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Papers dedicated to C. T. C. Wall

Preface

Surgery theory is now about 40 years old. The 60th birthday (on
December 14, 1996) of C. T. C. Wall, one of the leaders of the founding
generation of the subject, led us to reflect on the extraordinary accomplish-
ments of surgery theory, and its current enormously varied interactions with
algebra, analysis, and geometry. Workers in many of these areas have of-
ten lamented the lack of a single source surveying surgery theory and its
applications. Indeed, no one person could write such a survey. Therefore
we attempted to make a rough division of the areas of current interest, and
asked a variety of experts to report on them. This is the second of two
volumes which are the result of that collective effort. (The first volume has
appeared as Surveys on Surgery Theory: Volume 1, Ann. of Math. Stud-
ies, vol. 145, Princeton Univ. Press, 2000.) We hope that these volumes
prove useful to topologists, to other interested researchers, and to advanced
students.

Sylvain Cappell
Andrew Ranicki
Jonathan Rosenberg
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Surgery theory today —

what it is and where it’s going

Jonathan Rosenberg∗

Introduction

This paper is an attempt to describe for a general mathematical audience
what surgery theory is all about, how it is being used today, and where it
might be going in the future. I have not hesitated to express my personal
opinions, especially in Sections 1.2 and 4, though I am well aware that
many experts would have a somewhat different point of view. Why such
a survey now? The main outlines of surgery theory on compact manifolds
have been complete for quite some time now, and major changes to this
framework seem unlikely, even though better proofs of some of the main
theorems and small simplifications here and there are definitely possible.
On the other hand, when it comes to applications of surgery theory, there
have been many important recent developments in different directions, and
as far as I know this is the first attempt to compare and contrast many of
them.

To keep this survey within manageable limits, it was necessary to leave
out a tremendous amount of very important material. So I needed to come
up with selection criteria for deciding what to cover. I eventually settled
on the following:

1. My first objective was to get across the major ideas of surgery theory
in a non-technical way, even if it meant skipping over many details and
definitions, or even oversimplifying the statements of major theorems.

2. My second objective was to give the reader some idea of the many
areas in which the theory can be applied.

Mathematics Subject Classifications (2000): Primary 57-02. Secondary 57R65,
57R67, 57R91, 57N65, 53C21.

∗Partially supported by NSF Grant # DMS-96-25336 and by the General Research
Board of the University of Maryland.



4 Jonathan Rosenberg

3. Finally, in the case of subjects covered elsewhere (and more expertly)
in these volumes, I included a pointer to the appropriate article(s)
but did not attempt to go into details myself.

I therefore beg the indulgence of the experts for the fact that some topics
are covered in reasonable detail and others are barely mentioned at all.
I also apologize for the fact that the bibliography is very incomplete, and
that I did not attempt to discuss the history of the subject or to give proper
credit for the development of many important ideas. To give a complete
history and bibliography of surgery would have been a very complicated
enterprise and would have required a paper at least three times as long as
this one.

I would like to thank Sylvain Cappell, Karsten Grove, Andrew Ranicki,
and Shmuel Weinberger for many helpful suggestions about what to include
(or not to include) in this survey. But the shortcomings of the exposition
should be blamed only on me.

1 What is surgery?

1.1 The basics

Surgery is a procedure for changing one manifold into another (of the same
dimension n) by excising a copy of Sr×Dn−r for some r, and replacing it by
Dr+1×Sn−r−1, which has the same boundary, Sr×Sn−r−1. This seemingly
innocuous operation has spawned a vast industry among topologists. Our
aim in this paper is to outline some of the motivations and achievements
of surgery theory, and to indicate some potential future developments.

The classification of surfaces is a standard topic in graduate courses,
so let us begin there. A surface is a 2-dimensional manifold. The basic
result is that compact connected oriented surfaces, without boundary, are
classified up to homeomorphism by the genus g (or equivalently, by the
Euler characteristic χ = 2−2g). Recall that a surface of genus g is obtained
from the sphere S2 by attaching g handles. The effect of a surgery on
S0 ×D2 is to attach a handle, and of a surgery on S1 ×D1 is to remove
a handle. (See the picture on the next page.) Thus, from the surgery
theoretic point of view, the genus g is the minimal number of surgeries
required either to obtain the surface from a sphere, or else, starting from the
given surface, to remove all the handles and reduce to the sphere S2. There
is a similar surgery interpretation of the classification in the nonorientable
case, with S2 replaced by the projective plane RP2.
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Figure 1. Surgery on an embedded S0 ×D2.

In dimension n = 2, one could also classify manifolds up to homeo-
morphism by their fundamental groups, with 2g the minimal number of
generators (in the orientable case). But for every n ≥ 4, every finitely pre-
sented group arises as the fundamental group of a compact n-manifold.1

It is not possible to classify finitely presented groups. Indeed, the problem
of determining whether a finite group presentation yields the trivial group
or not, is known to be undecidable. Thus there is no hope of a complete
classification of all n-manifolds for n ≥ 4. Nevertheless, in many cases it is
possible to use surgery to classify the manifolds within a given homotopy
type, or even with a fixed fundamental group (such as the trivial group).

Just as for surfaces, high-dimensional manifolds are built out of han-
dles. (In the smooth category, this follows from Morse theory [14]. In the
topological category, this is a deep result of Kirby and Siebenmann [11].)
Again, each handle attachment or detachment is the result of a surgery.
That is why surgery plays such a major role in the classification of mani-
folds. But since the same manifold may have many quite different handle
decompositions, one needs an effective calculus for keeping track of the ef-
fect of many surgeries. This is what usually goes under the name of surgery

1This fact is easy to prove using surgery. Suppose one is given a group presentation
〈x1, . . . , xk | w1, . . . , ws〉. Start with the manifold M1 = (S1 × Sn−1)# · · · #(S1 ×
Sn−1) (k factors), whose fundamental group is a free group on k generators xi. Then
for each word wj in the generators, represent this word by an embedded circle (this is
possible by the [easy] Whitney embedding theorem since n ≥ 3). This circle has trivial
normal bundle since M1 is orientable, so perform a surgery on a tube S1×Dn−1 around
the circle to kill off wj . The restriction n ≥ 4 comes in at this point since it means that
the copies of Sn−2 introduced by the surgeries do not affect π1. The final result is an
n-manifold M with the given fundamental group.
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theory.

1.2 Successes

Surgery theory has had remarkable successes. Here are some of the high-
lights:

• the discovery and classification of exotic spheres (see [107] and [94]);

• the characterization of the homotopy types of differentiable manifolds
among spaces with Poincaré duality of dimension ≥ 5 (Browder and
Novikov; see in particular [33] for an elementary exposition);

• Novikov’s proof of the topological invariance of the rational Pontrja-
gin classes (see [110]);

• the classification of “fake tori” (by Hsiang-Shaneson [82] and by Wall
[25]) and of “fake projective spaces” (by Wall [25], also earlier by
Rothenberg [unpublished] in the complex case): manifolds homotopy-
equivalent to tori and projective spaces;

• the disproof by Siebenmann [11] of the manifold Hauptvermutung,
the [false] conjecture that homeomorphic piecewise linear manifolds
are PL-homeomorphic [21];

• Kirby’s proof of the Annulus conjecture and the work of Kirby and
Siebenmann characterizing which topological manifolds (of dimension
> 4) admit a piecewise linear structure [11];

• the characterization (work of Wall, Thomas, and Madsen [101]) of
those finite groups that can act freely on spheres (the “topological
space form problem” — see Section 3.5 below);

• the construction and partial classification (by Cappell, Shaneson, and
others) of “nonlinear similarities” (see 3.4.5 below), that is, linear
representations of finite groups which are topologically conjugate but
not linearly equivalent;

• Freedman’s classification of all simply-connected topological 4-mani-
folds, up to homeomorphism [63]. (This includes the 4-dimensional
topological Poincaré conjecture, the fact that all 4-dimensional ho-
motopy spheres are homeomorphic to S4, as a special case.) For a
survey of surgery theory as it applies to 4-manifolds, see [90].

• the proof of Farrell and Jones [55] of topological rigidity of compact
locally symmetric spaces of non-positive curvature.
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The main drawback of surgery theory is that it is necessarily quite
complicated. Fortunately, one does not need to know everything about it
in order to use it for many applications.

1.3 Dimension restrictions

As we have defined it, surgery is applicable to manifolds of all dimensions,
and works quite well in dimension 2. The surgery theory novice is therefore
often puzzled by the restriction in many theorems to the case of dimension
≥ 5. In order to do surgery on a manifold, one needs an embedded prod-
uct of a sphere (usually in a specific homology class) and a disk. By the
Tubular Neighborhood Theorem, this is the same as finding an embedded
sphere with a trivial normal bundle. The main tool for constructing such
spheres is the [strong] Whitney embedding theorem [143], which unfortu-
nately fails for embeddings of surfaces into [smooth] 4-manifolds.2 This is
the main source of the dimensional restrictions. Thus Smale was able to
prove the h-cobordism theorem in dimensions ≥ 5, a recognition princi-
ple for manifolds, as well as the high-dimensional Poincaré conjecture, by
repeated use of Whitney’s theorem (and its proof). (See [15] for a nice
exposition.) The h-cobordism theorem was later generalized by Barden,
Mazur, and Stallings [88] to the s-cobordism theorem for non-simply con-
nected manifolds. This is the main tool, crucial for future developments,
for recognizing when two seemingly different homotopy-equivalent mani-
folds are isomorphic (in the appropriate category, TOP, PL, or DIFF). The
s-cobordism theorem is known to fail for 3-manifolds (where the cobordisms
involved are 4-dimensional), at least in the category TOP [39], and for 4-
manifolds, at least in the category DIFF (by Donaldson or Seiberg-Witten
theory). Nevertheless, Freedman ([63], [8]) was able to obtain remarkable
results on the topological classification of 4-manifolds by proving a version
of Whitney’s embedding theorem in the 4-dimensional topological cate-
gory, with some restrictions on the fundamental group. This in turn has
led [64] to an s-cobordism theorem for 4-manifolds in TOP, provided that
the fundamental groups involved have subexponential growth.

2The “easy” Whitney embedding theorem, usually proved in a first course on dif-
ferential topology, asserts that if Mm is a smooth compact manifold, then embeddings
are dense in the space of smooth maps from M into any manifold Nn of dimension
n ≥ 2m + 1. The “hard” embedding theorem, which is considerably more delicate,
improves this by asserting in addition that any map Mm → N2m is homotopic to an
embedding, provided that m 6= 2 and N is simply connected. This fails for smooth
manifolds when m = 2, since it is a consequence of Donaldson theory that some classes
in π2 of a simply connected smooth 4-manifold may not be represented by smoothly
embedded spheres. In fact, the “hard” embedding theorem also fails in the topological
locally flat category when m = 2.
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2 Tools of surgery

2.1 Fundamental group

The first topic one usually learns in algebraic topology is the theory of
the fundamental group and covering spaces. In surgery theory, this plays
an even bigger role than in most other areas of topology. Proper under-
standing of manifolds requires taking the fundamental group into account
everywhere. As we mentioned before, any finitely presented group is the
fundamental group of a closed manifold, but many interesting results of
surgery theory only apply to a limited class of fundamental groups.

2.2 Poincaré duality

Any attempt to understand the structure of manifolds must take into ac-
count the structure of their homology and cohomology. The main phe-
nomenon here is Poincaré[-Lefschetz] duality. For a compact oriented man-
ifold Mn, possibly with boundary, this asserts that the cap product with
the fundamental class [M,∂M ] ∈ Hn(M, ∂M ;Z) gives an isomorphism

Hj(M ;Z)
∼=−→ Hn−j(M, ∂M ;Z) . (eq. 2.1)

This algebraic statement has important geometric content — it tells ho-
mologically how submanifolds of M intersect.

For surgery theory, one needs the generalization of Poincaré duality
that takes the fundamental group π into account, using homology and
cohomology with coefficients in the group ring Zπ. Or for work with non-
orientable manifolds, one needs a still further generalization involving a
twist by an orientation character w : π → Z/2. The general form is similar
to that in equation (eq. 2.1): one has a fundamental class [M, ∂M ] ∈
Hn(M, ∂M ;Z, w) and an isomorphism

Hj(M ;Zπ)
∼=−→ Hn−j(M, ∂M ;Zπ, w) . (eq. 2.2)

2.3 Hands-on geometry

One of Wall’s great achievements ([25], Chapter 5), which makes a general
theory of non-simply connected surgery possible, is a characterization of
when homology classes up to the middle dimension, in a manifold of di-
mension ≥ 5, can be represented by spheres with trivial normal bundles.
This requires several ingredients. First is the Hurewicz theorem, which
says that a homology class in the smallest degree where homology is non-
trivial comes from the corresponding homotopy group, in other words, is
represented by a map from a sphere. The next step is to check that this
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map is homotopic to an embedding, and this is where [143] comes in. The
third step requires keeping track of the normal bundle, and thus leads us
to the next major tool:

2.4 Bundle theory

If X is a compact space such as a manifold, the m-dimensional real vector
bundles over X are classified up to isomorphism by the homotopy classes
of maps from X into BO(m), the limit (as k → ∞) of the Grassmannian
of m-dimensional subspaces of Rm+k. Identifying bundles which become
isomorphic after the addition of trivial bundles gives the classification up to
stable isomorphism, and amounts to replacing BO(m) by BO = lim→ BO(m).
This has the advantage that [X, BO], the set of homotopy classes of maps
X → BO, is given by K̃O(X), a cohomology theory. A basic fact is that
if m exceeds the dimension of X, then one is already in the stable range,
that is, the isomorphism classification of rank-m bundles over X coincides
with the stable classification. Furthermore, if X is a manifold, then all
embeddings of X into a Euclidean space of sufficiently high dimension
are isotopic, by the [easy] Whitney embedding theorem, and so the normal
bundle of X (for an arbitrary embedding into a Euclidean space or a sphere)
is determined up to stable isomorphism. Thus it makes sense to talk about
the stable normal bundle, which is stably an inverse to the tangent bundle
(since the direct sum of the normal and tangent bundles is the restriction
to X of the tangent bundle of Euclidean space, which is trivial).

Now consider a sphere Sr embedded in a manifold Mn. If 2r < n, then
the normal bundle of Sr in Mn has dimension m = n − r > r and so is
in the stable range, and hence is trivial if and only if it is stably trivial.
Furthermore, since the tangent bundle of Sr is stably trivial, this happens
exactly when the restriction to Sr of the stable normal bundle of Mn is
trivial. If 2r = n, i.e., we are in the middle dimension, then things are more
complicated. If M is oriented, then the Euler class of the normal bundle
of Sr becomes relevant.

2.5 Algebra

Poincaré duality, as discussed above in Section 2.2, naturally leads to the
study of quadratic forms over the group ring Zπ of the fundamental group
π. These are the basic building blocks for the definition of the surgery ob-
struction groups Ln(Zπ), which play a role in both the existence problem
(when is a space homotopy-equivalent to a manifold?) and the classifi-
cation problem (when are two manifolds isomorphic?). For calculational
purposes, it is useful to define the L-groups more generally, for example, for
arbitrary rings with involution, or for certain categories with an involution.
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The groups that appear in surgery theory are then important special cases,
but are calculated by relating them to the groups for other situations (such
as semisimple algebras with involution over a field). In fact the surgery
obstruction groups for finite fundamental groups have been completely cal-
culated this way, following a program initiated by Wall (e.g., [136]). For
more details on the definition and calculation of the surgery obstruction
groups by algebraic methods, see the surveys [118] and [80].

Algebra also enters into the theory in one more way, via Whitehead
torsion (see the survey [106]) and algebraic K-theory. The key issue here is
distinguishing between homotopy equivalence and simple homotopy equiv-
alence, the kind of homotopy equivalence between complexes that can be
built out of elementary contractions and expansions. These two notions co-
incide for simply connected spaces, but in general there is an obstruction to
a homotopy equivalence being simple, called the Whitehead torsion, living
in the Whitehead group Wh(π) of the fundamental group π of the spaces
involved.3 This plays a basic role in manifold theory, because of the basic
fact that if Mn is a manifold with dimension n ≥ 5 and fundamental group
π, then any element of Wh(π) can be realized by an h-cobordism based on
M , in other words, by a manifold Wn+1 with two boundary components,
one of which is equal to M , such that the inclusion of either boundary
component into W is a homotopy equivalence. In fact, this is just one
part of the celebrated s-cobordism theorem [88], which also asserts that
the h-cobordisms based on M , up to isomorphism (diffeomorphism if one
is working with smooth manifolds, homeomorphism if one is working with
smooth manifolds), are in bijection with Wh(π) via the Whitehead torsion
of the inclusion Mn ↪→ Wn+1. The identity element of Wh(π) of course
corresponds to the cylinder W = M × [0, 1]. By the topological invari-
ance of Whitehead torsion [43], any homeomorphism between manifolds
is necessarily a simple homotopy equivalence, so Wh(π) is related to the
complexity of the family of homeomorphism classes of manifolds homotopy
equivalent to M . In addition, the Whitehead group is important for un-
derstanding “decorations” on the surgery obstruction groups, a technical
issue we won’t attempt to describe here at all.

2.6 Homotopy theory

Homotopy theory enters into surgery theory in a number of different ways.
For example it enters indirectly via bundle theory, as indicated in Section
2.4 above. More interestingly, it turns out that surgery obstruction groups
can be described as the homotopy groups of certain infinite loop spaces,

3The Whitehead group Wh(π) is defined to be the abelianization of the general linear
group GL(Zπ) = lim→ GL(n, Zπ), divided out by the “uninteresting” part of this group,
generated by the units ±1 ∈ Z and the elements of π.
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related to classifying spaces such as G/O, the study of which becomes
important in the most comprehensive approaches to the subject. For this
point of view, see [13], [19], [21], and [26].

2.7 Analysis on manifolds

While surgery theory in principle provides an algebraic scheme for classi-
fying manifolds, it is rarely sufficiently explicit so that one can begin with
pure algebra and deduce interesting geometric consequences. Usually one
has to use the correspondence between geometry and algebra in both direc-
tions. One way of using the geometry is through analysis, more specifically,
the index theory of certain geometrically defined elliptic differential oper-
ators, such as the signature operator. For details of how this matches up
with surgery theory, see [121] and [120].

2.8 Controlled topology

Another tool which is not needed for the “classical” theory of surgery, but
which is playing an increasingly important role in current work, is con-
trolled topology, by which we mean topology in which one keeps track of
“how far” things are allowed to move. This idea, introduced into surgery
theory by Chapman, Ferry, and Quinn, has played an important role in the
work of many surgery theorists, and is especially important in dealing with
non-compact manifolds. But as an example of how it can be applied to
compact manifolds, suppose one has a homeomorphism h: Mn

1 → Mn
2 be-

tween compact smooth manifolds, and one wants to know how the smooth
invariants (for example, the Pontrjagin classes) of the two manifolds M1

and M2 can differ from one another. One way of approaching this, which
can be used to prove Novikov’s theorem that h∗ preserves rational Pontr-
jagin classes, is to observe that we can approximate h as well as we like by
a smooth map h′. Now h′ will not necessarily be invertible in DIFF (other-
wise M1 and M2 would be diffeomorphic), but it is a homotopy equivalence.
In fact, given ε > 0, we can choose h′ and k and homotopies from k ◦ h′ to
idM1 and from k ◦ h′ to idM1 which move points by no more than ε (with
respect to choices of metrics). Or in other words, we can approximate h
by a controlled homotopy equivalence in the category DIFF. In the other
direction, in dimension n > 4, Chapman and Ferry showed that any con-
trolled homotopy equivalence is homotopic to a homeomorphism [44]. For
more on controlled surgery, see [59], [111], and [112].
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3 Areas of application

3.1 Classification of manifolds

The most important application of surgery theory, the one for which the
theory was invented, is the classification of manifolds and manifold struc-
tures. This begins with the existence problem for manifold structures:
when is a given finite complex X homotopy equivalent to a manifold? An
obvious prerequisite is that X satisfy Poincaré duality for some dimension
n, in the generalized sense of equation (eq. 2.2) above. When this is the
case, we call X an n-dimensional Poincaré space or Poincaré complex. This
insures that X has a “homotopy-theoretic stable normal bundle,” the Spi-
vak spherical fibration ν. The Browder-Novikov solution to the existence
problem, as systematized in [25], then proceeds in two more steps. First
one must check if the Spivak fibration is the reduction of a genuine bundle
ξ (in the appropriate category, TOP, PL, or DIFF). If it isn’t, then X is
not homotopy equivalent to a manifold. If it is, then given ξ reducing to
ν, one finds by transversality a degree-one normal map (M, η) → (X, ξ),
in other words, a manifold M with stable normal bundle η, together with
a degree-one map M → X covered by a bundle map η → ξ. The gad-
get (M, η) → (X, ξ) is also called a surgery problem. One needs to check
whether it is possible to do surgery on M , keeping track of the bundle
data as one goes along, in order to convert M to a manifold N (simple)
homotopy equivalent to X. Here one needs an important observation of
Browder and Novikov (which follows easily from Poincaré duality): for a
degree-one map of Poincaré spaces, the induced map on homology is split
surjective. So it is enough to try to kill off the homology kernel. This is
done working up from the bottom towards the middle dimension, at which
point an obstruction appears, the surgery obstruction σ((M, η) → (X, ξ))
of the surgery problem, which lies in the group Ln(Zπ), π the fundamental
group of X.

Uniqueness of manifold structures is handled by the relative version
of the same construction. Given a simple homotopy equivalence of n-
dimensional manifolds h: M → X, one must check if the stable normal
bundle of X pulls back under h to the stable normal bundle of M . If it
doesn’t, h cannot be homotopic to an isomorphism. If it does, M and N
are normally cobordant, and one attempts to do surgery on a cobordism
Wn+1 between them in order to convert W to an s-cobordism (a cobordism
for which the inclusion of either boundary component is a simple homotopy
equivalence). Again a surgery obstruction appears, this time in Ln+1(Zπ).
If the obstruction vanishes and we can convert W to an s-cobordism, the
s-cobordism theorem says that the map M → X is homotopic to an iso-
morphism (again, in the appropriate category). The upshot of this analysis
is best formulated in terms of the surgery exact sequence of Sullivan and
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Wall,

· · · σ // Ln+1(Zπ) ω // S(X) // N (X) σ // Ln(Zπ). (eq. 3.1)

discussed in greater detail in [118] and [33]. This long exact sequence relates
three different items:

1. the structure set S(X) of the Poincaré complex X, which measures
the number of distinct manifolds (up to the appropriate notion of
isomorphism) in the simple homotopy class of X

2. normal data N (X), essentially measuring the possible characteristic
classes of the normal or the tangent bundle of manifolds in the simple
homotopy type of X; and

3. the Wall surgery groups Ln(Zπ), depending only on the fundamental
group π of X and the dimension n (modulo 4) (plus the orientation
character w, in the non-orientable case).

The map σ sends a surgery problem to its surgery obstruction. Note inci-
dentally that as S(X) is simply a set, not a group, the meaning of the exact
sequence is that for x ∈ N (X), σ(x) = 0 if and only if x ∈ im (S(X)), and
ω denotes an action of Ln+1(Zπ) on S(X) such that if a, b ∈ S(X), a and
b map to the same element of N (X) if and only if there is a c ∈ Ln+1(Zπ)
such that ω(c, a) = b.

3.2 Similarities and differences between categories:
TOP, PL, and DIFF

At this point it is necessary to say something about the different categories
of manifolds. So far we have implicitly been working in the category DIFF
of smooth manifolds, since it is likely to be more familiar to most readers
than the categories TOP and PL of topological and piecewise linear mani-
folds. However, surgery works just as well, and in fact in some ways better,
in the other categories. We proceed to make this precise.

In the smooth category, except in low dimensions, most closed mani-
folds have non-trivial structure sets (or in other words, there are usually
plenty of non-diffeomorphic manifolds of the same homotopy type). This
phenomenon first showed up in the work of Milnor and Milnor-Kervaire
on exotic spheres (see [107], [94]). From the point of view of the surgery
exact sequence (eq. 3.1), it is due to the rather complicated nature of the
normal data term, N (X) = [X, G/O], and its relationship with the J-
homomorphism BO → BG.

In the piecewise linear category, things tend to be somewhat simpler,
as one can already see from looking at homotopy spheres. In the category
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DIFF, the homotopy spheres of a given dimension n > 4, up to isomor-
phism, form a finite abelian group Θn under the operation of connected
sum # , and the order of Θn is closely related to the Bernoulli numbers.
(See [94] for more details.) But in the PL category, Smale’s proof [15] of
the h-cobordism theorem shows that all homotopy spheres of a fixed di-
mension n > 4 are PL isomorphic to one another. What accounts for this
is the “Alexander trick,” the fact that if two disks Dn are glued together
by a PL isomorphism of their boundaries, then one can extend the gluing
map (by linear rescaling) to all of one of the disks, and thus the resulting
homotopy sphere is standard. From the point of view of the exact se-
quence (eq. 3.1), we can explain this by noting that the normal data term
N (X) = [X, G/PL] is smaller than in the category DIFF. In fact, after
inverting 2, it turns out (a theorem of Sullivan) that G/PL becomes homo-
topy equivalent to a more familiar space, the classifying space BO for real
K-theory [13]. This fact is not obvious, of course; it is itself a consequence
of surgery theory.

In the category TOP of topological manifolds, the work of Kirby and
Siebenmann [11] makes it possible to carry over everything we have done
so far. In fact, their work shows that (in dimensions 6= 4), there is very
little difference between the categories PL and TOP. What difference there
is comes from Rochlin’s Theorem in dimension 4, which says that a smooth
(or PL) spin manifold of dimension 4 must have signature divisible by 16.
(For present purposes, we can define “spin” in the PL and TOP categories
to mean that the first two Stiefel-Whitney classes vanish.) In contrast, the
work of Freedman [63] shows there are closed spin 4-manifolds in TOP with
signature 8. This difference (between 8 and 16) accounts for a single Z/2
difference between the homotopy groups of BPL and BTOP: TOP/PL '
K(Z/2, 3). This turns out to be just enough of a difference to make surgery
work even better in TOP than in PL.

To explain this, we need not only the surgery obstruction groups, but
also the surgery spectra L(Zπ), of which the surgery obstruction groups are
the homotopy groups. These spectra are discussed in detail in [19]; suffice
it to say here that they are constructed out of parameterized families of
surgery problems. Then the fact that surgery works so well in the category
TOP may be summarized by saying that in this category, the normal data
term N (X) is basically just the homology of X with coefficients in L(Z).
Furthermore, obstruction theory gives us a classifying map X

c→ Bπ for the
universal cover of X, and the obstruction map σ in the exact sequence (eq.
3.1) is the composite of c∗ with the map induced on homotopy groups by
an assembly map Bπ+ ∧ L(Z) → L(Zπ). This point of view then makes it
possible (when STOP(X) is non-empty) to view the structure set STOP(X)
as the zero-th homotopy group of still another spectrum, and thus to put a
group structure on STOP(X). (See [19], §18.) When this is done, ω in the
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exact sequence (eq. 3.1) becomes a group homomorphism, and the whole
exact sequence becomes an exact sequence of abelian groups.

3.3 Immediate consequences

This is a good point to give some concrete examples of immediate conse-
quences of the surgery classification of manifolds. Some of these follow from
the general form of the theory, and do not require any specific calculations.
For example, we have (in any of the three categories DIFF, PL, and TOP):

Proposition 3.1 Suppose f : (M,η) → (X, ξ) is a surgery problem, that
is, a degree-one normal map, in any of the categories DIFF, PL, or TOP.
(Here Mn is a compact manifold and Xn is a Poincaré complex. We allow
the case where M and X have boundaries, in which case all constructions
are to be done rel boundaries.) Then the surgery obstruction of f× id: M×
CP2 → X × CP2 is the same as for f , and the surgery obstruction of
f × id: M × Sk → X × Sk vanishes for k > 1. In particular, if k > 1
and n + k ≥ 5, then f × id: M × Sk → X × Sk is normally cobordant to
a simple homotopy equivalence, so X × Sk has the simple homotopy type
of a compact manifold. And if n ≥ 5 and f × id: M × CP2 → X × CP2

is normally cobordant to a simple homotopy equivalence, then the same is
true for f .

Proof. The first statement is the geometric meaning of the periodicity
of the surgery obstruction groups. The second statement is a special case
of a product formula for surgery obstructions, in view of the fact that all
signature invariants vanish for a sphere. But it can also be proved directly,
using surgery on f below the middle dimension and the fact that a sphere
has no homology except in dimension 0 and in the top dimension. (See
[33], §1, proofs of Propositions 1.2 and 1.4, for the trick.) ¤

Remark. The statement of Proposition 3.1 is false if we replace Sk,
k > 1, by S1. The reason is that taking a product with S1 has the effect4

of replacing the fundamental group π by π × Z, and simply shifting the
original surgery obstruction up by one in dimension.

Other simple examples of applications of the classification theory that
make use of a few elementary facts about G/O, etc., are the following:

Theorem 3.2 Let CAT be DIFF or PL and let Mn be a closed CAT
manifold of dimension n ≥ 5. Then there are only finitely many CAT
isomorphism classes of manifolds homeomorphic to Mn.

4modulo a “decoration” nuance, which we’re ignoring here
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Remark. This is definitely false in dimension 4, as follows from Donaldson
theory or Seiberg-Witten theory.

Proof. The issue here is to look at the commutative diagram of exact
surgery sequences (the top sequence only of pointed sets, the bottom one,
as we’ve explained in §3.2, of groups)

NCAT(M × I; ∂)

²²

σ // Ln+1(Zπ) ω // SCAT(M)

²²

// NCAT(M)

²²

σ // Ln(Zπ)

NTOP(M × I; ∂) σ // Ln+1(Zπ) ω // STOP(M) // NTOP(M) σ // Ln(Zπ),

and to show that the preimage in SCAT(M) of the basepoint in STOP(M)
is finite. But the maps NCAT(M) → NTOP(M) and NCAT(M × I; ∂) →
NTOP(M × I; ∂) are finite-to-one since M has finite homotopy type and
since the homotopy groups of TOP/CAT are finite (see §3.2 above). So the
result follows from diagram chasing. ¤

Proposition 3.3 For any n ≥ 3, there are infinitely many distinct mani-
folds with the homotopy type of CPn (in any of the categories DIFF, PL,
or TOP).

Proof. Fix a category CAT, one of DIFF, PL, or TOP. We need to show
that S(CPn) is infinite. Now Lk(Z) is Z in dimensions divisible by 4,
Z/2 in dimensions 2 mod 4, 0 in odd dimensions. Since the dimension
k of CPn is even, Lk+1(Z) = 0 and S(CPn) can be identified with the
kernel (in the sense of maps of pointed sets) of the surgery obstruction map
σ: N (CPn) → Lk(Z). Now (see §3.2 above for the topological category and
[139] for the argument needed to make this work smoothly as well) modulo
finite ambiguities, N (CPn) is just K̃O(CPn), which has rank

[
n
2

]
, and

σ is given by the formula for the signature coming from the Hirzebruch
signature formula. If n ≥ 4, then K̃O(CPn) has rank bigger than 1, and
if n = 3, then Lk(Z) = Z/2 is finite. So in either case, the kernel of σ is
infinite. ¤

3.4 Classification of group actions

Surgery theory is particularly useful in classifying and studying group ac-
tions on manifolds. Depending on what hypotheses one wants to impose,
one obtains various generalizations of the fundamental exact sequence (eq.
3.1) in the context of G-manifolds, G some compact Lie group. A few key
references are [34], [4], [17], [24], and Parts II and III of [26]. Many of the
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early references may also be found in §4.6 of [33]. While there is no room
here to go into great detail, we will discuss a few cases:

3.4.1 Free actions

If a compact Lie group G acts freely on a connected manifold M , then the
quotient space N = M/G is itself a manifold, and there is a fibration

G → M → N.

Thus the fundamental group π of N fits into an exact sequence

π1(G) → π1(M) → π → π0(G) → 1. (eq. 3.2)

Say for simplicity that we take G to be finite, so G = π0(G) and π1(G) = 1.
One can attempt to classify the free actions of G on M by classifying such
group extensions (eq. 3.2), and then, for a fixed such extension, classifying
those manifolds N having M as the covering space corresponding to the
map π ³ G. Note that in this context there is a transfer map S(N) →
S(M) defined by lifting to the covering space. It will often happen that
there are many manifolds homotopy equivalent to N , but non-isomorphic
to it, that also have M as the covering space corresponding to G. Such
manifolds give elements of the kernel of this transfer map. In section 3.5
below, we shall have more to say about the important special case where
M is a sphere.

3.4.2 Semi-free actions

After free actions, the simplest actions of a compact group G on a manifold
M are those which are semi-free, that is, trivial on a submanifold MG and
free on M \MG. For such an action, the quotient space M/G is naturally
a stratified space with two manifold strata, the closed stratum MG and
the open stratum

(
M \MG

)
/G. A discussion of this case from the point

of view of stratified spaces may be found in [26], §13.6. Here is a sample
result ([138], Theorem A) about semi-free actions of a finite group G: A
PL locally flat submanifold Σn of Sn+k for k > 2 is the fixed set of an
orientation-preserving semifree PL locally linear G-action on Sn+k if and
only if Σ is a Z/|G| homology sphere, Rk has a free linear representation
of G, and certain purely algebraically describable conditions hold for the
torsion in the homology of Σ.

3.4.3 Gap conditions

An annoying but sometimes important part of equivariant surgery theory
involves what are called gap conditions. When a compact group G acts
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on a manifold M , these are lower bounds on the possible values of the
codimension of MK in MH , for subgroups H ⊂ K of G for which MK 6=
MH . Let’s specialize now to the case where G is finite. Roughly speaking,
there are three kinds of equivariant surgery theory:

1. Surgery without any gap conditions. This is very complicated and
not much is known about it.

2. Surgery with a “small” gap condition, the condition that no fixed set
component be of codimension < 3 in another. Such a condition is
designed to eliminate some fundamental group problems, due to the
fact that if MK has codimension 2 in MH , there is no way to control
the fundamental group of the complement MH \ MK . When MK

can have codimension 1 in MH , then things are even worse, since one
can’t even control the number of components of MH \MK .

3. Surgery with a “large” gap condition, the condition that each fixed
set have more than twice the dimension of any smaller fixed set.

For each of cases (2) and (3), there are analogues of the major concepts
of non-equivariant surgery theory: normal cobordism, surgery obstruction
groups, and a surgery exact sequence. However, there are several ways
to set things up, depending on whether one considers equivariant maps
(as in most references) or isovariant maps (equivariant maps that pre-
serve isotropy groups) as in [34], and depending on whether one tries to do
surgery up to equivariant homotopy equivalence (as in [3]) or only up to
pseudoequivalence (as in [2]). (A map is defined to be a pseudoequivalence
if it is equivariant and if, non-equivariantly it is a homotopy equivalence.)
The big advantage of the large gap condition is that when this condition
is satisfied, then one can show [46] that any equivariant homotopy equiva-
lence can be homotoped equivariantly to an isovariant one. For a detailed
study of the differences between gap conditions (2) and (3), see [140].

3.4.4 Differences between categories

In the context of group actions, the differences between different categories
of manifolds become more pronounced than in the non-equivariant situation
studied in §3.2 above. Aside from the smooth and PL categories, the most
studied category is that of topological locally linear actions, meaning actions
on topological manifolds M for which each point x ∈ M has a Gx-invariant
neighborhood equivariantly homeomorphic to a linear action of Gx on Rn.
If one studies topological actions with no extra conditions at all, then
actions can be very pathological, and the fixed set for a subgroup can
be a completely arbitrary compact metrizable space of finite dimension.
In particular, it need not be a manifold, and need not even have finite
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homotopy type. Various properties of the smooth, PL, and topological
locally linear categories are discussed in [4], [24], [26], and [83]; they are
too complicated to discuss here.

3.4.5 Nonlinear similarity

One of the most dramatic applications of surgery to equivariant topology
(even though the original work on this problem only uses non-equivariant
surgery theory) is to the nonlinear similarity problem. This goes back to
an old question of de Rham: if G is a finite group and if ρ1: G → O(n),
ρ2: G → O(n) are two linear (orthogonal) representations of G on Eu-
clidean n-spaces V1 and V2, respectively, does a topological conjugacy be-
tween ρ1 and ρ2 imply that the two representations are linearly equivalent?
Here a topological conjugacy means a homeomorphism h: V1 → V2 conju-
gating ρ1 to ρ2. If such a homeomorphism exists, it restricts to a home-
omorphism V

ρ1(G)
1 → V

ρ2(G)
2 , so these two subspaces must have the same

dimension. Since we may compose with translation in V2 by h(0) ∈ V
ρ2(G)
2 ,

there is no loss of generality in assuming that h(0) = 0. Now if such an
h were to exist and be a diffeomorphism, then the differential of h at the
origin would be an invertible linear intertwining operator between ρ1 and
ρ2, so this problem is only interesting if we allow h to be non-smooth.

One special case is worthy of note: if G is cyclic, if Rn carries a G-
invariant complex structure, and if G acts freely on the complement of
the origin, then Sn−1/ρ1(G) and Sn−1/ρ2(G) are lens spaces, and so the
question essentially comes down to the issue of whether homeomorphic
lens spaces must be diffeomorphic. The answer is “yes,” as can be shown
using the topological invariance of simple homotopy type [43] together with
Reidemeister torsion [106]. The next important progress was made by
Schultz [125] and Sullivan (independently) and then by Hsiang-Pardon [81]
and Madsen-Rothenberg [100] (again independently). The upshot of this
work is that if |G| is of odd order, then topological conjugacy implies linear
conjugacy. Then in [38], Cappell and Shaneson showed that for G cyclic
of order divisible by 4, there are indeed examples of topological conjugacy
between linearly inequivalent representations. This work has been refined
over the last two decades, and a summary of some of the most recent work
may be found in [40].

While it would be impractical to go into much detail, we can at least
sketch some of the key ideas that go into these results. First let’s consider
the theorems that give constraints on existence of nonlinear similarities.
Suppose h: V1 → V2 is a topological conjugacy between representations
ρ1 and ρ2, say with h(0) = 0 (no loss of generality). Then we glue to-
gether V1 and (V2 \ {0}) ∪ {∞}, using h to identify V1 \ {0} ⊂ V1 with
V2 \ {0} ⊂ (V2 \ {0}) ∪ {∞}. The result is a copy of Sn equipped with a
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topological (locally linear) action of G and with ρ1 as the isotropy represen-
tation at one fixed point (0 in V1), and ρ∗2, the contragredient of ρ2, as the
isotropy representation at another fixed point (the point at infinity in V2).
Results such as those of Hsiang-Pardon and Madsen-Rothenberg can then
be deduced from a suitable version of the G-signature theorem applied to
this situation. (Of course, the classical G-signature theorem doesn’t apply
here, since the group action is not smooth, so proving such a G-signature
theorem is not so easy.) One convenient formulation of what comes out,
sufficient to give the Hsiang-Pardon and Madsen-Rothenberg results and
much more, is the following:

Theorem 3.4 ([123], Theorem 3.3) Let ρ be a finite-dimensional rep-
resentation of a finite group G, and let γ ∈ G be of order k. Define the
“renormalized Atiyah-Bott number” AB(γ, ρ) to be 0 if −1 is an eigen-
value of ρ(γ). If this is not the case, suppose that after discarding the
+1-eigenspace of ρ(γ), ρ(γ) splits as a direct sum of nj copies of counter-
clockwise rotation by 2πj/k, 0 < j < k, and define in this case

AB(γ, ρ) =
∏

0<j<k

(
ζj + 1
ζj − 1

)nj

,

where ζ = e2πi/k. Then the numbers AB(γ, ρ), γ ∈ G, are oriented topo-
logical conjugacy invariants of ρ, and up to sign are topological conjugacy
invariants (even if one doesn’t require orientation to be preserved).

Next we’ll give a rough idea of how Cappell and Shaneson constructed
non-trivial nonlinear similarities between representations ρ1 and ρ2 of a
cyclic group G of order 4q with generator γ0, in the case where ρj(γ0) has
eigenvalue −1 with multiplicity 1 and all its other eigenvalues are primitive
4qth roots of unity. Let Vj be the representation space on which ρj acts.
Then Vj has odd dimension 2k + 1, and we may write it as

R2k+1 ∼= {0} ∪ (
S2k−1 × [−1, 1]× (0,∞)

) ∪
S2k−1×{±1}×(0,∞)(

D2k × {−1, 1} × (0,∞)
)
,

where the factor (0,∞) at the end represents the radial coordinate. Here
ρj acts by a free linear representation on S2k−1, for which the quotient is a
lens space Lj with fundamental group of order 4q, γ0 acts by multiplication
by −1 on [−1, 1], and γ0 acts trivially on (0,∞). So the idea is to choose
L1 and L2 so that they are homotopy equivalent but not diffeomorphic,
but so that their non-trivial double covers L̃j , which are lens spaces with
fundamental group of order 2q, are isomorphic to one another. (This is
possible using the known classification theorems for lens spaces, as found
in [106] for example.) Then if Ej denotes the non-trivial [−1, 1]-bundle



Surgery theory today 21

over Lj (obtained by dividing S2k−1× [−1, 1] by the group action), one can
arrange for E1 and E2 to be h-cobordant. (This takes a pretty complicated
calculation. First one needs to make them normally cobordant, and then
one needs to show that the surgery obstruction to converting a normal
cobordism to an h-cobordism vanishes.) Then it turns out that E1 and
E2 become homeomorphic after crossing with (0,∞). Lifting back to the
universal covers, one gets equivariant homeomorphisms

S2k−1 × [−1, 1]× (0,∞) → S2k−1 × [−1, 1]× (0,∞)

and
D2k × {−1, 1} × (0,∞) → D2k × {−1, 1} × (0,∞),

which patch together to give the desired nonlinear similarity.

3.5 The topological space form problem

As we mentioned above, one of the successes of surgery theory is the clas-
sification of those finite groups G that can act freely on spheres. This
subject begins with the observation that if G acts freely on Sn, then the
(Tate) cohomology groups of G must be periodic with period n + 1 ([42],
Chapter XVI, §9, Application 4). One of the great classical theorems on
cohomology of finite groups ([42], Chapter XII, Theorem 11.6) then says
that this happens (for some n) if and only if every abelian subgroup of G
is cyclic, or equivalently, if and only if every Sylow subgroup of G is either
cyclic or else a generalized quaternion group.

This then raises an obvious question. Suppose G has periodic cohomol-
ogy. Then does G act freely on a finite CW complex X with the homotopy
type of Sn, and if so, can this space X be chosen to be Sn itself? The first
part of this question was answered by Swan [131], who showed that, yes,
G acts freely on a finite CW complex X with the homotopy type of Sn.
The argument for this has nothing to do with surgery; rather, it requires
showing that the trivial G-module Z has a periodic resolution by finitely
generated free ZG-modules. (Initially, one only gets such a resolution by
finitely generated projective ZG-modules, so that it would appear that a
finiteness obstruction comes in (see [60]), but one can kill off the obstruction
at the expense of possibly increasing the period of the resolution.)

Then one has to determine if X can be taken to be a sphere. One case
is classical: if every subgroup of G of order pq (p and q primes) is cyclic,
then it is known by a theorem of Zassenhaus that G acts freely and linearly
(and thus certainly smoothly) on some sphere [146]. Milnor [105] showed,
however, that in order for G to act freely on a manifold which is a homology
sphere (even in the topological category), it is necessary that all subgroups
of order 2p, p an odd prime, be cyclic rather than dihedral. The argu-
ment for this is remarkably elementary, and again doesn’t use surgery. An
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alternative argument using equivariant bordism and equivariant semichar-
acteristics, again fairly elementary, was given by R. Lee [98]. The point of
Lee’s proof is basically to show that if a closed oriented manifold M2n+1

has as fundamental group the dihedral group G = D2p of order p (p an odd
prime), then the formal sum, in an appropriate Grothendieck group, of the
G-modules H2i(M2n+1; FG), F a suitable finite field of characteristic 2, if
non-zero, has to involve the non-abelian representations of G. This clearly
gives a contradiction if the universal cover of M is a homology sphere, since
then H∗(M2n+1; FG) is identified with the homology of a sphere, which
is only non-zero in bottom and top degree, and the action of G has to be
trivial.

The papers [134] and [101] then showed that the condition of Milnor
is sufficient as well as necessary for G to act smoothly and freely on a
sphere. The method of proof is to go back to Swan’s argument in [131] and
show that there is a simple Poincaré space with fundamental group G for
which the universal cover is (homotopy-theoretically) a sphere, and that
its Spivak fibration admits a PL bundle reduction [134], in fact, a smooth
bundle reduction [101]. Finally [101], the full power of Wall’s surgery theory
is used to show that the surgery obstruction vanishes, and thus that there is
a manifold with fundamental group G whose universal cover is a homotopy
sphere.

3.6 Algebraic theory of quadratic forms

While the main idea of surgery theory is usually to reduce manifold theory
to algebra, there are cases where it can be used in the opposite direction, to
obtain information about the theory of quadratic forms from geometry. We
give just one example. When π is an infinite group with some “non-positive
curvature” properties, for example, the fundamental group of a hyperbolic
manifold, then various geometrical or analytical techniques can be used to
prove the Novikov conjecture or sometimes even the Borel rigidity conjec-
ture for π. (See [61], [45], and [129] for surveys of the literature, which is
quite extensive.) This in turn, from the surgery exact sequence (eq. 3.1),
implies significant information about the stable classification of quadratic
forms over Zπ.

3.7 Submanifolds, fibrations, and embeddings

Surgery theory can deal not only with individual manifolds, but also with
questions concerning how one manifold can embed in another. There is
an extensive literature on such problems, but we will only mention a few
examples. For instance, suppose M is a manifold, and suppose that from
a homotopy point of view, M looks like the total space of a fibration F →
M → B. Then can M be made into the total space of a genuine manifold
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fiber bundle with base and fiber homotopy equivalent to B and F? Or
suppose X ↪→ Y is a Poincaré embedding. That means that Y is a Poincaré
complex, say of dimension n, X is a Poincaré complex of dimension n− q
with a mapping to Y , and we have subspaces S ⊂ C ⊂ Y with the following
properties:

1. There is a spherical fibration Sq−1 → S
p→ X, with S a Poincaré com-

plex of dimension n−1. (S is the homotopy analogue of the boundary
of a tubular neighborhood of a submanifold X in Y of codimension q.
The map p corresponds to the retraction of this tubular neighborhood
onto the submanifold X.)

2. (C,S) is a Poincaré pair of dimension n. That is, C has the Poincaré
duality properties of an n-dimensional manifold with boundary S.
The diagram

S
Â Ä //

p

²²

C
Â Ä // Y

X

66nnnnnnnnnnnnnnn

is homotopy commutative.

3. Up to simple homotopy equivalence, Y is the union of C and the
mapping cylinder of p, joined along S. (The mapping cylinder of p
is the homotopy analogue of the closed tubular neighborhood of the
submanifold. This says that C plays the role of the complement of
an open tubular neighborhood of X in Y .)

Now suppose M is a manifold and h: M → Y is a homotopy equivalence.
Then can h be homotoped to a map h′ so that h′−1(X) is a genuine sub-
manifold N of M (of codimension q) and h′ restricted to N is a homotopy
equivalence N → X? When this is the case, h is said to be splittable along
X.

There is an extensive literature on questions such as these but we con-
tent ourselves here with a few representative examples.

For the fiber bundle problem, the first case to be studied, but still one of
the most important, is whether a certain manifold fibers over S1. In other
words, one is given a compact manifold Mn and a map f : Mn → S1 with
f∗ surjective on π1, and one wants to know if one can change f within its
homotopy class to the projection map p of a fiber bundle Nn−1 → Mn p→
S1. The map f defines an infinite cyclic covering M̃ → M , and if the
desired fiber bundle exists, then M̃ must be isomorphic (in the appropriate
category) to N ×R with N a compact manifold. So first one must check if
the finiteness obstruction vanishes (so that M̃ is homotopically finite and is
equivalent to a finite Poincaré complex), and then one must solve a surgery
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problem to see if M̃ can be realized as cylinder N ×R. The solution to the
problem was found by Farrell ([50], [51]) (following earlier work by Browder
and Levine in the simply connected case), who found that if M̃ is indeed
homotopically finite, the necessary and sufficient condition for a positive
solution to fiber bundle problem is the vanishing of a Whitehead torsion
obstruction in the Whitehead group of π1(M).

For the splitting problem, there are essentially three cases.

1. When X is of codimension one, the issues involved are somewhat
similar to what arises in the problem of fibering over a circle, and the
key result (in the categories TOP and PL) is due to Cappell [36]. A
special case of this concerns the following question. Suppose Mn is
a closed manifold that looks homotopy-theoretically like a connected
sum. (Since we are assuming n > 2, that means in particular that
π1(M) must be the free product of the fundamental groups of the
prospective summands.) Then does M have a splitting of the form
M ∼= M1 # M2? (This corresponds to the case where X = Sn−1

and is “two-sided” and separating in Y .) Cappell discovered that
when n ≥ 5, the answer to this question is not always “yes,” but
that the only obstruction to a positive answer is an algebraic one
related to the fundamental groups involved.5 The obstruction group
vanishes when π1(M) has no 2-torsion, so in this case one indeed has
a splitting M ∼= M1 # M2. Incidentally, the dimension restriction is
necessary, for it follows from Donaldson theory that there are many
simply connected PL 4-manifolds (a K3 surface, for example) which
are homotopy theoretically connected sums, but which do not split
as connected sums in the PL category. (In dimension 4, the PL and
DIFF categories are equivalent.)

2. When X is of codimension two, the splitting problem is closely related
to the classification of knots; see [18], §§7.8–7.9, [22], and the survey
[96] in this collection for more details.

3. When X is of codimension 3 or more and Y is of dimension 5 or
more, the splitting problem always has a positive answer in the PL
category, provided that the obvious necessary condition (that X have
the simple homotopy type of a PL manifold) is satisfied, as shown by
Wall in [25], Corollary 11.3.1. In the smooth case one needs a little
more, since the spherical fibration S

p→ X must come from a rank q
vector bundle, but the “expected results” are still true.

5In the category DIFF, the result is the same as long as one allows generalized
connected sums along a (possibly exotic) separating homotopy sphere.
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3.8 Detection on submanifolds

The study of submanifolds can also be turned around, and we can ask
to what extent surgery obstructions are determined by what happens on
submanifolds. This in turn is related to another problem: How much of the
Wall surgery groups Ln(Zπ) arises from surgery obstructions of degree-one
normal maps between closed manifolds? To be more precise, the issue is
basically how much information about submanifolds of M is needed either

1. to compute the surgery obstruction of a surgery problem (Nn, η) →
(Mn, ξ), or how to best understand geometrically the obstruction
map σ : N (M) → Ln(Zπ); or

2. to determine when a class in S(Mn) is trivial, or in other words, when
a homotopy equivalence N

h→ M is homotopic to an isomorphism.

These issues often go under the general name of “oozing,” which is sup-
posed to suggest how simply connected surgery obstructions on submani-
folds “ooze up” to give obstructions on a larger manifold, not usually simply
connected.

The first major result along these lines was the characteristic variety
theorem of Sullivan (see Sullivan’s 1967 notes, republished in [21], pp. 69–
103). It says (roughly that the answer to question (2) can be formulated
in terms of simply connected surgery obstructions (signatures and Arf-
Kervaire invariants) to splitting along certain (possibly singular) submani-
folds of M . This theorem is also related to various formulas for character-
istic classes found in [109].

As far as question (1) is concerned, the basic question was whether
surgery obstructions can be computed from simply connected splitting ob-
structions on submanifolds of bounded codimension. For general funda-
mental groups this is certainly not the case (see [137]), but it was expected
by the experts (the “oozing conjecture”) that this would be the case for
manifolds with finite fundamental group. This issue has now been settled.
Codimension 2 manifolds do not suffice; Cappell and Shaneson [37] showed
that if M3 is the usual quaternionic lens space (the quotient of S3 by the
linear action of the quaternion group Q8 of order 8) and K4k+2 κ→ S4k+2 is
the “Kervaire problem” (a simply connected surgery problem representing
the generator of L4k+2(Z) ∼= Z/2), then

σ(M3 ×K4k+2 id×κ−→ M3 × S4k+2) 6= 0 in L4k+5(ZQ8),

even though the obstruction here comes from the Arf invariant on the
codimension 3 manifold K4k+2. But codimension 3 manifolds do suffice
([79], [103]).6

6For those who know what this means: at least for the h decoration.



26 Jonathan Rosenberg

3.9 Differential geometry

Surgery theory becomes especially interesting when applied to certain prob-
lems in differential geometry. We begin with Riemannian geometry. Recall
that a Riemannian metric on a manifold is a smoothly varying choice
of inner products on tangent spaces. This makes it possible to measure
lengths of curves, and thus to define geodesics (curves which locally mini-
mize length), and also to measure angles between intersecting curves. The
most important intrinsic geometric invariants of a Riemannian manifold
are those having to do with curvature. The sectional curvature of a Rie-
mannian manifold M (also called the Gaussian curvature if dim M = 2) at
a point p ∈ M in the direction of some 2-plane P in the tangent space TpM
through p measures how the sum of the angles of a small geodesic triangle
differs from π, if one vertex of the triangle is at p, and the incident sides
there lie in the plane P . The Ricci curvature (which is a tensor) and scalar
curvature (the trace of the Ricci curvature) at p are then obtained from
various averages of the sectional curvatures there. As such, the standard
curvature invariants are defined locally, but global bounds on curvature
(for a closed or complete manifold) have implications for global topology.
We mention just a few prominent examples: the Gauss-Bonnet Theorem
for closed surfaces M , which says that

∫
M

K dA = 2π χ(M), where K is
the Gaussian curvature, χ(M) is the Euler characteristic, and dA is the
Riemannian area measure; Myers’ Theorem, that any complete manifold
of Ricci curvature ≥ c > 0 is closed and has finite fundamental group; the
Cartan-Hadamard Theorem, that any complete manifold of non-positive
sectional curvature is aspherical7, with universal cover diffeomorphic to
Euclidean space (and with covering map the exponential map from the
tangent space at a basepoint); and the generalized Gauss-Bonnet Theorem
of Chern and Allendoerfer, expressing the Euler characteristic as a multiple
of the integral of the Pfaffian of the curvature form. Global consequences
of positivity of the scalar curvature are discussed in [122].

3.9.1 Rigidity theorems for Riemannian manifolds

One place where surgery can be of particular help in Riemannian geometry
is in the study of rigidity theorems, results that say that two Riemannian
manifolds sharing a very specific geometric property must be homeomor-
phic, diffeomorphic, etc. Such theorems abound in Riemannian geometry.
Classical examples (proved without using surgery) are sphere theorems,
such as the fact that a complete simply connected manifold with sectional
curvature K satisfying 1

4 < K ≤ 1 must be the union of two disks glued
together via a diffeomorphism of their boundaries, and thus a homotopy
sphere. Another famous examples is the Mostow Rigidity Theorem, which

7That is, all its higher homotopy groups πj , j > 1, vanish.



Surgery theory today 27

says that two irreducible locally symmetric spaces of dimension ≥ 3 and
non-compact type, with finite volume and with isomorphic fundamental
groups, must be isometric to one another. Mostow’s Theorem helped to
motivate the Borel Conjecture, that two compact aspherical manifolds8

with isomorphic fundamental groups are homeomorphic.
Here is a brief [very incomplete] list of a number of rigidity theorems

proved using a combination of surgery theory and Riemannian geometry:

1. the work of Farrell and Hsiang [52] on the Novikov Conjecture. This
was very influential in its time but has now been superseded by the
work of Farrell and Jones cited below.

2. Kasparov’s proof ([85], [86]) of the Novikov Conjecture for arbitrary
discrete subgroups of Lie groups. This has been improved by Kas-
parov and Skandalis [87] to give the Novikov Conjecture for “bolic”
groups, by weakening nonpositive curvature in Riemannian geometry
to a rough substitute in the geometry of metric spaces.

3. the work of Farrell and Jones ([5], [6]) on topological rigidity of man-
ifolds of nonpositive curvature. This includes for example:

Theorem 3.5 ([55]) Let M and N be closed aspherical topological
manifolds of dimensions 6= 3, 4. If M is a smooth manifold with a
nonpositively curved Riemannian metric and if π1(M)

∼=−→ π1(N) is
an isomorphism, then this isomorphism is induced by a homeomor-
phism between M and N .

4. the work of Farrell and Jones [54] on pseudoisotopies of manifolds of
nonpositive curvature. This gives substantial information about the
homotopy types of the diffeomorphism groups of these manifolds.

5. examples, constructed by Farrell and Jones ([53], [56], [57]), of man-
ifolds of nonpositive curvature which are homeomorphic but not dif-
feomorphic.

6. the theorem of Grove and Shiohama [76] that a complete connected
Riemannian manifold with dimension ≤ 6, with sectional curvature
≥ δ > 0 and with diameter > π/2

√
δ, is diffeomorphic to a standard

sphere.

7. work of Grove-Peterson-Wu [75] (see also the work of Ferry [58]) show-
ing that for any integer n, any real number k and positive numbers D
and v, the class of closed Riemannian n-manifolds M with sectional

8Recall that locally symmetric spaces of non-compact type are included here, by the
Cartan-Hadamard Theorem.
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curvature KM ≥ k, diameter dM ≤ D and volume VM ≥ v contains
at most finitely many homeomorphism types when n 6= 3, and only
finitely many diffeomorphism types if, in addition, n 6= 4. (There is
a similar result for manifolds with injectivity radius iM ≥ i0 > 0 and
volume VM ≤ v.)

8. work of Ferry and Weinberger [62] growing out of work on the Novikov
Conjecture. This includes the very interesting result that if Mn is
an irreducible compact locally symmetric space of noncompact type
(with n > 4), then the natural forgetful map Diff(M) → Homeo(M)
has a continuous splitting.

9. the “packing radius” sphere theorem of Grove and Wilhelm [77], stat-
ing that for n ≥ 3, a closed Riemannian n-manifold M with sectional
curvature ≥ 1 and (n − 1)-packing radius > π

4 is diffeomorphic to
Sn.9

10. an improvement of the classical sphere theorem due to Weiss [142],
showing that if Mn is a complete simply connected manifold with
sectional curvature K satisfying 1

4 < K ≤ 1, then not only is M
a homotopy sphere, but M has “Morse perfection n,” which rules
out some of the exotic sphere possibilities for M . See also [78] for
further developments. (In the other direction, Wraith [144] has con-
structed metrics of positive Ricci curvature on all homotopy spheres
that bound parallelizable manifolds. A few exotic spheres are known
to admit metrics of nonnegative sectional curvature (see [71], [119],
and work in progress by Grove and Ziller), but the sectional curva-
tures of the metrics constructed to date are not strictly positive, let
alone 1

4 -pinched.)

11. work of Brooks, Perry, and Petersen [31] showing that given a se-
quence of isospectral manifolds of dimension n for which either all
the sectional curvatures are negative or there exists a uniform lower
bound on the sectional curvatures, then the sequence contains only
finitely many homeomorphism types, and if n 6= 4, at most finitely
many diffeomorphism types.

12. recent theorems of Belegradek [29] showing that in many cases, given
a group π, an integer n larger than the homological dimension of π,
and real numbers a < b < 0, there are only finitely many diffeo-
morphism types of complete Riemannian n-manifolds with curvature
a ≤ K ≤ b and fundamental group π. The manifolds involved here
are noncompact, and usually have infinite volume.

9The (n−1)-packing radius is defined to be half the maximum, over all configurations
of (n− 1) points in M , of the minimum distance between points.



Surgery theory today 29

What most of these references have in common is that a geometric as-
sumption, usually based on curvature bounds, is used to deduce some con-
sequences that, while sometimes rather technical and not always directly
interesting in themselves, can be plugged into the “surgery machine” to
deduce the desired rigidity theorem.

3.9.2 Surgery and positive scalar or Ricci curvature

Surgery enters into differential geometry in another somewhat different
way as well: through “surgery theorems” that say that under appropriate
hypotheses, a certain geometrical structure on one manifold may be trans-
ported via a surgery to some other manifold. In this subsection we will
discuss application of this principle to positive scalar or Ricci curvature, in
section 3.9.4 we will discuss conformal geometry, and in section 3.9.5 we
will discuss application to the study of symplectic or contact structures.

So far the most remarkable and useful surgery theorem is the theorem
of [73] and [124] regarding positive scalar curvature. (See also [122] for an
exposition and for a correction to one point in the Gromov-Lawson proof.)
This says that if Mn

1 is a compact manifold (not necessarily connected)
with a Riemannian metric of positive scalar curvature, and if Mn

2 can be
obtained from M1 by surgery on a sphere of codimension ≥ 3, then M2

can also be given a metric of positive scalar curvature. This result is so
powerful that, when combined with known index obstructions to positive
scalar curvature based on the Dirac operator, it has made complete classifi-
cation of the manifolds admitting positive scalar curvature metrics feasible
in many cases. See [122] for a detailed exposition.

In the case of positive Ricci curvature, a surgery theorem as general as
this could not be true, for surgery on S0 ↪→ Sn results in a manifold with
infinite fundamental group, which cannot have a metric of positive Ricci
curvature by Myers’ Theorem. Nevertheless, there is no known reason
why surgery on a sphere of dimension ≥ 1 and codimension ≥ 3 in a
manifold of positive Ricci curvature cannot result in a manifold of positive
Ricci curvature, and in fact there is some positive evidence for this in
[126] and [145]. But Stolz in [130], based upon both heuristics of Dirac
operators on loop spaces and upon calculations with homogeneous spaces
and complete intersections, has conjectured that the Witten genus vanishes
for spin manifolds with positive Ricci curvature and with vanishing p1

2 .10 If
this is the case, then Stolz has shown [130] that there are simply connected
closed manifolds with positive scalar curvature metrics but without metrics
of positive Ricci curvature, and thus a surgery theorem this general for
positive Ricci curvature cannot hold. So perhaps it should be necessary to

10For spin manifolds M , the first Pontrjagin class p1 is always divisible by 2, and there
is an integral characteristic class p1

2
∈ H4(M ;Z) which when multiplied by 2 gives p1.
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restrict to surgeries of some greater codimension.

3.9.3 Surgery and the Yamabe invariant

The problem of prescribing scalar curvature on a manifold also has a quan-
titative formulation in terms of the so-called Yamabe invariant. If Mn is
a closed manifold and we fix a Riemannian metric g on M , then by the
solution of the Yamabe problem, it is always possible to make a (pointwise)
conformal change in the metric, i.e., to multiply g by a positive real-valued
function, so as to obtain a metric with constant scalar curvature and total
volume 1. The minimum possible value of the scalar curvature of such a
metric is an invariant of the conformal class of the original metric, known as
the Yamabe constant of the conformal class. The Yamabe invariant Y (M)
of M is then defined as the supremum, taken over all conformal classes of
metrics on M , of the various Yamabe constants. It is bounded above by a
universal constant depending only on n, namely n(n−1)(volSn(1))2/n (the
scalar curvature of a round n-sphere of unit volume), and is closely related
to the question of determining what real-valued functions can be scalar
curvatures of Riemannian metrics on M with volume 1 [92]. Note that
Y (M) > 0 if and only if M admits a metric of positive scalar curvature. It
is known that “most” closed 4-manifolds have negative Yamabe invariant
[95]. In a counterpart to the surgery theorem of [73] and [124], it is shown
in [115] that if M ′ can be obtained from M by surgeries in codimension
≥ 3 and if Y (M) ≤ 0 , then Y (M ′) ≥ Y (M). This fact has been applied in
[113] to obtain exact calculations of Y (M) for some 4-manifolds M , and in
[114] to show that Y (M) ≥ 0 for every simply connected closed n-manifold
Mn with n ≥ 5.

3.9.4 Surgery and conformal geometry

A conformal structure on manifold Mn is an equivalence class of Rieman-
nian structures, in which two metrics are identified if angles (but not nec-
essarily distances) are preserved. For oriented 2-manifolds, this is the same
thing as a complex analytic structure. A conformal structure is called con-
formally flat if each point in M has a neighborhood conformally equivalent
to Euclidean n-space Rn. (This is true for the standard round metric on
Sn, for example.) An immersion Mn # Rn+k is called conformally flat if
the standard flat metric on Rn+k pulls back to a conformally flat struc-
ture on M . One of the important problems in conformal geometry is the
classification of conformally flat manifolds and conformally flat immersions
into Euclidean space. For immersions of hypersurfaces, i.e., immersions in
codimension k = 1, a complete classification has been given (begun in [93],
completed in [41]) using the idea of conformal surgery. The final result is:
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Theorem 3.6 ([41]) A compact connected manifold Mn has a conformal
immersion into Rn+1 if and only if M can be obtained from Sn by adding
finitely many 1-handles, i.e., by doing surgery on a finite set of copies of
S0 in Sn. In particular, any such M has free fundamental group.

3.9.5 Surgery and symplectic and contact structures

A symplectic structure on an even-dimensional manifold M2n is given by a
closed 2-form ω such that ωn = ω ∧ ω ∧ · · · ∧ ω (n factors) is everywhere
non-zero, i.e., is a volume form. A contact structure on an odd-dimensional
manifold M2n+1 is a maximally non-integrable subbundle ξ of TM of codi-
mension 1, and thus is locally given by ξ = kerα, where α is a 1-form such
that α ∧ (dα)n is a volume form. Symplectic and contact structures arise
naturally in classical mechanics, and there is a close link between them.

The problem of determining what manifolds admit symplectic or con-
tact structures is not so easy, though there are some obvious necessary
conditions. If M2n is a closed connected manifold which admits a symplec-
tic form ω, then if [ω] ∈ H2(M ;R) denotes its de Rham class, [ω]n must
generate H2n(M ;R) ∼= R. In particular, M is oriented, and ω gives a re-
duction of the structure group of TM from GL(2n,R) to Sp(2n,R), which
has maximal compact subgroup U(n); thus ω defines an isomorphism class
of almost complex structures J on M . The most familiar examples of sym-
plectic manifolds are Kähler, in other words, admit a Riemannian metric
g and an integrable (and parallel) almost complex structure J for which
ω(X, Y ) = g(JX, Y ) for all vector fields X and Y . However, it is known
that there are plenty of symplectic manifolds without Kähler structures
[135]. A promising line of attack in constructing symplectic structures is
therefore to start with the standard examples and try construct new ones
using fiber bundles, “blow-ups,” and surgery methods. (See [102] for a
detailed exposition.) In particular, “symplectic surgery” has been studied
in [70] and [132]. With it Gompf has proved [70] that every finitely pre-
sented group is the fundamental group of a compact symplectic 4-manifold,
even though there are constraints on the fundamental groups of Kähler
manifolds. It is not always possible to put a symplectic structure on the
connected sum of two symplectic manifolds, since in dimension 4, Taubes
[133] has shown using Seiberg-Witten theory that a closed symplectic man-
ifold cannot split as a connected sum of two manifolds each with b+

1 > 0.
Gompf’s “symplectic connected sum” construction is therefore somewhat
different: if M2n

1 , M2n
2 , and N2n−2 are symplectic and one has symplectic

embeddings N ↪→ M1, N ↪→ M2 whose normal bundle Euler classes are
negatives of one another, then Gompf’s M1 # NM2 is obtained by joining
the complements of tubular neighborhoods of N in M1 and in M2 along
their common boundary (a sphere bundle over N).

Surgery has also played an important role in a number of other prob-
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lems connected with symplectic geometry: the theory of Lagrangian em-
beddings11 (see, e.g., [99], [49], and [116]) and Eliashberg’s topological clas-
sification [47] of Stein manifolds.12 A Stein manifold of complex dimension
n is known to admit a proper Morse function with all critical points of index
≤ n (so that, roughly speaking, M is the thickening of an n-dimensional
CW-complex), and Eliashberg showed that for n > 2, a 2n-dimensional
almost complex manifold admits a Stein structure exactly when it satisfies
this condition.

A contact structure on an odd-dimensional manifold appears at first
sight to be a very “flabby” object. If we consider only contact structures
ξ for which TM/ξ is orientable (this is only a slight loss of generality,
and turns out to be automatic if M is orientable and n even), then every
contact structure ξ is defined by a global 1-form α such that α∧ (dα)n 6= 0
everywhere, and α is determined by ξ up to multiplication by an everywhere
non-zero real function. Note also that as dα defines a symplectic structure
on ξ, α defines an almost contact structure on M , that is, an isomorphism
class of reductions of the structure group of TM from GL(2n + 1,R) to
1 × U(n). So a natural question is whether an odd-dimensional manifold
always admits a contact structure within every homotopy class of almost
contact structures. When n = 1, i.e., dim M = 3, the answer is known to
be “yes,” though Eliashberg showed that there are basically two distinct
types of contact structure, “tight” and “overtwisted.” Furthermore, if M
is a closed oriented 3-manifold, then every class in H2(M ;Z) is the Euler
class of an overtwisted contact structure, but only finitely many homology
classes in H2(M ;Z) can be realized as the Euler class of a tight contact
structure. (For surveys, see [69] and [48].) In higher dimensions, it is not
known if every manifold with an almost contact structure admits a contact
structure, though the experts seem to doubt this. And it is known that
S2n+1 has at least two non-isomorphic contact structures in the homotopy
class of the standard almost contact structure ([48], Theorem 3.1).

Nevertheless, in many cases one can construct contact structures in a
given homotopy class of almost contact structures through a process of
“contact surgery.” The key tools for doing this may be found in [141] and
in [47]. These references basically prove that if (M2n+1

1 , ξ1) is a contact
manifold and M2n+1

2 can be obtained from M1 by surgery on Sk ⊂ M2n+1
1 ,

11If (M2n, ω) is a symplectic manifold, an embedding f : Nn ↪→ M2n is called La-
grangian if f∗ω = 0. Aside from the obvious bundle-theoretic consequence, that ω
induces an isomorphism between the cotangent bundle of N and the normal bundle for
the embedding, this turns out to put considerable constraints on isotopy class of the
embedding.

12A complex manifold M is called a Stein manifold if Hj(M,S) = 0 for all j > 0 for
any coherent analytic sheaf S on M (though it is enough to assume this for j = 1), or
equivalently, if M has a proper holomorphic embedding into some Ck, that is, M is an
affine subvariety of Ck. An open subset of Cn is a Stein manifold if and only if it is a
domain of holomorphy.
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then M2 also admits a contact structure ξ2 (in the corresponding homo-
topy class of almost contact structures), provided that Sk is tangent to the
contact structure ξ1, and has trivial “conformal symplectic normal” (CSN)
bundle. Since ξ1 is maximally non-integrable, the first condition (Sk tan-
gent to ξ1) forces TSk to be isotropic in ξ1 for the symplectic form dα on ξ1,
α a 1-form defining ξ1. In other words, if (TSk)⊥ denotes the orthogonal
complement of TSk in ξ1, which has rank 2n− k, then TSk ⊆ (TSk)⊥, so
k ≤ n. The CSN bundle is then (TSk)⊥/TSk, and a trivialization of this
bundle determines a homotopy class of almost contact structures on M2.
Applications of this theorem may be found in [27], [65], [66], [67], and [68].
Some of the results are that:

1. Every finitely presented group is the fundamental group of a closed
contact manifold of dimension 2n + 1, for any n > 1 [27].

2. Every simply connected spinc 5-manifold admits a contact structure
in every homotopy class of almost contact structures [65]. (The spinc

condition is necessary for existence of an almost contact structure.)

3. Every closed spin 5-manifold with finite fundamental group of odd or-
der not divisible by 9 and with periodic cohomology admits a contact
structure [68].

3.10 Manifold-like spaces

While the original applications of surgery theory were to the classification
and study of manifolds, in recent years surgery has also been applied quite
successfully to spaces which are not manifolds but which share some of the
features of manifolds. We list just a few examples:

1. Poincaré spaces: Poincaré spaces have already appeared in this
survey; they are spaces with the homotopy-theoretic features of man-
ifolds. Thus for example it makes sense to talk about the bordism the-
ory ΩP

∗ defined like classical oriented bordism Ω∗, but using oriented
Poincaré complexes in place of oriented smooth manifolds. Since
Poincaré complexes do not satisfy transversality, this theory does
not agree with the homology theory defined by the associated Thom
spectrum MSG (whose homotopy groups are all finite), but the two
are related by an exact sequence where the relative groups are the
Wall surgery groups. The proof uses surgery on Poincaré spaces, and
may be found in [97], or in slightly greater generality, in [9]. An-
other interesting issue is the extent to which Poincaré spaces can be
built up by pasting together manifolds with boundary, using homo-
topy equivalences (instead of diffeomorphisms or homeomorphisms)
between boundary components. It turns out that all Poincaré spaces
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can be pieced together this way (at least if one avoids the usual
problems with dimensions 3 and 4), and that the minimal number of
manifold pieces required is an interesting invariant. See [84] and [9]
for more details, as well as [91] for a survey of several other issues
about Poincaré spaces.

2. Stratified spaces: Stratified spaces are locally compact spaces X
which are not themselves manifolds but which have a filtration X0 ⊆
X1 ⊆ · · · ⊆ Xk = X by closed subspaces such that each Xj \Xj−1 is a
manifold and the strata fit together in a suitable way. There are many
different categories of such spaces, depending on the exact patching
conditions assumed. But two important sets of examples motivate
most of theory: algebraic varieties over R or C, and quotients of
manifolds by actions of compact Lie groups. Surgery theory has been
very effective in classifying and studying such spaces. There is no
room to go into details here, but see [26] and [83] for surveys.

3. ENR homology manifolds: Still another way to weaken the def-
inition of a manifold is to consider homology n-manifolds, spaces
X with the property that for every x ∈ X, Hj(X,X \ {x};Z) ={

0, j 6= n,
Z, j = n.

In order for such a space to look more like a topologi-

cal manifold, it is natural to assume also that it is an ENR (Euclidean
neighborhood retract). So a natural question is: is every ENR homol-
ogy n-manifold M homeomorphic to a topological n-manifold? It has
been known for a long time that the answer to this question is “no”
(the simplest counterexample is the suspension of the Poincaré ho-
mology 3-sphere), so to make the question interesting, let’s throw in
the additional assumption that M has the “disjoint disks property.”
Then M has (at least) a very weak kind of transversality, and is thus
quite close to looking like a manifold. Does this make it a manifold?
This question has a long history, and the surprising answer of “no,”
due to Bryant, Ferry, Mio, and Weinberger [35], is discussed in this
collection in [108].

3.11 Non-compact manifolds

Almost all the applications of surgery theory which we have discussed so
far are for compact manifolds, but surgery can also be used to study non-
compact manifolds as well. Here we just mention a few cases:

1. Siebenmann’s characterization [127] of when a non-compact manifold
Xn (without boundary) is the interior of some compact manifold Wn

with boundary. Obvious necessary conditions are that X have finite
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homotopy type and have finitely many ends. Furthermore, the fun-
damental group “at infinity” in each end must be finitely presented,
and the Wall finiteness obstruction (see [60]) of the end must van-
ish. Siebenmann’s Theorem ([127] or [26], §§1.5–1.6) says that these
obvious necessary conditions are sufficient if n ≥ 6.

2. Siebenmann’s characterization of when a non-compact manifold W
with boundary is an open collar of its boundary, or in other words,
when W ∼= ∂W × [0,∞). It turns out ([128], Theorem 1.3) that
necessary and sufficient conditions when dimM ≥ 5 (in any of the
three categories TOP, PL, or DIFF) are that (W,∂W ) is (n − 2)-
connected, W has one end, and π1 is “essentially constant at ∞” with
“π1(∞)”∼= π1(W ). An alternative statement is that W ∼= ∂W×[0,∞)
if and only if (W,∂W ) is (n−2)-connected and W is proper homotopy
equivalent to ∂W × [0,∞). An elegant application ([128], Theorem
2.7) is a characterization of Rn: if Xn is a noncompact oriented
n-manifold, n ≥ 5, then Xn ∼= Rn (in any of the three categories
TOP, PL, or DIFF) if and only if there exists a degree-1 proper map
Rn → Xn.

3. Classification in a proper homotopy type. Surgery theory can be used
to classify noncompact manifolds with a given proper homotopy type.
For example, Siebenmann’s Theorem 2.7 in [128] can be restated as
saying that a non-compact n-manifold of dimension ≥ 5 is isomorphic
to Rn if and only if it has the proper homotopy type of Rn. Similarly
much of the proof of the Farrell Fibration Theorem in section 3.7
above may be interpreted as a classification of manifolds with the
proper homotopy type of N × R, for some compact manifold N .

4. There is a close connection between the classification of compact
manifolds with fundamental group Zn and the classification of non-
compact manifolds with a proper map to Rn, which played a vital role
in Novikov’s proof of the topological invariance of rational Pontrjagin
classes (see [110]).

5. Finally (and probably most importantly), controlled surgery classifies
noncompact manifolds in various “bounded” and “controlled” cate-
gories. See [111] and [112] for surveys and references.

4 Future directions

So where is surgery theory heading today? A glance at the dates on the pa-
pers in the bibliography to this article shows that history has proved wrong
those who felt that surgery is a dead subject. At the risk of being another
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false prophet, I would predict that future development of the subject, at
least over the next ten years, will lie mostly in the following areas:

• Surgery in dimension 4. Some very basic (and very hard!) ques-
tions remain concerning surgery in the topological category in di-
mension 4. (See [117].) In particular, is the surgery exact sequence
valid without any restriction on fundamental groups? We can prob-
ably expect more work on this question, and also on the question of
whether the smooth s-cobordism theorem is valid for 4-dimensional
s-cobordisms (between 3-manifolds).

• Differential geometry. One of the areas of application of surgery
theory that is developing most rapidly is that of applications to dif-
ferential geometry. I would expect to see further growth in this area,
especially in the areas of application to positive Ricci curvature (sec-
tion 3.9.2 above) and to symplectic and contact geometry (section
3.9.5 above). In these areas what we basically have now are a lot of
tantalizing examples, but very little in the way of definitive results,
so there is lots of room for innovative new ideas.

• Coarse geometry. Still another area of very rapid current develop-
ment is the study of “behavior at infinity” of noncompact manifolds.
Especially fruitful ideas in this regard have been the “macroscopic”
or “asymptotic” notions of Gromov [72] in geometry and geometric
group theory and Roe’s notion of “coarse geometry” [23]. But the
Gromovian approach to geometry has not yet been fully integrated
with surgery theory. The author expects a synthesis of these subjects
to be a major theme in coming years. Ideas of what we might expect
may be found in the work of Attie on classification of manifolds of
bounded geometry [28] and in the work of Block and Weinberger [30].

• Manifold-like spaces. Last but not least, I think we can expect
much more work on surgery theory applied to manifold-like spaces
which are not manifolds (section 3.10 above). While outlines of basic
surgery theories for stratified and singular spaces are now in place,
major applications are only beginning to be developed. When it
comes to homology manifolds, the situation is even more mysterious,
due to the fact that all current arguments for “constructing” exotic
ENR homology manifolds are basically non-constructive. It is also
not clear if these spaces are homogeneous (like manifolds) or not.
(See [108] for a discussion of some of the key unsolved problems.) So
we can expect to see much further investigation of these topics.
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Reflections on C. T. C. Wall’s work on

cobordism

Jonathan Rosenberg∗

1 Introduction

This book is intended to fulfill two main functions—to celebrate C. T. C.
Wall’s contributions to topology, and to discuss the state of surgery theory
today. This article concentrates on Wall’s first contribution to topology,
still of great significance: the completion of the calculation of the cobordism
ring Ω defined by René Thom. This subject, while not directly a part
of surgery theory, is still vital to it. Surgery theory classifies manifolds
(smooth, PL, or topological) within a given homotopy type, starting from
the observation that one can construct new manifolds from old ones by
means of surgery. It is obvious that if two manifolds are related by surgery,
then they are cobordant, and the fundamental theorem of Morse theory,
brought to the fore in this context by Milnor, shows that two (smooth)
manifolds are cobordant if and only if they are related by a sequence
of surgeries. It turns out that, in some sense, refinements of this idea
are basic to surgery theory. The notions of normal cobordism of maps,
algebraic cobordism of algebraic Poincaré complexes, and so on, play a
major role. Also, from a historical point of view, Wall’s interest in the
surgery classification of manifolds grew out of his earlier work on cobordism.
But there are also more subtle reasons for studying oriented bordism in
connection with surgery theory. For example, the symmetric signature
of Mishchenko-Ranicki may be viewed as a natural transformation from
oriented bordism to symmetric L-theory ([Ran1], §7.1; [Ran2]), and Wall’s
work on the structure of the oriented bordism spectrum may be used to
deduce facts about the structure of surgery spectra, such as the fact that
they are Eilenberg-MacLane when localized at 2 [TayW].

To explain Wall’s contribution we first need to say a few words about
Thom’s work.

∗ Partially supported by NSF Grant # DMS-96-25336.
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2 Thom’s work on cobordism

Two closed (smooth) n-manifolds Mn
1 and Mn

2 are called cobordant if there
is a compact manifold with boundary, say Wn+1, whose boundary is (dif-
feomorphic to) the disjoint union of M1 and M2. It is trivial to note that
this is an equivalence relation, and that with the addition operation de-
fined by the disjoint union of manifolds, the set Nn of cobordism classes of
closed n-manifolds is an abelian group. This group has exponent 2, since
the boundary of Mn × [0, 1] is (diffeomorphic to) M qM . Furthermore,
N =

⊕∞
n=0 Nn is a commutative graded algebra over Z/2, with multipli-

cation defined by the Cartesian product of manifolds. Thom [Thom] had
succeeded in computing this ring by reducing the calculation to a problem
in homotopy theory. This is done using the famous Thom-Pontrjagin con-
struction. For N sufficiently large, a closed n-manifold Mn may (by the
easy part of the Whitney Embedding Theorem) be embedded smoothly
in Rn+N , and (provided N is large enough) any two such embeddings are
isotopic to one another. Given such an embedding, choose a closed tubular
neighborhood T of M in Rn+N ; this is diffeomorphic to the unit disk bundle
D(E) of the normal bundle E for the embedding. By the classification the-
orem for vector bundles, E is obtained by pulling back the universal rank-N
vector bundle Eu

N = EO(N)×O(N) RN over BO(N), via a classifying map
f : M → BO(N) whose homotopy class is independent of all choices made.
Let MON be the space obtained from the unit disk bundle D(Eu

N ) of Eu
N

by collapsing the sphere bundle S(Eu
N ) to a point; this is called the Thom

space of the vector bundle Eu
N . Map Sn+N = Rn+N ∪ {∞} to T/∂T by

collapsing the complement of the interior of T to a point, and then map to
MON by the obvious map obtained from the lift of f to the bundle map
f̃ : E → Eu

N . The result is a map tM : Sn+N → MON whose homotopy
class only depends on the cobordism class of M as a smooth manifold, since
a cobordism W between M and M ′ gives rise (by a similar construction
with W in place of M) to a homotopy between the maps tM and tM ′ . Thom
showed in his fundamental paper [Thom] that in this way one obtains a nat-
ural isomorphism between Nn and πn(MO) = limN→∞ πn+N (MON ). The
inverse of the map is obtained by transversality: given t : Sn+N → MON ,
we make t transverse to the 0-section 0 of Eu

N (this requires a little techni-
cal fiddling since MON isn’t quite a manifold), and we recover Mn up to
cobordism as t−1(0). (For more details, an excellent reference is [Stong].)

It’s convenient to rework Thom’s work in more modern language. There
are maps ΣMON → MON+1 coming from the fact that the product with
R of the universal bundle Eu

N over BO(N) is pulled back from the univer-
sal bundle Eu

N+1 over BO(N + 1). Thus the sequence of spaces {MON}
forms a spectrum MO in the sense of stable homotopy theory (the best
reference on these for the beginner is [Ad2], Part III), and Thom’s result
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shows that π∗(MO) ∼= N∗. In fact, MO is even a ring spectrum, with
product MO ∧MO → MO coming from the Whitney sum of vector bun-
dles, and π∗(MO) ∼= N∗ is a ring isomorphism. Finally, to restate Thom’s
work in the modern language of spectra, Thom was able to show that MO
is a generalized Eilenberg-MacLane spectrum, and that N is a polynomial
ring over Z/2, with one generator xk in each degree k ≥ 1 not of the form
2j − 1. (Thus the first few generators are in dimensions 2 and 4, corre-
sponding to the manifolds RP2 and RP4.) The fact that the spectrum
MO is of Eilenberg-MacLane type means that the mod-2 Hurewicz map
π∗(MO) → H∗(MO; Z/2) is an injection. This has the geometric inter-
pretation that all information about (unoriented) cobordism comes from
mod-2 homology, and thus that a manifold is determined up to cobordism
by its Stiefel-Whitney characteristic numbers. Since these only depend on
the homotopy type of the manifold, homotopy equivalent manifolds are
necessarily cobordant.

Now Thom had observed in [Thom] that one can do something quite
similar with oriented manifolds. Two oriented n-manifolds Mn

1 and Mn
2

are called oriented cobordant if there is a compact oriented manifold with
boundary, say Wn+1, whose boundary is (diffeomorphic to) the disjoint
union of M1 and M2, and if the orientation on W induces the given ori-
entation on M1 and the reverse of the given orientation on M2. This is
again an equivalence relation, since the standard orientation on M × [0, 1]
induces the given orientation on M × {0} and the reverse of the given ori-
entation on M×{1}. So oriented cobordism classes of n-manifolds form an
abelian group Ωn under disjoint union, with the inverse of the class of M
given by the class of M , the same manifold as M , but with opposite orien-
tation. One finds that Ω =

⊕∞
n=0 Ωn is a graded commutative graded ring,

the oriented cobordism ring, with multiplication defined by the Cartesian
product of (oriented) manifolds. Thom’s work (slightly rephrased) showed
that the Thom-Pontrjagin construction works as before, to give an isomor-
phism Ω∗ ∼= π∗(MSO), where the ring spectrum MSO is defined the same
way as MO, but using the universal oriented bundle Eu,o

N over BSO(N)
in place of the universal unoriented bundle Eu

N over BO(N).

Rationally, Thom had no trouble in computing Ω, for Ω∗ ⊗Z Q ∼=
π∗(MSO)⊗ZQ, and rational stable homotopy is the same thing as rational
homology. Furthermore, by the Thom isomorphism for oriented vector bun-
dles (also developed in [Thom]), H̃k+N (MSON ; Q) ∼= Hk(BSO(N); Q).
Since H∗(BSO; Q) is the power series algebra in the rational Pontrjagin
classes, it easily follows that rationally, oriented cobordism is determined
by the Pontrjagin characteristic numbers. Thom deduced from this that
Ω ⊗Z Q is a polynomial algebra on the classes of the complex projective
spaces CP2j , j ≥ 1. The problem left open by Thom and solved by Wall
was the integral calculation of Ω.



52 Jonathan Rosenberg

3 Wall’s work on cobordism

The first major step in the integral calculation of Ω was taken by Milnor,
who proved:

Theorem 3.1 [Mil] Ω has no torsion of odd order.

But the hardest part of the calculation, involving the 2-primary torsion,
still remained. Some work on this had been done by Rokhlin, but not all
of it was correct. Wall’s original method for completing the calculation
of Ω was both ingenious and geometric. He introduced a new cobordism
theory W =

⊕∞
n=0 Wn, where Wn consists of cobordism classes of pairs

(Mn, f), where Mn is a closed (unoriented) n-manifold, f : M → S1, and
the pull-back under f of the canonical generator of H1(S1; Z) reduces mod
2 to w1(M). Two such pairs (Mn

1 , f1) and (Mn
2 , f2) are equivalent if there

is a compact manifold with boundary Wn+1 and a map f : W → S1 such
that ∂W = M1qM2, f restricts on Mj to fj , and the pull-back under f of
the canonical generator of H1(S1; Z) reduces mod 2 to w1(W ). (Example:
suppose M = S1 and f : M → S1 is a map of degree 2. Then the pair
(M, f) defines an element of W, since the degree of f vanishes mod 2. This
element of W is trivial, since M bounds a Möbius strip W , and f extends
to a map f̃ : W → S1, inducing an isomorphism on π1 and pulling back
the generator on H1(S1; Z/2) to w1(W ).) Note that if Mn is any closed
n-manifold, one can find an f : M → S1 for which (Mn, f) represents
a class in Wn if and only if w1(M) is the reduction of an integral class,
or if and only if βw1 = 0, where β : H1(M ; Z/2) → H2(M ; Z) is the
Bockstein operator. Since the reduction mod 2 of the Bockstein coincides
with the Steenrod operation Sq1, this condition implies Sq1w1 = 0, or
w2

1 = 0. If we drop the w1 condition, there is a forgetful map Wn →
Nn(S1) to the cobordism classes of pairs (Mn, f), where Mn is a closed
(unoriented) n-manifold, and f : M → S1. (The equivalence relation on
these pairs is as before, but without the w1 condition.) One can easily check
(cf. [Atiyah]; this is also related to results in [Wall4]) that X 7→ Nn(X)
defines a homology theory, which can be computed as Nn(X) ∼= π∗(X+ ∧
MO). (The subscript + denotes the addition of a disjoint basepoint, which
comes from the fact that we are using an unreduced homology theory here.)
Thus Nn(S1) ∼= Nn ⊕Nn−1, and the class of a pair (Mn, f) in Nn(S1) is
determined by characteristic numbers of M involving the Stiefel-Whitney
classes and the pull-back f∗(x) under f of the generator x of H1(S1; Z/2).
When the pair (Mn, f) comes from Wn, then f∗(x) = w1, so all these
characteristic numbers are thus ordinary Stiefel-Whitney numbers. It is
not hard to see from this that the forgetful map Wn → Nn is injective,
and identifies Wn with the classes in Nn of manifolds for which all Stiefel-
Whitney numbers involving w2

1 vanish.
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Now we can explain Wall’s approach [Wall1, Wall2] to the calculation
of the cobordism ring Ω. (However we will make use of some simplifications
subsequently found in the proofs. Still another variant on the argument
can be found in [Ad1].) The idea is to set up an exact triangle

Ω
2 // Ω

s
~~}}

}}
}}

}}

W,

∂

``BBBBBBBB

(1)

where 2 denotes multiplication by 2 on the abelian group Ω, s is the forgetful
map from Ω to W (an oriented manifold has w1 = 0, hence defines a class
in W), and ∂ is the boundary map (decreasing degree by 1) obtained by
“dualizing w1.” (In other words, given Mn with w1(M) the reduction of an
integral cohomology class, let Nn−1 ⊂ Mn represent the mod-2 homology
class which is the Poincaré dual (mod 2) to w1(M). This manifold inherits
an orientation from the implicit map f : M → S1. Furthermore, N as an
oriented manifold is well-defined up to cobordism.) Wall’s original proof
of the exactness of the triangle was somewhat complicated, but he gave a
simpler and more geometric proof in [Wall5]. The first part is the exactness
of Ω s→ W

∂→ Ω. We have ∂ ◦ s = 0, since if M is an oriented manifold,
then dualizing w1 gives the empty submanifold. In the other direction,
if Mn gives a class in W and ∂[Mn] = 0, that means that the Poincaré
dual of w1(M) is null-cobordant, so that all the Stiefel-Whitney numbers
of M involving w1 vanish. From Thom’s description of generators of N,
this implies that M is cobordant to something orientable. A slightly harder
part of the proof is the exactness of Ω 2→ Ω s→ W. That the composite of
the two arrows is trivial is clear, since W ⊂ N, which as an abelian group
has exponent 2. We need to show that if [M ] ∈ Ωn maps to 0 in Wn,
then [M ] is divisible by 2. The condition that [M ] ∈ Ωn maps to 0 in Wn

means that M is the boundary of an unoriented manifold Wn+1, and that
there is a map f : W → S1 whose restriction to M is null-homotopic and
such that f∗(x) = w1(W ). We may assume that f sends M to a point
in S1, say 1. Then the inverse image under f of a regular value 6= 1 of f
is a compact submanifold An which doesn’t meet the boundary of W and
thus is closed. Furthermore, A is “dual” to w1(W ) and has trivial normal
bundle. Removing an open tubular neighborhood of A from W , we obtain
a compact oriented manifold V with boundary ∂V ∼= A q A qM , so [M ]
is divisible by 2 in Ωn. Finally, we check exactness of W

∂→ Ω 2→ Ω. That
2 ◦ ∂ = 0 is obvious since W is a group of exponent 2. On the other hand,
if Mn is closed and oriented and 2[M ] = 0 in Ωn, choose Wn+1 oriented
with boundary ∂W ∼= M qM , then glue the two copies of M together to
get a closed (non-oriented) manifold V n+1 in which M is dual to w1. One
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can easily show that in this case w1(V ) comes from a map to S1, so that
V represents an element of Wn+1 with ∂[V ] = [M ].

From the exact triangle (1), Wall deduced his main result on the cobor-
dism ring:

Theorem 3.2 (Wall [Wall2]) All torsion in Ω is of order 2. The oriented
cobordism class of an oriented closed manifold is determined by its Stiefel-
Whitney and Pontrjagin numbers.

This is not just a simple corollary of the exact triangle (1), and Wall
needed some additional ingredients. One of these was a Milnor’s result
quoted above. Another was a more detailed analysis of N and W, based in
part on [Dold]. Wall showed that W is a subalgebra of N (this is obvious
from the description above involving vanishing of Stiefel-Whitney numbers
involving w2

1), and that one can choose the polynomial generators xk (k 6=
2j−1) for N so that xk is represented by an oriented manifold for k odd and
W is the subalgebra generated by xk, k not of the forms 2j or 2j − 1, and
by the x2

2j . (This is done using variants on manifolds constructed by Dold
[Dold]. The class x2

2j is represented by a complex projective space.) Finally,
Wall showed that with these choices of generators, the map s ◦∂ : W → W
is the derivation sending x2j 7→ x2j−1 (j not a power of 2) and killing
the classes x2j−1 and x2

2j . The main step in the proof of Theorem 3.2 is
therefore:

Lemma 3.3 (Wall [Wall2]) Ω has no torsion of order 2t, t > 1.

Proof. Suppose c ∈ Ωn and 2tc = 0, 2t−1c 6= 0, t > 1. Then 2 ·2t−1c = 0, so
by (1), 2t−1c = ∂y, for some y ∈ Wn+1. Also, since t > 1, 2t−1c = 2 · 2t−2c
and hence, again by (1), s

(
2t−1c

)
= 0. So s◦∂y = 0. From the description

of s ◦ ∂ above, this means y is a sum of monomials in the xk’s in which no
x2j (j not a power of 2) occurs to odd order. But each x2

k is represented by
an oriented manifold (that’s because one has alternative generators for N in
even degrees given by real projective spaces, whose squares are cobordant
to complex projective spaces ([Wall2], Proposition 3)), hence y ∈ imΩ and
thus ∂y = 0 by (1), i.e., 2t−1c = 0. This is a contradiction. ¤

Note as well that once one has proved this lemma, it follows that
the forgetful map Ω → N is injective on the torsion in Ω, and thus that
the torsion classes in Ω are detected by Stiefel-Whitney numbers. Indeed,
since all torsion in Ω is of order 2, the torsion injects into Ω/2Ω, which then
injects into W ⊂ N by (1). Wall went further than this and computed the
multiplicative structure of Ω; this depends on the fact that in the triangle
(1), W is an algebra, s is a ring homomorphism, and s ◦ ∂ is a derivation.
(One may find details in Chapter IX of [Stong].)

