two manifolds, we obtain homomorphisms

LPn(Φ)→ Ln(B) , LPn(Φ)→ Ln+q(D) ,

each lying in an an exact sequence : these sequences form the diagram

Ln+q(C)

���
��

��
��

��
��

��
Ln+q(D)

���
��

��
��

��
��

��
LSn−1(Φ)

Ln+q+1(C → D)

���
��

��
��

��
��

�������������
LPn(Φ)

�������������

���
��

��
��

��
��

Ln+q(C → D)

�������������

d

���
��

��
��

��
��

LSn(Φ)

�������������

��
Ln(B)

p
�������������

τ

��
Ln+q−1(C)

As in (12.3) and (12.4), the most interesting Φ are those of the form s2φ, i.e. with
A = C, B = D.
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A particularly interesting case is when q = 2, A = C = Z, B = D = ZN .
Here, τ can be identified with the transfer L2k(ZN ) → L2k+1(Z) ∼= L2k(1). If
N is odd this, hence also d, is a split surjection. Further, L2k(Z)→ L2k(ZN ) is
a split injection. We also claim that

q : L2k−2(ZN )→ L2k(Z→ ZN )

is an isomorphism. If this, and Bass’s result L3(ZN ) = 0 are inserted, diagram
chasing leads to the isomorphisms

L3(ZN ) = L3(Z→ ZN ) = LP3 = LS3 = LS0 = 0 ,

L1(ZN ) = L1(Z→ ZN ) = LP1 = LS2 = LS1 ,

and
LP2k = L2k+2(ZN ) .

The proof that q is an isomorphism comes by explicit calculation based on
(13A.4): we have L2k−2(ZN ) ∼= L2k−2(1) ⊕ L̃2k−2(ZN ), the exact sequence

shows L2k(Z→ ZN ) ∼= L2k−2(1)⊕L̃2k(ZN ), but q does not respect the splitting :
roughly, it multiplies the first component by N and the second by (1+χ)/(1−χ).
By the way, although the proofs of (13A.4) and (13A.5) are not yet fully written
up, a first instalment will appear in [W28].

I do not seriously doubt that, for N odd, L1(ZN ) = 0 and thus LSn(Z →
ZN ) = 0 for all n. Observe that this implies that the embedding theorem (11.3)
(though not its corollaries) is valid for many codimension 2 embeddings, and
fits nicely with the corollary to (14E.7)∗.

There have also been several developments concerning the Kervaire-Arf invari-
ant. Browder’s work [B22] has been clarified as follows by Ed Brown : see also
pp. 9–18 of mimeographed notes on the Conference on Algebraic Topology held
at the University of Illinois at Chicago Circle in June, 1968†.

Let v(M) =
∑

i�0 vi(M) denote the total Wu class of a closed manifold M ,
characterised by the formula

Sq x[M ] = v(M)x[M ]

valid for all x ∈ H∗(M ;Z2), and also satisfying Sq v = w, the total Stiefel-
Whitney class (see Milnor and Stasheff [M16]; also [B34]). Thus vi(M) = 0 for
dimM < 2i; vnU = χ(Sqn)U if U is the Thom class of the normal bundle, and
χ the involution of the Steenrod algebra. Also the Adem relations imply that
for M orientable, vi = 0 for i odd; and if M is a spin manifold, vi = 0 also for
i ≡ 2 (mod 4). If w 2

1 = 0, then v2i = 0 for i odd.

Let dimM = 2n: then vn+1(M) = 0. Thus the classifying map for the tangent
bundle of M lifts to a map into the universal bundle with this property : call
such a lift a vn+1-orientation on M .

∗See Hambleton and Taylor [H9] for a survey of the computations of the L-groups of finite
groups.

†See also Brown [B31].
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Better, let En
l have homotopy groups Z2 in dimensions l, l + n (and zero

elsewhere) and k-invariant χ(Sqn+1). Then for any Poincaré complex X2n with
normal fibration ξl, the Thom class in H l(Xξ) defines a map U : Xξ → K(Z2, l)
which can be lifted to a map V : Xξ → En

l . Now there is a non-split exact
sequence

0→ Z2 → π2n+1

(
K(Z2, n) ∧En

l

)→ H2n(Z2, n;Z2)→ 0 ,

so we can choose a surjection η of the middle group onto Z4.

This allows us to define a quadratic map

φ : Hn(X ;Z2)→ Z4

with associated bilinear map the cup product. Let α ∈ π2n+1(X
ξ) have degree

1. Define, for x ∈ Hn(X ;Z2), φ(x) to be the image of α under

π2n+1(X
ξ)

Δ∗→ π2n+1(X
+ ∧Xξ)

(x∧V )∗−→ π2n+1

(
K(Z2, n) ∧ En

l

) η→ Z4 .

The Witt group of nonsingular quadratic maps such as φ has order 8: thus we
obtain an invariant∗

K = K(X, ξ, α, V ) ∈ Z8 .

Since (by [W21]) the pair (ξ, α) is unique up to stable isomorphism, this can be
regarded as depending only on V .

Any other lift V ′ differs from V by a map of Xξ into the fibre K(Z2, l + n),
corresponding to a class z ∈ Hn(X ;Z2). Then φ′(x) = φ(x) + j(x · z), where
j : Z2 ⊂ Z4. The case when V is fixed but α changed can be reduced to this :
Brown obtains a formula z =

∑
ziwn−2i+1(ξ) for suitable zi, leading to some

results on independence of choice of α. There is, of course, also the choice of η,
but this is universal.

For X a manifold, we can use a vn+1-orientation to fix (ξ, α, V ) and hence

K(X). If now Y
f→ X is a normal map, and we use the induced vn+1-orientation

on Y , we have
4c(f) = K(Y )−K(X) (mod 8) .

There is also some new work on the related characteristic classes. The following
was told to me (in different notation) by Brumfiel, and ascribed to Ib Madsen.

Write k1 ∈ H∗(G/PL;Z2) for Sullivan’s class, which is characterised by the
identity

c(M, f) = w(M)f∗(k1)[M ]

valid for even-dimensional Z2-manifolds : k1 only has components in dimensions
4n+ 2. Then write k2 for the class of (13B.5): this satisfies the identity for all
even-dimensional manifolds, has components in dimensions 2n, and is given by

∗See Weiss [W42] for non-simply connected generalisations of this invariant. See Brown
[B32] for a survey of the Arf invariant problem.
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k2 = (1 + Sq2 + Sq2Sq2)k1 (13B.5)

Next set k3 = (1 + Sq1)k2: I claim this satisfies the identity for all manifolds.
For this amounts to proving

(mwm−2ik2i + wm−2i−1Sq
1k2i)[M

m] = 0

for any manifold M and even-dimensional class k2i; this follows from the calcu-
lation

w1wm−2i−1k2i[M ] = Sq1(wm−2i−1k2i)[M ]

= (mwm−2ik2i + wm−2i−1w1k2i + wm−2i−1Sq
1k2i)[M ] .