Aside from the above proof, there is another way of approaching The-
orem 3.2, which to the modern algebraic topologist might seem more nat-
ural. Namely, one can work entirely homotopy-theoretically, and bypass
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direct geometrical considerations altogether. The problem is one of com-
puting π∗(MSO), so one can localize at a prime p and apply the Adams
spectral sequence ([Ad2], Part III, and [Swit]) to compute π∗(MSO) from
H∗(MSO; Z/p), viewed as a comodule over the dual mod-p Steenrod al-
gebra Ap

∗. The Hurewicz map π∗(MSO) → H∗(MSO; Z/p) appears as
an edge homomorphism of this spectral sequence. Indeed, except for the
fact that he replaced homology by cohomology here, this was the approach
used in [Mil] in proving Theorem 3.1. Wall’s papers [Wall3] and [Wall6]
on the Steenrod algebra may be viewed as being motivated by this ap-
proach. In fact one can show that the Steenrod comodule structure of
H∗(MSO; Z/p) is relatively simple. For p odd, Ap

∗ is the tensor product of
an exterior algebra and a polynomial algebra, and the polynomial part is a
Hopf subalgebra. It turns out ([Swit], Lemma 20.38) that H∗(MSO; Z/p)
is a free comodule on the polynomial part of Ap

∗, and thus the Adams spec-
tral sequence is fairly easy to analyze. For p = 2, A2

∗ ∼= (Z/2)[ξ1, ξ2, . . .]
with ξi of degree 2i − 1 and with coproduct

∆(ξk) =
∑

i+j=k

ξ2i

j ⊗ ξi,

and H∗(MSO; Z/2) turns out to be the direct sum of a free A2
∗-comodule

and a free comodule over
(A∗/A∗Sq1

)∗
; this fact is basically equivalent to

one of the main results in [Wall5], for which Wall gave a simpler proof in
[Wall6]. Another proof is given in [Peng2], and the algebra structure instead
of the comodule structure is computed in [Pap1] and [Peng1]. Once again,
the Adams spectral sequence is computable (see [Swit], pages 510–516 for
details). One can obtain in this way another proof of Wall’s Theorem
3.2, with the drawback that the geometry of (1) is submerged. The com-
pensation is that the Hurewicz map π∗(MSO) → H∗(MSO; Z/p) can be
read off directly, giving a clearer explanation of the second part of Wall’s
Theorem (the fact that classes in Ω are determined by Pontrjagin and
Stiefel-Whitney numbers). A few more variants of Wall’s proof have been
given, most notably:

1. a very quick and slick proof by Taylor [Tayl] of Theorem 3.2, which
uses the Atiyah-Hirzebruch spectral sequence to study the Hurewicz
maps for MSO with Z/2 and Z/4 coefficients;

2. a proof of Gray [Gray], which uses a purely algebraic description of
W, together with multiplicative structure of the Atiyah-Hirzebruch
spectral sequence; and

3. a proof of Papastavridis [Pap2], a variant on the Adams spectral
sequence approach.
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4 Cobordism theory since Wall’s work

Wall’s paper [Wall2] on cobordism contains the words:

In fact, all properties of Ω are as simple as they could possibly
be (if my results should strike the reader as complicated, let
him try and work out cobordism theory for the spinor group).

The implicit challenge here was to compute Ωspin, the cobordism ring of
oriented manifolds equipped with spin structures (or equivalently, lifts of
the stable normal bundle M → BSO to a map M → BSpin, where
Spin(n) is the double cover of SO(n)). This challenge was eventually met
by Anderson, Brown, and Peterson [AnBrP], and indeed the answer is
quite complicated. However, there are a few similarities to Wall’s work
on Ω, which certainly served as an important model. Again, all torsion
is of order 2, and again, the Z/2-homology of the relevant Thom spec-
trum MSpin is a direct sum of relatively simple A2

∗-comodules of only
a few types. The difference between MSpin and MSO at the prime 2
turns out to involve, as one would expect, primarily Sq2. More precisely,
A(1)∗ = (Z/2)[ξ1, ξ2, . . .]/(ξ4

1 , ξ2
2 , . . .) is dual to the subalgebra of A∗2 gen-

erated by Sq1 and Sq2, and H∗(MSpin; Z/2) turns out to be a direct
sum of A2

∗-comodules of the form A∗¤A(1)∗M , with M one of three A(1)∗-
comodules, just as if A(0)∗ is dual to the subalgebra of A∗2 generated by
Sq1, then H∗(MSO; Z/2) turns out to be a direct sum of A2

∗-comodules
of the form A∗¤A(0)∗M , with M one of two A(0)∗-comodules. In fact, the
[AnBrP] proof of this relies quite heavily on the technique developed by
Wall in [Wall6]. This technology can be carried quite far (see for example
[Stolz]), and has applications which will be discussed elsewhere in these
volumes, especially in the chapters [RS] on positive scalar curvature and
[Tms] on elliptic cohomology.

While it would take us quite far afield to discuss everything that’s hap-
pened in cobordism theory since Wall’s fundamental papers, much of which
can be found in the book [Stong] or the survey [Land1], we should mention
what are perhaps the most important trends. They stem from remarkable
properties of the spectrum MU for complex cobordism ΩU (the cobordism
theory for manifolds with an almost complex structure on the stable nor-
mal bundle), which are described in detail in the books [Ad2] and [Rav].
It turns out not only that ΩU is a polynomial ring over Z [Mil], but also
that this ring carries a natural “formal group” structure coming from the
Conner-Floyd Chern classes. Quillen [Quil] proved that the formal group
law on ΩU is “universal,” i.e., that it can be mapped to every other (one-
dimensional commutative) formal group law. From Quillen’s theorem one
can deduce (see for instance [Rav], Chapter 4, or [Ad2], Part II, §§15–16)
that when localized at a prime p, MU splits as a sum of suspensions of a
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very special spectrum BP, which plays a very important role in modern
stable homotopy theory. For example, one obtains from it the “Morava K-
theory” spectra K(n), which are periodic of periods 2(pn−1). When p = 2
and n = 1, K(n) is just ordinary complex K-theory with Z/2 coefficients,
but the other cases have no such simple geometric interpretations. This
fact is related (see [Rav], p. 135) to the Conner-Floyd Theorem [CoF] that
complex K-theory may be simply constructed out of complex cobordism
as

K∗(X) ∼= ΩU
∗ (X)⊗ΩU∗ K∗(pt). (2)

There is no direct link between all this and Wall’s work on cobordism,
though it does turn out that MSO when localized at an odd prime splits
as a sum of suspensions of BP, even though MSO localized at 2 looks
quite different and is a direct sum of (shifted) Eilenberg-MacLane spectra
for the groups Z(2) and Z/2. As pointed out in [TayW], this is immediately
related to the structure of the L-spectra which are discussed elsewhere in
this volume, which are KO-module spectra at odd primes and Eilenberg-
MacLane at 2. The reason is that L•(Z) is an MSO-module spectrum,
and all other L-spectra are module spectra over L•(Z) and hence also over
MSO.

A related development is the recent interest in “elliptic homology” the-
ories, and their connection with cobordism. To explain something about
these one first needs the idea of a “genus,” which in its most general formu-
lation is simply a ring homomorphism from some cobordism ring to some
standard commutative ring Λ (such as Q). The important classical exam-
ples are the mod 2 Euler characteristic N → Z/2, the signature Ω → Z
for oriented manifolds, the Todd genus ΩU → Z for complex manifolds,
and the Â-genus Ωspin → Z. Under favorable circumstances, a genus is
really the induced map on homotopy groups of some map of ring spec-
tra. For example, the K-orientation of complex manifolds gives a map of
ring spectra MU → K, which when composed with the Chern character
to ordinary homology, gives rise on taking homotopy groups to the Todd
genus, and the KO-orientation of spin manifolds gives a map of ring spectra
MSpin → KO which, when composed with the Pontrjagin character to
ordinary homology, gives rise on taking homotopy groups to the Â-genus.

Now if Λ is a Q-algebra and ϕ : Ω → Λ is a genus, Hirzebruch associated
to ϕ the formal power series

g(x) =
∞∑

n=0

1
2n+1ϕ(CP2n)x2n+1.

It was discovered by Ochanine [Och1] that the genus ϕ vanishes on all
manifolds of the form CP(ξ) with ξ an even-dimensional complex vector
bundle over a closed oriented manifold if and only if g(x) is an elliptic
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integral

g(x) =
∫ x

0

1√
1− 2δz2 + εz4

dz. (3)

In this case ϕ is called an elliptic genus. (For expositions of all this, see the
papers in [Land2], especially Landweber’s survey on pages 55–68, or the
book [HiBeJ], as well as [Tms].) This suggested the search for multiplicative
homology theories, related to cobordism spectra, whose coefficient rings
are rings of automorphic forms (of which elliptic integrals are a special
case). The first result in this direction was the discovery by Landweber,
Ravenel, and Stong [LaRS] of a multiplicative homology theory at odd
primes, having coefficient ring M = Z[ 12 ][δ, ε]. They showed the elliptic
genus associated to (3) gives a ring homomorphism Ω → M , and that while
X 7→ Ω∗(X)⊗Ω M is not a homology theory, it becomes a homology theory
after inverting ε, δ2 − ε, or the discriminant ∆ = ε(δ2 − ε)2. (The proof
relies on the fact that at odd primes, MSO closely resembles MU, together
with universality of the formal group law on MU.) For another proof
and related results, see also [Fr], [Bryl], [Bak], and [Tms]. More dramatic
are recent elegant results of [KrSt] and [Hov], which construct integral
homology theories El∗ out of spin cobordism, which agree with various
versions of the Landweber, Ravenel, and Stong theory at odd primes. For
the work of Kreck and Stolz, an understanding of the very delicate structure
of H∗(MSpin; Z/2) as a comodule over A2

∗ is the key. This structure gives
rise to theorems of Conner-Floyd type analogous to (2):

El∗(X) ∼= Ωspin
∗ (X)⊗Ωspin

∗
El∗(pt),

KO∗(X) ∼= El∗(X)⊗El∗(pt) KO∗(pt)

([HoHo], [Hov]). As we’ve seen, the roots of our understanding of this may
be traced back to Wall’s work on cobordism.
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de cobordisme Ω, Bull. Soc. Math. France 87 (1959), 281–284.

[Ad2] J. F. Adams, Stable Homotopy and Generalised Homology,
Chicago Lectures in Math., vol. 17, Univ. of Chicago Press,
Chicago, 1974; reprinted, 1995.

[AnBrP] D. W. Anderson, E. H. Brown, Jr., and F. P. Peterson, The struc-
ture of the spin cobordism ring, Ann. of Math. 86 (1967), 271–298.

[Atiyah] M. F. Atiyah, Bordism and cobordism, Proc. Camb. Phil. Soc. 57
(1961), 200–208.



Reflections on C. T. C. Wall’s work on cobordism 59

[Bak] A. Baker, Elliptic genera of level N and elliptic cohomology, J.
London Math. Soc. (2) 49 (1994), 581–593.

[Bryl] J.-L. Brylinski, Representations of loop groups, Dirac operators
on loop space, and modular forms, Topology 29 (1990), 461–480.

[CoF] P. E. Conner and E. E. Floyd, The relation of cobordism to K-
theories, Lecture Notes in Math., vol. 28 , Springer-Verlag, Berlin
and New York, 1966.

[Dold] A. Dold, Erzeugende der Thomschen Algebra N∗, Math. Z. 65
(1956), 25–35.

[Gray] B. Gray, Products in the Atiyah-Hirzebruch spectral sequence and
the calculation of MSO∗, Trans. Amer. Math. Soc. 260 (1980),
475–483.

[Fr] J. Franke, On the construction of elliptic cohomology, Math.
Nachr. 158 (1992), 43–65.

[HiBeJ] F. Hirzebruch, T. Berger, and R. Jung, Manifolds and modular
forms (with appendices by N.-P. Skoruppa and by P. Baum), As-
pects of Math., vol. 20, Vieweg, Braunschweig, 1992.

[HoHo] M. J. Hopkins and M. A. Hovey, Spin cobordism determines real
K-theory, Math. Z. 210 (1992), 181–196.

[Hov] M. A. Hovey, Spin bordism and elliptic homology, Math. Z. 219
(1995), 163–170.

[KrSt] M. Kreck and S. Stolz, HP2-bundles and elliptic homology, Acta
Math. 171 (1993), 231–261.

[Land1] P. S. Landweber, A survey of bordism and cobordism, Math. Proc.
Cambridge Philos. Soc. 100 (1986), 207–223.

[Land2] P. S. Landweber (editor), Elliptic curves and modular forms in
algebraic topology, Proceedings, Princeton, 1986, Lecture Notes
in Math., vol. 1326, Springer-Verlag, Berlin and New York, 1988.

[LaRS] P. S. Landweber, D. C. Ravenel, and R. E. Stong, Periodic coho-
mology theories defined by elliptic curves, in The Čech centennial
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Introduction

Wall’s finiteness obstruction is an algebraic K-theory invariant which
decides if a finitely dominated space is homotopy equivalent to a finite
CW complex. The invariant was originally formulated in the context of
surgery on CW complexes, generalizing Swan’s application of algebraic
K-theory to the study of free actions of finite groups on spheres. In the
context of surgery on manifolds, the invariant first arose as the Siebenmann
obstruction to closing a tame end of a non-compact manifold. The object
of this survey is to describe the Wall finiteness obstruction and some of
its many applications to the surgery classification of manifolds. The book
of Varadarajan [38] and the survey of Mislin [24] deal with the finiteness
obstruction from a more homotopy theoretic point of view.

1. Finite domination

A space is finitely dominated if it is a homotopy retract of a finite com-
plex. More formally:

Definition 1.1. A topological space X is finitely dominated if there exists
a finite CW complex K with maps d : K → X, s : X → K and a homotopy

d ◦ s ' idX : X → X .
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Example 1.2. (i) A compact ANR X is finitely dominated (Borsuk [3]).
In fact, a finite dimensional ANR X can be embedded in RN (N large),
and X is a retract of an open neighbourhood U ⊂ RN – there exist a
retraction r : U → X and a compact polyhedron K ⊂ U such that X ⊂ K,
so that the restriction d = r| : K → X and the inclusion s : X → K are
such that d ◦ s = idX : X → X .
(ii) A compact topological manifold is a compact ANR, and hence finitely
dominated.

The problem of deciding if a compact ANR is homotopy equivalent to a
finite CW complex was first formulated by Borsuk [4]. (The problem was
solved affirmatively for manifolds by Kirby and Siebenmann in 1969, and in
general by West in 1974 – see section 8 below.) The problem of deciding if
a finitely dominated space is homotopy equivalent to a finite CW complex
was first formulated by J.H.C.Whitehead. Milnor [23] remarked: “It would
be interesting to ask if every space which is dominated by a finite complex
actually has the homotopy type of a finite complex. This is true in the
simply connected case, but seems like a difficult problem in general.”

Here is a useful criterion for recognizing finite domination:

Proposition 1.3. A CW complex X is finitely dominated if and only if
there is a homotopy ht : X → X such that h0 = id and h1(X) has compact
closure.

Proof. If d : K → X is a finite domination with right inverse s, let ht be
a homotopy from the identity to d ◦ s. Since h1(X) ⊂ d(K), the closure of
h1(X) is compact in X. Conversely, if the closure of h1(X) is compact in
X, let K be a finite subcomplex of X containing h1(X). Setting d equal to
the inclusion K → X and s equal to h1 : X → K shows that X is finitely
dominated.

It is possible to relate finitely dominated spaces, finitely dominated CW
complexes and spaces of the homotopy type of CW complexes, as follows.

Proposition 1.4. (i) A finitely dominated topological space X is homotopy
equivalent to a countable CW complex.
(ii) If X is homotopy dominated by a finite k-dimensional CW complex,
then X is homotopy equivalent to a countable (k + 1)-dimensional CW
complex.

Proof. The key result is the trick of Mather [22], which shows that if d :
K → X, s : X → K are maps such that d ◦ s ' idX : X → X then X
is homotopy equivalent to the mapping telescope of s ◦ d : K → K. This
requires the calculus of mapping cylinders, which we now recall.
By definition, the mapping cylinder of a map f : K → L is the identification
space

M(f) = (K × [0, 1] ∪ L)/((x, 1) ∼ f(x)) .
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We shall use three general facts about mapping cylinders:

• If f : K → L and g : L → M are maps and k : K → M is homotopic
to g◦f , the mapping cylinder M(k) is homotopy equivalent rel K∪M
to the concatenation of the mapping cylinders M(f) and M(g) rel
K ∪M .

• If f, g : K → L with f ∼ g, then the mapping cylinder of f is
homotopy equivalent to the mapping cylinder of g rel K ∪ L.

• Every mapping cylinder is homotopy equivalent to its base rel the
base.

The mapping telescope of a map α : K → K is the countable union
∞⋃

i=0

M(α) =
∞⋃

i=0

K × [i, i + 1]/{(x, i) ∼ (α(x), i + 1)} .

For any maps d : K → X, s : X → K we have
∞⋃

i=0

M(d ◦ s) = X × I ∪
∞⋃

i=0

M(s ◦ d)

with
⋃∞

i=0 M(s ◦ d) a deformation retract, so that

∞⋃

i=0

M(d ◦ s) '
∞⋃

i=0

M(s ◦ d) .

To see why this holds, note that
⋃∞

i=0 M(d◦s) is homotopy equivalent to an
infinite concatenation of alternating M(d)’s and M(s)’s which can also be
thought of as an infinite concatenation of M(s)’s and M(d)’s. Essentially,
we’re reassociating an infinite product. Here is a picture of this part of the
construction.

. . .

. . .

. . .
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(i) If d : K → X, s : X → K are such that d ◦ s ' idX : X → X there is
defined a homotopy idempotent of a finite CW complex

α = s ◦ d : K → K ,

with α ◦ α ' α : K → K. We have homotopy equivalences

X ' X × [0,∞) '
∞⋃

i=0

M(idX) '
∞⋃

i=0

M(d ◦ s) '
∞⋃

i=0

M(s ◦ d) =
∞⋃

i=0

M(α).

The mapping telescope
⋃∞

i=0 M(α) is a countable CW complex.
(ii) As for (i), but with K k-dimensional.

This proposition is comforting because it shows that the finiteness prob-
lem for arbitrary topological spaces reduces to the finiteness problem for
CW complexes. One useful consequence of this is that we can use the
usual machinery of algebraic topology, including the Hurewicz and White-
head theorems, to detect homotopy equivalences.

Proposition 1.5. (Mather [22]) A topological space X is finitely domi-
nated if and only if X×S1 is homotopy equivalent to a finite CW complex.

Proof. The mapping torus of a map α : K → K is defined (as usual) by

T (α) = (K × [0, 1])/{(x, 0) ∼ (α(x), 1)} .

For any maps d : K → X, s : X → K there is defined a homotopy
equivalence

T (d ◦ s : X → X) → T (s ◦ d : K → K) ; (x, t) 7→ (s(x), t) .

If d ◦ s ' idX : X → X and K is a finite CW complex we thus have
homotopy equivalences

X × S1 ' T (idX) ' T (s ◦ d)

with T (s ◦ d) a finite CW complex.
Conversely, if X × S1 is homotopy equivalent to a finite CW complex K
then the maps

d : K ' X × S1 proj.−→ X , s : X
incl.−→ X × S1 ' K

are such that d ◦ s ' idX , and X is dominated by K.

2. The projective class group K0

Let Λ be a ring (associative, with 1).

Definition 2.1. A Λ-module P is f. g. projective if it is a direct summand
of a f. g. (= finitely generated) free Λ-module Λn, with P ⊕ Q = Λn for
some direct complement Q.

A Λ-module P is f. g. projective if and only if P is isomorphic to im(p)
for some projection p = p2 : Λn → Λn.
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Definition 2.2. (i) The projective class group K0(Λ) is the Grothendieck
group of stable isomorphism classes of f. g. projective Λ-modules.
(ii) The reduced projective class group K̃0(Λ) is the quotient of K0(Λ) by the
subgroup generated by formal differences [Λm]− [Λn] of f. g. free modules.

Thus an element of K̃0(Λ) is an equivalence class [P ] of f. g. projective
Λ-modules, with [P1] = [P2] if and only if there are f. g. free Λ-modules
F1 and F2 so that P1 ⊕ F1 is isomorphic to P2 ⊕ F2. In particular, [P ] is
trivial if and only if P is stably free, that is, if there is a f. g. free module
F so that P ⊕ F is free.

Chapter 1 of Rosenberg [35] is a general introduction to the projec-
tive class groups K0(Λ), K̃0(Λ) and their applications, including the Wall
finiteness obstruction.

Example 2.3. There are many groups π for which

K̃0(Z[π]) = 0 ,

including virtually polycyclic groups, a class which includes free and free
abelian groups.

At present, no example is known of a torsion-free infinite group π with
K̃0(Z[π]) 6= 0. Indeed, Hsiang has conjectured that K̃0(Z[π]) = 0 for any
torsion-free group π. (See Farrell and Jones [11], pp. 9–11). On the other
hand:

Example 2.4. (i) There are many finite groups π for which

K̃0(Z[π]) 6= 0 ,

including the cyclic group Z23.
(ii) The reduced projective class group of the quaternion group

Q(8) = {±1,±i,±j,±k}
is the cyclic group with 2 elements

K̃0(Z[Q(8)]) = Z2 ,

generated by the f. g. projective Z[Q(8)]-module

P = im
( (

1− 8N 21N

−3N 8N

)
: Z[Q(8)]⊕ Z[Q(8)] → Z[Q(8)]⊕ Z[Q(8)]

)

with N =
∑

g∈Q(8)

g.

We refer to Oliver [25] for a survey of the computations of K̃0(Z[π]) for
finite groups π.



68 Steve Ferry and Andrew Ranicki

3. The finiteness obstruction

Here is the statement of Wall’s theorem.

Theorem 3.1. ([39],[40]) (i) A finitely dominated space X has a finiteness
obstruction

[X] ∈ K̃0(Z[π1(X)])

such that [X] = 0 if and only if X is homotopy equivalent to a finite CW
complex.
(ii) If π is a finitely presented group then every element σ ∈ K̃0(Z[π]) is the
finiteness obstruction of a finitely dominated CW complex X with [X] = σ,
π1(X) = π.
(iii) A CW complex X is finitely dominated if and only if π1(X) is finitely
presented and the cellular Z[π1(X)]-module chain complex C∗(X̃) of the
universal cover X̃ is chain homotopy equivalent to a finite chain complex
P of f. g. projective Z[π1(X)]-modules.

Outline of proof (i) Here is an extremely condensed sketch of Wall’s argu-
ment from [39]. If d : K → X is a finite domination with X a CW complex,
we can assume that d is an inclusion by replacing X, if necessary, by the
mapping cylinder of d. For each ` ≥ 2, we then have a split short exact
sequence of abelian groups

0 → π`+1(X,K) → π`(K) → π`(X) → 0 .

Wall gives a special argument to show that d can be taken to induce an
isomorphism on π1 and then shows that π`+1(X, K) is f. g. as a module over
Z[π1(X)], provided that πq(X, K) = 0 for q ≤ `, ` ≥ 2. This allows him to
attach `+1-cells to form a complex K ⊃ K and a map d : K → X extending
d so that d induces isomorphisms on homotopy groups through dimension
`. Since d is a domination with the same right inverse s, this process can
be repeated. In the case ` ≥ dim(K), Wall shows that π`+1(X,K) is a f. g.
projective module over Z[π1(X)]. If π`+1(X, K) is free (or even stably free)
we can attach `+1-cells to kill π`+1(X, K) without creating new problems
in higher dimensions. The result is that d is a homotopy equivalence from
K to X. If this module is not stably free, we are stuck and the finiteness
obstruction is defined to be

[X] = (−1)`+1[π`+1(X, K)] ∈ K̃0(Z[π1(X)]) .

(ii) Given a finite CW complex K and a nontrivial σ ∈ K̃0(Z[π1(K)]), here
is one way to construct a CW complex with finiteness obstruction ±σ: let
σ be represented by a f. g. projective module P and let F = P ⊕Q be free
of rank n. Let A be the matrix of the projection p : F → P → F with
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respect to a standard basis for F . Now let

L = K ∨
n∨

i=1

S`
i .

There is a split short exact sequence

0 // π`(K)
i∗

// π`(L)
r∗oo // π`(L, K) // 0,

where r : L → K is the retraction which sends the S`’s to the basepoint.
Since

π`(L,K) ∼= π`(L̃, K̃) ∼= H`(L̃, K̃) ∼= F,

we can define α : L → L so that α|K = id and so that α∗ : π`(L) → π`(L)
has the matrix (

id 0
0 A

)

with respect to the direct sum decomposition π`(L) ∼= π`(K) ⊕ F . Since
A2 = A, it is easy to check that α is homotopy idempotent, i.e. that
α ◦ α ∼ α rel K.

Let X be the infinite direct mapping telescope of α pictured below.

Let d : L → X be the inclusion of L into the top level of the leftmost
mapping cylinder of X and define s′ : X → L by setting s′ equal to α on
each copy of L and using the homotopies α ◦ α ∼ α to extend over the
rest of X. One sees easily that d ◦ s′ induces the identity on the homotopy
groups of X and is therefore a homotopy equivalence. If φ is a homotopy
inverse for d◦ s′, we have d◦ s ∼ id, where s = s′ ◦φ. This means the d is a
finite domination with right inverse s. It turns out that [X] = (−1)`+1[P ].

(iii) If X is dominated by a finite CW complex K then π1(X) is a retract of
the finitely presented group π1(K), and is thus also finitely presented. The
cellular chain complex C∗(X̃) is a chain homotopy direct summand of the
finite f.g. free Z[π1(X)]-module chain complex Z[π1(X)] ⊗Z[π1(K)] C∗(K̃),
with K̃ the universal cover of K. It follows from the algebraic theory
of Ranicki [29] (or by the original geometric argument of Wall [40]) that
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C∗(X̃) is chain equivalent to a finite f.g. projective Z[π1(X)]-module chain
complex P.

Conversely, if π1(X) is finitely presented and C∗(X̃) is chain equivalent
to a finite f.g. projective Z[π1(X)]-module chain complex P the cellular

Z[π1(X)][z, z−1]-module chain complex of the universal cover X̃ × S1 =
X̃ × R of X × S1

C∗(X̃ × S1) = C∗(X̃)⊗Z C∗(R)

is chain equivalent to a finite f.g. free Z[π1(X)][z, z−1]-module chain com-
plex, so that X × S1 is homotopy equivalent to a finite CW complex (by
the proof of (i), using [X×S1] = 0) and X is finitely dominated by 1.5.

In particular, if π is a finitely presented group such that K̃0(Z[π]) 6= 0
then there exists a finitely dominated CW complex X with π1(X) = π
and such that X is not homotopy equivalent to a finite CW complex. See
Ferry [12] for the construction of finitely dominated compact metric spaces
(which are not ANR’s, still less CW complexes) which are not homotopy
equivalent to a finite CW complex.

Wall [40] obtained the finiteness obstruction of a finitely dominated CW

complex X from C∗(X̃), using any finite f.g. projective Z[π1(X)]-module
chain complex

P : · · · → 0 → Pn
∂→ Pn−1

∂→ · · · ∂→ P1
∂→ P0 .

chain equivalent to C∗(X̃).

Definition 3.2. The projective class of X is the projective class of P

[X] =
∞∑

i=0

(−1)i[Pi] ∈ K0(Z[π1(X)]) .

The projective class is a well-defined chain-homotopy invariant of C∗(X̃),
with components

[X] = (χ(X), [X]) ∈ K0(Z[π1(X)]) = K0(Z)⊕ K̃0(Z[π1(X)]) ,

where

χ(X) =
∞∑

i=0

(−1)i# of i-cells ∈ K0(Z) = Z

is the Euler characteristic of X, and [X] is the finiteness obstruction.

The instant finiteness obstruction (Ranicki [29]) of a finitely dominated
CW complex X is a f. g. projective Z[π1(X)]-module P representing the
finiteness obstruction

[X] = [P ] ∈ K̃0(Z[π1(X)])
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which is obtained directly from a finite domination d : K → X, s : X → K,
a homotopy h : d ◦ s ' idX : X → X and the cellular Z[π1(X)]-module
chain complex C∗(K̃) of the cover K̃ = d∗X̃ of K obtained by pullback
from the universal cover X̃ of X, namely

P = im(p : Z[π1(X)]n → Z[π1(X)]n)

with p = p2 the projection

p =




s ◦ d −∂ 0 . . .
−s ◦ h ◦ d 1− s ◦ d ∂ . . .
s ◦ h2 ◦ d s ◦ h ◦ d s ◦ d . . .

...
...

...
. . .


 :

Z[π1(X)]n =
∞∑

i=0

C∗(K̃)i →
∞∑

i=0

C∗(K̃)i

of a f. g. free Z[π1(X)]-module of rank

n =
∞∑

i=0

# of i-cells of K .

In fact, the finiteness obstruction can be obtained in this way using only
the chain homotopy projection q = s ◦ d ' q2 : C∗(K̃) → C∗(K̃) induced
by the homotopy idempotent q = s ◦ d ' q2 : K → K (Lück and Ranicki
[20]).

The finiteness obstruction has many of the usual properties of the Euler
characteristic χ. For instance, if X is the union of finitely dominated
complexes X1 and X2 along a common finitely dominated subcomplex X0,
then

[X] = i1∗[X1] + i2∗[X2]− i0∗[X0].

This is the sum theorem for finiteness obstructions, which was originally
proved in Siebenmann’s thesis [36].

The projective class of the product X × Y of finitely dominated CW
complexes X, Y is given by

[X × Y ] = [X]⊗ [Y ] ∈ K0(Z[π1(X × Y )]) ,

leading to the product formula of Gersten [14] for the finiteness obstruction

[X × Y ] = χ(X)⊗ [Y ] + [X]⊗ χ(Y ) + [X]⊗ [Y ] ∈ K̃0(Z[π1(X × Y )]) .

In particular, [X × S1] = 0, giving an algebraic proof of the result (1.5)
that X × S1 is homotopy equivalent to a finite CW complex.

A fibration p : E → B with finitely dominated fibre F induces transfer
maps in the projective class groups

p ! : K0(Z[π1(B)]) → K0(Z[π1(E)]) ; [X] 7→ [Y ]
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sending the projective class of a finitely dominated CW complex X with
a π1-isomorphism f : X → B to the projective class of the pullback Y =
f !E, which is a finitely dominated CW complex with a π1-isomorphism
f ! : Y → E

F

²²

F

²²
Y

f !

//

²²

E

p
²²

X
f // B

Lück [18] obtained the following algebraic description of p !, generalizing
the product formula.1 Let F̃ be the pullback to F of the universal cover Ẽ
of E. The fibration p induces a morphism of rings

U : Z[π1(B)] → H0(HomZ[π1(E)](C∗(F̃ ), C∗(F̃ )))op

sending the homotopy class of a loop ω : S1 → B to the chain homotopy
class of the parallel transport chain equivalence U(ω) : C∗(F̃ ) → C∗(F̃ ). A
f. g. projective Z[π1(B)]-module

Q = im(q : Z[π1(B)]n → Z[π1(B)]n) (q = q2)

induces a Z[π1(E)]-module chain complex

Q ! = C(U(q) : C∗(F̃ )n → C∗(F̃ )n) (U(q) ' U(q)2)

which is algebraically finitely dominated, i.e. chain equivalent to a finite
f. g. projective chain complex. The transfer map is given algebraically by

p ![Q] = [Q !] ∈ K0(Z[π1(E)]) .

4. The topological space-form problem

Another problem in which a finiteness obstruction arises is the topological
space-form problem. This is the problem of determining which groups can
act freely and properly discontinuously on Sn for some n.

Swan, [37], solved a homotopy version of this problem by proving that
a finite group G of order n which has periodic cohomology of period q acts
freely on a finite complex of dimension dq−1 which is homotopy equivalent
to a (dq− 1)-sphere. Here, d is the greatest common divisor of n and φ(n),
φ being Euler’s φ-function.

One might ask whether such a G can act on Sq−1, but this refinement
leads to a finiteness obstruction. It follows from Swan’s argument that G

1See Lück and Ranicki [19] for the algebraic transfer map in the surgery obstruction
groups.
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acts freely on a countable q−1-dimensional complex X homotopy equivalent
to Sq−1 and that X/G is finitely dominated. The finiteness obstruction of
X/G need not be zero, however, so not every group with cohomology of
period q can act freely on a finite complex homotopy equivalent to Sq−1.
Algebraically, the point is that finite groups with q-periodic cohomology
have q-periodic resolutions by f. g. projective modules but need not have
q-periodic resolutions by f. g. free modules.

After a great deal of work involving both the finiteness obstruction and
surgery theory, see Madsen, Thomas and Wall [21], it turned out that a
group G acts freely on Sn for some n if and only if all of its subgroups of
order p2 and 2p are cyclic (the condition of Milnor). This is in contrast to
the linear case. A group G acts linearly on Sn for some n if and only if all
subgroups of order pq, p and q not necessarily distinct primes, are cyclic.
See Davis and Milgram [9] for a book-length treatment, and Weinberger
[41], p. 110, for a brief discussion.

5. The Siebenmann end obstruction

The most significant application of the finiteness obstruction to the
topology of manifolds is via the end obstruction.

An end ε of an open n-dimensional manifold W is tame if there exists
a sequence W ⊃ U1 ⊃ U2 ⊃ . . . of finitely dominated neighbourhoods of ε
with ⋂

i

Ui = ∅ , π1(U1) ∼= π1(U2) ∼= · · · ∼= π1(ε) .

The end is collared if there exists a neighbourhood of the type M × [0,∞)
for some closed (n− 1)-dimensional manifold M , i.e. if ε is the interior of
a compactification W ∪M with boundary component M .

Theorem 5.1. (Siebenmann [36]) A tame end ε of an open n-dimensional
manifold W has an end obstruction

[ε] = lim−→i [Ui] ∈ K̃0(Z[π1(ε)])

such that [ε] = 0 if (and for n ≥ 6 only if) ε can be collared.

Novikov’s 1965 proof of the topological invariance of the rational Pon-
trjagin classes made use of the end obstruction in the unobstructed case
when π is a free abelian group. The subsequent work of Lashof, Rothen-
berg, Casson, Sullivan, Kirby and Siebenmann on the Hauptvermutung for
high-dimensional manifolds made overt use of the end obstruction ([33]).

See sections 7 and 8 below for brief accounts of the applications of the
end obstruction to splitting theorems and triangulation of high-dimensional
manifolds.
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See Chapman [7], Quinn [27], [28] and Connolly and Vajiac [8] for the
controlled end obstruction, and Ranicki [32] for the bounded end obstruc-
tion.

See Hughes and Ranicki [15] for a book-length treatment of ends and
the end obstruction.

6. Connections with Whitehead torsion

The finiteness obstruction deals with the existence of a finite CW com-
plex K in a homotopy type, while Whitehead torsion deals with the unique-
ness of K. There are many deep connections between the finiteness obstruc-
tion and Whitehead torsion, which on the purely algebraic level correspond
to the connections between the algebraic K-groups K0, K1 (or rather K̃0,
Wh).

The splitting theorem of Bass, Heller and Swan [2]

Wh(π × Z) = Wh(π)⊕ K̃0(Z[π])⊕ Ñil0(Z[π])⊕ Ñil0(Z[π])

involves a split injection

K̃0(Z[π]) → Wh(π × Z) ; [P ] 7→ τ(z : P [z, z−1] → P [z, z−1]) . (∗)
If X is a finitely dominated space then 1.5 gives a homotopy equivalence

φ : X×S1 → K to a finite CW complex K, uniquely up to simple homotopy
equivalence. Ferry [13] identified the finiteness obstruction [X] ∈ K̃0(Z[π])
(π = π1(X)) with the Whitehead torsion τ(f) ∈ Wh(π × Z) of the com-
posite self homotopy equivalence of a finite CW complex

f : K
φ−1

−→ X × S1 idX×−1−→ X × S1 φ−→ K .

In Ranicki [30],[31] it was shown that [X] 7→ τ(f) corresponds to the split
injection

K̃0(Z[π]) → Wh(π × Z) ; [P ] 7→ τ(−z : P [z, z−1] → P [z, z−1])

which is different from the original split injection (∗) of [2].

7. The splitting obstruction

The finiteness obstruction arises in most classification problems in high-
dimensional topology. Loosely speaking, proving that two manifolds are
homeomorphic involves decomposing them into homeomorphic pieces. The
finiteness obstruction is part of the obstruction to splitting a manifold into
pieces. The nonsimply-connected version of Browder’s M × R Theorem is
a case in point. In [5], Browder proved that if Mn, n ≥ 6, is a PL manifold
without boundary, f : M → K×R1 is a (PL) proper homotopy equivalence,
and K is a simply-connected finite complex, then M is homeomorphic to
N × R1 for some closed manifold N homotopy equivalent to K.
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When K is connected but not simply-connected, a finiteness obstruction
arises. Here is a quick sketch of the argument: It is not difficult to show
that M is 2-ended. The proper homotopy equivalence f : M → K ×
R1 gives us a proper PL map p : M → R. If c ∈ R is not the image
of any vertex, then p−1(c) is a bicollared PL submanifold of M which
separates the ends. Connected summing components along arcs allows us
to assume that P0 = p−1(c) is connected and a disk-trading argument
similar to one in Browder’s paper allows us to assume that π1P0 → π1M
is an isomorphism. See Siebenmann [36] for details. An application of the
recognition criterion discussed in the third paragraph of this paper shows
that the two components of M − P0, which we denote by RHS(M) and
LHS(M), respectively, are finitely dominated. By the sum theorem,

[RHS(M)] + [LHS(M)] = 0 ∈ K̃0(Z[π1(M)]) .

It turns out that the vanishing of [RHS(M)] = −[LHS(M)] is necessary
and sufficient for M to be homeomorphic to a product N × R, provided
that dim(M) ≥ 6. This is one of the main results of [36].

It is possible to realize the finiteness obstruction σ ∈ K̃0(Z[π1(K)]) for an
n-dimensional manifold Mn proper homotopy equivalent to K×R for some
finite K whenever σ+(−1)n−1σ∗ = 0 and n ≥ 6. If we only require that M
be properly dominated by some K × R, then any finiteness obstruction σ
can be realized (cf. Pedersen and Ranicki [26]). A similar obstruction arises
in the problem of determining whether a map p : Mn → S1 is homotopic
to the projection map of a fiber bundle (Farrell [10]).

The geometric splitting of two-ended open manifolds into right and left
sides is closely related to the proof of the algebraic splitting theorem of
Bass, Heller and Swan [2] for Wh(π × Z) – see Ranicki [32].

8. The triangulation of manifolds

The finiteness obstruction arises in connection with another of the fun-
damental problems of topology: Is every compact topological manifold with-
out boundary homeomorphic to a finite polyhedron? We will examine this
problem in much greater detail.
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The triangulation problem was solved affirmatively for two-dimensional
manifolds by Rado in 1924 and for three-dimensional manifolds by Moise
in 1952. Higher dimensions proved less tractable,2 a circumstance which
encouraged the formulation of weaker questions such as the following homo-
topy triangulation problem: Does every compact topological manifold have
the homotopy type of some finite polyhedron?

The first solution of this problem came as a corollary to Kirby and
Siebenmann’s theory of PL triangulations of high-dimensional topological
manifolds. By a theorem of Hirsch, every topological manifold Mn has a
well-defined stable topological normal disk bundle. The total space of this
bundle is a closed neighborhood of M in some high-dimensional euclidean
space. In [16], Kirby and Siebenmann proved that a topological n-manifold,
n ≥ 6, has a PL structure if and only if this stable normal bundle reduces
from TOP to PL. As an immediate corollary, they deduced that every
compact topological manifold has the homotopy type of a finite polyhe-
dron, since each M is homotopy equivalent to the total space of the unit
disk bundle of its normal disk bundle and the total space of the normal
disk bundle is a PL manifold because its normal bundle is trivial. The
argument of Kirby and Siebenmann also shows that each compact topo-
logical manifold has a well-defined simple homotopy type. A more refined
argument, see p.104 of Kirby and Siebenmann [17], shows that every closed
topological manifold of dimension ≥ 6 is a TOP handlebody. From this it
follows immediately that every compact topological manifold is homotopy
equivalent to a finite CW complex and therefore to a finite polyhedron.

This positive solution to the homotopy-triangulation problem suggests
that we should look for large naturally-occurring classes of compact topo-
logical spaces which have the homotopy types of finite polyhedra. In 1954,
K. Borsuk [4] conjectured that every compact metrizable ANR should have
the homotopy type of a finite polyhedron. This became widely known as
Borsuk’s Conjecture.

The Borsuk Conjecture was solved by J. E. West, [42], using results of
T. A. Chapman, which, in turn, were based on an infinite-dimensional ver-
sion of Kirby-Siebenmann’s handle-straightening argument. In a nutshell,
Chapman proved that every compact manifold modeled on the Hilbert cube
(≡ ∏∞

i=1[0, 1]) is homotopy equivalent to a finite complex and West showed
that every compact ANR3 is homotopy equivalent to a compact manifold

2In fact, Casson has shown that there are compact four-manifolds without boundary
which are not homeomorphic to finite polyhedra (Akbulut and McCarthy [1], p.xvi).
The question is still open in dimensions greater than or equal to five.

3A compact metrizable space X is an ANR if and only if it embeds as a neighborhood
retract in separable Hilbert space. If X has finite covering dimension ≤ n, separable
Hilbert space can be replaced by R2n+1.
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modeled on the Hilbert cube. A rather short finite-dimensional proof of
the topological invariance of Whitehead torsion, together with the Borsuk
Conjecture was given by Chapman in [6]. See Ranicki and Yamasaki [34]
for a more recent proof, which makes use of controlled algebraic K-theory.
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An introduction to algebraic surgery
Andrew Ranicki

Introduction

Surgery theory investigates the homotopy types of manifolds, using a
combination of algebra and topology. It is the aim of these notes to provide
an introduction to the more algebraic aspects of the theory, without losing
sight of the geometric motivation.

0.1 Historical background

A closed m-dimensional topological manifold M has Poincaré duality
isomorphisms

Hm−∗(M) ∼= H∗(M) .

In order for a space X to be homotopy equivalent to an m-dimensional
manifold it is thus necessary (but not in general sufficient) for X to be
an m-dimensional Poincaré duality space, with Hm−∗(X) ∼= H∗(X). The
topological structure set STOP (X) is defined to be the set of equivalence
classes of pairs

(m-dimensional manifold M , homotopy equivalence h : M → X)

subject to the equivalence relation
(M,h) ∼ (M ′, h′) if there exists a homeomorphism

f : M → M ′ such that h′f ' h : M → X.

The basic problem of surgery theory is to decide if a Poincaré complex X
is homotopy equivalent to a manifold (i.e. if STOP (X) is non-empty), and
if so to compute STOP (X) in terms of the algebraic topology of X.

Surgery theory was first developed for differentiable manifolds, and then
extended to PL and topological manifolds.

The classic Browder–Novikov–Sullivan–Wall obstruction theory for de-
ciding if a Poincaré complex X is homotopy equivalent to a manifold has
two stages :
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(i) the primary topological K-theory obstruction νX ∈ [X, B(G/TOP )]
to a TOP reduction ν̃X : X → BTOP of the Spivak normal fibration
νX : X → BG, which vanishes if and only if there exists a manifold M
with a normal map (f, b) : M → X, that is a degree 1 map f : M → X
with a bundle map b : νM → ν̃X ,

(ii) a secondary algebraic L-theory obstruction

σ∗(f, b) ∈ Lm(Z[π1(X)])

in the surgery obstruction group of Wall [29], which is defined if the
obstruction in (i) vanishes, and which depends on the choice of TOP
reduction ν̃X , or equivalently on the bordism class of the normal map
(f, b) : M → X. The surgery obstruction is such that σ∗(f, b) = 0
if (and for m ≥ 5 only if) (f, b) is normal bordant to a homotopy
equivalence.

There exists a TOP reduction ν̃X of νX for which the corresponding normal
map (f, b) : M → X has zero surgery obstruction if (and for m ≥ 5
only if) the structure set STOP (X) is non-empty. A relative version of the
theory gives a two-stage obstruction for deciding if a homotopy equivalence
M → X from a manifold M is homotopic to a homeomorphism, which is
traditionally formulated as the surgery exact sequence

. . . → Lm+1(Z[π1(X)]) → STOP (X) → [X, G/TOP ] → Lm(Z[π1(X)]) .

See the paper by Browder [2] for an account of the original Sullivan-Wall
surgery exact sequence in the differentiable category in the case when X
has the homotopy type of a differentiable manifold

. . . → Lm+1(Z[π1(X)]) → SO(X) → [X,G/O] → Lm(Z[π1(X)]) .

The algebraic L-groups L∗(Λ) of a ring with involution Λ are defined
using quadratic forms over Λ and their automorphisms, and are 4-periodic

Lm(Λ) = Lm+4(Λ) .

The surgery classification of exotic spheres of Kervaire and Milnor [7] in-
cluded the first computation of the L-groups, namely

Lm(Z) =





Z if m ≡ 0 (mod 4)
0 if m ≡ 1 (mod 4)
Z2 if m ≡ 2 (mod 4)
0 if m ≡ 3 (mod 4) .

The relationship between topological and PL manifolds was investigated
using surgery methods in the 1960’s by Novikov, Casson, Sullivan, Kirby
and Siebenmann [8] (cf. Ranicki [23]), culminating in a disproof of the
manifold Hauptvermutung : there exist homeomorphisms of PL manifolds
which are not homotopic to PL homeomorphisms, and in fact there exist
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topological manifolds without PL structure. The surgery exact sequence
for the PL manifold structure set SPL(M) for a PL manifold M was re-
lated to the exact sequence for STOP (M) by a commutative braid of exact
sequences

H3(M ;Z2)

&&MMMMMM

$$
[M, G/PL]

&&MMM
MMM

M

$$
Lm(Z[π1(M)])

SPL(M)

88qqqqqq

&&MMMMMM
[M, G/TOP ]

88qqqqqqq

&&MMMMMM

Lm+1(Z[π1(M)])

88qqqqqq

::
STOP (M)

88qqqqqq

::
H4(M ;Z2)

with

π∗(G/TOP ) = L∗(Z) .

Quinn [17] gave a geometric construction of a spectrum of simplicial sets
for any group π

L•(Z[π]) = {Ln(Z[π]) |ΩLn(Z[π]) ' Ln+1(Z[π])}
with homotopy groups

πn(L•(Z[π])) = πn+k(L−k(Z[π])) = Ln(Z[π]) ,

and

L0(Z) ' L0(Z)×G/TOP .

The construction included an assembly map

A : H∗(X;L•(Z)) → L∗(Z[π1(X)])

and for a manifold X the surgery obstruction function is given by

[X, G/TOP ] ⊂ [X,L0(Z)×G/TOP ] ∼= Hn(X;L•(Z))
A
→ Lm(Z[π1(X)]) .

The surgery classifying spectra L•(Λ) and the assembly map A were con-
structed algebraically in Ranicki [22] for any ring with involution Λ, using
quadratic Poincaré complex n-ads over Λ. The spectrum L•(Z) is appropri-
ate for the surgery classification of homology manifold structures (Bryant,
Ferry, Mio and Weinberger [3]); for topological manifolds it is necessary
to work with the 1-connective spectrum L• = L•(Z)〈1〉, such that Ln is
n-connected with L0 ' G/TOP . The relative homotopy groups of the
spectrum-level assembly map

Sm(X) = πm(A : X+ ∧ L• → L•(Z[π1(X)]))
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fit into the algebraic surgery exact sequence

. . . → Lm+1(Z[π1(X)]) → Sm+1(X)

→ Hm(X;L•)
A−→ Lm(Z[π1(X)]) → . . . .

The algebraic surgery theory of Ranicki [20], [22] provided one-stage ob-
structions :

(i) An m-dimensional Poincaré duality space X has a total surgery ob-
struction s(X) ∈ Sm(X) such that s(X) = 0 if (and for m ≥ 5 only
if) X is homotopy equivalent to a manifold.

(ii) A homotopy equivalence of m-dimensional manifolds h : M ′ → M
has a total surgery obstruction s(h) ∈ Sm+1(M) such that s(h) = 0 if
(and for m ≥ 5 only if) h is homotopic to a homeomorphism.

Moreover, if X is an m-dimensional manifold and m ≥ 5 the geometric
surgery exact sequence is isomorphic to the algebraic surgery exact se-
quence

. . . // Lm+1(Z[π1(X)]) // STOP (X)

∼=
²²

// [X,G/TOP ]

∼=
²²

// Lm(Z[π1(X)])

. . . // Lm+1(Z[π1(X)]) // Sm+1(X) // Hm(X;L•)
A // Lm(Z[π1(X)])

with

STOP (X) → Sm+1(X) ; (M,h : M → X) 7−→ s(h) .

Given a normal map (f, b) : Mm → X it is possible to kill an element
x ∈ πr(f) by surgery if and only if x can be represented by an embedding
Sr−1 ×Dn−r+1 ↪→ M with a null-homotopy in X, in which case the trace
of the surgery is a normal bordism

((g, c); (f, b), (f ′, b′)) : (N ; M, M ′) → X × ([0, 1]; {0}, {1})
with

Nm+1 = M × I ∪Dr ×Dm−r+1 ,

M ′m = (M\Sr−1 ×Dm−r+1) ∪Dr × Sm−r .

The normal map (f ′, b′) : M ′ → X is the geometric effect of the surgery on
(f, b). Surgery theory investigates the extent to which a normal map can be
made bordant to a homotopy equivalence by killing as much of π∗(f) as pos-
sible. The original definition of the non-simply-connected surgery obstruc-
tion σ∗(f, b) ∈ Lm(Z[π1(X)]) (Wall [29]) was obtained after preliminary
surgeries below the middle dimension, to kill the relative homotopy groups
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πr(f) for 2r ≤ m. It could thus be assumed that (f, b) : M → X is [m/2]-
connected, with πr(f) = 0 for 2r ≤ m, and σ∗(f, b) was defined using the
Poincaré duality structure on the middle-dimensional homotopy kernel(s).
The surgery obstruction theory is much easier in the even-dimensional case
m = 2n when πr(f) can be non-zero at most for r = m + 1 than in the
odd-dimensional case m = 2n+1 when πr(f) can be non-zero for r = m+1
and r = m + 2.

Wall [29,§18G] asked for a chain complex formulation of surgery, in which
the obstruction groups Lm(Λ) would appear as the cobordism groups of
chain complexes with m-dimensional quadratic Poincaré duality, by anal-
ogy with the cobordism groups of manifolds Ω∗. Mishchenko [15] initiated
such a theory of “m-dimensional symmetric Poincaré complexes” (C, φ)
with C an m-dimensional f. g. free Λ-module chain complex

C : Cm

d−−→Cm−1

d−−→Cm−2 → . . . → C1

d−−→C0

and φ a quadratic structure inducing m-dimensional Poincaré duality iso-
morphisms φ0 : H∗(C) → Hm−∗(C). The cobordism groups Lm(Λ) (which
are covariant in Λ) are such that for any m-dimensional geometric Poincaré
complex X there is defined a symmetric signature invariant

σ∗(X) = (C(X̃), φ) ∈ Lm(Z[π1(X)]) .

The corresponding quadratic theory was developed in Ranicki [19]; the
m-dimensional quadratic L-groups Lm(Λ) for any m ≥ 0 were obtained
as the groups of equivalence classes of “m-dimensional quadratic Poincaré
complexes” (C, ψ). The surgery obstruction of an m-dimensional normal
map (f, b) : Mm → X was expressed as a cobordism class

σ∗(f, b) = (C,ψ) ∈ Lm(Z[π1(X)])

with

H∗(C) = K∗(M) = H∗+1(f̃ : M̃ → X̃) .

The symmetrization maps 1 + T : L∗(Λ) → L∗(Λ) are isomorphisms mod-
ulo 8-torsion, and the symmetrization of the surgery obstruction is the
difference of the symmetric signatures

(1 + T )σ∗(f, b) = σ∗(M)− σ∗(X) ∈ Lm(Z[π1(X)]) .

However, the theory of [19] is fairly elaborate. The algebra of [18] and [19]
is used in these notes to simplify the original theory of Wall [29] in the
odd-dimensional case, without invoking the full theory of [19]. Ranicki [25]
is a companion paper to this one, which provides an introduction to the
use of algebraic Poincaré complexes in surgery theory.
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0.2 What is in these notes

These notes give an elementary account of the construction of the L-
groups L∗ and the surgery obstruction σ∗ for differentiable manifolds. For
the more computational aspects of the L-groups see the papers by Ham-
bleton and Taylor [4] and Stark [26].

The even-dimensional L-groups L2n(Λ) are the Witt groups of nonsin-
gular (−1)n-quadratic forms over Λ. It is relatively easy to pass from
an n-connected 2n-dimensional normal map (f, b) : M2n → X to a (−1)n-
quadratic form representing σ∗(f, b), and to see how the form changes under
a surgery on (f, b). This will be done in §§1–5 of these notes.

The odd-dimensional L-groups L2n+1(Λ) are the stable automorphism
groups of nonsingular (−1)n-quadratic forms over Λ. It is relatively hard
to pass from an n-connected (2n + 1)-dimensional normal map (f, b) :
M2n+1 → X to an automorphism of a (−1)n-quadratic form representing
σ∗(f, b), and even harder to follow through in algebra the effect of a surgery
on (f, b). Novikov [16] suggested the reformulation of the odd-dimensional
theory in terms of the language of hamiltonian physics, and to replace the
automorphisms by ordered pairs of lagrangians (= maximal isotropic sub-
spaces). This reformulation was carried out in Ranicki [18], where such
pairs were called ‘formations’, but it was still hard to follow the algebraic
effects of individual surgeries. This became easier after the further refor-
mulation of Ranicki [19] in terms of chain complexes with Poincaré duality
– see §§8,9 for a description of how the kernel formation changes under a
surgery on (f, b).

The original definition of L∗(Λ) in Wall [29] was for the category of based
f. g. free Λ-modules and simple isomorphisms, for surgery up to simple
homotopy equivalence. Here, f. g. stands for finitely generated and simple
means that the Whitehead torsion is trivial, as in the hypothesis of the s-
cobordism theorem. These notes will only deal with free L-groups L∗(Λ) =
Lh
∗(Λ), the obstruction groups for surgery up to homotopy equivalence.

The algebraic theory of ε-quadratic forms (K,λ, µ) over a ring Λ with an
involution Λ → Λ; a 7→ ā is developed in §§1,2, with ε = ±1 and

λ : K ×K → Λ ; (x, y) 7−→ λ(x, y)

an ε-symmetric pairing on a Λ-module K such that

λ(x, y) = ελ(y, x) ∈ Λ (x, y ∈ K)

and

µ : K → Qε(Λ) = Λ/{a− εā | a ∈ Λ}
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an ε-quadratic refinement of λ such that

λ(x, x) = µ(x) + εµ(x) ∈ Λ (x ∈ K) .

For an n-connected 2n-dimensional normal map (f, b) : M2n → X geomet-
ric (intersection, self-intersection) numbers define a (−1)n-quadratic form
(Kn(M), λ, µ) on the kernel stably f. g. free Z[π1(X)]-module

Kn(M) = ker(f̃∗ : Hn(M̃) → Hn(X̃))

with X̃ the universal cover of X and M̃ = f∗X̃ the pullback of X̃ to M .

The hyperbolic ε-quadratic form on a f. g. free Λ-module Λk

Hε(Λk) = (Λ2k, λ, µ)

is defined by

λ : Λ2k × Λ2k → Λ ;

((a1, a2, . . . , a2k), (b1, b2, . . . , b2k)) 7−→
k∑

i=1

(b2i−1ā2i + εb2iā2i−1) ,

µ : Λ2k → Qε(Λ) ; (a1, a2, . . . , a2k) 7−→
k∑

i=1

a2i−1ā2i .

The even-dimensional L-group L2n(Λ) is defined in §3 to be the abelian
group of stable isomorphism classes of nonsingular (−1)n-quadratic forms
on (stably) f. g. free Λ-modules, where stabilization is with respect to
the hyperbolic forms H(−1)n(Λk). A nonsingular (−1)n-quadratic form
(K,λ, µ) represents 0 in L2n(Λ) if and only if there exists an isomorphism

(K,λ, µ)⊕H(−1)n(Λk) ∼= H(−1)n(Λk′)

for some integers k, k′ ≥ 0. The surgery obstruction of an n-connected
2n-dimensional normal map (f, b) : M2n → X is defined by

σ∗(f, b) = (Kn(M), λ, µ) ∈ L2n(Z[π1(X)]) .

The algebraic effect of a geometric surgery on an n-connected 2n-
dimensional normal map (f, b) is given in §5. Assuming that the result of
the surgery is still n-connected, the effect on the kernel form of a surgery
on Sn−1×Dn+1 ↪→ M (resp. Sn×Dn ↪→ M) is to add on (resp. split off)
a hyperbolic (−1)n-quadratic form H(−1)n(Z[π1(X)]).

§6 introduces the notion of a “(2n + 1)-complex” (C, ψ), which is a f. g.
free Λ-module chain complex of the type

C : . . . → 0 → Cn+1

d−−→ Cn → 0 → . . .

together with a quadratic structure ψ inducing Poincaré duality isomor-
phisms (1 + T )ψ : H2n+1−∗(C) → H∗(C). (This is just a (2n + 1)-
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dimensional quadratic Poincaré complex (C, ψ) in the sense of [19], with
Cr = 0 for r 6= n, n+1.) An n-connected (2n+1)-dimensional normal map
(f, b) : M2n+1 → X determines a kernel (2n+1)-complex (C,ψ) (or rather
a homotopy equivalence class of such complexes) with

H∗(C) = K∗(M) = ker(f̃∗ : H∗(M̃) → H∗(X̃)) .

The cobordism of (2n+1)-complexes is defined in §7. The odd-dimensional
L-group L2n+1(Λ) is defined in §8 as the cobordism group of (2n + 1)-
complexes. The surgery obstruction of an n-connected normal map (f, b) :
M2n+1 → X is the cobordism class of the kernel complex

σ∗(f, b) = (C,ψ) ∈ L2n+1(Z[π1(X)]) .

The odd-dimensional L-group L2n+1(Λ) was originally defined in [29]
as a potentially non-abelian quotient of the stable unitary group of the
matrices of automorphisms of hyperbolic (−1)n-quadratic forms over Λ

L2n+1(Λ) = U(−1)n(Λ)/EU(−1)n(Λ)

with

U(−1)n(Λ) =
∞⋃

k=1

AutΛH(−1)n(Λk)

and EU(−1)n(Λ) / U(−1)n(Λ) the normal subgroup generated by the ele-
mentary matrices of the type(

α 0
0 α∗−1

)
,

(
1 0

β + (−1)n+1β∗ 1

)
,

(
0 1

(−1)n 0

)

for any invertible matrix α, and any square matrix β. The group L2n+1(Λ)
is abelian, since

[U(−1)n(Λ), U(−1)n(Λ)] ⊆ EU(−1)n(Λ) .

The surgery obstruction σ∗(f, b) ∈ L2n+1(Z[π1(X)]) of an n-connected
(2n + 1)-dimensional normal map (f, b) : M2n+1 → X is represented
by an automorphism of a hyperbolic (−1)n-quadratic form obtained from
a high-dimensional generalization of the Heegaard decompositions of 3-
dimensional manifolds as twisted doubles.

§8, §9 and §10 describe three equivalent ways of defining L2n+1(Λ), using
unitary matrices, formations and chain complexes. In each case it is nec-
essary to make some choices in passing from the geometry to the algebra,
and to verify that the equivalence class in the L-group is independent of
the choices.

The definition of L2n+1(Λ) using complexes given in §8 is a special case
of the general theory of chain complexes with Poincaré duality of Ranicki
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[19]. The 4-periodicity in the quadratic L-groups

Lm(Λ) = Lm+4(Λ)

(given geometrically by taking product with CP 2, as in Chapter 9 of Wall
[29]) was proved in [19] using an algebraic analogue of surgery below the
middle dimension: it is possible to represent every element of Lm(Λ) by a
quadratic Poincaré complex (C, ψ) which is “highly-connected”, meaning
that

Cr = 0 for
{

r 6= n if m = 2n

r 6= n, n + 1 if m = 2n + 1 .
In these notes only the highly-connected (2n + 1)-dimensional quadratic
Poincaré complexes are considered, namely the “(2n+1)-complexes” of §6.

I am grateful to the referee for suggesting several improvements.

The titles of the sections are:

§1. Duality
§2. Quadratic forms
§3. The even-dimensional L-groups
§4. Split forms
§5. Surgery on forms
§6. Short odd complexes
§7. Complex cobordism
§8. The odd-dimensional L-groups
§9. Formations
§10. Automorphisms

§1. Duality

§1 considers rings Λ equipped with an “involution” reversing the order of
multiplication. An involution allows right Λ-modules to be regarded as left
Λ-modules, especially the right Λ-modules which arise as the duals of left Λ-
modules. In particular, the group ring Z[π1(M)] of the fundamental group
π1(M) of a manifold M has an involution, which allows the Poincaré duality
of the universal cover M̃ to be regarded as Z[π1(M)]-module isomorphisms.

Let X be a connected space, and let X̃ be a regular cover of X with group
of covering translations π. The action of π on X̃ by covering translations

π × X̃ → X̃ ; (g, x) 7−→ gx

induces a left action of the group ring Z[π] on the homology of X̃

Z[π]×H∗(X̃) → H∗(X̃) ; (
∑
g∈π

ngg, x) 7−→
∑
g∈π

nggx
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so that the homology groups H∗(X̃) are left Z[π]-modules. In dealing with
cohomology let

H∗(X̃) = H∗
cpt(X̃)

be the compactly supported cohomology groups, regarded as left Z[π]-
modules by

Z[π]×H∗(X̃) → H∗(X̃) ; (
∑
g∈π

ngg, x) 7−→
∑
g∈π

ngxg−1 .

(For finite π H∗(X̃) is just the ordinary cohomology of X̃.) Cap product
with any homology class [X] ∈ Hm(X) defines Z[π]-module morphisms

[X] ∩ − : H∗(X̃) → Hm−∗(X̃) .

Definition 1.1 An oriented m-dimensional geometric Poincaré complex
(Wall [28]) is a finite CW complex X with a fundamental class [X] ∈
Hm(X) such that cap product defines Z[π1(X)]-module isomorphisms

[X] ∩ − : H∗(X̃)
∼=→ Hm−∗(X̃)

with X̃ the universal cover of X.

See 1.14 below for the general definition of a geometric Poincaré complex,
including the nonorientable case.

Example 1.2 A compact oriented m-dimensional manifold is an oriented
m-dimensional geometric Poincaré complex.

In order to also deal with nonorientable manifolds and Poincaré com-
plexes it is convenient to have an involution:

Definition 1.3 Let Λ be an associative ring with 1. An involution on Λ
is a function

Λ → Λ ; a 7−→ a

satisfying

(a + b) = a + b , (ab) = b.a , a = a , 1 = 1 ∈ Λ .

Example 1.4 A commutative ring Λ admits the identity involution

Λ → Λ ; a 7−→ a = a .

Definition 1.5 Given a group π and a group morphism

w : π → Z2 = {±1}
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define the w-twisted involution on the integral group ring Λ = Z[π]

Λ → Λ ; a =
∑
g∈π

ngg 7−→ ā =
∑
g∈π

w(g)ngg
−1 (ng ∈ Z) .

In the topological application π is the fundamental group of a space with
w : π → Z2 an orientation character. In the oriented case w(g) = +1 for
all g ∈ π.

Example 1.6 Complex conjugation defines an involution on the ring of
complex numbers Λ = C

C→ C ; z = a + ib 7−→ z = a− ib .

A “hermitian” form is a symmetric form on a (finite-dimensional) vector
space over C with respect to this involution. The study of forms over
rings with involution is sometimes called “hermitian K-theory”, although
“algebraic L-theory” seems preferable.

The dual of a left Λ-module K is the right Λ-module

K∗ = HomΛ(K, Λ)

with

K∗ × Λ → K∗ ; (f, a) 7−→ (x 7−→ f(x).a) .

An involution Λ → Λ; a 7−→ ā determines an isomorphism of categories

{right Λ-modules}
∼=→ {left Λ-modules} ; L 7−→ Lop ,

with Lop the left Λ-module with the same additive group as the right Λ-
module L and Λ acting by

Λ× Lop → Lop ; (a, x) 7−→ xa .

From now on we shall work with a ring Λ which is equipped with a
particular choice of involution Λ → Λ. Also, Λ-modules will always be
understood to be left Λ-modules.

For any Λ-module K the Λ-module (K∗)op is written as K∗. Here is the
definition of K∗ all at once:

Definition 1.7 The dual of a Λ-module K is the Λ-module

K∗ = HomΛ(K, Λ) ,

with Λ acting by

Λ×K∗ → K∗ ; (a, f) 7−→ (x 7−→ f(x).a)
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for all a ∈ Λ, f ∈ K∗, x ∈ K.

There is a corresponding notion for morphisms:

Definition 1.8 The dual of a Λ-module morphism f : K → L is the
Λ-module morphism

f∗ : L∗ → K∗ ; g 7−→ (
x 7−→ g(f(x))

)
.

Thus duality is a contravariant functor

∗ : {Λ-modules} → {Λ-modules} ; K 7−→ K∗ .

Definition 1.9 For any Λ-module K define the Λ-module morphism

eK : K → K∗∗ ; x 7−→ (f 7−→ f(x)) .

The morphism eK is natural in the sense that for any Λ-module mor-
phism f : K → L there is defined a commutative diagram

K
f //

eK

²²

L

eL

²²
K∗∗ f∗∗ // L∗∗

Definition 1.10 (i) A Λ-module K is f. g. projective if there exists a
Λ-module L such that K ⊕ L is isomorphic to the f. g. free Λ-module Λn,
for some n ≥ 0.
(ii) A Λ-module K is stably f. g. free if K ⊕ Λm is isomorphic to Λn, for
some m,n ≥ 0.

In particular, f. g. free Λ-modules are stably f. g. free, and stably f. g.
free Λ-modules are f. g. projective.

Proposition 1.11 The dual of a f. g. projective Λ-module K is a f. g.
projective Λ-module K∗, and eK : K → K∗∗ is an isomorphism. Moreover,
if K is stably f. g. free then so is K∗.
Proof : For any Λ-modules K, L there are evident identifications

(K ⊕ L)∗ = K∗ ⊕ L∗ ,

eK⊕L = eK ⊕ eL : K ⊕ L → (K ⊕ L)∗∗ = K∗∗ ⊕ L∗∗ ,

so it suffices to consider the special case K = Λ. The Λ-module isomor-
phism

f : Λ
∼=→ Λ∗ ; a 7−→ (b 7−→ ba) ,
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can be used to construct an explicit inverse for eΛ

(eΛ)−1 : Λ∗∗ → Λ ; g 7−→ g(f(1)) .

In dealing with f. g. projective Λ-modules K use the natural isomorphism
eK : K ∼= K∗∗ to identify K∗∗ = K. For any morphism f : K → L of f. g.
projective Λ-modules there is a corresponding identification

f∗∗ = f : K∗∗ = K → L∗∗ = L .

Remark 1.12 The additive group HomΛ(Λm, Λn) of the morphisms
Λm → Λn between f. g. free Λ-modules Λm, Λn may be identified with
the additive group Mm,n(Λ) of m × n matrices (aij)1≤i≤m,1≤j≤n with en-
tries aij ∈ Λ, using the isomorphism

Mm,n(Λ)
∼=→ HomΛ(Λm, Λn) ;

(aij) 7−→ ((x1, x2, . . . , xm) 7−→ (
m∑

i=1

xiai1,

m∑

i=1

xiai2, . . . ,

m∑

i=1

xiain)) .

The composition of morphisms

HomΛ(Λm, Λn)×HomΛ(Λn, Λp) → HomΛ(Λm,Λp) ;

(f, g) 7−→ (
gf : x 7−→ (gf)(x) = g(f(x))

)

corresponds to the multiplication of matrices

Mm,n(Λ)×Mn,p(Λ) → Mm,p(Λ) ; ((aij), (bjk)) 7−→ (cik)

( cik =
n∑

j=1

aijbjk (1 ≤ i ≤ m, 1 ≤ k ≤ p) ) .

Use the isomorphism of f. g. free Λ-modules

Λm
∼=→ (Λm)∗ ; (x1, x2, . . . , xm) 7−→ ((y1, y2, . . . , ym) 7−→

m∑

i=1

yixi)

to identify

(Λm)∗ = Λm .

The duality isomorphism

∗ : HomΛ(Λm, Λn)
∼=→ HomΛ((Λn)∗, (Λm)∗) = HomΛ(Λn, Λm) ;

f 7−→ f∗

can be identified with the isomorphism defined by conjugate transposition
of matrices

Mm,n(Λ)
∼=→ Mn,m(Λ) ; α = (aij) 7−→ α∗ = (bji) , bji = aij .
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Example 1.13 A 2× 2 matrix(
a b

c d

)
∈ M2,2(Λ)

corresponds to the Λ-module morphism

f =
(

a b

c d

)
: Λ⊕ Λ → Λ⊕ Λ ; (x, y) 7−→ (xa + yb, xc + yd) .

The conjugate transpose matrix
(

a c

b d

)
∈ M2,2(Λ)

corresponds to the dual Λ-module morphism

f∗ =
(

a c

b d

)
: (Λ⊕ Λ)∗ = Λ⊕ Λ → (Λ⊕ Λ)∗ = Λ⊕ Λ ;

(x, y) 7−→ (xa + yc, xb + yd) .

The dual of a chain complex of modules over a ring with involution Λ

C : . . . // Cr+1
d // Cr

d // Cr−1
// . . .

is the cochain complex

C∗ : . . . // Cr−1 d∗ // Cr d∗ // Cr+1 // . . .

with

Cr = (Cr)∗ = HomΛ(Cr,Λ) .

Definition 1.14 An m-dimensional geometric Poincaré complex (Wall
[28]) is a finite CW complex X with an orientation character w(X) :
π1(X) → Z2 and a w(X)-twisted fundamental class [X] ∈ Hm(X;Zw(X))
such that cap product defines Z[π1(X)]-module isomorphisms

[X] ∩ − : H∗
w(X)(X̃)

∼=→ Hm−∗(X̃)

with X̃ the universal cover of X. The w(X)-twisted cohomology groups
are given by

H∗
w(X)(X̃) = H∗(C(X̃)∗)

with C(X̃) the cellular Z[π1(X)]-module chain complex, using the w(X)-
twisted involution on Z[π1(X)] (1.5) to define the left Z[π1(X)]-module
structure on the dual cochain complex

C(X̃)∗ = HomZ[π1(X)](C(X̃),Z[π1(X)]) .
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The orientation character w(X) : π1(X) → Z2 sends a loop g : S1 → X
to w(g) = +1 (resp. = −1) if g is orientation-preserving (resp. orientation-
reversing).

An oriented Poincaré complex X (1.1) is just a Poincaré complex (1.14)
with w(X) = +1.

Example 1.15 A compact m-dimensional manifold is an m-dimensional
geometric Poincaré complex.

§2. Quadratic forms

In the first instance suppose that the ground ring Λ is commutative, with
the identity involution ā = a (1.4). A symmetric form (K,λ) over Λ is a
Λ-module K together with a bilinear pairing

λ : K ×K → Λ ; (x, y) 7−→ λ(x, y)

such that for all x, y, z ∈ K and a ∈ Λ

λ(x, ay) = aλ(x, y) ,

λ(x, y + z) = λ(x, y) + λ(x, z) ,

λ(x, y) = λ(y, x) ∈ Λ .

A quadratic form (K, λ, µ) over Λ is a symmetric form (K,λ) together with
a function

µ : K → Q+1(Λ) = Λ ; x 7−→ µ(x)

such that for all x, y ∈ K and a ∈ Λ

µ(x + y) = µ(x) + µ(y) + λ(x, y) ,

µ(ax) = a2µ(x) ∈ Q+1(Λ) .

In particular, for every x ∈ K

2µ(x) = λ(x, x) ∈ Q+1(Λ) = Λ .

If 2 ∈ Λ is invertible (e.g. if Λ is a field of characteristic 6= 2, such as
R,C,Q) there is no difference between symmetric and quadratic forms,
with µ determined by λ according to µ(x) = λ(x, x)/2.

A symplectic form (K, λ) over a commutative ring Λ is a Λ-module K
together with a bilinear pairing λ : K×K → Λ such that for all x, y, z ∈ K
and a ∈ Λ

λ(x, at) = aλ(x, y) ,

λ(x, y + z) = λ(x, y) + λ(x, z) ,

λ(x, y) = −λ(y, x) ∈ Λ .
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A (−1)-quadratic form (K, λ, µ) over Λ is a symplectic form (K,λ) together
with a function

µ : K → Q−1(Λ) = Λ/{2a | a ∈ Λ} ; x 7−→ µ(x)

such that for all x, y ∈ K and a ∈ Λ

µ(x + y) = µ(x) + µ(y) + λ(x, y) ,

µ(ax) = a2µ(x) ∈ Q−1(Λ) .

In particular, for every x ∈ K

2µ(x) = λ(x, x) ∈ Q−1(Λ) = {a ∈ Λ | 2a = 0} .

If 2 ∈ Λ is invertible then Q−1(Λ) = 0 and there is no difference between
symplectic and (−1)-quadratic forms, with µ = 0.

In the applications of forms to surgery theory it is necessary to work with
quadratic and (−1)-quadratic forms over noncommutative group rings with
the involution as in 1.5. §2 develops the general theory of forms over rings
with involution, taking account of these differences.

Let X be an m-dimensional geometric Poincaré complex with universal
cover X̃ and fundamental group ring Λ = Z[π1(X)], with the w(X)-twisted
involution. The Poincaré duality isomorphism

φ = [X] ∩ − : Hm−r
w(X)(X̃)

∼=→ Hr(X̃)

and the evaluation pairing

Hr
w(X)(X̃) → Hr(X̃)∗ = HomΛ(Hr(X̃), Λ) ; y 7−→ (x 7−→ 〈y, x〉)

can be combined to define a sesquilinear pairing

λ : Hr(X̃)×Hm−r(X̃) → Λ ; (x, φ(y)) 7−→ 〈y, x〉
such that

λ(y, x) = (−1)r(m−r)λ(x, y)

with Λ → Λ; a 7−→ ā the involution of 1.5.

If M is an m-dimensional manifold with fundamental group ring Λ =
Z[π1(M)] the pairing λ : Hr(M̃) × Hm−r(M̃) → Λ can be interpreted
geometrically using the geometric intersection numbers of cycles. For any
two immersions x : Sr # M̃ , y : Sm−r # M̃ in general position

λ(x, y) =
∑

g∈π1(M)

ngg ∈ Λ

with ng ∈ Z the algebraic number of intersections in M̃ of x and gy. In
particular, for m = 2n there is defined a (−1)n-symmetric pairing

λ : Hn(M̃)×Hn(M̃) → Λ
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which is relevant to surgery in the middle dimension n. An element
x ∈ πn(M) can be killed by surgery if and only if it is represented by
an embedding Sn ×Dn ↪→ M2n. The condition that the Hurewicz image
x ∈ Hn(M̃) be such that λ(x, x) = 0 ∈ Λ is necessary but not sufficient to
kill x ∈ πn(M) by surgery. The theory of forms developed in §2 is required
for an algebraic formulation of the necessary and sufficient condition for
an element in the kernel Kn(M) of an n-connected 2n-dimensional normal
map (f, b) : M → X to be killed by surgery, assuming n ≥ 3.

As in §1 let Λ be a ring with involution, not necessarily a group ring.

Definition 2.1 A sesquilinear pairing (K, L, λ) on Λ-modules K, L is a
function

λ : K × L → Λ ; (x, y) 7−→ λ(x, y)

such that for all w, x ∈ K, y, z ∈ L, a, b ∈ Λ
(i) λ(w + x, y + z) = λ(w, y) + λ(w, z) + λ(x, y) + λ(x, z) ∈ Λ ,
(ii) λ(ax, by) = bλ(x, y)a ∈ Λ .

The dual (or transpose) sesquilinear pairing is

Tλ : L×K → Λ ; (y, x) 7−→ Tλ(y, x) = λ(x, y) .

Definition 2.2 Given Λ-modules K, L let S(K, L) be the additive group of
sesquilinear pairings λ : K×L → Λ. Transposition defines an isomorphism

T : S(K, L) ∼= S(L,K)

such that

T 2 = id. : S(K, L)
∼=→ S(L,K)

∼=→ S(K,L) .

Proposition 2.3 For any Λ-modules K, L there is a natural isomorphism
of additive groups

S(K, L)
∼=→ HomΛ(K, L∗) ;

(λ : K × L → Λ) 7−→ (λ : K → L∗ ; x 7−→ ( y 7−→ λ(x, y) )) .

For f. g. projective K,L the transposition isomorphism T : S(K,L) ∼=
S(L, K) corresponds to the duality isomorphism

∗ : HomΛ(K, L∗)
∼=→ HomΛ(L,K∗) ;

(λ : K → L∗) 7−→ (λ∗ : L → K∗ ; y 7−→ (x 7−→ λ(y, x))) .
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Use 2.3 to identify

S(K, L) = HomΛ(K, L∗) , S(K) = HomΛ(K, K∗) ,

Qε(K) = ker(1− Tε : HomΛ(K, K∗) → HomΛ(K, K∗)) ,

Qε(K) = coker(1− Tε : HomΛ(K,K∗) → HomΛ(K, K∗))

for any f. g. projective Λ-modules K,L.

Remark 2.4 For f. g. free Λ-modules Λm, Λn it is possible to identify
S(Λm,Λn) with the additive group Mm,n(Λ) of m× n matrices (aij) with
entries aij ∈ Λ, using the isomorphism

Mm,n(Λ)
∼=→ S(Λm, Λn) ; (aij) 7−→ λ

defined by

λ((x1, x2, . . . , xm), (y1, y2, . . . , yn)) =
m∑

i=1

n∑

j=1

yjaijxi .

The transposition isomorphism T : S(Λm,Λn) ∼= S(Λn, Λm) corresponds
to the isomorphism defined by conjugate transposition of matrices

T : Mm,n(Λ)
∼=→ Mn,m(Λ) ; (aij) 7−→ (bji) , bji = aij .

The group S(K, L) is particularly significant in the case K = L :

Definition 2.5 (i) Given a Λ-module K let

S(K) = S(K,K)

be the abelian group of sesquilinear pairings λ : K ×K → Λ.
(ii) The ε-transposition involution is given for ε = ±1 by

Tε : S(K)
∼=→ S(K) ; λ 7−→ Tελ = ε(Tλ) ,

such that

Tελ(x, y) = ελ(y, x) ∈ Λ , (Tε)2 = id : S(K) → S(K) .

Definition 2.6 The ε-symmetric group of a Λ-module K is the additive
group

Qε(K) = ker(1− Tε : S(K) → S(K)) .

The ε-quadratic group of K is the additive group

Qε(K) = coker(1− Tε : S(K) → S(K)) .

The ε-symmetrization morphism is given by

1 + Tε : Qε(K) → Qε(K) ; ψ 7−→ ψ + Tεψ .
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For ε = +1 it is customary to refer to ε-symmetric and ε-quadratic
objects as symmetric and quadratic, as in the commutative case.

For K = Λ there is an isomorphism of additive groups with involution

Λ
∼=→ S(Λ) ; a 7−→ ((x, y) 7−→ yax)

allowing the identifications

Qε(Λ) = {a ∈ Λ | εa = a} ,

Qε(Λ) = Λ/{a− εa | a ∈ Λ} ,

1 + Tε : Qε(Λ) → Qε(Λ) ; a 7−→ a + εa .

Example 2.7 Let Λ = Z. The ε-symmetric and ε-quadratic groups of
K = Z are given by

Qε(Z) =
{
Z if ε = +1
0 if ε = −1 ,

Qε(Z) =
{
Z if ε = +1
Z/2 if ε = −1

with generators represented by 1 ∈ Z, and with

1 + T+ = 2 : Q+1(Z) = Z→ Q+1(Z) = Z .

Definition 2.8 An ε-symmetric form (K, λ) over Λ is a Λ-module K to-
gether with an element λ ∈ Qε(K). Thus λ is a sesquilinear pairing

λ : K ×K → Λ ; (x, y) 7−→ λ(x, y)

such that for all x, y ∈ K

λ(x, y) = ελ(y, x) ∈ Λ .

The adjoint of (K, λ) is the Λ-module morphism

K → K∗ ; x 7−→ (y 7−→ λ(x, y))

which is also denoted by λ. The form is nonsingular if λ : K → K∗ is an
isomorphism.

Unless specified otherwise, only forms (K, λ) with K a f. g. projective
Λ-module will be considered.

Example 2.9 The symmetric form (Λ, λ) defined by

λ = 1 : Λ → Λ∗ ; a 7−→ (b 7−→ ba)

is nonsingular.
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Definition 2.10 For any f. g. projective Λ-module L define the nonsin-
gular hyperbolic ε-symmetric form

Hε(L) = (L⊕ L∗, λ)

by

λ =
(

0 1
ε 0

)
: L⊕ L∗ → (L⊕ L∗)∗ = L∗ ⊕ L ;

(x, f) 7−→ ((y, g) 7−→ f(y) + εg(x)) .

Example 2.11 Let X be an m-dimensional geometric Poincaré complex,
and let X̃ be a regular oriented covering of X with group of covering trans-
lations π and orientation character w : π → Z2. An element g ∈ π has
w(g) = +1 (resp. −1) if and only if the covering translation g : X̃ → X̃ is
orientation-preserving (resp. reversing).
(i) Cap product with the fundamental class [X] ∈ Hm(X;Zw) defines the
Poincaré duality Z[π]-module isomorphisms

[X] ∩ − : Hm−∗
w (X̃)

∼=→ H∗(X̃) .

If m = 2n and X is a manifold geometric intersection numbers define a
(−1)n-symmetric form (Hn(X̃), λ) over Z[π] with adjoint the composite

λ : Hn(X̃)
([X]∩−)−1

−−−−−−−→ Hn
w(X̃)

evaluation−−−−−−−→ Hn(X̃)∗ .

(ii) In general Hn(X̃) is not a f. g. projective Z[π]-module. If Hn(X̃) is f.
g. projective then the evaluation map is an isomorphism, and (Hn(X̃), λ)
is a nonsingular form.

Remark 2.12 (i) Let M be a 2n-dimensional manifold, with universal
cover M̃ and intersection pairing λ : Hn(M̃) × Hn(M̃) → Z[π1(M)]. An
element x ∈ im(πn(M) → Hn(M̃)) can be killed by surgery if and only
if it can be represented by an embedding x : Sn × Dn ↪→ M , in which
case the homology class x ∈ Hn(M̃) is such that λ(x, x) = 0. However,
the condition λ(x, x) = 0 given by the symmetric structure alone is not
sufficient for the existence of such an embedding – see (ii) below for an
explicit example.
(ii) The intersection form over Z for M2n = Sn×Sn is the hyperbolic form
(2.10)

(Hn(Sn × Sn), λ) = H(−1)n

(Z) .

The element x = (1, 1) ∈ Hn(Sn × Sn) is such that

λ(x, x) = χ(Sn) = 1 + (−1)n ∈ Z ,

so that λ(x, x) = 0 for odd n. The diagonal embedding ∆ : Sn ↪→ Sn×Sn

has normal bundle ν∆ = τSn : Sn → BO(n), which is non-trivial for
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n 6= 1, 3, 7, so that it is not possible to kill x = ∆∗[Sn] ∈ Hn(Sn × Sn) by
surgery in these dimensions.

Definition 2.13 An ε-quadratic form (K, λ, µ) over Λ is an ε-symmetric
form (K, λ) together with a function

µ : K → Qε(Λ) ; x 7−→ µ(x)

such that for all x, y ∈ K, a ∈ Λ

(i) µ(x + y)− µ(x)− µ(y) = λ(x, y) ∈ Qε(Λ) ,

(ii) µ(x) + εµ(x) = λ(x, x) ∈ im(1 + Tε : Qε(Λ) → Qε(Λ)) ,

(iii) µ(ax) = aµ(x)a ∈ Qε(Λ) .

Definition 2.14 For any f. g. projective Λ-module L define the nonsin-
gular hyperbolic ε-quadratic form over Λ by

Hε(L) = (L⊕ L∗, λ, µ)

with

λ =
(

0 1
ε 0

)
: L⊕ L∗ → (L⊕ L∗)∗ = L∗ ⊕ L ;

(x, f) 7−→ ((y, g) 7−→ f(y) + εg(x)) ,

µ : L⊕ L∗ → Qε(Λ) ; (x, f) 7−→ f(x) .

(L⊕ L∗, λ) is the hyperbolic ε-symmetric form Hε(L) of 2.10.

Example 2.15 (Wall [29, Chapter 5]) An n-connected normal map (f, b) :
M2n → X from a 2n-dimensional manifold with boundary (M, ∂M) to a
geometric Poincaré pair (X, ∂X) with ∂f = f | : ∂M → ∂X a homotopy
equivalence determines a (−1)n-quadratic form (Kn(M), λ, µ) over Λ =
Z[π1(X)] with the w(X)-twisted involution (1.5), with

Kn(M) = πn+1(f) = Hn+1(f̃) = ker(f̃∗ : Hn(M̃) → Hn(X̃))

the stably f. g. free kernel Λ-module, and f̃ : M̃ → X̃ a π1(X)-equivariant
lift of f to the universal covers. Note that Kn(M) = 0 if (and for
n ≥ 2 only if) f : M → X is a homotopy equivalence, by the theorem
of J.H.C. Whitehead.
(i) The pairing λ : Kn(M)×Kn(M) → Λ is defined by geometric intersec-
tion numbers, as follows. Every element x ∈ Kn(M) is represented by an
X-nullhomotopic framed immersion g : Sn # M with a choice of path in
g(Sn) ⊂ M from the base point ∗ ∈ M to g(1) ∈ M . Any two elements
x, y ∈ Kn(M) can be represented by such immersions g, h : Sn # M with
transverse intersections and self-intersections. The intersection of g and h

D(g, h) = {(a, b) ∈ Sn × Sn | g(a) = h(b) ∈ M}
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is finite. For each intersection point (a, b) ∈ D(g, h) let

γ(a, b) ∈ π1(M) = π1(X)

be the homotopy class of the loop in M obtained by joining the path in
g(Sn) ⊂ M from the base point ∗ ∈ M to g(a) to the path in h(Sn) ⊂ M
from h(b) back to the base point. Choose an orientation for τ∗(M) and
transport it to an orientation for τg(a)(M) = τh(b)(M) by the path for g,
and let

ε(a, b) = [τa(Sn)⊕ τb(Sn) : τg(a)(M)] ∈ {±1}
be +1 (resp. −1) if the isomorphism

(dg dh) : τa(Sn)⊕ τb(Sn)
∼=→ τg(a)(M)

is orientation-preserving (resp. reversing). The geometric intersection of
x, y ∈ Kn(M) is given by

λ(x, y) =
∑

(a,b)∈D(g,h)

I(a, b) ∈ Λ

with

I(a, b) = ε(a, b)γ(a, b) ∈ Λ .

It follows from
ε(b, a) = [τbS

n ⊕ τaSn : τaSn ⊕ τbS
n]ε(a, b)

= det(
(

0 1
1 0

)
: Rn ⊕ Rn → Rn ⊕ Rn)ε(a, b)

= (−1)nε(a, b) ∈ {±1} ,

γ(b, a) = w(X)(γ(a, b))γ(a, b)−1 ∈ π1(X) ,

I(b, a) = (−1)nI(a, b) ∈ Λ

that

λ(y, x) = (−1)nλ(x, y) ∈ Λ

(which also holds from purely homological considerations).
(ii) The quadratic function µ : Kn(M) → Q(−1)n(Λ) is defined by geo-
metric self-intersection numbers, as follows. Represent x ∈ Kn(M) by an
immersion g : Sn # M as in (i), with transverse self-intersections. The
double point set of g

D2(g) = D(g, g)\∆(Sn)
= {(a, b) ∈ Sn × Sn | a 6= b ∈ Sn, g(a) = g(b) ∈ M}

is finite, with a free Z2-action (a, b) 7→ (b, a). For each (a, b) ∈ D2(g) let
γ(a, b) be the loop in M obtained by transporting to the base point the
image under g of a path in Sn from a to b. The geometric self-intersection
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of x is defined by

µ(x) =
∑

(a,b)∈D2(g)/Z2

I(a, b) ∈ Q(−1)n(Λ) ,

with I(a, b) = ε(a, b)γ(a, b) as in (i). Note that µ(x) is independent of the
choice of ordering of (a, b) since I(b, a) = (−1)nI(a, b) ∈ Λ.
(iii) The kernel (−1)n-quadratic form (Kn(M), λ, µ) is such that µ(x) = 0 if
(and for n ≥ 3 only if) x ∈ Kn(M) can be killed by surgery on Sn ⊂ M2n,
i.e. represented by an embedding Sn ×Dn ↪→ M with a nullhomotopy in
X – the condition µ(x) = 0 allows the double points of a representative
framed immersion g : Sn # M to be matched in pairs, which for n ≥ 3 can
be cancelled by the Whitney trick. The effect of the surgery is a bordant
(n− 1)-connected normal map

(f ′, b′) : M ′2n = cl.(M\Sn ×Dn) ∪Dn+1 × Sn−1 → X

with kernel Λ-modules

Ki(M ′) =





coker(x∗λ : Kn(M) → Λ∗) if i = n− 1
ker(x∗λ : Kn(M) → Λ∗)

im(x : Λ → Kn(M)) if i = n

ker(x : Λ → Kn(M)) if i = n + 1
0 otherwise .

Thus (f ′, b′) is n-connected if and only if x generates a direct summand
L = 〈x〉 ⊂ Kn(M), in which case L is a sublagrangian of (Kn(M), λ, µ) in
the terminology of §5, with

L ⊆ L⊥ = {y ∈ Kn(M) |λ(x, y) = 0} ,

(Kn(M ′), λ′, µ′) = (L⊥/L, [λ], [µ]) ,

(Kn(M), λ, µ) ∼= (Kn(M ′), λ′, µ′)⊕H(−1)n(Λ) .

(iv) The effect on (f, b) of a surgery on an X-nullhomotopic embedding
Sn−1 ×Dn+1 ↪→ M is an n-connected bordant normal map

(f ′′, b′′) : M ′′2n = cl.(M\Sn−1×Dn+1)∪Dn×Sn = M#(Sn×Sn) → X

with kernel Λ-modules

Ki(M ′′) =
{

Kn(M)⊕ Λ⊕ Λ∗ if i = n

0 otherwise
and kernel (−1)n-quadratic form

(Kn(M ′′), λ′′, µ′′) = (Kn(M), λ, µ)⊕H(−1)n(Λ) .

(v) The main result of even-dimensional surgery obstruction theory is that
for n ≥ 3 an n-connected 2n-dimensional normal map (f, b) : M2n → X
is normal bordant to a homotopy equivalence if and only if there exists an
isomorphism of (−1)n-quadratic forms over Λ = Z[π1(X)] of the type

(Kn(M), λ, µ)⊕H(−1)n(Λk)
∼=→ H(−1)n(Λk′)
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for some k, k′ ≥ 0.

Example 2.16 There is also a relative version of 2.15. An n-connected
2n-dimensional normal map of pairs (f, b) : (M2n, ∂M) → (X, ∂X) has a
kernel (−1)n-quadratic form (Kn(M), λ, µ) over Z[π1(X)] is nonsingular if
and only if ∂f : ∂M → ∂X is a homotopy equivalence (assuming π1(∂X) ∼=
π1(X)).

Remark 2.17 (Realization of even-dimensional surgery obstructions, Wall
[29, 5.8])
(i) Let X2n−1 be a (2n − 1)-dimensional manifold, and suppose given an
embedding e : Sn−1 × Dn ↪→ X, together with a null-homotopy δe of
e| : Sn−1 ↪→ X and a null-homotopy of the map Sn−1 → O comparing the
(stable) trivializations of νe| : Sn−1 → BO(n) given by e and δe. Then
there is defined an n-connected 2n-dimensional normal map

(f, b) : (M ; ∂−M, ∂+M) → X × ([0, 1]; {0}, {1})
with

∂−f = id. : ∂−M = X → X ,

M2n = X × [0, 1] ∪e Dn ×Dn ,

∂+M = cl.(X\e(Sn−1 ×Dn)) ∪Dn × Sn−1 .

The kernel (−1)n-quadratic form (Λ, λ, µ) over Λ (2.16) is the (self-)-
intersection of the framed immersion Sn−1 × [0, 1] # X × [0, 1] defined
by the track of a regular homotopy e0 ' e : Sn−1×Dn → X from a trivial
unlinked embedding

e0 : Sn−1×Dn ↪→ S2n−1 = Sn−1×Dn∪Dn×Sn−1 ↪→ X#S2n−1 = X .

Moreover, every form (Λ, λ, µ) arises in this way : starting with e0 construct
a regular homotopy e0 ' e to a (self-)linked embedding e such that the track
has (self-)intersection (λ, µ).
(ii) Let (K, λ, µ) be a (−1)n-quadratic form over Z[π], with π a finitely
presented group and K = Z[π]k f. g. free. Let n ≥ 3, so that there exists a
(2n−1)-dimensional manifold X2n−1 with π1(X) = π. For any such n ≥ 3,
X there exists an n-connected 2n-dimensional normal map

(f, b) : (M2n; ∂−M, ∂+M) → X2n−1 × ([0, 1]; {0}, {1})
with kernel form (K, λ, µ) and

∂−f = id. : ∂−M = X → X , Kn(M) = K ,

Kn−1(∂+M) = coker(λ : K → K∗) ,

Kn(∂+M) = ker(λ : K → K∗) .

The map ∂+f : ∂+M → X is a homotopy equivalence if and only if the
form (K, λ, µ) is nonsingular. Given (K, λ, µ), X the construction of (f, b)
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proceeds as in (i).

Example 2.18 For π1(X) = {1} the realization of even-dimensional
surgery obstructions (2.17) is essentially the same as the Milnor [11], [12]
construction of (n − 1)-connected 2n-dimensional manifolds by plumbing
together n-plane bundles over Sn. Let G be a finite connected graph with-
out loops (= edges joining a vertex to itself), with vertices v1, v2, . . . , vk.
Suppose given an oriented n-plane bundle over Sn at each vertex

ω1, ω2, . . . , ωk ∈ πn(BSO(n)) = πn−1(SO(n)) ,

regarded as a weight. Let (Zk, λ) be the (−1)n-symmetric form over Z
defined by the (−1)n-symmetrized adjacency matrix of G and the Euler
numbers χ(ωi) ∈ Z, with

λij =





no. of edges in G joining vi to vj if i < j
(−1)n(no. of edges in G joining vi to vj) if i > j
χ(ωi) if i = j ,

λ : Zk × Zk → Z ; ((x1, x2, . . . , xk), (y1, y2, . . . , yk)) 7→
k∑

i=1

k∑

j=1

λijxiyj .

The graph G and the Euler numbers χ(ωi) determine and are determined
by the form (Zk, λ).
(i) See Browder [1, Chapter V] for a detailed account of the plumbing con-
struction which uses G to glue together the (Dn, Sn−1)-bundles

(Dn, Sn−1) → (E(ωi), S(ωi)) → Sn (i = 1, 2, . . . , k)

to obtain a connected 2n-dimensional manifold with boundary

(P, ∂P ) = (P (G,ω), ∂P (G,ω))

such that P is an identification space

P = (
k∐

i=1

E(ωi))/ ∼

with 1-skeleton homotopy equivalent to G, fundamental group

π1(P ) = π1(G) = ∗gZ

the free group on g = 1− χ(G) generators, homology

Hr(P ) =





Z if r = 0
Zg if r = 1
Zk if r = n
0 otherwise ,

and intersection form (Hn(P ), λ). Killing π1(P ) by surgeries removing g
embeddings S1×D2n−1 ⊂ P representing the generators, there is obtained
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an (n− 1)-connected 2n-dimensional manifold with boundary

(M,∂M) = (M(G,ω), ∂M(G, ω))

such that

Hr(M) =

{Z if r = 0
Zk if r = n
0 otherwise ,

λ : Hn(M)×Hn(M) → Z ;

((x1, x2, . . . , xk), (y1, y2, . . . , yk)) 7→
k∑

i=1

k∑

j=1

λijxiyj ,

τM '
k∨

i=1

(ωi ⊕ εn) : M '
k∨

i=1

Sn → BSO(2n) ,

Hr(∂M) =





Z if r = 0, 2n− 1
coker(λ : Zk → Zk) if r = n− 1
ker(λ : Zk → Zk) if r = n
0 otherwise .

If G is a tree then g = 0, π1(P (G, ω)) = {1}, and

(M(G,ω), ∂M(G,ω)) = (P (G,ω), ∂P (G,ω)) .

(ii) By Wall [27] for n ≥ 3 an integral (−1)n-symmetric matrix (λij)1≤i,j≤k

and elements ω1, ω2, . . . , ωk ∈ πn(BSO(n)) with

λii = χ(ωi) ∈ Z (i = 1, 2, . . . , k)

determine an embedding

x =
⋃

k

xi :
⋃

k

Sn−1 ×Dn ↪→ S2n−1

such that :
(a) for 1 ≤ i < j ≤ k

linking number(xi(Sn−1 × 0) ∩ xj(Sn−1 × 0) ↪→ S2n−1) = λij ∈ Z ,

(b) for 1 ≤ i ≤ k xi : Sn−1 ×Dn ↪→ S2n−1 is isotopic to the embedding

eωi : Sn−1 ×Dn ↪→ S2n−1 = Sn−1 ×Dn ∪Dn × Sn−1 ;
(s, t) 7→ (s, ωi(s)(t)) .

Using x to attach k n-handles to D2n there is obtained an oriented (n−1)-
connected 2n-dimensional manifold

M(G,ω) = D2n ∪x

⋃

k

n-handles Dn ×Dn
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with boundary an oriented (n−2)-connected (2n−1)-dimensional manifold

∂M(G,ω) = cl.(S2n−1\x(
⋃

k

Sn−1 ×Dn)) ∪
⋃

k

Dn × Sn−1 .

Moreover, every oriented (n− 1)-connected 2n-dimensional manifold with
non-empty (n−2)-connected boundary is of the form (M(G,ω), ∂M(G,ω)),
with (λij , ωi) the complete set of diffeomorphism invariants.
(iii) Stably trivialized n-plane bundles over Sn are classified by Q(−1)n(Z),
with an isomorphism

Q(−1)n(Z)
∼=→ πn+1(BSO,BSO(n)) ; 1 7→ (δτSn , τSn)

with

δτSn : τSn ⊕ ε ∼= εn+1

the stable trivialization given by the standard embedding Sn ⊂ Sn+1. The
map

Q(−1)n(Z) = πn+1(BSO,BSO(n)) → πn(BSO(n)) ; 1 7→ τSn

is an injection for n 6= 1, 3, 7. With G as above, suppose now that the
vertices v1, v2, . . . , vk are weighted by elements

µ1, µ2, . . . , µk ∈ πn+1(BSO, BSO(n)) = Q(−1)n(Z) .

Define
ωi = [µi] ∈ im(πn+1(BSO, BSO(n)) → πn(BSO(n)))

= ker(πn(BSO(n)) → πn(BSO))

and let (Zk, λ, µ) be the (−1)n-quadratic form over Z with λ as before and

µ : Zk → Q(−1)nZ ; (x1, x2, . . . , xk) 7→
∑

1≤i<j≤k

λijxixj +
k∑

i=1

µi(xi)2 ,

such that

λii = χ(ωi) = (1 + (−1)n)µi ∈ Z .

The (n− 1)-connected 2n-dimensional manifold

M(G,µ1, µ2, . . . , µn) = M(G, ω1, ω2, . . . , ωn)

is stably parallelizable, with an n-connected normal map

(M(G,µ1, µ2, . . . , µn), ∂M(G,µ1, µ2, . . . , µn)) → (D2n, S2n−1)

with kernel form (Zk, λ, µ).
(iv) For n ≥ 3 the realization of a (−1)n-quadratic form (Zk, λ, µ) over Z
(2.17) is an n-connected 2n-dimensional normal map

(f, b) : (M2n; S2n−1, ∂+M)

= (cl.(M(G, µ1, . . . , µk)\D2n); S2n−1, ∂M(G,µ1, . . . , µk))

→ S2n−1 × ([0, 1]; {0}, {1}) .
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with kernel form (Zk, λ, µ). If (Zk, λ, µ) is nonsingular then

∂+f : Σ2n−1 = ∂M(G,µ1, . . . , µk) → S2n−1

is a homotopy equivalence, and Σ2n−1 is a homotopy sphere with a poten-
tially exotic differentiable structure (Milnor [10], Kervaire and Milnor [7])
– see 2.20, 3.6 and 3.7 below.

Example 2.19 (i) Consider the special case k = 1 of 2.18 (i). Here G =
{v1} is the graph with one vertex, and

ω ∈ πn(BSO(n)) = πn−1(SO(n))

classifies an n-plane bundle over Sn. The plumbed (n − 1)-connected 2n-
dimensional manifold with boundary is the (Dn, Sn−1)-bundle over Sn

(M(G, ω), ∂M(G,ω)) = (E(ω), S(ω))

with
E(ω) = Sn−1 ×Dn ∪(x,y)∼(x,ω(x)(y)) Sn−1 ×Dn

= D2n ∪eω Dn ×Dn

obtained from D2n by attaching an n-handle along the embedding

eω : Sn−1 ×Dn ↪→ S2n−1 = Sn−1 ×Dn ∪Dn × Sn−1 ;
(x, y) 7→ (x, ω(x)(y)) .

(ii) Consider the special case k = 1 of 2.18 (iii), the realization of a (−1)n-
quadratic form (Z, λ, µ) over Z, with G = {v1} as in (i). An element

µ = (δω, ω) ∈ πn+1(BSO,BSO(n)) = Q(−1)n(Z)

=
{
Z if n ≡ 0(mod 2)
Z2 if n ≡ 1(mod 2)

classifies an n-plane bundle ω : Sn → BSO(n) with a stable trivialization

δω : ω ⊕ ε∞ ∼= εn+∞ ,

and

(M(G,µ), ∂M(G,µ)) = (E(ω), S(ω)) .

For n 6= 1, 3, 7 δω is determined by ω. For even n µ ∈ Q+1(Z) = Z and

ω = µ∗τSn : Sn µ // Sn τSn // BSO(n)

is the unique stably trivial n-plane bundle over Sn with Euler number

χ(ω) = 2µ ∈ Z .

For odd n 6= 1, 3, 7 µ ∈ Q−1(Z) = Z2 and

ω =
{

τSn if µ = 1
εn if µ = 0 .
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For n = 1, 3, 7

ω = τSn = εn : Sn → BSO(n)

and δω is the (stable) trivialization of ω with mod 2 Hopf invariant µ.
The plumbed (n− 1)-connected 2n-dimensional manifold

(M(G, µ), ∂M(G,µ)) = (M(G,ω), ∂M(G,ω)) = (E(ω), S(ω))

(as in (i)) is stably parallelizable. The trace of the surgery on the normal
map

(f−, b−) = id. : ∂−Mω = S2n−1 → S2n−1

killing eω : Sn−1 ×Dn ↪→ S2n−1 is an n-connected 2n-dimensional normal
map

(fω, bδω) : (M2n
ω ; ∂−Mω, ∂+Mω) → S2n−1 × ([0, 1]; {0}, {1})

with
Mω = cl.(M(G,µ)\D2n) = cl.(E(ω)\D2n)

= S2n−1 × [0, 1] ∪eω Dn ×Dn ,

∂+Mω = cl.(S2n−1\eω(Sn−1 ×Dn)) ∪Dn × Sn−1

= Dn × Sn−1 ∪ω Dn × Sn−1 = S(ω) ,

Kn(Mω) = Z
and kernel form (Z, λ, µ). If µ = 0 ∈ Q(−1)n(Z) then

ω = εn : Sn → BSO(n) , ∂+Mω = S(εn) = Sn−1 × Sn ,

If µ = 1 ∈ Q(−1)n(Z) then

ω = τSn : Sn → BSO(n) , ∂+Mω = S(τSn) = O(n + 1)/O(n− 1) .

(iii) Consider the special case k = 2 of 2.18 (i), with G = I the graph with
1 edge and 2 vertices

.....................................................................................................• •
v1 v2

I

For any weights ω1, ω2 ∈ πn(BSO(n)) there is obtained an (n − 1)-
connected 2n-dimensional manifold

M(I, ω1, ω2) = D2n ∪eω1∪eω2
(Dn ×Dn ∪Dn ×Dn)

by plumbing as in Milnor [11], [12], with intersection form the (−1)n-
symmetric form (Z⊕ Z, λ) over Z defined by

λ : Z⊕ Z× Z⊕ Z→ Z ;
((x1, x2), (y1, y2)) 7→ χ(ω1)x1y1 + χ(ω2)x2y2 + x1y2 + (−1)nx2y1 .

(iv) Consider the special case k = 2 of 2.18 (iii), with G = I as in (iii). For
µ1, µ2 ∈ Q(−1)n(Z) and

ωi = [µi] ∈ im(Q(−1)n(Z) → πn(BSO(n)))
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the (−1)n-quadratic form (Z⊕ Z, λ, µ) over Z defined by

µ : Z⊕ Z→ Q(−1)n(Z) ; (x1, x2) 7→ µ1(x1)2 + µ2(x2)2 + x1x2

is the kernel form of an n-connected 2n-dimensional normal map

(f, b) : M(I, µ1, µ2) = M(I, ω1, ω2) → D2n .

If µ1 = µ2 = 0 then (Z⊕Z, λ, µ) = H(−1)n(Z) is hyperbolic (−1)n-quadratic
form over Z, with

λ : Z⊕ Z× Z⊕ Z→ Z ; ((x1, x2), (y1, y2)) 7→ x1y2 + (−1)nx2y1 ,

µ : Z⊕ Z→ Q(−1)n(Z) = Z/{1 + (−1)n−1} ; (x1, x2) 7→ x1x2 ,

and the plumbed manifold is a punctured torus

(M(I, 0, 0)2n, ∂M(I, 0, 0)) = (cl.(Sn × Sn\D2n), S2n−1) .

The hyperbolic form is the kernel of the n-connected 2n-dimensional normal
map

(f, b) : (M ; ∂−M,∂+M) = (cl.(M(I, 0, 0)\D2n); S2n−1, S2n−1)

→ S2n−1 × ([0, 1]; {0}, {1})
defined by the trace of surgeries on the linked spheres

Sn−1 ∪ Sn−1 ↪→ S2n−1 = Sn−1 ×Dn ∪Dn × Sn−1

with no self-linking. These are the attaching maps for the cores of the
n-handles in the decomposition

M(I, 0, 0) = D2n ∪Dn ×Dn ∪Dn ×Dn ,

using the standard framings of Sn−1 ⊂ S2n−1. If n is odd, say n = 2k + 1,
and µ0 = µ1 = 1 ∈ Q−1(Z) the form in 2.18 (i) is just the Arf (−1)-
quadratic form over Z (Z⊕ Z, λ, µ′) with

µ′ : Z⊕ Z→ Q(−1)(Z) = Z2 ; (x, y) 7−→ x2 + xy + y2 .

The plumbed manifold

M(I, 1, 1)4k+2 = D4k+2 ∪D2k+1 ×D2k+1 ∪D2k+1 ×D2k+1

has the same attaching maps for the cores of the (2k + 1)-handles as
M(I, 0, 0), but now using the framings of S2k ⊂ S4k+1 classified by

τS2k+1 ∈ π2k+1(BSO(2k + 1)) = π2k(SO(2k + 1))

(which is zero if and only if k = 0, 1, 3). The Arf form is the kernel of the
(2k + 1)-connected (4k + 2)-dimensional normal map

(f ′, b′) : (M ′; ∂−M ′, ∂+M ′) = (cl.(M(I, 1, 1)\D4k+2); S4k+1, Σ4k+1)

→ S4k+1 × ([0, 1]; {0}, {1})
defined by the trace of surgeries on the linked spheres

S2k ∪ S2k ↪→ S4k+1 = S2k ×D2k+1 ∪D2k+1 × S2k ,
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with self-linking given by the non-standard framing. (See 3.7 below for a
brief account of the exotic sphere Σ4k+1).

Example 2.20 The sphere bundles S(ω) of certain oriented 4-plane bundles
ω over S4 (the special case n = 4 of 2.19 (i)) give explicit exotic 7-spheres.
An oriented 4-plane bundle ω : S4 → BSO(4) is determined by the Euler
number and first Pontrjagin class

χ(ω), p1(ω) ∈ H4(S4) = Z ,

which must be such that

2χ(ω) ≡ p1(ω)(mod 4) ,

with an isomorphism

π4(BSO(4))
∼=→ Z⊕ Z ; ω 7−→ ((2χ(ω) + p1(ω))/4, (2χ(ω)− p1(ω))/4) .

If χ(ω) = 1 then S(ω) is a homotopy 7-sphere, and

p1(ω) = 2` ∈ H4(S4) = Z
for some odd integer `. The 7-dimensional differentiable manifold Σ7

` =
S(ω) is homeomorphic to S7 (by Smale’s generalized Poincaré conjecture,
or by a direct Morse-theoretic argument). If Σ7

` is diffeomorphic to S7 then

M8 = E(ω) ∪Σ7
`
D8

is a closed 8-dimensional differentiable manifold with

p1(M) = p1(ω) = 2` ∈ H4(M) = Z , σ(M) = 1 ∈ Z .

By the Hirzebruch signature theorem

σ(M) = 〈L(M), [M ]〉
= (7p2(M)− p1(M)2)/45

= (7p2(M)− 4`2)/45 = 1 ∈ Z .

If ` 6≡ ±1(mod 7) then

p2(M) = (45 + 4`2)/7 6∈ H8(M) = Z
so that there is no such diffeomorphism, and Σ7

` is an exotic 7-sphere (Mil-
nor [10], Milnor and Stasheff [14, p.247]).

Definition 2.21 An isomorphism of ε-symmetric forms

f : (K, λ)
∼=→ (K ′, λ′)

is a Λ-module isomorphism f : K ∼= K ′ such that

λ′(f(x), f(y)) = λ(x, y) ∈ Λ .

An isomorphism of ε-quadratic forms f : (K, λ, µ) ∼= (K ′, λ′, µ′) is an iso-
morphism of the underlying ε-symmetric forms f : (K, λ) ∼= (K ′, λ′) such
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that

µ′(f(x)) = µ(x) ∈ Qε(Λ) .

Proposition 2.22 If there exists a central element s ∈ Λ such that

s + s = 1 ∈ Λ

there is an identification of categories

{ε-quadratic forms over Λ} = {ε-symmetric forms over Λ} .

Proof : The ε-symmetrization map 1+Tε : Qε(K) → Qε(K) is an isomor-
phism for any Λ-module K, with inverse

Qε(K) → Qε(K) ; λ 7−→ ((x, y) 7−→ sλ(x, y)) .

For any ε-quadratic form (K,λ, µ) the ε-quadratic function µ is determined
by the ε-symmetric pairing λ, with

µ(x) = sλ(x, x) ∈ Qε(Λ) .

Example 2.23 If 2 ∈ Λ is invertible then 2.22 applies with s = 1/2 ∈ Λ.

For any ε-symmetric form (K, λ) and x ∈ K

λ(x, x) ∈ Qε(Λ) .

Definition 2.24 An ε-symmetric form (K, λ) is even if for all x ∈ K

λ(x, x) ∈ im(1 + Tε : Qε(Λ) → Qε(Λ)) .

Proposition 2.25 Let ε = 1 or −1. If the ε-symmetrization map

1 + Tε : Qε(Λ) → Qε(Λ)

is an injection there is an identification of categories

{ε-quadratic forms over Λ} = {even ε-symmetric forms over Λ} .

Proof : Given an even ε-symmetric form (K, λ) over Λ there is a unique
function µ : K → Qε(Λ) such that for all x ∈ K

(1 + Tε)(µ(x)) = λ(x, x) ∈ Qε(Λ) ,

which then automatically satisfies the conditions of 2.13 for (K, λ, µ) to be
an ε-quadratic form.

Example 2.26 The symmetrization map

1 + T = 2 : Q+1(Z) = Z→ Q+1(Z) = Z
is an injection, so that quadratic forms over Z coincide with the even sym-
metric forms.
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Example 2.27 The (−1)-symmetrization map

1 + T− : Q−1(Z) = Z2 → Q−1(Z) = 0

is not an injection, so that (−1)-quadratic forms over Z have a richer struc-
ture than even (−1)-symmetric forms. The hyperbolic (−1)-symmetric
form (K, λ) = H−1(Z) over Z

K = Z⊕ Z , λ : K ×K → Z ; ((a, b), (c, d)) 7−→ ad− bc

admits two distinct (−1)-quadratic refinements (K, λ, µ), (K, λ, µ′), with

µ : K → Q−1(Z) = Z/2 ; (x, y) 7−→ xy ,

µ′ : K → Q−1(Z) = Z/2 ; (x, y) 7−→ x2 + xy + y2 .

See §3 below for the definition of the Arf invariant, which distinguishes
the hyperbolic (−1)-quadratic form (K,λ, µ) = H−1(Z) from the Arf form
(K,λ, µ′) (which already appeared in 2.19 (iv)).

§3. The even-dimensional L-groups

The even-dimensional surgery obstruction groups L2n(Λ) will now be
defined, using the following preliminary result.

Lemma 3.1 For any nonsingular ε-quadratic form (K, λ, µ) there is defined
an isomorphism

(K, λ, µ)⊕ (K,−λ,−µ) ∼= Hε(K) ,

with Hε(K) the hyperbolic ε-quadratic form (2.14).
Proof : Let L be a f. g. projective Λ-module such that K⊕L is f. g. free,
with basis elements {x1, x2, . . . , xk} say. Let

λij = (λ⊕ 0)(xj , xi) ∈ Λ (1 ≤ i < j ≤ k)

and choose representatives µi ∈ Λ of µ(xi) ∈ Qε(Λ) (1 ≤ i ≤ k). Define
the Λ-module morphism

ψK⊕L : K ⊕ L → (K ⊕ L)∗ ;

k∑

i=1

aixi 7−→ (
k∑

j=1

bjxj 7−→
k∑

i=1

biµiai +
∑

1≤i<j≤k

bjλijai) .

The Λ-module morphism defined by

ψ : K
inclusion−−−−−−→ K ⊕ L

ψK⊕L−−−−→ (K ⊕ L)∗ = K∗ ⊕ L∗
projection−−−−−−→ K∗

is such that
λ = ψ + εψ∗ : K → K∗,

µ(x) = ψ(x, x) ∈ Qε(Λ) (x ∈ K) .
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As (K,λ, µ) is nonsingular ψ + εψ∗ : K → K∗ is an isomorphism. The
Λ-module morphism defined by

ψ̃ = (ψ + εψ∗)−1ψ(ψ + εψ∗)−1 : K∗ → K

is such that

(ψ + εψ∗)−1 = ψ̃ + εψ̃∗ : K∗ → K .

Define an isomorphism of ε-quadratic forms

f : Hε(K)
∼=→ (K ⊕K,λ⊕−λ, µ⊕−µ)

by

f =
(

1 −εψ̃∗

1 ψ̃

)
: K ⊕K∗ → K ⊕K .

Definition 3.2 The 2n-dimensional L-group L2n(Λ) is the group of equiv-
alence classes of nonsingular (−1)n-quadratic forms (K, λ, µ) on stably
f. g. free Λ-modules, subject to the equivalence relation

(K,λ, µ) ∼ (K ′, λ′, µ′)

if there exists an isomorphism of (−1)n-quadratic forms

(K,λ, µ)⊕H(−1)n(Λk)
∼=→ (K ′, λ′, µ′)⊕H(−1)n(Λk′)

for some f. g. free Λ-modules Λk,Λk′ .

Addition and inverses in L2n(Λ) are given by

(K1, λ1, µ1) + (K2, λ2, µ2) = (K1 ⊕K2, λ1 ⊕ λ2, µ1 ⊕ µ2) ,

−(K, λ, µ) = (K,−λ,−µ) ∈ L2n(Λ) .

The groups L2n(Λ) only depend on the residue n(mod 2), so that only
two L-groups have actually been defined, L0(Λ) and L2(Λ). Note that 3.2
uses Lemma 3.1 to justify (K, λ, µ)⊕ (K,−λ,−µ) ∼ 0.

Remark 3.3 The surgery obstruction of an n-connected 2n-dimensional
normal map (f, b) : M2n → X is an element

σ∗(f, b) = (Kn(M), λ, µ) ∈ L2n(Z[π1(X)])

such that σ∗(f, b) = 0 if (and for n ≥ 3 only if) (f, b) is normal bordant to
a homotopy equivalence.

Example 3.4 Let M = M2
g be the orientable 2-manifold (= surface) of

genus g, with degree 1 map f : M → S2. A choice of framing of the
stable normal bundle of an embedding M ↪→ R3 determines a 1-connected
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2-dimensional normal map (f, b) : M → S2. For a standard choice of
framing (i.e. one which extends to a 3-manifold N with ∂N = M) the
kernel form and the surgery obstruction are given by

σ∗(f, b) = H−1(Zg) = 0 ∈ L2(Z)

and (f, b) is normal bordant to a homotopy equivalence, i.e. M is framed
null-cobordant.

Example 3.5 The even-dimensional L-groups of the ring Λ = R of real
numbers with the identity involution are given by

L2n(R) =
{
Z if n is even
0 if n is odd .

Since 1/2 ∈ R there is no difference between symmetric and quadratic
forms over R.

The signature (alias index) of a nonsingular symmetric form (K, λ) over
R is defined by

σ(K, λ) = no. of positive eigenvalues of λ

− no. of negative eigenvalues of λ ∈ Z .

Here, the symmetric form λ ∈ Q+1(K) is identified with the symmetric
k× k matrix (λ(xi, xj)1≤i,j≤k) ∈ Mk,k(R) determined by any choice of ba-
sis x1, x2, . . . , xk for K. By Sylvester’s law of inertia the rank k and the
signature σ(K, λ) define a complete set of invariants for the isomorphism
classification of nonsingular symmetric forms (K,λ) over R, meaning that
two forms are isomorphic if and only if they have the same rank and sig-
nature. A nonsingular quadratic form (K, ψ) over R is isomorphic to a
hyperbolic form if and only if it has signature 0. Two such forms (K, λ),
(K ′, λ′) are related by an isomorphism

(K, λ)⊕H+(Rm)
∼=→ (K ′, λ′)⊕H+(Rm′

)

if and only if they have the same signature

σ(K,λ) = σ(K ′, λ′) ∈ Z .

Moreover, every integer is the signature of a form, since 1 ∈ Z is the
signature of the nonsingular symmetric form (R,1) with

1 : R→ R∗ ; x 7−→ (y 7−→ xy)

and for any nonsingular symmetric forms (K, λ), (K ′, λ′) over R

σ((K, λ)⊕ (K ′, λ′)) = σ(K, λ) + σ(K ′, λ′) ,

σ(K,−λ) = −σ(K, λ) ∈ Z .
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The isomorphism of 3.5 in the case n ≡ 0(mod 2) is defined by

L0(R)
∼=→ Z ; (K, λ) 7−→ σ(K, λ) .

L2(R) = 0 because every nonsingular (−1)-symmetric (alias symplectic)
form over R admits is isomorphic to a hyperbolic form.

It is not possible to obtain a complete isomorphism classification of non-
singular symmetric and quadratic forms over Z – see Chapter II of Milnor
and Husemoller [13] for the state of the art in 1973. Fortunately, it is much
easier to decide if two forms become isomorphic after adding hyperbolics
then whether they are actually isomorphic. Define the signature of a non-
singular symmetric form (K, λ) over Z to be the signature of the induced
nonsingular symmetric form over R

σ(K,λ) = σ(R⊗K, 1⊗ λ) ∈ Z .

It is a non-trivial theorem that two nonsingular even symmetric forms
(K,λ), (K ′, λ′) are related by an isomorphism

(K,λ)⊕H+(Zm)
∼=→ (K ′, λ′)⊕H+(Zm′

)

if and only if they have the same signature

σ(K,λ) = σ(K ′, λ′) ∈ Z .

Moreover, not every integer arises as the signature of an even symmetric
form, only those divisible by 8. The Dynkin diagram of the exceptional Lie
group E8 is a tree


........
........
........
........
........
........
........
........
........
........
........
.....

• • • • • • •

•
v1

v2 v3 v4 v5 v6 v7 v8

Weighing each vertex by 1 ∈ Q+1(Z) = Z gives (by the method recalled in
2.18) a nonsingular quadratic form (Z8, λE8 , µE8) with signature

σ(Z8, λE8) = 8 ∈ Z ,
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where

λE8 =




2 0 0 1 0 0 0 0
0 2 1 0 0 0 0 0
0 1 2 1 0 0 0 0
1 0 1 2 1 0 0 0
0 0 0 1 2 1 0 0
0 0 0 0 1 2 1 0
0 0 0 0 0 1 2 1
0 0 0 0 0 0 1 2




: Z8 → (Z8)∗

and µE8 is determined by λE8 .

Example 3.6 (i) The signature divided by 8 defines an isomorphism

σ : L4k(Z) → Z ; (K, λ, µ) 7→ σ(K, λ)/8

so that (Z8, λE8 , µE8) ∈ L4k(Z) represents a generator.
(ii) See Kervaire and Milnor [7] and Levine [9] for the surgery classifica-
tion of high-dimensional exotic spheres, including the expression of the
h-cobordism group Θn of n-dimensional exotic spheres for n ≥ 5 as

Θn = πn(TOP/O) = πn(PL/O)

and the exact sequence

. . . → πn+1(G/O) → Ln+1(Z) → Θn → πn(G/O) → . . . .

(iii) In the original case n = 7 (Milnor [10]) there is defined an isomorphism

Θ7
∼=→ Z28 ; Σ7 7→ σ(W )/8

for any framed 8-dimensional manifold W with ∂W = Σ7. The realization
(2.17) of (Z8, λE8 , µE8) as the kernel form of a 4-connected 8-dimensional
normal bordism

(f, b) : (M8, S7, ∂+M) = (cl.(M(E8, 1, . . . , 1)\D8); S7, ∂M(E8, 1, . . . , 1))

→ S7 × ([0, 1]; {0}, {1})
gives the exotic sphere

Σ7 = ∂+M = ∂M(E8, 1, . . . , 1)

generating Θ7 : the framed 8-dimensional manifold W = M(E8, 1, . . . , 1)
obtained by the E8-plumbing of 8 copies of τS4 (2.18) has σ(W ) = 8. The 7-
dimensional homotopy sphere Σ7

` defined for any odd integer ` in 2.20 is the
boundary of a framed 8-dimensional manifold W` with σ(W`) = 8(`2 − 1).
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For any nonsingular (−1)-quadratic form (K, λ, µ) over Z there exists a
symplectic basis x1, . . . , x2m for K, such that

λ(xi, xj) =

{ 1 if i− j = m
−1 if j − i = m
0 otherwise .

The Arf invariant of (K, λ, µ) is defined using any such basis to be

c(K, λ, µ) =
m∑

i=1

µ(xi)µ(xi+m) ∈ Z2 .

Example 3.7 (i) The Arf invariant defines an isomorphism

c : L4k+2(Z) → Z2 ; (K,λ, µ) 7→ c(K, λ, µ)

The nonsingular (−1)-quadratic form (Z⊕ Z, λ, µ) over Z defined by

λ((x, y), (x′, y′)) = x′y − xy′ ∈ Z ,

µ(x, y) = x2 + xy + y2 ∈ Q−1(Z) = Z2

has Arf invariant c(Z⊕ Z, λ, µ) = 1, and so generates L4k+2(Z).
(ii) The realization (2.19 (iv)) of the Arf form (Z ⊕ Z, λ, µ) as the kernel
form of a 5-connected 10-dimensional normal bordism

(f, b) : (M10, S9, ∂+M) = (cl.(M(I, 1, 1)\D10); S9, ∂M(I, 1, 1))

→ S9 × ([0, 1]; {0}, {1})
is obtained by plumbing together 2 copies of τS5 (2.18) where I is the tree
with 1 edge and 2 vertices

.....................................................................................................• •
I

and Σ9 = ∂+M = ∂M(I, 1, 1) is the exotic 9-sphere generating Θ9 = Z2.
Coning off the boundary components gives the closed 10-dimensional PL
manifold cS9 ∪M ∪ cΣ9 without differentiable structure of Kervaire [5].

§4. Split forms

A “split form” on a Λ-module K is an element

ψ ∈ S(K) = HomΛ(K, K∗) ,

which can be regarded as a sesquilinear pairing

ψ : K ×K → Λ ; (x, y) 7→ ψ(x, y) .

Split forms are more convenient to deal with than ε-quadratic forms in
describing the algebraic effects of even-dimensional surgery (in §5 below),
and are closer to the geometric applications such as knot theory.

The main result of §4 is that the ε-quadratic structures (λ, µ) on a f.g.
projective Λ-module K correspond to the elements of the ε-quadratic group
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of 2.6

Qε(K) = coker(1− Tε : S(K) → S(K)) .

The pair of functions (λ, µ) used to define an ε-quadratic form (K, λ, µ)
can thus be replaced by an equivalence class of Λ-module morphisms ψ :
K → K∗ such that

λ(x, y) = ψ(x, y) + εψ(y, x) ∈ Λ ,

µ(x) = ψ(x, x) ∈ Qε(Λ)

i.e. by an equivalence class of split forms.

Definition 4.1 (i) A split form (K, ψ) over Λ is a f. g. projective Λ-module
K together with an element ψ ∈ S(K).
(ii) A morphism (resp. isomorphism) of split forms over Λ

f : (K,ψ) → (K ′, ψ′)

is a Λ-module morphism (resp. isomorphism) f : K → K ′ such that

f∗ψ′f = ψ : K → K∗ .

(iii) An ε-quadratic morphism (resp. isomorphism) of split forms over Λ

(f, χ) : (K, ψ) → (K ′, ψ′)

is a Λ-module morphism (resp. isomorphism) f : K → K ′ together with
an element χ ∈ Q−ε(K) such that

f∗ψ′f − ψ = χ− εχ∗ : K → K∗ .

(iv) A split form (K, ψ) is ε-nonsingular if ψ+εψ∗ : K → K∗ is a Λ-module
isomorphism.

Proposition 4.2 (i) A split form (K, ψ) determines an ε-quadratic form
(K,λ, µ) by

λ = ψ + εψ∗ : K → K∗ ; x 7−→ (y 7−→ ψ(x, y) + εψ(y, x)) ,

µ : K → Qε(Λ) ; x 7−→ ψ(x, x) .

(ii) Every ε-quadratic form (K, λ, µ) is determined by a split form (K,ψ),
which is unique up to

ψ ∼ ψ′ if ψ′ − ψ = χ− εχ∗ for some χ : K → K∗ .

(iii) The isomorphism classes of (nonsingular) ε-quadratic forms (K, λ, µ)
over Λ are in one-one correspondence with the ε-quadratic isomorphism
classes of (ε-nonsingular) split forms (K, ψ) over Λ.
Proof : (i) By construction.
(ii) There is no loss of generality in taking K to be f.g. free, K = Λk.
An ε-quadratic form (Λk, λ, µ) over Λ is determined by a k × k-matrix
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λ = {λij ∈ Λ | 1 ≤ i, j ≤ k} such that

λij = ελji ∈ Λ

and a collection of elements µ = {µi ∈ Qε(Λ) | 1 ≤ i ≤ k} such that

µi + εµi = λii ∈ Qε(Λ) .

Choosing any representatives µi ∈ Λ of µi ∈ Qε(Λk) there is defined a split
form (Λk, ψ) with ψ = {ψij ∈ Λ | 1 ≤ i, j ≤ k} the k × k matrix defined by

ψij =





λij if i < j

µi if i = j

0 otherwise .
(iii) An ε-quadratic (iso)morphism (f, χ) : (K, ψ) → (K ′, ψ′) of split forms
determines an (iso)morphism f : (K, λ, µ) → (K ′, λ′, µ′) of ε-quadratic
forms. Conversely, an ε-quadratic form (K, λ, µ) determines an ε-quadratic
isomorphism class of split forms (K, ψ) as in 3.1, and every (iso)morphism
of ε-quadratic forms lifts to an ε-quadratic (iso)morphism of split forms.

Thus Qε(K) is both the group of isomorphism classes of ε-quadratic
forms and the group of ε-quadratic isomorphism classes of split forms on a
f. g. projective Λ-module K.

The following algebraic result will be used in 4.6 below to obtain a ho-
mological split form ψ on the kernel Z[π1(X)]-module Kn(M) of an n-
connected 2n-dimensional normal map (f, b) : M → X with some extra
structure, which determines the kernel (−1)n-quadratic form (Kn(M), λ, µ)
as in 4.2 (i).

Lemma 4.3 Let (K,λ, µ) be an ε-quadratic form over Λ.
(i) If s : K → K is an endomorphism such that(

s
1− s

)
: (K, 0, 0) → (K,λ, µ)⊕ (K,−λ,−µ)

defines a morphism of ε-quadratic forms then (K, λs) is a split form which
determines the ε-quadratic form (K,λ, µ).
(ii) If (K, λ, µ) is nonsingular and (K, ψ) is a split form which determines
(K,λ, µ) then

s = λ−1ψ : K → K

is an endomorphism such that(
s

1− s

)
: (K, 0, 0) → (K,λ, µ)⊕ (K,−λ,−µ)

defines a morphism of ε-quadratic forms.
Proof : (i) By 4.2 there exist a split form (K, ψ) which determines
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(K,λ, µ) and an ε-quadratic morphism of split forms
( (

s
1− s

)
, χ

)
: (K, 0) → (K,ψ)⊕ (K,−ψ) .

It follows from
λ = ψ + εψ∗ : K → K∗ ,
(

s
1− s

)∗(
ψ 0
0 −ψ

)(
s

1− s

)
= χ− εχ∗ : K → K∗

that

λs− ψ = χ′ − εχ′∗ : K → K∗

with

χ′ = χ− s∗ψ : K → K∗ .

(ii) From the definitions.

In the terminology of §5 the morphism of 4.3 (ii)(
s

1− s

)
: (K, 0, 0) → (K, λ, µ)⊕ (K,−λ,−µ)

is the inclusion of a lagrangian

L = im(
(

s
1− s

)
: K → K ⊕K)

= ker(( (−1)n−1ψ∗ ψ ) : K ⊕K → K∗) .

Example 4.4 A (2n − 1)-knot is an embedding of a homotopy (2n − 1)-
sphere in a standard (2n + 1)-sphere

` : Σ2n−1 ↪→ S2n+1 .

For n = 1 this is just a classical knot ` : Σ1 = S1 ↪→ S3; for n ≥ 3 Σ2n−1 is
homeomorphic to S2n−1, by the generalized Poincaré conjecture, but may
have an exotic differentiable structure. Split forms (K, ψ) first appeared as
the Seifert forms over Z of (2n−1)-knots, originally for n = 1. See Ranicki
[21, 7.8], [24] for a surgery treatment of high-dimensional knot theory. In
particular, a Seifert form is an integral refinement of an even-dimensional
surgery kernel form, as follows.
(i) A (2n− 1)-knot ` : Σ2n−1 ↪→ S2n+1 is simple if

πr(S2n+1\`(Σ2n−1)) = πr(S1) (1 ≤ r ≤ n− 1) .

(Every 1-knot is simple). A simple (2n − 1)-knot ` has a simple Seifert
surface, that is an (n − 1)-connected framed codimension 1 submanifold
M2n ⊂ S2n+1 with boundary

∂M = `(Σ2n−1) ⊂ S2n+1 .
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The kernel of the n-connected normal map

(f, b) = inclusion : (M, ∂M) → (X, ∂X) = (D2n+2, `(Σ2n−1))

is a nonsingular (−1)n-quadratic form (Hn(M), λ, µ) over Z. The Seifert
form of ` with respect to M is the refinement of (Hn(M), λ, µ) to a (−1)n-
nonsingular split form (Hn(M), ψ) over Z which is defined using Alexander
duality and the universal coefficient theorem

ψ = i∗ : Hn(M) → Hn(S2n+1\M) ∼= Hn(M) ∼= Hn(M)∗

with i : M → S2n+1\M the map pushing M off itself along a normal
direction in S2n+1. If i′ : M → S2n+1\M pushes M off itself in the
opposite direction

i′∗ = (−1)n+1ψ∗ : Hn(M) → Hn(S2n+1\M) ∼= Hn(M) ∼= Hn(M)∗

with
i∗ − i′∗ = ψ + (−1)nψ∗ = λ

= ([M ] ∩ −)−1 : Hn(M) → Hn(M) ∼= Hn(M)∗

the Poincaré duality isomorphism. If x1, x2, . . . , xk ∈ Hn(M) is a basis then
(ψ(xj , xj′)) is a Seifert matrix for the (2n−1)-knot `. For any embeddings
x, y : Sn ↪→ M

ψ(x, y) = linking number(ix(Sn) ∪ y(Sn) ⊂ S2n+1)

= degree(y∗ix : Sn → Sn) ∈ Z
with

y∗ix : Sn x // M
i // S2n+1\M y∗ // S2n+1\y(Sn) ' Sn .

For n ≥ 3 every element x ∈ Hn(M) is represented by an embedding
e : Sn ↪→ M , using the Whitney embedding theorem, and π1(M) = {1}.
Moreover, for any embedding x : Sn ↪→ M the framed embedding M ↪→
S2n+1 determines a stable trivialization of the normal bundle νx : Sn →
BSO(n)

δνx : νx ⊕ ε ∼= εn+1

such that

ψ(x, x) = (δνx, νx) ∈ πn+1(BSO(n + 1), BSO(n)) = Z .

Every element x ∈ Hn(M) is represented by an embedding

e1 × e2 : Sn ↪→ M × R
with e1 : Sn # M a framed immersion such that the composite

Sn e1 × e2 // M × R ↪→ S2n+1
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is isotopic to the standard framed embedding Sn ↪→ S2n+1. Then

ψ(x, x) =
∑

(a,b)∈D2(e1),e2(a)<e2(b)

I(a, b) ∈ Z

is an integral lift of the geometric self-intersection (2.15 (ii))

µ(x) =
∑

(a,b)∈D2(e1)/Z2

I(a, b) ∈ Q(−1)n(Z) ,

with

D2(e1) = {(a, b) ∈ Sn × Sn | a 6= b ∈ Sn, e1(a) = e1(b) ∈ M}
the double point set. For even n ψ(x, x) = µ(x) ∈ Q+1(Z) = Z, while
for odd n ψ(x, x) ∈ Z is a lift of µ(x) ∈ Q−1(Z) = Z2. The Seifert form
(Hn(M), ψ) is such that ψ(x, x) = 0 if (and for n ≥ 3 only if) x ∈ Hn(M)
can be killed by an ambient surgery on M2n ⊂ S2n+1, i.e. represented by
a framed embedding of pairs

x : (Dn+1 ×Dn, Sn ×Dn) ↪→ (S2n+1 × [0, 1],M × {0})
so that the effect of the surgery on M is another Seifert surface for the
(2n− 1)-knot `

M ′ = cl.(M × x(Sn ×Dn)) ∪Dn+1 × Sn−1 ⊂ S2n+1 .

If x ∈ Hn(M) generates a direct summand L = 〈x〉 ⊂ Hn(M) then M ′ is
also (n− 1)-connected, with Seifert form

(Hn(M ′), ψ′) = (L⊥/L, [ψ]) ,

where

L⊥ = {y ∈ Hn(M) | (ψ + (−1)nψ∗)(x)(y) = 0 for x ∈ L} ⊆ Hn(M) .

(ii) Every (−1)n-nonsingular split form (K,ψ) over Z is realized as the
Seifert form of a simple (2n − 1)-knot ` : Σ2n−1 ↪→ S2n+1 (Kervaire [6]).
From the algebraic surgery point of view the realization proceeds as fol-
lows. By 2.17 the nonsingular (−1)n-quadratic form (K, λ, µ) determined
by (K,ψ) (4.2 (i)) is the kernel form of an n-connected 2n-dimensional
normal map

(f, b) : (M2n, Σ2n−1) → (D2n, S2n−1)

with f | : Σ2n−1 → S2n−1 a homotopy equivalence. The double of (f, b)
defines an n-connected 2n-dimensional normal map

(g, c) = (f, b)∪−(f, b) : N2n = M∪Σ2n−1−M → D2n∪S2n−1−D2n = S2n

with kernel form (K ⊕K,λ⊕−λ, µ⊕−µ). The direct summand

L = ker(( (−1)n−1ψ∗ ψ ) : K ⊕K → K∗) ⊂ K ⊕K

is such that for any (x, y) ∈ L

µ(x)− µ(y) = (1 + (−1)n−1)ψ(x, x) = 0 ∈ Q(−1)n(Z) .
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Let k = rankZ(K). The trace of the k surgeries on (g, c) killing a ba-
sis (xj , yj) ∈ K ⊕ K (j = 1, 2, . . . , k) for L is an n-connected (2n + 1)-
dimensional normal map

(W 2n+1; N, S2n) → S2n × ([0, 1]; {0}, {1})
such that

` : Σ2n−1 ↪→ (Σ2n−1 ×D2) ∪ (W ∪D2n+1) ∪ (M × [0, 1]) ∼= S2n+1

is a simple (2n − 1)-knot with Seifert surface M and Seifert form (K,ψ).
Note that M itself is entirely determined by the (−1)n-quadratic form
(K,λ, µ), with cl.(M\D2n) the trace of k surgeries on S2n−1 removing

⋃

k

Sn−1 ×Dn ↪→ S2n−1

with (self-)linking numbers (λ, µ). The embedding M ↪→ S2n+1 is deter-
mined by the choice of split structure ψ for (λ, µ).
(iii) In particular, (ii) gives a knot version of the plumbing construction
(2.18): let G be a finite graph with vertices v1, v2, . . . , vk, weighted by
µ1, µ2, . . . , µk ∈ Q(−1)n(Z), so that there are defined a (−1)n-quadratic
form (Zk, λ, µ) and a plumbed stably parallelizable (n − 1)-connected 2n-
dimensional manifold with boundary

M2n = M(G,µ1, µ2, . . . , µk) ,

killing H1(G) by surgery if G is not a tree. A choice of split form ψ for
(λ, µ) determines a compression of a framed embedding M ↪→ S2n+j (j
large) to a framed embedding M ↪→ S2n+1, so that ∂M ↪→ S2n+1 is a
codimension 2 framed embedding. The form (Zk, λ, µ) is nonsingular if
and only if Σ2n−1 = ∂M is a homotopy (2n − 1)-sphere, in which case
Σ2n−1 ↪→ S2n+1 is a simple (2n− 1)-knot with simple Seifert surface M .
(iv) Given a simple (2n− 1)-knot ` : Σ2n−1 ↪→ S2n+1 and a simple Seifert
surface M2n ↪→ S2n+1 there is defined an n-connected 2n-dimensional nor-
mal map

(f, b) = inclusion : (M, ∂M) → (X, ∂X) = (D2n+2, `(Σ2n−1))

as in (i). The knot complement is a (2n + 1)-dimensional manifold with
boundary

(W,∂W ) = (cl.(S2n+1\(`(Σ2n−1)×D2)), `(Σ2n−1)× S1)

with a Z-homology equivalence p : (W,∂W ) → S1 such that

p| = projection : ∂W = Σ2n−1 × S1 → S1 ,

p−1(pt.) = M ⊂ W .

Cutting W along M ⊂ W there is obtained a cobordism (N ;M, M ′) with
M ′ a copy of M , and N a deformation retract of S2n+1\M , such that (f, b)
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extends to an n-connected normal map

(g, c) : (N ;M, M ′) → X × ([0, 1]; {0}, {1})
with (g, c)| = (f ′, b′) : M ′ → X a copy of (f, b). The n-connected (2n + 1)-
dimensional normal map

(h, d) = (g, c)/((f, b) = (f ′, b′)) :

(W,∂W ) = (N ;M, M ′)/(M = M ′) → (X, ∂X)× S1

is a Z-homology equivalence which is the identity on ∂W , and such that

(f, b) = (h, d)| : (M,∂M) = h−1((X, ∂X)× {pt.}) → (X, ∂X) .

Example 4.5 (i) Split forms over group rings arise in the following geo-
metric situation, generalizing 4.4 (iv).
Let X be a 2n-dimensional Poincaré complex, and let (h, d) : W → X×S1

be an n-connected (2n + 1)-dimensional normal map which is a Z[π1(X)]-
homology equivalence. Cut (h, d) along X × {pt.} ⊂ X × S1 to obtain an
n-connected 2n-dimensional normal map

(f, b) = (h, d)| : M = h−1({pt.}) → X

and an n-connected normal bordism

(g, c) : (N ;M, M ′) → X × ([0, 1]; {0}, {1})
with N a deformation retract of W\M , such that (g, c)| = (f, b) : M → X,
and such that (g, c)| = (f ′, b′) : M ′ → X is a copy of (f, b). The inclusions
i : M ↪→ N , i′ : M ′ ↪→ N induce Z[π1(X)]-module morphisms

i∗ : Kn(M) → Kn(N) , i′∗ : Kn(M ′) = Kn(M) → Kn(N)

which fit into an exact sequence

Kn+1(W ) = 0 // Kn(M)
i∗ − i′∗ // Kn(N) // Kn(W ) = 0 ,

so that i∗ − i′∗ : Kn(M) → Kn(N) is an isomorphism. Let (Kn(M), λ, µ)
be the kernel (−1)n-quadratic form of (f, b). The endomorphism

s = (i∗ − i′∗)
−1i∗ : Kn(M) → Kn(M)

is such that(
s

1− s

)
: (Kn(M), 0, 0) → (Kn(M), λ, µ)⊕ (Kn(M),−λ,−µ)

defines a morphism of (−1)n-quadratic forms, so that by 4.3 the split form
(Kn(M), ψ) with

ψ = λs : Kn(M) → Kn(M)∗

determines (Kn(M), λ, µ). Every element x ∈ Kn(M) can be represented
by a framed immersion x : Sn # M with a null-homotopy fx ' ∗ : Sn →
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X. Use the null-homotopy and the normal Z[π1(X)]-homology equivalence
(h, d) : W → X×S1 to extend x to a framed immersion δx : Dn+1 # W . If
x1, x2, . . . , xk ∈ Kn(M) is a basis for the kernel f.g. free Z[π1(X)]-module
then

s(xj) =
k∑

j′=1

sjj′xj′ ∈ Kn(M)

with
sjj′ = linking number(ixj(Sn) ∪ xj′(Sn) ⊂ W )

= intersection number(ixj(Sn) ∩ δxj′(Dn+1) ⊂ W ) ∈ Z[π1(X)] .

The split form (Kn(M), ψ) is thus a (non-simply connected) Seifert form.
(ii) Suppose given an n-connected 2n-dimensional normal map (f, b) :
(M, ∂M) → (X, ∂X), with kernel (−1)n-quadratic form (Kn(M), λ, µ) over
Z[π1(X)]. A choice of split form ψ for (λ, µ) can be realized by an (n + 1)-
connected (2n + 2)-dimensional normal map

(g, c) : (L, ∂L) → (X ×D2, X × S1 ∪ ∂X ×D2)

which is a Z[π1(X)]-homology equivalence with

(f, b) = (g, c)| : (M,∂M) = g−1((X, ∂X)× {0}) → (X, ∂X) ,

H∗+1(L̃, M̃) = K∗(M) (= 0 for ∗ 6= n)

as follows. The inclusion ∂M ↪→ ∂L is a codimension 2 embedding with
Seifert surface M ↪→ ∂L and Seifert form (Kn(M), ψ) as in the relative
version of (i), with

(h, d) = (g, c)| : W = ∂L → X × S1 ∪ ∂X ×D2 .

The choice of split form ψ for (λ, µ) determines a sequence of surgeries on
the n-connected (2n + 1)-dimensional normal map

(f, b)× 1[0,1] : M × ([0, 1]; {0}, {1}) → X × ([0, 1]; {0}, {1})
killing the (stably) f. g. free Z[π1(X)]-module

Kn(M × [0, 1]) = Kn(M) ,

obtaining a rel ∂ normal bordant map

(fN , bN ) : (N ;M, M ′) → X × ([0, 1]; {0}, {1})
with Ki(N) = 0 for i 6= n. The Z[π1(X)]-module morphisms induced by
the inclusions i : M ↪→ N , i′ : M ′ ↪→ N

i∗ : Kn(M) → Kn(N) , i′∗ : Kn(M) = Kn(M ′) → Kn(N)

are such that i∗−i′∗ : Kn(M) → Kn(N) is a Z[π1(X)]-module isomorphism,
with

ψ : Kn(M)
(i∗−i′∗)

−1i∗−−−−−−−→ Kn(M)
adjoint(λ)

−−−−−−−→ Kn(M)∗ .
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Thus it is possible to identify

i∗ = ψ : Kn(M) → Kn(N) ∼= Kn(M)∗ ,

i′∗ = (−1)n+1ψ∗ : Kn(M) = Kn(M ′) → Kn(N) ∼= Kn(M)∗

with

i∗ − i′∗ = ψ + (−1)nψ∗ = adjoint(λ) : Kn(M)
∼=→ Kn(M)∗ .

The (2n + 1)-dimensional manifold with boundary defined by

(V, ∂V ) = (N/(M = M ′), ∂M × S1)

is equipped with a normal map

(fV , bV ) : (V, ∂V ) → (X × S1, ∂X × S1)

which is an n-connected Z[π1(X)]-homology equivalence, with Kj(V ) = 0
for j 6= n + 1 and

Kn+1(V ) = coker(zψ + (−1)nψ∗ : Kn(M)[z, z−1] → Kn(M)∗[z, z−1])

identifying

Z[π1(X × S1)] = Z[π1(X)][z, z−1] (z = z−1) .

The trace of the surgeries on (f, b)× 1[0,1] gives an extension of (fV , bV ) to
an (n + 1)-connected (2n + 2)-dimensional normal bordism

(fU , bU ) : (U ; V, M × S1) → X × S1 × ([0, 1]; {0}, {1})
with Ki(U) = 0 for i 6= n+1 and (singular) kernel (−1)n+1-quadratic form
over Z[π1(X)][z, z−1]

(Kn+1(U), λU , µU )

= (Kn(M)[z, z−1], (1− z)ψ + (−1)n+1(1− z−1)ψ∗, (1− z)ψ) .

The (2n + 2)-dimensional manifold with boundary defined by

(W,∂W ) = (M ×D2 ∪ U, ∂M ×D2 ∪ V )

is such that (f, b) extends to an (n + 1)-connected normal map

(g, c) = (f, b)×1D2 ∪ (fU , bU ) : (W,∂W ) → (X×D2, ∂X×D2∪X×S1)

which is a Z[π1(X)]-homology equivalence, with Hn+1(W̃ , M̃) = Kn(M).
See Example 27.9 of Ranicki [24] for further details (noting that the split
form ψ here corresponds to the asymmetric form λ there).
(iii) Given a simple knot ` : Σ2n−1 ↪→ S2n+1 and a simple Seifert surface
M2n ⊂ S2n+1 there is defined an n-connected normal map

(f, b) = inclusion : (M2n, ∂M) → (X, ∂X) = (D2n+2, `(Σ2n−1))

with a Seifert form ψ on Kn(M) = Hn(M), as in 4.4. For n ≥ 2 the surgery
construction of (i) applied to (f, b), ψ recovers the knot

` : Σ2n−1 = ∂M ↪→ ∂W = S2n+1
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with M2n ⊂ W = D2n+2 the Seifert surface pushed into the interior of
D2n+2. The knot complement

(V 2n+1, ∂V ) = (cl.
(
S2n+1\(`(Σ2n−1)×D2)

)
, `(Σ2n−1)× S1)

is such that there is defined an n-connected (2n + 1)-dimensional normal
map

(fV , bV ) : (V, ∂V ) → (X, ∂X)× S1

which is a homology equivalence, with

(fV , bV )| = (f, b) : (M, ∂M) = (fV )−1((X, ∂X)× {∗}) → (X, ∂X) .

Cutting (fV , bV ) along (f, b) results in a normal map as in (i)

(fN , bN ) : (N2n+1; M2n,M ′2n) → X × ([0, 1]; {0}, {1}) .

§5. Surgery on forms

§5 develops algebraic surgery on forms. The effect of a geometric surgery
on an n-connected 2n-dimensional normal map is an algebraic surgery on
the kernel (−1)n-quadratic form. Moreover, geometric surgery is possible
if and only if algebraic surgery is possible.

Given an ε-quadratic form (K,λ, µ) over Λ it is possible to kill an element
x ∈ K by algebraic surgery if and only if µ(x) = 0 ∈ Qε(Λ) and x generates
a direct summand 〈x〉 = Λx ⊂ K. The effect of the surgery is the ε-
quadratic form (K ′, λ′, µ′) defined on the subquotient K ′ = 〈x〉⊥/〈x〉 of K,
with 〈x〉⊥ = {y ∈ K |λ(x, y) = 0 ∈ Λ}.

Definition 5.1 (i) Given an ε-symmetric form (K, λ) and a submodule
L ⊆ K define the orthogonal submodule

L⊥ = {x ∈ K |λ(x, y) = 0 ∈ Λ for all y ∈ L}
= ker(i∗λ : K → L∗)

with i : L → K the inclusion. If (K, λ) is nonsingular and L is a direct
summand of K then so is L⊥.
(ii) A sublagrangian of a nonsingular ε-quadratic form (K, λ, µ) over Λ is a
direct summand L ⊆ K such that

µ(L) = {0} ⊆ Qε(Λ) ,

and

λ(L)(L) = {0} , L ⊆ L⊥ .

(iii) A lagrangian of (K, λ, µ) is a sublagrangian L such that L⊥ = L.
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The main result of §5 is that the inclusion of a sublagrangian is a mor-
phism of ε-quadratic forms

i : (L, 0, 0) → (K, λ, µ)

which extends to an isomorphism

f : Hε(L)⊕ (L⊥/L, [λ], [µ])
∼=→ (K, λ, µ)

with Hε(L) the hyperbolic ε-quadratic form (2.14).

Example 5.2 Let (f, b) : M2n → X be an n-connected 2n-dimensional nor-
mal map with kernel (−1)n-quadratic form (Kn(M), λ, µ) over Z[π1(X)],
and n ≥ 3. An element x ∈ Kn(M) generates a sublagrangian L = 〈x〉 ⊂
Kn(M) if and only if it can be killed by surgery on Sn × Dn ↪→ M with
trace an n-connected normal bordism

((g, c); (f, b), (f ′, b′)) : (W 2n+1;M2n, M ′2n) → X × ([0, 1]; {0}, {1})
such that Kn+1(W,M ′) = 0. The kernel form of the effect of such a surgery

(f ′, b′) : M ′ = cl.(M\Sn ×Dn) ∪Dn+1 × Sn−1 → X

is given by

(Kn(M ′), λ′, µ′) = (L⊥/L, [λ], [µ]) .

There exists an n-connected normal bordism (g, c) of (f, b) to a homotopy
equivalence (f ′, b′) with Kn+1(W,M ′) = 0 if and only if (Kn(M), λ, µ)
admits a lagrangian.

Remark 5.3 There are other terminologies. In the classical theory of
quadratic forms over fields a lagrangian is a “maximal isotropic subspace”.
Wall called hyperbolic forms “kernels” and the lagrangians “subkernels”.
Novikov called hyperbolic forms “hamiltonian”, and introduced the name
“lagrangian”, because of the analogy with the hamiltonian formulation of
physics.

Example 5.4 An n-connected (2n + 1)-dimensional normal bordism

((g, c); (f, b), (f ′, b′)) : (W 2n+1;M2n, M ′2n) → X × ([0, 1]; {0}, {1})
with Kn+1(W,M ′) = 0 determines a sublagrangian

L = im(Kn+1(W,M) → Kn(M)) ⊂ Kn(M)

of the kernel (−1)n-quadratic form (K,λ, µ) of (f, b), with K = Kn(M).
The sublagrangian L is a lagrangian if and only if (f ′, b′) is a homotopy
equivalence. W has a handle decomposition on M of the type

W = M × I ∪
⋃

k

(n + 1)-handles Dn+1 ×Dn ,
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and L ∼= Kn+1(W,M) ∼= Z[π1(X)]k is a f. g. free Z[π1(X)]-module with
rank the number k of (n + 1)-handles. The exact sequences of stably f. g.
free Z[π1(X)]-modules

0 → Kn+1(W,M) → Kn(M) → Kn(W ) → 0 ,

0 → Kn(M ′) → Kn(W ) → Kn(W,M ′) → 0

are isomorphic to

0 → L
i−−→ K → K/L → 0 ,

0 → L⊥/L → K/L
[i∗λ]

−−−→ L∗ → 0 .

Definition 5.5 (i) A sublagrangian of an ε-nonsingular split form (K, ψ)
is an ε-quadratic morphism of split forms

(i, θ) : (L, 0) → (K, ψ)

with i : L → K a split injection.
(ii) A lagrangian of (K,ψ) is a sublagrangian such that the sequence

0 → L
i−−→ K

i∗(ψ+εψ∗)
−−−−−−→ L∗ → 0

is exact.

An ε-nonsingular split form (K, ψ) admits a (sub)lagrangian if and
only if the associated ε-quadratic form (K, λ, µ) admits a (sub)lagrang-
ian. (Sub)lagrangians in split ε-quadratic forms are thus (sub)lagrangians
in ε-quadratic forms with the (−ε)-quadratic structure θ, which (following
Novikov) is sometimes called the “hessian” form.

Definition 5.6 The ε-nonsingular hyperbolic split form Hε(L) is given for
any f. g. projective Λ-module L by

Hε(L) = (L⊕ L∗,
(

0 1
0 0

)
: L⊕ L∗ → (L⊕ L∗)∗ = L∗ ⊕ L) ,

with lagrangian (i =
(

1
0

)
, 0) : (L, 0) → Hε(L).

Theorem 5.7 An ε-nonsingular split form (K, ψ) admits a lagrangian if
and only if it is ε-quadratic isomorphic isomorphic to the hyperbolic form
Hε(L). Moreover, the inclusion (i, θ) : (L, 0) → (K, ψ) of a lagrangian ex-
tends to an ε-quadratic isomorphism of split forms (f, χ) : Hε(L) ∼= (K,ψ).
Proof : An isomorphism of forms sends lagrangians to lagrangians, so
any form isomorphic to a hyperbolic has at least one lagrangian. Con-
versely suppose that (K, ψ) has a lagrangian (i, θ) : (L, 0) → (K, ψ). An
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extension of (i, θ) to an ε-quadratic isomorphism (f, χ) : Hε(L) ∼= (K, ψ)
determines a lagrangian f(L∗) ⊂ K complementary to L. Construct an iso-
morphism f by choosing a complementary lagrangian to L in (K, ψ). Let
i ∈ HomΛ(L,K) be the inclusion, and choose a splitting j′ ∈ HomΛ(L∗,K)
of i∗(ψ + εψ∗) ∈ HomΛ(K, L∗), so that

i∗(ψ + εψ∗)j′ = 1 ∈ HomΛ(L∗, L∗) .

In general, j′ : L∗ → K is not the inclusion of a lagrangian, with j′∗ψj′ 6=
0 ∈ Qε(L∗). Given any k ∈ HomΛ(L∗, L) there is defined another splitting

j = j′ + ik : L∗ → K

such that
j∗ψj = j′∗ψj′ + k∗i∗ψik + k∗i∗ψj′ + j′∗ψik

= j′∗ψj′ + k ∈ Qε(L∗) .

Choosing a representative ψ ∈ HomΛ(K,K∗) of ψ ∈ Qε(K) and setting

k = −j′∗ψj′ : L∗ → L∗

there is obtained a splitting j : L∗ → K which is the inclusion of a la-
grangian

(j, ν) : (L∗, 0) → (K, ψ) .

The isomorphism of ε-quadratic forms

(i j) =
(

θ 0
j∗ψi ψ

)
: Hε(L)

∼=→ (K,ψ)

is an ε-quadratic isomorphism of split forms.

Remark 5.8 Theorem 5.7 is a generalization of Witt’s theorem on the
extension to isomorphism of an isometry of quadratic forms over fields. The
procedure for modifying the choice of complement to be a lagrangian is a
generalization of the Gram-Schmidt method of constructing orthonormal
bases in an inner product space. Ignoring the split structure 5.7 shows
that a nonsingular ε-quadratic form admits a lagrangian (in the sense of
5.1 (iii)) if and only if it is isomorphic to a hyperbolic form.

Corollary 5.9 For any ε-nonsingular split form (K,ψ) the diagonal in-
clusion

∆ : K → K ⊕K ; x 7−→ (x, x)

extends to an ε-quadratic isomorphism of split forms

Hε(K)
∼=→ (K, ψ)⊕ (K,−ψ) .

Proof : Apply 5.7 to the inclusion of the lagrangian

(∆, 0) : (K, 0) → (K ⊕K, ψ ⊕−ψ) .



132 Andrew Ranicki

(This result has already been used in 3.1).

Proposition 5.10 The inclusion (i, θ) : (L, 0) → (K, ψ) of a sublagrangian
in an ε-nonsingular split form (K,ψ) extends to an isomorphism of forms

(f, χ) : Hε(L)⊕ (L⊥/L, [ψ])
∼=→ (K, ψ) .

Proof : For any direct complement L1 to L⊥ in K there is defined a
Λ-module isomorphism

e : L1

∼=→ L∗ ; x 7−→ (y 7−→ (1 + Tε)ψ(x, y)) .

Define a Λ-module morphism

j : L∗
e−1

−−−−→ L1

inclusion−−−−−→ K .

The ε-nonsingular split form defined by

(H,φ) = (L⊕ L∗,
(

0 1
0 j∗ψj

)
)

has lagrangian L, so that it is isomorphic to the hyperbolic form Hε(L) by
5.7. Also, there is defined an ε-quadratic morphism of split forms

(g = (i j) ,

(
θ i∗ψj

0 0

)
) : (H, φ) → (K,ψ)

with g : H → K an injection split by

h = ((1 + Tε)φ)−1g∗(1 + Tε)ψ : K → H .

The direct summand of K defined by

H⊥ = {x ∈ K | (1 + Tε)ψ(x, gy) = 0 for all y ∈ H}
= ker(g∗(1 + Tε)ψ : K → H∗) = ker(h : K → H)

is such that

K = g(H)⊕H⊥ .

It follows from the factorization

i∗(1 + Tε)ψ : K
h−−→ H = L⊕ L∗

projection−−−−−−→ L∗

that

L⊥ = ker(i∗(1 + Tε)ψ : K → L∗) = L⊕H⊥ .

The restriction of ψ ∈ S(K) to H⊥ defines an ε-nonsingular split form
(H⊥, φ⊥). The injection g and the inclusion g⊥ : H⊥ → K are the compo-
nents of a Λ-module isomorphism

f = (g g⊥) : H ⊕H⊥ → K

which defines an ε-quadratic isomorphism of split forms

(f, χ) : (H, φ)⊕ (H⊥, φ⊥)
∼=→ (K, ψ)
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with

(H⊥, φ⊥) ∼= (L⊥/L, [ψ]) .

Example 5.11 An n-connected (2n + 1)-dimensional normal bordism

((g, c); (f, b), (f ′, b′)) : (W 2n+1;M2n, M ′2n) → X × ([0, 1]; {0}, {1})
is such that W has a handle decomposition on M of the type

W = M × I ∪
⋃

k

n-handles Dn ×Dn+1 ∪
⋃

k′
(n + 1)-handles Dn+1 ×Dn .

Let

(W ; M,M ′) = (W ′; M, M ′′) ∪M ′′ (W ′′; M ′′,M ′)

with

W ′ = M × [0, 1] ∪
⋃

k

n-handles Dn ×Dn+1 ,

M ′′ = cl.(∂W ′\M) ,

W ′′ = M ′′ × [0, 1] ∪
⋃

k′
(n + 1)-handles Dn+1 ×Dn .

The restriction of (g, c) to M ′′ is an n-connected 2n-dimensional normal
map

(f ′′, b′′) : M ′′ ∼= M#(#kSn × Sn) ∼= M ′#(#k′S
n × Sn) → X

with kernel (−1)n-quadratic form

(Kn(M ′′), λ′′, µ′′) ∼= (Kn(M), λ, µ)⊕H(−1)n(Z[π1(X)]k)

∼= (Kn(M ′), λ′, µ′)⊕H(−1)n(Z[π1(X)]k
′
) .

Thus (Kn(M ′′), λ′′, µ′′) has sublagrangians

L = im(Kn+1(W ′,M ′′) → Kn(M ′′)) ∼= Z[π1(X)]k ,

L′ = im(Kn+1(W ′′, M ′′) → Kn(M ′′)) ∼= Z[π1(X)]k
′

such that
(L⊥/L, [λ′′], [µ′′]) ∼= (Kn(M), λ, µ) ,

(L′⊥/L′, [λ′′]′, [µ′′]′) ∼= (Kn(M ′), λ′, µ′) .

Note that L is a lagrangian if and only if (f, b) : M → X is a homotopy
equivalence. Similarly for L′ and (f ′, b′) : M ′ → X.

§6. Short odd complexes

A “(2n+1)-complex” is the algebraic structure best suited to describing
the surgery obstruction of an n-connected (2n + 1)-dimensional normal
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map. In essence it is a 1-dimensional chain complex with (−1)n-quadratic
Poincaré duality.

As before, let Λ be a ring with involution.

Definition 6.1 A (2n + 1)-complex over Λ (C, ψ) is a f. g. free Λ-module
chain complex of the type

C : . . . → 0 → Cn+1

d−−→ Cn → 0 → . . .

together with two Λ-module morphisms

ψ0 : Cn = (Cn)∗ → Cn+1 , ψ1 : Cn → Cn

such that

dψ0 + ψ1 + (−1)n+1ψ∗1 = 0 : Cn → Cn ,

and such that the chain map

(1 + T )ψ0 : C2n+1−∗ → C

defined by

dC2n+1−∗ = (−1)n+1d∗ :

(C2n+1−∗)n+1 = Cn → (C2n+1−∗)n = Cn+1 ,

(1 + T )ψ0 =
{

ψ0 : (C2n+1−∗)n+1 = Cn → Cn+1

ψ∗0 : (C2n+1−∗)n = Cn+1 → Cn ,

(C2n+1−∗)r = C2n+1−r = 0 for r 6= n, n + 1

is a chain equivalence

C2n+1−∗ : . . .

(1 + T )ψ0

²²

// 0 //

²²

Cn
(−1)n+1d∗

//

ψ0
²²

Cn+1 //

ψ∗0
²²

0

²²

// . . .

C : . . . // 0 // Cn+1
d // Cn

// 0 // . . .

Remark 6.2 A (2n+1)-complex is essentially the inclusion of a lagrangian
in a hyperbolic split (−1)n-quadratic form

(
(

ψ0

d∗

)
,−ψ1) : (Cn, 0) → H(−1)n(Cn+1) .

The chain map (1+T )ψ0 : C2n+1−∗ → C is a chain equivalence if and only
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if the algebraic mapping cone

0 → Cn

(
ψ0

d∗

)

−−−−−−−→ Cn+1 ⊕ Cn+1
(d (−1)nψ∗0 )
−−−−−−−−−−→ Cn → 0

is contractible, which is just the lagrangian condition. The triple

( form ; lagrangian , lagrangian ) = (H(−1)n(Cn+1); Cn+1, im
(

ψ0

d∗

)
)

is an example of a “(−1)n-quadratic formation”. Formations will be studied
in greater detail in §9 below.

Example 6.3 Define a presentation of an n-connected (2n+1)-dimensional
normal map (f, b) : M2n+1 → X to be a normal bordism

((g, c); (f, b), (f ′, b′)) : (W 2n+2; M2n+1, M ′2n+1) → X × ([0, 1]; {0}, {1})
such that W → X × [0, 1] is n-connected, with

Kr(W ) = 0 for r 6= n + 1 .

Then Kn+1(W ) a f. g. free Z[π1(X)]-module and W has a handle decom-
position on M of the type

W = M × I ∪
⋃

k

(n + 1)-handles Dn+1 ×Dn+1 ,

and Kn+1(W,M) ∼= Z[π1(X)]k is a f. g. free Z[π1(X)]-module with rank
the number k of (n + 1)-handles. Thus (W ; M,M ′) is the trace of surg-
eries on k disjoint embeddings Sn ×Dn+1 ↪→ M2n+1 with null-homotopy
in X representing a set of Z[π1(X)]-module generators of Kn(M). For
every n-connected (2n + 1)-dimensional normal map (f, b) : M2n+1 → X
the kernel Z[π1(X)]-module Kn(M) is f. g., so that there exists a presen-
tation (g, c) : (W ;M, M ′) → X × ([0, 1]; {0}, {1}). Poincaré duality and
the universal coefficient theorem give natural identifications of f. g. free
Z[π1(X)]-modules

Kn+1(W ) = Kn+1(W,∂W ) = Kn+1(W,∂W )∗ (∂W = M ∪M ′) ,

Kn+1(W,M) = Kn+1(W,M ′) = Kn+1(W,M ′)∗ .

The presentation determines a (2n + 1)-complex (C, ψ) such that

H∗(C) = K∗(M) ,

with
d = (inclusion)∗ : Cn+1 = Kn+1(W,M ′) → Cn = Kn+1(W,∂W ) ,

ψ0 = (inclusion)∗ : Cn = Kn+1(W ) → Cn+1 = Kn+1(W,M ′) .

The hessian (Cn,−ψ1 ∈ Q(−1)n+1(Cn)) is the geometric self-intersection
(−1)n+1-quadratic form on the kernel Cn = Kn+1(W ) of the normal map
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W 2n+2 → X × [0, 1], such that

− (ψ1 + (−1)n+1ψ∗1) = dψ0 = inclusion∗ :

Cn = Kn+1(W ) → Cn = Kn+1(W,∂W ) = Kn+1(W )∗ .

The chain equivalence (1 + T )ψ0 : C2n+1−∗ → C induces the Poincaré
duality isomorphisms

[M ] ∩ − : H2n+1−∗(C) = K2n+1−∗(M)
∼=→ H∗(C) = K∗(M) .

Remark 6.4 The (2n + 1)-complex (C, ψ) of 6.3 can also be obtained by
working inside M , assuming that X has a single (2n + 1)-cell

X = X0 ∪D2n+1

(as is possible by the Poincaré disc theorem of Wall [28]) so that there is
defined a degree 1 map

collapse : X → X/X0 = S2n+1 .

Let U ⊂ M2n+1 be the disjoint union of the k embeddings Sn×Dn+1 ↪→ M
with null-homotopies in X, so that (f, b) has a Heegaard splitting as a union
of normal maps

(f, b) = (e, a) ∪ (f0, b0) :

M = (U, ∂U) ∪ (M0, ∂M0) → X = (D2n+1, S2n) ∪ (X0, ∂X0)

with the inclusion (6.2) of the lagrangian
(

ψ0

d∗

)
: Cn → Cn+1 ⊕ Cn+1

in the hyperbolic (−1)n-quadratic form H(−1)n(Cn+1) given by

inclusion∗ : Kn+1(M0, ∂U) → Kn(∂U) = Kn+1(U, ∂U)⊕Kn(U) .

Wall obtained the surgery obstruction of (f, b) using an extension (cf. 5.7)
of this inclusion to an automorphism

α : H(−1)n(Cn+1)
∼=→ H(−1)n(Cn+1) ,

which will be discussed further in §10 below. The presentation of (f, b)
used to obtain (C, ψ) in 6.3 is the trace of the k surgeries on U ⊂ M

(g, c) = (e1, a1) ∪ (f0, b0)× id :

(W ; M, M ′) = (V ; U,U ′) ∪M0 × ([0, 1]; {0}, {1}) → X × ([0, 1]; {0}, {1})
with

(V ; U,U ′) =
⋃

k

(Dn+1 ×Dn+1;Sn ×Dn+1, Dn+1 × Sn) .
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Example 6.5 There is also a relative version of 6.3. A presentation of an
n-connected normal map (f, b) : M2n → X from a (2n + 1)-dimensional
manifold with boundary (M,∂M) to a geometric Poincaré pair (X, ∂X)
with ∂f = f | : ∂M → ∂X a homotopy equivalence is a normal map of
triads

(W 2n+2;M2n+1,M ′2n+1; ∂M × [0, 1])

→ (X × [0, 1]; X × {0}, X × {1}; ∂X × [0, 1])

such that W → X × [0, 1] is n-connected. Again, the presentation deter-
mines a (2n + 1)-complex (C, ψ) over Z[π1(X)] with

Cn = Kn+1(W,∂W ) , Cn+1 = Kn+1(W,M ′) , H∗(C) = K∗(M) .

Remark 6.6 (Realization of odd-dimensional surgery obstructions, Wall
[29, 6.5]) The theorem of [29] realizing automorphisms of hyperbolic forms
as odd-dimensional surgery obstructions has the following interpretation in
terms of complexes. Let (C,ψ) be a (2n + 1)-complex over Z[π], with π a
finitely presented group. Let n ≥ 2, so that there exists a 2n-dimensional
manifold X2n with π1(X) = π. For any such n ≥ 2, X there exists an
n-connected (2n + 1)-dimensional normal map

(f, b) : (M2n+1; ∂−M, ∂+M) → X2n × ([0, 1]; {0}, {1})
with ∂−M = X → X the identity and ∂+M → X a homotopy equivalence,
and with a presentation with respect to which (f, b) has kernel (2n + 1)-
complex (C, ψ). Such a normal map is constructed from the identity X →
X in two stages. First, choose a basis {b1, b2, . . . , bk} for Cn+1, and perform
surgeries on k disjoint trivial embeddings Sn−1 ×Dn+1 ↪→ X2n with trace

(U ; X, ∂+U) = (X × [0, 1] ∪
⋃

k

Dn ×Dn+1; X × {0}, X##kSn × Sn)

→ X × ([0, 1/2]; {0}, {1/2}) .

The n-connected 2n-dimensional normal map ∂+U → X×{1/2} has kernel
(−1)n-quadratic form

(Kn(∂+U), λ, µ) = H(−1)n(Z[π]k) = H(−1)n(Cn+1) .

Second, choose a basis {c1, c2, . . . , ck} for Cn and realize the inclusion of
the lagrangian in H(−1)n(Cn+1) by surgeries on k disjoint embeddings Sn×
Dn ↪→ ∂+U with trace

(M0; ∂+U, ∂+M) → X × ([0, 1]; {0}, {1})
such that(

ψ0

d∗

)
= ∂ : Cn = Kn+1(M0, ∂+U)

→ Cn+1 ⊕ Cn+1 = Kn+1(U, ∂+U)⊕Kn(U) = Kn(∂+U) .
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The required (2n+1)-dimensional normal map realizing (C, ψ) is the union

(M ; ∂−M, ∂+M) = (U ;X, ∂+U)∪(M0; ∂+U, ∂+M) → X×([0, 1]; {0}, {1}) .

The corresponding presentation is the trace of surgeries on k disjoint em-
beddings Sn ×Dn+1 ↪→ U ⊂ M2n+1. This is the terminology (and result)
of Wall [29, Chapter 6].

The choice of presentation (6.3) for an n-connected (2n+1)-dimensional
normal map (f, b) : M2n+1 → X does not change the “homotopy type” of
the associated (2n + 1)-complex (C, ψ), in the following sense.

Definition 6.7 (i) A map of (2n + 1)-complexes over Λ

f : (C, ψ) → (C ′, ψ′)

is a chain map f : C → C ′ such that there exist Λ-module morphisms

χ0 : C ′n+1 → C ′n+1 , χ1 : C ′n → C ′n
with

fψ0f
∗ − ψ′0 = (χ0 + (−1)n+1χ∗0)d

′∗ : C ′n → C ′n+1 ,

fψ1f
∗ − ψ′1 = −d′χ0d

′∗ + χ1 + (−1)nχ∗1 : C ′n → C ′n .

(ii) A homotopy equivalence of (2n+1)-complexes is a map with f : C → C ′

a chain equivalence.
(iii) An isomorphism of (2n + 1)-complexes is a map with f : C → C ′ an
isomorphism of chain complexes.

Proposition 6.8 Homotopy equivalence is an equivalence relation on (2n+
1)-complexes.
Proof : For m ≥ 0 let E(m) be the contractible f. g. free Λ-module chain
complex defined by

dE(m) = 1 : E(m)n+1 = Λm → E(m)n = Λm ,

E(m)r = 0 for r 6= n, n + 1 .

A map f : (C, ψ) → (C ′, ψ′) is a homotopy equivalence if and only if for
some m,m′ ≥ 0 there exists an isomorphism

f ′ : (C,ψ)⊕ (E(m), 0)
∼=→ (C ′, ψ′)⊕ (E(m′), 0)

such that the underlying chain map f ′ is chain homotopic to

f ⊕ 0 : C ⊕ E(m) → C ′ ⊕ E(m′) .

Isomorphism is an equivalence relation on (2n + 1)-complexes, and hence
so is homotopy equivalence.

Example 6.9 The (2n + 1)-complexes (C, ψ), (C ′, ψ′) associated by 6.3 to
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any two presentations

(W ; M, M̂) → X × ([0, 1]; {0}, {1}) , (W ′;M, M̂ ′) → X × ([0, 1]; {0}, {1})
of an n-connected normal map M2n+1 → X are homotopy equivalent.
Without loss of generality it may be assumed that W and W ′ are the
traces of surgeries on disjoint embeddings

gi : Sn ×Dn+1 ↪→ M , g′j : Sn ×Dn+1 ↪→ M ,

corresponding to two sets of Z[π1(X)]-module generators of Kn(M). Define
a presentation of M → X

(W ′′; M, M ′′) = (W ;M, M̂)∪(V ; M̂,M ′′) = (W ′; M, M̂ ′)∪(V ′; M̂ ′,M ′′)

with (V ; M̂,M ′′) the presentation of M̂ → X defined by the trace of the
surgeries on the copies ĝ′j : Sn × Dn+1 ↪→ M̂ of g′j : Sn × Dn+1 ↪→ M ,
and (V ′; M̂ ′,M ′′) the presentation of M̂ ′ → X defined by the trace of the
surgeries on the copies ĝi : Sn ×Dn+1 ↪→ M̂ ′ of gi : Sn ×Dn+1 ↪→ M .
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M W M̂ V M ′′

M W ′ M̂ ′ V ′ M ′′

W ′′ = W ∪
M̂

V = W ′ ∪
M̂ ′ V ′

The projections C ′′ → C, C ′′ → C ′ define homotopy equivalences of (2n +
1)-complexes

(C ′′, ψ′′) → (C, ψ) , (C ′′, ψ′′) → (C ′, ψ′) .

Definition 6.10 A (2n + 1)-complex (C, ψ) over Λ is contractible if it
is homotopy equivalent to the zero complex (0, 0), or equivalently if d :
Cn+1 → Cn is a Λ-module isomorphism.

Example 6.11 A (2n + 1)-complex (C, ψ) associated to an n-connected
(2n+1)-dimensional normal map (f, b) : M2n+1 → X is contractible if (and
for n ≥ 2 only if) f is a homotopy equivalence, by the theorem of J.H.C.
Whitehead. The (2n + 1)-complexes (C,ψ) associated to the various pre-
sentations of a homotopy equivalence (f, b) : M2n+1 → X are contractible,
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by 6.9. The zero complex (0, 0) is associated to the presentation

(f, b)× id. : M × ([0, 1]; {0}, {1}) → X × ([0, 1]; {0}, {1}) .

§7. Complex cobordism

The cobordism of (2n + 1)-complexes is the equivalence relation which
corresponds to the normal bordism of n-connected (2n+1)-dimensional nor-
mal maps. The (2n + 1)-dimensional surgery obstruction group L2n+1(Λ)
will be defined in §8 below to be the cobordism group of (2n+1)-complexes
over Λ.

Definition 7.1 A cobordism of (2n + 1)-complexes (C, ψ), (C ′, ψ′)

((j j′) : C ⊕ C ′ → D, (δψ, ψ ⊕−ψ′))

is a f. g. free Λ-module chain complex of the type

D : . . . → 0 → Dn+1 → 0 → . . .

together with Λ-module morphisms

j : Cn+1 → Dn+1 , j′ : C ′n+1 → Dn+1 ,

δψ0 : Dn+1 = (Dn+1)∗ → Dn+1

such that the duality Λ-module chain map

(1 + T )(δψ0, ψ0 ⊕−ψ′0) : C(j′)2n+2−∗ → C(j)

defined by

(1 + T )(δψ0, ψ0 ⊕−ψ′0) =
(

δψ0 + (−1)n+1δψ∗0 j′ψ′0
ψ∗0j∗ 0

)

: C(j′)2n+1 = Dn+1 ⊕ C ′n → C(j)n+1 = Dn+1 ⊕ Cn

is a chain equivalence, with C(j), C(j′) the algebraic mapping cones of the
chain maps j : C → D, j′ : C ′ → D.

The duality chain map C(j′)2n+2−∗ → C(j) is given by

C(j′)2n+2−∗ : . . .

(1+T )δψ0

²²

// 0 //

²²

0 //

²²

Dn+1 ⊕ C ′n //

²²

C ′n+1 //

²²

0 //

²²

. . .

C(j) : . . . // 0 // Cn+1
// Dn+1 ⊕ Cn

// 0 // 0 // . . .

The condition for it to be a chain equivalence is just that the Λ-module
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morphism



d 0 ψ∗0j∗

0 d′∗ j′∗

(−1)n+1j j′ψ′0 δψ0 + (−1)n+1δψ∗0




: Cn+1 ⊕ C ′n ⊕Dn+1 → Cn ⊕ C ′n+1 ⊕Dn+1

be an isomorphism.

Example 7.2 Suppose given two n-connected (2n+1)-dimensional normal
maps M2n+1 → X, M ′2n+1 → X with presentations (6.3)

(W 2n+2;M2n+1, M̂2n+1) → X × ([0, 1]; {0}, {1}) ,

(W ′2n+2; M ′2n+1, M̂ ′2n+1) → X × ([0, 1]; {0}, {1})
and corresponding (2n + 1)-complexes (C, ψ), (C ′, ψ′). An n-connected
normal bordism

(V 2n+2; M2n+1,M ′2n+1) → X × ([0, 1]; {0}, {1})
determines a cobordism ((j j′) : C ⊕ C ′ → D, (δψ, ψ ⊕ −ψ′)) (again, up
to some choices) from (C, ψ) to (C ′, ψ′). Define an n-connected normal
bordism

(V ′; M̂, M̂ ′) = (W ; M̂, M) ∪ (V ; M,M ′) ∪ (W ′;M ′, M̂ ′)

→ X × ([0, 1]; {0}, {1}) .

The exact sequence of stably f. g. free Z[π1(X)]-modules

0 → Kn+1(V ) → Kn+1(V ′, ∂V ′)

→ Kn+1(W,∂W )⊕Kn+1(W ′, ∂W ′) → 0

splits. Choosing any splitting Kn+1(V ′, ∂V ′) → Kn+1(V ) define j, j′ by

(j j′) : Cn+1 ⊕ C ′n+1 = Kn+1(W, M̂)⊕Kn+1(W ′, M̂ ′)
incl∗⊕incl∗−−−−−−−−−→ Kn+1(V ′, ∂V ′) → Kn+1(V ) = Dn+1 .

Geometric intersection numbers provide a (−1)n+1-quadratic form (Dn+1,
δψ0) over Z[π1(X)] such that the duality chain map C(j′)2n+2−∗ → C(j) is
a chain equivalence inducing the Poincaré duality isomorphisms

[V ] ∩ − : H2n+2−∗(j′) = K2n+2−∗(V, M ′)
∼=→ H∗(j) = K∗(V, M) .

Definition 7.3 A null-cobordism of a (2n + 1)-complex (C,ψ) is a cobor-
dism (j : C → D, (δψ, ψ)) to (0, 0).

Example 7.4 Let (W 2n+2; M ′2n+1,M2n+1) → X × ([0, 1]; {0}, {1}) be a
presentation of an n-connected (2n + 1)-dimensional normal map M → X,
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with (2n+1)-complex (C, ψ). For n ≥ 2 there is a one-one correspondence
between n-connected normal bordisms of M → X

(V 2n+2; M2n+1, N2n+1) → X × ([0, 1]; {0}, {1})
to homotopy equivalences N → X and null-cobordisms (j : C → D, (δψ,
ψ)). (Every normal bordism of n-connected (2n + 1)-dimensional normal
maps can be made n-connected by surgery below the middle dimension on
the interior.)

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........



.......................................................................................................................................................

M ′ W M V N

V ′ = W ∪M V

Any such (V ; M, N) → X × ([0, 1]; {0}, {1}) determines by 7.2 a null-cob-
ordism (j : C → D, (δψ, ψ)) of (C, ψ).

Cobordisms of (2n + 1)-complexes arise in the following way:

Construction 7.5 An isomorphism of hyperbolic split (−1)n-quadratic
forms over Λ((

γ γ̃

µ µ̃

)
,

(
θ 0

γ̃∗µ θ̃

))
: H(−1)n(G)

∼=→ H(−1)n(F )

with F, G f. g. free determines a cobordism of (2n + 1)-complexes

((j j′) : C ⊕ C ′ → D, (δψ, ψ ⊕−ψ′))

by

d = µ∗ : Cn+1 = F → Cn = G∗ ,

ψ0 = γ : Cn = G → Cn+1 = F ,

ψ1 = −θ : Cn = G → Cn = G∗ ,

j = µ̃∗ : Cn+1 = F → Dn+1 = G ,

d′ = γ∗ : C ′n+1 = F ∗ → Cn = G∗ ,

ψ′0 = µ : C ′n = G → C ′n+1 = F ∗ ,

ψ′1 = −θ : C ′n = G → C ′n = G∗ ,

j′ = γ̃∗ : C ′n+1 = F ∗ → Dn+1 = G ,

δψ0 = 0 : Dn+1 = G∗ → Dn+1 = G .
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It can be shown that every cobordism of (2n+1)-complexes is homotopy
equivalent to one constructed as in 7.5.

Example 7.6 An n-connected (2n + 2)-dimensional normal bordism

((g, c); (f, b), (f ′, b′)) : (W 2n+2; M2n+1, M ′2n+1) → X × ([0, 1]; {0}, {1})
with g : W → X × [0, 1] n-connected can be regarded both as a pre-
sentation of (f, b) and as a presentation of (f ′, b′). The cobordism of
(2n + 1)-complexes ((j j′) : C ⊕ C ′ → D, (δψ, ψ ⊕ −ψ′)) obtained in 7.2
with W = V = W ′, M̂ = M ′, M̂ ′ = M ′ is the construction of 7.5 for an
extension of the inclusion of the lagrangian (6.2)

(
(

γ

µ

)
, θ) = (

(
ψ0

d∗

)
,−ψ1) : (Cn, 0) → H(−1)n(Cn+1)

to an isomorphism of hyperbolic split (−1)n-quadratic forms((
γ γ̃

µ µ̃

)
,

(
θ 0

γ̃∗µ θ̃

))
: H(−1)n(Cn)

∼=→ H(−1)n(Cn+1) ,

with
j = µ̃∗ : Cn+1 = Kn+1(W,M ′) → Dn+1 = Kn+1(W ) ,

j′ = γ̃∗ : C ′n+1 = Kn+1(W,M) → Dn+1 = Kn+1(W ) .

Remark 7.7 Fix a (2n + 1)-dimensional geometric Poincaré complex X
with reducible Spivak normal fibration, and choose a stable vector bun-
dle νX : X → BO in the Spivak normal class, e.g. a manifold with
the stable normal bundle. Consider the set of n-connected normal maps
(f : M2n+1 → X, b : νM → νX). The relation defined on this set by

(M → X) ∼ (M ′ → X) if there exists an (n + 1)-connected normal
bordism (W ;M, M ′) → X × ([0, 1]; {0}, {1})

is an equivalence relation. Symmetry and transitivity are verified in the
same way as for any geometric cobordism relation. For reflexivity form
the cartesian product of an n-connected normal map M2n+1 → X with
([0, 1]; {0}, {1}), as usual. The product is an n-connected normal bordism

M × ([0, 1]; {0}, {1}) → X × ([0, 1]; {0}, {1})
which can be made (n + 1)-connected by surgery killing the n-dimensional
kernel Kn(M × [0, 1]) = Kn(M). The following verification that the cobor-
dism of (2n+1)-complexes is an equivalence relation uses algebraic surgery
in exactly the same way.

Proposition 7.8 Cobordism is an equivalence relation on (2n + 1)-com-
plexes (C,ψ) over Λ, such that (C, ψ)⊕ (C,−ψ) is null-cobordant. Homo-
topy equivalent complexes are cobordant.
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Proof : Symmetry is easy: if ((j j′) : C ⊕ C ′ → D, (δψ, ψ ⊕ −ψ′)) is a
cobordism from (C,ψ) to (C ′, ψ′) then

((j′ j) : C ′ ⊕ C → D′, (−δψ, ψ′ ⊕−ψ))

is a cobordism from (C ′, ψ′) to (C, ψ). For transitivity, suppose given
adjoining cobordisms of (2n + 1)-complexes

((j j′) : C ⊕ C ′ → D, (δψ, ψ ⊕−ψ′)) ,

((j̃′ j′′) : C ′ ⊕ C ′′ → D′, (δψ′, ψ′ ⊕−ψ′′)) .
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C D C ′ D′ C ′′

D′′ = D ∪C′ D′

Define the union cobordism between (C, ψ) and (C ′′, ψ′′)

((j̃ j̃′′) : C ⊕ C ′′ → D′′, (δψ′′, ψ ⊕−ψ′′))

by

D′′
n+1 = coker(i =




j′

d′

j̃′


 : C ′n+1 → Dn+1 ⊕ C ′n ⊕D′

n+1) ,

j̃ = [j ⊕ 0⊕ 0] : Cn+1 → D′′
n+1,

j̃′′ = [0⊕ 0⊕ j′′] : C ′′n+1 → D′′
n+1 ,

δψ′′0 =




δψ0 0 0
0 0 0
0 0 δψ′0


 : D′′n+1 → D′′

n+1 .

The Λ-module morphism i : C ′n+1 → Dn+1⊕C ′n⊕D′
n+1 is a split injection

since the dual Λ-module morphism i∗ is a surjection, as follows from the
Mayer-Vietoris exact sequence

Hn+2(D, C ′)⊕Hn+2(D′, C ′) = 0⊕ 0 → Hn+2(D′′) → Hn+2(C ′) = 0 .

Given any (2n + 1)-complex (C, ψ) let (C ′, ψ′) be the (2n + 1)-complex
defined by

d′ = (−1)nψ∗0 : C ′n+1 = Cn+1 → C ′n = Cn ,

ψ′0 = d∗ : C ′n = Cn → C ′n+1 = Cn+1 ,

ψ′1 = −ψ1 : C ′n = Cn → C ′n = Cn .
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Apply 5.7 to extend the inclusion of the lagrangian in H(−1)n(Cn+1)(
ψ0

d∗

)
: Cn → Cn+1 ⊕ Cn+1

to an isomorphism of (−1)n-quadratic forms
(

ψ0 ψ̃0

d∗ d̃∗

)
: H(−1)n(Cn)

∼=→ H(−1)n(Cn+1)

with ψ̃0 ∈ HomΛ(Cn, Cn+1), d̃ ∈ HomΛ(Cn+1, C
n). Now apply 7.5 to

construct from any such extension a cobordism

((j j′) : C ⊕ C ′ → D, (δψ, ψ ⊕−ψ′))

with
j = d̃ : Cn+1 → Dn+1 = Cn ,

j′ = ψ̃∗0 : C ′n+1 = Cn+1 → Dn+1 = Cn ,

d′ = ψ∗0 : C ′n+1 = Cn+1 → C ′n = Cn ,

ψ′0 = d∗ : C ′n = Cn → C ′n+1 = Cn+1 ,

δψ0 = 0 : Dn+1 = Cn → Dn+1 = Cn .

(This is the algebraic analogue of the construction of a presentation (6.3)

(W 2n+2; M2n+1,M ′2n+1) → X × ([0, 1]; {0}, {1})
of an n-connected (2n+1)-dimensional normal map M2n+1 → X by surgery
on a finite set of Z[π1(X)]-module generators of Kn(M)). The union of the
cobordisms

((j j′) : C ⊕ C ′ → D, (δψ, ψ ⊕−ψ′)) ,

((j′ j) : C ′ ⊕ C → D, (−δψ, ψ′ ⊕−ψ))

is a cobordism

((j̃ j̃′) : C ⊕ C → D′, (δψ′, ψ ⊕−ψ))

with a Λ-module isomorphism[
1 0 −1
ψ0 (−1)nψ̃0 0

]
:

D′
n+1 = coker(




ψ̃∗0
ψ∗0
ψ̃∗0


 : Cn+1 → Cn ⊕ Cn ⊕ Cn)

∼=→ Cn ⊕ Cn+1 .

This verifies that cobordism is reflexive, and also that (C, ψ)⊕ (C,−ψ) is
null-cobordant.

Suppose given a homotopy equivalence of (2n + 1)-complexes

f : (C,ψ) → (C ′, ψ′) ,
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with χ0 : C ′n+1 → C ′n+1 as in 6.6. By reflexivity there exists a cobordism
((j′′ j′) : C ′ ⊕ C ′ → D, (δψ′, ψ′ ⊕ −ψ′)) from (C ′, ψ′) to itself. Define a
cobordism ((j j′) : C ⊕ C ′ → D, (δψ, ψ ⊕−ψ′)) from (C,ψ) to (C ′, ψ′) by

j = j′′f : Cn+1

f−−→ C ′n+1

j′′−−→ Dn+1 ,

δψ0 = δψ′0 + j′′χ0j
′′∗ : Dn+1 → Dn+1 .

Definition 7.9 (i) A weak map of (2n + 1)-complexes over Λ

f : (C, ψ) → (C ′, ψ′)

is a chain map f : C → C ′ such that there exist Λ-module morphisms

χ0 : C ′n+1 → C ′n+1 , χ1 : C ′n → C ′n

with

fψ0f
∗ − ψ′0 = (χ0 + (−1)n+1χ∗0)d

′∗ : C ′n → C ′n+1 .

(ii) A weak equivalence of (2n+1)-complexes is a weak map with f : C → C ′

a chain equivalence.
(iii) A weak isomorphism of (2n + 1)-complexes is a weak map with f :
C → C ′ an isomorphism of chain complexes.

Proposition 7.10 Weakly equivalent (2n + 1)-complexes are cobordant.
Proof : The proof in 7.8 that homotopy equivalent (2n+1)-complexes are
cobordant works just as well for weakly equivalent ones.

Given a (2n + 1)-complex (C,ψ) let

(
(

ψ0

d∗

)
,−ψ1) : (Cn, 0) → H(−1)n(Cn+1)

be the inclusion of a lagrangian in a hyperbolic split (−1)n-quadratic form
given by 6.2. The result of 7.10 is that the cobordism class of (C, ψ) is
independent of the hessian (−1)n+1-quadratic form (Cn,−ψ1).

§8. The odd-dimensional L-groups

The odd-dimensional surgery obstruction groups L2n+1(Λ) of a ring with
involution Λ will now be defined to be the cobordism groups of (2n + 1)-
complexes over Λ.

Definition 8.1 Let L2n+1(Λ) be the abelian group of cobordism classes
of (2n + 1)-complexes over Λ, with addition and inverses by

(C, ψ) + (C ′, ψ′) = (C ⊕ C ′, ψ ⊕ ψ′) ,

− (C, ψ) = (C,−ψ) ∈ L2n+1(Λ) .
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The groups L2n+1(Λ) only depend on the residue n( mod 2), so that only
two L-groups have actually been defined, L1(Λ) and L3(Λ). Note that 8.1
uses 7.8 to justify (C, ψ)⊕ (C,−ψ) = 0 ∈ L2n+1(Λ).

Example 8.2 The odd-dimensional L-groups of Λ = Z are trivial

L2n+1(Z) = 0 .

8.2 was implicit in the work of Kervaire and Milnor [7] on the surgery
classification of even-dimensional exotic spheres.

Example 8.3 The surgery obstruction of an n-connected (2n + 1)-dimen-
sional normal map (f, b) : M2n+1 → X is the cobordism class

σ∗(f, b) = (C, ψ) ∈ L2n+1(Z[π1(X)])

of the (2n+1)-complex (C, ψ) associated in 6.3 to any choice of presentation

(W ;M, M ′) → X × ([0, 1]; {0}, {1}) .

The surgery obstruction vanishes σ∗(f, b) = 0 if (and for n ≥ 2 only if)
(f, b) is normal bordant to a homotopy equivalence.

Definition 8.4 A surgery (j : C → D, (δψ, ψ)) on a (2n + 1)-complex
(C,ψ) is a Λ-module chain map j : C → D with Dr = 0 for r 6= n + 1 and
Dn+1 a f. g. free Λ-module, together with a Λ-module morphism

δψ0 : Dn+1 = (Dn+1)∗ → Dn+1 ,

such that the Λ-module morphism

( d ψ∗0j∗ ) : Cn+1 ⊕Dn+1 → Cn

is onto. The effect of the surgery is the (2n + 1)-complex (C ′, ψ′) defined
by

d′ =
(

d ψ∗0j∗

(−1)n+1j δψ0 + (−1)n+1δψ∗0

)

: C ′n+1 = Cn+1 ⊕Dn+1 → C ′n = Cn ⊕Dn+1 ,

ψ′0 =
(

ψ0 0
0 1

)
: C ′n = Cn ⊕Dn+1 → C ′n+1 = Cn+1 ⊕Dn+1 ,

ψ′1 =
(

ψ1 −ψ∗0j∗

0 −δψ0

)
: C ′n = Cn ⊕Dn+1 → C ′n = Cn ⊕Dn+1 .

The trace of the surgery is the cobordism of (2n + 1)-complexes ((j′ j′′) :
C ⊕ C ′ → D′, (0, ψ ⊕−ψ′)), with

j′′ = (j′ k) : C ′n+1 = Cn+1 ⊕Dn+1

→ D′
n+1 = ker(( d ψ0j

∗ ) : Cn+1 ⊕Dn+1 → Cn)
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a splitting of the split injection (d ψ∗0j∗) : Cn+1 ⊕Dn+1 → Cn.

Example 8.5 Let

((e, a); (f, b), (f ′, b′)) : (V 2n+2; M2n+1, M ′2n+1) → X × ([0, 1]; {0}, {1})
be the trace of a sequence of k surgeries on an n-connected (2n + 1)-
dimensional normal map (f, b) : M → X killing elements x1, x2, . . . , xk ∈
Kn(M), with e n-connected and f ′ n-connected. V has a handle decom-
position on M of the type

V = M × I ∪
⋃

k

(n + 1)-handles Dn+1 ×Dn+1 ,

and also a handle decomposition on M ′ of the same type

V = M ′ × I ∪
⋃

k

(n + 1)-handles Dn+1 ×Dn+1 .