Now set k4 = χ(Sq)k3 = (Sq)−1k3. Then for any M , f ,

c(M, f) = w(M)f∗(k3)[M ]

= Sq v(M)f∗(Sq k4)[M ]

= Sq
(
v(M)f∗k4

)
[M ] = v2(M)f∗k4[M ] ,

giving a new sort of formula. If we write Sqr∗ =
∑

i�0 Sq
ri, so Sq1∗ = Sq, then

k2 = (1 + Sq1)k3 = (1 + Sq1)(Sq)k4 = Sq2∗k4, and since the Adem relations
lead quickly to the identity

(1 + Sq2 + Sq2Sq2)Sq4∗ = Sq2∗ ,

and we deduce k1 = Sq4∗k4. Hence k4 (like k1) only has nonzero components
in dimensions 4n+2. Once can also obtain this directly. Arguing as in (13B.5)
using the product formula gives a class k4 giving c(M, f) for all f . Since Z2-
manifolds detect mod 2 homology, forM a Z2-manifold c(M, f) = 0 except when
dimM ≡ 2 (mod 4), and v2(M) has nonzero components only in dimensions
divisible by 4, it follows that k4 is concentrated in dimensions 4n+ 2.

There seems good reason to regard k4 as the most natural class to choose from
all these. This is supported by the conjecture that if n+ 1 is not a power of 2,
k44n+2 is in the image of H4n+2(BPL;Z2). This is true for k410. It would follow
that these are zero in H∗(G/O;Z2), so only the k42n−2 (n � 2) would appear in
c(M, f) for f : M → G/O a smooth normal invariant. Suppose M8n+2 a spin
manifold, thus v4i+2(M) = 0. The conjecture implies in this case that

c(M, f) = v24n(M)f∗(k2)[M ] ,

a formula which has been proved independently by Brumfiel.

Applying this last formula to the special case

f : P4n+1(C)→ G/O

shows at once that c(M, f) = [k2] = s2 = s4 (mod 2), in the notation of §14C,
and thus can be computed using Pontrjagin classes. For this and further work
in this direction see Brumfiel [B41].
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As a final new development in techniques of calculation, but one which deserves
a special place to itself, I refer to Dennis Sullivan’s notes [S23] on localisation,
periodicity and Galois symmetry. I would like to describe very briefly the un-
derlying ideas. Given the ring Z of integers, one may localise at a prime p to
obtain the ring of rational numbers with denominator prime to p; one may also
(or next) complete this to obtain the ring Z(p) of p-adic integers. One can also

take the profinite completion Ẑ which gives the product over all p of Z(p): in
modern number-theoretic terminology, this is the ring of integral (finite) adeles.

We also have the quotient field Q and the tensor product QẐ: the ring of finite
adeles. The ‘arithmetic square’

Z

��

�� Ẑ

��
Q �� QẐ

is then a pullback.

Sullivan shows how to localise and complete the homotopy type of a CW
complex X , obtaining a corresponding pullback square

X

��

�� X̂

��
X0

�� XA

(X must be 1-connected, or at least simple in some sense); the homology

(resp. homotopy) groups of X̂, X0, XA are the tensor products of those of X

with Ẑ, Q, QẐ (provided e.g. X has finite skeletons); and X is determined up to
homotopy by the other spaces and maps. X0 is, of course, familiar to homotopy
theorists, but X̂ is obtained using a form of Brown’s representability theorem,
and (for any K), [K, X̂] comes equipped with a topology.

Next, Sullivan applies these concepts to spherical fibrations, and obtains the
following basic result. There is a natural transformation ‘fibrewise profinite
completion’ which corresponds to a map of classifying spaces BGn → B̂Gn.
The induced map of fundamental groups is {±1} = Z× → Ẑ× (here R×, for
R a ring, denotes the multiplicative group of units), and the induced map of
universal covers is profinite completion. Note that BSG is already profinitely

269
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complete (its homotopy groups are finite). Note also the action of Ẑ× on B̂SGn

and BSG, and that (as one can see by completing one prime at a time) Ẑ×

acts via Z×
(p) on the p-part of BSGn. Stabilising gives a homotopy equivalence

K(Ẑ×, 1)× BSG → B̂G: the action of Ẑ× on BSG is (homotopically) trivial.
Since the rational homotopy theory is easy (cf. [Q1]), the arithmetic square now
gives a criterion for fitting spherical fibrations ‘at different primes’.

The real force of these ideas comes in via using étale homotopy theory to de-
fine a functor from normal algebraic varieties (over subfields of C) to profinite
homotopy types, which on, say, nonsingular varieties just gives the profinite
completion of the space of points defined over C. Naturality of the construction
shows that for a variety defined over Q, such as a unitary group or Grass-
mannian, the Galois group of the algebraic closure Q acts on the space. The
induced action on cohomology is not too hard to compute for projective spaces
and others related to them : its commutator quotient is identifiable (by class

field theory) with Ẑ×, and this acts on H2 of projective spaces by multiplica-
tion. Since profinite K-theory is classified by a limit of Grassmannians, the

Galois group of Q/Q acts on each ̂K(X) too; Sullivan shows that this action

also reduces to one of Ẑ×, and that for k prime to p the action by k on th p-adic

part of ̂K(X) is given by the Adams operation ψk. The ‘Adams conjecture’
now follows by a stabilisation argument like the above. Sullivan obtains many
other interesting results and problems in the framework of his étale homotopy
theory, but it would be out of place to give much discussion here.

In a final century of pages, Sullivan collects his ideas to give a complete de-
termination at odd primes of the homotopy types of the maps in the diagram

BO
��

����
���

���
��

BG

G/O

�����������

���
��

��
���

�
BTOP

������������

���
��

��
��

��
�

G/TOP

������������
��BΓ

with Γ = TOP/O. First, using the ideas of [S22] in a more organised fashion,
he defines what I call the Sullivan orientation Δ ∈ K∗(M TOP )⊗ Z[ 12 ], where
M TOP denotes the Thom space of the universal bundle overBTOP (essentially
the same as BPL). The construction of Δ for a topological bundle π : E → X
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rests on a diagram

Ω∗(E;Q) ��

��

ΩTOP
∗ (X ;Q) ��

��

Q

��
Ω∗(E;Q/Z) �� ΩTOP∗ (X ;Q/Z) �� Q/Z

where the first horizontal map represents the intersection (transverse) with the
zero cross-section; the second, taking the signature. Further, Sullivan (see [S23,
p. 6.47]) shows that BTOP localised away from 2 classifies the universal K∗ ⊗
Z[ 12 ]-oriented spherical fibration. This is true even unstably, provided block
bundles are used, and the fibre dimension is � 3 (see [R17], [R19] as well as
[S23]).

We now have an action of Ẑ× on [X, ̂BTOP ] (using this universality) via its
action on K-theory, and hence on the K-class Δ; in this terminology, the maps

B̂O → ̂BTOP → B̂G (ignore the 2-primary part)

are Ẑ×-equivariant (recall we have the Galois action on BO and the trivial

action on B̂G).

Using Δ in the traditional way one obtains a (Bott) characteristic class ΘE

for a topological bundle π : E → X . The map

ΘE : Ẑ× → (
K̂(X)

)×
is defined using the action of Ẑ× on K̂ by

ΘE(α) ·ΔE = Δα
E .

It has the following properties :

(i) It is a product of functions Z×
(p) →

(
K(X)⊗ Z(p)

)×
over (odd) primes p,

(ii) It is a cocycle : ΘE(αβ) = ΘE(α)
βΘE(β),

(iii) ΘE is continuous,

(iv) ΘE⊕F = ΘE ·ΘF ,

(v) If k is prime to p, then for an SO2- (or U1-) bundle η, the p-component
of Θk(η) is

1

k

(
ηk − η−k

η − η1

)(
ηk + η−k

η + η−1

)
.
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The multiplicative group of functions satisfying (0), (i), (ii) is denoted by

Z1
d(X) = Z1

d

(
Ẑ×; K̂×(X)

)
. We have a ‘coboundary’ homomorphism

δ : K̂×(X)→ Z1
d(X)

defined by δu(α) = uα/u: its cokernel is written H1
d(Ẑ

×; K̂×). We also have
the invariant given for vector bundles

(
and computable by (iv)

)
,

Θ : K̂(X)→ Z1
d(X)

and the pullback K (X) of (δ,Θ). Define C (X) to be the subgroup of [X,BTOP ]
corresponding to bundles with trivial invariant Θ – equivalently, for which the
Thom isomorphism (given by Δ) is Ẑ×-equivariant.

Main Theorem There is a natural epimorphism of diagrams

[X,̂G/O] ��

��

[X, B̂O]

��
[X, ̂G/TOP ] �� [X, ̂BTOP ]

on

K (X) ��

��

K̂(X)

(Θ, 0)
��

K̂×(X)
(δ, 0)

�� Z1
d(X)⊕ C (X)

which is an isomorphism on all but [X,̂G/O].

It follows, for example, that a vector bundle E is topologically trivial iff ΘE = 1,
and fibre homotopy trivial iff ΘE is cohomologous to 1.

Subtler corollaries are obtained by analysing the maps Θ, δ: let us concentrate
on an odd prime p. One can identify the torsion subgroup of Z×

(p) with the

multiplicative group Z×
p of the field with p elements; any torsion free Z×

(p)-

module M is the direct sum of the submodule M1 fixed by Z×
p and that, Mξ,

annihilated by the sum of its elements. A corresponding decomposition can be
made for [X,BO] etc. (which are not torsion free) by using a splitting theorem,
or decomposing the universal example. Then δ is an isomorphism on the ξ-
summand, Θ is (I believe) an isomorphism on the 1-summand. It should be
observed that Z×

(p) is topologically cyclic : if kp−1 �≡ 1 (mod p2), then powers

of k are dense in Z×
(p), so ΘE(k) ∈ K̂(X) (at p) determines ΘE ∈ Z1

d(X) (at

p). Further calculation shows that Θ fails to be an isomorphism precisely if p is
irregular, or if 2 defines an element of odd order in Z×

p .

Perhaps I should emphasise that the above holds in the profinitely completed
part at odd primes. Also, it is difficult to summarise Sullivan’s work so briefly :
the full philosophical exposition in [S23] should be read.

See also Sullivan [S24].
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The algebra in this work, particularly in §6, is complicated, and even so it is
not altogether satisfactory : most obviously, in §8. Some work has been done in
attempts to improve the situation.

We have made much use of ‘simple hermitian’ forms, defined by pairs (λ, μ)
satisfying (i)–(v) of (5.2) (with χN = 0) and G based so that Aλ is a simple
isomorphism. These axioms (i)–(v) are somewhat complicated, and we have
given elsewhere [W27] a better formulation, briefly stated as follows.

Let A be a ring, α an anti-automorphism of A, u a unit of A such that α(u) =
u−1, and α2(x) = uxu−1 for all x ∈ A (in practice, usually u = ±1 and α2 is the
identity). For M a right A-module we define the group Sα(M) of sesquilinear
forms

φ :M ×M → A

so that e.g. φ(ma, n) = α(a)φ(m,n). For such a φ, define Tu(φ) by

Tu(φ)(m,n) = α
(
φ(n,m)

)
u .

Then Tu : Sα(M) → Sα(M) satisfies T 2
u = 1, and we define the space of

quadratic forms by

Q(α,u)(M) = Coker(Tu − 1) .

It is shown in [W27] how the notion of quadratic form (with u = ±1) is equiva-
lent to that of a pair (λ, μ) satisfying (i)–(v). Moreover, the generalisation with
arbitrary u covers the case of axioms (Q1)–(Q5) of (12.9). There seems no doubt
that this is a better formulation of the concept (also, a better terminology).

There is not yet a viable alternative to the presentation in §6, particularly
(6.2). It would be more appropriate, perhaps, to replace RU(Λ) by the subgroup
EU(Λ) generated by UU(Λ) and its conjugate by Σ: this is the commutator
subgroup both of U(Λ) and of itself. The details should be worked in the
generality above

(
this is needed for (12.9)

)
.

Pursuing the analogy with the algebraic K-theory, it would be nice to have a
definition of L2 like Milnor’s K2 with a Steinberg group defined by elementary
relations between elementary unitary matrices : one would hope to give the
relative group L2 also an abstract algebraic description. Such a description has
in fact been given by Sharpe in his thesis (see [S7], [S8]) but the details are
more complicated than one would wish. Consider pairs (P,Q) of η-symmetric
quadratic forms over Λ on a free module of dimension r. Write (P,Q) ∼ (P ′, Q′)

273
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if there is an r × r matrix X such that

A = I + ηQX ∈ SLr(Λ) ,

P ′ − P = X + ηX∗ +X∗QX ,

Q = AQ′A∗ .