A presentation of (f, b)

((g, c); (f̂ , b̂), (f, b)) : (W 2n+2; M̂2n+1,M2n+1) → X × ([0, 1]; {0}, {1})
with (2n + 1)-complex (C, ψ) determines a presentation of (f ′, b′)

((g′, c′); (f̂ , b̂), (f ′, b′)) = ((g, c); (f̂ , b̂), (f, b)) ∪ ((e, a); (f, b), (f ′, b′)) :

(W ′; M̂, M ′) = (W ; M̂, M) ∪ (V ;M, M ′) → X × ([0, 1]; {0}, {1})
such that the (2n + 1)-complex (C ′, ψ′) is the effect of a surgery (j : C →
D, (δψ, ψ)) on (C, ψ) with

Dn+1 = Kn+1(V,M ′) = Z[π1(X)]k ,

C ′n+1 = Kn+1(W ′, M̂) = Kn+1(W, M̂)⊕Kn+1(V, M) = Cn+1 ⊕Dn+1 ,

C ′n = Kn+1(W ′, ∂W ′) = Kn+1(W,∂W )⊕Kn+1(V, M ′) = Cn ⊕Dn+1 .

Also, the geometric trace determines the algebraic trace, with

D′
n+1 = Kn+1(V ) .

It can be shown that (2n + 1)-complexes (C, ψ), (C ′, ψ′) are cobordant
if and only if (C ′, ψ′) is homotopy equivalent to the effect of a surgery on
(C,ψ). This result will only be needed for (C ′, ψ′) = (0, 0), so it will only
be proved in this special case:

Proposition 8.6 A (2n + 1)-complex (C, ψ) represents 0 in L2n+1(Λ) if
and only if there exists a surgery (j : C → D, (δψ, ψ)) with contractible
effect.
Proof : The effect of a surgery is contractible if and only if it is a null-
cobordism.
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Given an n-connected (2n+1)-dimensional normal map (f, b) : M2n+1−−→
X it is possible to kill every element x ∈ Kn(M) by an embedding
Sn ×Dn+1 ↪→ M to obtain a bordant normal map

(f ′, b′) : M ′2n+1 = cl.(M\Sn ×Dn+1) ∪Dn+1 × Sn → X .

There are many ways of carrying out the surgery, which are quantified by
the surgeries on the kernel (2n + 1)-complex (C,ψ). In general, Kn(M ′)
need not be smaller than Kn(M).

Example 8.7 The kernel (2n + 1)-complex (C,ψ) over Z of the identity
normal map

(f, b) = id. : M2n+1 = S2n+1 → S2n+1

is (0, 0). For any element

µ ∈ πn+1(SO, SO(n + 1)) = Q(−1)n+1(Z)

let ω = ∂µ ∈ πn(SO(n+1)), and define a null-homotopic embedding of Sn

in M

eω : Sn ×Dn+1 ↪→ M ; (x, y) 7−→ (x, ω(x)(y))/ ‖ (x, ω(x)(y)) ‖ .

Use µ to kill 0 ∈ Kn(M) by surgery on (f, b), with effect a normal bordant
n-connected (2n + 1)-dimensional normal map

(fµ, bµ) : M2n+1
µ = cl.(M\eω(Sn ×Dn+1)) ∪Dn+1 × Sn → S2n+1

exactly as in 2.18, with the kernel complex (C ′, ψ′) given by

d′ = (1 + T(−1)n+1)(µ) : C ′n+1 = Z→ C ′n = Z .

In particular, for µ = 0, 1 this gives the (2n + 1)-dimensional manifolds

M ′ = M0 = Sn × Sn+1 ,

M ′′ = M1 = S(τSn+1), the tangent Sn-bundle of Sn+1

= O(n + 2)/O(n)

= Vn+2,2, the Stiefel manifold of orthonormal 2-frames in Rn+2

( = SO(3) = RP3 for n = 1 ) ,

corresponding to the algebraic surgeries on (0, 0)

(0 : 0 → D, (δψ′, 0)) , (0 : 0 → D, (δψ′′, 0))

with

Dn+1 = Z , δψ′0 = 0 , δψ′′0 = 1 .
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§9. Formations

As before, let Λ be a ring with involution, and let ε = ±1.

Definition 9.1 An ε-quadratic formation over Λ (Q,φ; F, G) is a non-
singular ε-quadratic form (Q, φ) together with an ordered pair of la-
grangians F ,G.

Formations with ε = (−1)n are essentially the (2n + 1)-complexes of §6
expressed in the language of forms and lagrangians of §4. In the general
theory it is possible to consider formations (Q,φ; F, G) with Q,F,G f. g.
projective, but in view of the more immediate topological applications only
the f. g. free case is considered here. Strictly speaking, 9.1 defines a
“nonsingular formation”. In the general theory a formation (Q,φ;F,G) is
a nonsingular form (Q,φ) together with a lagrangian F and a sublagrangian
G. The automorphisms of hyperbolic forms in the original treatment due
to Wall [29] of odd-dimensional surgery theory were replaced by formations
by Novikov [16] and Ranicki [18].

In dealing with formations assume that the ground ring Λ is such that
the rank of f. g. free Λ-modules is well-defined (e.g. Λ = Z[π]). The rank
of a f. g. free Λ-module K is such that

rankΛ(K) = k ∈ Z+

if and only if K is isomorphic to Λk. Also, since Λk ∼= (Λk)∗

rankΛ(K) = rankΛ(K∗) ∈ Z+ .

Definition 9.2 An isomorphism of ε-quadratic formations over Λ

f : (Q,φ;F,G)
∼=→ (Q′, φ′; F ′, G′)

is an isomorphism of forms f : (Q, φ) ∼= (Q′, φ′) such that

f(F ) = F ′ , f(G) = G′ .

Proposition 9.3 (i) Every ε-quadratic formation (Q,φ; F, G) is isomor-
phic to one of the type (Hε(F ); F,G).
(ii) Every ε-quadratic formation (Q,φ;F,G) is isomorphic to one of the
type (Hε(F ); F, α(F )) for some automorphism α : Hε(F ) ∼= Hε(F ).
Proof : (i) By Theorem 5.7 the inclusion of the lagrangian F → Q extends
to an isomorphism of forms f : Hε(F ) ∼= (Q,φ), defining an isomorphism
of formations

f : (Hε(F ); F, f−1(G))
∼=→ (Q,φ;F,G) .



An introduction to algebraic surgery 151

(ii) As in (i) extend the inclusions of the lagrangians to isomorphisms of
forms

f : Hε(F )
∼=→ (Q, φ) , g : Hε(G)

∼=→ (Q, φ) .

Then

rankΛ(F ) = rankΛ(Q)/2 = rankΛ(G) ∈ Z+ ,

so that F is isomorphic to G. Choosing a Λ-module isomorphism β : G ∼= F
there is defined an automorphism of Hε(F )

α : Hε(F )
f
−−→ (Q,φ)

g−1

−−−−−→ Hε(G)

(
β 0
0 β∗−1

)

−−−−−−−−→ Hε(F )

such that there is defined an isomorphism of formations

f : (Hε(F ); F, α(F ))
∼=→ (Q, φ; F,G) .

Proposition 9.4 The weak isomorphism classes of (2n + 1)-complexes
(C,ψ) over Λ are in natural one-one correspondence with the isomorphism
classes of (−1)n-quadratic formations (Q,φ; F, G) over Λ, with

Hn(C) = Q/(F + G) , Hn+1(C) = F ∩G .

Moreover, if the complex (C,ψ) corresponds to the formation (Q,φ; F, G)
then (C,−ψ) corresponds to (Q,−φ; F, G).
Proof : Given a (2n + 1)-complex (C, ψ) define a (−1)n-quadratic forma-
tion

(Q,φ;F,G) = (H(−1)n(Cn+1); Cn+1, im(
(

ψ0

d∗

)
: Cn → Cn+1 ⊕ Cn+1)) .

The formation associated in this way to the (2n + 1)-complex (C,−ψ) is
isomorphic to (Q,−φ; F, G), by the isomorphism(−1 0

0 1

)
: (Q,−φ;F, G)

∼=→

(H(−1)n(Cn+1); Cn+1, im(
(−ψ0

d∗

)
: Cn → Cn+1 ⊕ Cn+1)) .

Conversely, suppose given an (−1)n-quadratic formation (Q,φ;F,G). By
9.3 (i) this can be replaced by an isomorphic formation with (Q,φ) =
H(−1)n(F ). Let γ ∈ HomΛ(G,F ), µ ∈ HomΛ(G,F ∗) be the components of
the inclusion

i =
(

γ

µ

)
: G → Q = F ⊕ F ∗ .

Choose any θ ∈ HomΛ(G,G∗) such that

γ∗µ = θ + (−1)n+1θ∗ ∈ HomΛ(G,G∗) .
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Define a (2n + 1)-complex (C, ψ) by

d = µ∗ : Cn+1 = F → Cn = G∗ ,

ψ0 = γ : Cn = G → Cn+1 = F ,

ψ1 = (−1)nθ : Cn = G → Cn = G∗ .

The exact sequence

0 → G
i−−→ Q

i∗(φ + (−1)nφ∗)
−−−−−−−−−−−→ G∗ → 0

is the algebraic mapping cone

0 → G

(
γ

µ

)

−−−−−→ F ⊕ F ∗
(µ∗ (−1)nγ∗ )
−−−−−−−−−−−→ G∗ → 0

of the chain equivalence (1 + T )ψ0 : C2n+1−∗ → C.

Example 9.5 An n-connected (2n+1)-dimensional normal map M2n+1 →
X together with a choice of presentation (W ; M, M ′) → X×([0, 1]; {0}, {1})
determine by 9.3 a (2n + 1)-complex (C, ψ), and hence by 9.4 a (−1)n-
quadratic formation (Q,φ;F,G) over Z[π1(X)] such that

Q/(F + G) = Hn(C) = Kn(M) ,

F ∩G = Hn+1(C) = Kn+1(M) .

The following equivalence relation on formations corresponds to the weak
equivalence (7.9) of (2n + 1)-complexes.

Definition 9.6 (i) An ε-quadratic formation (Q,φ;F,G) is trivial if it is
isomorphic to (Hε(L); L,L∗) for some f. g. free Λ-module L.
(ii) A stable isomorphism of ε-quadratic formations

[f ] : (Q,φ; F, G)
∼=→ (Q′, φ′; F ′, G′)

is an isomorphism of ε-quadratic formations of the type

f : (Q,φ;F,G)⊕ (trivial)
∼=→ (Q′, φ′; F ′, G′)⊕ (trivial′) .

Example 9.7 The (−1)n-quadratic formations associated in 9.5 to all the
presentations of an n-connected (2n+1)-dimensional normal map M2n+1 →
X define a stable isomorphism class.

Proposition 9.8 The weak equivalence classes of (2n + 1)-complexes
over Λ are in natural one-one correspondence with the stable isomorphism
classes of (−1)n-quadratic formations over Λ.
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Proof : The (2n + 1)-complex (C, ψ) associated (up to weak equivalence)
to a (−1)n-quadratic formation (Q,φ;F,G) in 9.4 is contractible if and only
if the formation is trivial.

The following formations correspond to the null-cobordant complexes.

Definition 9.9 The boundary of a (−ε)-quadratic form (K,λ, µ) is the
ε-quadratic formation

∂(K, λ, µ) = (Hε(K); K, Γ(K,λ))

with Γ(K,λ) the graph lagrangian

Γ(K,λ) = {(x, λ(x)) ∈ K ⊕K∗ |x ∈ K} .

Note that the form (K, λ, µ) may be singular, that is the Λ-module mor-
phism λ : K → K∗ need not be an isomorphism. The graphs Γ(K,λ)

of (−ε)-quadratic forms (K,λ, µ) are precisely the lagrangians of Hε(K)
which are direct complements of K∗.

Proposition 9.10 A (−1)n-quadratic formation (Q,φ; F, G) is stably iso-
morphic to a boundary ∂(K, λ, µ) if and only if the corresponding (2n+1)-
complex (C,ψ) is null-cobordant.
Proof : Given a (−1)n+1-quadratic form (K, λ, µ) choose a split form
θ : K → K∗ (4.2) and let (C,ψ) be the (2n + 1)-complex associated by 9.4
to the boundary formation ∂(K, λ, µ), so that

d = λ = θ + (−1)n+1θ∗ : Cn+1 = K → Cn = K∗ ,

ψ0 = 1 : Cn = K → Cn+1 = K ,

ψ1 = −θ : Cn = K → Cn = K∗ .

Then (C, ψ) is null-cobordant, with a null-cobordism (j : C → D, (δψ, ψ))
defined by

j = 1 : Cn+1 = K → Dn+1 = K ,

δψ0 = 0 : Dn+1 = K∗ → Dn+1 = K .

Conversely, suppose given a (2n+1)-complex (C,ψ) with a null-cobordism
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(j : C → D, (δψ, ψ)) as in 8.1. The (2n + 1)-complex (E, θ) defined by

d =




ψ1 + (−1)n+1ψ∗1 d ψ∗0j∗

(−1)n+1d∗ 0 −j∗

(−1)n+1jψ∗0 (−1)nj δψ0 + (−1)n+1δψ∗0


 :

En+1 = Cn ⊕ Cn+1 ⊕Dn+1 → En = Cn ⊕ Cn+1 ⊕Dn+1 ,

θ0 = 1 : En = Cn ⊕ Cn+1 ⊕Dn+1 → En+1 = Cn ⊕ Cn+1 ⊕Dn+1 ,

θ1 =



−ψ1 −d −ψ∗0j∗

0 0 j∗

0 0 −δψ0


 :

En = Cn ⊕ Cn+1 ⊕Dn+1 → En = Cn ⊕ Cn+1 ⊕Dn+1

corresponds to the boundary (−1)n-quadratic formation ∂(En, λ1, µ1) of
the (−1)n+1-quadratic form (En, λ1, µ1) determined by the split form θ1,
and there is defined a homotopy equivalence f : (E, θ) → (C,ψ) with

fn = (1 ψ∗0 0) : En = Cn ⊕ Cn+1 ⊕Dn+1 → Cn ,

fn+1 = (0 1 0) : En+1 = Cn ⊕ Cn+1 ⊕Dn+1 → Cn+1 .

Proposition 9.11 The cobordism group L2n+1(Λ) of (2n+1)-complexes is
naturally isomorphic to the abelian group of equivalence classes of (−1)n-
quadratic formations over Λ, subject to the equivalence relation

(Q,φ;F, G) ∼ (Q′, φ′; F ′, G′) if there exists a stable isomorphism

[f ] : (Q,φ; F, G)⊕ (Q′,−φ′; F ′, G′)
∼=→ ∂(K, λ, µ)

for some (−1)n+1-quadratic form (K, λ, µ) over Λ ,

with addition and inverses by

(Q,φ; F, G) + (Q′, φ′; F ′, G′) = (Q⊕Q′, φ⊕ φ′;F ⊕ F ′, G⊕G′) ,

−(Q, φ;F,G) = (Q,−φ; F, G) ∈ L2n+1(Λ) .

Proof : This is just the translation of the definition (8.1) of L2n+1(Λ) into
the language of (−1)n-quadratic formations, using 9.4, 9.8 and 9.10.

Use 9.11 as an identification of L2n+1(Λ) with the group of equivalence
classes of (−1)n-quadratic formations over Λ.

Corollary 9.12 A (−1)n-quadratic formation (Q,φ; F, G) over Λ is such
that (Q,φ; F, G) = 0 ∈ L2n+1(Λ) if and only if it is stably isomorphic to
the boundary ∂(K,λ, µ) of a (−1)n+1-quadratic form (K,λ, µ) on a f. g.
free Λ-module K.
Proof : Immediate from 9.10.
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Next, it is necessary to establish the relation

(Q,φ; F, G)⊕ (Q,φ; G,H) = (Q,φ; F, H) ∈ L2n+1(Λ) .

This is the key step in the identification in §10 below of L2n+1(Λ) with a
stable unitary group.

Lemma 9.13 (i) An ε-quadratic formation (Q,φ; F, G) is trivial if and only
if the lagrangians F and G are direct complements in Q.
(ii) An ε-quadratic formation (Q,φ; F, G) is isomorphic to a boundary if
and only if (Q,φ) has a lagrangian H which is a direct complement of both
the lagrangians F ,G.
Proof : (i) If F and G are direct complements in Q express any represen-
tative φ ∈ HomΛ(Q,Q∗) of φ ∈ Qε(Q) as

φ =
(

λ− ελ∗ γ

δ µ− εµ∗

)
: Q = F ⊕G → Q∗ = F ∗ ⊕G∗ .

Then γ + εδ∗ ∈ HomΛ(G,F ∗) is an Λ-module isomorphism, and there is
defined an isomorphism of ε-quadratic formations

(
1 0
0 (γ + εδ∗)−1

)
: (Hε(F ); F, F ∗)

∼=→ (Q,φ; F, G)

so that (Q,φ;F,G) is trivial. The converse is obvious.
(ii) For the boundary ∂(K, λ, µ) of a (−ε)-quadratic form (K, λ, µ) the
lagrangian K∗ of Hε(K) is a direct complement of both the lagrangians
K, Γ(K,λ). Conversely, suppose that (Q,φ; F, G) is such that there exists a
lagrangian H in (Q,φ) which is a direct complement to both F and G. By
the proof of (i) there exists an isomorphism of formations

f : (Hε(F ); F, F ∗)
∼=→ (Q,φ;F, H)

which is the identity on F . Now f−1(G) is a lagrangian of Hε(F ) which is a
direct complement of F ∗, so that it is the graph Γ(F,λ) of a (−ε)-quadratic
form (F, λ, µ), and f defines an isomorphism of ε-quadratic formations

f : ∂(F, λ, µ) = (Hε(F ); F, Γ(F,λ))
∼=→ (Q,φ;F, G) .

Proposition 9.14 For any lagrangians F,G, H in a nonsingular (−1)n-
quadratic form (Q, φ) over Λ

(Q,φ; F, G)⊕ (Q,φ; G,H) = (Q,φ; F, H) ∈ L2n+1(Λ) .

Proof : Choose lagrangians F ∗, G∗,H∗ in (Q,φ) complementary to F, G,H
respectively. The (−1)n-quadratic formations (Qi, φi;Fi, Gi) (1 ≤ i ≤ 4)
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defined by

(Q1, φ1;F1, G1) = (Q,−φ; G∗, G∗) ,

(Q2, φ2;F2, G2) = (Q⊕Q,φ⊕−φ; F ⊕ F ∗,H ⊕G∗)

⊕ (Q⊕Q,−φ⊕ φ;∆Q,H∗ ⊕G) ,

(Q3, φ3;F3, G3) = (Q⊕Q,φ⊕−φ, F ⊕ F ∗, G⊕G∗) ,

(Q4, φ4;F4, G4) = (Q⊕Q,φ⊕−φ; G⊕G∗, H ⊕G∗)

⊕ (Q⊕Q,−φ⊕ φ;∆Q,H∗ ⊕G)

are such that
(Q,φ; F, G) ⊕ (Q,φ; G,H)⊕ (Q1, φ1;F1, G1)⊕ (Q2, φ2; F2, G2)

= (Q,φ; F, H)⊕ (Q3, φ3; F3, G3)⊕ (Q4, φ4; F4, G4) .

Each of (Qi, φi;Fi, Gi) (1 ≤ i ≤ 4) is isomorphic to a boundary, since there
exists a lagrangian Hi in (Qi, φi) complementary to both Fi and Gi, so that
9.13 (ii) applies and (Qi, φi; Fi, Gi) represents 0 in L2n+1(Λ). Explicitly,
take

H1 = G ⊂ Q1 = Q ,

H2 = ∆Q⊕Q ⊂ Q2 = (Q⊕Q)⊕ (Q⊕Q) ,

H3 = ∆Q ⊂ Q3 = Q⊕Q ,

H4 = ∆Q⊕Q ⊂ Q4 = (Q⊕Q)⊕ (Q⊕Q) .

Remark 9.15 It is also possible to express L2n+1(Λ) as the abelian group
of equivalence classes of (−1)n-quadratic formations over Λ subject to the
equivalence relation generated by

(i) (Q,φ;F,G) ∼ (Q′, φ′; F ′, G′) if (Q, φ; F,G) is stably isomorphic to
(Q′, φ′;F ′, G′),

(ii) (Q,φ;F,G) ⊕ (Q,φ; G,H) ∼ (Q, φ; F, H), with addition and inverses
by

(Q,φ; F, G) + (Q′, φ′; F ′, G′) = (Q⊕Q′, φ⊕ φ′;F ⊕ F ′, G⊕G′) ,

−(Q,φ;F,G) = (Q,φ; G,F ) ∈ L2n+1(Λ) .

This is immediate from 9.13 and the observation that for any (−1)n+1-
quadratic form (K,λ, µ) on a f. g. free Λ-module K the lagrangian K∗ in
H(−1)n(K) is a complement to both K and the graph Γ(K,λ), so that

∂(K, λ, µ) ∼ (H(−1)n(K); K, Γ(K,λ))⊕ (H(−1)n(K); Γ(K,λ), K
∗)

∼ (H(−1)n(K); K, K∗) ∼ 0 .
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§10. Automorphisms

The (2n+1)-dimensional L-group L2n+1(Λ) of a ring with involution Λ is
identified with a quotient of the stable automorphism group of hyperbolic
(−1)n-quadratic forms over Λ, as in the original definition of Wall [29].

Given a Λ-module K let AutΛ(K) be the group of automorphisms K →
K, with the composition as group law.

Example 10.1 The automorphism group of the f. g. free Λ-module Λk is
the general linear group GLk(Λ) of invertible k × k matrices in Λ

AutΛ(Λk) = GLk(Λ)

with the multiplication of matrices as group law (cf. Remark 1.12). The
general linear group is not abelian for k ≥ 2, since(

1 1
0 1

)(
1 0
1 1

)
6=

(
1 0
1 1

)(
1 1
0 1

)
.

Definition 10.2 For any ε-quadratic form (K, λ, µ) let AutΛ(K, λ, µ) be
the subgroup of AutΛ(K) consisting of the automorphisms f : (K, λ, µ) →
(K,λ, µ).

Definition 10.3 The (ε, k)-unitary group of Λ is defined for ε = ±1, k ≥ 0
to be the automorphism group

Uε,k(Λ) = AutΛ(Hε(Λk))

of the ε-quadratic hyperbolic form Hε(Λk).

Proposition 10.4 Uε,k(Λ) is the group of invertible 2k × 2k matrices(
α β

γ δ

)
∈ GL2k(Λ) such that

α∗δ + εγ∗β = 1 ∈ Mk,k(Λ) , α∗γ = β∗δ = 0 ∈ Qε(Λk) .

Proof : This is just the decoding of the condition(
α∗ γ∗

β∗ δ∗

)(
0 1
0 0

)(
α β

γ δ

)
=

(
0 1
0 0

)
∈ Qε(Λk ⊕ (Λk)∗)

for
(

α β

γ δ

)
to define an automorphism of the hyperbolic (split) ε-

quadratic form

Hε(Λk) = (Λk ⊕ (Λk)∗,
(

0 1
0 0

)
) .

Use 10.4 to express the automorphisms of Hε(Λk) as matrices.
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Example 10.5 Uε,1(Λ) is the subgroup of GL2(Λ) consisting of the 2 × 2

matrices
(

a b

c d

)
such that

dā + εbc̄ = 1 ∈ Λ , cā = db̄ = 0 ∈ Qε(Λ) .

Definition 10.6 The elementary (ε, k)-quadratic unitary group of Λ is the
normal subgroup

EUε,k(Λ) ⊆ Uε,k(Λ)

of the full (ε, k)-quadratic unitary group generated by the elements of the
following two types:

(i)
(

α 0
0 α∗−1

)
for any automorphism α ∈ GLk(Λ) ,

(ii)
(

1 0
θ − εθ∗ 1

)
for any split (−ε)-quadratic form (Λk, θ).

Lemma 10.7 For any (−ε)-quadratic form (Λk, θ ∈ Q−ε(Λk))(
1 θ − εθ∗

0 1

)
∈ EUε,k(Λ) .

Proof : This is immediate from the identity
(

1 θ − εθ∗

0 1

)
=

(
0 1
1 0

)−1 (
1 0

θ − εθ∗ 1

) (
0 1
1 0

)
.

Use the identifications

Λk+1 = Λk ⊕ Λ , Hε(Λk+1) = Hε(Λk)⊕Hε(Λ)

to define injections of groups

Uε,k(Λ) → Uε,k+1(Λ) ; f 7−→ f ⊕ 1,

such that EUε,k(Λ) is sent into EUε,k+1(Λ).

Definition 10.8 (i) The stable ε-quadratic unitary group of Λ is the union

Uε(Λ) =
∞⋃

k=1

Uε,k(Λ) .

(ii) The elementary stable ε-quadratic unitary group of Λ is the union

EUε(Λ) =
∞⋃

k=1

EUε,k(Λ) ,

a normal subgroup of Uε(Λ).
(iii) The ε-quadratic M -group of Λ is the quotient

Mε(Λ) = Uε(Λ)/{EUε(Λ), σε}
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with σε =
(

0 1
ε 0

)
∈ Uε,1(Λ) ⊆ Uε(Λ).

The automorphism group Mε(Λ) is the original definition due to Wall
[29, Chap. 6] of the odd-dimensional L-group L2n+1(Λ), with ε = (−1)n.
The original verification that Mε(Λ) is abelian used a somewhat compli-
cated matrix identity ([29, p.66]), corresponding to the formation identity
9.14. Formations will now be used to identify M(−1)n(Λ) with the a priori
abelian L-group L2n+1(Λ) defined in §8.

Given an automorphism of a hyperbolic (−1)n-quadratic form

α =
(

γ γ̃

µ µ̃

)
: H(−1)n(Λk)

∼=→ H(−1)n(Λk)

define a (2n + 1)-complex (C, ψ) by

d = µ∗ : Cn+1 = Λk → Cn = Λk ,

ψ0 = γ : Cn = Λk → Cn+1 = Λk ,

corresponding to the (−1)n-quadratic formation

Φk(α) = (H(−1)n(Λk); Λk, im(
(

γ

µ

)
: Λk → Λk ⊕ (Λk)∗)) .

Lemma 10.9 The formations Φk(α1), Φk(α2) associated to two automor-
phisms

αi =
(

γi γ̃i

µi µ̃i

)
: H(−1)n(Λk)

∼=→ H(−1)n(Λk) (i = 1, 2)

are isomorphic if and only if there exist βi ∈ GLk(Λ), θi ∈ S(Λk) such that
(

β1 0
0 β∗−1

1

)(
1 θ1 + (−1)n+1θ∗1
0 1

)(
γ1 γ̃1

µ1 µ̃1

)

=
(

γ2 γ̃2

µ2 µ̃2

) (
β2 0
0 β∗−1

2

)(
1 θ2 + (−1)n+1θ∗2
0 1

)

: H(−1)n(Λk)
∼=→ H(−1)n(Λk) .

Proof : An automorphism α of the hyperbolic (−1)n-quadratic form
H(−1)n(Λk) preserves the lagrangian Λk ⊂ Λk ⊕ (Λk)∗ if and only if there
exist β ∈ GLk(Λ), θ ∈ S(Λk) such that

α =
(

β 0
0 β∗−1

)(
1 θ + (−1)n+1θ∗

0 1

)
: H(−1)n(Λk)

∼=→ H(−1)n(Λk) .
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Proposition 10.10 The function

Φ : M(−1)n(Λ) → L2n+1(Λ) ; α 7−→ Φk(α) (α ∈ U(−1)n,k(Λ))

is an isomorphism of groups.
Proof : The function

Φk : U(−1)n,k(Λ) → L2n+1(Λ) ; α 7−→ Φk(α)

is a group morphism by 9.14. Each of the generators (10.6) of the elemen-
tary subgroup EU(−1)n,k(Λ) is sent to 0 with

(i) Φk

(
β 0
0 β∗−1

)
= (H(−1)n(Λk); Λk,Λk) = ∂(Λk, 0, 0) = 0 ∈ L2n+1(Λ),

(ii) Φk

(
1 0

θ + (−1)n+1θ∗ 1

)
= ∂(Λk, θ + (−1)n+1θ∗, θ) = 0 ∈ L2n+1(Λ).

Also, abbreviating σ(−1)n to σ

Φ1(σ) = (H(−1)n(Λ); Λ, Λ∗) = 0 ,

Φk+1(α⊕ 1) = Φk(α)⊕ (H(−1)n(Λ); Λ, Λ) = Φk(α) ∈ L2n+1(Λ) .

Thus the morphisms Φk (k ≥ 0) fit together to define a group morphism

Φ : M(−1)n(Λ) → L2n+1(Λ) ; α 7−→ Φk(α) if α ∈ U(−1)n,k(Λ)

such that

Φ(α1α2) = Φ(α1 ⊕ α2) = Φ(α1)⊕ Φ(α2) ∈ L2n+1(Λ) .

Φ is onto by 9.3 (ii). It remains to prove that Φ is one-one.
For any αi ∈ U(−1)n,ki

(Λ) (i = 1, 2)

α1 ⊕ α2 = α2 ⊕ α1 ∈ M(−1)n(Λ) ,

since (
α1 0
0 α2

)
=

(
0 1
1 0

)−1 (
α2 0
0 α1

)(
0 1
1 0

)

: H(−1)n(Λk1+k2) → H(−1)n(Λk1+k2) .

Now σ = 1 ∈ M(−1)n(Λ) (by construction), so that for any α ∈ U(−1)n,k(Λ)

α⊕ σ = σ ⊕ α = (σ ⊕ 1)(1⊕ α) = α ∈ M(−1)n(Λ) .

It follows that for every m ≥ 1

σ ⊕ σ ⊕ . . .⊕ σ = 1 ∈ M(−1)n(Λ) (m-fold sum) .

If α ∈ U(−1)n,k(Λ) is such that Φ(α) = 0 ∈ L2n+1(Λ) then by 9.12
the (−1)n-quadratic formation Φk(α) is stably isomorphic to the boundary
∂(Λk′ , λ, µ) of a (−1)n+1-quadratic form (Λk′ , λ, µ). Choosing a split form
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θ ∈ S(Λk′) for (λ, µ) this can be expressed as

∂(Λk′ , λ, µ) = Φk′

(
1 0

θ + (−1)n+1θ∗ 1

)
.

Thus for a sufficiently large k′′ ≥ 0 there exist by 10.9 βi ∈ GLk′′(Λ),
θi ∈ S(Λk′′) (i = 1, 2) such that(

β1 0
0 β∗−1

1

)(
1 θ1 + (−1)n+1θ∗1
0 1

)
(α⊕ σ ⊕ . . .⊕ σ)

=
( (

1 0
θ + (−1)n+1θ∗ 1

)
⊕ σ ⊕ . . .⊕ σ

)(
β2 0
0 β∗−1

2

)

(
1 θ2 + (−1)n+1θ∗2
0 1

)
: H(−1)n(Λk′′) → H(−1)n(Λk′′)

so that by another application of 10.7

α =
(

1 0
θ + (−1)n+1θ∗ 1

)
= 1 ∈ M(−1)n(Λ) ,

verifying that Φ is one-one.
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Automorphisms of manifolds

Michael Weiss and Bruce Williams

0. Introduction

This survey is about homotopy types of spaces of automorphisms of
topological and smooth manifolds. Most of the results available are relative,
i.e., they compare different types of automorphisms.

In chapter 1, which motivates the later chapters, we introduce our fa-
vorite types of manifold automorphisms and make a comparison by (mostly
elementary) geometric methods. Chapters 2, 3, and 4 describe algebraic
models (involving L–theory and/or algebraic K–theory) for certain spaces
of “structures” associated with a manifold M , that is, spaces of other man-
ifolds sharing some geometric features with M . The algebraic models rely
heavily on

• Wall’s work in surgery theory, e.g. [Wa1] ,
• Waldhausen’s work in h–cobordism theory alias concordance the-

ory, which includes a parametrized version of Wall’s theory of the
finiteness obstruction, [Wa2] .

The structure spaces are of interest for the following reason. Suppose that
two different notions of automorphism of M are being compared. Let
X1(M) and X2(M) be the corresponding automorphism spaces; suppose
that X1(M) ⊂ X2(M). As a rule, the space of cosets X2(M)/X1(M) is a
union of connected components of a suitable structure space.

Chapter 5 contains the beginnings of a more radical approach in which
one tries to calculate the classifying space BX1(M) in terms of BX2(M),
rather than trying to calculate X2(M)/X1(M). Chapter 6 contains some
examples and calculations.
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Not included in this survey is the disjunction theory of automorphism
spaces and embedding spaces begun by Morlet, see [BLR], and continued
in [Go4], [Go1], [Go2], [We2], [We3], [GoWe], [GoKl]. It calls for a survey
of its own.

1. Stabilization and descent

1.1. Notation, terminology

1.1.1. Terminology. Space with a capital S means simplicial set. We
will occasionally see simplicial Spaces (=bisimplicial sets). A simplicial
Space k 7→ Zk determines a Space (qk ∆k × Zk)/ ∼ , where ∆k is the k–
simplex viewed as a Space (= simplicial set) and ∼ refers to the relations
(f∗x, y) ∼ (x, f∗y). The Space (qk ∆k×Zk)/ ∼ is isomorphic to the Space
k 7→ Zk(k), the diagonal of k 7→ Zk. See [Qui], for example.

A euclidean k–bundle is a fiber bundle with fibers homeomorphic to Rk.
Trivial euclidean k–bundles are often denoted εk.

The homotopy fiber of a map B → C of Spaces, where C is based,
will be denoted hofiber[B → C ]. A homotopy fiber sequence is a diagram
of spaces A −→ B −→ C where C is based, together with a nullhomotopy
of the composition A → C which makes the resulting map from A to
hofiber[ B → C ] a (weak) homotopy equivalence.

The term cartesian square is synonymous with homotopy pullback square.
More generally, an n–cartesian square (n ≤ ∞) is a commutative diagram
of Spaces and maps

A −−−−→ C
y

y
B −−−−→ D

such that the resulting map from A to the homotopy pullback of the dia-
gram B −→ D ←− C is n–connected.

A commutative diagram of Spaces is a functor F from some small cat-
egory D to Spaces. We say that D is the shape of the diagram. When
we represent such a diagram graphically, we usually only show the maps
F (gi) for a set {gi} of morphisms generating D. For example, the com-
mutative square just above is a functor from a category with four objects
and five non–identity morphisms to Spaces. The notion of a homotopy
commutative diagram of shape D has been made precise by [Vogt]. It is
a continuous functor from a certain topological category WD (determined
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by D) to Spaces. In more detail, WD is a small topological category with
discrete object set, and comes with a continuous functor WD → D which
restricts to a homeomorphism (=bijection) of object sets, and to a homo-
topy equivalence of morphism spaces. Graphically, we represent homotopy
commutative diagrams of shape D like commutative diagrams of shape D.

1.1.2. Notation. For a topological manifold M , we denote by TOP(M)
the Space of homeomorphisms f : M → M which agree with the identity on
∂M . (A k–simplex in TOP(M) is a homeomorphism f : M×∆k → M×∆k

over ∆k which agrees with the identity on ∂M ×∆k.) References: [BLR],
[Bu1].

We use the abbreviations TOP(n) = TOP(Rn) and TOP =
⋃

n TOP(n),
where we include TOP(n) in TOP(n + 1) by f 7→ f × idR.

Let ∂+M be a codimension zero submanifold of ∂M , closed as a subspace
of ∂M . Let ∂−M be the closure of ∂M r ∂+M . Let TOP(M, ∂+M) be
the Space of homeomorphisms M → M which agree with the identity
on ∂−M . (This is TOP(M) if ∂+M = ∅.) Special case: the Space of
concordances alias pseudo–isotopies of a compact manifold N , which is
C(N) := TOP(N × I, N × 1) where I = [0, 1]. References: [Ce], [HaWa],
[Ha], [DIg], [Ig]. Let G(M, ∂+M) be the Space of homotopy equivalences
of triads, (M ; ∂+M, ∂−M) → (M ; ∂+M,∂−M), which are the identity on
∂−M . We abbreviate G(M, ∅) to G(M). Warning: If ∂M = ∅, then G(M)
is the Space of homotopy equivalences M → M , but in general it is not.

1.1.3. Definitions. An h–structure on a closed manifold Mn is a pair
(N, f) where Nn is another closed manifold and f : N → M is a ho-
motopy equivalence. If f is a simple homotopy equivalence, (N, f) is an
s–structure. An isomorphism from an h–structure (N1, f1) to another h–
structure (N2, f2) on M is a homeomorphism N1 → N2 over M .

We see that the h–structures on M form a groupoid. Better, they form
a simplicial groupoid: Objects in degree k are pairs (N, f) where Nn is an-
other closed manifold and f : N×∆k → M×∆k is a homotopy equivalence
over ∆k. Morphisms in degree k are homeomorphisms over M ×∆k.

Let S(M) be the diagonal nerve (= diagonal of degreewise nerve) of this
simplicial groupoid; also let Ss(M) be the diagonal nerve of the simplicial
subgroupoid of s–structures. Think of S(M) and Ss(M) as the Spaces of
h–structures on M and s–structures on M , respectively. (They are actually
simplicial classes, not simplicial sets, as it stands. The reader can either



168 Michael Weiss and Bruce Williams

accept this, or avoid it by working in a Grothendieck “universe”.) The
forgetful functor (N, f) 7→ N induces a map from S(M) to the diagonal
nerve of the simplicial groupoid of all closed n–manifolds and homeomor-
phisms between such. This map is a Kan fibration. Its fiber over the point
corresponding to M is G(M). Hence there is a homotopy fiber sequence

TOP(M) −→ G(M) −→ S(M) .

More generally, given compact M and ∂+M ⊂ ∂M as above, there is an
h–structure Space S(M, ∂+M) and an s–structure Space Ss(M, ∂+M) and
a homotopy fiber sequence

TOP(M, ∂+M) −→ G(M, ∂+M) −→ S(M, ∂+M) .

We omit the details. Important special cases: the Space of h–cobordisms
and the Space of s–cobordisms on a compact manifold,

H(N) := S(N × I,N × 1)

Hs(N) := Ss(N × I, N × 1) .

Since G(N × I, N × 1) ' ∗, we have ΩH(N) ' C(N). There is a stabi-
lization map H(N) → H(N × I), upper stabilization to be precise [Wah2],
[HaWa]. Let

H∞(N) := hocolim
k

H(N × Ik) , C∞(N) := hocolim
k

C(N × Ik) .

1.1.4. More definitions. The block automorphism Space T̃OP(M) has
as its k–simplices the homeomorphisms g : M×∆k → M×∆k which satisfy
g(M × s) = M × s for each face s ⊂ ∆k, and restrict to the identity on
∂M×∆k. References: [ABK], [Bu1] [Br1]. There is also a block s-structure
Space

S̃s(M),

defined as the diagonal nerve of a simplicial groupoid. The objects of the
simplicial groupoid in degree k are of the form (N, f) where Nn is closed
and f is a simple homotopy equivalence N × ∆k → M × ∆k such that
f(N×t) ⊂ M×t for each face t of ∆k, and f restricts to a homeomorphism
∂N ×∆k → ∂M ×∆k. The morphisms in degree k are homeomorphisms
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respecting the reference maps to M×∆k. References: [Qun1], [Wa1, §17.A],
[Ni], [Rou1]. There is a homotopy fiber sequence

T̃OP(M) −→ G̃
s
(M) −→ S̃s(M),

where G̃
s
(M) is defined like T̃OP(M), but with simple homotopy equiva-

lences instead of homeomorphisms.— These definitions have relative ver-
sions (details omitted); for example, there is a homotopy fiber sequence

T̃OP(M, ∂+M) −→ G̃
s
(M, ∂+M) −→ S̃s(M,∂+M) .

Let Gs(M, ∂+M) ⊂ G(M,∂+M) consist of the components containing
those f which are simple homotopy automorphisms and induce simple ho-
motopy automorphisms of ∂+M . The inclusion

Gs(M, ∂+M) → G̃
s
(M, ∂+M)

is a homotopy equivalence (because it induces an isomorphism on homotopy
groups; both Spaces are fibrant).

1.2. Open stabilization versus closed stabilization

Let Mn be compact, M0 = M r ∂M . Open stabilization refers to the
map

TOP(M, ∂M) −→
⋃

k

TOP(M0 × Rk)

given by f 7→ f |M0. We include TOP(M0 × Rk) in TOP(M0 × Rk+1) by
g 7→ g × idR. Closed stabilization refers to the inclusion

TOP(M,∂M) −→
⋃

k

TOP(M × Ik, ∂(M × Ik)) .

Open stabilization factors through closed stabilization, by means of the
restriction maps TOP(M × Ik, ∂(M × Ik)) → TOP(M0 × Ik

0 ) and an
identification I0

∼= R. Here in §1.2 we describe the homotopy type of⋃
k TOP(M0×Rk), and descend from there to

⋃
k TOP(M×Ik, ∂(M×Ik)).

For a more algebraic version of this, see §5.2.

Let τ̂ : M0 → BTOP(n) classify the tangent bundle [Mi1], [Kis], [Maz2],
[KiSi,IV.1]. We map G(M0) to the mapping Space map(M0, BTOP) by
f 7→ τ̂ f and we map

⋃
k TOP(M0 × Rk) to G(M0) by f 7→ pfi, where

p : M0 × Rk → M0 and i : M0
∼= M0 × 0 → M0 × Rk are projection and

inclusion, respectively.
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1.2.1. Theorem [CaGo]. The resulting diagram

⋃

k

TOP(M0 × Rk) −→ G(M0) −→ map(M0, BTOP)

is a homotopy fiber sequence.

The proof uses immersion theory [Gau], general position, and the half–open
s–cobordism theorem [Sta]. See also [Maz1].

Choose a collar for M , that is, an embedding c : ∂M × I → M extending
the map (x, 0) → x on ∂M × 0. Reference: [Brn], [KiSi, I App. A]. Any
homeomorphism f : M0 → M0 determines an h–cobordism Wf on ∂M :
the region of M enclosed by ∂M and fc(∂M × 1). The bundle on the
geometric realization of TOP(M0) with fiber Wf over the vertex f is a
bundle of h–cobordisms, classified by a map v from TOP(M0) to H(∂M).

If f : M0 → M0 is the restriction of some homeomorphism g : M → M ,
then Wf

∼= gc(∂M × I) is trivialized. Conversely, a trivialization of Wf

can be used to construct a homeomorphism g : M → M with an isotopy
from g|M0 to f . Therefore: the diagram

(1.2.2) TOP(M,∂M) res−−→ TOP(M0)
v−→ H(∂M)

is a homotopy fiber sequence. See [Cm] for details. The special case where
M = Dn is due to [KuLa].

This observation can be stabilized. Let u : H(∂M) → H(∂(M × I))
be the composition of stabilization H(∂M) → H(∂M × I) with the map
induced by the inclusion of ∂M × I in ∂(M × I). Then

TOP(M0)
v−−−−→ H(∂M)

y
yu

TOP(M0 × I0) −−−−→ H(∂(M × I))

is homotopy commutative. The homotopy colimit of the H(∂(M × Ik))
under the u–maps becomes ' H∞(M). Therefore:

1.2.3. Theorem. There exists a homotopy fiber sequence

⋃

k

TOP(M × Ik, ∂(M × Ik)) res−−−−−→
⋃

k

TOP(M0 × Rk) −−−→ H∞(M) .
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Let Q = I∞ be the Hilbert cube. The product M × Q is a Hilbert cube
manifold [Cha] without boundary. Let TOP(M×Q) be the Space of home-
omorphisms M ×Q → M ×Q and let G(M ×Q) be the Space of homotopy
equivalences M ×Q → M ×Q. Chapman and Ferry have shown [Bu2] that
an evident map from

⋃
k TOP(M × Ik, ∂(M × Ik)) to the homotopy fiber

of the composition

TOP(M ×Q) ⊂−→ G(M ×Q) ' G(M0) −→ map(M0, BTOP)

(last arrow as in 1.2.1) is a homotopy equivalence. Therefore

⋃

k

TOP(M × Ik, ∂(M × Ik)) −→ TOP(M ×Q) −→ map(M0, BTOP)

is a homotopy fiber sequence. Comparison with 1.2.1 gives the next result.

1.2.4. Theorem. The following homotopy commutative diagram is carte-
sian:

⋃
k TOP((M × Ik, ∂(M × Ik)) res−−−−→ ⋃

k TOP(M0 × Rk)
y

y
TOP(M ×Q) −−−−→ G(M0) .

This suggests that the map
⋃

k TOP(M0 ×Rk) → H∞(M) in 1.2.3 factors
through G(M0). We will obtain such a factorization in 1.5.3.

Remark. Looking at horizontal homotopy fibers in 1.2.4, and using 1.2.3,
and the homotopy equivalence G(M0) ' G(M × Q), one finds that the
homotopy fiber of the inclusion TOP(M × Q) → G(M × Q) is C∞(M).
This can also be deduced from [Cha2], [Cha3].

1.3. Bounded stabilization versus no stabilization

Let Mn be compact. A homeomorphism f : M × Rk → M × Rk is
bounded if {p2f(z) − p2(z) | z ∈ M × Rk} is a bounded subset of Rk,
where p2 : M × Rk → Rk is the projection. Let TOPb(M × Rk) be the
Space of bounded homeomorphisms M × Rk → M × Rk which agree with
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the identity on ∂M × Rk. Note TOP(M) = TOPb(M × R0). Bounded
stabilization refers to the inclusion

TOP(M) −→
⋃

k

TOPb(M × Rk) .

Surgery theory describes the homotopy type of
⋃

k TOPb(M×Rk), modulo
the mysteries of G(M). See §2.4; here in §1.3 we analyze the difference
between

⋃
k TOPb(M × Rk) and TOP(M).

The Space TOPb(M ×Rk+1)/ TOPb(M ×Rk) for k ≥ 0 and fixed M is the
k–th Space in a spectrum H(M), by analogy with the sphere spectrum,
which is made out of the spaces O(Rk+1)/ O(Rk). Compare [BuLa1]. An-
derson and Hsiang, who introduced bounded homeomorphisms in [AH1],
[AH2] showed that Ω∞+1(H(M)) ' C∞(M). In more detail: they intro-
duced bounded concordance spaces

Cb(M × Rk) = TOPb(M × I × Rk, M × 1× Rk)

and proved the following. See also [WW1,§1+App.5], [Ha, App.II].

1.3.1. Theorem [AH1], [AH2]. Assume n > 4. Then

i) Ω(TOPb(M × Rk+1)/ TOPb(M × Rk)) ' Cb(M × Rk);
ii) ΩCb(M × Rk) ' Cb(M × I × Rk−1).

Part ii) of 1.3.1 shows that the spaces Cb(M × Rk) for k ≥ 0 form a
spectrum, with structure maps

Cb(M × Rk−1) stab.−−−→ Cb(M × I × Rk−1) ' ΩCb(M × Rk);

then part i) of 1.3.1 with some extra work [WW1,§1] identifies the new
spectrum with ΩH(M). It is also shown in [AH1] that the homotopy
groups πjH(M) for j ≤ 0 are lower K–groups [Ba]:

1.3.2. Theorem. Let j ≤ 0 be an integer. Then

πj Cb(M × Rk) =





Kj−k+2(Zπ1(M)) (j < k − 2)

K̃0(Zπ1(M)) (j = k − 2)

Whitehead gp. of π1(M) (j = k − 1) .
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Remark. Madsen and Rothenberg [MaRo1] , [MaRo2] have proved equi-
variant analogs of 1.3.1 and 1.3.2, and Chapman [Cha4], Hughes [Hu] have
proved a Hilbert cube analog. Carter [Ca1], [Ca2], [Ca3] has shown that
Kr(Zπ) vanishes if π is finite and r < −1.

Remark. It is shown in [WW1,§5] that Ω∞H(M) ' H∞(M); this improves
slightly on Ω∞+1H(M) ' C∞(M).

Theorems 1.3.1 and 1.3.2 are about descent from TOPb(M × Rk+1) to
TOPb(M × Rk). For instant descent from TOPb(M × Rk+1) to TOP(M),
there is the hyperplane test [WW1,§3], [We4]. Think of RP k as the Grass-
mannian of codimension one linear subspaces W ⊂ Rk+1. Let Γk be the
Space of sections of the bundle E(k) → RP k with fibers

E(k)W := TOPb(M × Rk+1)/ TOPb(M ×W )

(see the remark just below). Note that E(k) → RP k has a trivial section
picking the coset [id] in each fiber; so Γk is a based Space.

Remark. The “bundle” E(k) → RP k+1 is really a twisted cartesian product
[Cu] with base Space equal to the singular simplicial set of RP k, and with
fibers E(k)W over a vertex W as stated.

We define a map Φk : TOPb(M × Rk+1)/ TOP(M) → Γk by taking the
coset f · TOP(M) to the section W 7→ f · TOPb(M ×W ). For k > 0, it is
easy to produce an embedding vk making the square

TOPb(M × Rk)/ TOP(M)
Φk−1−−−−→ Γk−1

∩
y vk

y
TOPb(M × Rk+1)/ TOP(M) Φk−−−−→ Γk

commutative. Let Φ :
⋃

k TOPb(M ×Rk)/ TOP(M) → ⋃
k Γk be the union

of the Φk−1 for k ≥ 0. It turns out that Φ is highly connected (1.3.5 below),
under mild conditions on M .

1.3.3. Definition. An integer j is in the topological, resp. smooth, con-
cordance stable range for M if the upper stabilization maps from C(M×Ir)
to C(M × Ir+1), resp. the smooth versions, are j–connected, for all r ≥ 0.
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1.3.4. Theorem [Ig]. If M is smooth and n ≥ max{2j + 7, 3j + 4},
then j is in the smooth and in the topological concordance stable range
for M . (The estimate for the topological concordance stable range is due
to Burghelea–Lashof and Goodwillie. Their argument uses smoothness of
M , and Igusa’s estimate of the smooth concordance stable range. See [Ig,
Intro.] )

1.3.5. Proposition [WW1]. If j is in the topological concordance stable
range for M , and n > 4, then Φ :

⋃
k TOPb(M×Rk)/ TOP(M) → ⋃

k Γk−1

is (j + 1)–connected.

Outline of proof. For −1 ≤ ` ≤ k let Γk,` ⊂ Γk consist of the sections s for
which s(W ) = ∗ whenever W contains the standard copy of R`+1 in Rk+1.
Let Φk,` be the restriction of Φk to TOPb(M ×R`+1)/ TOP(M), viewed as
a map with codomain Γk,`. One shows by induction on ` that the Φk,` for
fixed ` define a highly connected map

TOPb(M × R`+1)/ TOP(M) −→
⋃

k≥`

Γk,` . ¤

1.3.6 Theorem [WW1]. There exists a homotopy equivalence

⋃

k

Γk ' Ω∞(H(M)hZ/2)

for some involution on H(M). Here H(M)hZ/2 := (EZ/2)+ ∧Z/2 H(M) is
the homotopy orbit spectrum.

Sketch proof. Note
⋃

k Γk =
⋃

`>0

⋃
k>` Γk,` and

⋃
k>` Γk,` is homotopy

equivalent to Ω∞(S`
+ ∧Z/2 H(M)) by Poincaré duality [WW1, 2.4], using

1.3.1 and 1.3.2. ¤

1.3.7. Summary. There exist a spectrum H(M) with involution and a
(j + 1)–connected map

⋃

k

TOPb(M × Rk)/ TOP(M) −→ Ω∞(H(M)hZ/2)
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where j is the largest integer in the topological concordance stable range
for M . Further, Ω∞H(M) ' H∞(M) and

πrH(M) :=





Wh1(π1(M)) r = 0

K̃0(Zπ1(M)) r = −1

Kr+1(Zπ1(M)) r < −1 .

(See §3 for information about πrH(M) when r > 0.)

1.4. Block automorphism Spaces

The property πkT̃OP(M) ∼= π0T̃OP(M ×∆k) is a consequence of the
definitions and has made the block automorphism Spaces popular. See
also §2. In homotopy theory terms, the block automorphism Space of M is
more closely related to

⋃
k TOPb(M × Rk) than to TOP(M). To explain

this we need the bounded block automorphism Spaces

T̃OP
b
(M × Rk)

(definition left to the reader). The following Rothenberg type sequence is
obtained by inspection, using 1.3.2. For notation, see 1.3.7. Compare [Sha],
[Ra1, §1.10].

1.4.2. Proposition [AnPe], [WW1]. For k ≥ 0 there exists a long exact
sequence

· · · −→ πrT̃OP
b
(M×Rk) −→ πrT̃OP

b
(M×Rk+1) −→ Hr+k(Z/2; π−kH(M))

−→ πr−1T̃OP
b
(M×Rk) −→ πr−1T̃OP

b
(M×Rk+1) −→ · · ·

The inclusion
⋃

k TOPb(M × Rk) → ⋃
k T̃OP

b
(M × Rk) is a homotopy

equivalence [WW1, 1.14]. Together with 1.4.2, this shows for example that

T̃OP(M) '
⋃

k

TOPb(M × Rk)

if M is simply connected, because then πkH(M) = 0 for k ≤ 0.
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Another way to relate T̃OP(M) and
⋃

k TOPb(M ×Rk) is to use a filtered
version of Postnikov’s method for making highly connected covers. Let X

be a fibrant Space with a filtration by fibrant subSpaces

X(0) ⊂ X(1) ⊂ X(2) ⊂ . . .

so that X is the union of the X(k). Call an i–simplex in X positive if
its characteristic map ∆i → X is filtration–preserving, i.e., takes the k–
skeleton of ∆i to X(k). The positive simplices form a subSpace posX of
X, and we let posX(k) := posX ∩X(k). Then posX(k) is fibrant. If X(0)
is based, then

πi(posX(k), posX(k − 1))
∼=−−−−→ πi(X(k), X(k − 1))

for i ≥ k, and πi(posX(k), posX(k − 1)) = ∗ for i < k. For example:
if X(k) = ∗ for k ≤ m and X(k) = X for k > m, then posX is the m–
connected Postnikov cover of X. And if X(k) is TOPb(M×Rk)/ TOP(M),
then

posX ' T̃OP(M)/ TOP(M) .

See [WW1, 4.10] for a more precise statement, and a proof.

1.4.3. Corollary [Ha]. There exists a spectral sequence with E1–term
given by E1

pq = πq−1(C(M × Ip)) , converging to the homotopy groups of

T̃OP(M)/ TOP(M) .

Hatcher also described E2
pq for p + n À q. What he found is explained by

the next theorem, which uses naturality of the pos–construction and the
results of §1.3.

1.4.4. Theorem [WW1, Thm. C]. There exists a homotopy commutative
cartesian square of the form

T̃OP(M)/ TOP(M)
'

pos
(⋃

kTOPb(M×Rk)/ TOP(M)
) −−−−→ Ω∞(Hs(M)hZ/2)

y∩
y

⋃
k TOP(M×Rk)/ TOP(M) Φ−−−−→ Ω∞(H(M)hZ/2)
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where Hs(M) is the 0–connected cover of H(M), the right–hand vertical
arrow is induced by the canonical map Hs(M) → H(M), and Φ is the map
from 1.3.7.

By 1.3.7, lower and hence upper horizontal arrow in 1.4.4 are j–connected
for j in the topological concordance stable range of M .

1.5. h–structures and h–cobordisms

Our main goal in this section is to construct a Whitehead torsion map
w : S(M) −→ H∞(M), and a simple version, Ss(M) −→ (H∞)s(M) =
Ω∞Hs(M), which makes the following diagram homotopy commutative
(see 1.1.1):

(1.5.1)

T̃OP(M)/ TOP(M) δ−−−−→ Ss(M)

1.4.4

y
yw

Ω∞(Hs(M)hZ/2)
transfer−−−−−→ Ω∞Hs(M) .

The map δ comes from T̃OP(M)/ TOP(M) → Ss(M) → S̃s(M), a homo-
topy fiber sequence. In our description of w, we assume for simplicity that
Mn is closed.

Let Z ⊂ S(M) be a finitely generated subSpace, that is to say, |Z| is
compact. Let p : E(1) → |Z| be the tautological bundle whose fiber over
some vertex (N, f), for example, is N . (Here Nn is closed and f : N → M

is a homotopy equivalence.) Let E(2) = M × |Z|. We have a canonical
fiber homotopy equivalence λ : E(1) → E(2) over |Z|.

Let τ1 and τ2 be the vertical tangent bundles of E(1) and E(2), re-
spectively. Choose k À 0, and a k–disk bundle ξ on E(1) with asso-
ciated euclidean bundle ξ\, and an isomorphism ι of euclidean bundles
τ1 ⊕ ξ\ ∼= λ∗(τ2 ⊕ εk). Let E(1)ξ be the total space of the disk bundle ξ;
this fibers over |Z|. Immersion theory [Gau] says that λ and ι together
determine up to contractible choice a fiberwise codimension zero immer-
sion, over |Z|, from E(1)ξ to E(2) × Rk. We can arrange that the image
of this fiberwise immersion is contained in E(2) × Bk where Bk ⊂ Rk is
the open unit ball. Also, by choosing k sufficiently large and using gen-
eral position arguments, we can arrange that the fiberwise immersion is a
fiberwise embedding. In this situation, the closure of

E(2)× Dk r im(E(1)ξ)
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is the total space of a fibered family of h–cobordisms over |Z|, with fixed
base M × Sk−1. This family is classified by a map Z → H(M × Sk−1).
Letting k →∞ we have

wZ : Z −→ hocolim
k

H(M × Sk−1) ' H∞(M) ,

a map well defined up to contractible choice. Finally view Z as a variable,
use the above ideas to make a map w from the homotopy colimit of the
various Z to H∞(M), and note that hocolimZ ' S(M). This completes
the construction.

It is evident that w takes Ss(M), the Space of s–structures on M , to the
Space of s–cobordisms, Ω∞Hs(M). Homotopy commutativity of (1.5.1) is
less evident, but we omit the proof.

1.5.2. Corollary [BuLa2], [BuFi1]. In the topological concordance stable
range for M , and localized at odd primes, there is a product decomposition

Ss(M) ' S̃s(M)× T̃OP(M)/ TOP(M) .

Proof. The left–hand vertical map in (1.5.1) is a homotopy equivalence
in the concordance stable range, and the lower horizontal map is a split
monomorphism in the homotopy category, at odd primes. Consequently
the homotopy fiber of

Ss(M) ↪→ S̃s(M)

is a retract up to homotopy of Ss(M) (localized at odd primes, in the
concordance stable range). ¤

1.5.3. Remark. Suppose that Mn is compact with boundary. Let Z ⊂
S(M) be finitely generated. A modification of the construction above gives
wZ from Z to hocolimk H(M × Sk−1) and then w : S(M) → H∞(M).

Now let Tn(M) be the Space of pairs (N, f) where Nn is a compact
manifold and f : N → M is any homotopy equivalence, not subject
to boundary conditions. Let Z ⊂ Tn(M) be finitely generated. An-
other modification of the construction described above gives wZ from Z

to hocolimk H(∂(M × Sk−1)), and then w : Tn(M) → H∞(M) because
again

hocolim
k

H(∂(M × Sk−1)) ' H∞(M) .
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It follows that w : S(M) → H∞(M) extends to w : Tn(M) → H∞(M). Let
G\(M) be the Space of all homotopy equivalences M → M , not subject to
boundary conditions. Then G(M0) ' G\(M) ↪→ Tn(M), and we can think
of w as a map from G(M0) to H∞(M). This is the map promised directly
after 1.2.4.

1.6. Diffeomorphisms

Suppose that Mn is a closed topological manifold, n > 4, with tan-
gent (micro)bundle τ . Morlet [Mo1], [Mo2], [BuLa3], [KiSi] proves that the
forgetful map from a suitably defined Space of smooth structures on M ,
denoted V (M), to a suitably defined Space V (τ) of vector bundle struc-
tures on τ is a weak homotopy equivalence. Earlier Hirsch and Mazur
[HiMa] had proved that the map in question induces a bijection on π0.
The Space V (τ) is homotopy equivalent to the homotopy fiber of the in-
clusion map(M, BO(n)) → map(M, BTOP(n)) over τ̂ .

The Space of smooth structures on M can be defined as the disjoint
union of Spaces TOP(N)/ DIFF(N), where N runs through a set of rep-
resentatives of diffeomorphism classes of smooth manifolds homeomorphic
to M . Therefore Morlet’s theorem gives, in the case where M is smooth, a
homotopy fiber sequence

(1.6.1) DIFF(M) −→ TOP(M) a−→ V (M) .

The map a is obtained from an action of TOP(M) on V (M) by eval-
uating at the base point of V (M). The homotopy fiber sequence (1.6.1)
remains meaningful when M is smooth compact with boundary; in this case
allow only vector bundle structures on τ extending the standard structure
over ∂M .

Traditionally, 1.6.1 has been an excuse for neglecting DIFF(M) in favor of
TOP(M). But concordance theory has changed that. See §3. It is therefore
best to develop a theory of smooth automorphisms parallel to the theory of
topological automorphisms where possible. For example, 1.2.1–3, 1.3.1–2,
1.3.5–8, 1.4.2–4 and 1.5.1–3 have smooth analogs; but 1.2.4 does not.
Notation: A subscript d will often be used to indicate smoothness, as in
Hd(M) for a Space of smooth h–cobordisms (when M is smooth).
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2. L–theory and structure Spaces

The major theorems in this chapter are to be found in §2.3 and §2.5.
Sections 2.1, 2.2 and 2.4 introduce concepts needed to state those theorems.

2.1. Assembly

2.1.1. Definitions. Fix a space Y . Let WY be the category of spaces over
Y . A morphism in WY is a weak homotopy equivalence if the underlying
map of spaces is a weak homotopy equivalence. A commutative square in
WY is cartesian if the underlying square of spaces is cartesian.

A functor J from WY to CW–spectra [A, III] is homotopy invariant if
it takes weak homotopy equivalences to weak homotopy equivalences. It
is excisive if, in addition, it takes cartesian squares to cartesian squares,
takes ∅ to a contractible spectrum, and satisfies a wedge axiom,

∨iJ(Xi → Y ) '−→ J(qiXi → Y ) .

2.1.2. Proposition. For every homotopy invariant functor J from WY

to CW–spectra, there exist an excisive functor J% from WY to CW–spectra
and a natural transformation αJ : J% → J such that αJ : J%(X) → J(X)
is a homotopy equivalence whenever X is a point (over Y ).

The natural transformation αJ is essentially characterized by these prop-
erties; it is called the assembly. It is the best approximation (from the left)
of J by an excisive functor. We write J%(X) for the homotopy fiber of
αJ : J%(X) → J(X), for any X in WY .

Remark. Assume that X and Y above are homotopy equivalent to CW–
spaces. If Y ' ∗, then J%(X) ' X+∧J(∗) by a chain of natural homotopy
equivalences. If Y 6' ∗, build a quasi–fibered spectrum on Y with fiber
J(y ↪→ Y ) over y ∈ Y . Pull it back to X using X → Y . Collapse the zero
section, a copy of X. The result is ' J%(X).

The assembly concept is due to Quinn, [Qun1], [Qun2], [Qun3]. See also
[Lo]. For a proof of 2.1.2, see [WWa]. For applications to block s–structure
Spaces we need the case where Y = RP∞ and J = Ls

• is the L–theory func-
tor X 7→ Ls

•(X) which associates to X the L–theory spectrum of Zπ1(X),
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say in the description of Ranicki [Ra2 §13]. Note the following technical
points.

• Ls
• is the quadratic L–theory with decoration s which we make

0–connected (by force).
• Because of 2.1.1 we have no use for a base point in X. This makes

it harder to say what Zπ1(X) should mean. For details see [WWa,
3.1], where Zπ1(X) or more precisely Zwπ1(X) is a ringoid with
involution depending on the double cover w : X∼ → X induced by
X → RP∞.

2.2. Tangential invariants

Geometric topology tradition requires that any classification of you–
name–it structures on a manifold or Poincaré space [Kl] be accompanied
by a classification of analogous structures on the normal bundle or Spivak
normal fibration [Spi], [Ra3], [Br2] of the manifold or Poincaré space. We
endorse this. However, we find tangent bundle language more convenient
than normal bundle language. The constructions here in §2.2 will also be
used in §3 and §4.

Terminology. When we speak of a stable fiber homotopy equivalence be-
tween euclidean bundles β and γ on a space X, we mean a fiber homotopy
equivalence over X between the spherical fibrations associated with β⊕ εk

and γ ⊕ εk , respectively, for some k.

Let Mn be a closed topological manifold with a choice [Kis], [Maz2] of
euclidean tangent bundle τ . An h–structure on τ is a pair (ξ, φ) where ξn

is a euclidean bundle on M and φ is a stable fiber homotopy equivalence
from (the spherical fibration associated with) ξ to τ . The h–structures
on τ and their isomorphisms form a groupoid. Enlarge the groupoid to a
simplicial groupoid by allowing families parametrized by ∆k , and let

S(τ) := diagonal nerve of the simplicial groupoid.

Then S(τ) ' hofiber [map(M, BTOP(n)) ↪→ map(M,BG) ] , where τ̂

serves as base point in map(M, BTOP(n)) and map(M, BG). There is a
tangential invariant map, well defined up to contractible choice,

∇ : S(M) −→ S(τ) .
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Sketchy description: A homotopy equivalence f : N → M determines up
to contractible choice a stable fiber homotopy equivalence ψ from f∗ν(M)
to ν(N) because Spivak normal fibrations [Spi], [Ra3], [Br3], [Wa5] are
homotopy invariants. It then determines up to contractible choice a stable
fiber homotopy equivalence ψad : τ(N) → f∗τ(M). Now choose a euclidean
bundle ξn on M and a stable fiber homotopy equivalence φ : ξ → τ(M)
together with an isomorphism j : f∗ξ → τ(N) and a homotopy f∗φ ' ψad ·
j. This is a contractible choice. Let ∇ take (N, f) to (ξ, φ). (This defines
∇ on the 0–skeleton; using the same ideas, complete the construction of ∇
by induction over skeletons.)

When ∂M 6= ∅, define S(τ) in such a way that it is homotopy equivalent
to the homotopy fiber of

maprel(M, BTOP(n)) ⊂−→ maprel(M,BG)

where maprel indicates maps from M which on ∂M agree with τ̂ . Again τ̂

serves as base point everywhere.

When ∂M 6= ∅ and ∂+M ⊂ ∂M is specified, with tangent bundle τ ′ of
fiber dimension n− 1, we define S(τ, τ ′) in such a way that it is homotopy
equivalent to the homotopy fiber of

maprel((M, ∂+M) , (BTOP(n), BTOP(n− 1)) ⊂−→ maprel(M, BG)

where maprel indicates maps from M which on ∂−M agree with the classi-
fying map for the tangent bundle of ∂−M . The pair (τ̂ , τ̂ ′) serves as base
point. There is a tangential invariant map∇ : S(M, ∂+M) → S(τ, τ ′) which
fits into a homotopy commutative diagram where the rows are homotopy
fiber sequences:

S(M) ⊂−−−−→ S(M, ∂+M) −−−−→ S(∂+M)
y∇

y∇
y∇

S(τ) ⊂−−−−→ S(τ, τ ′) −−−−→ S(τ ′) .

2.2.1. Illustration. Suppose that (M,∂+M) = (N × I,N × 1) where
Nn−1 is compact. Then S(τ, τ ′) is homotopy equivalent to the homotopy
fiber of

maprel(N,BTOP(n− 1)) ↪→ maprel(N,BTOP(n)) .
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Finally we need a space S̃(τ) of stable h–structures on τ (assuming again
that τ is the tangent bundle of a compact M). Define this as the space of
pairs (ξ, φ) where ξp is a euclidean bundle on M , of arbitrary fiber dimen-
sion p, and φ is a stable fiber homotopy equivalence ξ → τ , represented
by an actual fiber homotopy equivalence between the spherical fibrations
associated with ξ ⊕ εk−p and τ ⊕ εk−n for some large k. Then

S̃(τ) ' hofiber[maprel(M, BTOP) → maprel(M,BG)]

which is homotopy equivalent to the space of based maps from M/∂M to
G/TOP. Again there is a tangential invariant map— better known, and in
this case more easily described, as the normal invariant map :

∇ : S̃s(M) → S̃(τ) .

2.3. Block s–structures and L–theory

2.3.1. Fundamental Theorem of Surgery (Browder, Novikov, Sulli-
van, Wall, Quinn, Ranicki). For compact Mn with tangent bundle τ , where
n > 4, there exists a homotopy commutative square of the form

S̃s(M) ∇−−−−→ S̃(τ)
y'

y'

Ω∞+n((Ls
•)%(M))

forget−−−−→ Ω∞+n((Ls
•)

%(M)) .

References: [Br3], [Br4], [Nov] for the smooth analog, [Rou1], [Su1], [Su2],
[Wa1,§10], [ABK] for the PL case, and [KiSi] for the topological case, all
without explicit use of assembly ; [Ra4], [Ra2], [Qun1] for formulations
with assembly.

Illustration. 2.3.1 gives S̃s(Sn) ' Ω∞Ls
•(∗) ' G/ TOP for n > 4. (Re-

member that Ls
•(∗) is 0–connected by definition, §2.1.) The honest struc-

ture space is
S(Sn) ' G(Sn)/ TOP(Sn)

(this uses the Poincaré conjecture). The inclusion S(Sn) → S̃s(Sn) be-
comes the inclusion of G(Sn)/ TOP(Sn) in hocolimk G(Sk)/ TOP(Sk) '
G/ TOP ; in particular, it is n–connected.
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2.4. S1–stabilization

S1–stabilization is a method for making new homotopy functors out of
old ones. It was introduced in [Ra5] and applied in [AnPe], [HaMa] in a
special case (the one we will need in §2.6 just below). It is motivated by
the definition of the negative K–groups in [Ba].

Let J be a homotopy functor from WY (see 2.1.2) to CW–spectra. Let
S1(+) and S1(−) be upper half and lower half of S1, respectively. For X

in WY let σJ(X) be the homotopy pullback of

J(X × S1(+))
J(X × ∗) −→ J(X × S1)

J(X × ∗) ←− J(X × S1(−))
J(X × ∗) .

Note that σJ(X) ' Ω[J(X × S1)/J(X × ∗) ], and that σJ is a homotopy
functor from WY to CW–spectra. There are natural transformations

J(X) −→ J(X × S0)
J(X × ∗) −→ σJ(X) ,

the first induced by the inclusion x 7→ (x,−1) of X in X×S0, and the second
induced by the inclusions of S0 in S1(−) and S1(+). Let ψ : J(X) → σJ(X)
be the composition. Finally let σ∞J(X) be the homotopy colimit of the
σkJ(X) for k ≥ 0, using the maps ψ : σk−1J(X) → σ(σk−1J(X)) to
stabilize. We call σ∞J the S1–stabilization of J.

2.5. Bounded h–structures and L–theory

Let Mn be compact. A bounded h–structure on M ×Rk is a pair (N, f)
where Nn+k is a manifold and f : N → M × Rk is a bounded homotopy
equivalence restricting to a homeomorphism ∂N → ∂M × Rk. (That is,
there exist c > 0 and g : M × Rk → N and homotopies h : fg ' id,
j : gf ' id such that the sets {p2ht(x) | t ∈ I}, {p2fjt(y) | t ∈ I} have
diameter < c for all x ∈ M × Rk and y ∈ N ; moreover ht, jt agree with
the identity maps on ∂M ×Rk and ∂N , respectively.) References: [AnPe],
[FePe].

A Space Sb(M × Rk) of such bounded h–structures can be constructed
in the usual way, as the diagonal nerve of a simplicial groupoid. There is a
homotopy fiber sequence

TOPb(M × Rk) → Gb(M × Rk) → Sb(M × Rk)
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where Gb(M × Rk) is the Space of bounded homotopy automorphisms of
M × Rk, relative to ∂M × Rk.

Again we need a tangential invariant map ∇ : Sb(M × Rk) → S(τ × εk)
where τ = τ(M) and τ × εk is the tangent bundle of M ×Rk. Its definition
resembles that of the tangential invariant maps in §2.2. Additional subtlety:
one needs to know that open Poincaré spaces and open Poincaré pairs have
Spivak normal fibrations which are invariants of proper homotopy type.
See [Tay], [Mau], [FePe], [PeRa]. Note

S(τ × εk) ' hofiber [maprel(M, BTOP(n + k)) → maprel(M, BG) ]

where maprel indicates maps which on ∂M agree with τ̂ .

Let L〈−∞〉• (X) be the 0–connected cover of (σ∞Ls
•)(X), in the notation of

§2.4. Here X is a space over RP∞.

2.5.1. Theorem. For compact Mn with tangent bundle τ , where n > 4,
there exists a homotopy commutative square of the form

⋃
k Sb(M × Rk) ∇−−−−→ ⋃

k S(τ × εk)
y'

y'

Ω∞+n((L〈−∞〉• )%(M))
forget−−−−→ Ω∞+n((L〈−∞〉• )%(M)) .

Remark. (L〈−∞〉• )% ' (Ls
•)

%.

3. Algebraic K-theory and structure Spaces

3.1. Algebraic K-theory of Spaces

Waldhausen’s homotopy functor A from spaces to CW–spectra is a com-
position K · R, where R is a functor from spaces to categories with cofi-
brations and weak equivalences alias Waldhausen categories, and K is a
functor from Waldhausen categories to CW–spectra.

For a space X, let R(X) be the Waldhausen category of homotopy finite
retractive spaces over X. The objects of R(X) are spaces Z equipped with
maps

Z
r−→←−
i

X (ri = idX)
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subject to a finiteness condition. Namely, Z must be homotopy equivalent,
relative to X, to a relative CW–space built from X by attaching a finite
number of cells. A morphism in R(X) is a map relative to and over X. We
call it a weak equivalence if it is a homotopy equivalence relative to X, and
a cofibration if it has the homotopy extension property relative to X. See
[Wah3, ch.2] for more information.

In [Wah3], [Wah1], Waldhausen associates with any Waldhausen category
C a connective spectrum K(C), generalizing Quillen’s construction [Qui] of
the K–theory spectrum of an exact category. For us it is important that
K(C) comes with a map reminiscent of “group completion”,

|wC| ↪→ Ω∞K(C)

where wC is the category of weak equivalences in C and |wC| is its classifying
space (geometric realization of the nerve).

3.2. Algebraic K–theory of spaces, and h–cobordisms

Let Mn be compact, n ≥ 5, with fundamental group(oid) π. The
s–cobordism theorem due to Smale [Sm], [Mi2] in the simply connected
smooth case and Barden–Mazur–Stallings [Ke] in the nonsimply connected
smooth case states that π0Hd(M) is isomorphic to the Whitehead group of
π, that is, K1(Zπ)/{±πab}. See [RoSa] for the PL version and [KiSi, Essay
III] for the TOP version. Cerf [Ce] showed that π1Hd(M) is trivial when
M is smooth, simply connected and n ≥ 5, and Rourke [Rou2] established
the analogous statement in the PL category. In the early 70’s Hatcher
and Wagoner [HaWa], working with a smooth but possibly nonsimply con-
nected M , constructed a surjective homomorphism from π1Hd(M) to a
certain quotient of K2(Zπ), and they were able to describe the kernel of
that homomorphism in terms of π and π2(M). See also [DIg]. These results
follow from Waldhausen’s theorem 3.2.1, 3.2.2 below, which describes the
homotopy types of H(M) and Hd(M) in a stable range, in algebraic K–
theory terms. The size of the stable range is estimated by Igusa’s stability
theorem, 1.3.4.

Remark. Note that the block s–cobordism Space S̃s(M × I, M ×1) is not a
very useful approximation to Hs(M) , because it is contractible (either by
a relative version of 2.3.1 which we did not state, or by a direct geometric
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argument). Hence surgery theory as in §2 does not elucidate the homotopy
type of Hs(M).

For compact Mn write H(τ(M)) := S(τ(M × I), τ(M × 1)) so that there
is a tangential invariant map ∇ : H(M) → H(τ(M)). See 2.2.1. There
is a stabilization map from H(τ(M)) to H(τ(M × I)), analogous to the
stabilization map from H(M) to H(M×I). We let τ = τ(M) and H∞(τ) =
hocolimk H(τ(M × Ik)) and obtain, since ∇ commutes with stabilization,

∇ : H∞(M) → H∞(τ) .

The following result is essentially contained in [Wah2].

3.2.1. Theorem (Waldhausen). There exists a homotopy commutative
square

H∞(M) ∇−−−−→ H∞(τ)
y'

y'

Ω∞(A%(M))
forget−−−−→ Ω∞(A%(M)) .

3.2.2. Remark. Suppose that M is smooth. Then H∞(M) and H∞(τ)
have smooth analogues H∞

d (M) and H∞
d (τ), and by smoothing theory

there is a homotopy commutative cartesian square

H∞
d (M) ∇−−−−→ H∞

d (τ)
y

y
H∞(M) ∇−−−−→ H∞(τ)

with forgetful vertical arrows. One shows by direct geometric arguments
that H∞

d (τ) ' Ω∞Σ∞(M+) and that ∇ : H∞
d (M) −→ H∞

d (τ) is nullhomo-
topic. In this way 3.2.1 implies

(3.2.3) H∞
d (M)× Ω∞+1Σ∞(M+) ' Ω∞+1(A(M))

which is better known than 3.2.1. Conversely, 3.2.1 can be deduced from
(3.2.3) with functor calculus arguments, if we add the information that
(3.2.3) comes from a spectrum level splitting, Hh

d(M) ∨ ΩΣ∞(M+) '
ΩA(M) or equivalently Whd(M) ∨ Σ∞(M+) ' A(M), where Whd(M)
is the delooping of Hh

d(M) and Hh
d(M) is the (−1)–connected cover of
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Hd(M). We prefer formulation 3.2.1 because of its amazing similarity with
2.3.1 and 2.5.1.

References: 3.2.3 is stated in [Wah2]. It is reduced in [Wah4] to the spec-
trum level analog of the left–hand column in (3.2.1),

(3.2.4) Hh(M) ' A%(M) ,

where Hh(M) denotes the (−1)–connected cover of H(M).) For the proof
of (3.2.4), see [Wah3, §3] and the preprints [WaVo1] and [WaVo2]. The
papers [Stb] and [Cha5] contain results closely related to [WaVo1] and
[WaVo2], respectively. A very rough but helpful guide to this vast circle of
ideas is [Wah5]. See also [DWWc].

4. Mixing L–theory and algebraic K–theory of spaces

Introduction. We now have a large amount of indirect knowledge about the
s–structure Space Ss(M) for a compact M . Namely, from the definitions
there is a homotopy fiber sequence

T̃OP(M)/ TOP(M) −→ Ss(M) −→ S̃s(M).

In 2.3.1 we have an expression for S̃s(M) in terms of L–theory. In the
concordance stable range, we also have the expression 1.3.7 for

T̃OP(M)/ TOP(M)

in terms of stabilized concordance theory. But 3.2.1 expresses stabilized
concordance theory through the algebraic K–theory of spaces. Therefore,
in the concordance stable range, Ss(M) must be a concoction of L–theory
and algebraic K–theory of spaces. It remains to find out what concoction
exactly. This problem was previously addressed by Hsiang–Sharpe (roughly
speaking, using only the Postnikov 2–coskeleton of the algebraic K–theory
of spaces), by Burghelea–Fiedorowicz (rationally), by Burghelea–Lashof
(at odd primes), by Fiedorowicz–Schwänzl–Vogt (at odd primes); see ref-
erences [HsiSha], [BuFi1], [BuFi2], [FiSVo1], [FiSVo2], [FiSVo3], [BuLa2].
In addition, the literature contains many results about Ss(M) or S(M), or
the differentiable analogs, for specific M ; see §6 for a selection and further
references.
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Our analysis, Thm. 4.2.1 and remark 4.2.3 below, is based on the following
idea. Using 3.2.1, Poincaré duality notions, and a more algebraic descrip-
tion of w in (1.5.1), we find that w lifts to an equivariant Whitehead torsion
map

w] : Ss(M) −→ Ω∞(Hs(M)hZ/2) ' Ω∞((As
%(M)hZ/2))

where (—)hZ/2 indicates homotopy fixed points for a certain action of Z/2.
This refinement of w fits into a homotopy commutative diagram whose top
portion refines (1.5.1),

T̃OP(M)/ TOP(M) −−−−→ Ω∞((As
%(M)hZ/2))y
ynorm

Ss(M) w]

−−−−→ Ω∞((As
%(M)hZ/2))

y
y

S̃s(M) −−−−→ Ω∞((As
%(M)thZ/2)) .

The right–hand column is a homotopy fiber sequence of infinite loop spaces
which we will say more about below. The left–hand column is also a ho-
motopy fiber sequence. The upper horizontal arrow is highly connected.
Hence the lower square of the diagram is approximately cartesian. Since
we have an algebraic description for the lower square with Ss(M) deleted,
we obtain an approximate algebraic description of Ss(M).

Curiously, the map w] does not have an easy analog in the smooth
category. See however §4.3.

This work is still in progress. Currently available: [WW1], [WW2], [WWa],
[WWx], [WWd], [WWp], [We1]. The papers [DWW], [DWWc] are closely
related and use identical technology.

4.1. LA–theory

We describe a functor LAh
• from WBG ×N to CW–spectra. Here WBG

is the category of spaces over BG (alternatively, spaces equipped with a
stable spherical fibration) and N is regarded as a category with exactly one
morphism m → n if m ≤ n, and no morphism m → n if m > n. For fixed n,
the functor LAh

•(—, n) is a homotopy functor. It is a composition Fn ·R∞,
where R∞ is a functor from WBG to the category of Waldhausen categories
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with Spanier–Whitehead (SW) product [WWd], and Fn is a functor from
certain Waldhausen categories with SW product to CW–spectra.

Let X be a space over BG. In the Waldhausen category R(X) of 3.1,
we have notions of mapping cylinder, mapping cone and suspension ΣX .
Let R∞(X) be the colimit of the direct system of categories

R(X) ΣX−−→ R(X) ΣX−−→ R(X) ΣX−−→ . . . .

Again, R∞(X) is a Waldhausen category. We will need additional structure
on R∞(X) in the shape of an SW product which depends on the reference
map from X to BG. The SW product is a functor (Z1, Z2) 7→ Z1 ¯ Z2

from R∞(X)× R∞(X) to based spaces. Its main properties are:

• symmetry, that is, Z1 ¯ Z2
∼= Z2 ¯ Z1 by a natural involutory

homeomorphism;
• bilinearity, that is, for fixed Z2 the functor Z1 7→ Z1 ¯ Z2 takes

the zero object to a contractible space and takes pushout squares
where the horizontal arrows are cofibrations to cartesian squares;

• w–invariance, that is, a weak equivalence Z1 → Z ′1 induces a weak
homotopy equivalence Z1 ¯ Z2 → Z ′1 ¯ Z2 for any Z2.

Modulo technicalities, the definition of Z1¯Z2 for Z1, Z2 in R(X) ⊂ R∞(X)
is as follows. Let γ be the spherical fibration on X pulled back from BG;
we can assume that it comes with a distinguished section and has fibers
' Sk for some k. Convert the retraction maps Z1 → X and Z2 → X into
fibrations, with total spaces Z∼1 and Z∼2 ; form the fiberwise smash product
(over X) of Z∼1 , Z∼2 and the total space of γ; collapse the zero section to a
point; finally apply Ω∞+kΣ∞.

Imitating [SpaW], [Spa,§8 ex.F] we say that η ∈ Z ′ ¯ Z is a duality if it
has certain nondegeneracy properties. For every Z in R(X) there exists
a Z ′ and η ∈ Z ′ ¯ Z which is a duality; the pair (Z ′, η) is determined
up to contractible choice by Z, and we can say that Z ′ is the dual of Z.
Modulo technicalities, an involution on the K–theory spectrum K(R∞(X))
results, induced by Z 7→ Z ′. The inclusion R(X) → R∞(X) induces a
homotopy equivalence of the K–theory spectra, so that we are talking
about an involution on A(X). For all details, we refer to [WWd]. The
involution on A(X) was first constructed in [Vo]. See also [KVWW2].

More generally, suppose that B is any Waldhausen category with SW prod-
uct, satisfying the axioms of [WWd,§2] which assure existence and essential
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uniqueness of SW duals. Then the K–theory spectrum K(B) has a pre-
ferred involution. In this setup it is also possible to define spectra L•(B)
(quadratic L–theory), L•(B) (symmetric L–theory), a forgetful map from
quadratic to symmetric L–theory, and a map

Ξ : L•(B) −→ K(B)thZ/2

where K(B)thZ/2 is the mapping cone of the norm map [AdCD], [GrMa],
[WW2, 2.4],

K(B)hZ/2 −→ K(B)hZ/2 ,

from the homotopy orbit spectrum to the homotopy fixed point spectrum
of the involution on K(B). The norm map refines the transfer map from
K(B)hZ/2 to K(B).

Our constructions of L•(B) and L•(B) are bordism–theoretic and follow
[Ra2] very closely, except that with a view to the applications here we
need 0–connected versions. In particular, if B = R∞(X), then L•(B) is
homotopy equivalent to the 0–connected cover of the quadratic L–theory
spectrum (decoration h) of the ring(oid) with involution Zπ1(X). Regard-
ing Ξ, we offer the following explanations. Let B∗[i] be the category of
covariant functors from the poset of nonempty faces of ∆i to B. Then
B∗[i] inherits from B the structure of a Waldhausen category with SW
product, with weak equivalences and cofibrations defined coordinatewise.
The axioms of [WWd,§2] are still satisfied. Modulo technicalities, there is a
duality involution on |wB∗[i] | for each i ≥ 0, and an inclusion of simplicial
spaces:

i 7→ |wB∗[i] |hZ/2

y
i 7→ K(B∗[i])hZ/2 .

The geometric realizations of these simplicial spaces turn out to be Ω∞ of
L•(B) and K(B)thZ/2 respectively. (Recognition is easy in the first case,
harder in the second case.) The inclusion map of geometric realizations is
Ω∞ of Ξ , by definition.

We come to the description of Fn(B), promised at the beginning of this
section. Let Sn

! = Rn ∪ ∞ with the involution z 7→ −z for z ∈ Rn. This
has fixed point set {0,∞} ∼= S0. Let K(B, n) := Sn

! ∧ K(B) with the
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diagonal involution. The inclusion of K(B) ∼= K(B, 0) in K(B, n) induces
a homotopy equivalence of Tate spectra,

K(B)thZ/2 tn

−−−−−→ K(B, n)thZ/2

(proof by induction on n). Write ? for the forgetful map from quadratic
L–theory to symmetric L–theory. Let Fn(B) be the homotopy pullback of

K(B, n)hZ/2

y∩

L•(B) tn·Ξ·?−−−−−−−→ K(B, n)thZ/2 .

4.1.1. Summary. LAh
•(X, n) is a spectrum defined for any space X over

BG and any n ≥ 0. It is the homotopy pullback of a diagram

A(X,n)hZ/2

y∩

Lh
•(X) tn·Ξ·?−−−−−−−→ A(X, n)thZ/2

in which Lh
•(X) denotes the 0–connected L–theory spectrum of Zπ1(X)

with decoration h , and A(X,n) = Sn
! ∧A(X). Hence there are homotopy

fiber sequences

(4.1.2)
A(X, n)hZ/2 −→LAh

•(X, n) −→ Lh
•(X) ,

LAh
•(X,n− 1) −→LAh

•(X, n) v−→ A(X,n) .

4.2. LA–theory and h–structure Spaces

In the following theorem, we mean by (LAh
•)

%(—, n) and (LAh
•)%(—, n)

domain and homotopy fiber, respectively, of the assembly transformation
for the homotopy functor LAh

•(—, n) on WBG. The manifold M becomes
an object in WBG by means of the classifying map for ν(M).
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4.2.1. Theorem. For compact Mn there exists a homotopy commutative
square with highly connected (see 4.2.2) vertical arrows

S(M) ∇−−−−→ S(τ)
y

y
Ω∞+n(LAh

•)%(M, n)
forget−−−−→ Ω∞+n(LAh

•)%(M,n) .

4.2.2. Details. The right-hand vertical arrow in 4.2.1 is (j+2)–connected
if j is in the smooth concordance stable range for Dn and j ≤ n− 2. The
left–hand vertical arrow in 4.2.1 induces a bijection on π0. Each compo-
nent of S(M) determines a homeomorphism class of manifolds N homotopy
equivalent to M . If j is in the topological concordance stable range for N ,
then the left–hand vertical arrow in 4.2.1 restricted to that component (and
the corresponding component of the codomain) is (j + 1)–connected.

4.2.3. Remark. There is an s–decorated version of 4.2.1, in which the
Space of s–structures Ss(M) replaces S(M) and LAs

• replaces LAh
• . To

define LAs
• use L–theory and algebraic K–theory of spaces with an s–

decoration in §4.1. The homotopy groups of LAs
•(X, n) differ from those

of LAh
•(X, n) only in dimensions ≤ n.

A 〈−∞〉–decorated version of 4.2.1 exists, but does not give anything new
since the homotopy groups of

LA〈−∞〉
• (—, n)

differ from those of LAh
•(—, n) only in dimensions < n. Nevertheless, it is

good to have this in mind when making the comparison with 2.5.1 (next
remark).

4.2.4. Remark. Theorems 4.2.1 and 2.5.1 are compatible: the commu-
tative squares in 4.2.1 and 2.5.1 are opposite faces of a commutative cube.
Of the 12 arrows in the cube, the four not mentioned in 4.2.1 or 2.5.1 are
inclusion maps (top) and forgetful maps (bottom). Also, the s–version of
4.2.1 is compatible with 2.3.1 in the same sense.
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4.2.5. Remark. The left–hand column of the diagram in 4.2.1 matches
the left–hand column of the diagram in 3.2.1. In detail: there exists a
commutative diagram with highly connected vertical arrows

H∞(M) w←−−−− S(M)
y

y
Ω∞(A%(M))

v%←−−−− Ω∞+n(LAh
•)%(M, n)

where w is the Whitehead torsion map of 1.5 and v% is induced by v of
(4.1.2).

4.3. Special features of the smooth case

In this section we assume that Mn is smooth. We use the notation of
4.2.1 and 2.5.1. By 4.2.4, there is a commutative diagram

(4.3.1)

S(τ) ⊂−−−−→ ⋃
k S(τ ⊕ εk)

y
y

Ω∞+n(LAh
•)%(M, n) −−−−→ Ω∞+n(Lh

•)%(M,n) .

We can write the resulting map of horizontal homotopy fibers in the form

(4.3.2)

uS(τ)
y

Ω∞+n(A%(M, n)hZ/2)

where the prefix u indicates unstable structures. It is highly connected ;
details as in 4.2.2. Our goal here is to describe a smooth analog of (4.3.2).

4.3.3. Proposition. For a space X over BO , the map Σ∞(X+) → A(X)
of 3.2.2 has a canonical refinement to a Z/2–map.

Remarks, Notation. As in §4.1, we work in “naive” stable Z/2–homotopy
theory. That is, whenever we see a Z/2–map Y′ → Y which is an ordinary
homotopy equivalence, we are allowed to replace Y by Y′.
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The involution on A(X) needed here is determined by X → BO ↪→ BG
as in §4.1. The involution on Σ∞(X+) that we have in mind is as follows.
For simplicity, assume that X is a compact CW–space ; then the reference
map X → BO factors through BO(k) for some k. Let γk be the vector
bundle on X pulled back from BO(k), and let η` be a complementary vector
bundle on X , so that γ⊕η is trivialized. Now, to see the involution, replace
Σ∞(X+) by the homotopy equivalent

Ω`
! Ω

kΣ∞ΣγΣη
! (X+)

where Ση(X+) and ΣγΣη(X+) are the Thom spaces of η and γ⊕η , respec-
tively. Subscripts ! indicate that Z/2 acts on loop or suspension coordinates
by scalar multiplication with −1. Compare §4.1. — We abbreviate

Σ∞(X+ , n) := Sn
! ∧ Σ∞(X+) .

While the map Σ∞(X+) → A(X) of 3.2.2 can be described in algebraic
K–theory terms, including the algebraic K–theory of finite sets over X ,
our proof of 4.3.3 is not entirely K–theoretic. It uses 3.2.1 to interpret the
involution on A(X) geometrically.

4.3.4. Theorem. There is a commutative diagram with highly connected
vertical arrows (and lower row resulting from 4.3.3)

uS(τ) ←−−−− uSd(τ)
y

y
Ω∞+n(A%(M,n)hZ/2) ←−−−− Ω∞+n((Σ∞(X+ , n))hZ/2) .

Remarks. The right–hand column of this diagram is (n − 2)–connected.
It is essentially an old construction due to Toda and James; see [Jm] for
references.

Something should be said about compatibility between 4.3.4 and 4.2.5,
but we will leave it unsaid.

4.3.5. Remark. In calculations involving 4.3.4 the concept of stabilization
is often useful. Stabilization is a way to make new homotopy functors on
WY (spaces over Y ) from old ones. Idea: Given a homotopy functor J
from WY to spectra, and X in WY , let sJ(X) be the homotopy colimit
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of the Ωn(J(X × Sn)/J(X)) for n ≥ 0. There is a natural transformation
J(X) → sJ(X) induced by x 7→ (x,−1) ∈ X×S0 for x ∈ X. The formalities
are much as in §2.4, even though the result is quite different. The main
examples for us are these:

• Take J(X) = A(X) for X in WBO. Then sA(X) ' Σ∞(ΛX+)
where ΛX is the free loop space. (See [Go1] for details.) Hence
(sA)%(X) ' Σ∞(X+).

• Take J(X) = Lh
•(X) for X in WBO. Then sLh

•(X) is contractible
for all X by the π–π–theorem. Hence (sLh

•)%(X) is also con-
tractible.

One can use these facts to split the lower row in 4.3.4, up to homotopy.
See 6.5 for another application.

5. Geometric structures on fibrations

5.1. Block bundle structures

Here we address the following question. Given a fibration p on a Space
B whose fibers are Poincaré duality spaces of formal dimension n, can we
find a block bundle p0 on B with closed manifold fibers, fiber homotopy
equivalent to p ? For earlier work on this problem, see [Qun4], [Qun1]. We
combine this with ideas from [Ra4] and [Ra2].

The block s–structure Space S̃s(X) of a simple Poincaré duality space X of
formal dimension n (alias finite Poincaré space, [Wa1, §2] ) is defined liter-
ally as in the case of a closed manifold. Any simple homotopy equivalence
Mn → X, where Mn is a closed manifold, induces a homotopy equivalence

S̃s(M) −→ S̃s(X)

and S̃s(M) was described in L–theoretic terms in 2.3.1. But such a homo-
topy equivalence M → X might not exist, and even if it does, we might
want to see an L–theoretic description of the block s–structure Space of X

which does not use a choice of homotopy equivalence M → X.

Ranicki [Ra4], [Ra2, §17] associates to a simple Poincaré duality space X

of formal dimension n its total surgery obstruction, a point

∂σ∗(X) ∈ Ω∞+n−1((Ls
•)%(X)) .
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The element has certain naturality properties. For example, a homotopy
equivalence g : X → Y determines a path in Ω∞+n−1((Ls

•)%(X)) from
g∗∂σ∗(X) to ∂σ∗(Y ); more later.

5.1.1. Theorem. S̃s(X) is (naturally) homotopy equivalent to the space
of paths from ∂σ∗(X) to the base point in Ω∞+n−1((Ls

•)%(X)).

Note that any choice of (base) point in the space of paths in 5.1.1 leads to
an identification of it with Ω∞+n((Ls

•)%(X)), up to homotopy equivalence.
In this way, we recover the result

S̃s(M) ' Ω∞+n((Ls
•)%(M)) .

The advantages of 5.1.1 become clearer when it is applied to families, that
is, fibrations p : E(p) → B whose fibers are Poincaré spaces of formal
dimension n. (One must pay attention to simple homotopy types, so we
assume that B is connected and p is classified by a map B → BGs(X) for
some simple Poincaré duality space X as above.) Given such a fibration
p : E(p) → B, we obtain an associated fibration q : E(q) → B with fiber

Ω∞+n−1((Ls
•)%(p−1(b)))

over b ∈ B, and a section ∂σ∗(p) of q selecting the total surgery obstruction
∂σ∗(p−1(b)) in q−1(b), for b ∈ B. The fibers of q are infinite loop spaces,
so we also have a zero section. (Technical point: For these constructions
it is convenient to assume that B is a simplicial complex, and to apply
a suitable (n + 2)–ad version of 5.1.1 to E(p)|σ for each n–simplex σ in
B.) We say that p admits a block bundle structure if the classifying map
B → BGs(X) lifts to a map

B → BT̃OP(M)

for some closed manifold M equipped with a simple homotopy equivalence
to X.

5.1.2. Corollary. The fibration p : E(p) → B with Poincaré duality space
fibers admits a block bundle structure if and only if ∂σ∗(p) is vertically
nullhomotopic.

In the case B = BGs(X) we can add the following:
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5.1.3. Corollary. Let p : E(p) → BGs(X) be the canonical fibration with
fibers ' X. There is a cartesian square

∐
M

BT̃OP(M) −−−−→ BGs(X)
y

ytotal surgery obstruction section

BGs(X) zero section−−−−−−−→ E(q)

where M runs through a maximal set of pairwise non–homeomorphic closed
n–manifolds in the simple homotopy type of X.