The set StUr(Λ) of equivalence classes maps to RUr(Λ) by

(P,Q) �→
(
I 0
P I

)(
0 I
−ηI 0

)(
I 0
Q I

)
.

Now given a morphism ψ : Λ → Λ′ of anti-involuted rings, form the pullback
diagram

F̃r

��

�� StUr(Λ
′)

��
RUr(Λ) �� RUr(Λ

′) .

It is necessary to consider a subgroup of F̃r defined by a rather subtle splitting
condition on the diagonal, to stabilise under ⊕, and to factor out SLr(Λ) –
which acts via SLr(Λ

′) on StUr(Λ
′) as (P,Q)α = (α∗−1Pα−1, αQα∗) and on

RUr(Λ) as A
α = AH(α); as well as to contemplate a rather complex algebraic

form of surgery; a certain subquotient of F̃r is eventually identified as L2k(ψ)(
where η = (−1)k).
My general feeling – which has now been justified several times – is that

whatever can be done for abstract K-groups can be done (usually with more
trouble) for the Lk. Since one of Whitehead’s original definitions for his group
was in terms of chain complexes, one is naturally led to seek such formulations
here also. Such a theory ought to run as follows.

Define the notion of quadratic (reflexive) form on a free (or based, or just
projective) finitely generated chain complex; the pairing has some degree, k.
A good definition of ∼ 0 should generalise (a) a cobordism and (b) existence
of a lagrangian. Forming the universal group of forms modulo null-equivalent
ones gives Lk(Λ); consideration of a form over Λ, and a null-equivalence of the
induced form by ψ : Λ→ Λ′ leads to construction of relative groups. The iden-
tification with present definitions runs by an algebraic construction imitating
surgery until the chain complex has only 1 or 2 terms left. Most of this pro-
gramme I can do in outline, but one crucial gap at present is that I cannot show
with my definition that cobordism is an equivalence relation.

For simplicity, assume the anti-involution is the identity (hence the ring com-
mutative). Given a chain complex C∗, form its dual C∗ and consider the inter-
change (with appropriate signs) T : C∗ ⊗ C∗ → C∗ ⊗ C∗. Define

QnH(C) = Coker(T∗ − 1) on Hn(C
∗ ⊗ C∗) .
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An x ∈ QnH(C) is called a quadratic form of degree n on C. For x ∈ QnH(C),
‘bilinearisation’ gives T∗x+ x ∈ Hn(C

∗ ⊗ C∗); slant product with this induces

Ax : Hp(C∗)→ Hn+p(C
∗) ;

call x nonsingular if these maps are isomorphisms. There is a similar natural
notion of simple form in the based case, using representatives at the chain level,
and a chain map Ax : C∗ → C∗ of degree n.

A cobordism to zero should consist (at least) of a quintuple (C,D, x, y, f) where
C, D are complexes as above, x ∈ QnH(C) is nonsingular, y ∈ Qn+1H(D) is
not (in general), f : C → D is a chain map given up to chain homotopy, and we
have an exact triangle (in the derived category)

D∗

(Ax)−1 ◦ f∗

����
��
��
��
�

C
f �� D

Ay
�����������

We can then define a cobordism of (C, x) to (C′, x′) as one of (C⊕C′, x−x′) to
zero. The trouble with this definition is like that in §8: given two cobordisms
(D, y) and (E, z) of (C, x) to zero, it ought to be possible to ‘glue’ along C to get
a nonsingular form on D⊕E∗: but I have only succeeded in getting a symmetric
bilinear (not a quadratic) form. (The glueing will not be unique : this does not
matter). To justify the picture, think of C as C∗(∂M), D as C∗(M) – which
is dual to C∗(M,∂M) for a manifold M . Also write the triangle as an exact
sequence of chain complexes

0→ D∗ → C → D → 0

and think of D∗ as a lagrangian.

The above theory offers many advantages : quick proofs of (cobordism) exact
sequences, including those suggested in §17D relating K- and L-theory as well
as those for maps of rings, and a simple and satisfactory algebraic version of
the whole setup. I hope it can be made to work.† Note that an independent
algebraic treatment gives a payoff in the topology too : topologically motivated
results like (12.6), proved in an algebraic setting, can apply more generally, and
lead to new results with a different topological application.

The chain complex theory was developed in Ranicki [R4], [R5], [R7], [R9], hope-
fully providing the ‘simple and satisfactory algebraic version of the whole setup’
required. The n-dimensional quadratic structures on a chain complex C∗ are
elements of the Z2-hyperhomology group

Qn(C) = Hn(Z2;C∗ ⊗ C∗) = Hn

(
W ⊗Z[Z2] (C∗ ⊗ C∗)

)
†It will then be interesting to give a purely algebraic account of the relation between [W18],

the argument of §§ 5, 6, and this new approach.
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with
W : · · · → Z[Z2]

1−T−−−→ Z[Z2]
1+T−−−→ Z[Z2]

1−T−−−→ Z[Z2]

the standard free Z[Z2]-module resolution of Z with the trivial Z2-action. By
definition, an n-dimensional quadratic Poincaré complex (C,ψ) over a ring with
involution Λ is an n-dimensional f. g. free Λ-module chain complex C together
with an element ψ ∈ Qn(C) such that there are induced Poincaré duality iso-
morphisms

(1 + T )ψ0 : Hn−∗(C) ∼= H∗(C) .

The quadratic L-group Ln(Λ) is the cobordism group of n-dimensional quadratic
Poincaré complexes over Λ (with C based and (1 + T )ψ0 : Cn−∗ � C∗ a simple
chain equivalence). An n-dimensional normal map (f, b) : M → X determines
an n-dimensional quadratic Poincaré complex (C,ψ) with C = C (f !) the alge-
braic mapping cone of the Umkehr Z[π1(X)]-module chain map

f ! : C(X̃) � C(X̃)n−∗ ˜f∗−→ C(M̃)n−∗ � C(M̃)

such that the homology Z[π1(X)]-modules of C are the kernel modules of §2

H∗(C) = K∗(M) = Ker
(
f̃∗ : H∗(M̃)→ H∗(X̃)

)
,

with X̃ the universal cover of X and M̃ = f∗X̃ the pullback cover of M . The
surgery obstruction of (f, b) is the cobordism class

θ(f, b) = (C,ψ) ∈ Ln

(
Z[π1(X)]

)
– it is no longer necessary to perform preliminary surgeries below the mid-
dle dimension in order to define the surgery obstruction, as was originally
done in §§ 5, 6. The element ψ ∈ Qn(C) is obtained from a stable π1(X)-

equivariant map F : Σ∞X̃+ → Σ∞M̃+ inducing f ! by a π1(X)-equivariant
chain level quadratic construction, generalising the homotopy theoretic method
used by Browder [B24] to obtain the Kervaire-Milnor [K4] quadratic form in
the (4k + 2)-dimensional simply connected case. In particular, for n = 2k the
surgery obstruction is the Witt class

θ(f, b) = (K,λ, μ) ∈ L2k

(
Z[π1(X)]

)
of the ‘instant surgery obstruction’ (−1)k-hermitian form on the stably f. g. free
Z[π1(X)]-module

K = Coker

((
d∗ 0

(1 + T )ψ0 d

)
: Ck−1 ⊕ Ck+2 → Ck ⊕ Ck+1

)
,

and for n = 2k + 1 there is a similar expression for a formation.
The quadratic chain complex theory is a further development of the symmetric

chain complex theory of Mishchenko [M18]. By definition, an n-dimensional
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symmetric Poincaré complex (C,ψ) over a ring with involution Λ is an n-
dimensional f. g. free Λ-module chain complex C together with an element of
the Z2-hypercohomology group

φ ∈ Qn(C) = Hn(Z2;C∗ ⊗ C∗) = Hn

(
HomZ[Z2](W,C∗ ⊗ C∗)

)
such that there are induced Poincaré duality isomorphisms

φ0 : Hn−∗(C) ∼= H∗(C) .

The symmetric L-group Ln(Λ) is the cobordism group of n-dimensional sym-
metric Poincaré complexes over Λ. The symmetrisation maps

1 + T : Ln(Λ)→ Ln(Λ) ; (C,ψ) �→ (C, (1 + T )ψ)

are isomorphisms modulo 8-torsion. The symmetric L-groups of a group ring
Z[π] are denoted by L∗(π), by analogy with L∗(π). An n-dimensional Poincaré
complex X has a symmetric signature invariant

σ∗(X) = (C(X̃), φ) ∈ Ln
(
Z[π1(X)]

)
with

φ0 = [X ] ∩ − : C(X̃)n−∗ � C(X̃) .

The surgery obstruction θ(f, b) ∈ Lm

(
π1(X)

)
of a normal map (f, b) :M → X

has symmetrisation

(1 + T )θ(f, b) = σ∗(M)− σ∗(X) ∈ Lm
(
π1(X)

)
.

The standard computation of the simply connected surgery obstruction groups

Ln(1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Z
(
1
8 (signature)

)
0

Z2 (Kervaire-Arf invariant)

0

if n ≡

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0

1

2

3

(mod 4)

was extended in [R4] to the simply connected symmetric L-groups

Ln(1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Z (signature)

Z2 (de Rham invariant)

0

0

if n ≡

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0

1

2

3

(mod 4) .

For any rings with involution Λ,Λ′ there are defined products

Lm(Λ)⊗Z L
n(Λ′) → Lm+n(Λ⊗Z Λ′) ; (C,ψ) ⊗ (D,φ) → (C ⊗D,ψ ⊗ φ) .

Sullivan’s simply connected surgery product formula was generalised in [R5] to
the non-simply connected case : the product of an m-dimensional normal map
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(f, b) : M → X and an n-dimensional manifold N is an (m + n)-dimensional
normal map

(g, c) = (f, b)× 1 : M ×N → X ×N
with surgery obstruction the product

θ(g, c) = θ(f, b)⊗ σ∗(N)

∈ Im

(
Lm

(
π1(X)

)⊗ Ln
(
π1(N)

)→ Lm+n(π1(X ×N)
))

.

In particular, the 4-periodicity isomorphism of Theorem 9.9 is given algebraically
by the product

−⊗ σ∗(P2(C)
)

: Lm(π) ∼= Lm+4(π)

with the generator σ∗(P2(C)
)
= 1 ∈ L4(1) = Z.
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Added in September, 1970 (after the Congress at Nice).

The theory sketched at the end of §17G, with minor modifications, has been
successfully done by A. S. Mishchenko, but only in the case when 2 is invertible
in Λ; this does, in fact, avoid the main difficulty I had run up against∗. This
can be found in [M17].

It follows that given any Poincaré complex X , it defines an element in
LB
x

(
Z[ 12 ][π1(X)]

)
, and that for a normal map Y → X , the image of the surgery

obstruction is the difference of the invariants of X and Y . Moreover, this van-
ishes if the map Y → X is a homotopy equivalence modulo the class of finite
2-groups. Going further, the image in LB

x

(
Q[π1(X)]

)
gives an invariant of the

rational homotopy type of X .

I will now give some results which, while weaker than what I sought in the
preceding section, seem of some importance, and have more direct geometrical
relevance than the above. They were inspired by ideas of Novikov, which I
mention at the end.

Denote by Q8 Milnor’s [M10] closed framed 3-connected PL manifold with
signature 8, so that the surgery obstruction for Q8 → S8 is the generator x of
L8(1) ∼= L0(1). For any manifold Mm with fundamental group π, define the
invariant†

ψ(M) ∈ Lm(π)

to be the surgery obstruction for the product map Mm ×Q8 →Mm × S8.

Theorem. For any normal map f : N → M , the surgery obstruction θ(f)
satisfies

8 θ(f) = ψ(N)− ψ(M) .

Note that the exponent 8 is needed here, since already in the 1-connected case,
M may have signature 1, which does not correspond to an element of L0(1);
also, the exponent 8 just suffices to kill the generalised Arf invariant of Brown,
also (it now seems very probable) the torsion subgroups of the Lm(π), π finite.

∗See the notes at the end of §17G.
†This invariant is the product ψ(M) = θ(Q8 → S8) ⊗ σ∗(M) ∈ Lm+8(π) = Lm(π) of the

generator θ(Q8 → S8) = 1 ∈ L8(1) = Z and the symmetric signature σ∗(M) ∈ Lm(π) of
Mishchenko [M18] and Ranicki [R5].
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For the proof, multiply the normal maps Q8 → S8, f : Nm → Mm to obtain
a diagram

Nm ×Q8 ��

f×1

��

Nm × S8

f×1

��
Mm ×Q8 �� Mm × S8 .

The theorem is now an immediate consequence of the two following assertions.