A few words on how ∂σ∗(X) is constructed: Ranicki creates a homotopy
functor VL•s on spaces over RP∞, and a natural transformation Ls

• → VL•s
with the property that

(Ls
•)

%(X) −−−−→ (VL•s)
%(X)

yassembly

yassembly

Ls
•(X) −−−−→ VL•s(X)

is cartesian for any X over RP∞. (The functor VL•s we have in mind
is defined in [Ra, §15], and we should really call it VL•s〈1/2〉 to conform
with Ranicki’s notation.) Any finite Poincaré duality space X of formal
dimension n determines an element σ∗(X) ∈ Ω∞+n(VL•s(X)), the visible
symmetric signature of X. The image of σ∗(X) under the boundary map

Ω∞+n(VL•s(X)) −→ Ω∞+n−1((VL•s)%(X)) ' Ω∞+n−1((Ls
•)%(X))

is the total surgery obstruction ∂σ∗(X). Therefore: X is simple homotopy
equivalent to a closed n–manifold if and only if the component of σ∗(X) is
in the image of the assembly homomorphism,

πn(VL•s)
%(X) → πnVL•s(X) .

The functor VL•s has a ring structure, that is, for X1 and X2 over RP∞

there is a multiplication

µ : VL•s(X1) ∧VL•s(X2) −→ VL•s(X1 ×X2),

with a unit in VL•s(∗). The visible symmetric signature is multiplicative:

µ(σ∗(X1), σ∗(X2)) = σ∗(X1 ×X2),
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up to a canonical path, for Poincaré duality spaces X1 and X2. This
property makes σ∗ useful (more useful than ∂σ∗ alone) in dealing with
products, say, in giving a description along the lines of 5.1.1 of the product
map

S̃s(X1)× S̃s(X2) −→ S̃s(X1 ×X2) .

5.2. Fiber bundle structures

Here the guiding question is: Given a fibration p over some space B, with
fibers homotopy equivalent to finitely dominated CW–spaces, does there
exist a bundle p0 on B with compact manifolds as fibers, fiber homotopy
equivalent to p ? We do not assume that the fibers of p satisfy Poincaré
duality. We do not ask that the fibers of p0 be closed and we do not care
what dimension they have. See [DWW], [DWWc] for all details.

Let Z be a compact CW–space, equipped with a euclidean bundle ξ. Let
Tn(Z, ξ) be the Space of pairs (M,f, j) where Mn is a compact manifold
with boundary, f : M → Z is a homotopy equivalence, and j is a stable
isomorphism f∗ξ → τ(M). Let T(Z, ξ) be the colimit of the Tn(Z, ξ) under
stabilization (product with I).

Any choice of vertex (M,f, j) in T(Z, ξ) leads to a homotopy equivalence
from T(M, τ) to T(Z, ξ). There is a homotopy fiber sequence

⋃

k

TOP(M × Ik, ∂(M × Ik)) −→
⋃

k

Gtan(M0 × Rk) −→ T(M, τ)

where M0 = M r∂M , and Gtan(. . . ) refers to homotopy automorphisms f

of M0 × Rk covered by isomorphisms τ(M0 × Rk) → f∗(τ(M0 × Rk)). By
1.2.1 we may write

⋃
k TOP(M0 ×Rk) instead of

⋃
k Gtan(M0 ×Rk). Now

1.2.3 implies
ΩT(M, τ) ' ΩH∞(M)

and suggests T(M, τ) ' H∞(M). This is easily confirmed with the meth-
ods of §1.2. Summarizing these observations: any choice of vertex (M, f, j)
in T(Z, ξ) leads to a homotopy equivalence T(Z, ξ) → H∞(M). Further-
more, H∞(M) ' Ω∞A%(M) ' Ω∞A%(Z) by 3.2.1.

Again, we might want to see a description of T(Z, ξ) in terms of A(Z)
which does not depend on a choice of base point in T(Z, ξ). To get such a
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description we proceed very much as in §5.1, by associating to Z a charac-
teristic

χ(Z) ∈ Ω∞A(Z),

analogous to Ranicki’s σ∗(X) ∈ Ω∞+nVL•s(X) for a simple Poincaré dual-
ity space X of formal dimension n. The element χ(Z) is the image of the
object/vertex

S0×Z
r−→←−
i

Z (r(x, z) = z , i(z) = (1, z))

in R(Z) under the inclusion |wR(Z)| ↪→ Ω∞A(Z) mentioned in §3.1. If Z

is connected, then the component of χ(Z) in π0Ω∞A(Z) ∼= Z is the Euler
characteristic of Z.

5.2.1. Theorem. T(Z, ξ) is (naturally) homotopy equivalent to the homo-
topy fiber of the assembly map Ω∞(A%(Z)) −→ Ω∞A(Z) over the point
χ(Z).

Note that the A–theoretic expression for T(Z, ξ) does not depend on ξ.
Again, naturality in 5.2.1 is a license to apply the statement to families.
Let p : E → B be a fibration where the fibers Eb are homotopy equivalent
to compact CW–spaces. Let Ω∞A(p) and Ω∞A%(p) be the associated fi-
brations on B with fibers Ω∞A(Eb) and Ω∞A%(Eb), respectively, over a
point b ∈ B. The rule b 7→ χ(Eb) defines a section of Ω∞A%(p) which we
call χ(p). See [DWW] for explanations regarding the continuity of this con-
struction. Assembly gives a map over B from the total space of Ω∞A%(p)
to that of Ω∞A(p).

5.2.2. Corollary. The fibration p : E → B is fiber homotopy equivalent
to a bundle with compact manifolds as fibers if and only if the section χ(p)
of Ω∞A(p) lifts (after a vertical homotopy) to a section of Ω∞A%(p).

We leave it to the reader to state an analog of 5.1.3, and turn instead to
the smooth case. Suppose that ξ is a vector bundle over Z. There is then
a smooth variant Td(Z, ξ) of T(Z, ξ). Any choice of base vertex (M,f, ξ) in
Td(Z, ξ) leads to a homotopy equivalence

T(Z, ξ) ' H∞
d (M) .
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Remember now (3.2.2) that H∞
d (M) can be A–theoretically described as

the homotopy fiber of some map η : Ω∞Σ∞(M+) → Ω∞A(M). The map
η is, in homotopy invariant terms, Ω∞ of the composition

M+ ∧ S0 id∧u−−−→ M+ ∧A(∗) ' A%(M) −→ A(M)

where u : S0 → A(∗) is the unit of the ring spectrum A(∗).

5.2.3. Theorem. Td(Z, ξ) is (naturally) homotopy equivalent to the ho-
motopy fiber of η : Ω∞Σ∞(Z+) −→ Ω∞A(Z) over the point χ(Z).

Returning to the notation and hypotheses of 5.2.2, we are compelled to
introduce yet another fibration Ω∞Σ∞+ p on B, with fiber Ω∞Σ∞(Eb)+
over b ∈ B.

5.2.4. Corollary. The fibration p : E(p) → B is fiber homotopy equiv-
alent to a bundle with smooth compact manifolds as fibers if and only if
the section χ(p) of Ω∞A(p) lifts (after a vertical homotopy) to a section of
Ω∞Σ∞+ p.

Remarks. In 5.2.4, bundle with smooth compact manifolds as fibers means,
say in the case where B is connected, a fiber bundle with fibers ∼= M where
M is smooth compact, and structure group DIFF(M, ∂M).

Corollary 5.2.4 is closely related to something we shall discuss in §6.7:
the Riemann–Roch theorem of [BiLo], see also [DWW].

5.2.5. Corollary. Let p : E → B be a fibration with fibers homotopy
equivalent to compact CW–spaces. If Y is any compact connected CW–
space of Euler characteristic 0, then the composition pq : Y × E → B

(where q : Y × E → E is the projection) is fiber homotopy equivalent to a
bundle with smooth compact manifolds as fibers.

Proof. A suitable product formula implies that χ(pq) is vertically homo-
topic to χ(Y ) × χ(p). We saw earlier that the component of χ(Y ) in
π0A(Y ) ∼= Z is the Euler characteristic of Y . ¤

Statements 5.2.1–5 can easily be generalized to the case where Z is a
finitely dominated CW–space. But it is then necessary to use a variant
Ap(Z) of A(Z) with a larger π0 isomorphic to K0(Zπ1(X)). Then χ(Z)
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in Ω∞Ap(Z) is defined, and 5.2.1 and 5.2.3 remain correct as stated. In
this more general formulation, 5.2.1 includes Wall’s theory [Wa2] of the
finiteness obstruction.

Casson and Gottlieb [CaGo] established 5.2.5 in the case Y = (S1)n ,
with a large n depending on p : E → B.

6. Examples and Calculations

6.1. Smooth automorphisms of disks. The smooth version of (1.2.2)
gives a homotopy fiber sequence

DIFF(Dn,Sn−1) −→ DIFF(Rn) → Hd(Sn−1)

where Hd is a Space of differentiable h–cobordisms. The composition of
group homomorphisms O(n) ↪→ DIFF(Dn, Sn−1) → DIFF(Rn) is a homo-
topy equivalence, so that

DIFF(Dn,Sn−1) ' O(n)× ΩHd(Sn−1) .

By 1.3.4 and 3.2.2, there is a map from ΩHd(Sn−1) to Ω∞+2Whd(Sn−1)
which is an isomorphism on πj for j < φ(n−1), where φ(n) is the minimum
of (n− 4)/3 and (n− 7)/2. Further, the map Whd(Sn−1) → Whd(∗) in-
duced by Sn−1 → ∗ is approximately 2n–connected [Wah2] and the rational
homotopy groups of Whd(∗) in dimensions > 1 are those of K(Q), which
are known [Bo]. Therefore:

πj DIFF(Dn,Sn−1) ⊗ Q ∼=
{
Q⊕Q if 0 < j < φ(n− 1) and 4 | j + 1

0 if 0 < j < φ(n− 1) and 4 - j + 1.

For a calculation of the rational homotopy groups of DIFF(Dn) in the
concordance stable range, following Farrell and Hsiang [FaHs], we note
DIFF(Dn) ' ΩSd(Dn) and use the smooth version of 1.5.2, which gives (at
odd primes and in the concordance stable range)

Sd(Dn) ' S̃d(Dn)× D̃IFF(Dn)/ DIFF(Dn) ' S̃d(Dn)× Ω∞(Hd(Dn)hZ/2) .

Here S̃d(Dn) ' Ωn(TOP / O), which is rationally trivial, and Hd(Dn) is
homotopy equivalent to ΩWhd(∗), so 3.2.2 and [Bo] give

πjHd(Dn)⊗Q ∼=
{
Q if 4|j
0 otherwise
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provided 0 < j ≤ φ(n). The canonical involution on Hd(Dn) acts trivially
on these rationalized homotopy groups if n is odd, and nontrivially if n is
even. Therefore, if 0 ≤ j < φ(n), then [FaHs]

πj DIFF(Dn) ⊗ Q ∼=
{
Q n odd and 4 | j + 1

0 otherwise.

Beware that Farrell and Hsiang write DIFF(Dn, ∂) for our DIFF(Dn).

6.2. Smooth automorphisms of spherical space forms. Let Mn be
smooth closed orientable, with universal cover ' Sn, where n ≥ 5. Hsiang
and Jahren [HsiJ] calculate π∗DIFF(M) ⊗ Q in the smooth concordance
stable range, assuming that n is odd. They begin with the observation that
πj Gs(M) is finite for all j. Therefore

πj DIFF(M)⊗Q ∼= πj+1S
s
d(M)⊗Q

for j > 0. By the smooth versions of 1.5.2 and 1.4.4 we have a splitting

Ss
d(M) ' S̃s

d(M)× Ω∞(Hs
d(M)hZ/2)

at odd primes, in the concordance stable range. Therefore, rationally,

πj DIFF(M) ∼= πj+1S
s
d(M) ∼= πj+n+2L̃h

•(M)⊕ πj+1Lh
•(∗)⊕ π−j+1H

s
d(M)

for 0 < j < φ(n), where L̃h
• is the reduced L–theory and π−j+1H

s
d(M)

is the quotient of πj+1Hs
d(M) by the fixed subgroup of the Z/2–action.

This is the Hsiang–Jahren result. Rationally, the multisignature homomor-
phisms on π∗Lh

•(M) are isomorphisms [Wa3]. Rationally, π∗(Hs
d(M)) ∼=

π∗+1K(Qπ1(M)) for 0 < ∗ < n − 1. The calculation of π∗K(Qπ) ⊗ Q for
a finite group π can often be accomplished with [Bo], certainly in the case
where π1(M) is commutative.

6.3. Automorphisms of negatively curved manifolds. Let Mn be
smooth, closed, connected, with a Riemannian metric of sectional curvature
< 0. In the course of their proof of the Borel conjecture for such M ,
Farrell and Jones [FaJo1], [FaJo5] show that α : (L•)%(M) → L•(M) is a
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homotopy equivalence (with a 4–periodic definition of L•(M), decoration
s or h). With our 0–connected definition of L•(M), it is still true that

Ω∞+n((L•)%(M)) ' ∗
Ω∞+n((LAh

•)%(M, n)) ' Ω∞+n(A%(M, n)hZ/2) .

For a simple closed geodesic T in M , let T ] be the “desingularization” of
T , so that T ] ∼= S1. Farrell and Jones also show that the map

∨

T

A%(T ]) → A%(M)

induced by T ] → T ↪→ M for all simple closed geodesics T in M is a
homotopy equivalence [FaJo3]; see also [FaJo4], [FaJo2] for extensions. Now
there is a fundamental theorem in the algebraic K–theory of spaces: The
assembly from S1 ∧ A(∗) ' A%(S1) to A(S1) is a split monomorphism
in the homotopy category [KVWW1], [KVWW2] and its mapping cone
splits up to homotopy into two copies of a spectrum NilA(∗). Under any
of the involutions constructed by the method of §4.1, these two copies are
interchanged. Therefore Ω∞+n((LA•)%(M, n)) ' Ω∞+1(

∨
T NilA(∗)) and

we get from 4.2.1 a map

S(M) → Ω∞+1(
∨

T

NilA(∗))

which is approximately (n/3)–connected (see 4.2.2). It is known that
NilA(∗) is rationally trivial and 1–connected, but π2NilA(∗) 6= 0. See
[HaWa],[Wah1]. From [Dun], [BHM], one has a homological algebra de-
scription of NilA(∗), as explained in [Ma1, 4.5] and [Ma2, §5]. But the
homological algebra is over the ring spectrum S0 and it is not consid-
ered easy.— From the fiber sequence TOP(M) → G(M) −→ S(M) we get
πj TOP(M) ∼= ⊕

T πj+2NilA(∗) if 1 < j < φ(n) , and an exact sequence

⊕

T

π3NilA(∗) ½π1 TOP(M) → center(π1(M))

−→
⊕

T

π2NilA(∗) → π0 TOP(M) ³ Out(π1(M)).
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6.4. The h–structure Space of Sn, for n ≥ 5. By 4.2.1 and 4.2.2 there
is a commutative square

S(Sn) −−−−→ Ω∞+n((LA•)%(Sn, n))
y∩

y
S̃(Sn) '−−−−→ Ω∞+n((Ls

•)%(Sn)),

where the top horizontal arrow is highly connected. Here Ωn(Ls
•)%(Sn)

simplifies to L•(∗), and Ωn(LA•)%(Sn, n) has an analogous simplifying
map (not a homotopy equivalence, but highly connected) to LA•(∗, n).
Summarizing: there is a homotopy commutative square

S(Sn) −−−−→ Ω∞LA•(∗, n)
y∩

yforget

S̃(Sn) '−−−−→ Ω∞L•(∗)

and a homotopy fiber sequence LA•(∗, n) → L•(∗) β−−→ S1 ∧ (A(∗, n))hZ/2

from (4.1.2). Calculations [WWp] using connective K–theory bo as a sub-
stitute for A(∗), via A(∗) → K(Z) → bo, show that β detects all elements
in πn+qL(∗) whose signature is not divisible by 2aq if 4 divides n + q,
and by 4aq if 4 divides both n + q and q. Here aq = 1, 2, 4, 4, 8, 8, 8, 8 for
q = 1, 2, . . . , 8 and aq+8 = 16aq; the numbers aq are important in the the-
ory of Clifford modules [ABS]. Consequently, if 4 divides n + q, then the
image of the inclusion–induced homomorphism

πn+qS(Sn) −→ πn+qS̃(Sn) ∼= 8Z

is contained in 2aqZ if 4 does not divide q, and in 4aqZ if 4 does divide
q. Note the similarity of this statement with [At, 3.3], [LM, IV.2.7], and
[Tho, Thm.14].

6.5. Obstructions to unblocking smooth block automorphisms.
One of the main points of §4.2 and the introduction to §4 is a homotopy
commutative diagram, for compact Mn with n ≥ 5,

(6.5.1)

Ω∞+n+1(Ls
•)%(M) −−−−→ Ω∞+n(As

%(M,n)hZ/2)y'
x

ΩS̃s(M) −−−−→ T̃OP(M)/ TOP(M)
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in which the upper row is the connecting map from the first of the two
homotopy fiber sequences in (4.1.2),

(6.5.2) ΩLs
•(M) → As(M, n)hZ/2 ,

with % and decoration s and Ω∞+n inflicted. Modulo the identification
As

%(M) ' Hs(M) (the s–decorated version of 3.2.2), the right–hand col-
umn of (6.5.1) is the highly connected map which we found at the end
of §1.4 using purely geometric methods. The lower row of (6.5.1) is the
connecting map from the homotopy fiber sequence

T̃OP(M)/ TOP(M) −→ Ss(M) −→ S̃s(M) .

One of the main points of §4.3 is that much of (6.5.1) has a smooth analog,
in the shape of a homotopy commutative diagram

(6.5.3)

Ω∞+n+2Ls
•(M) −−−−→ Ω∞+n+1(Whds(M,n)hZ/2)y

x
ΩS̃s

d(M) −−−−→ D̃IFF(M)/ DIFF(M)

defined for smooth compact M . Here Whds(M) is the mapping cone
of the map Σ∞(M+) → As(M) discussed in 4.3.3 (except for a decora-
tion s which we add here), and Whds(M,n) := Sn

! ∧ Whds(M). The
upper row in (6.5.3) is Ω∞+n+1 of (6.5.2) composed with the projection
As(M, n)hZ/2 −→ Whds(M,n)hZ/2. Again, modulo an identification of
Whds(M) with Hs

d(M) , coming from (3.2.3), the right–hand column of
(6.5.3) is a purely geometric construction going back to (the smooth ver-
sion of) §1.4. It is highly connected. The left–hand column of (6.5.3) is
not a homotopy equivalence, which makes the analogy a little imperfect.
We arrive at (6.5.3) by first making full use of 4.2.1 and 4.2.4 to produce a
framed version of (6.5.1), with upper left–hand vertex Ω∞+n+2Ls

•(M) , up-
per right–hand vertex Ω∞+n+1(A(M,n)hZ/2) , and lower left–hand vertex
equal to Ω of the homotopy fiber of

∇ : S̃s −→ S̃(τ) .

Now assume that the classifying map M → BO for the stable tangent
bundle factors up to homotopy through an aspherical space. (For exam-
ple, this is the case if M is stably framed.) Stabilization arguments as
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in 4.3.5 show that then Whds(M, n)hZ/2 splits off As(M, n)hZ/2 , up to
homotopy. Also, the connecting map (6.5.2) factors through the summand
Whds(M,n)hZ/2 , up to homotopy. It follows that elements in Ls

k(Zπ)
detected under (6.5.2) are also detected under

(6.5.4) Ls
k(Zπ) −→ πk−n−2(D̃IFF(M)/ DIFF(M)) ,

the homomorphism coming from (6.5.3). To exhibit such elements in
Ls

k(Zπ) , we suppose in addition that M is orientable and π = π1(M)
is finite. Then we have the multisignature homomorphisms

(6.5.5) Ls
k(Zπ) → Lp

k(Rπ) ∼=
⊕

V

Lp
k(EV )

where the direct sum is over a maximal set of pairwise non–isomorphic irre-
ducible real representations V of π, and EV is the endomorphism ring of V ,
isomorphic to R, C or H equipped with a standard conjugation involution
[Le], [Wa3]. It is known that Lp

k(EV ) ∼= Z if 4|k, and also Lp
k(EV ) ∼= Z

if 2|k and EV
∼= C; otherwise Lp

k(EV ) = 0. A calculation similar to that
mentioned in 6.4 shows that an element in Ls

k(Zπ) = πk(Ls
•(M)) will be

detected by the homomorphism associated with (6.5.2) if, for some irre-
ducible real representation V of π, the V –component of its multisignature
is not divisible by

2ak−n (assuming 4|k and EV
∼= R)

2ac
k−n (assuming 2|k and EV

∼= C)

ak−n+4/4 (assuming 4|k and EV
∼= H)

where ac
q = 1 if q = 1, 2 and ac

q+2 = 2ac
q for q > 2. If 4|n and V is

the trivial 1–dimensional representation, we can can do a little better: the
element will also be detected if the V –component of its multisignature is
not divisible by

4ak−n (assuming 4|k) .

Now the multisignature homomorphisms (6.5.5) are of course periodic in
k with period 4, and are rational isomorphisms [Wa1]. Therefore many
elements in Ls

∗(Zπ) are indeed detected by (6.5.2), and a fortiori by (6.5.4).

Remark. This calculation can be viewed as a cousin of Rochlin’s theorem.
To make this clearer we switch from block diffeomorphisms to bounded
diffeomorphisms, i.e. we look at

(6.5.6) L
〈−∞〉
k (Zπ) −−−→ πk−n−2(DIFFb(M × R∞)/ DIFF(M))
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instead of (6.5.4). Compare 2.5.1 and 4.2.3. The same calculations as
before show that an element x in the domain of (6.5.6) maps nontrivially
if, for some irreducible real representation V of π, the V –component of the
multisignature of x is not divisible by certain powers of 2, depending on V ,
k and n, exactly as above. Note in passing that

Lp
k(EV ) ∼= L

〈−∞〉
k (EV )

so that we can indeed speak of multisignatures as before. Specializing to
M = ∗ and 4|k, with k > 0, we see that elements x whose signature is not
divisible by 4ak are detected by (6.5.6). But in the case M = ∗ we also
have DIFFb(M ×R∞) ' Ω(TOP/O) and we may identify (6.5.6) with the
boundary map in the long exact sequence of homotopy groups associated
with the homotopy fiber sequence

TOP/O −→ G/O −→ G/TOP .

Therefore, if 4|k and k > 0, the image of πk(G/O) in πk(G/TOP) = 8Z is
contained in 4ak · Z. For k = 4, this statement is (one form of) Rochlin’s
theorem. For k > 4, it is also well known as the 2–primary aspect of the
Kervaire–Milnor work on homotopy spheres [KeM], [Lev].

6.6. Gromoll filtration. The Gromoll filtration of x ∈ π0D̃IFF(Di−1) is
the largest number j = j(x) such that x lifts from

π0D̃IFF(Di−1) ∼= πj−1D̃IFF(Di−j)

to πj−1 DIFF(Di−j). This is the original definition of [Grom]; see also [Hit].
To obtain upper bounds on j(x) in special cases, we use 6.5, with k = i+1

and n = i− j and M = Dn. Therefore: if 4 divides i+1 and x has Gromoll
filtration ≥ j, and is the image of x̄ ∈ Li+1(Z), then the signature of x̄ is
divisible by 2aj+1 (by 4aj+1 in the case where 4 divides j + 1).

6.7. Riemann–Roch for smooth fiber bundles. Let p : E → B be
a fiber bundle with fibers ∼= M and structure group DIFF(M, ∂M). Let
R be a ring, and let V be a bundle (with discrete structure group) of f.g.
left proj. R–modules on E. This determines [V ] : E → Ω∞K(R). Let Vi

be the bundle on B with fiber Hi(p−1(b); V ) over b. We assume that the
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fibers of Vi are projective; then each Vi determines [Vi] : B → K(R). Then
the following Riemann–Roch formula holds:

(6.7.1) tr∗[V ] =
∑

(−1)i[Vi] ∈ [B, Ω∞K(R)]

where tr : Σ∞B+ → Σ∞E+ is the Becker–Gottlieb–Dold transfer [BeGo],
[Do], [DoP], a stable map determined by p . Both sides of (6.7.1) have mean-
ing when p : E → B is a fibration whose fibers are homotopy equivalent
to compact CW–spaces. However, (6.7.1) does not hold in this generality.
It can fail for a fiber bundle with compact (and even closed) topological
manifolds as fibers.

Formula (6.7.1) is a distant corollary of 5.2.4. Namely, both (6.7.1)
and 5.2.4 are ways of saying that certain generalized Euler characteristics
of a smooth compact M lift canonically to Ω∞Σ∞(M+). For the proof of
(6.7.1), see [DWW]. Earlier, Bismut and Lott [BiLo] had proved by analytic
methods that (6.7.1) holds in the case R = C after certain characteristic
classes are applied to both sides of the equation.

6.8. Obstructions to finding block bundle structures. Suppose that
p : E → B is a fibration with connected base whose fibers are oriented
Poincaré duality spaces of formal dimension 2k. Let E∼ → E be a normal
covering with translation group π. With these data we can associate a map

(6.8.1) B −→ Ω∞bhmπ(k)

where bhmπ(k) is the (topological, connective) K–theory of f.g. projec-
tive Rπ–modules with nondegenerate (−1)k–hermitian form [Wa1], [Wa4].
The map (6.8.1) stably classifies the hermitian bundle on B with fiber
Hk(E∼

x ;R) over x ∈ B. There is a hyperbolic map [Wa4] from boπ,
the (topological, connective) K–theory of f.g. projective Rπ–modules, to
bhmπ(k). Let bhmπ(k)/boπ be its mapping cone. The map

(6.8.2) B −→ Ω∞(bhmπ(k)/boπ)

obtained by composing (6.8.1) with Ω∞ of bhmπ(k) → bhmπ(k)/boπ is
the family multisignature of p. Now suppose that p admits a block bundle
structure; see §5.1. Then (6.8.2) factors rationally as

B −→ Ω∞(bhme(k)/boe)
⊗Rπ−−−−−−→ Ω∞(bhmπ(k)/boπ)

where e is the trivial group. The case B = ∗ appears in [Wa1, §13B].
The general statement can be proved by expressing the rationalized family
multisignature in terms of the family visible symmetric signature of §5.1.
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6.9. Relative calculations of h–structure Spaces. Using §1.6 and
4.2.1 one obtains, in the case where M is smooth, a diagram

(6.9.1) Sd(Mn) ∇−−−−−→ Sd(τ) λ−−−−→ Ω∞+nLAh
•(M,n)

which is a homotopy fiber sequence in the concordance stable range; more
precisely, the composite map in (6.9.1) is trivial and the resulting map from
Sd(M) to the homotopy fiber of λ is approximately (n − 1)/3–connected.
This formulation has some relative variants which are attractive because
relative LA–theory is often easier to describe than absolute LA–theory, and
the estimates available for the relative concordance stable range are often
better than those for the absolute concordance stable range.

Illustration: Let M be smooth, compact, connected, with connected
boundary, and suppose the inclusion ∂M → M induces an isomorphism
of fundamental groups. Let M0 = M r ∂M . Define Sd(M0) as the Space
of pairs (N, f) where f : N → M0 is a proper homotopy equivalence
of smooth manifolds without boundary. Let Sd(τ0) be the corresponding
Space of n–dimensional vector bundles on M0 equipped with a stable fiber
homotopy equivalence to τ0 := τ |M0. Using some controlled L–theory and
algebraic K–theory of spaces, one obtains the following variation on (6.9.1):
a diagram

(6.9.2) Sd(M0)
∇−−−−−→ Sd(τ0) −−−→ Ω∞+n(LAh

•(M,n)/LAh
•(∂M, n))

which is a homotopy fiber sequence in the ≤ (n/3−c1) range, where c1 is a
constant independent of n. Our hypothesis on fundamental groups implies
that LAh

•(M, n)/LAh
•(∂M, n) ' (Sn

! ∧ (A(M)/A(∂M)))hZ/2 and [BHM],
[Go3] imply

A(M)/A(∂M) ' TC(M)/TC(∂M)

where TC is the topological cyclic homology viewed as a spectrum–valued
functor. See also [Ma1], [Ma2], [HeMa]. So (6.9.2) simplifies to

Sd(M0)
∇−−−−−→ Sd(τ0) −−−→ Ω∞+n((Sn

! ∧ (TC(M)/TC(∂M)))hZ/2) .

This is still a homotopy fiber sequence in the ≤ (n/3− c1) range. Unpub-
lished results of T.Goodwillie and G.Meng indicate that it is a fibration
sequence in the ≤ n − c2 range for some constant c2, provided ∂M → M

is 2–connected.
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[Lo] J.-L.Loday, K-théorie algébrique et représentations de groupes,
Ann. scient. Ec. Norm. Sup. 9 (1976), 309–377.

[Ma1] I. Madsen, Algebraic K–theory and traces, Current develop-
ments in mathematics, 1995 (Cambridge, MA), International
Press, Cambridge, MA, 1994, pp. 191–321.

[Ma2] I. Madsen, The cyclotomic trace in algebraic K–theory, First
European Congress of Math. (vol.II), Paris 1992, Progr. in
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Spaces of smooth embeddings,
disjunction and surgery

Thomas G. Goodwillie, John R. Klein, Michael S. Weiss

Abstract. We describe progress in the theory of smooth embeddings over
more than 50 years, starting with Whitney’s embedding theorem, continu-
ing with the generalized Whitney tricks of Haefliger and Dax, early disjunc-
tion results for embeddings due to Hatcher and Quinn, the surgery methods
for constructing embeddings due to Browder and Levine, respectively, mov-
ing on to a systematic theory of multiple disjunction which builds on all the
foregoing, and concluding with a functor calculus approach which reformu-
lates the main theorem on multiple disjunction as a convergence theorem.
Convergence takes place when the codimension is at least 3, giving a de-
composition of the space of embeddings under scrutiny into ‘homogeneous
layers’ which admit an attractive combinatorial description. The divergent
cases are not devoid of interest, since they suggest a view of low–dimensional
topology as a ‘divergent’ analogue of high–dimensional topology.

Section headings

0. Preliminaries
0.1. Overview
0.2. Notation, Terminology

1. Double point obstructions
1.1. The Whitney embedding theorem
1.2. Scanning
1.3. Disjunction
1.4. The stable point of view

2. Surgery methods
2.1. Smoothing Poincaré embeddings
2.2. Smoothing block families of Poincaré embeddings
2.3. Embedded surgery
2.4. Poincaré embeddings into disks
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2.5. Poincaré embeddings: The fiberwise point of view
3. Higher excision, multiple disjunction

3.1. Easy multiple disjunction for embeddings
3.2. Multiple disjunction for concordance embeddings
3.3. Multiple disjunction for Poincaré embeddings
3.4. Higher excision for block embeddings
3.5. Higher excision for embeddings

4. Calculus methods: Homotopy aspect
4.1. Taxonomy of cofunctors on O(M)
4.2. The convergence theorem
4.3. Scanning revisited

5. Calculus methods: Homology aspect
5.1. One–dimensional domains
5.2. Higher dimensional domains

0. Preliminaries

0.1. Overview

This survey traces the development, over more than 50 years, of a theory
of smooth embeddings resting today on two pillars: the methods of dis-
junction and surgery. More precisely, the theory is about homotopical and
homological properties of spaces of smooth embeddings emb(Mm, Nn). It
is more satisfactory when n − m ≥ 3, but has something to offer in the
other cases, too.

Chapter 1 is about embeddings in the metastable range, m < 2n/3
approximately, and the idea of producing an embedding M → N by start-
ing with an immersion and removing self–intersections. This goes back to
Whitney [Wh2], of course, and was pursued further by Haefliger [Hae1],
[Hae2], Dax [Da], and Hatcher–Quinn [HaQ]. In the process, two impor-
tant new insights emerged. The first of these [Hae2] is that embeddings in
the metastable range are determined up to isotopy by their local behav-
ior. However, this is only true with an unusual definition of local where
the loci are small tubular neighborhoods of subsets of M of cardinality 1
or 2. The second insight [HaQ] is that, in the metastable range, practi-
cally any method for disjunction (here: removing mutual intersections of
two embedded manifolds in a third by subjecting the embedded manifolds
to isotopies) can serve as a method for removing self–intersections of one
manifold in another.

Chapter 2, about surgery methods for constructing embeddings of M
in N , gives about equal weight to the Browder approach [Br2], which is to
start with an embedding M → N ′ and a degree one normal map N ′ → N ,
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and the slightly older Levine approach [Lev], which is to start with a degree
one normal map M ′ → M and an embedding M ′ → N . The Browder
approach leads eventually to the Browder–Casson–Sullivan–Wall theorem
which, assuming n − m ≥ 3 and n ≥ 5, essentially expresses the block
embedding space emb∼(M,N), a rough approximation to emb(M,N), in
terms of the space of Poincaré duality (block) embeddings from M to N .
The Levine approach does not give such a neat reduction, but in contrast
to the Browder approach it does lead to some ideas on how to construct
embeddings of one Poincaré duality space in another. These ideas inspired
work by Williams [Wi], Richter [Ric], and more recently by Klein [Kl1],
[Kl2], [Kl3], which is summarized in the later parts of chapter 2.

Chapter 3 is a systematic account of multiple disjunction alias higher
excision (here: an obstruction theory for making a finite number of sub-
manifolds Mi ⊂ N pairwise disjoint by subjecting them to isotopies in N ).
The most difficult ingredient is [Go1], a multiple disjunction theorem for
smooth concordance embeddings (concordances alias pseudo–isotopies from
a fixed smooth embedding f0: M → N to a variable one, f1: M → N ).
Another important ingredient is a multiple disjunction theorem for (spaces
of) Poincaré embeddings [GoKl], which uses [Go6] and some of the results
described at the end of chapter 2. Via the Browder–Casson–Sullivan–Wall
theorem, this leads to a disjunction theorem for block embedding spaces,
which combines well with the aforementioned multiple disjunction theorem
for concordance embeddings, resulting in a multiple disjunction theorem
for honest embeddings. See [Go7].

In chapter 4, we take up and develop further Haefliger’s localization ideas
described in chapter 1. Specifically, we construct a sequence of approxima-
tions Tk emb(M, N) to emb(M, N). A point in Tk emb(M,N) is a coherent
family of embeddings V → N , where V runs through the tubular neighbor-
hoods of subsets of M of cardinality ≤ k ; in particular, T2 emb(M, N) is
Haefliger’s approximation to emb(M, N), and T1 emb(M,N) is homotopy
equivalent to the space of smooth immersions from M → N , if m < n .
Just as Hatcher–Quinn disjunction can be used to prove that the Haefliger
approximation is a good one, so the higher disjunction results of chapter
3 are used to show that the approximations Tk emb(M, N) converge to
emb(M,N) as k → ∞ , provided n −m ≥ 3. Actually, in the cases when
2m < n−2, only a very easy result from chapter 3 is used. In all cases, the
relative homotopy of the forgetful maps Tk emb(M,N) → Tk−1 emb(M,N)
is fairly manageable.

Chapter 5 applies the same localization ideas to the (generalized) ho-
mology of emb(M,N). What we get turns out to be a generalization of
the generalization due to Rector [Re] and Bousfield [Bou] of the Eilenberg–
Moore spectral sequence [EM]. The convergence issue is more complex in
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this case, but we have a satisfactory result for the cases where n > 2m+1.
For m = 1 and n ≥ 3 we make a connection with the Vassiliev theory of
knot invariants [Va1], [Va2], [Va3], [BaN], [BaNSt], [Ko].

0.2. Notation, Terminology

Sets. Given a set X and x ∈ X , we often write x for the subset {x} .
In particular, if x1, x2, ... are elements of X and f : X → Y is any map,
we may write f |x1 and f |x1 ∪ x2 etc. for the restrictions of f to {x1} ,
{x1, x2} etc. .

Spaces. All spaces in sight are understood to be compactly generated weak
Hausdorff. (A space X is compactly generated weak Hausdorff if and only
if the canonical map colimK⊂X K → X , with K ranging over the compact
Hausdorff subspaces of X , is a homeomorphism). Products and mapping
spaces are formed in the category of such spaces in the usual way, and are
related by adjunction. Pointed spaces (alias based spaces) are understood
to have nondegenerate basepoints.

As is customary, we write QX for Ω∞Σ∞X where X is a based space,
and Q(X+) or Q+(X) for Ω∞Σ∞(X+) where X is unbased. Occasionally
we will need a twisted version of Q+(X), as follows. Suppose that X is
finite dimensional, and equipped with two real vector bundles ζ and ξ .
Choose a vector bundle monomorphism ξ → εi where εi is a trivial vector
bundle on X . Let

Q+(X; ζ − ξ)

be ΩiQ of the Thom space of the vector bundle ζ ⊕ εi/ξ on X . This is
essentially independent of the choice of vector bundle monomorphism ξ → ε
made. We will also use this notation when X is infinite dimensional, and
the bundle ξ is in some obvious way pulled back from a finite dimensional
space.

More generally, with X , ζ , ξ as before and A ⊂ X a closed subset for
which the inclusion is a cofibration, we let

Q(X/A; ζ − ξ)

be ΩiQ of a certain quotient of Thom spaces (Thom space of ζ ⊕ εi/ξ on
X , modulo Thom space of the restriction of ζ ⊕ εi/ξ to A).

Cubical diagrams. Let S be a finite set. An S –cube of spaces is a
covariant functor R 7→ X(R) from the poset of subsets of S to spaces. It
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is k–cartesian if the canonical map (whose homotopy fibers are the total
homotopy fibers of X )

X(∅) −→ holim
R 6=∅

X(R)

is k–connected. (Here the homotopy inverse limit can be described explic-
itly as the space of natural transformations from R 7→ ∆(R) to R 7→ X(R),
where ∆(R) is the simplex of dimension |R| − 1 spanned by R , assuming
R 6= ∅ .) The cube is k–cocartesian if the canonical map (whose homotopy
cofiber is the total homotopy cofiber of X )

hocolim
R 6=S

X(R) −→ X(S)

is k–connected. (Here the homotopy colimit can be described explicitly as
the quotient of

∐
R 6=S ∆(SrR)×X(R) by relations (i∗a, b) ' (a, i∗b) where

i: R1 → R2 is an inclusion of proper subsets of S .) In both cases, k = ∞
is allowed. If X is a functor from the poset of subsets of S to pointed
spaces, then the canonical map X(∅) → holimR 6=∅ X(R) is pointed; its
homotopy fiber over the base point will be called the total homotopy fiber
of X .

The poset of subsets of S is isomorphic to its own opposite, so we use
similar language for contravariant functors from it to spaces.

An S –cube is strongly ∞–cocartesian if all its 2–dimensional subcubes
are ∞–cocartesian, and strongly ∞–cartesian if all its 2–dimensional sub-
cubes are ∞–cartesian. For |S| ≥ 2, strongly ∞–cocartesian/cartesian
implies ∞–cocartesian/cartesian.

A contravariant S –cube X of spaces in which S = {1, . . . , n − 1} is
called an n–ad if the maps from X(R) to X(∅) are inclusions, for any
R ⊂ S , and X(R) =

⋂
i∈R X(i) ⊂ X∅ . The n–ad is special if X(S) = ∅ .

The n–ad is a manifold n–ad if each X(R) is a manifold with boundary⋃
i/∈R X(R ∪ i). In the smooth setting, each X(R) is required to be a

smooth manifold with appropriate corners in the boundary.

Homotopy (co–)limits. For homotopy limits and homotopy colimits in
general, see [BK]. We like the point of view of [Dr] and [DwK2], which is
as follows, in outline. A functor E from a small category C to spaces is a
CW–functor if it is a monotone union of subfunctors E−1 , E0 , E1 , E2 ,
. . . , where Ei has been obtained from Ei−1 by attachment of so–called i–
cells. These are functors of the form c 7→ Di×morC(c, d), for some d in C .
Every functor F from C to spaces has a CW–approximation F∼ → F (in
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which F∼ is a CW–functor, and F∼ → F specializes to weak homotopy
equivalences F∼(c) → F (c) for each c in C ). Put

hocolim F := colim F∼ , holim F := nat((∗C)∼, F )

where nat denotes the space of natural transformations and ∗C is the con-
stant functor c 7→ ∗ on C . For colimits, see [MaL]. For more on homotopy
limits and homotopy colimits, see also [DwK1].

Manifolds. All manifolds in this survey are assumed to have a countable
base for their topology. Manifolds are without boundary unless otherwise
stated; a manifold with boundary may of course have empty boundary.

We write emb(M, N) for the space of smooth embeddings from M to
N , and imm(M, N) for the space of smooth immersions, both defined as
geometric realizations of certain simplicial sets. Unless otherwise stated,
M and N are assumed to be smooth without boundary.

Let G be a finite group. A map f : K → L of manifolds with G–action is
equivariant if it is a G–map, and isovariant if, in addition, f−1(LH) = KH

for every subgroup H ≤ G . If K, L are smooth and f is a smooth map, it
is natural to combine isovariance as above with “infinitesimal” isovariance:
call f strongly isovariant if it is isovariant and, for each H ≤ G and
x ∈ KH , the differential Txf of f at x is an isovariant linear map from
TxK to Tf(x)L .

Poincaré spaces. Poincaré space is short for simple Poincaré duality
space, alias simple Poincaré complex [Wa2, 2nd ed., §2]; Poincaré pair is
short for simple Poincaré duality pair. The fundamental class [X] of a
Poincaré space X of formal dimension n lives in Hn(X;Zt), where Zt

denotes a local coefficient system on X with fibers isomorphic to Z . To-
gether, [X] and Zt are determined by X , up to a unique isomorphism
between local coefficient systems on X .

What is more, there exist a fibration νk on X with fibers ' Sk−1 , and
a ‘degree one’ map ρ from Sn+k to the Thom space (mapping cone) of ν ;
together, ν and ρ are unique up to contractible choice if k is allowed to
tend to ∞ . See [Br3], [Ra]. The fibration ν is known as the Spivak normal
fibration of X . The image of [ρ] under Hurewicz homomorphism and
Thom isomorphism is a fundamental class in Hn(X;Zt) where Zt is the
twisted integer coefficient system associated with ν . Something analogous
is true for Poincaré pairs.
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1. Double point obstructions

1.1. The Whitney embedding theorem

1.1.1. Theorem [Wh2]. For m > 0 , every smooth m–manifold M can
be embedded in R2m .

Whitney’s proof of 1.1.1 relies on the fact [Wh1] that Mm can be immersed
in R2m . He also knew [Wh1] that any immersion Mm → R2m can be
approximated by one with transverse self–intersections. The other main
ideas are these:

(i) Without loss of generality, Mm is connected. Suppose that M
is also closed. Then any immersion f : Mm → R2m has an alge-
braic self–intersection number If (to be defined below) which is an
integer if m is even and orientable, otherwise an integer modulo 2.

(ii) (Whitney trick) In the situation of (i), the immersion f is regu-
larly homotopic to an immersion with exactly |If | transverse self–
intersections (and no other self–intersections), provided m > 2.
Here |If | should be read as 0 or 1 if If ∈ Z/2.

(iii) For every m > 0, there exists an immersion g: Sm −→ R2m having
algebraic self–intersection number Ig = 1.

Assuming (i), (ii), (iii), the proof of 1.1.1 for m > 2 is completed as follows.
We start by choosing some immersion f0: Mm → R2m . In the closed
connected case, we use (iii) to modify it, so that an immersion f : M → R2m

with If = 0 results. Then (ii) can be applied. In the case where M is
open and connected, and all self–intersections are transverse, it is easy to
“indent” M appropriately, i.e. to find an embedding e: M → M isotopic
to the identity such that f := f0e is an embedding. See [Wh2, §8] for
details.

1.1.2. Definitions. Whitney gives two definitions of If . For the first, as-
sume that f : M → R2m is an immersion with transverse self–intersections
only. Count the self–intersections (with appropriate sign ±1 if m is even
and M is orientable, otherwise modulo 2). The result is If .

For the second definition, let f : M → R2m be any immersion. Define

β: M ×M r∆M −→ R2m

by β(x, y): = f(x) − f(y). Then β−1(0) is compact and β is Z/2–
equivariant, where the generator of Z/2 acts on the domain (freely) and
codomain (not freely) by (x, y) 7→ (y, x) and by z 7→ −z , respectively.
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Hence β has a well defined degree If in Z or Z/2. It can be found by de-
forming β in a small neighborhood of β−1(0) so that β becomes transverse
to 0, and counting Z/2–orbits in the inverse image of 0 (with appropriate
signs when m is even and M is orientable).

We assume that statements (ii) and (iii) above are well known through
[Mi1]. We will see plenty of generalizations quite soon.

Remark. Whitney’s If has precursors in [van]. See also [Sha].

1.2. Scanning

The theorem of Haefliger that we are about to present dates back to the
early sixties. The immersion classification theorem was available [Sm1],
[Hi1]; see also [Hae3]. It states that if Mm and Nn are smooth, m < n , or
m = n and M open, then an evident map from imm(M,N) to the space
of pairs (f, g), with f : M → N continuous and g: τM → f∗τN fiberwise
monomorphic (and linear), is a (weak) homotopy equivalence. In addition,
transversality concepts had conquered differential topology. In particular,
it was known that a “generic” smooth immersion Mm → Nn would have
transverse self–intersections only, of multiplicity ≤ n/(n − m). It was
therefore natural for Haefliger to impose the condition n/(n − m) < 3,
equivalently m < 2n/3 (metastable range), which ensures that all self–
intersection points in a generic immersion M → N are double points, and
to view an embedding M → N as an immersion without double points.

Notation. In 1.2.1 below we write map(. . . ), mapG(. . . ), ivmapG(. . . )
for spaces of smooth maps, equivariant smooth maps, strongly isovariant
smooth maps, respectively, all to be defined as geometric realizations of
simplicial sets.

1.2.1. Theorem [Hae2]. If m + 1 < 2n/3 , then the following square is
1–cartesian :

emb(M,N) ⊂−−−−→ map(M,N)
y

yf 7→f×f

ivmapZ/2(M ×M, N ×N) ⊂−−−−→ mapZ/2(M ×M, N ×N) .

Remark. Haefliger’s original statement is slightly different: in his defini-
tions of the mapping spaces involved, other than emb(M,N), he does not
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ask for smooth maps. A vector bundle theoretic argument [HaeH, 4.3.a]
shows that the two versions are equivalent.

It will turn out that the square in 1.2.1 is (2n− 3− 3m)–cartesian, an
improvement which is essentially due to Dax [Da]. We will sketch the proof
in section 1.3, and again in section 1.4, following Dax more closely.

1.2.2. Example [Hae2]. Let N = Rn . Then map(M,N) is contractible
and so is mapZ/2(M × M,N × N) ∼= map(M × M, N). Therefore 1.2.1
implies that

emb(M,Rn) −→ ivmapZ/2(M ×M,Rn × Rn)

given by f 7→ f × f is 1–connected, if m + 1 < 2n/3. Now an isovariant
map g from M ×M to Rn×Rn determines an equivariant map vgj from
M ×M r∆M to Sn−1 , where j: M ×M r∆M → M ×M is the inclusion
and v is the map (x, y) 7→ (x−y)/|x−y| from Rn×Rn minus diagonal to
Sn−1 . It follows easily from [HaeH, 4.3.a] that g 7→ vgj is 1–connected if
m+1 < 2n/3. Hence isotopy classes of smooth embeddings of Mm in Rn ,
for m + 1 < 2n/3, are in bijection with homotopy classes of equivariant
maps from M × M r ∆M to Sn−1 , where Sn−1 is equipped with the
antipodal action of Z/2.

We now briefly justify our use of the word scanning in the title of this
subsection. The upper horizontal map in the diagram in 1.2.1 captures, for
each f ∈ emb(M,N), the restricted embeddings f |S where S runs through
the one–element subsets of M . The left–hand vertical map captures, for
each f ∈ emb(M,N), the restricted embeddings f |S where S runs through
the 2–element subsets of M (the two elements are allowed to ‘collide’);
it also captures the tangent bundle monomorphism induced by f . The
remaining two arrows capture coherence.

1.3. Disjunction

Disjunction theory, as we understand it here, is about the elimination of
intersections of two or more manifolds, each embedded in a common ambi-
ent manifold, by means of isotopies of the embedded manifolds. Families of
such elimination problems are also considered. An important theme is that
disjunction homotopies can often be improved to disjunction isotopies, as
in the following theorem.

1.3.1. Theorem. Let L` , Mm , Nn be smooth, L and M closed, L
contained in N as a smooth submanifold. The following square of inclusion
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maps is (2n− 3− 2m− `)–cartesian:

emb(M, N r L) −−−−→ emb(M,N)
y

y
map(M,N r L) −−−−→ map(M, N).

Idea of proof. Let {ht: M ×∆k → N | 0 ≤ t ≤ 1} be a smooth homotopy
such that h0|M × y is an embedding and h1|M × y has image in N r L ,
for all y ∈ ∆k . Suppose also that h = {ht} is a constant homotopy on
M × ∂∆k . Let Z ⊂ M × ∆k × [0, 1] consist of all points (x, y, t) such
that hs|M × y is singular at x ∈ M for some s ≤ t . If h = {ht} is
‘generic’ and k is not too large, for example k ≤ (2n − 3 − 2m − `) − 1,
then Z will have empty intersection with h−1(L). Then it is easy to find
a smooth function ψ: M ×∆k → [0, 1] such that Z lies above the graph of
ψ , and h−1(L) lies below it. Using this, one deforms h to the homotopy h!

given by h!
t(x, y) = hψ(x)t(x, y). Now h! is adjoint to a homotopy of maps

∆k → emb(M, N) and h!
1 is adjoint to a map ∆k → emb(M,NrL). This

shows that the square in 1.3.1 is k–cartesian, with k = (2n−3−2m−`)−1.
A little extra work improves the estimate to 2n− 3− 2m− ` . ¤

Earlier results in the direction of 1.3.1 can be found in [Sta], [Wa1], [Lau1],
[Ti], [Lau2] and [Lau3]. The method of proof is a simple example of sunny
collapsing, an idea which appears to originate in Zeeman’s PL unknotting
work [Ze]; see also [Hu1].

1.3.2. Corollary. Let L` , Mm , Nn be smooth, L and M closed, L and
M contained in N as smooth submanifolds. The homotopy fiber of

emb(LqM,N) −→ emb(L, N)× emb(M, N)

has a min{2n− 2m− `− 3, 2n− 2`−m− 3}–connected scanning map to
the section space Γ(u) , where u is a fibration over M ×L with fiber over
(x, y) equal to the homotopy fiber of

emb(xq y, N) −→ emb(x,N)× emb(y, N).

Proof. We use a Fubini type argument. First, scan along M . The ho-
motopy fiber of emb(L qM, N) → emb(L,N) × emb(M, N) is homotopy
equivalent to the homotopy fiber of emb(M, N r L) ↪→ emb(M, N). The
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homotopy fiber of emb(Lq x,N) −→ emb(L,N)× emb(x,N) is homotopy
equivalent to the homotopy fiber of emb(x,NrL) ↪→ emb(x,N), for every
x ∈ M . So by 1.3.1, scanning along M gives a (2n−2m−`−3)–connected
map from the homotopy fiber of emb(LqM, N) → emb(L,N)×emb(M,N)
to Γ(v), where v is a fibration on M whose fiber over x ∈ M is the ho-
motopy fiber of emb(Lq x,N) −→ emb(L,N)× emb(x,N).

We get from Γ(v) to Γ(u) by scanning along L . Note that for each x in
M , the homotopy fiber of emb(Lqx, N) −→ emb(L,N)× emb(x, N) is ho-
motopy equivalent to the homotopy fiber of the inclusion of emb(L,N rx)
in emb(L,N). Therefore another application of 1.3.1 shows that our second
scanning map is ((2n− 2`− 0− 3)−m)–connected. Hence the composite
scanning map is min{2n− 2m− `− 3, 2n− 2`−m− 3}–connected. ¤

Terminology. Eventually we will need a relative version of 1.3.2. In the
most general relative version, N is a manifold with boundary, and L , M
are compact triads. For L this means that ∂L is the union of smooth
codimension zero submanifolds ∂0L and ∂1L with

∂∂0L = ∂∂1L = ∂0L ∩ ∂1L .

L is viewed as a manifold with corners (corner set ∂0L∩∂1L). We assume
that L is contained in N in such a way that ∂0L = L ∩ ∂N and the
inclusion ∂1L ↪→ N is transverse to ∂N . We make analogous assumptions
for M and the inclusion M → N . In addition, we assume that ∂0M and
∂0L are disjoint, and allow only embeddings M → N and L → N which
agree with the inclusions on ∂0M and ∂0L respectively. The appropriate
section space Γ(u) consists of sections of a certain fibration on M × L as
before, but the sections are prescribed on (∂0M × L) ∪ (M × ∂0L).

1.3.3. Corollary. The square in 1.2.1 is (2n− 3− 3m)—connected.

Proof, in outline. Let embh(M, N) be the Haefliger approximation to
emb(M,N). That is, embh(M, N) is the homotopy pullback of the lower
left hand, upper right hand and lower right hand terms in 1.2.1. We have
to show that Haefliger’s map

emb(M, N) → embh(M, N)

is (2n− 3− 3m)–connected. It suffices to establish this in the case where
M = M̄ r ∂M̄ for a compact smooth manifold M̄ with boundary. We can
suppose that M̄ comes with a handle decomposition. More specifically,
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suppose the handles are all of index ≤ r , and the number of handles of
index r is ar . We proceed by induction on r , and for fixed r we proceed
by induction on ar .

Choose a handle H ∼= Dr × Dm−r in M of maximal index r . If r = 0
there is not much to prove, so we assume r > 0. We can then choose two
disjoint index r subhandles H1 and H2 of H . (In the coordinates for H ,
these would correspond to C1 × Dm−r and C2 × Dm−r where C1 and C2

are small disjoint disks in Dr .)
Let Mi = M rHi for i = 1, 2, and MT = ∩i∈T Mi for T ⊂ {1, 2} . For

T 6= ∅ , the closure of MT in M̄ has a handle decomposition with fewer
than ar handles of index r , and no handles of index > r . By induction,
emb(MT , N) → embh(MT , N) is (2n− 3− 3m)–connected for T 6= ∅ .

The spaces emb(MT , N) and the restriction maps between them form a
commutative square, denoted emb(M•, N). We have another commutative
square embh(M•, N) and a Haefliger map

emb(M•, N) −→ embh(M•, N) .

Looking at the induced map from any of the total homotopy fibers of
emb(M•, N) to the corresponding homotopy fiber of embh(M•, N), one
finds that it is an instance of scanning essentially as in 1.3.2 (see the details
just below). By 1.3.4, it is (2n − 3m − 3)–connected. Combined with
the inductive assumption, that the map emb(MT , N) −→ embh(MT , N)
is (2n − 3m − 3)–connected for T 6= ∅ , this shows that Haefliger’s map
emb(MT , N) −→ embh(MT , N) is also (2n − 3m − 3)–connected when T
is empty. ¤

Details. To understand the total homotopy fibers of emb(M•, N) in the
above proof, replace emb(M•, N) by emb(M̄•, N) where M̄T is the clo-
sure of MT in M̄ . (Our notation emb(M̄T , N) is legalized by the remark
just before 1.3.3, provided we decree ∂0M̄T = ∅ .) By the isotopy exten-
sion theorem, all maps in emb(M̄•, N) are fibrations. Hence we can ob-
tain all total homotopy fibers as homotopy fibers of subsquares of the form
emb(M̄•, N ; g) , where g: M̄{1,2} → N is an embedding and emb(M̄T , N ; g)
denotes the space of embeddings M̄T → N extending g . Modulo natu-
ral homotopy equivalences, these subsquares can be rewritten in the form
emb(H•, Ng) where HT = ∪i∈T Hi for T ⊂ {1, 2} and Ng ⊂ N is the
closure of the complement of a thickening of im(g) in N . Boundary condi-
tions are understood: ∂0Hi = Hi ∩ M̄i . With that, we are in the situation
of 1.3.2 (relative version) and obtain a scanning map to a section space
Γ(ug), where ug is a fibration on H1 ×H2 .
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We can also recast the relevant total homotopy fibers of the square
embh(M̄•, N) as total homotopy fibers of subsquares embh(M̄•, N ; g) with
g as before. Here embh(M̄T , N ; g) is the fiber of embh(M̄T , N) over the
element of embh(M̄{1,2}, N) determined by the embedding g . There is a
scanning map (which is a homotopy equivalence) from the total homotopy
fiber of embh(M̄•, N ; g) to a section space Γ(vg). The sections are subject
to boundary conditions as usual. Again vg is a fibration on H1 × H2 ,
containing ug . The fiber of vg over (x, y) ∈ H1 ×H2 is

hofiber [ embh(xq y, N) −→ embh(x,N)× embh(y,N) ]

' hofiber [ emb(xq y, N) −→ emb(x,N)× emb(y, N) ] .

The inclusion ug → vg is not a fiber homotopy equivalence in general
(because Ng is not the same as N ), but it is (2n − m − 3)–connected
on fibers. Hence the induced map Γ(ug) → Γ(vg) is (2n − 3m − 3)–
connected. ¤

1.4. The stable point of view

Although Haefliger’s scanning idea was a new departure, his proof of 1.2.1
used “conservative” double point elimination methods as in 1.1. About ten
years later, Dax [Da] and Hatcher–Quinn [HaQ] developed the double point
elimination methods into a full–blown theory, of which we want to give an
idea. (See [Sa] and [LLZ] and for the analogous double point elimination
approach to block embedding spaces emb∼(M, N), defined in 2.2 below.)

Suppose that f : M → N is any smooth immersion which is generic (the
tangent spaces of M at self–intersection points in N are in general po-
sition). Suppose that M is closed. Let E g(f, f) be the space of triples
(x, y, ω) where (x, y) ∈ M ×M r∆M and ω: [−1,+1] → N is a path from
f(x) to f(y) in N . Think of it as a space over M ×M r∆M . There is
an involution on E g(f, f) given by (x, y, ω) 7→ (y, x, ω−1) , where ω−1 is
ω in reverse. The projection to M ×M r∆M is equivariant. Let

〈f t f〉 ⊂ E g(f, f)Z/2

consist of all (orbits of) triples (x, y, ω) in E g(f, f) with constant path ω .
Then 〈f t f〉 is a smooth manifold which maps to the self–intersection set
of f(M) in N and should be viewed as a resolution of it. If m < 2n/3,
then the resolving map is a diffeomorphism.

Next we discuss normal data. There are maps from E g(f, f) to N
and M × M r ∆M given by (x, y, ω) 7→ ω(0) and (x, y, ω) 7→ (x, y),
respectively, which we can use to pull back the tangent bundles τN and
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τM×M . The maps are equivariant (trivial involution on N ), so we have
canonical choices κ1 and κ2 of involutions on the pullback bundles covering
the standard involution on E g(f, f). However, we use − id ·κ1 and κ2 to
view τN and τM×M , and then τN − τM×M , as (virtual) vector bundles
on E g(f, f)Z/2 . Then we can say that the (absolute) normal bundle of
〈f t f〉 is identified with the virtual vector bundle which is the pullback
of τN − τM×M under 〈f t f〉 ↪→ E g(f, f)Z/2 . Therefore 〈f t f〉 can be
viewed as a “bordism element” or, by the Thom–Pontryagin construction,
as a point in the infinite loop space

Q+(E g(f, f)Z/2 ; τN − τM×M ).

Next, fix some γ in the homotopy fiber of emb(M,N) → imm(M, N) over
f . We assume thatγ is smooth and generic when viewed as a map from
M × [0, 1] to N × [0, 1] over [0, 1] ; this implies that the self–intersections
are transverse. Let 〈γ t γ〉 ⊂ E g(f, f) × [0, 1] consist of all quadruples
(x, y, ω, t) where γt(x) = γt(y) ∈ N and ω is the path

s 7→
{

γt−s(1−t)(x) − 1 ≤ s ≤ 0

γt+s(1−t)(y) 0 ≤ s ≤ 1.

A discussion like the one above shows that 〈γ t γ〉 determines a path from
∗ to 〈f t f〉 in Q+(E g(f, f)Z/2 ; τN− τM×M ), via the Thom–Pontryagin
construction. The procedure generalizes easily to generic families, more
precisely, generic maps from some simplex ∆k to φ(f), and in this way
gives a map

(1.4.1)

hofiberf [ emb(M,N) → imm(M, N)
y

paths from ∗ to 〈f t f〉 in Q+(E g(f, f)Z/2 ; τN − τM×M ) .

1.4.2. Theorem [Da, VII.2.1]; see also [HaQ]. This map is (2n−3−3m)–
connected.

Dax’ proof of 1.4.2 is based on a “higher” Whitney trick, a purely geo-
metric statement about the realizability of abstract nullbordisms of a self–
intersection manifold (or family of such) by regular homotopies of the im-
mersed manifold (or family of such). The higher Whitney trick is very
beautifully distilled in [HaQ].
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There is another proof of 1.4.2 by reduction to 1.3.3, as we now explain.
The map in 1.4.2 is a composition

(1.4.3)

hofiberf [ emb(M, N) → imm(M,N) ]
yscanning

ΓZ/2
c (pf )

y
paths from ∗ to 〈f t f〉 in Q+(E g(f, f)Z/2 ; τN − τM×M ) .

Here pf is the fibration on M ×M r ∆M whose fiber over (x, y) is the
homotopy fiber of emb(x∪ y, N) → imm(x∪ y,N) over the point f |x∪ y .
We say that a section s of pf has compact support if, for every (x, y) in
M ×M sufficiently close to but not in ∆M , the value s(x, y) belongs to
the homotopy fiber of the identity map emb(x ∪ y,N) → emb(x ∪ y,N)
over the point f |x ∪ y . (Note: f |x ∪ y is indeed an embedding for (x, y)
close to the diagonal.) Restriction of embeddings and immersions from M
to x ∪ y for (x, y) ∈ M ×M r ∆M gives the first arrow in (1.4.3). The
symbol Γ is for sections as usual; the subscript c is for compact support,
and the superscript Z/2 indicates that we obtain equivariant sections.

The second arrow in (1.4.3) is a stabilization map combined with Poin-
caré duality, compare [Go6, ch.7], which results from the following obser-
vation.

1.4.4. Observation. The fiberwise unreduced suspension of pf is fiber-
wise homotopy equivalent to the fiberwise (over M×Mr∆M ) Thom space
of the vector bundle τN on E g(f, f) .

Sketch proof. Fix some x, y ∈ M with x 6= y . The fiber V of pf over (x, y)
is the homotopy fiber of the inclusion emb(x∪y,N) → map(x∪y, N) over
the point f |x ∪ y . Let W be the homotopy fiber of

id: map(x ∪ y, N) → map(x ∪ y, N)

over the point f |x∪y . Then V ⊂ W . Since W is contractible, the mapping
cone of V ↪→ W can be identified with the unreduced suspension of V .
But W is also a smooth Banach manifold, and W r V is a codimension
n smooth submanifold of W , homeomorphic to the space of paths in N
from f(x) to f(y). The normal bundle of W r V in W corresponds to
the pullback of τN under the midpoint evaluation map. The mapping cone
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of the inclusion V → W is homotopy equivalent to the Thom space of the
normal bundle of W r V in W . ¤

Now our deduction of 1.4.2 from 1.3.3. goes like this: the second arrow
in (1.4.3) is (2n − 3 − 2m)–connected by Freudenthal, while the first is
(2n− 3− 3m)–connected by 1.3.3. ¤

Dax has another result along the lines of 1.4.2, giving a homotopy theoretic
analysis in the metastable range of the homotopy fiber of the inclusion
emb(M,N) → map(M, N) over some f ∈ map(M, N). We can also recover
this from 1.3.3. Note that our definition of pf in (1.4.3) works for any
continuous f : M → N . In this generality it does not make sense to speak
of sections of pf with compact support, but we can speak of tempered
sections of pf ; a section s is tempered if, for (x, y) in M ×M close to
but not in the diagonal, the value s(x, y) viewed as a path in N{x,y} stays
close to the diagonal. Stabilization combined with Poincaré duality gets us
from the space of tempered equivariant sections of pf to

Q

(
E g(f, f)Z/2

S(TM)Z/2
; τN− τM×M

)

where S(TM) is the total space of the unit sphere bundle associated with
TM . (Regard it as a Z/2–invariant subspace of M ×M r∆M , namely,
the boundary of a nice symmetric closed tubular neighborhood of ∆M in
M ×M . The inclusion of S(TM) in M ×M r∆M lifts canonically to an
equivariant map from S(TM) to E g(f, f).) Therefore the composition of
scanning, fiberwise stabilization and Poincaré duality is a map

(1.4.5)

hofiberf [ emb(M, N) → map(M, N) ]
y

paths from ∗ to 〈f ∩ f〉 in Q

(
E g(f, f)Z/2

S(TM)Z/2
; τN− τM×M

)

Here the definition of 〈f ∩ f〉 is a by–product of the stabilization process.
To understand where it comes from, note that the fiberwise suspension of
pf (as in 1.4.4) has two distinguished sections, denoted +1 and −1. Sta-
bilization and Poincaré duality take +1 to the base point by construction,
but −1 becomes 〈f ∩ f〉 by definition. — Arguing as we did in the proof
of 1.4.2 from 1.3.3, we get:
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1.4.6. Theorem [Da,VII.2.1]. The map (1.4.5) is (2n−3−3m)–connected.

Suppose that f in 1.4.6 is k–connected. Then the inclusion of S(TM)
in E g(f, f) is min{k − 1,m − 2}–connected, by inspection. (It can be
written as a composition S(TM) → E g(idM , idM ) −→ E g(f, f) in which
the second arrow is clearly (k−1)-connected. The first arrow can be looked
at as a map over M , and the fiber of E g(idM , idM ) over x ∈ M is, up to
homotopy equivalence, the homotopy fiber of M r x ↪→ M .) This gives a
corollary, essentially due to Haefliger again [Hae1]:

1.4.7. Corollary. Let f : M → N be a k–connected map. Then the
homotopy fiber of the inclusion emb(M, N) ↪→ map(M, N) over f is
min{k − 1 + n− 2m,n−m− 2, 2n− 3m− 4}–connected. In particular, it
is nonempty when m + 1 < 2n/3 and k > 2m− n .

2. Surgery methods

We will be concerned with two methods which use surgery to construct
smooth embeddings. The older one, initiated by Levine [Lev], aims to con-
struct a smooth embedding M → N by making hypotheses of a homotopy
theoretic nature which, via transversality, translate into a diagram

M
g←− M ′ e−→ N

where e is a smooth embedding and g is a degree one normal map, normal
cobordant to the identity M → M . The normal cobordism amounts to
a finite sequence of elementary surgeries transforming M ′ ∼= e(M ′) into
something diffeomorphic to M , and one tries to perform these surgeries
as embedded surgeries, inside N . The other method, invented by Browder
[Br1], [Br2], aims to construct a smooth embedding M → N by mak-
ing hypotheses of a homotopy theoretic nature which, via transversality,
translate into a diagram

M
e−→ N ′ f−−→ N

where e is a smooth embedding and f is a degree one normal map, nor-
mal cobordant to the identity. The normal cobordism amounts to a finite
sequence of elementary surgeries transforming N ′ into something diffeo-
morphic to N , and one tries to perform these surgeries away from e(M).

Reversing the historical order once again, we will begin with Browder’s
method, which reduces the problem of constructing embeddings M → N
to a homotopy theoretic one. Then we will turn to Levine’s method, to find
that it has a lot to tell us about the homotopy theoretic problem created
by Browder’s method.
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2.1. Smoothing Poincaré embeddings

Let (M, ∂M) and (N, ∂N) be Poincaré pairs, both of formal dimension n .
By a (codimension zero) Poincaré embedding of (M, ∂M) in (N, ∂N) we
mean a simple homotopy equivalence of Poincaré pairs

(M q∂M C, ∂1C)
f−→ (N, ∂N)

where (C, ∂C) is a special Poincaré triad of formal dimension n (that is, a
Poincaré pair with ∂C = ∂0C q ∂1C ) and ∂0C is identified with ∂M . We
call C the formal complement determined by the Poincaré embedding. For
example, if Mn and Nn are smooth compact manifolds, then a smooth em-
bedding g: M → N avoiding ∂N gives rise to a codimension zero Poincaré
embedding whose formal complement is the closure of N r g(M) in N .

Slightly more generally, we will say that a Poincaré embedding f as
above is induced by a smooth embedding g: M → N if f |M = g , and
f |C restricts to a simple homotopy equivalence (of special triads) from C
to the closure of N r g(M) in N .

2.1.1. Theorem. Let Mn and Nn be smooth compact, n ≥ 5 . Let
f : Mq∂M C → N be a codimension zero Poincaré embedding (in shorthand
notation). Let ι: νM → f∗νN |M be a stable vector bundle isomorphism
refining the canonical stable fiber homotopy equivalence determined by the
codimension zero Poincaré embedding (see explanations below). Assume
that f induces an isomorphism π1C → π1N . Then, up to a homotopy, the
pair (f, ι) is induced by a smooth embedding g: M → N avoiding ∂N .

Explanations. By the characterization of Spivak normal fibrations, the
codimension zero embedding determines a stable fiber homotopy equiv-
alence from νM (viewed as a spherical fibration) to f∗νn|M (ditto). The
stable vector bundle isomorphism ι also determines such a stable fiber
homotopy equivalence; we want the two to be fiberwise homotopic.

There is a mild generalization of 2.1.1 which involves the concept of a
Poincaré embedding of arbitrary (formal) codimension. Assume this time
that (M, ∂M) and (N, ∂N) are (simple) Poincaré pairs, of formal dimen-
sions m and n , where n−m =: q ≥ 0. A Poincaré embedding of (M,∂M)
in (N, ∂N) consists of

• a fibration E → M with fibers homotopy equivalent to Sq−1 (the
unstable normal fibration of the Poincaré embedding)

• a codimension zero Poincaré embedding of (zE, ∂zE), where zE is
the mapping cylinder of E → M and ∂zE is the union of E and
the portion of zE projecting to ∂M .
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This concept is due to [Br2], at least in the case where M and N are
smooth manifolds, ∂M = ∅ = ∂N .

2.1.2. Corollary. Let Mm and Nn be smooth compact, where n ≥ 5 ,
and q := n − m . Let a Poincaré embedding f of (M, ∂M) in (N, ∂N)
be given, with formal complement (C, ∂C) ; let a reduction of the structure
‘group’ G(q) of its unstable normal fibration to O(q) be given, refining
the canonical reduction for the stable normal fibration. Suppose that the
induced homomorphism π1C → π1N is an isomorphism. Then there exists
a smooth embedding M → N r ∂N inducing (up to a homotopy) the given
Poincaré embedding and the unstable refinement of the canonical reduction
for the stable normal fibration.

Explanations. Let fM be the restriction of f to M . The unstable refine-
ment of the canonical reduction etc. is a point in the homotopy fiber of an
evident map

BO(q)M −→ holim [BG(q)M −→ BGM ←− BOM ]

over the point determined by the unstable normal fibration on M , the
stable normal (vector) bundle νM−fM

∗νN on M , and the stable spherical
fibration determined by the stable normal vector bundle.

Browder came close to 2.1.1 in [Br1] and proved in [Br2] the special case
of 2.1.2 where M and N are simply connected, ∂M = ∅ = ∂N , and
n −m ≥ 3, which makes the hypothesis on fundamental groups superflu-
ous. One understands that Casson and Sullivan in unpublished but possibly
mimeographed work and lectures simplified Browder’s proof and obtained
the appropriate uniqueness statement (see 2.2). Also, Casson pointed out
[Ca] that Browder’s hypothesis n − m ≥ 3 could be replaced by the hy-
pothesis on fundamental groups in 2.1.2. Wall [Wa2, ch.11] proved 2.1.2 in
the nonsimply connected case. Therefore 2.1.2 and variations, see 2.2, are
known as the Browder–Casson–Sullivan–Wall theorem. For an indication
of the proof, see also 2.2.

2.2. Smoothing block families of Poincaré embeddings

Assume that M and N are smooth closed, for simplicity. The smooth
embedding M → N whose existence is asserted in 2.1.2 is not determined
up to isotopy, in general. But a relative version of 2.1.2, see [Wa2, 11.3 rel],
implies that it is determined up to a concordance of embeddings (smooth
embedding M × [0, 1] → N × [0, 1] taking M × i to N × i for i = 0, 1). In
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this way, 2.1.2 and the relative version give a homotopy theoretic expression
for π0 emb(M, N) modulo the concordance relation.

The block embedding space emb∼(M,N) is a crude approximation from
the right to emb(M, N). It is the geometric realization of an incomplete
simplicial set (alias simplicial set without degeneracy operators, alias ∆–
set) whose k–simplices are the smooth embeddings of special manifold
(k + 2)–ads

∆k ×M −→ ∆k ×N .

It is fibrant (has the Kan extension property), so that πk emb∼(M, N),
with respect to a base vertex f : M → N , can be identified with the set of
concordance classes of embeddings ∆k ×M → ∆k ×N which agree with
id×f on ∂∆k × M . Therefore 2.1.2 and the relative version give a ho-
motopy theoretic expression for all πk emb∼(M,N), k ≥ 0. This suggests
that 2.1.2 plus relative version admits a space level reformulation, involving
emb∼(M, N) and a Poincaré embedding analogue. We denote that ana-
logue by embPD

∼(M,N) ; it is defined whenever M and N are Poincaré
spaces. (There is also an ‘unblocked’ version, embPD(M, N) ; but the
inclusion of embPD(M, N) in embPD

∼(M, N) is a homotopy equivalence.)

We will also need notation and terminology for the complicated normal
bundle and normal fibration data. Given Poincaré spaces M and N , of
formal dimensions m and n , where n−m =: q ≥ 0, a Poincaré immersion
from M to N is a triple (f, ξ, ι) where f : M → N is a map, ξq is a
spherical fibration on M (fibers ' Sq−1 ), and ι is a stable fiber homotopy
equivalence of the Spivak normal fibration νM with the Whitney sum alias
fiberwise join ξ ⊕ f∗νN . We can make a space immPD(M, N) out of such
triples; we can also use the (k + 2)–ad analogue of the notion of Poincaré
immersion to define a block immersion space immPD

∼(M,N). It is easy to
see that the inclusion of immPD(M,N) in immPD

∼(M, N) is a homotopy
equivalence.

Remarks. Suppose that Mm and Nn are smooth and closed, n > m . The
immersion classification theorem, applied craftily to spaces of (smooth)
block immersions, implies that the block immersion space imm∼(M,N)
maps by a homotopy equivalence to the space of triples (f, ξ, ι) where

• f : M → N is a map
• ξ is an (n−m)–dimensional vector bundle on M
• ι: νM

∼= ξ ⊕ f∗νN is a stable vector bundle isomorphism.

This motivates our definition of immPD
∼(M, N) for Poincaré spaces M

and N , which is taken from [Kln3]. Beware: in the smooth setting, the
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inclusion imm(M, N) → imm∼(M,N) is not a homotopy equivalence in
general. (Try M = ∗ and N = Sn .)

We will sometimes also speak of Poincaré immersions from a Poincaré
pair (M, ∂M) to a Poincaré pair (N, ∂N), of formal dimensions m and n ,
respectively, m ≤ n . The definition is much the same as before.

2.2.1. Theorem (Browder–Casson–Sullivan–Wall). For closed smooth
Mm and Nn with n ≥ 5 and n − m ≥ 3 , the following commutative
square is ∞–cartesian:

emb∼(M,N) ⊂−−−−→ imm∼(M,N)
y

y
embPD

∼(M, N) ⊂−−−−→ immPD
∼(M,N) .

Remarks. The vertical arrows are essentially forgetful, but to make the
one on the left hand side explicit, we ought to redefine emb∼(M, N) using
smooth embeddings with specified riemannian tubular neighborhoods. The
right hand vertical arrow is (2n − 3 − 3m)–connected; therefore so is the
left hand one. See [Wa2, Cor. 11.3.2].

If n < 5 we can still say that the square becomes ∞–cartesian when
Ω5−n is applied — this requires a choice of base vertex in emb∼(M, N).
However, some condition like n−m ≥ 3 is essential.

Theorem 2.2.1 has PL and TOP versions. In the PL and TOP settings,
the content of the theorem is quite simply that emb∼(M, N) maps by
a homotopy equivalence to embPD

∼(M, N). Namely, in the PL and TOP
settings, the right hand vertical arrow in the diagram in 2.2.1 is a homotopy
equivalence; here again n−m ≥ 3 is essential. See [Wa2, Cor. 11.3.1].

Example. We calculate emb∼(∗,Rn). Observe first that our definition of
emb∼(M, N) makes sense for arbitrary smooth M and N without bound-
aries. We will use the stronger version of 2.2.1 where M and N are al-
lowed to be compact with boundary; only smooth and Poincaré embeddings
avoiding ∂N are considered, and we denote the corresponding block em-
bedding spaces by emb∼(M, N) and emb∼PD(M, N) for brevity. Our choice
is M = ∗ and N = Dn and we find

imm∼(∗,Dn) ' O/O(n) ,

immPD
∼(∗,Dn) ' G/G(n) ,

embPD
∼(∗,Dn) ' ∗ .
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Therefore emb∼(∗,Rn) ∼= emb∼(∗,Dn) is homotopy equivalent to the ho-
motopy fiber of the inclusion O/O(n) −→ G/G(n).

2.2.2. Theorem. Let Mn and Nn be smooth compact, n ≥ 5 . Assume
that M has a handle decomposition with handles of index ≤ n − 3 only.
Then the following commutative square is ∞–cartesian:

emb∼(M,N) ⊂−−−−→ imm∼(M,N)
y

y
embPD

∼(M, N) ⊂−−−−→ immPD
∼(M,N) .

Remarks. This is the ‘family’ version of 2.1.1. In particular, emb∼(M,N)
is short for the space of smooth block embeddings of M in Nr∂N , and so
on. Precise definitions of the spaces in the diagram are left to the reader.
It is easy to deduce 2.2.1 from 2.2.2. We could drop the condition n ≥ 5
at the price of choosing a base vertex in emb∼(M,N) and applying Ω5−n .

We turn to the proof of 2.2.2, assuming ∂N = ∅ for simplicity. Actually we
will just deduce 2.2.2 from the Sullivan–Wall(–Quinn–Ranicki) homotopy
fiber sequence. To explain what this is, we fix a (simple) Poincaré space W
of formal dimension n . An s–structure on W is a pair (M,f), where M is
smooth closed and f is a simple homotopy equivalence f : M → W . The s–
structures on W form a groupoid where an isomorphism from (M1, f1) to
(M2, f2) is a diffeomorphism g: M1 → M2 satisfying f2g = f1 . We enlarge
this to an incomplete simplicial groupoid str•(W ) in which strk(W ) is the
groupoid of s–structures, in the special (k + 2)–ad sense, on ∆k × W .
The block structure space S∼(W ) of W can be defined as the geometric
realization of the incomplete simplicial set whose simplices in degree k are
rules ρ which associate

• to each face z of ∆k , an object ρ(z) in str|z|(W );
• to each face z of ∆k and face operator δ from degree |z| to a

smaller degree, an isomorphism δρ(z) → ρδ(z) in str|z|(W ). (These
isomorphisms are subject to an evident associativity condition.)

There is a second definition of S∼(W ), homotopy equivalent to the first,
according to which S∼(W ) is the geometric realization of the incomplete
simplicial space k 7→ |strk(W )| . However, the first definition matches our
earlier definition of block embedding spaces better. — The Sullivan–Wall
homotopy fiber sequence is then

S∼(W ) −→ RO
G(νW ) −→ Ωn+∞Ls

•(Zπ1W ).
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Here RO
G(νW ) is the homotopy fiber of BOW → BGW over the point de-

termined by νW (think of it as the space of ‘reductions’ of the structure
‘group’ of νW , from G to O) and Ls

•(Zπ1W ) is the L–theory spectrum as-
sociated with the group ring Zπ1W . We have shortened ΩnΩ∞ to Ωn+∞ .
We need a slightly more complicated version where W is a Poincaré triad,
∂W = ∂0W ∪ ∂1W , and the s–structures are fixed (prescribed) on ∂0W .
Consequently the structure ‘group’ reductions are also fixed (prescribed)
over ∂0W , and the relevant L–theory spectrum is the one associated with
the homomorphism of group rings Zπ1∂1W → Zπ1W induced by inclusion.

With M and N as in 2.2.2, fix a Poincaré embedding of M in N , say
f : M q∂M C → N . Let W be the mapping cylinder of f . Then W is a
Poincaré triad with ∂W ∼= (Mq∂M C)qN and ∂0W = MqN , ∂1W = C .
There is a preferred s–structure on ∂0W , given by the identity; indeed
∂0W is a smooth compact manifold. Browder’s crucial, highly original and
yet trivial observation at this point, slightly reformulated, is that S∼(W ),
with the definition where structures are prescribed on ∂0W , is homotopy
equivalent to the homotopy fiber (over the point f ) of the left hand vertical
arrow in the diagram of 2.2.2. It is easy to check that the corresponding
homotopy fiber of the right hand vertical arrow is homotopy equivalent to
RO

G(νW ) (with the definition where the reductions are fixed over ∂0W ),
and that, with these identifications, the map of homotopy fibers becomes
the map

S∼(W ) −→ RO
G(νW )

from the Sullivan–Wall homotopy fiber sequence. It is a homotopy equiv-
alence because, by the π–π–theorem, the L–theory term in the Sullivan–
Wall homotopy fiber sequence is contractible. ¤

Remark. In this proof RO
G(νW ) can be interpreted, via transversality, as a

space of ‘degree one normal maps’ to W which restrict to identity maps
over ∂0W . Such a normal map to W is exactly the same thing as a
smooth embedding M → N ′ , plus a degree one normal map N ′ → N ,
plus a normal cobordism from N ′ → N to the identity N → N .

2.3. Embedded Surgery

Let Mm be smooth closed. Following Levine [Lev] and Rigdon–Williams
[RiW], we will discuss the construction of embeddings M → Rn from the
following data:

• a degree one normal map g: M ′ → M and a normal (co)bordism
h from g to id: M → M ;

• a smooth embedding e: M ′ → Rn .
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On the set of such triples (g, h, e) there is an evident bordism relation.
Surgery methods can be used (some details below) to show that, when
2n−3−3m ≥ 0, every bordism class has a representative (g, h, e) in which
h is a product cobordism, so that g is homotopic to a diffeomorphism. A
straightforward Thom–Pontryagin construction leads to a homotopy theo-
retic description of the bordism set. Combining these two ideas, one obtains
embeddings M → Rn from homotopy theoretic data if 2n− 3− 3m ≥ 0.

The homotopy theoretic description. Let ν = νM be the stable normal
bundle of M . Let V n−m(ν) be the tautological (n − m)–dimensional
vector bundle on the homotopy pullback of

M
ν−→ BO ←− BO(n−m) .

There is a forgetful map from the base of V n−m(ν) to M , and a stable
map of vector bundles V n−m(ν) → ν covering it. This leads to another
forgetful or stabilization map

(2.3.1) ΩnT (V n−m(ν)) → Ωm+∞T (ν)

where the T denotes a Thom space and the (boldface) T denotes a Thom
spectrum. In Ωm+∞T (ν) we have a distinguished point ρ , the Spanier–
Whitehead or Poincaré dual of 1: M → QS0 . See 0.2, on the subject of
Poincaré spaces. By a Thom–Pontryagin construction, the set of triples
(g, h, e) as above, modulo bordism, can be identified with π0 of the homo-
topy fiber of (2.3.1) over the point ρ .

Digressing a little now, we note that a smooth embedding M → Rn

determines a triple (g, h, e) as above where h: M × [0, 1] → M is the
projection and e from M ×1 ∼= M to Rn is that embedding. The bordism
class of the triple (g, h, e) may be called the (smooth, unstable, etc.) normal
invariant of the embedding M → Rn .

The surgery methods. Assume that m ≥ 5. Let (g, h, e) be one of those
triples. To be more specific, we write the normal cobordism in the form
h: M ′′ → M , where dim(M ′′) = m + 1. Surgery below the middle di-
mension on M ′′ creates a bordism from the triple (g, h, e) to another such
triple, (g1, h1, e1), in which h1: M ′′

1 → M is [m/2+1/2]–connected. Then
the inclusion of M in M ′′

1 is [m/2 − 1/2]–connected. It follows that M ′′
1

admits a handle decomposition, relative to a collar on M ′
1 := ∂M ′′

1 rM ,
with handles of index ≤ m− [m/2− 1/2] only.

Now choose a handle of lowest index i , giving a framed embedding
u: (Di, Si−1) → (M ′′

1 ,M ′
1). We try to create a bordism from (g1, h1, e1) to
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another triple, (g2, h2, e2), by doing a half–surgery, alias handle subtrac-
tion, on u(Di). Of course, the resulting surgery on u(Si−1) ⊂ M ′

1 has to be
an embedded surgery — embedded in Rn × [0, 1], to be precise. The ‘em-
bedded surgery lemma’ in [RiW] shows that the required (partly embedded)
half–surgery can be carried out if n−m > i . Since i ≤ m− [m/2−1/2], it
is enough to require 2n− 3− 3m ≥ 0. In that case we can also repeat the
procedure until all handles in the handle decomposition of M ′′

1 relative to
M ′

1 have been subtracted. So (g2, h2, e2) is bordant to a triple (gr, hr, er)
in which hr is a product cobordism. ¤

Hence we have the existence part of the following (the proof of uniqueness
uses the same ideas in a relative setting):

2.3.2. Proposition [RiW]. Assume m ≥ 5 . If 2n − 3 − 3m ≥ 0 , then
every element in π0 of the homotopy fiber of (2.3.1) over ρ is the (unstable)
normal invariant of a smooth embedding M → Rn . If 2n − 3 − 3m > 0 ,
such an embedding is unique up to concordance.

Although 2.3.2 owes a lot to the ideas in [Lev], it has a sharper focus and
leads on to a number of new ideas. In particular, 2.3.2 generalizes easily
to block families: M can be replaced by M ×∆k and Rn by Rn ×∆k in
the sketch proof. We must require 2(n + k) − 3 − 3(m + k) ≥ 0, in other
words k ≤ 2n − 3 − 3m , and pay some attention to the faces M × di∆k .
This shows that our unstable normal invariant for embeddings of M in Rn

is really a map

(2.3.3)

emb∼(M,Rn)
y

hofiberρ [ ΩnT (V n−m(ν)) → Ωm+∞T (ν) ]
and gives us an estimate for the connectivity:

2.3.4. Theorem. The map (2.3.3) is (2n− 3− 3m)–connected (m ≥ 5).

Let f : M → Rn be an immersion with normal bundle νf ; so νf is a vector
bundle of dimension n−m on M .

2.3.5. Corollary. Suppose that m ≥ 5 . There is a (2n − 3 − 3m)–
connected map

hofiberf [ emb∼(M,Rn) ↪→ imm∼(M,Rn) ]
y

hofiberρ [ ΩnT (νf ) ↪→ Ωm+∞T (ν) ] .
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Proof. The map is a variation on (2.3.3); use the fact that an embedding
M → Rn equipped with a regular homotopy to f has a normal bundle
which is canonically identified with νf . To show that the map in question
is (2n − 3 − 3m)–connected, view it as the left column of a commutative
square whose right column is (2.3.3). Now we need to show that the square
is (2n−3−3m)–cartesian. With the abbreviations emb∼ = emb∼(M,Rn)
and imm∼ = imm(M,Rn), this reduces to the assertion that

hofiberf [emb∼ → imm∼]
forget−−−−−−−→ emb∼

y
y

ΩnT (νf ) −−−−−−−−−→ ΩnT (V n−m(ν))

is (2n − 3 − 3m)–cartesian. Actually this is (2n − 2 − 3m)–cartesian.
(Use the immersion classification theorem and Blakers–Massey to under-
stand the homotopy fibers of the upper and lower rows, respectively. Then
compare.) ¤

2.4. Poincaré embeddings into disks

Williams was apparently the first to realize [Wi1] that the proper context
for Levine’s ideas in [Lev] was not manifold geometry, but Poincaré space
geometry. To illustrate this point, we will translate 2.3.5 into Poincaré
space language, relying on 2.2.1 for the translation. For a Poincaré pair
(M, ∂M) of formal dimension n , let Ωn

`(M/∂M) ⊂ Ωn(M/∂M) consist
of the elements which carry a fundamental class for (M, ∂M). This is a
union of connected components of Ωn(M/∂M).

2.4.1. Reformulation of 2.3.5. Let (M,∂M) be the Poincaré pair of
formal dimension n determined by a spherical fibration ξn−` on a smooth
closed L` . That is, ∂M is the total space of ξ , and M is the mapping
cylinder of the projection ∂M → L . If ` ≥ 5 , then the map

emb∼PD(M,Dn) −→ Ωn
`(M/∂M)

associating to a Poincaré embedding its collapse map is (2n − 3 − 3`)–
connected.

Explanation. Make a space EPD whose elements are pairs (µ, σ) where
µn−` is a spherical fibration on L , and σ: Sn → T (µ) carries a fundamental
class. The real content of 2.4.1 is that the map

emb∼PD(L,Dn) → EPD
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which to a Poincaré embedding associates its normal bundle and collapse
map is (2n− 3− 3`)–connected. We now deduce this from 2.3.5:

By the characterization of the Spivak normal fibration of L , the spherical
fibration µ in any (µ, σ) ∈ EPD is (canonically) stably fiber homotopy
equivalent to νL . So there is a forgetful map EPD → imm∼

PD(L,Dn). Let
E be the homotopy pullback of

EPD → imm∼
PD(L,Dn) ← imm∼(L,Rn) .

We get a commutative square

emb∼(L,Rn) −−−−→ E
y

y
emb∼PD(L,Dn) −−−−→ EPD

which is ∞–cartesian by 2.2.1. By the remark after 2.2.1, the right–hand
vertical arrow is (2n− 3− 3`)–connected So it is enough to show that the
upper horizontal arrow in the square is (2n− 3− 3`)–connected. But that
is exactly the content of 2.3.5. ¤

Williams saw that the peculiar hypotheses on the Poincaré pair (M/∂M)
in 2.4.1 could be replaced by a single much simpler one. (For simplicity
we restrict attention to π0 emb∼PD(M,Dn). We write π`n(M/∂M) for the
subset of πn(M/∂M) consisting of the elements which carry a fundamental
class.)

2.4.2. Theorem [Wi1]. Let (M, ∂M) be a Poincaré pair of formal dimen-
sion n ≥ 6 , where M is homotopy equivalent to a CW–space of dimension
m . Assume that π1∂M → π1M is an isomorphism. Then the map

π0 emb∼PD(M,Dn) −→ π`n(M/∂M)

associating to a Poincaré embedding the class of its collapse map is surjec-
tive for 2n− 3− 3m ≥ 0 , and bijective for 2n− 3− 3m > 0 .

Williams’ proof of 2.4.2 uses Hodgson’s thickening theorem, 2.4.4 below.
This is a distant corollary of Hudson’s embedding theorem:

2.4.3. Theorem [Hu1, 8.2.1], [Hu2, 1.1]. If Nn is a compact smooth
manifold and P is a codimension zero compact smooth submanifold of ∂N
such that P ↪→ N is j –connected, then any element of πr(N, P ) may
be represented by a smooth embedding (Dr,Sr−1) → (N, P ) provided that
r ≤ n− 3 and 2r ≤ n + j − 1 .
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2.4.4. Theorem [Ho, 2.3]. Let Nn be a compact smooth manifold, n ≥ 6 ,
and P a codimension zero smooth submanifold of ∂N . Let K be a CW–
space rel P of (relative) dimension ≤ k , and let f : K → N be any map
rel P . If f is (2k − n + 1)–connected rel P , then f is homotopic rel P
to a composition

K
'−→ K ′ ↪→ N

where K ′ is a smooth compact triad contained in N with ∂0K
′ = P =

K ′ ∩ ∂N , and K → K ′ is a simple homotopy equivalence rel P .

Remark. It is an exercise, but a non–trivial one, to deduce the special case
of 2.4.4 where K has just one cell rel P from 2.4.3.

Outline of proof of 2.4.2. Two key concepts in Williams’ proof are those of
compression and decompression. The decompression of a codimension zero
Poincaré embedding of M in N is an obvious codimension zero Poincaré
embedding of M × J in N × I where I = [0, 1] and J = [1/3, 2/3]. Here
M, N are short for Poincaré pairs of formal dimension n , and M×J , N×I
are short for certain Poincaré pairs of formal dimension n+1. Conversely,
to compress a Poincaré embedding of M × J in N × I means to find a
concordance from it to the decompression of some Poincaré embedding of
M in N .

Browder points out in [Br2] that a map η: Sn → M/∂M which carries
a fundamental class for the Poincaré pair (M, ∂M) determines a Poincaré
embedding of M × J in Dn× I . Its formal complement C is the mapping
cylinder of

∂(M × J) q ∂(Dn × I)
qqη−−−→ M/∂M

where q is the quotient map collapsing M × 1/3 and ∂M × J to a point.
The boundary ∂C is ∂(M × J) q ∂(Dn × I).

This leaves the task of compressing M × J → Dn× I , the Poincaré em-
bedding determined by some η from Sn to M/∂M as above, to a Poincaré
embedding M → Dn . Hirsch [Hi2] gives a necessary and often sufficient
condition for the existence of such a compression: that the inclusion of
M × 1/3 ⊂ ∂(M × J) in the formal complement C of the Poincaré em-
bedding M × J → Dn × I be nullhomotopic. This is clearly satisfied
here — there is a preferred choice of nullhomotopy alias link trivialization.
Williams shows in fact that the map just described, from π`n(M/∂M) to
concordance classes of Poincaré embeddings M × J → Dn × I with a link
trivialization, is a bijection. (This is not difficult.) He then proceeds to
show that the link trivialization determines a compression. His argument
has two parts:
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(i) Without loss of generality, M and C are compact smooth mani-
folds. Namely, the existence of η: Sn → M/∂M implies that the Spivak
normal fibration of M is trivial; hence there exists a degree one normal
map (M,∂M) → (M,∂M) where M is smooth compact, and by the π−π
theorem (here we use n ≥ 6 and the condition on fundamental groups) this
is normal bordant to a homotopy equivalence. A similar argument works
for C ; in this case the manifold structure is already prescribed on ∂0C
since we want ∂0C ∼= ∂M .

(ii) The nullhomotopy for M × 1/3 ↪→ C means that the inclusion of
(M × 1/3)q (Dn× 0) in ∂C extends to a map e: X → C , where X is any
CW–space rel (M × 1/3)q (Dn× 0) which is contractible. The metastable
range condition in 2.4.2 now makes it possible to use Hodgson’s thickening
theorem, 2.4.4. The conclusion is that X can be taken to be a compact
n + 1–manifold with π1∂X ∼= π1X , and (M × 1/3) q (Dn × 0) contained
in ∂X ; moreover, e can be taken to be an embedding. Then X is an
(n + 1)–disk and the inclusion of M × 1/3 in the closure of ∂X r (Dn× 0)
is the compressed embedding we have been looking for. ¤

Remark. The idea to use Hodgson’s thickening theorem 2.4.4 for compres-
sion purposes comes from [Lt] and Hirsch [Hi2]. Actually Hirsch had to
work with Hudson’s embedding theorem, 2.4.3.

Williams noted in [Wi2] that his own proof of 2.4.2 “... consists of convert-
ing (M,∂M) to a manifold and then using smooth embedding theory ”
and went on to propose an alternative and truly homotopy theoretic proof,
along the following lines. Given η: Sm → M/∂M carrying a fundamen-
tal class, Browder’s observation gives as before a Poincaré embedding of
M × J in Dn × I with a preferred link trivialization, and formal comple-
ment homotopy equivalent to M/∂M . If this compresses to a Poincaré
embedding of M in Dn with formal complement A , then there is a square,
commutative up to preferred homotopy

∂(M × J) −−−−→ M/∂M

quotient map

y
y'

Σu∂M
Σuι−−−−→ ΣuA.

Here Σu denotes unreduced suspension, and the rows are, respectively and
essentially, inclusion of boundary of M×J in complement of uncompressed
embedding, and Σu of inclusion of boundary of M in complement of com-
pressed embedding. The left–hand column is (isomorphic to) the projection
from ∂(M × J) to the quotient of ∂(M × J) by M × ∂J . — Conversely,
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if the square exists, then the compression exists. Using elementary ho-
motopy theoretic arguments, Williams managed to show that, under the
hypotheses of 2.4.2, there is indeed a homotopy commutative square

∂(M × J) −−−−→ M/∂M

quotient map

y
y'

Σu∂M −−−−→ ΣuA.

But he did not show with homotopy theoretic methods that the lower hor-
izontal arrow desuspends. This was done much later by Richter [Ric], who
combined desuspension techniques of Hilton and Boardman–Steer [BS],
Berstein–Hilton [BH], and Ganea [Ga1], [Ga2], [Ga3].

2.5. Poincaré embeddings: The fiberwise point of view

We turn to the subject of codimension zero Poincaré embeddings with arbi-
trary codomain. To remain as close as possible to the conceptual framework
of 2.4, we use the language and notation of fiberwise homotopy theory (over
the codomain, which is fixed). The idea of using fiberwise homotopy theory
in the context of Poincaré duality and Poincaré embeddings is due to J.
Klein and S. Weinberger, independently.

Notation, terminology. For a space Z , let R(Z) be the category of retrac-
tive spaces over Z . An object of R(Z) is a space C equipped with maps
r: C → Z and s: Z → C such that rs = idZ . We assume that s is a cofi-
bration. The morphisms from C1 to C2 are maps f : C1 → C2 satisfying
fs1 = s2 and r2f = r1 where ri and si are the structure maps for Ci . We
call such a morphism a weak equivalence if the underlying map C1 → C2 of
spaces, without structure maps from and to Z , is a homotopy equivalence.
(We will make sure that all spaces in sight are homotopy equivalent to
CW–spaces.) If r2 is a fibration, we define [C1, C2] as the set of homotopy
classes (vertical and rel Z ) of morphisms C1 → C2 in R(N). In general,
we choose a weak equivalence C2 → C&

2 of retractive spaces over Z , where
the structure map C&

2 → Z is a fibration, and let

[C1, C2] := [C1, C
&
2 ] .

More notation. For a space X over Z and (well–behaved) subspace A of
X , let X//A be the pushout of X ←− A −→ Z , viewed as an object of R(Z)
with obvious structure maps.
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Let (M, ∂M) and (N, ∂N) be Poincaré pairs of the same formal dimension
n . Let g: M → N be any map (not necessarily respecting boundaries). If

f : (M q∂M C , ∂1C) −→ (N, ∂N)

is any Poincaré embedding of M in N , then we can regard the domain of
f as a space over N . If f is equipped with the additional structure of a ho-
motopy from f |M to g , then the identification map from (Mq∂M C) //∂1C
to (M q∂M C) //C can be written, modulo canonical weak equivalences, as
a map

η: N//∂N −→ M//∂M

where M is viewed as a space over N by means of g . We call η the collapse
map determined by f (and the homotopy from f |M to g ). It carries a
fundamental class for (M,∂M). That is, the induced map from N/∂N to
M/∂M takes any fundamental class for (N, ∂N) to one for (M, ∂M). Let

[N//∂N, M//∂M ]` ⊂ [N//∂N, M//∂M ]

consist of the homotopy classes of retractive maps N//∂N → (M//∂M)&

which are fundamental–class carrying.

2.5.1. Theorem [Kln3]. Let (M,∂M) and (N, ∂N) be Poincaré pairs of
formal dimension n . Suppose that M has the homotopy type of a CW–
space of dimension m , and ∂M → M induces an isomorphism of funda-
mental groups. Let g: M → N be any map. Then the map

π0 hofiberg (emb∼PD(M, N) → map(M,N)) −−−→ [N//∂N,M//∂M ]`

which associates to a Poincaré embedding f (with a homotopy from f |M
to g ) its collapse map is surjective for 2n− 4− 3m ≥ 0 , and bijective for
2n− 4− 3m > 0 .

Outline of proof, following [Kln3]. The proof is very similar to that of 2.4.2.
Make M into a space over N using g . Every [η] in [N//∂N, M//∂M ] can
be represented by a morphism

η: N//∂N −→ (M//∂M)&

in R(N). If η carries a fundamental class, then it determines a Poincaré
embedding of M×J in N×I whose formal complement C is the mapping
cylinder of

∂(M × J)q ∂(N × I)
qqη−−−−−−→ (M//∂M)&.
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The Poincaré embedding has a preferred link trivialization, a vertical null-
homotopy (over N ) of the composite map M × 1/3 ↪→ ∂C ↪→ C . One
shows that the link trivialization determines a compression. At this point,
conversion of M and C to manifolds is not an option. So what one needs
is an analogue of Hodgson’s thickening theorem, 2.4.4, with Poincaré pairs
instead of manifolds with boundary. Klein supplies this in [Kln1], [Kln2].
It is (currently) slightly less sharp than Hodgson’s, which accounts for the
loss of one dimension (2n−4−3m in 2.5.1 where 2.4.2 has 2n−3−3m). ¤

Remarks. This proof is much closer to Williams’ original proof of 2.4.2 than
to the alternative homotopy theoretic proof of 2.4.2 planned by Williams
and carried out by Richter.

Klein’s proof of the Poincaré analogue of Hodgson’s thickening theorem
is homotopy theoretic, and it is the homotopy theory of retractive spaces
over some fixed base space which is used.

3. Higher excision, multiple disjunction

Remark. The canonical problem in (approximate) higher excision theory
of practically any kind is this. Given a finite set S and a strongly ∞–
cocartesian S –cube X of spaces (perhaps subject to some conditions of
a geometric nature), and a functor F , covariant or contravariant, from
such spaces to spaces, find a large k such that the S –cube FX is k–
cartesian. This was apparently first considered for F = id by Barratt
and J.H.C. Whitehead [BaW], following the work of Blakers and Massey
[BlM1], [BlM2] in the case |S| = 2. The result of [BaW] was later improved
on by Ellis and Steiner [ES]; see also [Go3]. For us, X will often be a cube
of manifolds, and F will often be something like ‘space of embeddings to
or from a fixed manifold’.

Notation, conventions. In this chapter, N denotes a compact smooth man-
ifold with boundary, or a Poincaré pair of formal dimension n . The symbols
M and Li are reserved for (smooth compact or Poincaré) triads; here i
runs through the elements of a finite set S . We assume that embeddings
∂0M → N and ∂0Li → N are specified, with ‘disjoint’ images (in the
Poincaré case this means that a Poincaré embedding of the disjoint union
of M and the Li in N is specified).

For R ⊂ S write LR :=
∐

i∈R Li . In the smooth case, we allow only
embeddings from M to N or from LR to N which agree with the specified
ones on ∂0M or ∂0LR , and for which ∂0M or ∂0LR is the transverse
preimage of ∂N . Analogous conditions are imposed in the Poincaré case ;
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also, maps from M to N or from LR to N are prescribed on ∂0M and
∂0LR . Spaces of such embeddings and maps will be denoted emb(M, N),
emb(LR , N), map(M, N) and so on, with embellishments as appropriate,
e.g., a tilde for block embedding spaces. If we wish to make the subscript
R in LR into a variable, we may write L• . For example, emb(L•, N) is
short for the (contravariant) S –cube given by R 7→ emb(LR, N).

Sometimes, but not always, we assume M ⊂ N and/or Li ⊂ N , in
which case the inclusions M → N and/or Li → N are subject to the
above conditions.

In the case where the Li are smooth, let `i be the smallest number
such that Li can be obtained from a closed collar on ∂0Li by successively
attaching handles of index ≤ `i . In the case where the Li are Poincaré
triads, let `i be the smallest number such that Li is homotopy equivalent
rel ∂0L to a CW–space rel ∂0L with cells of dimension ≤ `i only. Let m
be the corresponding number for M . (These numbers are called ‘relative
handle dimension’ in the smooth case, and ‘relative homotopy dimension’
in the Poincaré case.) Let `′i := n− `i − 2.

3.1. Easy multiple disjunction for embeddings

Here we assume that M , N and Li for i ∈ S are smooth, and LS ⊂ N .

3.1.1. Proposition. The diagram emb(M, N r L•) is (1 + Σi(λi − 2))–
cartesian, where λi is the maximum of (n−m− `i) and 0 .

Proof. Abbreviate ER = emb(M, NrLR) for R ⊂ S . By an easy multiple
induction over the number(s) of handles needed to build M from ∂0M ,
and Li from ∂0Li , we can reduce to the case where these numbers are
all equal to 1. We may then replace the handles by their cores; so now M
and the Li are disks of dimension m and `i , respectively, and ∂1M = ∅ ,
∂1Li = ∅ .

General position arguments show that the complement of ER∪i in ER ,
for i ∈ S r R , has codimension ≥ λi in ER , and the complement of
∪i/∈RER∪i has codimension ≥ Σi/∈Rλi in ER . Therefore each pair

(ER,∪i/∈RER∪i)

is (kS−R)–connected where kT = −1 + Σi∈T λi for T ⊂ S . According to
[Go3, 2.5] the cubical diagram is then k–cartesian where k is the minimum
of 1 − |S| + ΣαkS(α) over all partitions {S(α)} of S . The minimum is
achieved when S is partitioned into singletons. ¤
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In the corollary which follows, we have N and Li for i ∈ S as usual; there
is no M and there is no preferred embedding of LS in N .

3.1.2. Corollary. The diagram emb(L•, N) is (3−n+Σi(n− 2`i− 2))–
cartesian.

Proof. Choose j ∈ S for which `j is minimal. Let T := S r j . It is
enough to show that for every choice of base point e in emb(LT , N), the
cube given by

R 7→ hofibere [ emb(LR∪j , N) res.−−→ emb(LR, N) ]

for R ⊂ T is (3− n + Σi∈S(n− 2`i − 2))–cartesian. Here homotopy fibers
over e may be replaced by fibers over e , so that we have to show that
R 7→ emb(Lj , Nre(LR)) is (3−n+Σi∈S(n−2`i−2))–cartesian. But this
follows directly from 3.1.1, with T instead of S and Lj instead of M . ¤

Remark/Preview. Although 3.1.2 is not sharp, it is an excellent tool in
the study of spaces of smooth embeddings emb(M,N) when 2m < n− 2.
To handle all cases m < n − 2, we need a stronger multiple disjunction
theorem for embeddings, 3.5.1 below. This is much harder to prove. We
will proceed in historical order, going through multiple disjunction and
higher excision theorems for spaces of concordance embeddings, Poincaré
embeddings, and block embeddings, before we get to (serious) multiple
disjunction and higher excision for spaces of embeddings.

3.2. Multiple disjunction for concordance embeddings

Here we assume that M , N and Li for i ∈ S are smooth, M ⊂ N and
Li ⊂ N , pairwise disjoint in N . A concordance embedding of M in N is
a concordance of embeddings from the inclusion to some other embedding,
i.e. an embedding M × [0, 1] → N × [0, 1] which

• restricts to the inclusion on M × 0 and ∂0M × [0, 1]
• takes M × 1 to N × 1
• is transverse to the boundary of N × [0, 1], the inverse image of the

boundary being M × 0 ∪ M × 1 ∪ ∂0M × [0, 1].
The space of such concordance embeddings is cemb(M, N). It is not es-
sential here that N be compact. Actually in 3.2.1 and 3.2.2 below we also
use concordance embedding spaces cemb(M,N r A) where A is a closed
subset of N , disjoint from M .

The following theorem is a slight reformulation of the main result of [Go1];
see [Go7] for instructions.
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3.2.1. Theorem. If m ≤ n − 3 and `i ≤ n − 3 for i ∈ S , then the
contravariant S –cube cemb(M,N r L•) is (n−m− 2 + Σi`

′
i)–cartesian.

We state the cases |S| = 0 and |S| = 1 explicitly:

3.2.2. Corollary. If m ≤ n − 3 , then cemb(M,N) is (n − m − 3)–
connected.

3.2.3. Corollary. If m ≤ n − 3 and ` ≤ n − 3 , then the inclusion map
cemb(M, N r L) → cemb(M, N) is (2n−m− `− 4)–connected.

Corollary 3.2.2 improves on a result due to Hudson [Hu1, Thm. 9.2]. Corol-
lary 3.2.3 is essentially the celebrated Morlet disjunction lemma (Morlet
had 2n−m−`−4 only for simply connected N , otherwise 2n−m−`−5).
There is no published proof of Morlet’s lemma by Morlet, although there
were course notes [Mo] at one time. The earliest published proof appears to
be the one in [BLR]. For the PL version there is a proof by Millett [Milt1],
[Milt2, Thm. 4.2] which uses ‘sunny collapsing’ (the technique which also
Hatcher and Quinn used to prove their disjunction theorem 1.3.1, and which
Goodwillie used to prove 3.2.1).

Note that 3.2.3 is not an obvious consequence of a relative version of the
Hatcher–Quinn disjunction theorem 1.3.1. There is such a version, but the
connectivity estimate we get from it is not good enough. Morlet’s lemma is
deeper than the Hatcher–Quinn theorem, although it is older. (Conversely,
the Hatcher–Quinn theorem is a much better introduction to the subject
of disjunction than Morlet’s lemma.)

In applications later on, the special case of 3.2.1 where M and the Li

have the same dimension as N is most important. In that case we allow
ourselves to mean by N rLR , N rM etc. the closure of the complement
of LR , M etc. in N . There is a fibration sequence

C(N rM r LR) −→ C(N r LR) −→ cemb(M, N r LR)

where C is for spaces of smooth concordances. (A concordance of P is
a diffeomorphism P × [0, 1] → P × [0, 1] restricting to the identity on
∂P × [0, 1] and on P ×0.) From 3.2.2 we also know that cemb(M, NrLR)
is connected if m ≤ n − 3, in which case we get another homotopy fiber
sequence

cemb(M,N r LR) −→ BC(N rM r LR) −→ BC(N r LR) .

Therefore 3.2.1 implies that the diagram BC(NrMrL•) → BC(NrL•)
is (n − m − 2 + Σi`

′
i)–cartesian. Renaming M as one of the Li , and

enlarging S accordingly, we have:
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3.2.4. Corollary. If `i ≤ n − 3 for all i ∈ S , then BC(N r L•) is
Σi`

′
i –cartesian.

3.3. Multiple disjunction for Poincaré embeddings

Here we assume that N is a Poincaré pair and that M and the Li for
i ∈ S are Poincaré triads, all of the same formal dimension n . A Poincaré
embedding e of LS in N is fixed. For R ⊂ S we denote by N r LR the
formal complement of e|LR , viewed as a Poincaré pair.

3.3.1. Theorem. If m ≤ n−3 and `i ≤ n−3 for i ∈ S , then the diagram
embPD(M, N rL•) −→ map(M,N rL•) is (n−2m−2+Σi`

′
i)–cartesian.

Remarks. The special case |S| = 1 is the (codimension zero) Poincaré ver-
sion of 1.3.1; notice a loss of 1 in the connectivity estimate. In the general
form, 3.3.1 is an important ingredient in the proof of 3.5.3 below, a ‘multi-
ple’ version of 1.3.1, again for smooth embeddings; somewhat miraculously
the loss of 1 can be repaired in the deduction.

There is a version of 3.3.1 where M and the Li are allowed to have arbi-
trary formal dimensions ≤ n , and where the relative homotopy dimensions
m and `i are replaced by the formal dimensions of M and the Li . This
is an easy consequence of 3.3.1 as it stands.

The full proof of 3.3.1 is still in preparation [GoKl], but a slightly weaker
result is proved in [Go6]. Let H(N r LR) be the space of homotopy au-
tomorphisms of N r LR relative to the boundary. Select a base vertex in
embPD(M, N r LS) if possible. Let

XR := hofiber [ H(N r LR)
|M−−→ embPD(M, N r LR) ] ,

YR := hofiber [ H(N r LR)
|M−−→ map(M, N r LR) ] .

The forgetful arrows XR → YR lead to a diagram X• → Y• . It is shown
in [Go6] that this is (n− 2m− 3 + Σi`

′
i)–cartesian. The looped version of

3.3.1 follows since the diagram H(N r L•) −→ H(N r L•) given by the
identity maps H(N r LR) → H(N r LR) is ∞–cartesian.

3.3.2. Corollary. If m ≤ n − 3 and `i ≤ n − 3 for i ∈ S , then the
diagram embPD(M,N r L•) is (1−m + Σi`

′
i)–cartesian.

Sketch proof modulo 3.3.1. The diagram map(M, NrL•) is (1−m+Σi`
′
i)–

cartesian. ¤
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Corollary 3.3.2 has a more symmetrical reformulation as a ‘higher excision
theorem’, obtained by renaming M as one of the Li . (The hypotheses here
are a little different: there is no M anymore, since it has been renamed,
and no preferred Poincaré embeddings of the Li in N are specified; but as
usual, the ∂0Li are embedded in ∂N .)

3.3.3. Corollary. If `i ≤ n−3 for i ∈ S , then the diagram embPD(L•, N)
is (3− n + Σi`

′
i)–cartesian.

Proof modulo 3.3.2. The case S = ∅ is trivial. Assume S 6= ∅ . Pick j ∈ S .
Let T = S r j . By [Go3, 1.18] it suffices to show that for every choice of
base point e in embPD(LT , N), the T –cube

hofiber [ embPD(L•∪j , N) → embPD(L•, N) ]

(where • stands for a variable subset of T ) is (3− n + Σi∈S`′i)–cartesian,
in other words (1 − `j + Σi∈T `′i)–cartesian. But this follows from 3.3.2
(with T in place of S and Lj in place of M ), since the homotopy fiber of
embPD(LR∪j , N) → embPD(LR, N) over e|LR is homotopy equivalent to
embPD(Lj , N r LR). ¤

3.4. Higher excision for block embeddings

Here we assume that N and the Li for i ∈ S are smooth, all of the same
formal dimension n . There is no M .

3.4.1. Theorem. If n ≥ 5 and `i ≤ n − 3 for i ∈ S , then the diagram
emb∼(L•, N) is (3− n + Σi`

′
i)–cartesian.

Proof. By 3.3.2 and [Go3, 1.18], it is enough to show that for every choice
of base point in embPD

∼(LS , N), the diagram

hofiber [ emb∼(L•, N) → embPD
∼(L•, N) ]

is (3 − n + Σi`
′
i)–cartesian. But this is ∞–cartesian since, by a mild

generalization of 2.2.2, we can identify it with

hofiber [ imm∼(L•, N) → immPD
∼(L•, N) ] . ¤
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3.5. Higher excision for embeddings

3.5.1. Theorem. Under the hypotheses of 3.4.1, the diagram emb(L•, N)
is (3− n + Σi`

′
i)–cartesian.

There is an equivalent ‘multiple disjunction’ version:

3.5.2. Theorem. If n ≥ 5 and n−m ≥ 3 , n− `i ≥ 3 for all i , then the
cube emb(M,N r L•) is (1−m + Σi`

′
i)–cartesian.

Outline of proof of 3.5.1. Choose a base vertex e in emb∼(LS , N). For
R ⊂ S let XR be the homotopy fiber (over e|LR ) of the inclusion of
emb(LR , N) in emb∼(LR , N). By 3.4.1, it suffices to show that X• is
(3− n + Σi`

′
i)–cartesian. There are homotopy fiber sequences

diff∼(N r LR)
diff(N r LR)

−→ diff∼(N)
diff(N)

−→ XR

where N r LR is short for the closure of the complement of e(LR) in N ,
and all diffeomorphisms in sight restrict to the identity on the appropriate
boundary. Therefore (and because XS is connected, by 3.2.2) it is enough
to show that Y(N r L•) is (2− n + Σi`

′
i)–cartesian, where

Y(P ) :=
diff∼(P )
diff(P )

for a compact smooth P . In fact we will show (twice) that Y(N r L•) is
Σi`

′
i –cartesian.
First argument. One of the main results of [WW1], motivated by a

spectral sequence due to Hatcher [Hat], says that Y(P ) is, up to homotopy
equivalence, the homotopy colimit of a diagram

∗ = F0Y(P ) → F1Y(P ) → F2Y(P ) → . . .

where each arrow fits into a homotopy fiber sequence

FjY(P ) ↪→ Fj+1Y(P ) → Bj+1C(P × [0, 1]j) .

(Here Bj+1 denotes (j + 1)–fold j –connected deloopings.) All of this
depends naturally on P , with respect to codimension zero embeddings.
Hence it is enough to show that Bj+1C((NrL•)×[0, 1]j) is Σ`′i –cartesian,
and more than enough to show that it is (j+Σ`′i)-cartesian. But this follows
easily from 3.2.4 (use induction on |S|).
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Second argument. Again we think of Y as a functor on compact smooth
manifolds and codimension zero embeddings. There is a natural homotopy
fiber sequence

Y(P × [0, 1]) −→ C∼(P )
C(P )

−→ Y(P )

where C∼(P ), the ‘block’ version of C(P ), is contractible, so that the term
in the middle is BC(P ). Moreover Y(P ) is connected for any P . These
properties are strong enough to imply that the higher excision estimates
for the functor BC are also valid for the functor Y . See [Go7] for the
details, which are quite elementary. ¤

3.5.1. Theorem [bis]. The hypothesis n ≥ 5 in 3.5.1 and 3.5.2 is unnec-
essary.

Idea of proof. If n = 3 then necessarily m = 0, so that 3.5.2 for n = 3
follows from 3.1.1. Now assume n = 4. The looped versions of 3.4.1 and
3.4.4 are then still valid, with the same proof, and for any compatible choice
of base points. The looped version of 3.5.2 with n = 4 follows, as before,
for any choice of base point in emb(M, NrLS). Moreover 3.1.1 shows that
the diagram in 3.5.2 (but with n = 4) is 1–cartesian. This is enough. ¤

The higher excision theorem 3.5.1 leads to a multiple disjunction theorem
for embeddings and maps, in the style of 1.3.1 and 3.3.1. To state it we
return to the setup with N , M and Li for i ∈ S , all of the same dimension
n ; an embedding LS → N is specified.

3.5.3 Theorem. If m ≤ n − 3 and `i ≤ n − 3 for all i ∈ S , then the
diagram emb(M,N r L•) → map(M, N r L•) is (n − 2m − 1 + Σi`

′
i)–

cartesian.

The case |S| = 1 of 3.5.3 is the codimension zero case of 1.3.1. Again there
exists a version of 3.5.3 where the codimensions of M and the Li in N
are arbitrary. This follows easily from 3.5.3 as it stands.

Idea of proof of 3.5.3. One reduces to the case where M can be obtained
from a closed collar on ∂0M by attaching a single handle. That case is
dealt with by induction on the handle index. (The case where the handle
index is zero is trivial.) The induction step uses 3.5.2 and a device called
handle splitting. See [Go7, §4,§6] for all details, also [BLR, pf. of 2.3] for
handle splitting. — We will indicate another proof (modulo 3.5.1 or 3.5.2)
in §4.
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4. Calculus methods: Homotopy aspect

In this chapter we approach the ‘calculation’ of a space of smooth embed-
dings emb(M, N) by viewing it as a special value of the cofunctor

V 7→ emb(V, N)

on the poset O(M) of open subsets V of M . The multiple disjunction
and higher excision theorems of chapter 3 imply that if m ≤ n − 3, then
this cofunctor on O(M) admits a unique decomposition (Taylor tower)
into so–called homogeneous cofunctors, one of each degree k > 0. The
homogeneous cofunctors are easy to understand and classify. So we end
up with something like a functorial calculation of the homotopy type of
emb(V,N), up to extension problems. There is no doubt that the extension
problems are serious.

4.1. Taxonomy of cofunctors on O(M)

Let U, V be smooth m–manifolds without boundary. A smooth embedding
e1: U → V is an isotopy equivalence if there exists a smooth embedding
e2: V → U such that e1e2 and e2e1 are smoothly isotopic to idV and
idU , respectively.

4.1.1. Definition. We fix M and write O := O(M). A cofunctor F
from O to spaces is good if

(i) it takes isotopy equivalences to weak homotopy equivalences (that
is, if an inclusion U → V of open subsets of M is an isotopy equiv-
alence, then the induced map F (V ) → F (U) is a weak homotopy
equivalence);

(ii) it takes monotone unions to homotopy inverse limits (that is, if Vi

for i ≥ 0 are open sets in M with Vi ⊂ Vi+1 , then the canonical
map from F (

⋃
i Vi) to holimi F (Vi) is a weak homotopy equiva-

lence).

Remark. Call V ∈ O tame if V is the interior of a compact smooth (codi-
mension zero) submanifold of M . Property (ii) ensures that a good co-
functor F on O is essentially determined by its behavior on tame open
subsets of M . In particular, suppose that F is a cofunctor from O(M) to
spaces having property (i). Then the functor defined by

F ](V ) := holim
tame U⊂V

F (U)

for V ∈ O is a good cofunctor on O . We call F ] the taming of F . Note
that F ](V ) ' F (V ) if V is a tame open subset of M .
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4.1.2. Examples. It is not hard to show that the cofunctors given by
V 7→ emb(V,N), V 7→ emb∼(V,N), V 7→ imm(V,N), V 7→ imm∼(V, N)
(for fixed smooth N without boundary, and variable V in O ) are good.
See [We1] for details.

For another example, fix k ≥ 1, and let F (V ) be the space of smooth
immersions g: V → N with |g−1(x)| ≤ k for all x ∈ N . Then the taming
F ] of F is good.

4.1.3. Definition. Fix k ≥ 0. A good cofunctor F on O is polynomial
of degree ≤ k if, for every V ∈ O and pairwise disjoint closed subsets
A1, . . . , Ak+1 of V , the (k + 1)–cube F (V r A•) is ∞–cartesian. (Here
AR =

⋃
i∈R Ai for a subset R of {1, ..., k+1} .)

4.1.4. Example. Fix a space X and let F (V ) := map(V k, X) for V ∈ O ,
where V k means V ×· · ·×V (k factors). Then F is polynomial of degree
≤ k . Idea of proof: Given V and A1, . . . , Ak+1 as in 4.1.3, one notes using
a pigeon hole argument that V k is the union of the (V rAR)k for nonempty
R ⊂ {1, ..., k+1} . This implies easily that the cubical diagram (V r A•)k

is ∞–cocartesian. Therefore it turns into an ∞–cartesian diagram when
map(—, X) is applied.

4.1.5. Example. Let Ok ⊂ O be the full sub–poset consisting of the V
which are diffeomorphic to Rm × S with S discrete, |S| ≤ k . For a good
cofunctor F on O , let TkF be the homotopy right Kan extension (along
Ok ↪→ O ) of F |Ok . Explicitly:

TkF (V ) := holim
W⊂V
W∈Ok

F (W ) .

Then TkF is again a good cofunctor. The ‘operator’ Tk on good cofunc-
tors comes with an obvious forgetful transformation ηk: F (V ) → TkF (V ),
natural not only in V but also in F . The pair consisting of Tk and ηk has
the following properties:

(i) TkF is polynomial of degree ≤ k , for any good F .
(i) ηk: F (V ) → TkF (V ) is a weak homotopy equivalence for all V if

F is already polynomial of degree ≤ k .
(ii) Tk(ηk): TkF (V ) → Tk(TkF )(V ) is (always) a weak homotopy equi-

valence.
These properties essentially characterize Tk and ηk . One should think
of ηk: F → TkF as the best approximation (from the right) of F by
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a polynomial cofunctor of degree ≤ k . (We also call it the k–th Taylor
approximation of F .) In fact, any natural transformation v: F → G where
G is polynomial of degree ≤ k can be enlarged to a commutative square
of natural transformations

F
v−−−−→ G

yηk

yηk

TkF
Tkv−−−−→ TkG

where the right–hand column is a natural weak homotopy equivalence by
property (i) of Tk and ηk . Thus v: F → G factors through ηk: F → TkF ,
up to formal inversion of a natural weak homotopy equivalence. Property
(ii) can be used to show that the factorization is essentially unique (a
suitable category of such factorizations has a contractible nerve). See [We1]
for all details.

4.1.6. Examples. Suppose that F (V ) = emb(V, N) where Nn is fixed
smooth manifold without boundary, and n > m = dim(M). We will make
TkF explicit for k = 1 and k = 2. See also 4.3.

Let F1(V ) := imm(V,N). The natural inclusion ι1: F → F1 has the
following properties (the first by the immersion classification theorem, the
other by inspection):

• the codomain F1 of ι1 is polynomial of degree ≤ 1 ;
• ι1 specializes to a weak homotopy equivalence F (V ) → F1(V )

whenever V is a tubular neighborhood of a single point.
But these two properties of ι1 essentially characterize η1: F → T1F ; so
T1F (V ) ' F1(V ) = imm(V, N), by a chain of natural weak homotopy
equivalences.

Using the notation from Haefliger’s theorem 1.2.1, let F2(V ) be the
homotopy pullback (homotopy inverse limit) of the diagram

map(V,N)
yf 7→f×f

ivmapZ/2(V × V,N ×N) ⊂−−−−→ mapZ/2(V × V,N ×N) .

Then there is a forgetful natural transformation ι2: F → F2 . One checks
easily that

• the codomain F2 of ι2 is polynomial of degree ≤ 2 ;
• ι2 specializes to a weak homotopy equivalence F (V ) → F2(V )

whenever V is a tubular neighborhood of a subset S of M of
cardinality ≤ 2.
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(The homotopy inverse limit of a diagram of good cofunctors on O which
are polynomial of degree ≤ k is again polynomial of degree ≤ k . Therefore,
to show that F2 is polynomial of degree ≤ 2, it suffices to show that the
cofunctors

V 7→ map(V,N)

V 7→ mapZ/2(V × V, N ×N)

V 7→ ivmapZ/2(V × V, N ×N)

are polynomial of degree ≤ 1, 2, 2 respectively, and this can be done much
as in 4.1.4.) These properties of ι2 essentially characterize η2: F → T2F ,
and it follows that T2F (V ) ' F2(V ) by a chain of natural weak homotopy
equivalences.

4.1.7. Definition. A good cofunctor F on O is homogeneous of degree
k if it is polynomial of degree ≤ k and if Tk−1F (V ) is weakly homotopy
equivalent to a point, for all V ∈ O .

4.1.8. Example. Let
(
M
k

)
be the space of unordered configurations of k

distinct points in M . Let

p: E →
(

M

k

)

be a fibration. Suppose that this is equipped with the structure of a germ
σ of partial sections, defined ‘near’ the fat diagonal (complement of

(
M
k

)
in

the space of unordered k–tuples of points in M ). For V ∈ O let F (V ) be
the space of partial sections of p which are defined on

(
V
k

)
and agree with

σ near the fat diagonal. Then F is a good cofunctor which is homogeneous
of degree k . There is a classification theorem for homogeneous cofunctors
on O which says that they can all be obtained in this way (up to a natural
weak homotopy equivalence), from a pair (p, σ) as above, unique up to fiber
homotopy equivalence respecting section germs. We call p the classifying
fibration of the homogeneous cofunctor.

If F is any good cofunctor on O , with a preferred base point in F (M),
then LkF defined by

LkF (V ) := hofiber [TkF (V )
forget−−−→ Tk−1F (V ) ]

is a homogeneous cofunctor of degree k . Its classifying fibration p on
(
M
k

)
must have a preferred global section σ , corresponding to the base point
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of LkF (M). The fibration p and the global section σ can be described
roughly as follows. For S ⊂ M with |S| = k , and each x ∈ S , choose
a small open ball Vx about x . For R ⊂ S let VR = ∪x∈RVx . Then the
fiber of p over S is the total homotopy fiber of the contravariant S –cube
R 7→ F (VR). Note that this is a pointed space.

4.1.9. Example. Let F (V ) = emb(V,N). Fix a base point in F (M),
alias embedding M → N . We describe the classifying fibration(s) pk for
LkF , any k > 0, simplifying the general description in 4.1.8 as much as
possible. First, p1 is the forgetful map and fibration

E1 −→ M

where E1 = {(x, z, f) | x ∈ M, z ∈ N, f : TxM → TzN linear injective } .
Second, pk for k > 1 is the fibration

Ek −→
(

M

k

)

whose fiber over S ∈ (
M
k

)
is the total homotopy fiber of the cubical diagram

of pointed spaces given by R 7→ emb(R, N) for R ⊂ S . (These spaces
are pointed because R ⊂ S ⊂ M ⊂ N .) To see that these are correct
descriptions, make a forgetful map, between spaces over

(
M
k

)
, from the

standard description of pk (classifying fibration for LkF ) as given in 4.1.8
to the new description under scrutiny; then verify that it is a fiberwise
homotopy equivalence.

4.1.10. Definition. Let F be a good cofunctor F on O . We say that F
is ρ–analytic with excess c (where ρ, c ∈ Z) if it has the following property.
For V ∈ O and k > 0 and pairwise disjoint closed subsets A1, . . . , Ak+1

of V , where each Ai is a smooth submanifold of V of codimension qi < ρ ,
diffeomorphic to euclidean space, the cube F (V rA•) is (c + Σi(ρ− qi))–
cartesian.

Remark. To motivate 4.1.10 just a little, we note that the definition of
a polynomial cofunctor, 4.1.3, can be reformulated as follows. A good
cofunctor F on O is polynomial of degree ≤ k if it has the following
property. For V ∈ O and pairwise disjoint closed subsets A1, . . . , Ak+1

of V , where each Ai is a smooth submanifold of V , diffeomorphic to a
euclidean space, the cube F (V rA•) is ∞–cartesian.
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Indeed, if F has the property, then F (V r B•) will be ∞–cartesian
whenever V ∈ O is tame, B1, . . . , Bk+1 are pairwise disjoint closed subsets
of V , and the closure B̄i of Bi in M is a compact codimension zero smooth
manifold triad embedded in V̄ , with ∂0B̄i = B̄i ∩∂V̄ and ∂1B̄i transverse
to ∂V̄ . The proof is by an easy (multiple) induction over the number of
handles required to build each B̄i from a collar on ∂0B̄i . An application
of the limit axiom for good cofunctors then shows that F (V r C•) will
be ∞–cartesian whenever V ∈ O is tame, and C1, . . . , Ck+1 are pairwise
disjoint closed subsets of V .

4.1.11. Digression/Definition. Given a finite set S and an S –cube X
of spaces and z ∈ R , let us say that X is z–cartesian if the canonical map

X (∅) −→ holim
∅6=R⊂S

X (R)

has connectivity ≥ z . With this convention, 4.1.10 remains meaningful for
arbitrary ρ, c ∈ R . This will become important in §5.

4.1.12. Definitions. The theory has a variant where M is a manifold
with boundary, and F is a cofunctor on O(M), the poset of all open
subsets of M containing ∂M . The kind of functor we have in mind is
V 7→ emb(V, N) where N is fixed, with boundary, and an embedding
e: ∂M → ∂N has been specified. In the definition of emb(V, N) we allow
only embeddings V → N which agree with e on ∂V , and are transverse
to ∂M .

A good cofunctor F from O(M) to spaces is polynomial of degree ≤ k
if F (V r A•) is ∞–cartesian for any V ∈ O(M) and pairwise disjoint
subsets A0, . . . , Ak of V , closed in V and disjoint from ∂M . The k–th
Taylor approximation TkF of an arbitrary good cofunctor F on O(M) is
defined by

TkF (V ) := holim
W∈Ok
W⊂V

F (W )

where Ok = Ok(M) consists of the W ∈ O(M) which are tubular neigh-
borhoods of ∂M ∪ S for some subset S of M r ∂M , with |S| ≤ k . A
homogeneous functor F of degree k on O(M) has a classifying fibration

p: E −→
(

M

k

)

equipped with a germ σ of sections, defined near fat diagonal and on the
boundary. Then F (V ) is, up to a chain of natural homotopy equivalences,
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the space of (partial) sections of p defined over
(
V
k

)
and agreeing with σ

near the fat diagonal and on the boundary. The classifying fibration pk for
the k–th homogeneous layer, k ≥ 2, of the cofunctor V 7→ emb(V,N), as
above, has fiber p−1

k (S) equal to the total homotopy fiber of the cube

R 7→ emb(R,N) (R ⊂ S) .

4.2. The convergence theorem

The Taylor tower of a good cofunctor F on O is the diagram of good
cofunctors and (forgetful) transformations

· · · rk+1−−−→ TkF
rk−→ Tk−1F

rk−1−−−→ Tk−2F
rk−2−−−→ · · · .

It should be regarded as a diagram of cofunctors under F , since for each
k we have ηk: F → TkF and the relations rkηk = ηk−1 hold.

4.2.1. Theorem. Suppose that F is ρ–analytic with excess c , and V ∈ O
has a proper Morse function with critical points of index ≤ q only, where
q < ρ . Then the connectivity of

ηk−1: F (V ) −→ Tk−1F (V )

is ≥ c + k(ρ − q) , for k > 1 . Therefore F (V ) '−→ holimk TkF (V ) . In
words, the Taylor tower of F , evaluated at V , converges to F (V ) .

See [GoWe, 2.3] for the proof, which is quite easy. Although originally
intended for the situation where ρ, c ∈ Z , it goes through with arbitrary
ρ, c ∈ R . Compare 4.1.11.

4.2.2. Corollary. If F is ρ–analytic, and ρ > m = dim(M) , then
F (V ) ' holimk TkF (V ) for all V ∈ O .

4.2.3. Theorem–Example. Let F (V ) = emb(V, N) for V ∈ O , where
Nn is fixed (smooth, without boundary). Then F is (n− 2)–analytic with
excess 3− n .

Idea of proof. Fix a finite set S . It suffices to check that F (V r A•) is
(3− n + Σi(n− qi − 2))–cartesian if

• V ∈ O is tame;
• Ai = Di ∩ V for i ∈ S , where Di ⊂ V̄ is a smoothly embedded

disk of codimension qi < n − 2, transverse to the boundary of V̄ ,
with ∂Di = Di ∩ ∂V̄ , and the Di are pairwise disjoint.
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Next, fix some smooth embedding e: V r AS → N . It is enough to show
that the cube

hofibere [ F (V rA•) −→ F (V rAS) ]

is (3 − n + Σi∈S(n − qi − 2))–cartesian. We can assume that e extends
to a smooth embedding ē: V̄ → N , and further, to a codimension zero
embedding f : W → N where W → V̄ is the disk bundle of the normal
bundle of ē . Let N ′ be the closure in N of the complement of f(W ).
Then

hofibere [ F (V rAR) −→ F (V rAS) ]

is naturally homotopy equivalent to emb(DR, N ′) where DR = ∪i∈RDi for
R ⊂ S . (Note that preferred embeddings ∂Di → ∂N ′ are given.) Hence it
is enough to show that the cube emb(D•, N ′) is (3−n+Σi∈S(n−qi−2))–
cartesian. But this follows from 3.5.1 (actually, the ‘arbitrary codimension’
version of 3.5.1). ¤

4.2.4. Corollary/Summary. Let F (V ) = emb(V,N) , and assume that
the codimension n − m is ≥ 3 . Suppose for simplicity M ⊂ N , so that
each F (V ) is a based space. Then

ηk−1: F (V ) −→ Tk−1F (V )

is (3 − n + k(n −m − 2))–connected; therefore F (V ) '−→ holimk TkF (V ) .
We have T1F (V ) ' imm(V, N) . For k > 1 , the homotopy fiber LkF (V )
of TkF (V ) → Tk−1F (V ) is homotopy equivalent to the space of sections,
vanishing near the fat diagonal, of

pk: Ek −→
(

M

k

)

where p−1
k (S) for S ∈ (

M
k

)
is the total homotopy fiber of the S –cube defined

by R 7→ emb(R,N) for R ⊂ S .

Remark. There is a considerable shortcut to corollary 4.2.4 in the cases
where 2m < n − 2. In those cases we can avoid most of chapter 3, using
only the easy higher excision theorem, in the symmetric form 3.1.2, to show
that F is (n−m−2)–analytic. Since m < n−m−2, this implies according
to 4.2.2 that

F (V ) '−−→ holim
k

TkF (V )

for all V ∈ O . The analysis of the layers LkF (V ) goes through as be-
fore. We can now use 4.1.9 and again 3.1.2 to show that the fibers of
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the classifying fibration for LkF are (k + 1)(n − 2)–connected; hence
LkF (V ) is ((k + 1)(n − 2) − mk)–connected and TkF (V ) → Tk−1F (V )
is ((k + 1)(n − 2) − mk + 1)–connected, i.e., (3 − n + k(n − m − 2))–
connected. It follows that ηk from F (V ) ' holimk TkF (V ) to Tk−1F (V )
is (3− n + k(n−m− 2))–connected. ¤

4.2.5. Example. This example is meant to illustrate the ‘with boundary’
variant of 4.2.4. Suppose that M = [0, 1] and that N has a boundary,
and M ⊂ N as a submanifold, ∂M being the transverse intersection of M
with ∂N . Let F (V ) := emb(V, N) as in 4.1.12. Then

(
M

k

)
∼= ∆k

and so the k–th homogeneous layer LkF (M) becomes the k–th loop space
of any of the fibers of the classifying fibration for LkF . If in addition N is
homotopy equivalent to a suspension, N ' ΣY , then this can be analyzed
with the Hilton-Milnor theorem, and one finds

LkF (M) '
∏
w

′
ΩkΣ1+α(w)(n−2)Y (β(w))

for k > 1, where the weak product
∏′ is over all basic words w in the

letters z1, . . . , zk involving all letters except possibly z1 . See [GoWe, §5]
for more details and explanations.

4.2.6. Remark. Two different calculus approaches to block embedding
spaces emb∼(M, N) come to mind. One of these is to view emb∼(M,N)
as a special value of a good cofunctor F on O(M), and to approximate it
by the (TrF )(M) for r ≥ 0. The other is to think of emb∼(M, N) as the
geometric realization of a simplicial space

k 7→ emb∼...(M ×∆k, N ×∆k)

where the dots indicate certain boundary conditions; then, to view each
emb∼...(M ×∆k, N ×∆k) as a special value of a cofunctor Fk defined on
the open subsets of M ×∆k ; then, to approximate emb∼(M, N) by the
geometric realizations of

k 7→ (TrFk)(M ×∆k)

for r ≥ 0, where TrFk is a suitable Taylor approximation to Fk which we
have not defined and will not define here.
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Taking M = ∗ shows that these approaches give quite different results.
The second appears to be superior. It is still very much under construction,
and so we will not waste more words on it, except by saying that it sheds
light on the Levine problem (section 2.3). In fact it has been used, in the
quadratic alias metastable range, in an unpublished paper by Larmore and
Williams [LW] on the Levine problem. Their main result, which they prove
without surgery, is the generalization of 2.3.2 to the situation where the
domain M is compact, smooth, but not necessarily closed.

4.3. Scanning revisited

Let F (V ) = emb(V, N) as in 4.1.6, 4.1.9, 4.2.3, 4.2.4. Our goal here is to
give a description of the Taylor approximation F → TkF , for k ≥ 2, which
generalizes the Haefligeresque description of F → T2F in 1.2.1 and 4.1.6.

Notation. Think of the standard (k − 1)–simplex ∆k−1 as an incom-
plete simplicial set whose i–simplices are the monotone injections z from
{0, ..., i} to {1, ..., k} . With such an i–simplex z we can associate the set
{1, ..., z(i)} , filtered by subsets {1, ..., z(j)} for 0 ≤ j ≤ i . Let G(z) be
the group of permutations of {1, ..., z(i)} which respect the filtration, and
let G0(z) be the full permutation group of {1, ..., z(0)} , so that G0(z) is a
factor in an obvious product decomposition of G(z). Write [z := z(0) and
z] := z(i) where i = |z| .

4.3.1. Definition. For k ≥ 2 and a simplex z of ∆k−1 , let JM,N,k(z) =
JM (z) be the space of smooth maps

Mz] −→ N [z

which are strongly isovariant with respect to G0(z), and equivariant with
respect to G(z). (The actions of G0(z) on Mz] and N [z are by permuta-
tion of the coordinates labeled 1 through [z . The action of G(z) on Mz]

is by permutation of the coordinates labeled 1 through z] . The action of
G(z) on N [z is obtained from the action of G0(z) on N [z just defined by
means of the projection G(z) → G0(z).)

Then JM (z) is a functor of the variable z . (If y is a face of z , then we
have homomorphisms G(z) → G(y) and G0(z) ↪→ G0(y), and we also have
projections N [y → N [z , Mz] → My] which are both G(z)–equivariant and
strongly G0(z)–isovariant.)
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4.3.2. Definition. We let Θk(M,N) = holimz JM (z) with JM as in def-
inition 4.3.1. Explicitly, Θk(M,N) is the space of natural transformations
from the functor z 7→ ∆|z| to the functor z 7→ JM (z).

Motivation. Let Dk(M) be the topological poset of functions g:M → N
with finite support, and degree |g| := ∑

x g(x) satisfying 1 ≤ |g| ≤ k . Here
N = {0, 1, 2, ...} ; for f, g ∈ Dk(M) we decree g ≤ f if g(x) ≤ f(x) for all
x ∈ M , and we topologize Dk(M) by identifying it with the coproduct of
the M i/Σi for 1 ≤ i ≤ k .

For g ∈ Dk(M) let p(g) be the support, a subset of M of cardinality
between 1 and k . The idea is that Θk(M, N) is a modified version of
the topological homotopy limit of the functor g 7→ emb(p(g), N). The
expression topological homotopy limit indicates that we pay attention to the
topological structure of Dk(M). The modification happens where we ask
for strongly isovariant smooth maps rather than just isovariant continuous
maps.

4.3.3. Example. Let k = 2. Let’s denote the simplices of ∆1 by I, 0, 1
in this case. Let f = {fI , f0, f1} be any point in Θ2(M,N). Then f1 is a
strongly isovariant Σ2–map from M2 to N2 , and f0 is just a smooth map
M → N . Finally fI is a path (parametrized by [0, 1]) of smooth maps
M2 → N . Its values at time 1 and 0 respectively are the compositions

M2 f1−→ N2 −→ N

M2 −→ M
f0−→ N.

It follows that Θ2(M, N) is (homeomorphic to) the Haefliger approxima-
tion to emb(M, N) of 1.2.1 and 4.1.6.

4.3.4. Theorem. Θk(M, N) ' Tk emb(M, N) , for k ≥ 2 .

Idea of proof. Let F (V ) = emb(V, N) for V ∈ O . We will show that
TkF (V ) is naturally weakly homotopy equivalent to Θk(V, N). There is a
natural inclusion F (V ) → Θk(V, N). It suffices to show that

(i) Θk(V, N) is polynomial of degree ≤ k as a functor of V ;
(ii) the natural inclusion F (V ) → Θk(V,N) is a homotopy equivalence

whenever V is in Ok .
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To establish (i) it is enough to show that each of the functors V 7→ JV (z)
is polynomial of degree ≤ k . This is easy. For (ii), suppose that V is a
tubular neighborhood of S ⊂ M , where |S| ≤ k . One checks that

emb(V,N) −−−−→ Θk(V, N)
yres.

yres.

emb(S, N) −−−−→ Θk(S, N)

is ∞–cartesian. With the motivation above, it is not hard to show that
emb(S, N) → Θk(S, N) is a homotopy equivalence. See [GoKW] for the
details. ¤

5. Calculus methods: Homology aspect

5.1. One–dimensional domains

One of us (Goodwillie) observed long ago that when M = I = [0, 1], com-
pare 4.1.12, the calculus of good cofunctors F on O(M) amounts to a
theory of cosimplicial spaces and their corealizations (corealization = Tot).
It can therefore give homological information about F (M) = F (I) (which
tends to play the role of the corealization) by means of the generalized
Eilenberg–Moore spectral sequence [Bou], [Re], [EM], the standard tool for
calculating the homology of such corealizations. These ideas are explained
here. Following Bott [Bo], we make contact with the theory of knot invari-
ants of finite type initiated by Vassiliev [Va1], [Va2], [Va3], [BiL], [BaN],
[BaNSt], [Ko], [Bi] and extensions of it used by Kontsevich [Ko] in his
calculation of H∗(emb(S1,Rn);Q) for n > 3.

Let O = O(I) and Ok = Ok(I), with the conventions of 4.1.12. We
want to establish a correspondence between good cofunctors from O to
spaces, and augmented cosimplicial spaces, that is, covariant functors from
the category of all finite totally ordered sets (including the empty set) to
spaces. Let O′ ⊂ O consist of all elements which have only finitely many
connected components, so that

O′ = {I} ∪
⋃

k≥0

Ok .

A good cofunctor on O is determined up to natural weak homotopy equiv-
alence by its restriction to O′ . The restriction is still an isotopy invariant
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cofunctor. Hence it is enough to establish a correspondence between iso-
topy invariant cofunctors from O′ to spaces, and augmented cosimplicial
spaces. (We write augmented cosimplicial spaces in the form S 7→ FS , or
in the form F∅ → F• . Here the bullet stands for a nonempty finite totally
ordered set, so that F• is the underlying un–augmented cosimplicial space.)

5.1.1. Constructions. Let κ be the cofunctor from O′ to totally or-
dered finite sets given by V 7→ π0(I r V ). Pre–composition with κ gets
us from augmented cosimplicial spaces to isotopy invariant space–valued
cofunctors on O′ . Conversely, an isotopy invariant cofunctor F from O′
to spaces determines an augmented cosimplicial space by homotopy right
Kan extension along κ ,

FS := holim
V with S→κ(V )

F (V )

for a finite totally ordered S . These two construction are inverses of one
another, up to natural weak homotopy equivalence.

5.1.2. Definitions. Let F• be any cosimplicial space. For 0 ≤ k ≤ ∞
let Totk(F•) be the space of natural transformations from S 7→ ∆(S) to
S 7→ FS , for totally ordered finite S with 1 ≤ |S| ≤ k . Here ∆(S) denotes
the simplex spanned by S . When k = ∞ , we simply write Tot(F•),
and speak of the corealization. There is a tower of forgetful maps (Serre
fibrations)

Tot(F•) · · · → Totk(F•) → Totk−1(F•) → · · · → Tot0(F•) .

Let C• be a cosimplicial chain complex. For 0 ≤ k ≤ ∞ let Totk(C•) be the
chain complex of natural maps of graded abelian groups from S 7→ C∗(∆S)
to S 7→ CS , for totally ordered finite S with 1 ≤ |S| < ∞ , where C∗ is the
singular chain complex functor. (The i–chains in Totk(C•) are the natural
maps raising degrees by i , for i ∈ Z .) When k = ∞ , we write Tot(C•).
There is a tower of chain complexes and forgetful chain maps

Tot(C•) · · · → Totk(C•) → Totk−1(C•) → · · · → Tot0(C•) .

Each of these chain maps is a ‘fibration’ (degreewise split onto). With such
a tower of fibrations of chain complexes, one can associate in the usual
way an exact couple and/or a spectral sequence converging, under mild
conditions on C• , to the homology of Tot(C•).
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In particular, suppose that C• = C∗(F•) is the cosimplicial chain com-
plex obtained from a cosimplicial space by applying C∗ . Then under suit-
able conditions on F• ,

• the spectral sequence converges to H∗Tot(C∗(F•)), and
• the canonical map H∗ Tot(F•) → H∗ Tot(C∗(F•)) is an isomor-

phism.
In that case we can say simply that the spectral sequence converges to
H∗ Tot(F•). It is called a ‘generalized Eilenberg–Moore spectral sequence’
because, according to Rector [Re], the original Eilenberg–Moore spectral
sequence [EM] for the calculation of the homology of a homotopy pullback
of spaces is a special case.

5.1.3. Remark. Let A be an abelian category. The Dold–Kan correspon-
dence [Cu] is an equivalence of categories, often denoted N for ‘normaliza-
tion’, from simplicial A–objects to chain complexes in A graded over the
integers ≥ 0. In particular, the Dold–Kan correspondence associates to a
cosimplicial chain complex C• a cochain complex NC• of chain complexes

NC0
d0−→ NC1

d0−→ NC2
d0−→ · · · .

Here each NCi is a chain complex in its own right, the quotient of Ci

by the chain subcomplex generated by the images of the face operators
dj : Ci−1 → Ci for 0 < j ≤ i . It is also (as a chain complex) a direct
summand of Ci . Now Totk(C•) is isomorphic to the ‘total chain complex’
[CaE] of the truncated double complex

NC0 −→ NC1 −→ · · · −→ NCk .

Although this does not help much in explaining the generalized Eilenberg–
Moore spectral sequence above, where C• = C∗(F•), it does lead to the
insight that the E1 and E2 –terms are

E1
−p,q

∼= Np(HqF•),

E2
−p,q

∼= Hp(N(HqF•)) .

Here HqF• for fixed q is a cosimplicial abelian group, and N(HqF•) is
the associated cochain complex, with p–th cochain group Np(HqF•). The
spectral sequence lives in the second quadrant. With these grading con-
ventions, the differentials on Er have bidegree (−r, r − 1), and E∞

−p,q is
(in the convergent case) a subquotient of Hq−p(TotF•).
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Now suppose that F∅ → F• is the augmented cosimplicial space associated
with a good cofunctor F from O = O(I) to spaces. Then it follows easily
from the definitions that

FS ' F (I r S) for finite S ⊂ I r ∂I,

Totk F• ' TkF (I),

Tot F• ' holim
k

TkF (I) .

Under these identifications the comparison map F (I) → holimk TkF (I)
corresponds to the augmentation–induced map F∅ → TotF• . In particular,
if F is ρ–analytic with ρ > 1, then by the convergence theorem

F∅
'−−→ Tot F• .

Therefore, assuming Bousfield’s convergence criteria [Bou] are satisfied, the
spectral sequence constructed above converges to H∗F (I) ; more precisely,
we can write

{E2
−p,q = Hp(N(HqF (I r •))) } ⇒ {Hq−pF (I) }

where • runs through a selection of nonempty finite subsets of Ir∂I , one
for each (finite, nonzero) cardinality.

5.1.4. Example. For V ∈ O let F (V ) be the homotopy fiber of the
inclusion emb(V,Rn−1×I) ↪→ imm(V,Rn−1×I) , where n ≥ 3. Boundary
conditions as in 4.1.12 are understood. Note that imm(V,Rn−1 × I) is
homotopy equivalent to the space of pointed maps from V/∂V to Sn−1 by
immersion theory. — The generalized Eilenberg–Moore spectral sequence
has

E2
−p,q

∼= Hp(N(Hq(emb({1, 2, ..., •},Rn))))

where • runs through the integers ≥ 0. The homology of the ‘configuration
space’ emb({1, 2, . . . , k},Rn) is torsion free, therefore dual to the cohomol-
ogy of emb({1, . . . , k},Rn). The cohomology ring H∗(emb({1, . . . , k},Rn))
is the quotient of an exterior algebra on generators αst in degree n − 1,
one such for any two distinct elements s, t ∈ {1, . . . , k} , by relations

αst = (−1)nαts ,

αrsαst + αstαtr + αtrαrs = 0 .

Here αst is the image of the canonical generator under the map in coho-
mology induced by

emb({1, 2, . . . , k},Rn) −→ Rn r 0 ; g 7→ g(t)− g(s).
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These assertions can be proved by induction on k , using the fact that
the Leray–Serre spectral sequence associated with the forgetful fibration
emb({1, . . . , k},Rn) → emb({1, . . . , k − 1},Rn) collapses at E2 . Our de-
scription of H∗(emb({1, . . . , k},Rn)) is so natural that it is in fact a de-
scription of the cosimplicial graded abelian group H∗(emb({1, . . . , •},Rn)),
thereby delivering E2

−p,q
∼= Hp(N(Hq(emb({1, 2, ..., •},Rn)))), the E2–

term of the Eilenberg–Moore spectral sequence. We omit the details, but
mention the following points.

(i) When n > 3, Bousfield’s convergence condition [Bou, Thm.3.4]
is satisfied; we will verify this somewhat indirectly in 5.2 below.
Therefore the spectral sequence converges to the homology of

F (I) = hofiber [ emb(I,Rn−1 × I) → imm(I,Rn−1 × I) ] .

It seems to be very closely related to a spectral sequence developed
by Kontsevich in [Ko], for the calculation of the rational cohomology
of emb(S1,Rn) where n > 3. However, Kontsevich can also show
that his spectral sequence collapses.

(ii) When n = 3, the set π0F (I) can be identified with the set of framed
knots in R3 which are regularly homotopic as framed immersions
to the standard one. So we are doing knot theory. — The pieces of
the E1–term of the spectral sequence in total degree < 0 vanish,
by inspection. Hence, for the pieces in total degree 0, there are
surjections

E1
−p,p → E2

−p,p → E3
−p,p → E4

−p,p → · · · .

For odd p we have E1
−p,p = 0. For even p , the term E1

−p,p is
isomorphic to the free abelian group generated by the set of parti-
tions of {1, . . . , p} into p/2 subsets of cardinality 2. The relations
introduced in passing to E2

−p,p can be calculated from the above
information. They are

u · γ ∼ 0, v · γ ∼ 0 ,

where γ is a generator corresponding to a partition containing two
parts of the form {r, s} and {s + 1, t + 1} with r < s < t , and u, v
are certain elements in the group ring of the symmetric group Σp

(which acts by pushforward). Namely,

u = 1− (s, s+1) + (t+1, t, . . . , s)− (t, t+1)(t+1, t, . . . , s) ,

v = 1− (s, s+1) + (r, r+1, . . . , s+1)− (r, r+1)(r, r+1, . . . , s+1).
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The reader familiar with the theory of knot invariants of finite type
[Va1],[Va2], [Va3], [BiL], [Ko], [BaN], [Bi] will now recognize E2

−p,p

as the degree p/2 part of A , the graded algebra of chord diagrams
modulo the so–called 4T relation; see particularly [BaN].

As Bott points out in [Bo], this suggests that passage from
H0F (I) to H0 Tot F• and subsequent analysis of H0 Tot F• by
means of the spectral sequence is an alternative approach to the
theory of (framed) knot invariants of finite type. However, as Bott
also points out, it is far from obvious that the surjections

E2
−p,p −→ E∞

−p,p

are bijections (and consequently we do not have a straightforward
construction of framed knot invariants in A using this approach).
If they are, we expect that any proof will use substantial parts of
the existing theory of knot invariants of finite type, such as the
Kontsevich integrals [Ko], [BaN].

5.2. Higher dimensional domains

One conclusion to be drawn from 5.1 is that the notion of an isotopy in-
variant cofunctor F from

⋃
k≥0Ok(M) to spaces is a legitimate general-

ization of the notion of cosimplicial space (special case M = I = [0, 1] ).
In particular, the construction F 7→ holim F is the correct generaliza-
tion of Tot, and F 7→ holim (F |Ok(M)) is the correct generalization of
Totk . The Eilenberg–Moore–Rector–Bousfield question of whether Tot
commutes with ‘linearization’ functors from spaces to spaces

λJ : X 7→ Ω∞(X+ ∧ J)

(where J denotes a fixed CW–spectrum) turns into the question of whether
λJ (holim F ) ' holim λJF . But we already have a conditional answer to
the generalized question. Namely, if F is defined on all of O(M), and
sufficiently analytic, and if λJF is also sufficiently analytic on O(M),
then we will have

F (M) '−−−−→ holim
k

TkF (M) '−−−−→ holim
V ∈∪Ok(M)

F (V ) ,

λJF (M) '−−−−→ holim
k

Tk(λJF )(M) '−−−−→ holim
V ∈∪Ok(M)

λJF (V ) .

We then also have a (twice generalized) Eilenberg–Moore type spectral
sequence converging to the homotopy of λJF (M), which is essentially the
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J –homology of F (M). It is the homotopy spectral associated with the
tower

· · · −→ Tk+1(λJF )(M) −→ Tk(λJF )(M) −→ Tk−1(λJF )(M) −→ · · ·

where Tk(λJF )(V ) is nothing but holim (λJF |Ok(M)). From 4.1.8, we
have quite a good understanding of its E1–term. Of course, we do not
claim that Tk(λJF ) agrees in any sensible sense with λJ (TkF ), except as
it were for k = ∞ by Eilenberg–Moore type magic.

In the following lemma Mm is arbitrary (smooth, possibly with boundary).
If there is a nonempty boundary, define O(M) as in 4.1.12. For the first
time we use the generalization 4.1.11 of definition 4.1.10 of an analytic
cofunctor.

5.2.1. Lemma. Let F be a good cofunctor on O(M) and let J be a
(−1)–connected CW–spectrum. Suppose that Tr−1F ' ∗ for some r > 0 ,
and F is ρ–analytic with excess c < 0 , where ρ + c/r > m . Then the
taming of λJF is (ρ + c/r)–analytic with excess 0 .

See [We2] for the proof.

5.2.2. Example. Let M be compact, oriented, and Mm ⊂ Nn as a
smooth submanifold, ∂M = M ∩ ∂N (transverse intersection). Let

F (V ) = hofiber [ emb(V, N) → imm(V,N) ]

with conventions as in 4.1.12. Then F is (n−2)–analytic with excess 3−n ,
by 4.2.3 and §3 of [GoWe]. Applying 5.2.1 with r = 2 and J = HZ , and
writing λ for λHZ , we find that the taming of λF is (n/2−1/2)–analytic
with excess 0, provided n/2 − 1/2 > m . In that case the connectivity of
the Taylor approximations

λF (M) −→ Tk(λF )(M)

tends to infinity as k →∞ . Then the spectral sequence determined by the
exact couple (E1, D1, . . . ) with

D1
−p,q := πq−p(Tp−1(λF )(M)) ,

E1
−p,q := πq−p [ Tp(λF )(M) −→ Tp−1(λF )(M) ] = πq−pLp(λF )(M)



278 Tom Goodwillie, John Klein and Michael Weiss

converges to {πq−p(λF (M))} = {Hq−p(F (M))} . Its E1 –term simplifies
by 4.1.8 and Poincaré duality to

E1
−p,q

∼=
{

0 (p < 2)

Hpm−1−q(Y (M, N, p) ; Z±) (p ≥ 2)

where Y (M,N, p) is the space over
(
M
p

)
whose fiber over S ∈ (

M
p

)
is

hocolim
∅6=R⊂S

hofiber [ emb(R, N) → NR ].

When m is odd, untwisted integer coefficients Z+ are understood; when
m is even, use Z− , integer coefficients twisted by means of the composition

π1Y (M, N, p) → Σp → Z/2 = aut(Z) .
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[Kln2] J.R.Klein, Poincaré embeddings and fiberwise homotopy theory,
II, in preparation.

[Kln3] J.R.Klein, Embedding, compression, and fiberwise homotopy the-
ory, Preprint.

[Ko] M.Kontsevich, Feynman Diagrams and Low–dimensional Topol-
ogy, Proceedings of First European Congress of Mathematics
(1992), vol. II, Birkhäuser, pp. 97–121.
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Poincaré embedding theorem, Duke Math. Jour. 88 (1997), 435–
447.

[RiW] R.Rigdon and B.Williams, Embeddings and Immersions of Man-
ifolds, Proc. of 1977 Evanston Conf. on Geometric Applications
of Homotopy Theory, I, Springer Lect. Notes in Math. vol. 657,
1978, pp. 423-454.

[Sa] H.A.Salomonsen, On the existence and classification of differen-
tial embeddings in the metastable range, Aarhus mimeographed
notes, 1973.

[Sha] A. Shapiro, Obstructions to the imbedding of a complex in a
euclidean space, Ann. of Math. 66 (1957), 256–269.

[Sm1] S. Smale, The classification of immersions of spheres in Eu-
clidean spaces, Ann. of Math. 69 (1959), 327–344.

[Sta] J. Stallings, Lectures on polyhedral topology, Tata Institute Re-
search Lectures on Math., vol. 43, Tata Institute of Fundamental
Research, Bombay, 1967.



Spaces of smooth embeddings, disjunction and surgery 283
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Surgery theoretic methods in group actions

Sylvain Cappell∗ and Shmuel Weinberger†

This paper is intended to give a brief introduction to the applications
of the ideas of surgery in transformation group theory; it is not intended
to be any kind of survey of the latter theory, whose study requires many
additional insights and methods. However, despite this disclaimer, there
have been a number of signal achievements of the surgery theoretic view-
point, notably in the directions of producing examples and, on occasion,
giving complete classifications of particular sorts of actions.

We have divided this paper into three sections which deal with three
different variants of classical surgery. The first deals with “CW surgery”,
i.e., surgery in the category of CW complexes. Then we discuss some ad
hoc applications of classical surgery of closed manifolds in various prob-
lems, as opposed to the development of equivariant surgery theories. The
latter point of view is discussed in the last section. We shall only briefly
describe the theory of “pseudoequivalence” [Pe2] and its successes, which
have tended to lie in the construction of actions with unusual properties,
but instead concentrate on classification theorems for actions up to equiv-
ariant isomorphism.

With deep regret, we will deal exclusively with finite group actions in
this paper because of space requirements. We also highly recommend the
15 year old conference survey [Sch3] for its many summaries of the state of
the art at that turning point in its development.

This paper is dedicated to C.T.C. Wall, whose powerful and inspira-
tional contributions to this story include the finiteness obstruction, non-
simply connected surgery obstruction groups (their definition, application,
and calculation), and his tour de force on free actions on the sphere: i.e.,
fake lens spaces and the space form problem.

∗ The author is supported partially by NSF grants
† The author is supported partially by NSF grants
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1 The CW Category

The analogue of the theory of surgery for CW complexes is the calculus
of attaching handles to a given complex to produce a finite CW com-
plex (weak) homotopy equivalent to another specified space. In the most
classical context this is the combination of Wall’s finiteness obstruction
theory with Whitehead’s simple homotopy theory. We begin our survey of
equivariant surgery theory with a discussion of several of the high-points
achieved by just CW theory.

1.1 The space form problem

This problem, to which we will return in the next section, is “Which groups
act freely on some homotopy sphere or, in particular, on the standard
sphere?” One can see ([Wo]) that there is a free action by (linear) isometries
on some standard sphere (and the dimension can be computed) if and only
if all subgroups of order pq, where p and q are not necessarily distinct
primes, are cyclic.

The first nontrivial result on the purely topological problem is due to P.
A. Smith who showed that if G acts freely on a finite dimensional complex
homotopy equivalent to a sphere, then every subgroup of order p2 is cyclic.
(Cartan and Eilenberg [CE] refined this to the statement that if G acts
freely on a homotopy Sd, then G has periodic cohomology with period
d + 1; we will see the reason momentarily.)

An early high point in “CW surgery” was Swan’s proof [Sw] of a con-
verse:

Theorem 1.1 A group G acts freely on a finite dimensional complex X
homotopy equivalent to Sd−1 if and only if G has d-periodic cohomology
(which, according to Cartan and Eilenberg [CE], is equivalent, if we allow
d to vary, to all subgroups of order p2 being cyclic, for p prime). Moreover,
X can be taken to be a finite complex if and only if an obstruction wd(G) ∈
K̃0(ZG)/Sw vanishes.

Here, Sw denotes the subgroup of K̃0(ZG) represented by finite modules
of order prime to #(G), with trivial action. This is the image of a natu-
ral homomorphism, the Swan homomorphism Sw: (Z/#(G))∗ → K̃0(ZG),
which assigns, to an integer n, the Euler characteristic of a finite ZG-
projective resolution of Z/nZ viewed as a module over ZG by giving it the
trivial action.

Since K̃0(ZG) is a finite abelian group (another fundamental theorem
of Swan) and, as will be apparent from the definition, wkd(G) = kwd(G),
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it follows that there always exists a finite complex on which G acts freely,
but of undetermined dimension.

[Note for instance that dihedral groups D2p (indeed, all of the metacyclic
groups, Mpq, q ≡ 1 mod p) satisfy the conditions of Swan’s theorem and
hence they act on finite complexes homotopy equivalent to a sphere. We
will see in the next sections that the dihedral groups don’t, however, act
on a sphere, but the odd order metacyclic groups do.]

Wall [Wa2] had shown that wd(G) always has order 1 or 2 and Milgram
[Mi] gave the first examples where wd(G) 6= 0 (see also [Da] for different
examples).

Essentially, Swan’s method is to show that if G has periodic cohomology
then Z has a periodic resolution over ZG. More precisely, there are finitely
generated projective modules Pi such that one has an exact sequence

0 → Z→ Pd → Pd−1 → · · · → P1 → P0 → Z→ 0.

This chain complex is chain equivalent to the equivariant chain complex
for the G-action on X if there is such an action; and, conversely, from such
a chain complex Swan observes one can build a well defined equivariant
homotopy type. (If X is finite, one can, of course, use the cellular chain
complex of X as a finite free resolution.)

Even in the case of cyclic groups, the “resolution” is not well defined,
because the equivariant homotopy type can be varied. The indeterminacy
is caught by the “k-invariant” in (Z/#(G))∗ (which is the degree of any
equivariant map between these homotopy spheres; this is a number prime
to #(G), by the Borsuk-Ulam theorem, and it is well defined up to #(G),
by obstruction theory).

The periodicity of H∗(G) follows from splicing together such resolutions
to obtain:

· · · → Pd → Pd−1 → · · · → P1 → P0 → Pd → Pd−1 → · · ·P1 → P0 → Z→ 0

and using such a periodic resolution to compute group cohomology. Such
a splicing trick also verifies the formula for wkd(G) mentioned above.

Swan’s work has been greatly extended by tom Dieck [tD] who has stud-
ied (substantially in joint work with Petrie [tD-P]) the theory of “homotopy
representations,” which consist of G-CW complexes where the fixed sets of
every subgroup are homotopy spheres. There are two kinds of invariants
for these: dimension functions (like “d”) and “generalized degrees” which
are the analogues of the k-invariants.

Even for cyclic groups, there are values of dimension functions on the
set of subgroups that are realized by homotopy representations, but which
don’t arise for geometric representations. The simplest is for G = Zp, d(e) =
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d(G), which at least doesn’t arise for effective linear actions. (The degree
can be an arbitrary number prime to p.) More significantly, one can have for
G = Zpq, d(G) = −1 (no fixed points) d(Zp) = δ, d(Zq) = δ′ and d(Zpq) =
δ′′ whenever δ, δ′, and δ′′ have the same parity and δ′′ ≥ max(δ, δ′); for
linear representations δ′′ ≥ δ + δ′.

Indeed, tom Dieck’s work shows exactly when all dimension functions
for a group are linear, and when this is true in the sense of a Grothendieck
group. However, here the manifold realization problems are much less well
understood than in the traditional space form problem; there are, in addi-
tion, a host of problems that arise when the “gap hypothesis” fails, i.e., for
the situation where the dimensions of fixed point sets can be large relative
to the dimension of the ambient complex (e.g., when δ′′ ≤ 2max(δ, δ′) in
the Zpq example). We will return to some of these issues in section 4.

1.2 Semifree actions on the disk

The first nonfree problem that commands study is, no doubt, the problem
of Zp actions on the disk, or for our present CW purposes, contractible
CW complexes. We will discuss the case for general G. (Obviously, general
groups G cannot act semifreely on a genuine disk — e.g., G = Zp × Zp

cannot1, but it can, however, act on a contractible complex, as G acts on
the cone c(G).)

For this problem one has a definitive solution, due to Jones [Jo1] for
the cyclic case (where Sw is trivial), and Assadi [As] in general:

Theorem 1.2 A finite CW complex F is homotopy equivalent to the fixed
point set of a semifree G-action on a contractible finite complex if and only
if

(i) H̃i(F ;Z) is a finite group of order prime to #(G), all i; and,

(ii)
∑

(−1)iSw(#(H̃i(F )) = 0 in K̃0(ZG).

Here Sw is the Swan homomorphism described above. The necessity
of condition (i) is a conclusion of Smith theory. Bredon’s book [Br] is
a valuable textbook reference. Note that in this theorem the finiteness
obstruction lies in precisely the subgroup that we threw away in the space
form problem. Condition (i) alone suffices to make F the fixed point set on
a G-ANR. (With no finiteness at all, one should reformulate (i) as being
mod #(G) acyclicity, and then it is necessary and sufficient.)

1This follows from the observation that the “p2 condition” discussed above (in 1.1)
is necessary even for free actions on mod p homology spheres, e.g., to the complement
of the fixed set in the disk. (See Theorem 1.2 (i).)
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The proof of this theorem comes about by trying to attach free cells
equivariantly to obtain a finite contractible complex. After one has in-
ductively killed all homology through dim(F ), there remains (under (i)) a
projective module, which can be identified up to sign with

∑
(−1)iSw(#(H̃i(F )).

As in the Wall finiteness theory, this is stably free if and only if one can
attach cells to remove this final bit of homology.

Condition (ii) is sometimes called the “Assadi condition”.
(Obtaining the G-ANR is a fairly simple “Eilenberg swindle” and will

be discussed in the final section: see Theorem 3.2 and the surrounding
discussion.)

1.3 Fixed sets for nonfree G-actions on the disk

If G is a p-group then an inductive Smith theory argument shows that the
fixed set of a G-action on a finite dimensional mod p acyclic space (and,
in particular, a contractible one) is mod p acyclic. Conversely, as G has a
cyclic quotient, Jones’s theorem from the previous subsection implies that
any mod p acyclic finite complex is the fixed set of a G-action on some
finite contractible CW complex.

On the other hand, for non-p-groups the situation is more complicated.
For G cyclic, the Brouwer fixed point theorem implies that the fixed set is
nonempty. Indeed, its Euler characteristic e(F ) must be 1, by a refinement
of the Lefschetz fixed point theorem (e(F ) = L(f) for f a periodic map).
Also, in general, for a p-group P acting on a space Y , e(Y P ) ≡ e(Y ) mod p.
Combining these observations one can obtain necessary congruence condi-
tions for fixed point sets. Oliver [O] showed that these are almost enough;
occasionally, there are more refined congruences that hold, i.e., the primes
that actually occur arise to a higher power than one would expect from
just the preceding analysis:

Theorem 1.3 If G is not a p-group, then there is a number n(G) (which
is readily computable from G) such that F is homotopy equivalent to the
fixed point set of a simplicial G-action on a contractible finite complex if
and only if e(F ) ≡ 1 mod n(G).

For instance, n(G) = 1 if and only if the empty set can arise as a fixed
point set, and then any F can arise. (Indeed, it turns out that by an
explicit construction one can show that if n(G) = 1, then every polyhedron
occurs as the fixed point set of some PL G-action on some disk!)

Quinn [Q1, Q2] observed that for G-ANR’s the same theorem holds
with a possibly smaller value of n(G), (i.e., there is another number m(G)
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playing an analogous role.) This is closely related to the equivariant topo-
logical Whitehead theory discussed below.
Remark. Many of these theorems can be extended to more general “surgery
theoretic” situations, and could then be viewed as analogues of a “Kervaire-
Milnor” type surgery theory. Only some of this is in the literature, to our
knowledge. See, e.g. [OP] for the simply connected case of this perspective.

2 Ad Hoc Applications of Surgery

In this section we will describe several of the many applications of ordi-
nary, as distinguished from distinctly equivariant, surgery theory. The next
section deals with genuinely equivariant surgery.

2.1 The space form problem

Certainly one of the great areas of application (and motivations for the
development) of non simply connected surgery was the “spherical space
form problem”, which, as noted above is the problem of classifying man-
ifolds whose universal covers are the sphere. To this problem Wall made
(at least) two great contributions:

Theorem 2.1 ([BPW]) If G is an odd order cyclic group, then free PL
(or topological) actions on an odd dimensional sphere (of dimension at
least 5 ) are detected by their Reidemeister torsion and “rho” invariants.
“Suspension” induces an isomorphism between G-actions on S2n−1 and on
S2n+1.

The Reidemeister torsion is explained in [M3]. The “rho” invariant is
the equivariant signature defect and can be defined as follows: If G is a
finite group acting freely as an odd dimensional manifold M , some multiple
kM = ∂W for some G-manifold W , and

ρ(M) =
1
k

(G- sign (W ))

modulo the regular representation, which is the indeterminacy in G-sign (W )
as one varies W among free G-manifolds with given boundary. (See [BPW],
and also [AS] for a version allowing W ′s with nonfree action.) It is essen-
tially equivalent to the Atiyah-Patodi-Singer invariant [APS] associated to
the various flat complex line bundles over the quotient manifold, associated
to the different representations of G into U(1).

Another point of view using intersection homology applied to the cone
can be found in [CSW]. We note that Browder and Livesay had shown
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earlier [BL] that this is not at all true for Z2; indeed, they directly con-
structed obstructions to desuspension. Lopez de Medrano [LdM] and Wall
[Wa3] gave a classification of the free involutions. (The second author, in
[We 2], left as an exercise a proof of an incorrect description of the general
free cyclic actions; we still leave the correct solution to this problem as an
exercise!2)

Wall’s other great theorem in this subject is:

Theorem 2.2 ([MTW]) A finite group G acts freely on some (homotopy)
sphere if and only if all subgroups of order 2p or p2, for p a prime, are
cyclic.

The necessity of the p2 condition is cohomological, as discussed in the
previous section. The 2p condition is not necessary in the context of actions
on finite CW complexes, but is necessary for the actions on manifolds,
according to a theorem of Milnor, [M1], based on the Borsuk-Ulam theorem.
Ronnie Lee [L] discovered more algebraic proof of this necessity via his
theory of semicharacteristics; this was put on a surgery theoretic footing
by Jim Davis in his thesis and published in [Da2].

The problem of figuring out exactly which groups act in which dimen-
sion, and in how many ways, has spawned a vast literature, much of which
is surveyed in [DM]. In the final section, we will mention some results on
nonfree actions that had this work as one of its main inspirations.

2.2 Semifree actions on the disk and sphere

Another historically important line of investigation that, at least initially,
used essentially only conventional surgery theory is the study of semifree
actions. These actions are ones where there are only two orbit types: the
fixed point set (of the whole group, which is identical to the fixed set of
any nontrivial element of the group), and the free part (where points are
not fixed by any element of the group, i.e., on which the action is free).

Essentially the method most often used is this: study fixed point sets
and their neighborhoods, and study the complements, and then study the
possible ways of gluing these together. An early paper expounding this
point of view is Browder’s [B2]. (Another related approach has arisen,
which is appropriate only to the topological category: study the manifold
structures on the quotient of the free part that are controlled homotopy
equivalent to the given complement, where the control is with respect to a
map to the open cone of the fixed point set. See [Q1, We2, HuW].)

2Such problems are incomparably easier now, given our complete knowledge of L-
groups, assembly maps, their homotopical foundations and the connections between
L-theory and topological K-theory.
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In the smooth category, the essential observations about classification
of neighborhoods were first systematically exploited by Conner and Floyd
[CF]. For instance, for a cyclic group of odd order the neighborhoods of
fixed sets are essentially the same as a set of complex vector bundles, “the
eigenbundles of the action of the differential,” whose sum must have under-
lying orthogonal bundle agreeing with the normal bundle of the fixed set
in the ambient manifold. Many restrictions on the Chern classes of these
eigenbundles can be read off from the Atiyah-Singer G-signature theorem
[AS]. For instance, for semifree actions of groups of order pr, p prime, on
the sphere with fixed set of dimension 0, i.e., where there is a pair of fixed
points, Atiyah and Bott (and Milnor) [AB] showed that the two representa-
tions at the fixed point sets must agree, for p 6= 2; and when the dimension
of the fixed set is at least four, Ewing [E] showed that the Chern classes of
these eigenbundles must all vanish!

In the PL case, one has equivariant block bundle neighborhoods whose
classifying spaces must be analyzed. This is always done on the basis
of Quinn’s thesis [Q3] on blocked surgery; see [BLR] and also [Ro] for
a description of Casson’s prior contributions to this circle of ideas. See
[CW1, Jo2, Re] for how blocked surgery can be applied to the classification
of equivariant PL regular neighborhoods.

Essentially, PL stratified surgery takes off from the fact that blocked
surgery theory is not so different from ordinary surgery (especially if one
“spacifies” the latter, i.e., forms an appropriate semi-simplicial space of
manifolds homotopy equivalent to a given one, so that π0 is the structure
set usually studied in surgery theory; for blocked stratified surgery, with
some computational methods; see [CW2]). Then both steps in the above
outline can sometimes be completed simultaneously.

While a certain part of the discussion applies in great generality, the
cases that attracted the most attention involve group actions on the disk
or sphere. For reasons of space, we will concentrate on these cases.

A useful theorem for many of these investigations is the following, which
itself doesn’t depend on any surgery theory beyond the “π-π” vanishing
theorem for surgery obstructions on manifolds with boundary:

Theorem 2.3 (Extension across homology collars [AsB, We3])
Suppose given a manifold triad (Wn+1;Mn, Nn) with W and M simply
connected of dimension at least 5, and let G be a finite group acting freely
and Z[1/|G|]-homologically trivially on N , with H∗(W,N ;Z(1/|G|)) = 0.
Then there is an extension of the action on N to one on W if and only if
Σ(−1)iSw(#(Hj(W,N)) = 0 in K̃0(ZG). Moreover, such extensions are
well defined up to an element of Wh(G).

The method of proof is to produce a Poincaré model for “W/G” and
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“M/G” using “Zabrodsky mixing” (mixing together different local homo-
topy types to produce an interesting global homotopy type), identifying
the Wall finiteness obstruction with the quantity appearing in the theo-
rem, checking that a normal invariant rel N/G exists, and doing surgery
using the π-π theorem to obtain some extension on a manifold homotopy
equivalent to W . Obtaining such an action on W itself, once one already
has it on something homotopy equivalent, is another surgery calculation.
Remark. Assadi-Vogel [AsV] have a non simply connected extension of
this result that uses an algebraic K-group that mixes finiteness obstruc-
tions with Whitehead torsions. Chase [Ch] has a version for homologically
nontrivial actions, but which requires more hypotheses.

In the cyclic group case, the homomorphism Sw identically vanishes,
and one obtains:
Corollary A submanifold of the disk of codimension greater than 2 is the
fixed point set of a smooth (orientation preserving) Zp action if and only
if

1. it is mod p acyclic, and

2. it is of even codimension, and

3. if p odd, the normal bundle has an almost complex structure.

This corollary, when the codimension is very large, was first obtained
by Jones, essentially by replacing cells by handles in his constructions de-
scribed in (1.2) above.

In the PL locally linear case one can show that the analogous corollary
remains valid without any condition analogous to (3), i.e., just assuming
(1) and (2) (and a Swan condition for more general groups). See [CW1].
Remarkably, Jones [Jo2] developed a similar theory for PL actions without
local linearity, although for odd order groups there is another interesting
characteristic class obstruction. A stratified surgery theoretic approach to
the results of that amazing paper is sketched in the exercises of [We1].

The only non-orientation preserving case is Z2, and was settled in the
PL case by Chase [Ch].

There are a number of additional subtleties for actions on the sphere,
quite different in the different categories. For instance, by making perspi-
cacious use of the solution to the Segal conjecture for Zp, Schultz [Sch1]
discovered that there is a p-local residue of the smooth structure of spheres
that survives as the only obstruction to being the fixed point set of a smooth
Zp action on a very high dimensional sphere (besides having a normal bun-
dle with a complex structure with torsion Chern classes). (See also [DW3]
for some results on obstructions to being a smooth fixed point for some
complicated groups.)
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The PL locally linear case is solved in [We4] — there are L-theoretic
analogues of the Swan condition that arise as well. (In the case of cyclic
groups this obstruction vanishes, just as the Swan homomorphism does; an
independent earlier proof for the prime power case appeared in [CW1].)

These L-theoretic “Swan homomorphisms” arose first in the work of
Davis [Da3]. They also play an important role in the “homology propa-
gation problem”, namely, given a G-action on M and a Z/|G| homology
equivalence M ′ → M , when can one find a G-action on M ′ such that the
map is homotopic to an equivariant map? (Extension across homology col-
lars can be viewed as a special case of a variant of this problem — which
itself has applications to more systematic converses to Smith theory.) See
[CW4, DL, DW2] for information about homology propagation for closed
manifolds, and the references [AsB, AsV, Jo4, Q4] for related material.

Finally, we should mention the general work of Hambleton and Madsen
that classified semifree actions on Rn+k with Rn as fixed point set, by
viewing it as an analogue of the classification of free G-actions on Sk−1,
but replacing the usual Lh surgery groups by Lp for n = 0 (the L-group
based on projective modules in place of free ones) and by L−n for n > 0,
where these L-groups are based on negative K-groups. These groups are
related to L−n+1 in exactly the same way that Lp relates to Lh (or Lh

relates to Ls), namely, via a generalized Rothenberg sequence; see [Sh1,
R4].

2.3 Nonlinear similarity and the Smith problem

The problem of nonlinear similarity is that of deciding when two linear rep-
resentations of a finite group are topologically conjugate. The PL version of
this problem was solved by de Rham, who showed that PL equivariant rep-
resentations are linearly equivalent by using Whitehead torsion ideas (see
[Rt] for a modern treatment). R. Schultz [Sch2] and D. Sullivan proved
that topological and linear similarity coincide in the topological category
for odd p-groups, but the first examples of nonlinear similarities were con-
structed in [CS1]; these counterexamples were for all cyclic groups of orders
a multiple of 4 and greater than 4. (Further examples for these groups were
later constructed in [CSSW].3)

All of these results are obtained using tools of classical surgery. The
Schultz-Sullivan result can be simply seen, for instance, by realizing that a
nonlinear similarity between two cyclic p-groups (by character theory, the
critical case) immediately implies, by transversality, that the lens spaces

3We should warn the reader, though, that there are some errors in some of the detailed
calculations in that paper which are corrected in [HP1,2], that gives a more complete
picture, using a wide variety of controlled surgery theoretic ideas that were developed
subsequently.
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associated to the eigenvalues of largest period are normally cobordant.
Moreover, not only are those normally cobordant, but also the result of
stabilizing them by adding on free representations remain normally cobor-
dant (because such stabilized representations are, a fortiori, topologically
conjugate). Using this, a quick application of Wall’s rho-invariant criterion
for normal cobordism implies that these eigenvalues are the same. Then
one can “downward induct” to the remaining eigenvalues of lower period.

The [CS1] examples of nonlinearly similar representations essentially
involve computing when non-trivial interval bundles over lens spaces are h-
cobordant, which can be viewed as a transfer of the surgery obstruction of a
normal cobordism4 between lens spaces.5 When this vanishes one modifies
the construction to obtain that the unit spheres of certain representations
are equivariantly h-cobordant. An “infinite process” 1 − 1 + 1 − 1 + . . .
argument, also known as the “Eilenberg swindle” (as in [St]), then would
produce the equivariant homeomorphism.

By working carefully, similar methods produced some smooth h-cobord-
isms, which gave counterexamples to Smith’s conjecture that a smooth
cyclic group action on the sphere with two fixed points must have the same
representations at the two fixed points; see [CS5]. These counterexamples
included the case G = Z2r, r ≥ 4. (Recall from the above cited result of
[AB] this cannot occur for G = Zpr , p odd.) Much further information can
be found in [Sh2, PR, Sch3].
Remark. We should at least mention at this point the deep result of [HP]
and [MR] that for odd order groups, nonlinear similarity is equivalent to
linear similarity — but the techniques necessary for this result must wait
till the next section.

2.4 Actions with one fixed point

At yet a further extreme in the theory of group actions are ones that are
not at all modeled on linear ones. A beautiful example of one such is due
to E. Stein [Stn], and it is probably the most complicated action, in terms
of orbit structure, that has been produced by direct application of usual
manifold surgery. It is an action of the dodecahedral group on the sphere
with a single fixed point.

One could predict such an action from an observation of Floyd and
Richardson [FR] that the dodecahedral group acts by isometries on the
Poincaré dodecahedral homology 3-sphere M3 with just a single fixed point;
so one should just make a higher dimensional version of this and do an

4The paper also describes useful criteria for normal cobordism between linear lens
spaces.

5This is done using the “generalized Browder-Livesay theory” of [CS4].
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equivariant “plus” construction to get rid of fundamental group. How-
ever, the details are quite complicated, and we shall say nothing further
about this problem here. Suffice it to say that all subsequent work on the
construction of “one-fixed-point actions” depended rather on systematic
exploitation of equivariant surgery, which we turn to in the next section.

3 Equivariant Surgery

Suppose one has an equivariant normal map (whatever that is) and tries
to “surger” it equivariantly to be a (perhaps equivariant) homotopy equiv-
alence. Depending on the problem, one will inductively assume some level
of success at the fixed point sets of smaller groups. At this point, though,
one runs into trouble doing the surgery. Homotopy theory will tell you that
there usually are spheres in your manifold that need to be killed, but they
will often be embedded in a fashion that intersects some fixed point set.
To do surgery equivariantly, one has to surger all of the translates under
the group action of these spheres, and if these intersect each other, one is
stuck. (If one can succeed, then one is led into the algebra of equivariant
intersection forms, and of absorbing the perturbations of lower strata into
the L-theory.)

There are essentially two approaches to dealing with this difficult prob-
lem. The first, emphasized by Petrie and his collaborators, is to assume
a gap hypothesis; see [DP, DR, Pe1, PR] for this approach and a number
of its applications. The point here is that the spheres one uses for surgery
are always of at most half the dimension of the ambient manifold. Thus, if
the dimension of the fixed set is strictly less than half that of the manifold,
general position will enable the spheres to be moved so as to not intersect
the fixed set, and aside from the middle dimensional case itself, not their
own translates as well. The remaining middle dimensional difficulties are
to be absorbed into the surgery obstruction group.

With this in hand, what happens under gap hypothesis might be sum-
marized as follows: One defines a notion of normal invariants so that
surgery is possible. The idea just described works to the extent of leading
to a π-π vanishing theorem for relative surgery. (Rothenberg and Wein-
berger had shown that the π-π theorem fails for equivariant surgery when
the gap hypothesis fails; see [DS] for a description.) The approach of [Wa]
Chapter 9 shows how such vanishing theorems in surgery theories make
possible the geometric definition of a surgery obstruction group. In such
general settings, it is extremely rare to have a good algebraic definition of
this group, but nevertheless the literature contains ad hoc calculations in
many cases.

The normal invariants also actually pose a serious problem; that is, it’s
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often quite hard to find them. Here the smooth category looks a lot more
workable than the others, since G-transversality is in much better shape
(see [CoW] for a modern and elegant systematic development); but, in any
case, this part of the subject still seems more art than technology.

Nevertheless, this approach has lead to the constructions of many quite
interesting and exotic examples including one-fixed-point actions on the
sphere for many groups. See, for instance [Pe3], and the recent very satis-
fying [LaM], beautiful theorems regarding possible dimension functions for
smooth actions [DP], and varied examples of actions on the sphere with
two fixed points but different representations at the fixed points (see [PR]
and the surveys in [Sch3]).

A remarkable, systematic tour de force using this methodology can be
found in the papers [MR] which extend Wall’s classification theorem from
free actions of odd order cyclic groups on the sphere to all odd order actions
(assuming a gap hypothesis). This approach depends extensively on prov-
ing PL (and Top) G-transversality theorems, and this only works for odd
order groups. The Browder-Livesay invariants discussed in the previous
section obstruct G-transversality, even for G of order 2, and consequently
this whole Madsen-Rothenberg edifice is not applicable to this case.

However, there is another approach to the key issue of equivariant
surgery; while it has not been nearly as successful in constructing exotic
actions with unusual orbit structures, etc., it has led to more complete
classification theories, especially in the PL and topological categories. It
is to this topic that we turn now.

An idea of Browder and Quinn [BQ] is that we should look at isovariant
maps, i.e., ones which map the free parts to the free parts (precisely: an
equivariant map is isovariant if and only if Gm = Gf(m) for all m). Then
the homology kernel one studies is precisely the kernel of the free part
(by excision), from which the homotopy classes of interest already have
representatives there, as desired.

An unpublished theorem of Browder’s (it’s at least 10 years old; see
also [Do] for a related result; Sandor Straus’ unpublished 1973 Ph.D. the-
sis [Str] proves essentially the same result for Zp-actions) asserts that any
equivariant homotopy equivalence between G-manifolds satisfying a suit-
able gap hypothesis is equivariantly homotopic to an isovariant homotopy
equivalence; and the inclusion of the space of isovariant homotopy equiva-
lences in the space of equivariant equivalences is as highly connected as the
excess that the dimensions satisfy beyond the gap hypothesis. One proof
can be obtained by comparing the results of the two theories.

In their paper, Browder and Quinn [BQ] employed a very simple and
calculable kind of normal invariants (indeed, the set of normal invariants
is isomorphic to the familiar [M/G, F/CAT ]), but at a great cost. They
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required a stratified transversality condition for all maps in their category.
This is tantamount to having lots of bundle and framing data; objects
then tend to have many self maps not homotopic to isomorphisms in this
category, so many actions are counted more than once. Moreover, many
equivariantly homotopy equivalent manifolds have no such transverse G-
maps between them, thus severely restricting the kind of actions produced.
(See [HuW] for a discussion of [BQ].) Finally, in the topological category,
the types of rigid structures their theory demands simply do not exist.
(This nonexistence is manifest in the [CS] example of nonlinear similarity
discussed above and in the equivariantly nonfinite G-ANR’s of Quinn [Q1,
Q2] discussed below. A good local structure of the [BQ] sort would, in par-
ticular, enable one to remove open regular neighborhoods of lower strata,
and thus yield a reasonable simple homotopy theory, such as exists in the
PL category, for the complements.)

Section 4 of [HuW] in these proceedings gives a sketch of the Browder-
Quinn theory. What is important for our purposes is not the details, but
the basic idea; it is that one does surgery on a stratum, then using transver-
sality extends the solution of the surgery problem (assuming 0 obstruction,
of course) to a neighborhood of the stratum, and then deals with the new
ordinary surgery obstruction that one is confronted with on the next stra-
tum up.

Thus, the surgery obstruction groups in this theory are “built up” out
of the surgery obstruction groups of all of the “pure strata”, e.g. the sets
of points with a given isotropy group (up to conjugation)6. We recommend
that the reader consult [HuW] for a few examples which show how the
strata can interact in forming the Browder-Quinn L-group. (For instance,
in some cases of interest, despite the fact that all the strata have nontrivial
L-groups, the global L-group is trivial.)7 8

For the rest of this paper we will focus our attention on the topologi-
cal category; almost everything we say has a simpler analogue in the PL
category — and works out very differently in the smooth category.9

6And for a general stratified space, one means the set of points that lie in a given
stratum, but not in any lower one.

7Easy exercise: Let G = Z2 and let M be a manifold with no action. Compute Siso

(M × Sn), where the group action is constructed using the involution on Sn with fixed
point set Sn−1, n > 2. Thought question: What do you make of the fact that isovariant
homotopy equivalences can automatically be made transverse in this (unusual) case?

8Deeper examples of how the strata can interact to cancel or almost cancel their
L-theoretic contributions arise in the beautiful work of Davis, Hsiang, and Morgan [DH,
DHM] on the concordance classification or certain smooth U(n) and O(n) actions (the
so-called “multiaxial actions” on the sphere).

9The past fifteen years have seen a shift in emphasis from the smooth category to
the topological in transformation group theory. The smooth category had seemed much
more comprehensible than the topological, because of the slice theorem, equivariant
tubular neighborhood theorem, and clear inductive techniques, as well as deep tools like
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The first topic that must be clarified is what we mean by the topological
category. Of course arbitrary continuous actions can be quite wild: the
fixed set need not have any manifold (or even homology manifold) points.
It can be far from nice in any homological sense — every open subset can
have infinitely generated rational homology!

Two choices have been commonly chosen. The first, introduced in [B2]
and deeply investigated in [MR], is the locally linear category. One as-
sumes that each orbit (G/Gx) has an invariant open neighborhood which
is equivariantly homeomorphic to a neighborhood of some orbit within a
linear G-representation. Smooth group actions all have this structure, and
this condition forces all fixed point sets of all subgroups to be nice locally
flat submanifolds of one another. This condition leads, for instance, to
fairly simple isotopy extension theorems.

The other choice is to assume just that all fixed point sets are locally
flat submanifolds of one another. This is a wider category, called the tame
category, but it fortunately turns out — quite non-trivially — that this
category also has all the isotopy extension theorems one would want [Q2,
Hu], see also [HTWW] and [HuW], and remains suitable for classification
theorems, as we will sketch. Quinn’s isotopy extension theorem implies
homogeneity of the strata; so if one has, for instance, a semifree action
with connected locally flat fixed point set, then it is locally linear if and
only if it is locally linear at a single fixed point.

Theorem 3.1 ([Q2]) If G acts tamely on a topological manifold, then one
can extend G-isotopies. In particular, any two points p and q in the same
component of the submanifold consisting of points with Gp as their isotropy
have equivariantly homeomorphic neighborhoods.

Assadi’s obstruction is of course just the Wall finiteness obstruction for
the quotient of the complement of the fixed set, which must vanish in the
PL category because of regular neighborhood theory. The above theorem
shows that one cannot find such neighborhoods in the topological setting.
(The first examples of this phenomenon were discovered by Quinn [Q1,
Q2].) The idea of the proof is to remove a point from a stratum, work non-
compactly, then one point compactify, and use the magic of there being no
isolated topological singularities.

the Atiyah-Singer G-signature formula. At this date, it seems that for finite groups the
topological category is the better understood one: for instance, one still does not know
exactly which submanifolds of Sn are the fixed point sets of smooth Zp actions (even if we
avoid the awkward codimension two case) (see [Sch1] for beautiful partial results which
already display some fascinating phenomena) or the classification of actions with given
fixed point set. In some sense, the key difference between the smooth and topological
categories is that, in the latter, local and global issues are essentially the same. In the
smooth category, global issues are largely surgery theoretic, while the more rigid local
ones involve via linearization, and the unstable homotopy theory of classical groups.
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By this point, it does not really matter much which of these two topo-
logical categories the reader keeps in mind. When we develop precise clas-
sification theorems, it will turn out that the second category is somewhat
more convenient; but in principle all one has to do at the end of any dis-
cussion is to examine what is occurring at several points in order to check
whether one has succeeded in working in the locally linear category.