Lemma 1.
∗ The surgery obstruction for f×1 : Nm×Q8 →Mm×Q8 (resp. for

f × 1 : Nm × S8 →Mm × S8) is 8 θ(f) (resp. 0).

Lemma 2.
† The surgery obstruction for the composite of two normal maps is

the sum of their obstructions.

Proof of Lemma 1. This is essentially the same as (9.9): certainly those methods
make the assertion for S8 clear. We offer a slight variant for Q8. Let S4

i

(1 � i � 8) be the embedded spheres provided by the construction of Q8. First
suppose n = 2k even; we may suppose we have spheres Sk

j ⊂ N representing

a base of Kk(N). Then as for (9.9), the surgery to kill Kk(N × Q8) can be
chosen to replace the Sn

j × S4
i by spheres. These clearly give a preferred base

for Kk+4(N × Q8): their intersections and self-intersections are obvious for
geometrical reasons, so to show our quadratic form is the tensor product of that
on Kk(N) with that on H4(Q) it remains only to show that we have framed
immersions in the right regular homotopy classes. But if they were not, only
the coefficient of 1 ∈ π in the μ(ξ) would be wrong : but this is correct by
Browder’s product formula. Note finally that the direct sum of the symmetric
bilinear form on H4(Q) with the matrix (−1) is equivalent to the form whose
matrix is diagonal, with 8 +1’s and a −1 on the diagonal. So the class in
Lm+8(π) of the tensor product form equals 8 times that of the form on Kk(N).

For n odd, we must argue more or less as in (9.9): however, a slightly weaker
result is obtained at once using the natural splitting (§17D)

Ln+1(π × Z) ∼= Ln+1(π)⊕ LB
n (π) :

viz., that the surgery obstruction in LB
n (π), to homotopy equivalence, is as

asserted.

Proof of Lemma 2. This is clearly a basic result which should have been treated
earlier in this book. Suppose

(
cf. proof of (9.4)

)
surgery done so that the normal

maps

A
f→ B

g→ C

∗This is a special case of the surgery product formula of Ranicki [R5], which is stated in
the notes at the end of §17G.

†The surgery obstruction is defined in [R5] for any normal map of Poincaré complexes,
and it is proved there that the obstruction for the composite of two normal maps is the sum
of their obstructions.
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are already 2-connected. By induction on simplices make g transverse to the
2-skeleton of C, and do surgery on the preimages of the simplices to make them
contractible (this is easy using 2-connectivity of g and the condition dimB � 5).
Then do the same for f .

It follows that we can find regular neighbourhoods of these complexes mapped
by simple homotopy equivalences : then (cf. §4) so are their boundaries. Deleting
these neighbourhoods, we may suppose we have boundary components with
fundamental group π mapped by simple homotopy equivalences

∂A→ ∂B → ∂C .

But now
(
by (5.8), (6.5)

)
f is normally cobordant to a map inducing a simple

homotopy equivalence outside a collar neighbourhood ∂B × I, whereas we can
suppose g a simple homotopy equivalence on such a neighbourhood. Since the
maps now have disjoint supports, additivity follows. We have used this principle
several times already : it follows formally from additivity with disjoint unions
and naturality for inclusion.

Similar ideas can be used to provide purely geometric proofs of (5.8), (6.5):
see [Q2].

If f is a (simple) homotopy equivalence, θ(f) = 0 in LB
m(π)

(
or Lm(π)

)
, so

ψ(N) = ψ(M). Thus ψ(M) is an invariant of simple homotopy type; its image
in LB

m(π) is a homotopy invariant of M .

Next, we can regard ψ(M) as the image of M × x under the pairing

Ω∗(π)× L∗(1)→ L∗(π) ,

and hence ψ as the corresponding map

ψ : Ω∗(π)→ L∗(π) .

I assert that ψ is an Ω∗-module map, where Ω∗ acts via the signature ∈ Z on
L∗(π). Using the definition, it suffices in fact to check that

Ω∗ × L∗(1)→ L∗(1)

defines this pairing. But this follows at once from product formulae for the
signature and Arf invariant.

It follows that ψ factors through Ω∗(π) ⊗Ω∗ Z. Now according to Sullivan
[S22], we can identify Ω∗(π) ⊗Ω∗ Z[

1
2 ]
∼= KO∗

(
K(π, 1)

) ⊗ Z[ 12 ]. Thus we have
an invariant (one eighth ψ) given by a map

Ω∗
(
K(π, 1)

)→ KO∗
(
K(π, 1)

)⊗ Z[ 12 ]

′π→ L∗(π)⊗ Z[ 12 ]

and detecting the image of the surgery obstruction.

If we are prepared to tensor further with Q (and by the example at the end of
§15 this does lose information), we can be even more explicit. For any space X
we can identify

Ω∗(X)⊗Ω∗ Q
∼= H∗(X ;Q) ,
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where homology is graded by Z4. Moreover, if f :M → X represents a bordism
class, we can write down the corresponding homology class. If �(M) is the
Hirzebruch class of M , this is f∗

(
[M ] ∩ �(M)

)
. For this is clearly a bordism

class invariant, and has the top component correct : it thus suffices to check that
we have defined an Ω∗-linear map. But for any N , we have f ◦π1 :M×N → X ,
and

(f ◦ π1)∗
(
[M ×N ] ∩ �(M ×N)

)
= (f ◦ π1)∗{

(
[M ] ∩ �(M)

)⊗ (
N ∩ �(N)

)}
= f∗{

(
M ∩ �(M)

) · σ(N)} ,
since π1∗ is trivial except on H0(N).

Hence our map factors through a homomorphism

�π : H∗(π;Q)→ L∗(π)⊗Q ,

and ψ(M) ⊗Q = 8 �πf∗
(
[M ] ∩ �(M)

)
. Or we can regard �π as a cohomology

class, in H∗(π;L∗(π) ⊗Q
)
; then we have ψ(M) ⊗Q = 8 f∗�π · �(M)[M ]. We

can thus determine (13B.3) rationally : for if h : N →M is a normal map, cor-
responding to g :M → G/TOP , then �(N) = h∗�(M)h∗g∗

(
1 + �(G/TOP )

)
, so

θ(M, f, g)⊗Q = f∗�πg∗(G/TOP )�(M)[M ]. In principle, we also get a formula
of this type after tensoring with Z[ 12 ].

Note that since all our maps, in particular �π, are geometrically defined, they
are natural for finite coverings (i.e. transfer). This gives a more conceptual proof
of (15A.2).