The first interesting point is that locally linear actions need not have
equivariant handle decompositions. The first example of this was Sieben-
mann’s locally triangulable nontriangulable sphere [Si1], whose key feature
was nontriangulability for algebraic K-theoretic reasons, rather than be-
cause of the Kirby-Siebenmann invariant familiar from the unequivariant
theory of topological manifolds. Other examples appear in [Q1, Q2, DR,
We1]. Needless to say, once existence is called into question, then there
shouldn’t be uniqueness, and this had been forcefully shown by the exam-
ples [CS1] of nonlinear similarity mentioned above, i.e., of nonequivalent
orthogonal representations that cannot be PL equivalent because of torsion
considerations (de Rham’s theorem), but which are nevertheless topologi-
cally conjugate.

Non-uniqueness of handle structure can also be seen quite easily using
Milnor’s [M2] counterexamples to the Hauptvermutung. The nonexistence
is also quite easy using Siebenmann’s proper h-cobordism theorem [Si2], if
one grants the homogeneity of tame actions.
Example. Suppose that one starts with any smooth Zp action on a mani-
fold, where the fixed set is nonempty and has codimension at least 4. Then,
for p > 3, Wh(Zp) 6= 0, and so one can erect an equivariant h-cobordism
with nontrivial torsion (working in the quotient of the complement). How-
ever, this smoothly nontrivial h-cobordism is topologically trivial, by an
Eilenberg swindle (similar to the Y G construction in [St]).
Example. Suppose that the fixed set has positive dimension and is dis-
connected. Instead of realizing an element of the usual Whitehead group of
the closed complement, remove two points from the fixed set from different
components. Attach to M × I the realization of an element of the proper
Whitehead group of the new closed complement (which is K̃0(Zp)), and
then end-point compactify. One still has a locally linear action by the iso-
topy homogeneity theorem. However, one can easily check that this space
does not have a closed regular neighborhood of its singular set.

A striking application of this overall technique geometrically can be
found in [We1]:

Theorem 3.2 A submanifold Y n of Sn+r, for r > 2 and n + r > 4, is the
fixed set of a semifree locally linear orientation preserving G-action on the
sphere if and only if G acts freely and linearly on Sr−1 and Y is a mod |G|
homology sphere.



Surgery theoretic methods in group actions 301

One should compare this with the conditions that arose in Assadi’s
theorem mentioned in (1.2). In that theorem there are restrictions on the
orders of the homology modules of Y , depending on G (and they are indeed
nontrivial). Here the topological category turns out to be easier to analyze
than the PL locally linear category, because in the former there can be
no isolated singularities by Quinn’s theorem. (See [We4] for the analogous
theorem in the PL locally linear setting.)

In short, the proof goes like this: One produces an action on Rn+r

with fixed point set Ỹ (= Y minus a point) using local bundle information
[CW1] to get the action on a neighborhood and extension across homology
collars [AsB, We3] to extend outwards. Then, as above, one one-point
compactifies and is guaranteed local linearity.

Examples like these very naturally suggested bringing to bear the tech-
nology of controlled topology [ChF, AH, Q1, Y, FP, ACFP, We2]. Stein-
berger and West [Stnb] and Quinn [Q2], in the more general setting of
stratified spaces (with a missing realization result provided in [HTWW,
Hu]) gave an s-cobordism theorem.10

Theorem 3.3 If G acts tamely on a manifold M , with no fixed point set
of codimension one or two in another, then

Whtop
G (M) ∼=

⊕
Whtop

NH/H(MH , rel sing).

These latter groups can be computed via an exact sequence:

H0(M/G;Wh(Gm)) → Wh(G) → Whtop
G (M, rel sing)

→ H0(M/G;K0(Gm)) → K0(G).

These “rel sing” theories can be interpreted as being the theory of
h-cobordisms that are trivial on the lower strata. Because they are not as-
sumed to be trivialized in a neighborhood of these strata (as would be au-
tomatic in the PL and smooth categories), we have the nontrivial assembly
maps (H0(M/G;Wh(Gm)) → Wh(G) and H0(M/G;K0(Gm)) → K0(G))
which control the “leaking” of obstructions through lower strata. The
map Whtop

G (M, rel sing) → H0(M/G;K0(Gm)) measures the obstruction
to putting a mapping cylinder around singular set of the h-cobordism (as-
suming we had one on the bottom of the h-cobordism to begin with). And
the map H0(M/G;Wh(Gm)) → Wh(G) measures the effect of changing
mapping cylinder structures. (We recommend the reader rethink the above
two examples in light of this theorem in order to appreciate it.)

10In the locally linear setting, one has to be careful, because the realization of h-
cobordisms when the fixed set consists of isolated points might leave the category.
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Corollary If M is G-simply connected, i.e., if MH is simply connected for
all H ⊂ G, and M satisfies the “no low codimension” gap condition, then
Whtop

G (M) = 0.
This holds for the sphere of a representation whenever the fixed point

set is two- or more dimensional and there are no one- or two- dimensional
eigenspaces. (These can be dealt with, of course, but with a bit more cal-
culation.) Thus, one can see that once one has two trivial summands, the
question of the existence of a nonlinear similarity is unaffected by stabi-
lization with a third or more.

Another key feature that distinguishes the smooth category from the
PL and topological locally linear categories, not to mention the tame cat-
egory, is the issue (mentioned above) of equivariant transversality. In the
smooth category, there is a stable equivariant transversality theorem (see
e.g. [Pe2, PR, CoW]). However, for G = Z2 the Browder-Livesay examples
of nondesuspendable involutions on the sphere give rise to counterexamples
to transversality, even for maps into R with its nontrivial involution. (See
[MR]; a simple nonlocally linear example arises from the natural map from
the open cone of a non-desuspendable free involution on the sphere map-
ping to R. The transverse inverse image of 0 would have around its fixed
point a desuspension of the action.) For odd order groups, one would have
similar counterexamples in the tame category, because Wall’s desuspension
theorem only covers desuspension with respect to the linear Zp actions.
However, as noted above, the remarkable theorem of Madsen and Rothen-
berg shows that for locally linear odd order group actions, transversality
holds. This enabled them to extend Wall’s theorem to nonfree actions,
give a classifying space for topological locally linear equivariant normal in-
variants (assuming a “gap hypothesis”) and an associated surgery theory.
Furthermore, they gave an extension of Sullivan’s KO∗[1/2] orientation
of topological manifolds to a KOG

∗ [1/2] orientation for locally linear G-
manifolds when G is of odd order. (It was this invariant which they used
to prove the result on odd order nonlinear similarity mentioned above.)

Soon after, Rothenberg and Weinberger gave an analytic approach to
the KOG

∗ [1/2] class, which works for all G (see [RsW1, RtW]) and in the
tame category. A general and direct controlled topological approach for
group actions on topological pseudomanifolds was given by the present
authors and Shaneson in [CSW], using intersection chain sheaves. This
class fails to be an orientation in general11. For smooth G-manifolds, this

11A similar thing occurs in the theory of the usual Sullivan class. It is definable as an
element of the more refined homology theory H∗( ;L•(e)), where it is an orientation for
topological manifolds [R3]. Actually it can be defined even for ANR homology manifolds,
but in that generality the class need not be an orientation. In fact it is an orientation
away from 2 if and only if the homology manifold is resolvable (i.e., a cell-like image of
a topological manifold). For more of a discussion of the theory of homology manifolds



Surgery theoretic methods in group actions 303

class is the equivariant symbol of the signature operator. This takes us a
certain way towards explaining the following theorem:

Theorem 3.4 (i) (Combination of [MR, RtW, CSW, RsW1, We2])
Suppose G is a finite group acting tamely on a manifold M . Then one can
define a KOG-homology fundamental class

4(M) ∈ KOG
∗ (M)⊗ Z[1/2]

which is a topological invariant. Its image under the natural map M → pt
sends 4(M) to G-signature(M).
(ii) ([CWY] using [We2])
Suppose that there are no low codimensional fixed point sets; then

Siso
G (M)⊗ Z[1/2] ∼=

⊕
Siso

NH/H(MH , rel sing)⊗ Z[1/2].

In fact, Siso
G (M, rel sing) is a covariantly equivariantly functorial abelian

group, the elements of which for M G-simply connected are determined
away from 2 by 4, and all values of 4 are realized subject to the augmen-
tation condition.

Remark. Siso
G is the structure set of a G-manifold defined using isovariant

homotopy equivalences. Recall that by Browder’s theorem this is the same
as the equivariant structure set when a strong gap hypothesis applies.
Remark. The splitting of the structure set here into pieces defined by
the fixed point sets means (ignoring the issue of the prime 2) that any
equivariant structure on a fixed point set (of any subgroup) can be extended
to one on the whole G-manifold. In the case where the subgroup involved is
G itself, this is the phenomenon studied earlier by “replacement theorems”
[CW2], wherein any manifold homotopy equivalent to the fixed point set is
actually the fixed set of an equivariantly homotopy equivalent group action.
A typical statement of that theory is the following:

Theorem 3.5 Suppose G is an odd order abelian group acting locally lin-
early on a G-manifold M (with no codimension-two fixed point sets), smooth-
ly in a neighborhood of a 1-skeleton. If F ′ is a manifold homotopy equivalent
to the fixed point set F , then there is an equivariantly homotopy equivalent
G-action with fixed point set F ′.

Unfortunately that statement is false for even order groups, but it’s true
away from the prime 2! (The theorem in [CW2] is, in fact, stronger in that
one also sees that the new G-action is on the original manifold M .)

and its analogies to group actions, see [We5].
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In any case, it’s not even entirely obvious that such a homotopy equiv-
alent manifold even embeds in the manifold under discussion. Indeed, in
the smooth category, characteristic class theory easily shows that this false.
Implicit in this theorem is the homotopy invariance of PL or topological
embedding in codimension larger than 2 (Browder, Casson, Haefliger, Sul-
livan and Wall), which, of course, involves systematically changing the
putative normal bundles to our submanifolds. In other words, this type of
phenomenon is exactly the type of thing not studiable by the original theory
of [BQ]. Nevertheless, as we will see, calculations of sheaves of Browder-
Quinn surgery groups, constructed as noted above for use in a much more
constrained setting, play an important role in the topological category.

We can only give a short sketch of a proof here. The first part is
to simply recognize that isovariant structures on M are the same thing
as “stratified structures on M/G”, where one works in the category of
homotopically stratified spaces [Q2, We2, Hu, HuW]. [We2] extended [BQ]
to (i) apply to these spaces, and (ii) to maps which are stratified but not
necessarily transverse. (Surveys of this are [We5, HuW]; an early precursor
to this general theory is [CW3].)

The problem then is to compute what the theory actually says. The
surgery obstruction groups away from 2 can be analyzed by a trick (see
[CSW, LM, DS]). To any G-manifold (G finite) one can define a symmetric
signature (see [R1]) δ∗G(M) ∈ L∗(QΓ), where Γ is the “orbifold fundamental
group” (= fundamental group of the Borel construction) which fits into an
exact sequence 1 → π1(M) → Γ → G → 1. This can be done in the
same way as symmetric signatures are defined in general, simply observing
that the QΓ-chain complex of a G-manifold, that is, the Q-chain complex
of the Γ-manifold that is the universal cover of M , is made up out of
projective chain complexes, since all isotropy is finite. Now we use the fact
that, according to Ranicki [R], changing coefficients from ZΓ to QΓ only
affects L-theory at the prime 2 (as does allowing projective rather than
free modules in the definition of L-groups).

If one assembles all of the equivariant signatures of all the strata to-
gether, one has an a priori method of detecting all of the surgery obstruc-
tions that will be inductively arising in the Browder-Quinn process, i.e.,
many secondary, tertiary, etc., obstructions are, in fact, primary. This
kind of argument yields the collapse of some spectral sequence and this
gives a splitting away from 2 of the LBQ into ordinary L-groups, just like
the splitting asserted on structure sets.

Remark. Results of [LM] can be used to see that for many odd order
group actions that there is an integral splitting, as well.

It turns out that this method is sufficiently canonical to apply not just
to individual L-groups, but to “cosheaves of L-spectra” as well. As a result,
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as noted by the present authors with Min Yan, here the normal invariants
[We2], which turn out to be a cosheaf homology theory, also break up into
pieces defined on the various strata. This is enough to get the splitting of
Siso

G into pieces corresponding to the various strata.
Now, to compute these pieces, one shows that the normal invariants (of

a stratum rel sing) essentially boils down to equivariant K-groups. This is
an extension of Sullivan’s “characteristic variety” theorem for the structure
of G/PL at odd primes and can be proven in a couple of ways, by now.
For example, [CSW] explained how to produce the equivariant signature
class via the calculation such a cosheaf homology group. On the other
hand, [RsW1, We2] uses just the PL version of the equivariant Teleman
signature operator to give a calculation of the cosheaf homology (which still
is an improvement on the approach of [RtW] in that it does not require
the construction of any Lipschitz structures, nor of the harder Lipschitz
signature operator.)

Remark. The remaining statement regarding equivariant functoriality can
be found in [CWY], where we, together with Min Yan, analyze these rel
sing structure sets, as well as the issue of integral splitting. (It does not
split in general; there is a spectral sequence whose differentials are related to
assembly maps for finite groups.) That work also deals with the calculation
of normal invariants at the prime 2, and their relation to Bredon homology.
Earlier work on that problem can be found in [Na].

Remark. The non simply connected case can be dealt with in a similar
fashion; essentially one just has to use non simply connected L-groups on
occasion to replace the KOG(∗).

Needless to say, this theorem has implications for nonlinear similarity,
in terms of giving necessary conditions, such as the fact that for odd order
groups nonlinear and linear similarity coincide ([HP] and [MR]) or the
more general topological invariance of generalized Atiyah-Bott numbers of
[CSSWW]; it also quickly leads to the “topological rationality principle”
for representations of general finite groups of [CS2]. The reader should
also consult [HaP1,2] for a great deal of information regarding nonlinear
similarity for cyclic groups.

We would like to close this survey with describing some relatively recent
ideas on equivariant structure sets when the gap hypothesis does not hold.

One key to this is the work of [Y1] and [WY] (which extends earlier work
of [DS] on equivariant L-groups) which shows that there are isovariant peri-
odicity theorems for structure sets, as suggested by the form of the normal
invariants away from 2 and equivariant Bott periodicity. Unfortunately,
one does not have a general statement, so we will leave precise statements
to the references. However, a payoff from this is the following: one can,
as a consequence, often show that existence and classification problems do
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not actually depend on all of the stratified data, but only depend on the
equivariant homotopy data.

The model for this is the following. An easy application of the total
surgery obstruction theory of [R3], modified in [BFMW], is that a Poincaré
complex X is homotopy equivalent to an ANR homology manifold if and
only if X × CP2 is. Ordinarily this is not too useful because it is hard to
verify directly that X × CP2 is a manifold. However, in the situation of
group actions, say for odd order groups, the substitute is a product of CP2’s
with permutation action, so that after crossing some number of times, the
gap hypothesis becomes valid.

Now, using Browder’s theorem one sees that the difference between
equivariance and isovariance goes away by this process. It follows that if an
equivariantly equivalent Poincaré space can be geometrically constructed,
then stably and isovariantly one can realize geometrically the Poincaré
space, and thus, by Yan’s work, one can also realize the original Poincaré
complex.

This then leads (under good conditions) to a decomposition Sequi ∼=
Siso×? where ? is a purely homotopy theoretic object. It consists of the
isovariant homotopy types of Poincaré objects within the given equivariant
homotopy type. While this does not look particularly computable, it turns
out to be closely related to the set of PL (or topologically locally flat)
embeddings of the fixed point set homotopic to the given embedding.

This strangely reduces the geometrical problem to homotopy theory,
and then relates the homotopy theory back to a different geometrical prob-
lem, instead of dealing with it homotopy theoretically. This process leads
to, for instance, a result conjectured by the first author:

Theorem 3.6 ([We7]) A semifree action on a simply connected manifold
with simply connected fixed set of codimension greater than 2 is determined
within its equivariant homotopy type, up to finite ambiguity, by the equiv-
ariant signature class and the underlying topological types of the fixed point
set and its embedding in the ambient manifold.

As a sample application regarding the equivariant version of the Borel
rigidity conjecture, i.e., the conjecture that aspherical manifolds are deter-
mined up to homeomorphism by their fundamental groups, we have:

Theorem 3.7 ([We7], see [Shi] for more refined information): The cyclic
group Zp, p a prime, p > 3, acts affinely (via a permutation representation
on the coordinates) on T 2p−3 in such a way that Sequi(T 2p−3) is infinite.
Moreover, all of the elements are smoothable and they remain distinct when
crossing with any torus with trivial action, but they all do become equivalent
on taking a suitable finite sheeted cover.
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One can actually put a group structure on many of these structure sets
and give actual calculations. (This last is due to positive results on the
equivariant Borel conjecture, see [CK]; more results can be obtained by
combining [FJ] with [We2].)12

All but the smoothability comes from the type of analysis discussed
above: one constructs embeddings of the torus T p−1 ↪→ T 2p−3 that are
isotopic to their images under the linear Zp action and then, using the
connections between embeddings and Poincaré embeddings and isovariant
Poincaré complexes, one gets a homotopy model that can be geometrically
realized.

The smoothability is explained in [FRW].
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[We6] , Microsurgery on stratified spaces, in Geometric topol-
ogy (Athens, GA, 1993), 509–521, Amer. Math. Soc., Providence,
RI.

[We7] , Nonlinear averaging, embeddings, and group actions,
in Tel Aviv Topology Conference: Rothenberg Festschrift, Con-
temp. Math. 231, Amer. Math. Soc., Providence, RI, 307–314,
1999.

[WY] and M. Yan, Periodicity of isovariant structure sets for
abelian group actions (preprint).

[Wh] J.H.C. Whitehead, The mathematical works of J. H. C. White-
head, Vol. II: Complexes and manifolds, I. M. James, ed., Perg-
amon Press, Oxford-New York-Paris, 1962.

[Wo] J. Wolf, Spaces of constant curvature, Fifth edition, Publish or
Perish, Inc., Houston, Tex., 1984.



Surgery theoretic methods in group actions 317

[Ya] M. Yamasaki, L-groups of crystallographic groups, Invent. Math.
88 (1987), 571–602.

[Y1] M. Yan, The periodicity in stable equivariant surgery, Comm.
Pure Appl. Math. 46 (1993), no. 7, 1013–1040.

[Y2] , Equivariant periodicity in surgery for actions of some
nonabelian groups, in Geometric topology (Athens, GA, 1993),
478–508, AMS/IP Stud. Adv. Math., 2.1, Amer. Math. Soc.,
Providence, RI, 1997.

Courant Institute of the Mathematical Sciences
New York University
251 Mercer Street
New York, NY 10012
cappell@cims.nyu.edu

University of Chicago
Department of Mathematics
Chicago, IL 60637
shmuel@math.uchicago.edu



Surgery and stratified spaces

Bruce Hughes and Shmuel Weinberger

0. Introduction

The past couple of decades has seen significant progress in the theory
of stratified spaces through the application of controlled methods as well
as through the applications of intersection homology. In this paper we
will give a cursory introduction to this material, hopefully whetting your
appetite to peruse more thorough accounts.

In more detail, the contents of this paper are as follows: the first section
deals with some examples of stratified spaces and describes some of the
different categories that have been considered by various authors. For
the purposes of this paper, we will work in either the PL category or a
very natural topological category introduced by Quinn [Q4]. The next
section discusses intersection homology and how it provides one with a rich
collection of self dual sheaves. These can be manipulated by ideas long
familiar to surgery theorists who have exploited Poincaré duality from the
start. We will give a few applications of the tight connection between an
important class of stratified spaces (Witt spaces), self dual sheaves, and
K-theory; one last application will appear in the final section of the paper
(where we deal with the classification of “supernormal” spaces with only
even codimensional strata).

Section three begins an independent direction, more purely geomet-
ric. We describe the local structure of topological stratified spaces in
some detail, in particular explaining the teardrop neighborhood theorem
([HTWW], [H2]) and giving applications to isotopy theorems and the like.
The last three sections describe the theory of surgery on stratified spaces,
building on our understanding of teardrop neighborhoods, and some appli-
cations to classification problems (other applications can also be found in
the survey [CW4]).
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1. Definitions and Examples of Stratified Spaces

A stratification Σ = {Xi} of a space X is a locally finite decomposition of
X into pairwise disjoint, locally closed subsets of X such that each Xi ∈ Σ
is a topological manifold. We always assume that X is a locally compact,
separable metric space and that Σ satisfies the Frontier Condition: cl Xi ∩
Xj 6= ∅ if and only if Xj ⊆ clXi. The index set is then partially ordered
by j ≤ i if and only if Xj ⊆ cl Xi. The set Xi ∈ Σ is called a stratum
and Xi = cl Xi = ∪{Xj | j ≤ i} is a skeleton (or closed stratum in the
terminology of [W4]).

Partitioning non-manifold spaces into manifold pieces is a very old idea
— one has only to consider polyhedra in which the strata are differences be-
tween successive skeleta. However, it was not until relatively recently that
attention was paid to how the strata should fit together, or to the geometry
of the neighborhoods of strata. In 1962 Thom [T1] discussed stratifications
in which the strata have neighborhoods which fibre over that stratum and
which have “tapis” maps (the precursor to the tubular maps in Mather’s
formulation in 1.2 below). It was also in this paper that Thom conjectured
that the topologically stable maps between two smooth manifolds are dense
in the space of all smooth maps. In fact, it was Thom’s program for attack-
ing that conjecture which led him to a study of stratifications [T2]. The
connection between stratifications and topological stability (and, more gen-
erally, the theory of singularities of smooth maps) is outside the scope of
this paper, but the connections have continued to develop (for a recent
account, see the book of du Plessis and Wall [dPW].)

Here we review the major formulations of the conditions on neighbor-
hoods of strata. These are due to Whitney, Mather, Browder and Quinn,
Siebenmann, and Quinn. The approaches of Whitney, Mather, Browder
and Quinn are closely related to Thom’s original ideas. These types of
stratifications are referred to as geometric stratifications. The approaches
of Siebenmann and Quinn are attempts at finding an appropriate topolog-
ical setting.

1.1 Whitney stratifications. In two fundamental papers [Wh1],[Wh2],
Whitney clarified some of Thom’s ideas on stratifications and introduced
his Conditions A and B. To motivate these conditions consider a real al-
gebraic set V ⊆ Rn, the common locus of finitely many real polynomials.
The singular set ΣV of all points where V fails to be a smooth manifold is
also an algebraic set. There is then a finite filtration V = V m ⊇ V m−1 ⊇
· · · ⊇ V 0 ⊇ V −1 = ∅ with V i−1 = ΣV i. One obtains a stratification of
V by considering the strata Vi = V i \ V i−1. However, with this naive
construction the strata need not have geometrically well-behaved neigh-
borhoods; that is, the local topological type need not be locally constant
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along strata. For example, consider the famous Whitney umbrella which
is the locus of x2 = zy2, an algebraic set in R3. The singular set ΣV is the
z-axis and is a smooth manifold, so one obtains just two strata, V \ ΣV
and ΣV . However, there is a drastic change in the neighborhood of ΣV
in V as one passes through the origin: for negative z small neighborhoods
meet only ΣV whereas this is not the case for positive z.

If X, Y are smooth submanifolds of a smooth manifold M , then X is
Whitney regular over Y if whenever xi ∈ X, yi ∈ Y are sequence of points
converging to some y ∈ Y , the lines li = xiyi converge to a line l, and the
tangent spaces Txi

X converge to a space τ , then
(A) TyY ⊆ τ and
(B) l ⊆ τ .

A stratification Σ = {Xi} of X is a Whitney stratification if whenever j ≤ i,
Xi is Whitney regular over Xj .

In the Whitney umbrella V , V \ΣV is not Whitney regular over ΣV at
the origin. However, the stratification can be modified to give a Whitney
stratification and a similar construction works for a class of spaces more
general than algebraic sets: a subset V ⊆ Rn is a semi-algebraic set if it
is a finite union of sets which are the common solutions of finitely many
polynomial equations and inequalities. Examples include real algebraic sets
and polyhedra. In fact, the class of semi-algebraic sets is the smallest class
of euclidean subsets containing the real algebraic sets and which is closed
under images of linear projections. If V is semi-algebraic, then there is a
finite filtration as in the case of an algebraic set discussed above obtained
by considering iterated singular sets. This filtration can be modified by
removing from the strata the closure of the set of points where the Whitney
conditions fail to hold. In this way, semi-algebraic sets are given Whitney
stratifications (see [GWdPL]).

In fact, Whitney [Wh2] showed that any real or complex analytic set
admits a Whitney stratification. These are sets defined analogously to alge-
braic sets with analytic functions used instead of polynomials. ÃLojasiewicz
[Lo] then showed that semi-analytic sets (the analytic analogue of semi-
algebraic sets) have Whitney stratifications. An even more general class
of spaces, namely the subanalytic sets, were shown by Hardt [Hr] to admit
Whitney stratifications. For a modern and thorough discussion of stratifi-
cations for semi-algebraic and subanalytic sets see Shiota [Shi].

1.2 Mather stratifications: tube systems. Mather clarified many of
the ideas of Thom and Whitney and gave complete proofs of the isotopy
lemmas of Thom. He worked with a definition of stratifications closer to
Thom’s original ideas than to Whitney’s, but then proved that spaces with
Whitney stratifications are stratified in his sense.
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Definition. For 0 ≤ k ≤ +∞, a Mather Ck-stratification of X is a triple
(X, Σ,T) such the following hold:

(1) Σ = {Xi} is a stratification of X such that each stratum Xi ∈ Σ is
a Ck-manifold.

(2) T = {Ti, πi, ρi} is called a tube system and Ti is an open neighbor-
hood of Xi in X, called the tubular neighborhood of Xi, πi : Ti → Xi

is a retraction, called the local retraction of Ti, and ρi : Ti → [0,∞)
is a map such that ρ−1

i (0) = Xi.
(3) For each Xi, Xj ∈ Σ, if Tij = Ti ∩Xj and the restrictions of πi and

ρi to Tij are denoted πij and ρij , respectively, then the map

(πij , ρij) : Tij → Xi × (0,∞)

is a Ck-submersion.
(4) If Xi, Xj , Xk ∈ Σ, then the following compatibility conditions hold

for x ∈ Tjk ∩ Tik ∩ π−1
jk (Tij):

πij ◦ πjk(x) = πik(x),

ρij ◦ πjk(x) = ρik(x).

When k = 0 above, a C0-submersion, or topological submersion, means
every point in the domain has a neighborhood in which the map is topo-
logically equivalent to a projection (see [S2]).

Mather [Ma1], [Ma2] proved that Whitney stratified spaces have Mather
C∞-stratifications.

The Thom isotopy lemmas mentioned above are closely related to the
geometric structure of neighborhoods of strata. For example, the first
isotopy lemma says that if f : X → Y is a proper map between Whitney
stratified spaces with the property that for every stratum Xi of X there
exists a stratum Yj of Y such that f | : Xi → Yj is a smooth submersion,
then f is a fibre bundle projection (topologically — not smoothly!) and
has local trivializations which preserve the strata. Mather applied this to
the tubular maps

πi × ρi : Ti → Xi × [0,∞)

defined on the tubular neighborhoods of the strata of a Whitney stratified
space X in order to show that every stratum Xi has a neighborhood N such
that the pair (N, Xi) is homeomorphic to (cyl(f), Xi) where cyl(f) is the
mapping cylinder of some fibre bundle projection f : A → Xi. The exis-
tence of these mapping cylinder neighborhoods was abstracted by Browder
and Quinn as is seen next.
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1.3 Browder-Quinn stratifications: mapping cylinder neighbor-
hoods. In order to classify stratified spaces Browder and Quinn [BQ]
isolated the mapping cylinder structure as formulated by Mather. The
mapping cylinder was then part of the data that was to be classified. More
will be said about this in §4 below. Here we recall their definition.

Let Σ = {Xi} be a stratification of a space X such that each stratum
Xi is a Ck-manifold. The singular set ΣXi is cl Xi \Xi = ∪{Xj | j < i}.
(This is in general bigger than the singular set as defined in 1.1.)

Definition. Σ is a Ck geometric stratification of X if for every i there is
a closed neighborhood Ni of ΣXi in Xi = cl Xi and a map νi : ∂Ni → ΣXi

such that
(1) ∂Ni is a codimension 0 submanifold of Xi,
(2) Ni is the mapping cylinder of νi (with ∂Ni and ΣNi corresponding

to the top and bottom of the cylinder),
(3) if j < i and Wj = Xj \ intNj , then νi| : ν−1

i (Wj) → Wj is a
Ck-submersion.

The complement of intNi in Xi is called a closed pure stratum and is
denote X

i
.

Note this definition incorporates a topological theory by taking k = 0.
Browder and Quinn also pointed out that by relaxing the condition on the
maps vi other theories can be considered. For example, one can insist that
the strata be PL manifolds and the vi be PL block bundles with manifold
fibers.

1.4 Siebenmann stratifications: local cones. In the late 1960s Cer-
navskii [Ce] developed intricate geometric techniques for deforming homeo-
morphisms of topological manifolds. In particular, he proved that the group
of self homeomorphisms of a compact manifold is locally contractible by
showing that two sufficiently close homeomorphisms are canonically iso-
topic. The result was reproved by Edwards and Kirby [EK] by use of
Kirby’s torus trick. Siebenmann [S2] developed the technique further in
order to establish the local contractibility of homeomorphism groups for
certain nonmanifolds, especially, compact polyhedra.

Siebenmann’s technique applied most naturally to stratified spaces and
a secondary aim of [S2] was to introduce a class of stratified spaces that
he thought might “come to be the topological analogues of polyhedra in
the piecewise-linear realm or of Thom’s stratified sets in the differentiable
realm.” These are the locally conelike TOP stratified sets whose defining
property is that strata are topological manifolds and for each point x in
the n–stratum there is a compact locally conelike TOP stratified set L
(with fewer strata — the definition is inductive) and a stratum-preserving
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homeomorphism of Rn × ◦
cL onto an open neighborhood of x where

◦
cL

denotes the open cone on L and the homeomorphism takes 0×{vertex} to
x. Simple examples include polyhedra and the topological (C0) versions

It is important to realize that Siebenmann didn’t just take the topo-
logical version of Mather’s stratified space, but he did have Mather’s C0-
tubular maps locally at each point. The reason he was able to work in
this generality was that the techniques for proving local contractibility of
homeomorphism groups were purely local.

As an example, consider a pair (M, N) of topological manifolds with N
a locally flat submanifold of M . With the two strata, N and M \ N , the
local flatness verifies that this is a locally conelike stratification. However,
Rourke and Sanderson [RS] showed that N need not have a neighbor-
hood given by the mapping cylinder of a fibre bundle projection. Thus,
Siebenmann’s class is definitely larger than the topological version of the
Thom-Whitney-Mather class.

On the other hand, Edwards [E] did establish that locally flat subman-
ifolds of high dimensional topological manifolds do, in general, have map-
ping cylinder neighborhoods. However, the maps to the submanifold giving
the mapping cylinder need not be a fibre bundle projection. It turns out
that the map is a manifold approximate fibration, a type of map which fig-
ures prominently in the discussion of the geometry of homotopically strat-
ified spaces below.

Later, Quinn [Q2,II] and Steinberger and West [StW] gave examples
of locally conelike TOP stratified sets in which the strata do not have
mapping cylinder neighborhoods of any kind. In fact, their examples are
orbit spaces of finite groups acting locally linearly on topological manifolds.
Such orbit spaces are an important source of examples of locally conelike
stratified sets and many of advances in the theory of stratified spaces were
made with applications to locally linear actions in mind. These examples
were preceded by an example mentioned by Siebenmann [S3] of a locally
triangulable non-triangulable space.

Milnor’s counterexamples to the Hauptvermutung [M1] give non-homeo-
morphic polyhedra whose open cones are homeomorphic. As Siebenmann
observed, these show that the links in locally conelike stratified sets are not
unique up to homeomorphism. Siebenmann does prove that the links are
stably homeomorphic after crossing with a euclidean space of the dimen-
sion of the stratum plus 1. The non-uniqueness of links points to the fact
that Siebenmann’s stratified spaces are too rigid to really be the topologi-
cal analogue of polyhedra and smoothly stratified sets, whereas the stable
uniqueness foreshadows the uniqueness up to controlled homeomorphism
of fibre germs of manifold approximate fibrations [HTW1].

The main applications obtained by Siebenmann, namely local contracti-
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bility of homeomorphism groups, isotopy extension theorems, and the fact
that many proper submersions are bundle projections, can all be general-
ized to the setting of homotopically stratified sets discussed below.

Siebenmann himself experimented with a less rigid class of stratified
spaces, called locally weakly conelike. In order to include in this class strat-
ified spaces with isolated singularities which arise as the one-point compact-
ifications of manifolds with nonvanishing Siebenmann obstruction [S], he
no longer required the existence of links. However, neighborhoods around
strata of dimension n were still required to split off a factor of Rn locally.
In other words, in a locally conelike set X a point in the n-dimensional
stratum Xn has a neighborhood U in X with U \ Xn homeomorphic to
L × Rn+1 with L the compact link. In a weakly conelike set, U \ Xn is
homeomorphic to C×Rn with C a noncompact space with a certain tame-
ness property at infinity. While this generalization was a move in the right
direction, the role of the weak link C prevented further developments and
it was left to Quinn to make a bolder generalization.

1.5 Quinn stratifications: homotopy mapping cylinders. Quinn
[Q5] introduced a class of spaces which we will call manifold homotopi-
cally stratified sets. His objective was to “give a setting for the study of
purely topological stratified phenomena, particularly group actions on man-
ifolds.” As has been pointed out above, the previously defined topologically
stratified spaces were inadequate. On one hand, the geometrically strati-
fied spaces (that is, the topological version of Thom’s spaces as formulated
by Mather or Browder and Quinn) require too strong of a condition on
neighborhoods of strata (namely, mapping cylinder neighborhoods) ruling
out important examples (like locally flat submanifolds and orbit spaces of
locally linear group actions). On the other hand, the locally conelike strat-
ified sets of Siebenmann require a very strong local condition which need
not propagate to the entire neighborhood of the strata. Without an under-
standing of the geometry of neighborhoods of strata, topological stratified
versions of surgery, transversality, and h-cobordism theorems were missing.

Quinn formulated his definition to be equivalent to saying that for j < i,
Xi ∪Xj is homotopy equivalent near Xj to the mapping cylinder of some
fibration over Xj . This has two pleasant properties. First, besides the
geometric condition that the strata be manifolds, the definition is giving in
homotopy theoretic terms. Second, the condition concerns neighborhoods
of strata rather than closed strata, so that, in particular, there are no
complicated compatibility conditions where more than two strata meet.
The links are now defined only up to homotopy.

Even without a geometric condition on neighborhoods of strata, Quinn
was able to derive geometric results. These will be discussed in §3 below



326 Bruce Hughes and Shmuel Weinberger

along with a theorem of Hughes, Taylor, Weinberger and Williams which
says that neighborhoods of strata do carry a weak geometric structure.
One thing that Quinn did not do was to develop a surgery theory for
these manifold homotopically stratified sets. That piece of the picture was
completed by Weinberger [W4] (see §5 below).

1.6 Group actions. Suppose that G is a finite group acting on a topolog-
ical manifold M . One attempts to study the action by studying the orbit
space M/G and the map M → M/G. For example, if G acts freely, then
M/G is a manifold and M → M/G is a covering projection. Moreover, the
surgery theoretic set of equivariant manifold structures on M is in 1-1 cor-
respondence with the set of manifold structures on M/G via the pull-back
construction.

When the action is not free, M/G must be viewed as a space with
singularities and M → M/G as a collection of covering projections. The
prototypical example occurs when M is a closed Riemann surface and G
is a finite cyclic group acting analytically. Then M → M/G is a branched
covering .

More generally, if M is a smooth manifold and G acts differentiably,
then M has a Whitney stratification with the strata M(H) indexed by con-
jugacy classes of subgroups of G and consisting of all points with isotropy
subgroup conjugate to H. This induces a Whitney stratification of M/G.
The standard reference is Lellmann [Le], but Dovermann and Schultz [DS]
provide a more accessible proof. In the more general setting of a compact
Lie group G, Davis [Dv1] showed how to view M → M/G as a collection
of fibre bundle projections based on the fact that each M(H) → M(H)/G is
a smooth fibre bundle projection with fibre G/H.

Now if the action of the finite group G on the topological manifold M is
locally linear (also called locally smooth), then the examples of Quinn and
Steinberger and West show (as mentioned above) that M/G need not have
a geometric stratification, but it is a locally conelike TOP stratified set, and
so Siebenmann’s results can be applied. Lashof and Rothenberg [LR] used
stratification theory of the orbit space to classify equivariant smoothings
of locally smooth G-manifolds. Hsiang and Pardon [HsP] and Madsen
and Rothenberg [MR] used stratifications for the classification of linear
representations up to homeomorphism (see also [CSSW], [CSSWW], [HP]).
Stratifications also played an important role in the work of Steinberger and
West [StW] on equivariant s-cobordism theorems and equivariant finiteness
obstructions.

The stratification theory of the orbit space actually corresponds with
the isovariant, rather than the equivariant, theory of the manifold.

Locally linear actions on topological manifolds have the property that
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fixed sets are locally flat submanifolds. It is natural to consider all such
actions. These are essentially the actions whose orbit space is a manifold
homotopically stratified set. After being introduced by Quinn [Q5], Yan [Y]
applied Weinberger’s stratified surgery (see §5 below) to study equivariant
periodicity. More recently, Beshears [Bs] made precise the properties of the
map M → M/G and proved that the isovariant structures on M are in 1-1
correspondence with the stratum preserving structures on M/G.

1.7 Mapping cylinders. Mapping cylinders provide examples of spaces
with singularities. The mapping cylinder cyl(p) of a map p : M → N
between manifolds has a natural stratification with three strata: the top
M , the bottom N and the space in between M × (0, 1). The properties
of the stratification depend on the map p. With this stratification cyl(p)
is geometrically stratified if and only if p× idR can be approximated arbi-
trarily closely by fibre fibre bundle projections. On the other hand, cyl(p)
is a manifold homotopically stratified set if and only if p is a manifold ap-
proximate fibration. The cylinder is nonsingular; i.e., a manifold with N
a locally flat submanifold if and only if p is a manifold approximate fibra-
tion with spherical homotopy fibre. (Here and elsewhere in this section, we
ignore problems with low dimensional strata.)

More generally, one can consider the mapping cylinder of a map p : X →
Y between stratified spaces which take each stratum of X into a stratum of
Y . The natural collection of strata of cyl(p) contains the strata of X and
Y . Cappell and Shaneson [ChS4] observed that even if one considers maps
between smoothly stratified spaces which are smooth submersions over each
stratum of X, then cyl(p) need not be smoothly stratified (they refer to an
example of Thom [T1]). However, Cappell and Shaneson [CS5] proved that
such cylinders are manifold homotopically stratified sets, showing that the
stratifications of Quinn arise naturally in the theory of smoothly stratified
spaces.

Even more generally, the mapping cylinder cyl(p) of a stratum preserving
map between manifold homotopically stratified sets is itself a manifold
homotopically stratified set (with the natural stratification) if and only if
p is a manifold stratified approximate fibration [H2].

2. Intersection Homology and Surgery Theory

In the mid 70’s Cheeger and Goresky-MacPherson, independently and
by entirely different methods, discovered that there is a much larger class
of spaces than manifolds that can be assigned a sequence of “homology
groups” that satisfy Poincaré duality. Given the central role that Poincaré
duality plays in surgery theory, it was inevitable that this would lead to a
new environment for the applications of surgery.
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2.1. Let X be a stratified space where Xi \ Xi−1 is an i-dimensional F -
homology manifold, for a field F . We shall assume that the codimension
one stratum is of codimension at least two and that X \Xn−1 (the nonsin-
gular part) is given an F -orientation; for simplicity we will also mainly be
concerned with the case of F = Q. It pays to think PL, as we shall, but
see [Q3] for an extension to homotopically stratified sets. A perversity p
is a nondecreasing function from the natural numbers to the nonnegative
integers, with p(1) = p(2) = 0, and for each i, p(i + 1) ≤ p(i) + 1. The
zero perversity is the identically 0 function and the total perversity t has
t(i) = i− 2 for i ≥ 2. Two perversities, p and q are dual if p + q = t.

We say that X is normal if the link of any simplex of codimension
larger than 1 is connected. This terminology is borrowed from algebraic
geometry. It is not hard to “normalize” “abnormal” spaces by an analogue
of the construction of the orientation two-fold cover of a manifold.

A chain is just what it always was in singular homology: we say it is
p-transverse, or p-allowable, if for every simplex in the chain ∆∩Xn−i has
dimension at most i larger than what would be predicted by transversality
and the same is true for the simplices in its boundary that have nonzero
coefficient.

Note: It is not always the case that the chain complex of p-transverse
chains with coefficients in R is just the complex for Z tensored with R,
as it would be in ordinary homology, because a non-allowable chain can
become allowable after tensoring when some simplex in the boundary gets
a 0-coefficient.

2.2. IHp(X) is the homology obtained by considering p-allowable chains.
It is classical for normal spaces that IHt is just ordinary homology; a bit
more amusing is the theorem of McCrory that IH0 is cohomology in the
dual dimension. The forgetful map is capping with the fundamental class.

Note that IH is not set up to be a functor. It turns out to be functo-
rial with respect to normally nonsingular or (homotopy) transverse maps.
(We’ll discuss these in a great deal more details in §§4,5.) Thus, it is func-
torial with respect to (PL) homeomorphisms and inclusions of open subsets
and collared boundaries.

Note also, that one can give “cellular” versions of IH, which means
that one can define perverse finiteness obstructions and Reidemeister and
Whitehead torsions in suitable circumstances. (See [Cu, Dr].) Here one
would usually want to build in refinements to integer coefficients that we
will not discuss till 2.10 below.

2.3. The main theorems of [GM1] are that (1) IH is stratification inde-
pendent (indeed it is a topological invariant, even a stratified homotopy
invariant) and (2) for dual perversities the groups in dual dimensions are
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dual. The latter boils down to Poincaré duality in case X is a manifold,
however it is much more general.

2.4. What is important in many applications is that one can often get
a self duality. Unfortunately, there is no self dual perversity function
(what should p(3) equal?). However, we have two middle perversities
0, 0, 1, 1, 2, 2, . . . and 0, 0, 0, 1, 1, 2 . . . ; note that these differ only on the
condition of intersections with odd codimensional strata. Consequently,
for spaces with only even codimensional strata, the middle intersection
homology groups are self dual.

2.5. It turns out that the middle perversity groups have many other amaz-
ing properties. Cheeger independently discovered the “De Rham” version
of these. He gave a polyhedral X as above a piecewise flat metric (i.e.
flat on the simplices, and conelike) and observed that the L2 cohomol-
ogy of the incomplete manifold obtained by removing the singular set was
very nice. Under a condition that easily holds when one has even codimen-
sional strata, the ∗ operator takes L2 forms to themselves, and one formally
obtains Poincaré duality. A consequence of this is that the Künneth for-
mula holds.

In addition, Goresky and MacPherson [GM3] proved that Morse theory
takes a very nice form for stratified spaces when you use intersection ho-
mology. This leads to a proof of the Lefschetz hyperplane section theorem.
(A sheaf theoretic proof appears in [GM2].) [BBD] proved hard Lefschetz
for the middle perversity intersection homology of a singular variety using
the methods of characteristic p algebraic geometry. This requires the sheaf
theoretic reformulation to be discussed below. Finally Saito [Sa] gave an
analytic proof of this and a Hodge decomposition for these groups.

2.6. Let us return to pure topology by way of example. Consider a man-
ifold with boundary W,∂W , and the singular space obtained by attaching
a cone to ∂W . Normality would correspond to the assumption that ∂W is
connected.

What are the intersection homology groups in this case? Fix p. We
would ordinarily not expect any chain of dimension less than n to go
through the cone point. Once i + p(i) is at least n, we begin allowing
all chains to now go through the cone point, so one gets above that dimen-
sion all of the reduced homology. Below that dimension, we are insisting
that our chains miss the cone point, so one gets H∗(W ). There is just
one critical dimension where the chain can go through and the boundary
cannot: here one gets the image of the ordinary homology in the reduced
homology.

Using these calculations, one can reduce the Goresky-MacPherson dual-
ity theorem to Poincaré-Lefschetz duality for the manifold with boundary.
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If the dimension of W is even, one gets in the middle dimension (for the
middle perversity) the usual intersection pairing on (W,∂W ) modulo its
torsion elements.

Note though that if W is odd dimensional the failure of self duality
is caused by the middle dimensional homology of ∂W . If its homology
vanished, we’d still get Poincaré duality.

2.7. Of course, one immediately realizes that one can now define signatures
for spaces with even codimensional singularities (that lie in the Witt group
W (F ) of the ground field.) We’ll, for now, only pay attention to F = R
and ordinary signature.

Thom and Milnor’s work on PL L-classes and Sullivan’s work on KO[ 12 ]
orientations for PL manifolds all just depend on a cobordism invariant
notion of signature that is multiplicative with respect to products with
closed smooth manifolds. Thus, as observed in [GM I] it is possible to
define such invariants lying in ordinary homology and KO[ 12 ] of any space
with even codimensional strata.

2.8. It is very natural to sheafify. Nothing prevents us from considering the
intersection homology of open subsets and one sees that for each open set
one has duality between locally finite homology and cohomology. It turns
out that the usual algebraic apparatus of surgery theory mainly requires self
dual sheaves rather than manifolds. So we can define symmetric signatures
that take the fundamental group into account, which are just the assemblies
(in the sense of assembly maps) of the classes in 2.7.

2.9. The original motivations to sheafify were rather different. Firstly,
using sheaf theory there are simple Eilenberg-Steenrod type axioms that
can be used to characterize IH; these are useful for calculational purposes
and for things like identifying the Cheeger description with the geometric
definition of Goresky and MacPherson.

Secondly, using various constructions in the derived category of sheaves,
push forwards and proper push forwards and truncations of various sorts,
it is possible to give a direct abstract definition of IH without using chains.
This definition is appropriate to characteristic p algebraic varieties.

Finally, there is a very simple sheaf theoretic statement, Verdier dual-
ity, that can be used to express locally the self duality of the intersection
homology of all open subsets of a given X. It says that ICm is a self-dual
sheaf for spaces with even codimensional singularities. We will see below
that this is quite a powerful statement.

2.10. We can ask for which spaces is IC self dual? We know that all
spaces with even codimensional strata have this property, but they are not
all of them, for we saw in 2.6 that if we have an isolated point of odd
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codimension one still gets Poincaré duality in middle perversity IH if (and
only if) the middle dimensional homology of the link – which is a manifold
– vanishes. One can generalize this observation to see that if the link of
each simplex of odd codimension in X has vanishing middle IHm, then
IC is self dual on X. (Indeed this condition is necessary and sufficient.)
Such X’s were christened by Siegel [Si], Witt spaces. Actually they were
introduced somewhat earlier by Cheeger as being the set of spaces for which
the ∗ operator on L2 forms on the nonsingular part behaves properly.

The main point of Siegel’s thesis, though, was to compute the bordism
of Witt spaces. Obviously the odd dimensional bordism groups vanish, be-
cause the cone on an odd dimensional Witt space is a Witt nullcobordism.
For even dimensional Witt spaces this only works if there is no middle
dimensional IHm. By a surgery process on middle dimensional cycles, he
shows that you can cobord a Witt space to one of those if and only if the
quadratic form in middle IHm( ;Q) is hyperbolic – so there is no obstruc-
tion in 2 mod 4, but there’s an obstruction in W (Q) in 0 mod 4. Moreover,
aside from dimension 0, where all that can arise is Z ⊆ W (Q) given by
signature, in all other multiples of 4 all the other (exponent 4 torsion,
computed in [MH]) elements can be explicitly constructed, essentially by
plumbing. The isomorphism of the bordism with W (Q) is what gives these
spaces their name.

However, making use of the natural transformations discussed above, we
actually see that Witt spaces form a nice cycle theory for the (connective)
spectrum L(Q) if we ignore dimension 0. Siegel phrases it by inverting 2:

Theorem. Witt spaces form a cycle theory for connective KO ⊗ Z[1/2],
i.e.

ΩWitt(X)⊗ Z[1/2] → KO(X)⊗ Z[1/2]

is an isomorphism.

Pardon, [P] building on earlier work of Goresky and Siegel, [GS], showed
that the spaces with integrally self dual IC form a class of spaces (which
does not include all spaces with even codimensional strata: one needs an
extra condition on the torsion of the one off the middle dimension IH
group) whose cobordism groups agree with L∗(Z) and then give a cycle
theoretic description for the connective version of this spectrum.

Other interesting bordism calculations for classes of singular spaces can
be found in [GP].

2.11 (Some remarks of Siegel). The fact that one has a bordism invari-
ant signature for Witt spaces contains useful facts about signature for man-
ifolds. For instance, using the identification of signature for manifolds with
boundary with the intersection signature of the associated singular space
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with an isolated singular point, it is easy to write down a Witt cobordism
(the pinch cobordism) which proves Novikov’s additivity theorem [AS].

Also, the mapping cylinder of a fiber bundle is not always a Witt cobor-
dism: there is a condition on the middle homology of the fiber. One could
have thought that one can still define signature for singular spaces where
the links have signature zero (obviously one can’t introduce a link type with
nonzero signature and have a cobordism invariant signature). However,
Atiyah’s example of nonmultiplicativity of signature gives a counterexam-
ple to this [A]. It is thus quite interesting that having no middle homology
is enough for doing this.

2.12. Siegel’s theorem has had several interesting applications. The first is
a purely topological disproof of the integral version of the Hodge conjecture
(already disproven by analytic methods in [AH]) on the realization of all
(p, p) homology classes of a nonsingular variety by algebraic cycles. If one
were looking for nonsingular cycles, then one can use failure of Steenrod
representability, or better, Steenrod representability by unitary bordism!,
but here we allow singular cycles. Thanks to Hironaka, we could apply res-
olution of singularities to make the argument work anyway. However, even
without resolution one sees that these homology classes have a refinement
to K-homology, which is a nontrivial homotopical condition (as in [AH]
which develops explicit counterexamples along these lines).

Another application stems from the fact that the bordism theory is ho-
mology at the prime 2. Since one can define a signature operator for Witt
spaces which is bordism invariant [PRW], one can view the signature oper-
ator from the point of view of Witt bordism and thus obtain a refinement
at the prime 2 of the K-homology class of the signature operator to ordi-
nary homology [RW]. This, then implies that the K-homology class of the
signature operator is a homotopy invariant for, say, RPn.

Yet other applications concern “eta type invariants”. The basic idea
for these applications is that if one knows the Novikov conjecture for a
group π, then by Siegel’s theorem ΩWitt(Bπ) → L(Qπ) rationally injects.
This means that one can get geometric coboundaries from homotopical
hypotheses. Thus, for instance, homotopy equivalent manifolds should be
rationally Witt cobordant (preserving their fundamental group).

In particular, then, the invariant of Atiyah-Patodi-Singer [APS] associ-
ated to an an odd dimensional manifold with a unitary representation of
its fundamental group can only differ, for homotopy equivalent manifolds,
that a twisted signature of the cobounding Witt space, e.g. a rational
number. In [W3], known results regarding the Novikov conjecture and the
deformation results of [FL] are used to prove this unconditionally.

A similar application is made in [W6] to define “higher rho invariants”
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for various classes of manifolds. For instance, say that a manifold is an-
tisimple if its chain complex is chain equivalent to one with 0 in its mid-
dle dimension (this can be detected homologically). Then its symmetric
signature vanishes and, therefore, assuming the Novikov conjecture, it is
Witt nullcobordant. By gluing together the Witt nullcobordism and the
algebraic nullcobordism one obtains a closed object one dimension higher,
whose symmetric signature (modulo suitable indeterminacies) is an inter-
esting invariant of such manifolds. It can be used to show that the homeo-
morphism problem is undecidable even for manifolds which are given with
homotopy equivalences to each other [NW].

2.13 (Dedicated to the Cheshire cat). Associated to any Witt space
one has a self dual sheaf, namely ICm. Actually, the cobordism group of
self dual sheaves over a space X (assuming the self duality is symmetric)
can be identified with H∗(X; L∗(Q)), (see [CSW] for a sketch, and [Ht] for
a more general statement including some more general rings1).

This statement has some immediate implications: Since ICm is topo-
logically invariant, all of the characteristic classes introduced for singular
spaces in this way are topologically invariant. (This is basically the topo-
logical invariance of rational Pontrjagin classes extended to Witt spaces.)

We thus have, away from 2, three rather different descriptions of K-
homology: Witt space bordism, homotopy classes of abstract elliptic oper-
ators (see [BDF, K]), and bordism of self dual sheaves (and, not so different
from this one: controlled surgery obstruction groups).

A number of applications to equivariant and stratified surgery come from
these identifications (and generalizations of them). We will return to some
of these in §6.

2.14. A very nice application of cobordism of the self dual sheaves asso-
ciated to IH and its various pushforwards is given in [CS2]. The goal is
to extend the usual multiplicativity of signature in fiber bundles (with no
monodromy) to stratified maps. We will not give a precise definition of a
stratified map, but it is the intuitive notion, e.g. a fiber bundle has just
one stratum.

Theorem. Let f : X → Y be a stratified map between spaces with even
codimensional strata, and suppose that all the strata of f are of even codi-
mension and the pure strata are simply connected. We then have

f∗(L(X)) =
∑

sign(c(starf (V )))L(V ) ,

1In general there are algebraic K-theoretic difficulties with identifying the Witt group
self dual sheaves, at 2, with a homology theory. However, as Hutt himself was aware,
one can certainly include many more rings than included in that paper.
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where V runs over the strata of f (which is a substratification of Y ). Here
c(·) stands for a compactification – in this case it means the following. If
V = Y it is just the generic fiber. If V is a proper stratum, then one can
consider f−1(cone(L)), where L is the link of a generic top simplex of V ,
and then one-point compactify it (i.e, cone off its boundary).

One can deal with nonsimply connected open strata by putting in a cor-
rection term for the monodromy action of π1(int(V )) on IH(c(starf (V ))).

The proof of the theorem in [CS2] is very pretty; it makes use of the ma-
chinery on perverse sheaves found in [BBD] but in explicit cases essentially
produces an explicit cobordism between f∗IC(X) and an explicit sum of
other intersection sheaves: one for each stratum of the map.

Remarks.
(1) To get a feeling for the theorem it is worth considering a few special

cases. Firstly, the case of a fiber bundle just reduces to [CHS]. As a
second special case, if one considers a pinch map from a union of two
manifolds along their common boundary, the formula boils down to
Novikov additivity, and the cobordism implicit in the proof is the
pinch cobordism of 2.11. As a final example, one can consider the
case of a circle action on a manifold. Aside from some fundamental
group points, there is a similar cobordism between M and some
projective space bundles over the fixed set components of the circle
action, and the formula of the theorem generalizes by considering
projection to the quotient – with some slight modifications for 0
mod 4 components of fixed set, which lead to non-Witt singularities
– (or specializes to) the formula in [W2] that identifies the higher
signature of a manifold and that of its fixed point set of any circle
action with nonempty fixed point set. The cobordism (discussed
in both [W2] and [CS2]) is then the bubble quotient cobordism of
[CW3].

(2) In the case of an algebraic map, one could directly apply [BBD]
which gives a beautiful and deep decomposition theorem for f∗IC
(X) and the general machinery on self dual sheaves to prove the
existence of a formula like the one in the theorem. However, it is
not so clear what the coefficients are.

(3) Still in the algebraic case, it is important to realize that there are
many additional characteristic classes that can be defined for sin-
gular varieties beyond just the L-classes, for instance, MacPherson
Chern classes and Todd classes. In [CS3], there are announced gen-
eralizations of the basic formula where the meaning of c is different:
one must use projective completion to get a variety, and then the
formula must be rewritten to account for the extra topology (think
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about the case of intersection Euler characteristic classes, which can
be dealt with by the proof of the usual Hurwitz formula for Euler
characteristic of branched cover, together with the sheaf version of
intersection Künneth). To prove such formulae one uses deforma-
tion to the normal cone (see [Fu2]) to replace the cobordism theory.

2.15. It is worth mentioning but beyond the purview of this survey to
describe in any detail the applications of 2.14 given in [CS3, CS4, Sh2] to
lattice point problems. The connection goes via the theory of toric varieties
for which there are several excellent surveys [Od, Da, Fu1], which gives an
assignment of a (perhaps singular) variety to every convex polygon with
lattice point vertices on which a complex torus acts. (See also [Gu] for a
discussion of the purely symplectic aspects of this situation.) Problems like
counting numbers of lattice points inside such a polytope (= computation of
the Erhart polynomial) and Euler –Maclaurin summation formulae can be
reduced to calculations of the Todd class, which are studied in tandem with
L-classes using the projection formulae. These, in turn, have substantial
number theoretic implications.

3. The geometry of homotopically stratified spaces

One of the strengths of Quinn’s formulation of manifold homotopically
stratified spaces is that the defining conditions are homotopic theoretical
(except, obviously, the geometric condition that the strata be manifolds).
This, of course, makes it easier to verify the conditions, but harder to
establish geometric facts about manifold homotopically stratified spaces.
Nevertheless, Quinn was able to prove two important geometric results:
homogeneity and stratified h-cobordism theorems.

Quinn’s homogeneity result says that if x, y are two points in the same
component of a stratum (with adjacent strata of dimension at least 5) of a
manifold homotopically stratified space X, then there is a self-homeomor-
phism (in fact, isotopy) of X carrying x to y. Quinn obtains this as a
consequence of an stratified isotopy extension theorem (an isotopy on a
closed union of strata can be extended to a stratum preserving isotopy on
the whole space). In turn, Quinn proves the isotopy extension theorem by
using the full force of his work on “Ends of maps” (see [Q2,IV]).

As an example of the usefulness of the homogeneity result, consider a
finite group acting on a manifold M . Even though the action need not be
locally linear, the quotient M/G is often a manifold homotopically stratified
space. Thus, the homogeneity result can be used to verify local linearity
by establishing local linearity at a single point of each stratum component.
Quinn first used this technique to construct locally linear actions whose
fixed point set does not have an equivariant mapping cylinder neighborhood
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[Q2,II]. Weinberger [W1] and Buchdahl, Kwasik and Schultz [BKS] have
also used this result to verify that certain actions were locally linear.

It turns out that there is an alternative way to prove Quinn’s homogene-
ity theorem which is based on engulfing (the classical way that homotopy
information is converted into homeomorphism information in manifolds).
In fact, this alternative method uses a description of neighborhoods of
strata together with MAF (manifold approximate fibration) technology,
and is useful for many other geometric results.

We have seen in §1 that in certain formulations of conditions on a strat-
ification Σ = {Xi} of a space X one considers tubular maps

τi : Ui → Xi × [0, +∞)

where Ui is a neighborhood of Xi and τi restricts to the identity Ui \
Xi → Xi × (0,+∞). For Whitney stratifications, the tubular maps are
submersions on each stratum and fibre bundles over X × (0,+∞). Since
strata of manifold homotopically stratified spaces need not have mapping
cylinder neighborhoods, such a result is too much to hope for in general.
However, there is the following result which was proved by Hughes, Taylor,
Weinberger and Williams [HTWW] in the case of two strata and by Hughes
[H3] in general.

Theorem. For manifold homotopically stratified spaces in which all strata
have dimension greater than or equal to 4, tubular maps exist which are
manifold stratified approximate fibrations.

The neighborhoods of the strata which are the domains of these MSAF
(manifold stratified approximate fibration) tubular maps are called teardrop
neighborhoods. They are effective substitutes for mapping cylinder neigh-
borhoods, and the result should be thought of as a tubular neighborhood
theorem for stratified spaces. The point is that even though Quinn’s defi-
nition does not postulate neighborhoods with any kind of reasonable tubu-
lar maps, one is able to derive their existence. The situation is optimal:
minimal conditions in the definition with much stronger conditions as a
consequence. This makes the surgery theory conceptually easier than for
geometrically stratified sets for which the geometric neighborhood struc-
ture must be part of the data.

As mentioned above, these teardrop neighborhoods can be used to give
a different proof of Quinn’s isotopy extension theorem. Manifold approxi-
mate fibrations have the approximate isotopy covering property [H1]. This
property holds in the stratified setting and is used inductively to extend
isotopies from strata to their teardrop neighborhoods. In fact, parametric
isotopy extension is now possible whereas Quinn’s methods only work for
a single isotopy.
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Similarly, other results in geometric topology can be extended to man-
ifold homotopically stratified sets by using MAF technology. For exam-
ple, the homeomorphism group of a manifold homotopically stratified set
is locally contractible, and a stratified version of the Chapman and Ferry
[ChF] α-approximation theorem holds. In short, the case can be made that
manifold homotopically stratified sets are the correct topological version of
polyhedra and Thom’s stratified sets.

4. Browder-Quinn theory

In [BQ], Browder and Quinn introduced an interesting, elegant, and use-
ful general classification theory for strongly stratified spaces. The setting
is a category where one has a fixed choice of strong stratification as part of
the data one is interested in.

4.1. Let X be a strongly stratified space (e.g. a geometrically stratified
space as in §1.3) with closed pure strata X

i
(see §1.3). An h-cobordism

with boundary X is a stratified space Z with boundary X ∪ X ′ where
the inclusions of X and X ′ are stratified homotopy equivalences, and the
neighborhood data for the strata of Z are the pullbacks with respect to
the retractions of the data for X (and of X ′). This condition is automatic
in the PL and Diff categories when one is dealing with something like the
quotient of a group action stratified by orbit types.

Theorem. The h-cobordisms with boundary X (ignoring low dimensional
strata) are in a 1–1 correspondence with a group WhBQ(X). There is an
isomorphism WhBQ(X) ∼= ⊕

Wh(X
i
).

The map WhBQ(X) → ⊕
Wh(X

i
) is given by sending

(Z,X) → (τ(Z
i
, X

i
)).

One proves the isomorphism (and theorem) inductively, using the classical
h-cobordism theorem to begin the induction, and using the strong stratifi-
cations to pull up product structures to deal with one more stratum.

4.2. The surgery theory of Browder and Quinn deals with the problem of
turning a degree one normal map into a stratified homotopy equivalence
which is transverse, i.e. one for which the strong stratification data in
the domain is the pullback of the data from the range.

This transversality is, in practice, the fly in the ointment. When one
is interested in classifying embeddings or group actions usually the bundle
data is something one is interested in understanding rather than a priori
assuming. Still, in some problems (e.g. those mentioned in 6.3) one can
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sometimes prove that transversality is automatic. Also, of course, if one
uses the machinery to construct examples, it is certainly fine if one produces
examples that have extra restrictions on the bundle data.

4.3. Either by induction or by mimicking the usual identification of normal
invariants, one can prove that NIBQ(X) ∼= [X;F/Cat].

4.4. Define SBQ(X) to be the strongly stratified spaces with a transverse
stratified simple homotopy equivalence to X up to Cat-strongly stratified
simple isomorphism (note this implicitly is keeping track of “framings”).
Then, one has groups LBQ(X) and a long exact surgery sequence:

· · · → LBQ(X × I rel ∂) → SBQ(X) → [X;F/Cat] → LBQ(X).

4.5. Note that unlike the Whitehead theory LBQ(X) does not decompose
into a sum of L-groups of the closed strata. Indeed, for a manifold with
boundary SBQ is just the usual structure set (existence and uniqueness
of collars gives the strong stratification structures) and the L-group is the
usual L-group of a manifold with boundary, i.e. is a relative L-group, not
a sum of absolute groups.

However, there is a connection between the L-groups of the pure strata
and LBQ(X). This exact sequence generalizes the exact sequence of a pair
in usual L-theory, and expresses the fact that as a space LBQ(X) is the
fiber of the composition

L(X0) → L(∂ Neighborhood(X0)) → L(cl(X \X0))

where the first map is a transfer and the second is an inclusion.

4.6. The proof of this theorem is by the method of chapter 9 of [Wa]: one
need only verify the π-π theorem. This is done by induction.

5. Homotopically stratified theory

If one does not want to insist on the transversality condition required
in the Browder-Quinn theory, or if one is only dealing with homotopically
stratified spaces, it is necessary to proceed somewhat differently. For more
complete explanations, see [W4], [W5]. We will only discuss the topological
version. The PL version is simpler but slightly more complicated.

5.1 The h-cobordism theorem. That new phenomena would arise in
any systematic study of Whitehead torsion on nonmanifolds was clear from
the start. Milnor’s original counterexamples to the Hauptvermutung for
polyhedra were based on torsion considerations [M1]. Siebenmann gave
examples of locally triangulable nontriangulable spaces – not at all due to
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Kirby-Siebenmann considerations, but rather K0. More pieces came for-
ward in the work on Anderson-Hsiang [AnH1, AnH2] and then in [Q2],
which showed that under appropriate K-theoretic hypotheses one can tri-
angulate, and therefore apply the straightforward PL torsion theory.

Real impetus came from the theory of group actions. Cappell and Shane-
son [CS1] gave the striking examples of equivariantly homeomorphic repre-
sentation spaces, which laid down the gauntlet to the topological commu-
nity at large to deal with the issue of equivariant classification. h-cobordism
theorems suitable for the equivariant category were produced by Stein-
berger (building on joint work with West) [St] and by Quinn [Q4] in the
generality of homotopically stratified spaces (although the theorem in that
paper does not include realization of all torsions in an h-cobordism2).

The ultimate theorem asserts, as usual, that (ignoring low dimensional
issues) h-cobordisms on a stratified space X are classified by an abelian
group Whtop(X).

Theorem. Whtop(X) ∼= ⊕
Whtop(Xi, Xi−1), and we have an exact se-

quence

· · · → H0(Xi−1;Wh(π1(holink))) → Wh(π1(Xi \Xi−1)) →
Whtop(Xi, Xi−1) → H0(Xi−1;K0(π1(holink))) → K0(π1(Xi \Xi−1)) .

Boldface terms are spectra. This decomposition of Whtop into a di-
rect sum does not respect the involution obtained by turning h-cobordisms
upside down, which is a pleasant descendant of the analogous fact in the
Browder-Quinn theory. It does not have an analogue in L-theory.

5.2 Stable classification. Ranicki (following a sketch using geometric
Poincaré complexes in place of algebraic ones, by Quinn) has elegantly
reformulated the usual Browder-Novikov-Sullivan-Wall surgery exact se-
quence in the topological manifold setting as the assertion that there is a
fibration:

S(M) → Hn(M ;L(e)) → Ln(π1(M))

where X means a space (or better a spectrum) whose homotopy groups are
those of the group valued functor ordinarily denoted by X. S(M) is the
structure set of M , which essentially3 consists of the manifolds simple ho-
motopy equivalent to M up to homeomorphism. The map Hn(M ;L(e)) →

2As pointed out in [HTWW], the teardrop neighborhood theorem can be used to
complete the proof of realization.

3In actuality, for our purposes it is best to use the finite dimensional ANR homology
manifolds, and the equivalence relation is s-cobordism. See Mio’s paper [Mi] in Volume 1
for a discussion of the difference this makes. (It is at most a single Z if M is connected.)
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Ln(π1(M)) is called the assembly map and can be defined purely alge-
braically. Geometrically it has several interpretations: most notably, as
the map from normal invariants to surgery obstructions in the topological
category, or as a forgetful map from some variant of controlled surgery to
uncontrolled surgery.

Since the assembly map has a purely algebraic definition, one can ask
whether it computes anything interesting if X is not a manifold? and
alternatively, if X is just a stratified space, what is the analogue of this
sequence?

Cappell and the second author gave an answer to the first question in
[CW2] where it is shown (under some what more restrictive hypotheses)
if X is a manifold with singularities, i.e. X contains a subset Σ whose
complement is a manifold, and suppose further that Σ is 1-LCC embedded4

in X, then Salg(X) ∼= S(X rel Σ) where Salg(X) denotes the fiber of the
algebraically defined assembly map H∗(X;L(e)) → L(X) and S(X rel Σ)
means

{ϕ : X ′ → X | ϕ is a stratified simple5 homotopy equivalence

with ϕ|Σ(X ′) already a homeomorphism}.

The answer to the second question is a bit more complicated, and actually
requires two fibrations in general. The first is a stable generalization of the
surgery exact sequence:

S−∞(X rel Y ) → H0(X;LBQ−∞(—, rel Y )) → LBQ−∞(X rel Y ).

Here the superscripts −∞ denote that we are using a stable version of
structure theory: we will soon explain that it only differs from the usual
thing at the prime 2, and the phenomenon is governed by algebraic K-
theory. The coefficients of the homology is with respect to a cosheaf of
L-spectra: to each open set U of X one assigns the spectrum L(U rel U ∩
Y with compact support). The BQ superscripts are a slight generalization
of the theory discussed in §4.

To complete the theory one needs a destabilization sequence. This is
given by the following:

S(X) → S−∞(X) → Ĥ(Z2;Whtop(X)≤1)

Here S(X) is the geometric structure set, and S−∞(X) is the stabilized
version, which differ by a Tate cohomology term. An analogous sequence

4This means that maps of 2-complexes into X can be deformed slightly to miss Σ.
5The material of 5.1 can be used to make sense of this.
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developed for a quite similar purpose appears in [WW]. Indeed in [HTWW]
the theory outlined in this subsection is deduced from the [WW] results
using blocked surgery [Q1, BLR, CW2] and [HTW1,2] (the classification of
manifold approximate fibrations) and the teardrop neighborhood theorem.
On the other hand, there are different approaches to all this using controlled
end and/or surgery theorems that are sketched in [W4], [W5].

6. Some applications of the
stratified surgery exact sequence

In practice the application of the theory of the previous section requires
additional input for the calculations to be either possible or comprehensible.
See [CW4] for the application to topological group actions. The last 100
pages of [W4] also give more applications than we can hope to discuss here.

6.1. Probably the simplest interesting and illustrative example of the clas-
sification theorem is to locally flat topological embeddings. The first point
is that this problem is susceptible to study by these methods: Every topo-
logical locally flat embedding gives a two stratum homotopically stratified
space where the holink is a homotopy sphere and conversely . This last is
essentially Quinn’s characterization of local flatness in [Q2,I].

Things are very different in codimensions one and two from codimension
three and higher. We will defer to 6.3 the low codimensional discussion and
restrict our attention here to the last of these cases.

Lemma. If (W,M) is a manifold pair with cod(M) > 2, then LBQ(W,M)
∼= L(W )× L(M) where the map is the forgetful map.

The proof is straightforward. Note that the lemma implies the analo-
gous statement holds at the level of cosheaves of spectra (∼= being quasi-
isomorphism). It is quite straightforward in this case to work out the
Whitehead theory: there are no surprises. Thus, we obtain:

Corollary. S(W,M) ∼= S(W )× S(M).

Note that the discussion makes perfect sense even if (W,M) is just a
Poincaré pair (see [Wa]), and then the corollary boils down to the statement
that isotopy classes of embeddings of one topological manifold in another
(in codimension at least 3) are in a 1-1 correspondence with the Poincaré
embeddings (see [Wa]).

(Actually, a bit more work enables one to prove the same thing for M
an ANR homology manifold.)

6.2. Using the material from §2 we can also analyze, away from 2, S(X)
for a very interesting class of spaces that have even codimensional strata.
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We continue to let Salg(X) denote the fiber of the classical assembly map
H∗(X; L(e)) → L(X). It is what the structure set of X would be if X were
a manifold.

Theorem([CW2]). If X is a space with even codimensional strata and
all holinks of all strata in one another simply connected, then there is an
isomorphism ⊗[1/2]

S(X) ∼=
⊕

Salg(V )

where the sum is over closed strata.

The proof consists of building an isomorphism LBQ(X) ∼= ⊕
L(V )[1/2]

for arbitrary X satisfying the hypotheses. It is obvious enough how to
introduce Q coefficients into LBQ. Ranicki [R] has shown that introducing
coefficients does not change L at the odd primes, but withQ-coefficients one
can make forgetful maps to L(V ;Q) using the intersection chain complexes.

6.3. To give an example where things work out differently, we shall assume
that the holinks are aspherical, and that the Borel conjecture holds for the
fundamental groups of these holinks. (This example is a special case of the
theory of “crigid holinks” in [W4].)

In this case there is nothing good that can be said about the global
LBQ term, in general. However, the assumptions are enough to imply that
H∗(X; LBQ) ∼= [X; L(e)]. (See [W4], [BL] for a discussion.) In particu-
lar, for locally flat embeddings in codimension 1 and 2, one sees that the
fiber of S(W,M) → S(W ) only involves fundamental group data, not, say,
the whole homology of the manifold and submanifolds. This, too, reflects
phenomena already found in Wall’s book [Wa].

Another amusing example is X = simplicial complex, stratified by its
triangulation. Then one gets LBQ(X) ∼= [X; L(e)].

There are other interesting examples that display similar phenomena
that come up from toric varieties. The theory of multiaxial actions (see §2
and [Dv2]) is another situation where the local cosheaves tend to decompose
into pieces that can be written in simple terms involving skyscraper L(e)-
cosheaves. Not all holinks are crigid and consequently different phenomena
appear: indeed signatures 0 and 1 alternate in the simply connected holinks,
with quite interesting implications. As a simple exercise, one can see that
while S6n−1/U(n) is contractible, its structure set6 S(S6n−1/U(n)) ∼= Z2.
Similarly, S12n−1/Sp(n) is contractible, but its structure set7 is Z.

6Actually, the structure set is Z × Z2 with the extra Z corresponding to actions on
nonresolvable homology manifolds that are homotopy spheres.

7Same caveat as above.
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Remark. If all holinks are simply connected (as in the case of multiaxial
actions of U(n) and Sp(n)) one always has a spectral sequence computing
S(X) in terms of the Salg(Xi). For instance, if there are just two strata
X ⊃ Σ, there is an exact sequence:

· · · → Salg(Σ× I) → Salg(X) → S(X) → Salg(Σ) → . . .

The sequence continues to the left in the most obvious way. On the right it
continues via deloops of the algebraic structure spaces. The map Salg(Σ×
I) → Salg(X) depends on the symmetric signature of the holink (and on the
monodromy of the holink fibration). The case where the simply connected
holink is rigid is essentially that of manifolds with boundary. The normal
invariant term here is [X;L(e)], but thought of here as H(X, ∂X; L(e)).
On the other hand, in 6.2 we gave an important case where this spectral
sequence degenerates (at least away from the prime 2).

6.4. As our final example, let us work out in detail a case that is some-
what opposite to the one of the previous paragraph: X = the mapping
cylinder of even a PL block bundle V → N , with fiber F , where N is a
sufficiently good aspherical manifold. (Sufficiently good is a function of
the reader’s knowledge. Even the circle is a case not devoid of interest.)
We are interested in understanding what the general theory tells us about
S(X rel V ).

Firstly, there is the calculation of the Whitehead group. (Or even pseu-
doisotopy spaces . . . ). In this case, the sequence boils down to:

H0(N ;Wh1(F )) → Wh1(V ) → Whtop(X rel V )

→ H0(N ;K0(F )) → K0(V ) .

In a totally ideal world, the assembly maps H0(N ;Wh1(F )) → Wh1(V )
and H0(N ;K0(F )) → K0(V ) would be isomorphisms, and Whtop(X rel V )
would vanish. However, even in the case of N = S1 where the assembly
map (for the product bundle) was completely analyzed by [BHS], this is
not true. In that case, there is an extra piece called Nil that obstructs
this; however, Nil is a split summand. Thus, the assembly maps are still
injections, and one obtains an isomorphism of Whtop(X rel V ) with a sum
of Nils. In general, the pattern discovered by Farrell and Jones [FJ] shows
that the cokernel of these assembly maps is at least reasonably conjectured
to be a “sum” of Nils.

The splitting of the K-theory assembly map essentially boils down to the
assertion that WhBQ(X rel V ) → Whtop(X rel V ) has a section. There are
fairly direct proofs of this fact when N is a nonpositively curved Riemannian
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manifold in [FW] and in [HTW3]. The first approach notes that putting
a PL structure on stratified spaces can be viewed (essentially following
[AnH1, AnH2]) as a problem of reducing the tangent microbundle to the
group of block bundle maps: but in the presence of curvature assumptions
this can be done in the large by the methods of controlled topology.

The approach in [HTW3] depends on the same controlled topology, but
its focus is showing that one can associate a MAF structure to any map
whose homotopy fiber is finitely dominated. The teardrop neighborhood
theorem of course provides the relation between these approaches.

The same analyses can be done for the (stable) structure set S(X rel V ).
In this case one does often have the vanishing of the analogue of Nil (al-
though if there’s orientation reversal or complicated monodromy in the
bundle, this might not be the case). The structure set is here described as
the fiber of the assembly map, and thus it often vanishes.

This has an interesting interpretation. Let us suppose that the fiber is
K-flat, i.e. that Wh(π1(F ) × Zk) = 0 for all k to avoid any potential end
obstructions. In this case one also knows that all MAF’s are equivalent to
block bundle projections.

The vanishing of S(X rel V ) means that S(X) ∼= S(V ) by the “obvious”
fibration: S(X rel V ) → S(X) → S(V ). (We’ll discuss the “ ” marks in
a moment.) Now S(X) is basically the same thing as the F -block bundles
on N with fiber a manifold homotopy equivalent to F . Thus we have
a generalized fibration theorem for manifolds with maps to N . (Indeed,
the Farrell fibration theorem [Fa] is all that is necessary to feed into the
machinery to get out the calculation of L-groups: that’s the content of
Shaneson’s thesis [Sh1]!)

Without the K-flatness, we see that there are still only Nil obstructions
to obtaining MAF structures (but genuine K-theory obstructions to getting
block structures).

To return to the “obvious” fibration, a little thought shows that it is not
at all obvious. What is obvious is that it is a fibration over the components
of S(V ) in the image of the map S(X) → S(V ). We are asserting, after the
arguments given above, that this image is all the components, but prima
facie, the argument in whole is circular.

However, that is not the case as a consequence of the complete general
theory. The map S(X) → S(V ) is actually an infinite loop map, isomorphic
to its own 4th loop space (see [CW1, We5]). Thus, the fact that we knew
exactness at the πi level for i = 3, 4 gives us everything we want for any
such ad hoc component problem. (This is exactly the same point involved
in continuing the exact sequence of 6.3 further to the right.)
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Metrics of positive scalar curvature

and connections with surgery

Jonathan Rosenberg∗

and Stephan Stolz†

1 Introduction

This chapter discusses the connection between geometry of Riemannian
metrics of positive scalar curvature and surgery theory. While this is quite
a deep subject which has attracted quite a bit of recent attention, the
most surprising aspect of this whole area remains the original discovery
of Gromov-Lawson and of Schoen-Yau from about 20 years ago—namely,
that there is a connection between positive scalar curvature metrics and
surgery. The Surgery Theorem of Gromov-Lawson and Schoen-Yau remains
the most important result in this subject. We discuss it and its variants at
length in Section 3. Then in Section 4, we discuss the status of the so-called
Gromov-Lawson Conjecture, which relates the existence of positive scalar
curvature metrics to index theory and KO-homology. This is preparatory
to Section 5, which explains the parallels between the classification of pos-
itive scalar curvature metrics and the classification of manifolds via Wall’s
surgery theory. In the final section, Section 6, we discuss a number of open
problems.

All manifolds in this paper will be assumed to be smooth (C∞). For
simplicity, we restrict attention to compact manifolds, although there are
also plenty of interesting questions about complete metrics of positive scalar
curvature on non-compact manifolds. At some points in the discussion,
however, it will be necessary to consider manifolds with boundary.

∗ Partially supported by NSF Grant # DMS-96-25336 and by the General Research
Board of the University of Maryland.

† Partially supported by NSF Grant # DMS-95-04418.
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2 Background and Preliminaries

One of the most important problems in global differential geometry is to
study how curvature relates to topology, or to phrase things differently, to
study what constraints topology places on curvature. This problem can
be asked in several different contexts. When applied to vector bundles
with a connection, it gives rise to Chern-Weil theory and the theory of
characteristic classes. Here we will instead ask about the scalar curvature
of a Riemannian manifold. The scalar curvature is the weakest curvature
invariant one can attach (pointwise) to a Riemannian n-manifold. Its value
at any point can be described in several different ways:

1. as the trace of the Ricci tensor, evaluated at that point.

2. as twice the sum of the sectional curvatures over all 2-planes ei ∧ ej ,
i < j, in the tangent space to the point, where e1, . . . , en is an
orthonormal basis.

3. up to a positive constant depending only on n, as the leading coeffi-
cient in an expansion telling how volumes of small geodesic balls dif-
fer from volumes of corresponding balls in Euclidean space. Positive
scalar curvature means balls of radius r for small r have a smaller
volume than balls of the same radius in Euclidean space; negative
scalar curvature means they have larger volume.

In the special case n = 2, the scalar curvature is just twice the Gaussian
curvature.

We can now state the basic problems we will consider in this paper:

Problems 2.1

1. If Mn is a closed n-manifold, when can M be given a Riemannian
metric for which the scalar curvature function is everywhere strictly
positive? (For simplicity, such a metric will henceforth be called a
metric of positive scalar curvature.)

2. If Mn is a closed manifold which admits at least one Riemannian
metric of positive scalar curvature, what is the topology of the space
R+(M) of all such metrics on M? In particular, is this space con-
nected?

3. If Mn is a compact manifold with boundary, when does M admit
a Riemannian metric of positive scalar curvature which is a product
metric on a collar neighborhood ∂M × [0, a] of the boundary? When
this is the case, what is the topology of the space of all such metrics?
Of the space of all such metrics extending a fixed metric in R+(∂M)?
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A few comments on these problems are in order. With regard to ques-
tion (1), the reader might well ask what is special about positivity. Why
not ask about metrics of negative scalar curvature, or of vanishing scalar
curvature, or of non-negative scalar curvature? More generally, we could
ask which smooth functions on a manifold M are realized as the scalar cur-
vature function of some metric on M . It is a remarkable result of Kazdan
and Warner that the answer to this question only depends on which of the
following classes the manifold M belongs to:

1. Closed manifolds admitting a Riemannian metric whose scalar cur-
vature function is non-negative and not identically 0.

2. Closed manifolds admitting a Riemannian metric with non-negative
scalar curvature, but not in class (1).

3. Closed manifolds not in classes (1) or (2).

All three classes are non-empty if n ≥ 2. For example, it is easy to see
from the Gauss-Bonnet-Dyck Theorem1 that if n = 2, class (1) consists of
S2 and RP2; class (2) consists of T 2 and the Klein bottle; and class (3)
consists of surfaces with negative Euler characteristic.

Theorem 2.2 (Trichotomy Theorem, [KW1], [KW2]) Let Mn be a
closed connected manifold of dimension n ≥ 3.

1. If M belongs to class (1), every smooth function is realized as the
scalar curvature function of some Riemannian metric on M .

2. If M belongs to class (2), then a function f is the scalar curvature of
some metric if and only if either f(x) < 0 for some point x ∈ M , or
else f ≡ 0. If the scalar curvature of some metric g vanishes iden-
tically, then g is Ricci flat. (I.e., not only does the scalar curvature
vanish identically, but so does the Ricci tensor.)

3. If M belongs to class (3), then f ∈ C∞(M) is the scalar curvature of
some metric if and only if f(x) < 0 for some point x ∈ M .

We note that the Theorem shows that deciding whether a manifold M
belong to class (1) is equivalent to solving Problem 2.1.1. Futaki [Fu] has
shown that – at least for simply connected manifolds – class (2) consists of
very special manifolds admitting metrics with restricted holonomy groups.

As further justification for our concentrating on positive scalar curva-
ture in Problem 2.1.2, one has the following fairly recent result:

1The point is that for any choice of Riemannian metric, the integral of the scalar
curvature with respect to the measure defined by the metric is 4π times the Euler char-
acteristic. Dyck’s role in this is explained in the interesting article by D. Gottlieb, “All
the way with Gauss-Bonnet and the sociology of mathematics,” Amer. Math. Monthly
103 (1996), no. 6, 457–469.
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Theorem 2.3 ([Loh])The space R−(M) of negative scalar curvature met-
rics on M is contractible, for any closed manifold Mn of dimension n ≥ 3.

Finally, one might ask the reason for the Riemannian product boundary
condition in Problem 2.1.3. The first part of the answer comes from the
fact that without a boundary condition, any manifold with non-empty
boundary admits a metric of positive scalar curvature. (In fact, Gromov
[Gr], Theorem 4.5.1, even showed it admits a metric of positive sectional
curvature, a much stronger condition.) The second part of the answer is
that there are other interesting boundary conditions one could impose that
are relevant to the study of positive scalar curvature, such as positive mean
curvature on the boundary (see [GL1], Theorem 5.7, for example), but we
have tried to limit attention to the simplest such condition. Often one can
reduce to this condition anyway—see [Gaj1], Theorem 5.

3 The Surgery Theorem and its Variants

The connection between positive scalar curvature metrics and surgery be-
gins with:

Theorem 3.1 (Surgery Theorem, [GL2], Theorem A and [SY])
Let Nn be a closed manifold, not necessarily connected, with a Rieman-
nian metric of positive scalar curvature, and let Mn be obtained from N by
a surgery of codimension q ≥ 3. Then M can be given a metric of positive
scalar curvature.

Proof. We give the argument of Gromov-Lawson, just briefly sketching their
initial reduction of the problem (which is explained well in their paper), but
going over the crucial “bending argument” in detail. (The reason for this
is that it appears there is a mistake in [GL2] on page 428—in the displayed
formula on the middle of that page, there is a factor of sin2 θ0 missing, and
thus the argument at the bottom of page 428 doesn’t work as stated.)

Suppose Sp is an embedded sphere in N of codimension q = n− p ≥ 3,
with trivial normal bundle. By using the exponential map on the normal
bundle of Sp, we may assume that we have an embedding of Sp × Dq(r̄)
into N for some r̄ > 0 (the radius of a “good tubular neighborhood of
Sp”) so that the sphere on which we will do surgery is Sp×{0}, the radial
coordinate r on Dq(r̄) measures distances from Sp × {0}, and such that
curves of the form {y}× `, where ` is a ray in Dq(r̄) starting at the origin,
are geodesics. However, we know nothing about the restriction of the metric
on N to the sphere Sp × {0}.

The key idea of the proof is to choose a suitable C∞ curve γ (with
endpoints) in the t-r plane, and to consider

T = {(y, x, t) ∈ (
Sp ×Dq(r̄)

)× R : (t, r = ‖x‖) ∈ γ}
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with the induced metric, where R is given the Euclidean metric and
(
Sp×

Dq(r̄)
) × R is given the metric of the Riemannian product N × R. We

choose the curve γ to satisfy the following constraints:

1. γ lies in the region 0 < r ≤ r̄ of the t-r plane.

2. γ begins at one end with a vertical line segment t = 0, r1 ≤ r ≤ r̄.
This guarantees that near one of the two components of ∂T , T is
isometric to a portion of N .

3. γ ends with a horizontal line segment r = r∞ > 0, with r∞ very small.
This guarantees that near the other component of ∂T , T is isometric
to the Riemannian product of a line segment with Sp × Sq−1(r∞),
where the metric on Sp×Sq−1(r∞) (not in general a product metric)
is induced by the embedding Sp × Sq−1(r∞) ⊂ Sp ×Dq(r̄) ⊂ N .

4. In the region r∞ < r < r1, γ is the graph of a function r = f(t)
which is decreasing and (weakly) concave upward.

t0
t

r∞

r1

r
-

r

r=f(t)

γ

θ

5. γ is chosen so that the scalar curvature of T is everywhere positive.
This is the hard part. The Gauss curvature equation says that the
sectional curvature of a hypersurface, evaluated on a plane spanned
by two principal directions for the second fundamental form, is the
corresponding sectional curvature of the ambient manifold, plus the
product of the two principal curvatures. So, summing the sectional
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curvatures over all the two-planes spanned by pairs of principal di-
rections, one derives for small r > 0 the formula:

κT = κN + O(1) sin2 θ + (q − 1)(q − 2)
sin2 θ

r2

−(q − 1)
k sin θ

r
−O(r)(q − 1)k sin θ, (3.1)

where κT and κN are the scalar curvatures of T and N , respectively,
where k is the curvature of γ (as a curve in the Euclidean plane), and
where θ is the angle between γ and a vertical line. (See figure above.)

Assume for the moment that we have constructed γ as required. Since
the metric on T is isometric to a portion of N in a collar of one component
of ∂T , we can glue T onto N r

(
Sp × Dq(r̄)

)
, getting a manifold N ′ of

positive scalar curvature with a single boundary component Sp×Sq−1(r∞),
and with a metric that is a product metric in a collar neighborhood of the
boundary.

Since q−1 ≥ 2 and r∞ is very small, there is a homotopy of the metric on
Sp×Sq−1(r∞) through metrics of positive scalar curvature to a Riemannian
product of two standard spheres: Sp(1) and Sq−1(r∞). Even though Sp(1)
has zero curvature if p ≤ 1, we have large positive scalar curvature since
Sq−1(r∞) has sectional curvature r−2

∞ À 0. (See [GL2], Lemma 2.) This
homotopy can be used to construct a metric of positive scalar curvature on
a cylinder Sp×Sq−1(r∞)× [0, a], which in a neighborhood of one boundary
component matches the metric on a collar neighborhood of ∂T in T , and
which in a neighborhood of the other boundary component is a Riemannian
product of standard spheres Sp(1) and Sq−1(r∞) with an interval. (See
Proposition 3.3 below.) We glue this cylinder onto N ′ to get N ′′, a manifold
of positive scalar curvature with boundary Sp(1) × Sq−1(r∞), and with a
product metric in a neighborhood of the boundary.

Finally, to finish off the proof, we glue onto N ′′ a Riemannian product
Dp+1×Sq−1(r∞), where the disk Dp+1 has not the flat metric but a metric
which is a Riemannian product Sp(1) × [0, b] in a neighborhood of the
boundary. (Such metrics on the disk are easy to write down.) The end
product of the construction is a metric of positive scalar curvature on M .

We’re still left with the most delicate step, which is construction of a
curve γ with the properties listed on page 357 above. Obviously, there is no
problem satisfying the first four conditions. To satisfy the last condition,
we need to choose γ so that κT > 0 in equation (3.1). Since κN is bounded
below by a positive constant, the constraint will be satisfied provided that

(1 + C ′r2)k ≤ (q − 2)
sin θ

r
+ κ0

r

sin θ
− Cr sin θ, (3.2)
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where κ0 > 0 is 1
q−1 times a lower bound for κN , and where the constants

C > 0 and C ′ > 0 come from the O(1) term and the O(r) term in equation
(3.1), respectively. (When θ = 0, the right-hand side of inequality (3.2) is
to be interpreted as +∞.)

To satisfy this inequality, we begin by choosing

0 < θ0 < arcsin
(√

κ0

C

)
.

Then for 0 ≤ θ ≤ θ0, the second term on the right in inequality (3.2)
dominates the last term, and thus we can start at the point (0, r1) (where
θ and k are required to vanish) and find a small “bump function” of compact
support for k (as a function of arc length) satisfying (3.2), so that γ bends
in a small region around to a line segment with small positive θ. Decreasing
θ0 if necessary, we may assume this “first bend” ends at θ = θ0. (So far
the details are just as in [GL2], except that we have made the estimates
more explicit.)

Next, we choose r0 with

0 < r0 < min

(√
1

4C
,

√
1

2C ′

)
.

This insures (since q − 2 ≥ 1) that for r ≤ r0,

(q − 2)
sin θ

r
− Cr sin θ ≥ 3 sin θ

4r

and

1 + C ′r2 ≤ 3
2
,

so that k can be as large as 2
3 · 3 sin θ

4r = sin θ
2r . When γ crosses the line r = r0,

we start the “second bend” by quickly bringing k up to the allowed value
of sin θ

2r and thereafter following the solution of the differential equation
k = sin θ

2r . If we write r = f(t), then

sin θ =
1√

1 + (f ′)2
, k =

f ′′

(1 + (f ′)2)
3
2
.

So our differential equation can be rewritten

f ′′ =
1 + (f ′)2

2f
.

This equation can be solved explicitly; the solution is

f(t) =
1
C1

+
C1

4
(t− C2)2,
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for constants C1 and C2. Suppose we start following the differential equa-
tion at t = t1 ≈ r1 arctan θ0. Then we will need to take f(t1) very close to
r0 and f ′(t1) very close to − cot θ0. This can be accomplished by taking C2

bigger than t1, C1(C2−t1) large, and C1 huge. Then we follow the solution
out until t is very close to C2, at which point f(t) is approximately 1

C1
,

which is very small but positive, and f ′(t) is approximately 0, i.e., θ is
very close to π

2 . Then we quickly bring k back down to 0 and finish with a
horizontal line, thereby satisfying all our requirements. ¤

There is a slight strengthening of this due to Gajer, which provides
information about manifolds with boundary.

Theorem 3.2 (Improved Surgery Theorem, [Gaj1]) Let N be a
closed manifold with a metric of positive scalar curvature ds2

N , not neces-
sarily connected, and let M be obtained from N by a surgery of codimension
≥ 3. Let W be the trace of this surgery (a cobordism from N to M). Then
W can be given a metric of positive scalar curvature ds2

W which is a prod-
uct metric ds2

N + dt2 in a collar neighborhood of N and a product metric
ds2

M + dt2 in a collar neighborhood of M .

This indeed strengthens Theorem 3.1, since in a neighborhood of M , the
scalar curvature of ds2

W is the same as that of ds2
M , and thus we have given

M a metric of positive scalar curvature.
The study of metrics such as the one in Theorem 3.2, together with the

obvious parallels in the theory of automorphisms of manifolds, motivates
the following.
Definition. Let ds2

0 and ds2
1 be two Riemannian metrics on a compact

manifold M , both with positive scalar curvature. (For the moment we take
M to be closed, though later we will also consider the case where M has
a boundary.) We say these metrics are isotopic if they lie in the same
path component of the space of positive scalar curvature metrics on M ,
and concordant if there is a positive scalar curvature metric on a cylinder
W = M × [0, a] which restricts to ds2

0 + dt2 in a collar neighborhood of
M ×{0} and to ds2

1 + dt2 in a collar neighborhood of M ×{a}. We denote
by π̃0R

+(M) the set of concordance classes of positive scalar curvature
metrics on M .

There is one important and easy result relating isotopy and concordance
of positive scalar curvature metrics.

Proposition 3.3 ([GL2], Lemma 3; [Gaj1], pp. 184–185) Isotopic
metrics of positive scalar curvature are concordant.

Sketch of Proof. Suppose ds2
t , 0 ≤ t ≤ 1, is an isotopy between positive

scalar curvature metrics on M . Consider the metric ds2
t/a + dt2 on W =

M × [0, a]. This will have positive scalar curvature for a À 0, since a
calculation shows that the scalar curvature κ(x, t) at a point (x, t) will be
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of the form κt/a(x) + O(1/a), where κt/a is the scalar curvature of M for
the metric ds2

t/a. (In fact, if one is careful, the O(1/a) can be improved
to O(1/a2), though this doesn’t matter to us.) Since M is compact and
all the metrics ds2

t/a have positive scalar curvature, we may choose κ0 > 0
such that κt/a(x) ≥ κ0 > 0 for all x and for all t. For a large enough, the
error terms will be less than κ0/2, so W also has positive scalar curvature.
¤

It is still not known if the converse holds or not; indeed, there is no
known methodology for approaching this question, as there is no known
method for distinguishing between isotopy classes of positive scalar curva-
ture metrics which is not based on distinguishing concordance classes. How-
ever, dimension 2 is special enough so that for the two closed 2-manifolds
which admit positive scalar curvature metrics, S2 and RP2, we can give a
complete classification up to isotopy, and even say a bit more.

Theorem 3.4 Any two metrics of positive scalar curvature on S2 or on
RP2 are isotopic. In fact, the spaces R+(S2) and R+(RP2) are contractible.

Proof. We begin with a general observation. Let M be any manifold,
say for simplicity compact, and let Diff M be its diffeomorphism group,
a topological group in the C∞ topology. (For M compact, there is only
one reasonable topology on Diff M .) When M is oriented, we denote the
orientation-preserving subgroup of Diff M by Diff+M . Let C∞(M) be
the smooth functions on M , viewed as a topological vector space (and, in
particular, as a topological group under addition). Then one can form the
semidirect product group C∞(M)oDiff M , with Diff M acting on C∞(M)
by pre-composition. Note that C∞(M)oDiff M acts on Riemannian met-
rics on M on the right by the formula

g · (u, ϕ) = ϕ∗(eug), u ∈ C∞(M), ϕ ∈ Diff M,

and that this action is continuous for the C∞ topologies. Any two metrics
in the same orbit for this action are said to be conformal to one another;
any two metrics in the same orbit for the action of the subgroup C∞(M)
are said to be pointwise conformal to one another.