I am now ready to discuss the relation with the above Russian results. It
seems clear that the image of ψ(M) in Lm(Z[ 12 ][π]) is 8 times Mishchenko’s
invariant. The most interesting invariant is the higher signature σπ , defined for
f : M → K(π, 1) as

σπ(M) = f∗
(
[M ] ∩ �(M)

) ∈ H∗(π;Q) .

Novikov conjectures that this is a homotopy invariant. Since �π(σπ) is, it would
suffice to prove �π injective : indeed, I think the conjecture is equivalent to �π
being injective. Novikov further conjectures a natural map

L∗(π)→ H∗(π;Q) :

one would probably want it left inverse to �π.

These conjectures seem remote with present techniques : I personally do not
expect them to hold. But there are no counterexamples yet : for π finite, it is
trivial that �π is injective, and we can choose a left inverse naturally. For π a
poly-Z group, it follows from §15B that �π is an isomorphism. More generally,
Cappell’s splitting theorem shows for an amalgamated free product A ∗C B or
A∗C that if �π is an isomorphism for A, B and C then it is for the large group∗.
But this is not clear for monomorphism.

∗See Cappell [C6].
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By working over Q, one can quickly estimate S (M), and in particular give
criteria for it to be finite. For

(
using f �→ [M ] ∩ �(M) · g∗�(G/PL)) we can

identify
[M,G/O]⊗Q ∼= [M,G/TOP ]⊗Q ∼= Hm(M ;Q)

(recall homology is Z4-graded here), and θ⊗Q becomes �π ◦ f∗, where f :M →
K(π, 1). If, for example, �π is a rational isomorphism, we can identify

S (M)⊗Q ∼= Hm+1(f ;Q) .

For the recent Russian results see particularly [G1], [N8] and references in the
latter.

The assembly map, the Novikov conjecture and the Borel conjecture.
The assembly map of Quinn [Q4] and Ranicki [R9]

A : H∗(X ;L•)→ L∗
(
π1(X)

)
is defined for any space X, with an algebraic surgery exact sequence

· · · → Lm+1

(
π1(X)

)→ Sm+1(X)→ Hm(X ;L•)
A→ Lm

(
π1(X)

)
.

See the notes at the end of §10 for the identification of the geometric surgery
sequence for an m-dimensional topological manifold X

· · · → Lm+1

(
π1(X)

)→ S TOP (X)→ T TOP (X)
θ→ Lm

(
π1(X)

)
with the algebraic surgery exact sequence, including

S TOP (X) = Sm+1(X) ,

θ = A : T TOP (X) = [X,G/TOP ] = Hm(X ;L•)→ Lm

(
π1(X)

)
.

Write the assembly map for an Eilenberg-MacLane space X = K(π, 1) (not
necessarily a manifold) as

Aπ = A : H∗(K(π, 1);L•)→ L∗(π) .

The morphisms �π, �
′
π defined above are determined by Aπ, with

�π : H∗(π;Q) = H∗(K(π, 1);L•)⊗Q
Aπ⊗1−→ L∗(π)⊗Q ,

�′π : KO∗
(
K(π, 1)

)⊗ Z[ 12 ] = H∗(K(π, 1);L•)⊗ Z[ 12 ]
Aπ⊗1−→ L∗(π) ⊗ Z[ 12 ] .

The conjecture of Novikov [N8] on the homotopy invariance of the higher sig-
natures σπ(M) ∈ H∗(π;Q) is equivalent to the rational injectivity of Aπ ([R9,
24.5]). The conjecture of Borel (originally formulated only for arithmetic groups
and isometries, on the basis of the Mostow rigidity theorem) is that an aspher-
ical Poincaré complex K(π, 1) is homotopy equivalent to a compact topological
manifold M , and that any homotopy equivalence M →M ′ of such manifolds is
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homotopic to a homeomorphism; this is equivalent to Aπ being an isomorphism.
The main algebraic result of §15C is that this is indeed the case for polycyclic
π, in particular free abelian π = nZ+.
The collection of papers edited by Ferry, Ranicki and Rosenberg [F10] gives the

1995 status of the Novikov and Borel conjectures, which have been verified for
a large class of geometrically significant infinite groups, using a wide variety of
methods. On the other hand, it should be noted that Gromov [G4] proposes a
search for counterexamples among pathological groups.
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[L2] Lashof, R. K. Poincaré duality and cobordism. Trans. Amer. Math.
Soc. 109 (1963), 257–277.

[L3] Lashof, R. K. and Rothenberg, M. Microbundles and smoothing.
Topology 3 (1965), 357–388.

[L4] Lashof, R. K. and Rothenberg, M. On the Hauptvermutung, tri-
angulation of manifolds, and h-cobordism. Bull. Amer. Math. Soc. 72
(1966), 1040–1043.



292 references

[L5] Lee, R. “Unlinking spheres in codimension 2 and their applications.”
Lecture notes, Institute for Advanced Study, 1968.

[L6] Lee, R. “Splitting a manifold into two parts.” Preprint, Institute for
Advanced Study, 1968.

[L7] Lee, R. “Bott periodicity of the Wall obstruction groups and the un-
linking problem.” Preprint, Institute for Advanced Study, 1969.

[L8] Lee, R. Piecewise linear classification of some free Zp-actions on S
4k+3.

Mich. Math. J. 17 (1970), 149–160.
[L9] Lee, R. Computation of Wall groups. Topology 10 (1971), 149–176.
[L10] Lee, R. and Orlik, P. “On a codimension 1 embedding problem.”

Preprint, Institute for Advanced Study, 1969.
[L11] Lees, J. A. Immersions and surgeries of topological manifolds. Bull.

Amer. Math. Soc. 75 (1969), 529–534.
[L12] Lefschetz, S. “Introduction to Topology.” Princeton, 1949.
[L13] Levine, J. On differentiable embeddings of simply connected manifolds.

Bull. Amer. Math. Soc. 69 (1963), 806–809.
[L14] Levine, J. A classification of differentiable knots. Ann. of Math. 82

(1965), 15–50.
[L15] Levine, J. and Orr, K. A survey of applications of surgery to knot and

link theory. In [C7].
[L16] Levitt, N. On the structure of Poincaré duality spaces. Topology 7
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[R8] Ranicki, A. A. “Lower K- and L-theory.” London Math. Soc. Lecture
Notes 178, Cambridge, 1992.

[R9] Ranicki, A. A. “Algebraic L-theory and topological manifolds.” Tracts
in Mathematics 102, Cambridge, 1992.

[R10] Ranicki, A. A. On the Novikov conjecture. In “Proc. 1993 Oberwolfach
Conference on the Novikov Conjectures, Rigidity and Index Theorems,
Vol. 1.” London Math. Soc. Lecture Notes 226, 272–337, Cambridge,
1995.

[R11] Ranicki, A. A. (ed.) “The Hauptvermutung book.” Collection of pa-
pers by Casson, Sullivan, Armstrong, Cooke, Rourke and Ranicki, K-
Monographs in Mathematics 1, Kluwer, 1996.

[R12] Ranicki, A. A. On the Hauptvermutung. In [R11], 3–31.
[R13] Ranicki, A. A. “High-dimensional knot theory.” Mathematical Mono-

graph, Springer, 1998.
[R14] De Rham, G. “Torsion et type simple d’homotopie.” Lecture Notes in

Mathematics 48, Springer, 1967.



296 references

[R15] Rochlin, V. A. New examples of 4-dimensional manifolds. (In Russian).
Doklady Akad. Nauk S.S.S.R. 162 (1965), 273–276.

[R16] Rourke, C. P. “The Hauptvermutung according to Sullivan, I, II.” Lec-
ture notes, Institute for Advanced Study, 1967. In “The Hauptvermutung
book” [R11, A3].

[R17] Rourke, C. P. and Sanderson, B. J. Block bundles. Bull. Amer.
Math. Soc. 72 (1966), 1036–1039. Ann. of Math. 87 (1968), I. 1–28, II.
256–278, III. 431–483.

[R18] Rourke, C. P. and Sanderson, B. J. An embedding without a normal
microbundle. Invent. Math. 3 (1967), 293–299.

[R19] Rourke, C. P. and Sanderson, B. J. On topological neighbourhoods.
Compositio Math. 22 (1970), 387–424.

[R20] Rourke, C. P. and Sullivan, D. P. On the Kervaire obstruction. Ann.
of Math. 94 (1971), 397–413.

[S1] Scott, G. P. A note on the homotopy of PL2. Proc. Camb. Phil. Soc.
69 (1971), 257–258.

[S2] Scott, W. R. “Group theory.” Prentice Hall, 1964.
[S3] Serre, J.-P. Groupes d’homotopie et classes de groupes abéliens. Ann.
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Index

Notations Z, Q, R, C, H denote (as usual) the rings of integers, rational, real
or complex numbers, and of quaternions. Rn is real number space, with its
usual Euclidean structure.

Dn = {x ∈ Rn : ‖x‖ � 1} ,
Sn−1 = {x ∈ Rn : ‖x‖ = 1} ,
Dn−1

+ = {x ∈ Sn−1 : xn � 0} ,
Dn−1

− = {x ∈ Sn−1 : xn � 0} .

We use standard notation for manifolds. τM denotes the tangent bundle of M ;
ν is usually a normal bundle. If ν is a bundle over X , Xν denotes its Thom
space. Our notation for Lie groups (e.g. O, Spin) and their classifying spaces
(e.g. BO) is also standard.

Poincaré complexes and n-ads

n-ads 3
∂i, δi, si, σi 3
amalgamation 4
manifold n-ad 6
Poincaré complex, Poincaré pair 22–23
Poincaré n-ad 24
Poincaré embedding 119, 263
object 91
restricted object 132
object of type n 96
Φ-object 92

Surgery

surgery, handle 8
handle subtraction 13
normal map, normal cobordism 10

Algebraic topology

[X ] 22
C∗(X) 21
w : π → {±1} 21
H t

n 21
Kk,K

k etc. 25, 158
Λ = Z[π1(X)] 21
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Λ′ = Z[π′] 158
degree 1 25
Ωm(X, ν) 10

X̃ = universal covering of X (in §12C, double covering) 21

Surgery exact sequence; classifying spaces

surgery obstruction map θ 34, 110, 187
normal invariant η 110
structure invariant s(f) 117
splitting obstruction sM (f) 119
S (X),S Diff ,S PL etc. 106
T (X) 109
π� 210, 252
Spivak fibration νX 108
Gk,PLk,Ok,BGk,G,BG etc. 109
G/PL,G/TOP 109

BP̃Lk 121
B˜TOP k 255

L-groups

Lm 34
algebraic definition of L2k 49
algebraic definition of L2k+1 68
algebraic definition of relative L2k+1 78
algebraic definition of relative L2k 273
L 1
n (K),L 2

n (K) 93
relative forms of L 1,L 2 97
LS 1

n ,LS 2
n ,LSn 132

LNn 147
LPn 265
algebraic definition of 1-sided LNn 161
LA,LB,LC ,LD,LE,LF 260
Ls,Lh,Lp 261
the spaces Lm(K), Lm(Λ) 250
p, q, r, p0, q0, r0 133, 146
transfer 178, 252

Surgery obstructions

surgery obstruction map θ 34, 110, 187
c, Kervaire–Arf invariant 172, 189
characteristic classes k4i+2(G/PL) 189, 267
σ, signature 172
multisignature 174–176,185
ρ 187
ρ for circle actions 196
Hirzebruch–Sullivan classes �(M), �(G/PL),λ(G/PL) 188
splitting invariants 202, [S22]



302 index

r2r 208
s2r 202
t2r 218
discriminant 178
Reidemeister torsion 213

Simple homotopy theory
The terms simple homotopy equivalence, simple homotopy type, stably free,
s-base, simple equivalence, simple isomorphism, based short exact sequence,
Wh(π), Whitehead torsion appear first in this book on pp. 22–27; readers un-
familiar with them are referred to Milnor’s survey article [M14] for a clear and
readable account.

Algebraic terms

conventions on right and left modules; matrix notation 2
“bar”, x,

∑
n(g)g 21

λ, μ 44
Qk 45
simple hermitian form 47
standard plane, hyperbolic form, lagrangian 48
quadratic form 273
formation 69
SUr,TUr,UUr,SLr 59
σ (2× 2 matrix) 62
Σ (matrix) 63
SU ,S′U ,TU 63
RU 63
the category 2n 3
categories Gpd, A b 35

Group actions

Z +
2 ,Z −

2 161, 172
join (of actions of spheres) 195
suspension Σ (of actions of spheres) 195–198
tame actions 200
standard lens space L 2n−1

0 (N) 213
Ωn(G) 200, 281
poly-A group 237

Group cohomology, group rings

(Whπ)α 149

Ĥn(Z2) (Tate Z2-cohomology) 152, 260

Ĥn(G) (Tate G-cohomology) 215

Ĝ = Pontrjagin dual of G 222
RG,QRG 213
IG 215
R× = group of units of R 215, 269