Now we need to recall the Uniformization Theorem for Riemann sur-
faces. When formulated in the language of differential geometry (rather
than complex analysis), it says that if M is an oriented connected closed
2-manifold, then C∞(M) o Diff+M acts transitively on the space of Rie-
mannian metrics on M . Let’s apply this to S2. Then we get an identi-
fication of the (contractible) space of Riemannian metrics on S2 with the
quotient of C∞(S2) o Diff+S2 by the subgroup fixing the standard met-
ric g0 of constant Gaussian curvature 1. This subgroup is identified with
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PSL(2, C), the group of Möbius transformations,2 since a famous result of
complex analysis says that all (orientation-preserving) pointwise conformal
automorphisms for the standard spherical metric come from holomorphic
automorphisms of S2 = CP1. Since PSL(2, C) has the homotopy type of
its maximal compact subgroup PSU(2) ∼= SO(3), and since

(
C∞(S2)oDiff+S2

)
/PSL(2, C)

must be contractible, it follows that Diff+S2 has a deformation retraction
down to its subgroup SO(3), which in turn is the group of orientation-
preserving isometries for the standard metric. Also observe that since S2

is the double cover of RP2, taking the Z/2-action into account shows that
C∞(RP2)oDiff RP2 acts transitively on the Riemannian metrics on RP2,
and that the stabilizer of the standard metric is precisely SO(3), the isom-
etry group. So Diff RP2 also has a deformation retraction down to SO(3).

Let’s come back to metrics of positive scalar curvature. If g0 and ḡ0

denote the standard metrics on S2 or RP2 of constant Gaussian curvature
1, then a conformally related metric g0 · (u, ϕ) (respectively, ḡ0 · (u, ϕ)) has
positive scalar curvature if and only if eug0 (resp., euḡ0) does (since positive
scalar curvature is preserved under the action of Diff). Since g0 has scalar
curvature ≡ 2, the formula computing the change in scalar curvature under
a conformal change in the metric (found in [KW1], for example) gives

∆(u) = 2− euκ, (3.3)

where ∆ is the Laplace-Beltrami operator for the metric g0 (with the sign
convention making this a negative semi-definite operator) and κ is the
scalar curvature of the metric eug0. We claim that the set

S = {u ∈ C∞ : κ in (3.3) is strictly positive}

is star-shaped about the origin.
To prove this, suppose u is such that κ in (3.3) is strictly positive. Then

if κt denotes the scalar curvature of the metric etug0, replacing u by tu in
(3.3) gives

∆(tu) = 2− etuκt.

Since ∆ is linear and κ0 ≡ 2, we obtain:

2− etuκt = t∆(u) = t (2− euκ) ,

2Caution: While PSL(2, C) embeds in Diff+S2, the identification of PSL(2, C) with
the stabilizer of g0 is via a “diagonal embedding,” since we need to take the “conformal
factor” into account.
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or

etuκt = teuκ + 2(1− t).

Since, by assumption, κ is everywhere positive and 0 ≤ t ≤ 1, both terms
on the right are non-negative. Furthermore, the first term on the right only
vanishes when t = 0, and the second term only vanishes when t = 1. Thus
etuκt is everywhere positive, and so κt is everywhere positive, proving that
S is star-shaped (and thus contractible).

Finally, we see that R+(S2) is identified with
(S(S2) ·Diff+(S2)

)
/PSL(2, C) ⊂ (

C∞(S2) ·Diff+(S2)
)
/PSL(2, C),

and similarly R+(RP2) is identified with
(S(RP2) ·Diff(RP2)

)
/SO(3) ⊂ (

C∞(RP2) ·Diff(RP2)
)
/SO(3).

As Diff+(S2)/PSL(2, C), Diff(RP2)/SO(3), S(S2), and S(RP2) are all
contractible, we see that R+(S2) and R+(RP2) must be contractible. ¤

4 The Gromov-Lawson Conjecture and its
Variants

In the discussion so far, we have not explained (except in the case of di-
mension 2) why it is that there are closed manifolds which cannot admit a
positive scalar curvature metric. Most of the known results of this sort, at
least for manifolds of large dimension, stem from a fundamental discovery
of Lichnerowicz [Li], which is that if D/ is the Dirac operator on a spin
manifold M (a self-adjoint elliptic first-order differential operator, acting
on sections of the spinor bundle), then

D/ 2 = ∇∗∇+
κ

4
. (4.1)

Here ∇ is the covariant derivative on the spinor bundle induced by the
Levi-Civita connection, and ∇∗ is the adjoint of ∇. Since the operator
∇∗∇ is obviously self-adjoint and non-negative, it follows from equation
(4.1) that the square of the Dirac operator for a metric of positive scalar
curvature is bounded away from 0, and thus that the Dirac operator cannot
have any kernel. It follows that any index-like invariant of M which can be
computed in terms of harmonic spinors (i.e., the kernel of D/ ) has to vanish.
E.g., if M is a spin manifold of dimension n, there is a version of the Dirac
operator which commutes with the action of the Clifford algebra C`n (see
[LaM], § II.7). In particular, its kernel is a (graded) C`n-module, which
represents an element α(M) in the real K-theory group KOn = KO−n(pt)
(see [LaM], Def. II.7.4).
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Theorem 4.1 (Lichnerowicz [Li]; Hitchin [Hit]) If Mn is a closed spin
manifold for which α(M) 6= 0 in KOn, then M does not admit a metric of
positive scalar curvature.

We recall that KOn
∼= Z for n ≡ 0 mod 4, that KOn

∼= Z/2 for
n ≡ 1, 2 mod 8, and KOn = 0 for all other values of n. Furthermore,
for n ≡ 0 mod 4, the invariant α(M) is essentially equal to Hirzebruch’s
Â-genus Â(M), namely α(M) = Â(M) for n ≡ 0 mod 8, and α(M) =
Â(M)/2 for n ≡ 4 mod 8. So this result immediately shows that there are
many manifolds, even simply connected ones, which do not lie in class (1)
of the Kazdan-Warner trichotomy (see Theorem 2.2). E.g., the Kummer
surface K4, the hyperplane in the complex projective space CP3 given by
the equation z4

0 + z4
1 + z4

2 + z4
3 = 0, is spin and has Â(K) = 2, and hence

does not admit a metric of positive scalar curvature.
We observe that α(M) depends only on the spin bordism class [M ] ∈

Ωspin
n . In fact, we can interpret α(M) as the image of [M ] under a natural

transformation of generalized homology theories as follows. Let KO∗(X)
and ko∗(X) denote the periodic and connective real K-homology of a space
X, respectively (so KO∗(X) satisfies Bott periodicity, and ko∗ = ko∗(pt) is
obtained from KO∗ = KO∗(pt) by killing the groups in negative degree).
Then there are natural transformations

Ωspin
∗ (X) D−→ ko∗(X)

per−→ KO∗(X),

the first of which sends the bordism class [M, f ] to f∗([M ]ko), where [M ]ko∈
ko∗(M) denotes the ko-fundamental class of M determined by the spin
structure. With this notation, α(M) = per ◦D([M ]).

Next, we want to state an important consequence of Theorem 3.1, but
first we need a relevant definition.
Definition. Let B → BO be a fibration. A B-structure on a manifold is
defined to be a lifting of the (classifying map of the) stable normal bundle
to a map into B. Then one has bordism groups ΩB

n of manifolds with B-
structures, defined in the usual way. (For instance, if B = BSpin, mapping
as usual to BO, then ΩB

n = Ωspin
n .) We note that given a connected closed

manifold M , there is a choice of such a B 3 for which M has a B-structure
and the map M → B is a 2-equivalence. (Example: If M is a spin
manifold, choose B = Bπ×BSpin, where π = π1(M), and let B → BO be
the projection onto the second factor composed with the map BSpin → BO
induced by Spin → O. Map M to the first factor by means of the classifying
map for the universal cover, and to the second factor by means of the spin
structure.)

The simply connected cases of the following theorem were proved in
[GL2]; the general case, with this formulation, is in [RS1].

3We will see in Section 5 how to formalize this in a functorial way.
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Theorem 4.2 (Bordism Theorem) Let Mn be a B-manifold with n =
dim M ≥ 5, and assume that the map M → B is a 2-equivalence. Then
M admits a metric of positive scalar curvature if and only if there is some
B-manifold of positive scalar curvature in the same B-bordism class.

Sketch of Proof. Let N be a B-manifold B-bordant to M . The hypotheses
combine (via the method of proof of the s-Cobordism Theorem) to show
that M can be obtained from N by surgeries in codimension ≥ 3. Then if
N admits a metric of positive scalar curvature, one can apply Theorem 3.1
to conclude that the same is true for M . ¤

Remark. Note that in the proof of Theorem 4.2, M and N do not quite
play symmetrical roles. While M can be obtained from N by surgeries in
codimension ≥ 3, the converse may not be the case unless N → B is also
a 2-equivalence. This is useful in applications, since often the “obvious”
generators for B-bordism groups do not satisfy the 2-equivalence condition.

Theorem 4.3 (Gromov-Lawson [GL2]) If M is a simply connected
closed manifold of dimension n ≥ 5, and if w2(M) 6= 0, then M admits a
metric of positive scalar curvature.

Sketch of Proof. If M is simply connected with w2(M) 6= 0, then the
appropriate B → BO to use in Theorem 4.2 is just BSO → BO, and
the corresponding bordism theory is oriented bordism. Gromov-Lawson
proceed to show that the generators of Ω∗ constructed by Wall all admit
positive scalar curvature metrics. ¤

Of course, the restriction w2(M) 6= 0 in Theorem 4.3 is important,
because Theorem 4.1 shows that otherwise there can be obstructions to
positive scalar curvature. It is also well-known that the maps Dn : Ωspin

n →
kon(pt) are all surjective, so all potential obstructions are in fact realized.
In the simply connected spin case, Gromov and Lawson were not able to
get as sharp a result as in the non-spin case, but at least they were able to
prove:

Theorem 4.4 If M is a simply connected closed manifold of dimension
n ≥ 5, and if w2(M) = 0 (so that, once an orientation is fixed, M de-
fines a class [M ] ∈ Ωspin

n ), then a finite connected sum of copies of M
admits a metric of positive scalar curvature if and only if [M ] maps to
0 ∈ KOn(pt)⊗Z Q under α.

For manifolds with a non-trivial fundamental group, the situation is
more complicated, as can already be seen in the 2-dimensional case. (As we
have already observed, no closed connected 2-dimensional with an infinite
fundamental group admits a positive scalar curvature metric. Nevertheless,
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oriented surfaces map trivially to KO2(pt) = Z/2, at least for the usual
(bounding) choice of a spin structure.) It was shown in [GL1] and [SY] that
tori never admit positive scalar curvature metrics (in any dimension), and
that in general, there are extra obstructions to positive scalar curvature
that come from the fundamental group. Extrapolating from Theorem 4.4
and from their results in [GL3], Gromov and Lawson arrived at:

Conjecture 4.5 (“Gromov-Lawson Conjecture” [GL3]) Suppose M
is a connected closed spin manifold of dimension n ≥ 5 with “reasonable”
fundamental group π (in a sense to be discussed below). Let f : M → Bπ
be the classifying map for the universal cover of M , so that (M, f) defines
a class [M, f ] ∈ Ωspin

n (Bπ). Then M admits a metric of positive scalar
curvature if and only if per ◦D([M, f ]) = 0 in KOn(Bπ).

The conjecture in the simply connected case was settled by:

Theorem 4.6 (Stolz [St1]) If M is a simply connected closed manifold
of dimension n ≥ 5, and if w2(M) = 0 (this means M admits a spin
structure, which since M is simply connected is unique once we fix an
orientation), then M admits a metric of positive scalar curvature if and
only if the Lichnerowicz-Hitchin obstruction α(M) vanishes in KOn(pt).

Sketch of Proof. The first step in the proof is to reduce this to a 2-primary
problem in homotopy theory. This reduction is primarily due to Miyazaki,
who showed [Mi] by explicit construction of enough manifolds of positive
scalar curvature that the subgroup of Ωspin

n generated by manifolds of pos-
itive scalar curvature is a subgroup of the kernel of α of index a power of 2.
The main part of the proof is then based on the observation that the first
non-trivial element in the kernel of α is the quaternionic projective space
HP2. A careful transfer argument (relying on the mod 2 Adams spectral
sequence) then shows that, after localizing at 2, the kernel of α in general
is generated by the total spaces of fiber bundles over spin manifolds with
fiber HP2 and structure group PSp(3), the isometry group of HP2. It is
not hard to show that all such fiber bundles admit positive scalar curva-
ture metrics (since one can rescale the metric so that the positive scalar
curvature on the projective space fibers dwarfs any contributions from the
base). So the result follows from the simply connected case of Theorem
4.2. ¤

To explain progress regarding the conjecture in the non-simply con-
nected case, we need one additional ingredient.
Definition. Let π be any discrete group. Then the real group ring Rπ can
be completed in two standard ways to get a C∗-algebra C∗(π).4 (Either one

4A C∗-algebra is a Banach algebra with involution which is isometrically ∗-isomorphic
to an algebra of operators on a Hilbert space which is closed under the adjoint operation
and closed in the operator norm.
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lets Rπ act on `2(π) on the left in the usual way, and takes the completion
in the operator norm, obtaining what is usually called C∗r (π), or else one
lets Rπ act on the Hilbert space direct sum of the spaces of all unitary
representations of π (suitably interpreted to avoid set-theoretic problems),
and takes the completion in the operator norm, obtaining what is usually
called C∗max(π).) The two completions coincide if and only if π is amenable,
but for present purposes it will not matter which one we use, so we won’t
distinguish in the notation.

There is an assembly map A : KOn(Bπ) → KOn(C∗(π)) defined as
follows. Form the bundle VBπ = Eπ ×π C∗(π) over Bπ whose fibers are
rank-one free (right) modules over C∗(π). As a “C∗(π)-vector bundle”
over Bπ, this has a stable class [VBπ] in a K-group KO0(Bπ; C∗(π)),
and A is basically the “slant product” with [VBπ]. The assembly map
A is functorial in π (to the extent that this makes sense). Injectivity of
A, often known as the Strong Novikov Conjecture, implies the Novikov
Conjecture on homotopy invariance of higher signatures for manifolds with
fundamental group π.

The results on one direction of the Gromov-Lawson Conjecture all come
from:

Theorem 4.7 ([R2]) Let M be a closed connected spin manifold of pos-
itive scalar curvature, and let f : M → Bπ be the classifying map for the
universal cover of M . Then A ◦ per ◦D([M, f ]) = 0 in KOn(C∗(π)). In
particular, if the Strong Novikov Conjecture is true for π (i.e., A is injec-
tive), then per ◦D([M, f ]) = 0 in KOn(Bπ).

Sketch of Proof. This relies on an index theory, due to Mishchenko and
Fomenko, for elliptic operators with coefficients in a C∗(π)-vector bundle.
If M is as in the theorem, then the (Clifford algebra linear) Dirac oper-
ator on M , with coefficients in the bundle VBπ, has an index α(M, f) ∈
KOn(C∗(π)), which one can show by the Kasparov calculus is just A ◦
per ◦ D([M, f ]). Since VBπ is by construction a flat bundle, there are no
correction terms due to curvature of the bundle, and formula (4.1) applies
without change. Hence if M has positive scalar curvature, the square of
this Dirac operator is bounded away from 0, and the index vanishes. ¤

This result seems to be about the best one can do in (in the spin case) in
attacking the Gromov-Lawson Conjecture 4.5 via index theory. It indicates
that perhaps the “reasonable” groups for purposes of the Conjecture (which
Gromov and Lawson did not make precise) should be a subset of the class
of those for which the assembly map A is injective.5 Many torsion-free
groups are known to lie in this class, including for example all torsion-free
amenable groups, all torsion-free subgroups of GL(n, Q), and all torsion-
free hyperbolic groups in the sense of Gromov.

5As far as we know at the moment, this class could include all torsion-free groups.
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For groups with torsion, even for finite cyclic groups, it is easy to find
examples (see [R1]) where Conjecture 4.5 fails. The reason is simply that
many classes in KOn(Bπ) can be represented by manifolds of positive scalar
curvature, such as lens spaces. A first attempt at remedying this results in
the following modified conjecture (which first appears in [R2], [R3]):

Conjecture 4.8 (“Gromov-Lawson-Rosenberg Conjecture”) Sup-
pose M is a connected closed spin manifold of dimension n ≥ 5. Let
f : M → Bπ be the classifying map for the universal cover of M , so
that (M, f) defines a class [M, f ] ∈ Ωspin

n (Bπ). Then M admits a metric
of positive scalar curvature if and only if α(M, f), the generalized index of
the Dirac operator, vanishes in KOn(C∗(π)).

There are analogues of this conjecture, involving indices of “twisted Dirac
operators,” for manifolds which are non-spin but which have spin universal
covers. Rather than state them now, we will defer these cases to Section
5. However, it is worth pointing out that one way to rephrase Conjecture
4.8 is by saying that “the index of Dirac tells all.” If this is the case even
in the non-spin case, then it implies:

Conjecture 4.9 If M is a connected closed manifold of dimension n ≥ 5,
and if the universal cover of M does not admit a spin structure, then M
admits a metric of positive scalar curvature.

Conjecture 4.9 is consistent with Theorem 4.3, but unfortunately it is
known to fail for manifolds with large fundamental group. A counterexam-
ple suggested by [GL3], for which failure of the conjecture can be checked
using the “minimal hypersurface technique” of [SY], is T 6#(CP2 × S2).
This suggests that Conjecture 4.8 should be false as well, though the fol-
lowing counterexample was only discovered recently.

Counterexample 4.10 ([Sch]) Let M5 be the closed spin manifold ob-
tained from T 5 by doing spin surgery to cut down the fundamental group
to Z4 × Z/3, and let f : M → B(Z4 × Z/3) be the classifying map for its
universal cover. Then α(M, f) = 0 in KOn(C∗(π)), but M does not admit
a metric of positive scalar curvature.

What is most amazing about Conjectures 4.8 and 4.9 is not that there are
cases where they fail, but that they indeed hold in a great number of cases.
This should be viewed as a vindication of the intuition of Gromov and Law-
son, since in many cases Conjecture 4.5 is true in its original formulation.
Before stating some of these results, we should first explain how it is that
one “narrows the gap” between the positive results of the Bordism Theo-
rem, Theorem 4.2, and the results on obstructions in Theorem 4.7. While
one could prove some of the results in greater generality, we will state them
only in the spin and oriented non-spin cases.
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Theorem 4.11 (Stolz, Jung) Let Mn be a connected closed manifold of
dimension n ≥ 5, and let f : M → Bπ be the classifying map for its univer-
sal cover. If M is spin, then M admits a metric of positive scalar curvature
if and only if there is some spin manifold of positive scalar curvature rep-
resenting the class D([M, f ]) in kon(Bπ). If M is oriented and if the uni-
versal cover of M does not admit a spin structure, then M admits a metric
of positive scalar curvature if and only if there is some oriented manifold
of positive scalar curvature representing the class f∗([M ]) ∈ Hn(Bπ; Z).

Sketch of Proof. This requires a number of techniques. The 2-primary cal-
culation in the spin case is based on a generalization, found in [St2], of the
HP2-bundle method of the proof of Theorem 4.6. The 2-primary calcula-
tion in the oriented non-spin case is easier, so we give it here. Localized
at 2, the spectrum MSO is known to be Eilenberg-MacLane (see [R4]),
so Ωn(Bπ), after localizing at 2, splits up as

⊕
j Hn−j(Bπ; Ωj), with the

summand Hn−j(Bπ; Ωj) corresponding to bordism classes of the form

Nn−j × P j g−→ Bπ,

with g collapsing P to a point. But by the same calculation as in the
proof of Theorem 4.3, each generator of Ωj with j > 0 is represented
by a manifold of positive scalar curvature. So by the Bordism Theorem,
Theorem 4.2, we are reduced to looking at Hn(Bπ; Z).

The proof at odd primes is based on the theory of homology theories
derived from bordism, using “bordism with singularities.” ¤

Using this result, it is easy to check certain cases of Conjectures 4.8
and 4.9. For example, one easily deduces:

Theorem 4.12 Conjecture 4.9 is true for orientable manifolds with finite
cyclic fundamental group.

Proof. The integral homology of a cyclic group is concentrated in odd
degrees n, where (for n ≥ 3) a generator is represented by a lens space
(which has positive scalar curvature). ¤

Putting together Theorem 4.7 and Theorem 4.11, we obtain the fol-
lowing positive results on Conjecture 4.8:

Theorem 4.13 Suppose the discrete group π has the following two prop-
erties:

1. The Strong Novikov Conjecture holds for π, i.e., the assembly map
A : KO∗(Bπ) → KO∗(C∗(π)) is injective.

2. The natural map per : ko∗(Bπ) → KO∗(Bπ) is injective.

Then the Gromov-Lawson Conjecture, Conjecture 4.5, and the Gromov-
Lawson-Rosenberg Conjecture, Conjecture 4.8, hold for spin manifolds with
fundamental group π.
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Proof. Suppose Mn is a spin manifold, with n ≥ 5, and f : M → Bπ is the
classifying map for its universal cover. If per◦D([M, f ]) = 0 in KOn(Bπ),
then D([M, f ]) = 0 in kon(Bπ) by Condition (2), and so M admits a metric
of positive scalar curvature by Theorem 4.11. But if per ◦D([M, f ]) 6= 0,
condition (1) says that α(M, f) 6= 0, and thus M cannot admit a metric
of positive scalar curvature, by Theorem 4.7. ¤

Theorem 4.13 applies to quite a number of torsion-free groups, for ex-
ample, free groups and free abelian groups. It is not much help in studying
finite groups, however. For finite groups, both of the conditions in Theorem
4.13 usually fail. Still, there are so far no counterexamples to the Gromov-
Lawson-Rosenberg Conjecture in the case of finite fundamental groups. In
fact, the Conjecture is true for the following class of finite groups. Re-
call that a finite group has periodic cohomology if and only if its Sylow
subgroups are all cyclic or generalized quaternion.

Theorem 4.14 ([BGS]) The Gromov-Lawson-Rosenberg Conjecture,
Conjecture 4.8, holds for any spin manifold with finite fundamental group
with periodic cohomology.

One might wonder whether the restriction to dimensions n ≥ 5 in most
of our results is truly necessary. In dimension 2, we already know the full
story as far as positive scalar curvature is concerned, and in dimension
3, the Thurston Geometrization Conjecture would basically settle every-
thing. Dimension 4 is different, however. Seiberg-Witten theory gives the
following:

Theorem 4.15 (primarily due to Taubes [Tau]; see also [LeB])Let
Mn be a closed, connected oriented 4-manifold with b+

2 (M) > 1. If M ad-
mits a symplectic structure (in particular, if M admits the structure of a
Kähler manifold of complex dimension 2 ) then M does not admit a posi-
tive scalar curvature metric (even one not well-behaved with respect to the
symplectic structure).

This dramatic result implies that the Gromov-Lawson-Rosenberg Conjec-
ture fails badly in dimension 4, even in the simply connected case.

Counterexample 4.16 In dimension 4, there exist:

1. a simply connected spin manifold M4 with Â(M) = 0 but with no
positive scalar curvature metric.

2. simply connected non-spin manifolds with no positive scalar curvature
metric.

The counterexamples we have listed to Conjectures 4.8 and 4.9, as well as
the unusual behavior in dimension 4, suggest that it may be best to divide
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the Gromov-Lawson-Rosenberg Conjecture into two pieces: an “unstable”
part, that may fail in some cases due to low-dimensional difficulties (or
other factors), and a “stable” conjecture, which stands a better chance
of being true in general. This, as well as the fact that the periodicity in
KO-theory has no obvious geometric counterpart as far as positive scalar
curvature is concerned, motivates:

Conjecture 4.17 (“Stable Gromov-Lawson-Rosenberg Conjec-
ture”) Let Bt8 be the Bott manifold, a simply connected spin manifold of
dimension 8 with Â(Bt8) = 1. (This manifold is not unique, but any choice
will do. What is essential here is that Bt8 geometrically represents Bott pe-
riodicity in KO-theory.) If Mn is a spin manifold, and if f : M → Bπ is
the classifying map for its universal cover, then M ×Bt8×· · ·×Bt8 admits
a metric of positive scalar curvature (for some sufficiently large number of
Bt8 factors) if and only if α(M, f) = 0 in KOn(C∗(π)).

The counterpart of Theorem 4.13 as far as the Stable Conjecture is con-
cerned is simply:

Theorem 4.18 The Stable Gromov-Lawson-Rosenberg Conjecture, Con-
jecture 4.17, holds for spin manifolds with fundamental group π, provided
that the assembly map A : KO∗(Bπ) → KO∗(C∗(π)) is injective.

At the other extreme of finite fundamental groups, we have:

Theorem 4.19 ([RS2]) The Stable Gromov-Lawson-Rosenberg Conjec-
ture, Conjecture 4.17, holds for spin manifolds with finite fundamental
group.

For groups with torsion, the assembly map A is not expected to be injective,
so Baum, Connes, and Higson [BCH] suggested replacing it by the so-called
Baum-Connes assembly map KOπ

∗ (Eπ) → KO∗(C∗(π)). Here Eπ is the
universal proper π-space and KOπ

∗ (Eπ) is its π-equivariant KO-homology.
The space Eπ coincides with Eπ, the universal free π-space, exactly when
π is torsion-free, and in this case one recovers the usual assembly map. For
a finite group, Eπ is a point and the Baum-Connes assembly map is an
isomorphism. The following result generalizes Theorems 4.18 and 4.19.

Theorem 4.20 ([St5])The Stable Gromov-Lawson-Rosenberg Conjecture,
Conjecture 4.17, holds for spin manifolds with fundamental group π, pro-
vided that the Baum-Connes assembly map KOπ

∗ (Eπ) → KO∗(C∗(π)) is
injective.

The hypothesis of this theorem is known to be satisfied in a great many
cases, for example, whenever π can be embedded discretely in a Lie group
with finitely many connected components.
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5 Parallels with Wall’s Surgery Theory

Surgery theory is the main tool in the study of smoothings of Poincaré
complexes. As we have seen, it is also the main tool in the study of metrics
of positive scalar curvature. In this section we want to discuss similarities
and differences between the resulting theories.

A central role in our understanding of smoothings of a Poincaré complex
X is played by Wall’s surgery obstruction groups Li(π, w); these are abelian
groups, which depend on the fundamental group π = π1(X), the first
Stiefel-Whitney class w = w1(X), and an integer i. The group relevant for
the existence of a smoothing of X is Ln(π,w), n = dim X, while Ln+1(π, w)
plays a role in the classification of smoothings of X.

The analog of the Wall group in the study of positive scalar curvature
metrics on a manifold M is an abelian group Ri(π,w, π̂), which depends
on the fundamental group π = π1(M) and the first Stiefel-Whitney class
w : π → Z/2, as well as an extension π̂ of π. Geometrically, the extension
π̂ ³ π is given by applying the fundamental group functor to the fiber
bundle O(M)/Z/2 → M , where O(M) is the frame bundle of M and Z/2
acts on O(M) by mapping an isometry f : Rn → TxM to the composition
f ◦ r, where r : Rn → Rn is the reflection in the hyperplane perpendicular
to (1, 0, . . . , 0).

Up to isomorphism, the extension π̂ ³ π is determined by the second
Stiefel-Whitney class w2(M) as follows. If the universal cover of M is spin,
then w2(M) = u∗(e) for a unique e ∈ H2(Bπ;Z/2) where u : M → Bπ is
the classifying map of the universal covering of M ; in this case π̂ → π is the
central Z/2-extension classified by e. Otherwise π̂ → π is an isomorphism.

Before defining the groups Ri(π,w, π̂), we want to state and discuss the
following result which shows the central role of these groups for the study
of positive scalar curvature metrics.

Theorem 5.1 ([St4]) Let M be a smooth, connected, compact manifold
of dimension n ≥ 5, possibly with boundary. Let π = π1(M) be the funda-
mental group, w : π → Z/2 the first Stiefel-Whitney class, and let π̂ → π
be the extension described above.

Existence. A positive scalar curvature metric h on ∂M extends to a posi-
tive scalar curvature metric on M which is a product metric near the
boundary if and only if an obstruction σ(M, h) ∈ Rn(π,w, π̂) van-
ishes.

Concordance Classification. If h extends to a positive scalar curvature
metric on M , then the group Rn+1(π,w, π̂) acts freely and transitively
on the concordance classes of such metrics.
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The groups Ri(γ) for γ = (π, 0, π × Z/2) (corresponding to spin mani-
folds) were first introduced by Hajduk [Haj]; he also proved the existence
statement in that case.

We wish to compare Theorem 5.1 with the corresponding statements
concerning smoothings of a Poincaré complex X. We recall that a smooth-
ing of X is a (simple) homotopy equivalence f : N → X between a closed
manifold N and X; two such pairs (N, f), (N ′, f ′) are identified if there is
a diffeomorphism g : N → N ′ such that f is homotopic to f ′ ◦ g. A neces-
sary condition for the existence of a smoothing is that the Spivak normal
bundle of X is stably fiber homotopy equivalent to the sphere bundle of a
vector bundle. In homotopy theoretic terms this condition means that the
map X → BG classifying the Spivak normal bundle factors through the
canonical map BO → BG. Since this map fits into a homotopy fibration
BO → BG → B(G/O), the condition is equivalent to the composition
X → BG → B(G/O) being homotopic to the constant map.

A fiber homotopy equivalence Φ between the Spivak normal bundle of
X and the sphere bundle of a vector bundle determines via the Pontryagin-
Thom construction a degree one normal map f : N → X up to bordism.
The pair (N, f) is bordant to a smoothing if and only if its “surgery obstruc-
tion” σ(N, f) ∈ Ln(π, w) vanishes. In particular, if the group [X,B(G/O)]
of pointed homotopy classes of maps from X to B(G/O) is trivial, then the
vanishing of σ(N, f) is sufficient for the existence of a smoothing of X; if in
addition the group [X, G/O] is trivial, then the fiber homotopy equivalence
Φ is unique up to homotopy. It follows that the bordism class of the degree
one normal map f : N → X and hence the surgery obstruction σ(N, f) is
independent of the choices made in the construction of (N, f). Thus in this
case, the vanishing of σ(N, f) is also a necessary condition for the existence
of a smoothing of X.

Concerning classification, the group Ln+1(π, w) acts on the set S(X)
of smoothings of X. The “surgery exact sequence” describes the orbits as
well as the isotropy groups of this action. The orbits are the fibers of a map
S(X) → [X, G/O], and the isotropy subgroups are the images of homo-
morphisms [ΣX, G/O] → Ln+1(π,w). In particular, if the groups [X,G/O]
and [ΣX, G/O] are trivial, then Ln+1(π, w) acts freely and transitively on
S(X).

The upshot of this discussion is that if the groups [X, B(G/O)], [X,
G/O], and [ΣX, G/O] vanish, then the main result of surgery theory takes
precisely the form of Theorem 5.1, with concordance classes of positive
scalar curvature metrics replaced by smoothings and Ri(π,w, π̂) replaced
by Li(π, w).

We recall that Wall’s Li-groups have an algebraic description as well as
a description as bordism groups. So far, there is only a bordism description
of Ri.
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Definition 5.2 Let γ be a triple (π, w, π̂), where w : π → Z/2 is a group
homomorphism and π̂ → π is an extension of π such that ker(π̂ → π) is
either Z/2 or the trivial group. Let σ : Spin(n) → SO(n) be the non-trivial
double covering of the special orthogonal group SO(n). We note that the
conjugation action of O(n) on SO(n) lifts to an action on Spin(n). Let
π̂ n Spin(n) be the semi direct product, where ĝ ∈ π̂ acts on the normal
subgroup Spin(n) by conjugation by rw(bg). Here r ∈ O(n) is the reflection
in the hyperplane perpendicular to e1 = (1, 0, . . . , 0) ∈ Rn. Abusing nota-
tion, we also use the notation w for the composition π̂ → π → Z/2. We
define G(γ, n) to be the quotient of π̂ n Spin(n) by the central subgroup
generated by (k,−1), where k ∈ π̂ is the (possibly trivial) generator of
ker(π̂ → π). Sending [a, b] ∈ G(γ, n) to rw(a)σ(b) defines a homomorphism
ρ(γ, n) : G(γ, n) → O(n).

A γ-structure on an n-dimensional Riemannian manifold M is a prin-
cipal G(γ, n)-bundle P → M together with a G(γ, n)-equivariant map
ρ : P → O(M). Here O(M) is the orthogonal frame bundle of M , a princi-
pal bundle for the orthogonal group O(n), and G(γ, n) acts on O(M) via
the homomorphism ρ(γ, n).

Remark 5.3 1. If π is the trivial group, then G(γ, n) = SO(n) (resp.
Spin(n)) if ker(π̂ → π) is trivial (resp. non-trivial). In this case a
γ-structure on M amounts to an orientation (resp. spin structure) on
M (cf. [LaM], Def. II.1.3).

2. More generally, if w = 0 and π̂ = π (resp. π̂ = π × Z/2), then
G(γ, n) = π × SO(n) (resp. G(γ, n) = π × Spin(n)); in this case, a
γ-structure amounts to an orientation (resp. spin structure) on M ,
together with a principal π-bundle M̃ → M .

3. A γ-structure determines a principal π-bundle M̃
def= P/G1 → M ,

where G1 is the identity component of G(γ, n). We note that G1 =
SO(n) if ker(π̂ → π) is trivial, and G1 = Spin(n) otherwise. Hence
the principal G1-bundle P → M̃ can be identified with the oriented
frame bundle of M̃ or a double cover thereof.

Definition 5.4 Given a triple γ as above, Rn(γ) is the bordism group of
pairs (N, h), where N is a n-dimensional manifold with γ-structure and h
is a positive scalar curvature metric on the boundary ∂N (possibly empty).
The obstruction σ(M, h) ∈ Rn(γ(M)) to extending the positive scalar cur-
vature metric h on ∂M to a positive scalar curvature metric on M is just the
bordism class [M,h] (every manifold M has a canonical γ(M)-structure).

Sketch of Proof of Theorem 5.1. Both the existence and the classification
statement are fairly direct consequences of the surgery results discussed in
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Section 3. Concerning existence, it is easy to see that if h extends to a
positive scalar curvature metric on M , then (M, h) represents zero in the
bordism group Rn(γ), γ = γ(M) = (π,w, π̂). (The manifold M×[0, 1] with
some corners suitably rounded represents a zero bordism.) Conversely, a
zero bordism for (M, h) provides us with a manifold M ′ with boundary
∂M ′ = ∂M over which h extends to a positive scalar curvature metric
(which is a product metric near the boundary), and a manifold W of di-
mension n + 1 whose boundary is ∂W = M ∪∂M M ′. Moreover, the γ-
structure on M extends to a γ-structure on W . Doing some surgery on W
if necessary, we may assume that the map W → BG(n + 1, γ) provided by
the γ-structure on W is a 3-equivalence (i.e., it induces an isomorphism
on homotopy groups πi for i < 3, and a surjection for i = 3). The re-
striction of this map to M is a 2-equivalence (this is a property of the
“canonical” γ(M)-structure of M). It follows that the inclusion M ⊂ W is
a 2-equivalence; this implies that W can be built by attaching handles of
dimension ≥ 3 to M × [0, 1]. Reversing the roles of M and M ′, it follows
that W can be constructed from M ′ by attaching handles of codimension
≥ 3; in particular, M is obtained from M ′ by a sequence of surgeries in the
interior of M ′ of codimension ≥ 3. Hence the Surgery Theorem 3.1 shows
that h extends to a positive scalar curvature metric on M .

We turn to the classification up to concordance. Our first goal is to
define the action of Rn+1(γ) on π̃0R

+(M rel h). We do so by describing
for each [g] ∈ π̃0R

+(M rel h) the map

m[g] : Rn+1(γ) → π̃0R
+(M rel h) r 7→ r · [g].

We note that our claim that the action is free and transitive translates into
the statement that for each [g] ∈ π̃0R

+(M rel h) the map m[g] is bijective.
It seems difficult to describe the map m[g] directly. Instead we construct a
map

i[g] : π̃0R
+(M rel h) → Rn+1(γ),

show that it is a bijection, and define m[g] to be the inverse of i[g]. To
define i[g]([g′]), consider the positive scalar curvature metric

g ∪ (h× s) ∪ g′ on ∂(M × I) = (M × {0}) ∪ (∂M × I) ∪ (M × {1}),

where s is the standard metric on I, and h × s is the product metric on
∂M × I. We define i[g]([g′]) to be the bordism class of M × I (furnished
with its canonical γ-structure) together with the metric g ∪ (h× s)∪ g′ on
its boundary.

Injectivity of i[g] follows immediately from the existence statement
proved above. Surjectivity of i[g] is proved in two steps. First we show
that every element of Rn+1(γ) has a representative of the form (T, q) with
q ∈ R+(∂T ), where T is an (n + 1)-thickening of the 2-skeleton of M (i.e.,
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T ⊂ M×I is a codimension zero submanifold with boundary simply homo-
topy equivalent to a 2-skeleton of M). To prove this, let (N, k) be a repre-
sentative of a given element of Rn+1(γ). After modifying N if necessary by
surgeries in the interior, we may assume that the map N → BG(γ, n + 1)
given by the γ-structure on N is a 3-equivalence. Then using Wall’s classi-
fication of thickenings in the stable range [Wa], Prop. 5.1, it can be shown
that T embeds into the interior of N . Another application of the Improved
Surgery Theorem 3.2 then shows that k extends to a positive scalar curva-
ture metric K on N \ intT , which implies [N, k] = [T,K|∂T ].

In a second step, the Improved Surgery Theorem 3.2 is used again to
argue that the positive scalar curvature metric g ∪ (h × s) ∪ H|∂T which
lives on a part of the boundary of (M × I) \ T can always be extended to
a positive scalar curvature metric G on (M × I) \ T . This shows that i[g]

maps [G|M×{1}] ∈ π̃0R
+(M rel h) to [T, H|∂T ]. ¤

As mentioned above, there is so far no algebraic description of the Rn-
groups. Worse yet, there is no pair (n, γ), with n ≥ 5, for which Rn(γ) is
known. However, in many cases, we can obtain a lower bound for the size
of Rn(γ) by means of an “index homomorphism”

θ : Rn(γ) → KOn(C∗r γ).

Here C∗γ is a Z/2-graded C∗-algebra associated to γ = (π, w, π̂).6 It is
defined as an ideal in the group C∗-algebra C∗π̂; namely multiplication by
the generator k of ker(π̂ → π) is an involution on C∗π̂ whose −1-eigenspace
is C∗γ. The Z/2-grading is given by the {±1}-eigenspaces of the involution
C∗γ → C∗γ which is the restriction of the involution C∗π̂ → C∗π̂ given
by ĝ 7→ (−1)ŵ(ĝ) for ĝ ∈ π̂ ⊂ C∗π̂, where ŵ is the composition of the
projection map π̂ → π and w : π → Z/2. In particular, C∗γ = 0 if π̂ = π
and C∗γ = C∗π if w = 0 and π̂ = π × Z/2.

Remark 5.5 The index homomorphism θ is a generalization of the index
α(N, f) ∈ KOn(C∗π) for n-dimensional closed spin manifolds N equipped
with a map f : M → Bπ. By remark 5.3, the spin structure and the map
f amount to a γ-structure on N , γ = (π, 0, π ×Z/2), and hence the closed
manifold N represents an element [N ] in the bordism group Rn(γ). Then

α(N, f) = θ([N ]) ∈ KOn(C∗π) = KOn(C∗γ).

In particular, θ generalizes α to non-spin manifolds, and to manifolds with
boundary (whose boundary is equipped with a positive scalar curvature
metric).

6For the meaning of the subscript r, which we henceforth suppress, see the discussion
on page 367.
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Definition 5.6 To define the index homomorphism θ, it is convenient to
describe its range KOn(C∗γ) as equivalence classes of “Kasparov modules”
(H,F ). Here H is a Hilbert module over the real C∗-algebra A = C∗γ⊗C`n

[Bla], §13; i.e., H is a right A-module equipped with a compatible A-valued
inner product, which is complete with respect to a norm derived from this
inner product. (When A = R or C, a Hilbert A-module is just a real
or complex Hilbert space.) Here F is an A-linear bounded operator on
H satisfying certain properties generalizing the main features of elliptic
pseudodifferential operators of order 0. (If A = R or C, these properties
imply in particular that F is Fredholm.)

Hence to define θ, we need to describe the pair (H, F ) that represents
θ([N, h]), where N is manifold with γ-structure and h is a positive scalar
curvature metric on ∂N . The Hilbert module H is the space of L2-sections
of a bundle S over the complete manifold without boundary N̂ = N ∪∂N

∂N × [0,∞) obtained by attaching a cylindrical end to N .
The key fact for the construction of S is the existence of a homomor-

phism from G(γ, n) to Oev(A), the group of even orthogonal elements of
the C∗-algebra A = C∗γ ⊗ C`n. (An element x of a real C∗-algebra is
orthogonal if x∗x = xx∗ = 1.) This homomorphism is given by

ρ : G(γ, n) = π̂ nZ/2 Spin(n) → Oev(A) [a, b] 7→ ea⊗ e
w(a)
1 b.

Here e = (1 − k)/2 ∈ C∗π̂ is the unit of the ideal C∗γ ⊂ C∗π̂, and e1 =
(1, 0, . . . , 0) ∈ Rn. We remark that e1 has order four in C`n (its square
is −1); to make the above map well-defined, we decree w(b) ∈ {0, 1} ⊂ Z
(this gives in fact a homomorphism!).

If P → N̂ is the principal G(γ, n)-bundle given by the γ-structure on
N extended to N̂ , then we define the “spinor” bundle S bN by

S bN
def= P ×G(γ,n) A,

where g ∈ G(γ, n) acts on A by left multiplication by ρ(g).
We note that the fibers of S bN are right A-modules and are furnished

with an A-valued inner product 〈 , 〉 given by 〈[p, a], [p, b]〉 = a∗b ∈ A
(we note that two elements in the same fiber of S bN can be written in the
form [p, a], [p, b] with p ∈ P , a, b ∈ A). Upon integration over N̂ , this gives
the space L2(S bN ) of L2-sections of S bN the structure of a Hilbert A-module.

To construct a “Dirac operator” D bN : L2(S bN ) → L2(S bN ) it suffices to
note that the Levi-Civita connection on N̂ induces a connection on S bN ,
and that the γ-structure can be used to make the fiber of S bN over a point
x ∈ N̂ a left-module over the Clifford algebra generated by the tangent
space TxM . Then D bN is defined by the usual formula (cf. [LaM], Ch. II,
formula 5.0).
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The operator D bN is A-linear, but it is not a bounded operator on the
Hilbert A-module H = L2(S bN ) (not even in the classical case A = C). One
needs to replace D bN by a bounded operator f(D bN ), where f is a suitable
real valued function on R, and f(D bN ) is defined by “functional calculus”
[Lan]. On a compact manifold the usual choice is f(x) = x(x2 + 1)−1/2.
This doesn’t work on the non-compact manifold N̂ , since f(D bN )2−1 is not
compact, which is one of the requirements for a Kasparov module. However,
it is shown in [St4] that if 4c2 is a lower bound for the scalar curvature of
the metric f on ∂N (and hence a lower bound for the scalar curvature
of N̂ outside a compact set), and if f : R → R is an odd function with
f(x) = 1 for x ≥ c and f(x) = −1 for x ≤ −c, then (L2(S bN ), f(D bN )) is in
fact a Kasparov module. Moreover, its K-theory class [L2(S bN ), f(D bN )] ∈
KO(A) = KOn(C∗γ) is independent of the choice of f and the Riemannian
metric on N extending h ∈ R+(∂N).

Bunke’s relative index theorem for K-valued indices [Bun], Theorem
1.2, shows furthermore that the K-theory class [L2(S bN ), f(D bN )] depends
only on the bordism class of (N, h) in Rn(γ); this shows that

θ : Rn(γ) → KOn(C∗γ) [N,h] 7→ [L2(S bN ), f(D bN )]

is a well-defined homomorphism.

We have seen in Section 4 that there are closed spin manifolds with
trivial α-invariant, which do not admit a metric of positive scalar curvature.
In view of Theorem 5.1 and Remark 5.5 this implies that

θ : Rn(γ) → KOn(C∗γ)

is not in general injective.
We observe that the target of θ is 8-periodic and that the isomorphism

KOn(C∗γ) ∼= KOn+8(C∗γ) is given by multiplication with the Bott ele-
ment, the generator of KO8(R) ∼= Z. Under θ, this corresponds to the map
Rn(γ) → Rn+8(γ) given by Cartesian product with the Bott manifold Bt8.
However, this map is not an isomorphism in general; in fact, the above
examples represent non-trivial elements of Rn(γ), whose product with a
suitable power of Bt is trivial.

We note that the groups Rn(γ) can be made 8-periodic by “inverting”
the Bott manifold; i.e., by defining a “periodic” or “stable” version of the
Rn-groups by

Rn(γ)[Bt−1] def= lim−→
(
Rn(γ) ×Bt−→ Rn+8(γ) ×Bt−→ . . .

)
.

Then θ factors through a “stable” homomorphism

θst : Rn(γ)[Bt−1] → KOn(C∗γ).
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Conjecture 5.7 ([St4]) The homomorphism θst is an isomorphism.

The rest of this section is devoted to discussing the status of this con-
jecture. First, we look at the case ker(π̂ → π) = 0, which corresponds to
manifolds whose universal covering is not spin. In this case C∗γ and hence
also KOn(C∗γ) are trivial. It is a simple observation that also Rn(γ)[Bt−1]
vanishes. The argument is the following: Cartesian product gives R∗(γ)
the structure of a module over the spin bordism ring Ωspin

∗ ; if ker(π̂ → π)
is trivial, it is in fact a module over the oriented bordism ring ΩSO

∗ . In the
latter, the Bott manifold is bordant to a linear combination of the quater-
nionic plane HP2 and the complex projective space CP4, which generate
ΩSO

8
∼= Z ⊕ Z. Both of these manifolds admit metrics of positive scalar

curvature, and hence the product of any element in Rn(γ) with Bt8 is the
trivial element in Rn+8(γ).

Injectivity of θst is closely related to the Stable Conjecture 4.17. In
fact, having the index homomorphism θ at our disposal, we can formulate
the following more general conjecture, which agrees with Conjecture 4.17
for spin manifolds.

Conjecture 5.8 A closed manifold M admits stably a positive scalar cur-
vature metric if and only if θ([M ]) vanishes in KOn(γ(M)) (here M is
equipped with its canonical γ(M)-structure).

We note that injectivity of the homomorphism θst implies Conjecture
5.8, but not vice versa; in fact, Conjecture 5.8 is equivalent to the statement
that θst is injective when restricted to the image of Ωn(γ) → Rn(γ)[Bt−1],
where Ωn(γ) is the bordism group of n-dimensional closed manifolds with
γ-structure. We note that this map factors in the form

Ωn(γ) → KOn(γ) def= (Ωn(γ)/Tn(γ)) [Bt−1] F−→ Rn(γ)[Bt−1], (5.1)

where Tn(γ) ⊂ Ωn(γ) consists of the bordism classes represented by total
spaces of HP2-bundles. In the spin case γ = (π, 0, π × Z/2), a (homotopy
theoretic) result of Kreck and the second author [KS], Theorem C, implies
that KOn(γ) can be identified with the KO-homology of Bπ. Composing
the forgetful map F and the index map θ we obtain a homomorphism

A : KOn(γ) F−→ Rn(γ)[Bt−1] θst−→ KOn(C∗γ)

which agrees with the assembly map in the spin case γ = (π, 0, π × Z/2).
In the authors’ opinion, Conjecture 5.8 (assuming as in Theorem 4.20

that a Baum-Connes type map is injective) seems to be within reach; an
important ingredient in the proof will be a homotopy theoretic interpreta-
tion of KOn(γ) as a ‘twisted’ KO-homology group of Bπ. This is work in
progress by Michael Joachim based on his thesis [Joa].
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Proving injectivity of θst seems hard due to an apparent lack of tools;
proving injectivity in the simplest case γ = (0, 0,Z/2) is equivalent to giving
an affirmative solution to Problem 6.1 discussed in the next section.

Surjectivity of θst is closely related to the Baum-Connes Conjecture
of [BCH]. We recall that for torsion-free groups π this Conjecture claims
that the assembly map A : KOn(Bπ) → KOn(C∗r π) is an isomorphism.
The factorization (5.1) of A shows that surjectivity of A implies that θst is
surjective.

If π is a finite group, then A is in general far from being surjective.
Still, Laszlo Feher shows in his thesis [Feh] that θst is surjective in the
“spin case” γ = (π, 0, π × Z/2), provided π is a finite p-group (i.e., a finite
group whose order is a power of p for some prime p).

6 Future Directions

In this final section, we mention just a few of the most important open
problems concerning positive scalar curvature metrics. These problems
appear to be quite hard, but they play such fundamental roles that it seems
we will never fully understand the subject of positive scalar curvature until
some progress is made on them.

Problem 6.1 Suppose g is a positive scalar curvature metric on Sn. Then
there is an index theoretic obstruction with values in KOn+1, studied in
[Hit], [GL3], and in Section 5 above, to extending g to a positive scalar
curvature metric on Dn+1 which is a product metric on a neighborhood of
the boundary. Is this the only obstruction? In other words, if the index
obstruction vanishes in KOn+1, does g extend to a positive scalar curva-
ture metric on Dn+1? If not, is this at least true “stably” (after taking
a Riemannian product with enough copies of the Bott manifold Bt8 ,7 or
after taking a Riemannian product with a flat torus of sufficiently high
dimension)?

Discussion. This problem is absolutely fundamental, since without its so-
lution, there is no hope for computing the R-groups described in Section
5 above, and thus no hope for a complete concordance classification of
positive scalar curvature metrics, even on the very simplest manifolds. At
the moment, we know the answer to this question only in the case n = 2,
where it is easy to see from Theorem 3.4 that every positive scalar curvature
metric extends (and the index obstruction always vanishes).

A case which may be exceptional (because of the peculiarities of 4-
dimensional smooth topology) is n = 3. For this case, Seiberg-Witten

7It is worth noting here that it is now known that there is a model for the Bott
manifold which admits a Ricci-flat metric [J]. If we use this particular choice, then
taking a Riemannian product with Bt8 does not change the scalar curvature.
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theory could conceivably be of use; though it is more likely that Seiberg-
Witten theory is only useful in studying the extension problem for more
complicated pairs (M4, ∂M) where b+

2 (M) > 0. At the moment, we also
do not know anything about the image of the index obstruction in KO4

∼=
Z when n = 3. However, it is proved in [GL3], pp. 130–131, that the
obstruction takes all values in KO8

∼= Z when n = 7.
One possible method of attack in this problem (which could potentially

be used in any dimension > 2) is the following. We may as well assume
that the scalar curvature of g is a positive constant, say 1. If we extend
g any way we like to a metric g on Dn+1 which is a product metric in
a neighborhood of Sn = ∂(Dn+1), then we can try to make a pointwise
conformal change in the metric g, supported away from the boundary, to
a metric of positive scalar curvature of the special form efg, f supported
on the interior of D. This leads to the study of the “Yamabe equation
with Dirichlet boundary conditions.” Rewriting the conformal factor ef as
v4/(n−2), we obtain the boundary value problem

−∆v + n−2
n−1

κ
4 v = n−2

n−1
κ1
4 v

n+2
n−2 in intDn+1, (6.1)

v > 0 in intDn+1, v ≡ 1 near ∂(Dn+1).

Here κ is the scalar curvature of the original metric g, which is 1 on a
neighborhood of ∂(Dn+1) and has unknown behavior in the interior, ∆ is
the Laplace-Beltrami operator with respect to g (with the sign convention
for which this operator is non-positive), and κ1 is the scalar curvature for
the new metric (which we want to be everywhere positive).

Note from equation (6.1) that if the “conformal Laplacian,” the linear
operator

L0 = −∆ +
n− 2
n− 1

κ

4
,

has positive spectrum (with Dirichlet boundary conditions, in other words
on functions vanishing at the boundary), then it follows that the metric
g has an extension with positive scalar curvature. The reasoning, copied
in part from [KW1] and [KW2], is as follows. We may assume that the
minimum value of κ is −κ0, some non-positive number. (Otherwise we’re
already done.) The eigenfunction ϕ of L0 corresponding to the lowest eigen-
value λ cannot change sign, by an application of the maximum principle,
so we may assume ϕ ≥ 0 in intDn+1, and clearly there must be some ε > 0
such that ϕ > ε on the compact set where κ ≤ 0. Then if v = 1 + µϕ,
v > 0 on Dn+1, v ≡ 1 on ∂(Dn+1), and

L0v =
n− 2
n− 1

κ

4
+ λµϕ,
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which we can arrange to be everywhere positive by taking µ large enough
to have λµε > n−2

n−1
κ0
4 . So v satisfies equation (6.1) except for the condition

that v be constant near the boundary. We can achieve this by making
a small perturbation in ϕ near the boundary. (This destroys its being
an eigenfunction for L0, but doesn’t change the condition we really need,
which is that L0(1 + µϕ) should be everywhere positive.)

A curious feature of equation (6.1), which suggests that the answer to
our “stable” question is “yes,” is that the operator L0 bears a remarkable
similarity to equation (4.1) for the square of the Dirac operator. (In fact,
the lower-order terms n−2

n−1
κ
4 and κ

4 become the same in the stable limit as
n → ∞.) A challenge before us is therefore to figure out how to apply
information about the Dirac operator, which acts on spinors, to the study
of the scalar equation (6.1). ¤

Problem 6.2 Are we missing additional “unstable” obstructions to posi-
tive scalar curvature (in the closed manifold case, and in dimensions other
than 4) which do not come from the theory of minimal hypersurfaces?

Discussion. The existence of counterexamples to Conjectures 4.8 and 4.9,
as well as the fact that there are many classes in Hn(Bπ) or kon(Bπ) for fi-
nite groups π (see Theorem 4.11) which no one has been able to represent by
manifolds of positive scalar curvature, suggests that this may be the case.
(The minimal hypersurface method of [SY] can only be applied to mani-
folds which have a covering space with positive first Betti number, clearly
a very restrictive condition not applying when the fundamental group is
finite.) Conceivably, additional obstructions to positive scalar curvature
might come from the study of certain non-linear partial differential equa-
tions, for example, from higher-dimensional analogues of Seiberg-Witten
theory, that involve coupling of the Dirac operator to something else, or
from the study of moduli spaces of solutions to variants of the Yamabe
problem. ¤

Problem 6.3 Are concordant positive scalar curvature metrics necessarily
isotopic?

Discussion. This question is still wide open. See the comments following
Proposition 3.3. In the analogous problem for automorphisms of mani-
folds, it is known that invariants from algebraic K-theory (especially K2

and Waldhausen’s K-theory of spaces) play a role here. It would be very
interesting to see if any similar phenomena occur in the theory of positive
scalar curvature metrics. ¤
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§0. Review of Surgery Theory.

Surgery theory is a method for constructing manifolds satisfying a
given collection of homotopy conditions. It is usually combined with the s–
cobordism theorem which constructs homeomorphisms or diffeomorphisms
between two similar looking manifolds. Building on work of Sullivan, Wall
applied these two techniques to the problem of computing structure sets.
While this is not the only use of surgery theory, it is the aspect on which we
will concentrate in this survey. In dimension 4, there are two versions, one
in which one builds topological manifolds and homeomorphisms and the
second in which one builds smooth manifolds and diffeomorphisms. These
two versions are dramatically different. Freedman has shown that the topo-
logical case resembles the higher dimensional theory rather closely. Donald-
son’s work showed that the smooth case differs wildly from what the high
dimensional theory would predict. Surgery theory requires calculations in
homotopy theory and in low dimensions these calculations become much
more manageable. In sections 0 and 1, we review the general theory and
describe the general results in dimensions 3 and 4. In sections 2 through 6,
we describe precisely what the high dimensional theory predicts. Finally,
we describe the current state of affairs for the two versions in sections 7
and 8.

Both authors were partially supported by the N.S.F.
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To begin, let (X, ∂X) be a simple, n–dimensional Poincaré space whose
boundary may be empty. In particular, X is homotopy equivalent to a finite
CW complex which satisfies Poincaré duality for any coefficients, with a
twist in the non–orientable case, and simple means that there is a chain
map

[X, ∂X]∩: HomZ[π1(X)](C∗(X),Z[π1(X)]) → Cn−∗(X)

which is a simple isomorphism between based chain complexes, [85]. This
is the homotopy analogue of a manifold. Let CAT stand for either TOP,
the topological category, or DIFF, the differential category. There is also
the category of PL–manifolds, but it follows from the work of Cerf, [18],
that in dimension 4 PL is equivalent to DIFF, so we will rarely discuss PL
here. Fix a CAT–manifold Ln−1 without boundary and a simple homotopy
equivalence h: L → ∂X.

Structure Sets: Define the set SCAT (X; rel h) as the set of all simple
homotopy equivalences of pairs, f : (M, ∂M) → (X, ∂X), where (M, ∂M) is
a CAT–manifold, and for which there exists a CAT–equivalence g: L → ∂M

such that the composition L → ∂M → ∂X is homotopic to h; two such,
(Mi, fi, gi) i = 0, 1, are deemed equal if there exists a CAT–equivalence
F : (M0, ∂M0) → (M1, ∂M1) so that f1 ◦F is homotopic, as a map of pairs,
to f0, and F |

∂
◦ g0 is homotopic to g1. In diagrams,

L
g−→ ∂M
↘h ↓ f |∂X

∂X

M0

f0−→X
F ↓ ↗

f1

M1

homotopy commute.

Remark: One can use the homotopy extension theorem to tighten up the
definition: one can restrict to manifolds M with ∂M = L and with maps f

such that f |
∂

= h; F |
∂

can be required to be the identity and the homotopy
between f1 ◦ F and f0 can be required to be constant on L. Finally, base
points may be selected in each component of M , X, ∂M and ∂X and all
the maps and homotopies may be assumed to preserve the base points.
This is a useful remark in identifying various fundamental groups precisely
rather than just up to inner automorphism.

The questions now are whether the set SCAT (X; rel h) is non–empty
(existence) and if non–empty, how many elements does it have (unique-
ness). The only 1 and 2 dimensional Poincaré spaces are simple homotopy
equivalent to manifolds, [26], [27], and this is conjecturally true in dimen-
sion three, [81]. In general, the Borel conjecture asserts that this is true for
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aspherical Poincaré spaces in all dimensions (see the discussion of Problem
5.29 in [47] and the articles in [28]).

There are bundle–theoretic obstructions to SCAT (X; rel h) being non–
empty. Every Poincaré space has a stable Spivak normal fibration, [75],
which is given by a map νX : X → BG. This is the homotopy analogue of
the stable normal bundle for a manifold. The space BG can be thought
of as the classifying space for stable spherical fibrations, or as the limit
of the classifying spaces of G(m), the space of homotopy automorphisms
of Sm−1. There is a map BCAT → BG and a necessary condition for
SCAT (X; rel h) to be non–empty is that νX lift to BCAT . Given a ho-
motopy equivalence between a CAT–manifold and a Poincaré space, X,
Sullivan, [77], constructs a homotopy differential, a specific lift of νX . The
lift to BCAT gives a stable CAT bundle η over X and the lift gives a
specific fibre homotopy equivalence between the associated sphere bundle
to η and the Spivak normal fibration νX .

With data as above, the Sullivan homotopy differential gives an explicit
lift of ν∂X to BCAT : a second application of this yoga gives a map

N :SCAT (X; rel h) → LCAT (X; rel h)

where LCAT (X; rel h) is the set of homotopy classes of lifts of νX to BCAT

which restrict to our given lift over ν∂X .
Boardman and Vogt, [6], prove that the spaces BCAT and BG are

infinite loop spaces and that the maps BCAT → BG are infinite loop
maps. It follows that there is a sequence of homotopy fibrations, extending
infinitely in both directions,

· · · → CAT → G → G/CAT → BCAT → BG → B(G/CAT ) → · · ·

The Spivak normal fibration is a map νX : X → BG, and the Sullivan
differential on the boundary gives an explicit null–homotopy of νX |∂X in
B(G/CAT ) and so defines a map b: X/∂X → B(G/CAT ).

The next result follows from standard homotopy theory considerations:

Theorem 1. LCAT (X; rel h) is non–empty if and only if b:X/∂X →
B(G/CAT ) is null homotopic. If LCAT (X; rel h) is non–empty, the abelian

group [X/∂X, G/CAT ] acts simply–transitively on it.

Remark: If X is already a CAT–manifold, LCAT (X; rel h) has an obvious
choice of base point, namely the normal bundle of X.

Given a point x ∈ LCAT (X; rel h) and an element η ∈ [X/∂X, G/CAT ],
let η • x ∈ LCAT (X; rel h) denote the result of the action.
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CAT–transversality allows an interpretation of LCAT (X; rel h) as a
normal bordism theory. We can translate this into a more geometric lan-
guage where we assume for simplicity that ∂X = ∅. Choose a simplicial
subcomplex of a high dimensional sphere, SN , which is simple homotopy
equivalent to X. Let W,∂W denote a regular neighborhood. If the map
∂W → X is made into a fibration then the result is a spherical fibration
with fibre SN−n−1, which is the Spivak normal fibration; it corresponds
to a classifying map X → BG. Note that by collapsing the complement
of W to a point, we get a map from SN to the Thom space of the Spivak
normal fibration. A lift from BG to BCAT provides a fibre homotopy
equivalence from the Spivak normal fibration to the CAT bundle over X,
and this extends to Thom spaces. Thus a lift from BG to BCAT gives
by composition a map from SN to the Thom space of the CAT bundle;
making this map transverse to the 0–section provides a manifold, Mn, and
a degree one map, M → X covered by a CAT bundle map from the stable
normal bundle for M to the given bundle over X. Different choices change
the data by a normal bordism. Summarizing, LCAT (X) can be interpreted
as bordism classes of degree–one normal maps, that is, degree one maps
f :M → X covered by a bundle map from the stable normal bundle of M

to some CAT bundle over X.
Given a normal map Mn

h−→ X, one can try to surger M so that
h becomes a simple homotopy equivalence. This allows one to define a
surgery obstruction map in general,

θ:LCAT (X; rel h) → L
s

n(Z[π1(X)], w1(X))

where w1(X): π1(X) → ±1 is the first Stiefel–Whitney class of the Poincaré
space X and L

s

n is the Wall group as defined in [85]. The Wall groups
depend only on the group and the first Stiefel–Whitney class and are 4–
fold periodic.

In the simply connected case, the only obstruction in dimensions con-
gruent to 0 mod 4 is the difference in the signatures of M and X, so L

s

0(Z) is
Z and the map θ is given by (σ(M)−σ(X))/8. In dimensions congruent to
2 mod 4, do surgery to the middle dimension, put a quadratic enhancement
on the kernel in homology and take the Arf invariant to get an invariant in
L

s

2(Z) = Z/2Z. The simplest example is the degree one map from T 2 to S2

with stable normal map given by framing the stable normal bundle to S2

and taking the “Lie framing” of the stable normal bundle to T 2 defined as
follows: identify a normal bundle to T 2 with the product of two stable nor-
mal bundles to S1 and frame each of these with the framing that does not
extend over D2. In odd dimensions, the obstruction is 0 = L

s

1(Z) = L
s

3(Z).
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If SCAT (X; rel h) 6= ∅, the composite

SCAT (X; rel h)
N−→ LCAT (X; rel h)

θ−→ L
s

n(Z[π1(X)], w1(X))

sends every element in the structure set to the zero element in the Wall
group.

Given x ∈ LCAT (X; rel h), let

θx: [ X/∂X, G/CAT ] → L
s

n(Z[π1(X)], w1(X))

be defined by θx(η) = θ(η•x). Thus far, there are no dimension restrictions,
but one of Wall’s fundamental results, [85, Thm 10.3 and 10.8 ], is

Theorem 2. If n ≥ 5 and if x ∈ LCAT (X; rel h), the following sequence

is exact

(3) SCAT (X; rel h)
Nx−−→ [ X/∂X, G/CAT ]

θx−→ L
s

n(Z[π1(X)], w1(X))

in the sense that θ−1
x (0) equals the image of Nx. If SCAT (X; rel h) 6= ∅,

there is an action of a Wall group on it:

L
s

n+1(Z[π1(X)], w1(X))× SCAT (X; rel h) → SCAT (X; rel h)

and Nx is injective on the orbit space. The isotropy subgroups of this

action are given by “backing–up” sequence (3), being careful with base

point. Specifically, if f : M → X is in SCAT (X; rel h), let f × 1[0,1] be

the evident map M × [0, 1] → X × [0, 1] with ∂f×1[0,1] being the evident

homeomorphism on the boundary: let N(f×1[0,1]) ∈ LCAT (X; rel h) be our

choice of base point, denoted y below. The isotropy subgroup of f : M → X

is the image of θy in the version of (3)

SCAT (X × [0, 1]; rel ∂f×1[0,1])
Ny−−→ [ Σ(X/∂X), G/CAT ]
θy−→ L

s

n+1(Z[π1(X)], w1(X)) .

§1. The Low Dimensional Results.

If n < 5, sets S̄CAT (X; rel h) are defined below so that Theorem
2 remains true if the sets S̄CAT are used instead of the sets SCAT . By
construction there will be a map ψCAT :SCAT (X; rel h) → S̄CAT (X; rel h)
and the failure of surgery in low dimensions is the failure of ψCAT to be a
bijection.
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It is a fortuitous combination of calculations of Wall groups, the clas-
sification of manifolds and the result that 2–dimensional Poincaré spaces
have the homotopy type of manifolds, [26], [27], that Theorem 2 holds as
stated for n = 1 and 2. After this remark, we restrict attention to the three
and four dimensional cases.

In dimension 3, for closed manifolds, it is conjectured that SCAT (M3)
is a point, [47, 3.1Ω ]. Computationally, S̄DIFF (S3) is two points, S3 and
the Poincaré sphere; however, S̄TOP (S3) is still one point, because S3 and
the Poincaré sphere are topologically homology bordant.

In dimension 4, Freedman’s work shows ψTOP is a bijection for “good”
fundamental groups; Donaldson’s work shows ψDIFF is not bijective for
many 4–manifolds. These points are discussed below in sections 7 and 8.

A mantra of four–dimensional topology is that “things work after
adding S2×S2’s”: a mantra of three–dimensional topology is that “surgery
works up to homology equivalence”. The results below lend some precision
to these statements.

Let us assume given (X3, ∂X) with a CAT–homotopy structure h:L2 →
∂X. Since every 2–dimensional TOP–manifold has a unique smooth struc-
ture, it is no loss of generality to assume L is smooth. Define S̄CAT (X; rel h)
as a set of objects modulo an equivalence relation. Each object is a pair
consisting of a CAT–manifold, M , and a map, f : M3 → X, where M3

is smooth and f induces an isomorphism in homology with coefficients
in Z[π1(X)]. Any such map has a Whitehead torsion in Wh(Z[π1(X)])
and we further require that this torsion be 0. Two such objects, Mi, fi

i = 0, 1, are deemed equivalent if and only if there exists a normal bordism
which will consist of a CAT–manifold W 4 with ∂W = M0 ⊥⊥ M1, a map
F :W → X×[0, 1] extending f0 and f1, a CAT–bundle ζ over X×[0, 1], and
a bundle map covering F between the normal bundle for W and ζ. In such
a case, there is a well–defined surgery obstruction in L

s

4(Z[π1(X)], w1(X))
which we further require to be 0. In case TOP–surgery works in dimension
4 for π1(X), this condition is equivalent to the following more geometric
statement: if CAT = TOP , the normal bordism can be replaced by a
topological s–cobordism; if CAT = DIFF , the normal bordism can be
replaced by a topological s–cobordism with vanishing stable triangulation
obstruction.

We now turn to the 4–dimensional case. Let us assume given (X4, ∂X)
with a CAT–homotopy structure h: L3 → ∂X. Since every 3–dimensional
TOP–manifold has a unique smooth structure, it is no loss of generality
to assume L is smooth. Following Wall, write X as a 3–dimensional com-
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plex,
◦
X ⊂ X, union a single 4–cell. For any integer r > 0, one can form

the connected sum, X#rS2 × S2 by removing a 4–ball in the interior of
the top 4–cell. There are maps pX : X#rS2 × S2/∂X → X/∂X. Define
rS̃CAT (X; rel h) = {f ∈ SCAT (X#rS2 × S2; rel h) | N(f) ∈ Im p∗X}
and for uniformity, let 0S̃CAT (X; rel h) = SCAT (X; rel h). There are evi-
dent maps rS̃CAT (X; rel h) → r+1S̃CAT (X; rel h), so define S̄CAT (X; rel h)
to be the limit. One can define rL̃CAT (X; rel h) similarly, but the maps
rL̃CAT (X; rel h) → r+1L̃CAT (X; rel h) are isomorphisms. We call S̄CAT (X;
rel h) the stable structure set.

Theorem 4. If n = 3 or 4, and if x ∈ LCAT (X; rel h), the following

sequence is exact

S̄CAT (X; rel h)
Nx−−→ [ X/∂X,G/CAT ]

θx−→ L
s

n(Z[π1(X)], w1(X)) .

If S̄CAT (X; rel h) 6= ∅, L
s

n+1(Z[π1(X)], w1(X)) acts on it and Nx is injective

on the orbit space. The isotropy subgroups are given as in Theorem 2.

Finally, there is a map ψCAT :SCAT (X; rel h) → S̄CAT (X; rel h) (and, if

n = 4, ψr
CAT : rS̃CAT (X; rel h) → S̄CAT (X; rel h)).

Addendum. If n = 4 and if fi: (Mi, L) → (X, ∂X), i = 0, 1 are such

that ψ(f0) = ψ(f1), there exists an s–cobordism, W , from M0 to M1

which is a product over L, together with a map of pairs F : (W,∂W ) →
(X × [0, 1], ∂(X × [0, 1])) which extends f0 and f1 and is h × [0, 1] on

L× [0, 1] ⊂ ∂W .

The calculations above for the smooth and the topological stable struc-
ture sets can be compared using the map G/O → G/TOP . A second
way to compare them comes from the work of Kirby and Siebenmann,
[48], in high dimensions and proceeds as follows. There is a function
k:STOP (X; rel h) → [ X/∂X,B(TOP/O) ] which sends f : M → X to the
smoothing obstruction for M . The group [ X/∂X, TOP/O ] acts on the
smooth structure set: an element η ∈ [X/∂X, TOP/O ] corresponds to a
homeomorphism η̂:M ′ → M , and let η act on f to yield

η • f : M ′ η̂−→ M
f−→ X .

The evident relation η̄ • N(f) = N(η • f) holds, where η̄ denotes the

composite X/∂X
η−→ TOP/O → G/O. In dimension 4, there are simi-

lar results on the stable structure sets thanks to the work of Lashof and
Shaneson, [56]. In this case [X/∂X, B(TOP/O) ] = H4(X, ∂X;Z/2Z) and
[ X/∂X, TOP/O ] = H3(X, ∂X;Z/2Z).
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Theorem 5. If n = 4, the image of the forgetful map S̄DIFF (X; rel h) →
S̄TOP (X; rel h) is k−1(0) (k: S̄TOP (X; rel h) → H4(X, ∂X;Z/2Z)). The

group H3(X, ∂X;Z/2Z) acts on S̄DIFF (X; rel h) and the forgetful map

induces a bijection between the orbit space and k−1(0).

Remark: In dimension 4, there is another version of “stably CAT equiv-
alent” that appears sometimes in the literature. One might say M1 and
M2 were “stably CAT equivalent” if M1#rS2 × S2 was CAT equivalent
to M2#rS2 × S2. We will rarely discuss this concept, but will say M1

and M2 are weakly, stably CAT equivalent when we do. We say M1 and
M2 are stably CAT equivalent if there is a CAT equivalence h: M1#rS2 ×
S2 → M2#rS2 × S2 and a homotopy equivalence, f :M1 → M2, such that
f#r1S2×S2 is homotopic to h. As an indication of the difference, con-
sider that the Wall group acts on our stable structure set (non–trivially in
some case as we shall see below), whereas the top and bottom of a normal
bordism are always weakly, stably CAT equivalent since such a bordism
has a handle decomposition with only 2 and 3 handles. It is also easy to
give examples of weakly, stably TOP equivalent, simply connected mani-
folds which are not even homotopy equivalent since there are many distinct
definite forms which become isomorphic after adding a single hyperbolic.

Kreck observes that the question of whether two manifolds are weakly,
stably CAT equivalent is a bordism question, [50]. More precisely, fix a
map h:M → K(π1(M), 1) inducing an isomorphism on π1 and use the
normal bundle to get a map h × ν: M → K(π1(M), 1) × BCAT . There
exists a unique class ω1 ∈ H1

(
K(π1(M), 1);Z/2Z

)
such that h∗(ω1) is the

first Stiefel–Whitney class of M . Define E1(π1(M), ω1) to be the homotopy

fibre of the map K(π1(M), 1)×BCAT
ω1×1+1×w1−−−−−−−−→ K(Z/2Z, 1) and note

h× ν factors through a map h1: M → E1(π1(M), ω1). The map h1 induces
an isomorphism on π1: it induces an epimorphism on π2 if and only if
the universal cover of M is not Spin. If the universal cover is Spin, there
exists a unique class ω2 ∈ H2

(
K(π1(M), 1);Z/2Z

)
such that h∗(ω2) is

the second Stiefel–Whitney class of M . Define E2(π1(M), ω1, ω2) as the
homotopy fibre of the map

K(π1(M), 1)×BCAT
(ω1×1+1×w1)×(ω2×1+1×w2)−−−−−−−−−−−−−−−−−−−−→ K(Z/2Z, 1)×K(Z/2Z, 2).

Then h factors through a map h2: M → E2(π1(M), ω1, ω2) which induces
an isomorphism on π1 and an epimorphism on π2. Over Ei, i = 1 or 2,
there is a stable bundle coming from the map Ei → BCAT . One can
form Thom complexes and take stable homotopy to get bordism groups,
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ΩCAT
4 (π1(M), ω1) and ΩCAT

4 (π1(M), ω1, ω2): the pair M and h as above de-
termine an element [M, h] ∈ ΩCAT

4 (π1(M), ω1, ω2) or [M, h] ∈ ΩCAT
4 (π1(M),

ω1) (depending on whether the universal cover of M is Spin or not).
For a fixed M , the homotopy classes of maps h correspond bijectively to
Out

(
π1(M)

)
, the outer automorphism group of π1(M). Define two sub-

groups,

Out
(
π1(M), ω1, ω2

)
=

{
h ∈ Out

(
π1(M)

) ∣∣∣ h∗(ω1) = ω1 and h∗(ω2) = ω2

}

and

Out
(
π1(M), ω1

)
=

{
h ∈ Out

(
π1(M)

) ∣∣∣ h∗(ω1) = ω1

}
.

These subgroups act on the bordism groups and M determines a well–
defined element in

ΩCAT
4 (π1(M), ω1, ω2)/Out

(
π1(M), ω1, ω2

)

or
ΩCAT

4 (π1(M), ω1)/Out
(
π1(M), ω1

)

depending on whether the universal cover of M is Spin or not.
Two manifolds M1 and M2 are weakly, stably CAT equivalent if and

only if there exists a choice of ω1 (and ω2 if the universal covers are Spin)
such that M1 and M2 represent the same element in

ΩCAT
4 (π1(M), ω1)/Out

(
π1(M), ω1

)
,

or, if the universal covers are Spin, in

ΩCAT
4 (π1(M), ω1, ω2)/Out

(
π1(M), ω1, ω2

)
.

The proof is to construct a bordism W 5 between M1 and M2 with a map
H:W → Ei, i = 1 or 2 as appropriate. Then do surgery to make H as
connected as possible and then calculate that this new bordism can be built
from 2 and 3 handles.

These bordism groups depend only on the algebraic data, but their
calculation can be difficult. One easy case is when M is orientable (ω1 =
0) and the universal cover is not Spin. Then ΩCAT

4 (π1(M), ω1) is just
the ordinary oriented CAT bordism group of K(π1(M), 1) which is just
H4

(
K(π1(M), 1);Z

) ⊕ Z in the smooth case and H4

(
K(π1(M), 1);Z

) ⊕
Z ⊕ Z/2Z in the topological case: the Z is given by the signature of
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M ; the Z/2Z is given by the Kirby–Siebenmann invariant; and the ele-
ment in H4

(
K(π1(M), 1);Z

)
is just h∗

(
[M ]

)
. The action by Out

(
π1(M)

)
is by the identity on the Z and the Z/2Z and is the usual action on
H4

(
K(π1(M), 1);Z

)
.

The proofs of Theorems 4 and 5 are relatively straightforward given
Wall’s work in high dimensions. In the 3–dimensional case, one simply
observes that there are no embedding issues, but because circles now have
codimension two, we no longer have complete control over the fundamental
group. In the smooth case in dimension 4, Wall, [83], [84], Cappell and
Shaneson, [10], and Lawson, [58], prove the necessary results and in the
topological case one need only observe that Freedman and Quinn, [32],
supply the tools needed to mimic the smooth proofs.

§2. Calculation of Normal Maps.

Given the structure of the surgery exact sequence, we need to be able
to compute the space of homotopy classes of maps from complexes into
G/TOP and G/O. Standard homotopy theory tells us how to do this in
principle.

The first step in this program is to calculate the homotopy groups of
these spaces. The surgery sequence helps in this analysis. The L-groups of
the trivial group are Z, 0, Z/2Z, 0.

Using the “exact sequence ” (3), the Poincaré conjecture and the L-
groups show that πi(G/TOP ) = Z, 0, Z/2Z, 0, i ≡ 0, 1, 2, 3 (mod 4).
Generators can be constructed as well. In dimensions congruent to 0 mod 4,
follow Milnor, [64], and plumb the E8 form. The boundary is a topological
sphere except in dimension 4 where it is the Poincaré homology sphere.
Cone the boundary or use Freedman, [30], to complete to a closed manifold,
denoted E8, and construct a normal degree one map to the sphere. In
dimensions congruent to 2 mod 4, follow a similar process. Plumb two
tangent bundles to S2k+1. The boundary is a homotopy sphere. Cone the
boundary to get a PL manifold, M4k+2, and a degree one map f :M →
S4k+2. This map can be made into a normal map so as to have non–zero
surgery obstruction (already done in dimension 2 above as a map T 2 → S2).
See e.g. Browder, [8], §V.

One can do a similar analysis on πi(G/O) except now the Poincaré con-
jecture fails in high dimension. Still, πi(G/O) = πi(G/TOP ) for i < 8, al-
though the map π4(G/O) → π4(G/TOP ) is multiplication by 2 (Rochlin’s
theorem, [71], or [45]). Purists will quibble that the results used above
require the calculations they are quoted to justify, but the quoted results
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are correct and proved ten years before Freedman’s work by Sullivan, [77],
Kirby and Siebenmann, [48].

The first two stages of a Postnikov decomposition for G/CAT are

K(Z, 4) → G/CAT → K(Z/2Z, 2) .

Rochlin’s theorem shows that normal maps over S4 have surgery obstruc-
tion divisible by 16; on the other hand, there is a normal map M =
CP 2#8CP

2 → CP 2, defined as follows. The cohomology class (3, 1, · · · , 1)
determines a degree one map, f : M → CP 2. Note 7 times the Hopf bundle
pulls back via f to the normal bundle of M . As Sullivan observes, this
means the first k–invariant of G/O is non–zero. This k–invariant lives in
H5(K(Z/2Z, 2);Z) = Z/4Z, [7]; G/O is an H–space so its k invariants
are primitive 1. In H5(K(Z/2Z, 2);Z) only 0 and 2 are primitives, [7].
Hence the first k–invariant for G/O is 2, which as a cohomology operation
is δSq2, the integral Bockstein of the second Steenrod square. Freedman’s
construction of the E8 manifold shows that the first k–invariant of G/TOP

is trivial. (Again, Kirby and Siebenmann had already shown this result,
but the above makes a nice justification for the result.)

The next k invariant for both G/O and G/TOP is trivial, so in par-
ticular there are maps

(6)
G/TOP → K(Z/2Z, 2)× K(Z, 4)

G/O → K(Z/2Z, 2)×
δSq2 K(Z, 4)

which are 5–connected.
The first k–invariant of ΩG/O is the composition Ω(δ) ◦ Ω(Sq2) and

Ω(Sq2) = 0. This remark is useful in computing [ ΣY , G/O ] = [ Y, Ω(G/O) ].
Having computed the first k–invariants for these spaces, we want to

extract explicit calculations of the groups [ Y, G/CAT ] for Y a 4–complex
as well as a calculation of the map induced by the map G/O → G/TOP .
There is a class k ∈ H4(BTOP ;Z/2Z), the stable triangulation obstruc-
tion, which restricts to a class, k ∈ H4(G/TOP ;Z/2Z). This class cer-
tainly vanishes when restricted to G/O and we wish to identify it in
H4(G/TOP ;Z/2Z). Let f : M4 → N4 be a normal map. By Theorem 1, f

corresponds to a map f̂ :N → G/TOP and the composite N
f̂−→ G/TOP →

BTOP determines a bundle ζ over N such that νN ⊕ ζ pulls back via

1 A primitive in the cohomology of an H–space, m: Y × Y → Y , is a
cohomology class y such that m∗(y) = 1× y + y × 1.
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f∗ to νM . Then k(νM ) = k(ζ) + k(νN ) so f̂∗(k) is the difference of
the triangulation obstructions for M and N . Now H4(G/TOP ;Z/2Z) =
Z/2Z⊕Z/2Z generated by ι22 and (ι4)2. Here ι2 ∈ H2(K(Z/2Z, 2);Z/2Z)
and ι4 ∈ H4(K(Z, 4);Z) are generators and (ι4)2 denotes the generator of

H4(K(Z, 4);Z/2Z). By examining the normal maps, ĈP
2 → CP 2 (where

ĈP
2

is Freedman’s Chern manifold, [30]) and E8 → S4 one sees

k = ι22 + (ι4)2 .

One can further see that if f̂(k) = 0, then the map N → G/TOP factors
through a map N → G/O.

Let X be a connected 4–dimensional Poincaré space. The maps in (6)
induce natural equivalences of abelian groups,

[ X/∂X,G/TOP ] = H2(X, ∂X;Z/2Z)⊕H4(X, ∂X;Z)

[ Σ(X/∂X), G/TOP ] = H1(X, ∂X;Z/2Z)⊕H3(X, ∂X;Z)

The calculations for G/O look similar:

0 → H4(X, ∂X;Z) → [ X/∂X, G/O ] → H2(X, ∂X;Z/2Z) → 0

[Σ(X/∂X), G/O ] = H1(X, ∂X;Z/2Z)⊕H3(X, ∂X;Z) .

In general, the exact sequence for G/O is not split. To describe the re-
sult, let H2(X, ∂X) denote the kernel of the homomorphism given by
the cup square, H2(X, ∂X;Z/2Z) → H4(X, ∂X;Z/2Z) = Z/2Z. Note
H2(X, ∂X) = H2(X, ∂X;Z/2Z) if and only if v2(X) = 0 where v2 denotes
the second Wu class of the tangent bundle.

Lemma 7. For X a connected 4–dimensional Poincaré space with bound-

ary,

(8).
(∗) [ X/∂X, G/O ] =H2(X, ∂X;Z/2Z)⊕H4(X, ∂X;Z) if v2(X) = 0

(∗∗) [ X/∂X, G/O ] =H2(X, ∂X)⊕
{

Z if w1(X) = 0 and v2(X) 6= 0
Z/4Z if w1(X) 6= 0 and v2(X) 6= 0

The splitting in case (∗∗) depends on the choice of an element x ∈ H2(X, ∂X;

Z/2Z) of odd square. The map of [X/∂X, G/O ] into

[ X/∂X,G/TOP ] = H2(X, ∂X;Z/2Z)⊕H4(X, ∂X;Z)

in case (∗) is just an isomorphism on H2 and multiplication by 2 on H4 and

in case (∗∗) it is inclusion on H2 and sends the generator of the Z (respec-

tively Z/4Z) to (x, 1) where 1 denotes a generator of H4(X, ∂X;Z) = Z
(respectively Z/2Z).

Remark: For 3–dimensional Poincaré spaces, the map G/CAT → K(Z/2Z,
2) induces an isomorphism, [X/∂X,G/CAT ] → H2(X, ∂X;Z/2Z).
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A proof of Lemma 7 can be constructed along the following lines. A
diagram chase shows that [ X/∂X, G/O ] → [X/∂X, G/TOP ] is injective
whenever X is orientable: the image is the kernel of k. Another diagram
chase shows that every element in H2(X, ∂X) ⊂ H2(X, ∂X;Z/2Z) lifts
to an element of order 2 in [ X/∂X, G/O ] and any lift of an element of
odd square to [ X/∂X, G/O ] has infinite order. This is formula 8 in the
orientable case.

Assume X is non–orientable. If ∂X 6= ∅, let D(X) denote the double
of X. Since X ⊂ D(X) → X/∂X is a cofibration and since the inclusion
X ⊂ D(X) is split, the case with boundary follows from the closed case.
From Thom, [79], there exists a smooth manifold and a map f : M4 → X

which is an isomorphism on H4( ;Z/2Z). It then follows that f∗ is an
isomorphism on H4( ;Z) and an injection on H2( ;Z/2Z). Hence f∗ is
injective on [ , G/O ] so we may assume X is a smooth manifold. Every
2–dimensional homology class is represented by an embedded submanifold,
F ⊂ X, and hence the Poincaré dual is the pull back of a map X → T (η),
where η is a 2–plane bundle over F . A diagram chase reduces the proof
of Lemma 7 to the calculation for T (η). Smashing the part of F outside a
disk to a point gives a map F → S2, and there is a bundle ν over S2 with a
map T (η) → T (ν). The bundle ν is classified by an integer, its Euler class,
and it follows from the oriented result above that

[ T (ν), G/O ] =
{

Z if χ(ν) is odd
Z⊕ Z/2Z if χ(ν) is even ,

where the Z/2Z in case χ(ν) odd maps onto H2(T (ν);Z/2Z) = Z/2Z.
This implies Lemma 7 in general.

The remaining question concerning normal maps is whether LCAT (X;
rel h) is empty or not: homotopy theory says that the Spivak normal
bundle plus the lift over ∂X defines a map X/∂X → B(G/CAT ). In the
TOP case, [ X/∂X,B(G/TOP ) ] = H3(X, ∂X;Z/2Z). The class g3: BG →
B(G/TOP ) → K(Z/2Z, 3) was defined by Gitler and Stasheff, [37]. One
can show that g3 evaluates non–trivially on π3(BG) = Z/2Z. The gener-
ator of π3(BG) corresponds to the generator of the stable 2–stem, since
πk+1(BG) is isomorphic to the stable k–stem for all k. This in turn can be
understood via the Pontrjagin–Thom construction as a map from S4 to S2

with the inverse image of a point being T 2 with the “Lie group framing”.
Hambleton and Milgram, [40], construct a non–orientable Poincaré

space with g3 6= 0. Using the Levitt–Jones–Quinn Poincaré bordism se-
quence, [44, 4.5 p.90 ], one can analyze this situation in the oriented case
as well. One sees that g3 always vanishes in the closed, orientable 4–
dimensional case, as well as in the 3–dimensional case.
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§3. Surgery Theory.

The Quinn–Ranicki theory, [70], of the assembly map can be used to
decouple the surgery theory from the specifics of the Poincaré space X.
More precisely, this section defines groups which depend only on the fun-
damental group, the orientation, the fundamental groups of the boundary
and the image of the fundamental class of X in the homology of the funda-
mental group rel the fundamental group(s) of the boundary. One of these
groups will be a quotient of L5 and will act freely on the structure set so
that the quotient injects into the set of normal maps. Another acts freely
on the smooth structure set so that the orbit space injects into the topo-
logical structure set. Yet another gives a piece of the set of normal maps.
The results of Quinn and Ranicki are one of the major developments in
general surgery theory and provide the following description of the surgery
obstruction map.

A Poincaré space with a lift of its Spivak normal fibration to BTOP

acquires a fundamental class in a twisted, n–dimensional extraordinary
homology theory, L0. The theory L0 is a ring theory and there is a
theory, L〈1〉, so that [ X/∂X, G/TOP ] is the 0–th cohomology group for
L〈1〉–theory and ∩D is just the usual Poincaré duality isomorphism given
by cap product with the fundamental class, ∩[X]: [ X/∂X, G/TOP ] →
L〈1〉w1(X)

n (X). The map classifying the universal cover, u: X → Bπ in-
duces a map u∗:L〈1〉w1(X)

n (X) → L〈1〉w1
n (Bπ). There is a map A, the

assembly map,

Aπ1,w1 :L〈1〉w1
n (Bπ1) → L

s

n(Z[π1], w1) .

The composite α = Aπ1(X),w1(X) ◦ u∗ ◦ (∩[X]),

[X/∂X, G/TOP ]
∩[X]
−−−→ L〈1〉w1(X)

n (X)
u∗−−→ L〈1〉w1

n (Bπ)
A−→ L

s

n(Z[π1(X)], w1(X))

is related to surgery via the following formula: let x ∈ LCAT (X; rel h) be
a chosen basepoint; then for any η ∈ [ X/∂X,G/TOP ]

α(η) = θ(η • x)− θ(x) .

If X has the homotopy type of a manifold, x can be chosen so that θ(x) = 0
and in general this approach divides the problem into a homotopy part and
an algebraic part, Aπ,w1 . Since Aπ,w1 is a purely algebraic object, one can
attack its analysis via algebra or via topology by using known structure
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set calculations. As an example, the Poincaré conjecture for n ≥ 5 says
STOP (Sn) has one point and one sees that the assembly map for the trivial
group must be an isomorphism for this to work.

For analyzing the 4–dimensional case, we need to understand L〈1〉4
and L〈1〉5; the 3–dimensional case requires that we also understand L〈1〉3.
The Atiyah–Hirzebruch spectral sequence for L〈1〉∗ collapses for ∗ < 8
since all the differentials are odd torsion: hence, for any space Y and
w1 ∈ H1(Y ;Z/2Z),

L〈1〉w1∗ (Y ) = 0, ∗ ≤ 1 L〈1〉w1
3 (Y ) = H1(Y ;Z/2Z)

L〈1〉w1
2 (Y ) = H0(Y ;Z/2Z) L〈1〉w1

4 (Y ) = H0(Y ;Zw1)⊕H2(Y ;Z/2Z)

L〈1〉w1
5 (Y ) = H1(Y ;Zw1)⊕H3(Y ;Z/2Z)

Define Kn(π,w1) and Qn(π, w1) so as to make
(9)

0 → Kn(π,w1) → L〈1〉w1
n (Bπ)

Aπ,w1−−−−→ L
s

n(Z[π], w1) → Qn(π, w1) → 0

exact.
The sequences (9) for various n clearly only depend on π and w1. The

groups needed for calculating the stable structure sets, S̄CAT (X; rel h)
should have the L〈1〉w1

n (Bπ) replace by L〈1〉w1
n (X) using the map u∗. In

the 3–dimensional case, u∗ is an isomorphism; for the 4–dimensional case
u∗ is still an epimorphism. For the dimensions considered here, the 5–
dimensional case is only needed to compute the action of the L–group on
the structure set. We want to identify the quotient group of L

s

5 which acts
freely, but Q5 is usually too small. The map H1(X;Zw1) → H1(Bπ;Zw1)
is an isomorphism, but the map H3(X;Z/2Z) → H3(Bπ;Z/2Z) needs to
be analyzed. The boundary of X may have several components, each with
its own fundamental group: let ∪Bπ1(∂X) be notation for the disjoint
union of the classifying spaces for the fundamental groups of the various
components of the boundary. There is a class

DX ∈ H4(Bπ1(X),∪Bπ1(∂X);Z/2Z)

which is the image of the fundamental class of the Poincaré space. Cap
product with DX defines a homomorphism,

∩DX : H1(Bπ1(X),∪Bπ1(∂X);Z/2Z) → H3(Bπ1(X);Z/2Z)

which is the image of u∗. Let

L̄〈1〉w1
5 (Bπ) = H1(Bπ;Zw1)⊕H1(Bπ1(X),∪Bπ1(∂X);Z/2Z)
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and let L̄〈1〉w1
5 (Bπ) → L〈1〉w1

5 (Bπ) be the map which is the identity on H1

and ∩DX on H1. Let

Āπ,w1 : L̄〈1〉w1
5 (Bπ) → L〈1〉w1

5 (Bπ)
Aπ,w1−−−−→ L

s

5(Zπ,w1),

and define K̄5(π,w1, DX) and Q̄5(π, w1, DX) as the kernel and cokernel of
Āπ. w1 . Define

γ̄(π1(X), w1(X), DX) = H1(Bπ1(X);Z/2Z)/p1(K̄5(π1(X), w1(X), DX))

where

p1: H1(Bπ1(X);Zw1(X))⊕H1(Bπ1(X),∪Bπ1(∂X);Z/2Z)

→ H1(Bπ1(X);Z/2Z)

denotes the evident projection.
As we shall see, this γ̄ describes the difference between the TOP and

DIFF–structure sets. Define two pairs of groups depending only on π and
w1 so that

0 → K̂5(π, w1) → H1(Bπ;Zw1) → L
s

5(Zπ, w1) → Q̂5(π, w1) → 0

is exact and define γ̂(π, w1) = H1(Bπ1(X);Z/2Z)/p1(K̂5(π1(X), w1(X)))
and γ(π, w1) = H1(Bπ1(X);Z/2Z)/p1(K5(π1(X), w1(X))).

Proposition 10. There are epimorphisms γ̂ → γ̄ → γ and Q̂5 → Q̄5 →
Q5.

1. If L
s

1(Zπ, w1) = 0, then Q̂5 = Q̄5 = Q5 = 0 and

γ̂ = γ̄ = γ =
{

0 if w1 is trivial
Z/2Z otherwise

2. If H3(Bπ;Z/2Z) = 0, or if DX = 0, or if

H1(Bπ1(X),∪Bπ1(∂X);Z/2Z) = 0,

or if L
s

1(Zπ,w1) has no 2–torsion, then Q̂5 → Q̄5 and γ̂ → γ̄ are

isomorphisms.

Two of the big conjectures in surgery theory have direct implications
here. The Novikov conjecture says that the Aπ,w1 are injective after ten-
soring with Q. The Borel conjecture implies that, if Bπ is a finite Poincaré
complex, then Aπ,w1 is split injective. Both of these conjectures are known
to be true in many examples.
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Here is a table of some sample calculations. In all cases of Table

11, Proposition 10 applies: moreover, the Whitehead group vanishes and

K2 = 0 for all the listed groups: Q2 = 0 for all the listed groups except

Z ⊕ Z. The displayed calculations are drawn from many sources.� feg Z=2 Z=2 Z Z Z=2� Z Z� Zw1 0 iso: 0 0 epi: 0 0L0(Z�;w1) Z Z=2 Z� Z Z Z=2 Z� Z� Z=2 Z� Z=2L1(Z�;w1) 0 0 0 Z 0 Z� Z Z� ZL2(Z�;w1) Z=2 Z=2 Z=2 Z=2 Z=2 Z=2 Z� Z=2L3(Z�;w1) 0 0 Z=2 Z=2 Z=2 Z=2� Z=2 Z=2� Z=2Lh1iw14 (B�) Z Z=2� Z=2 Z� Z=2 Z Z=2 Z� Z=2� Z=2 Z� Z=2H1(B�;Zw1 ) 0 0 Z=2 Z 0 Z� Z=2 Z� ZLh1iw13 (B�) 0 Z=2 Z=2 Z=2 Z=2 Z=2� Z=2 Z=2� Z=2K4 0 Z=2 Z=2 0 0 Z=2 0Q4 0 0 Z 0 0 Z 0K3 0 Z=2 0 0 0 0 0Q3 0 0 0 0 0 0 0
̂ 0 Z=2 0 Z=2 Z=2 Z=2 Z=2� Z=2Q̂5 0 0 0 0 0 Z 0

1

Table 11: Sample calculations

There are some results of a general nature which follow from natu-

rality and the above calculations. If w1 is trivial, K4 is a subgroup of

H2(Bπ;Z/2Z) and K2 = K3 = 0. If w1 is non–trivial, K4 is at most

H2(Bπ;Z/2Z)⊕Z/2Z and K2 = 0. More calculations for finite groups can

be deduced from [43].

§4. Computation of Stable Structure Sets.

The stable TOP–structure sets can now be “computed”. First of all

there is nothing to do if LTOP (X ; rel h) = ∅ so assume it is non–empty (as

it always is in the 3–dimensional and the orientable 4–dimensional cases)

and let

θ̂:LTOP (X ; rel h)
θ

−→ L
s

n(Z[π1(X)], w1(X)) → Qn(π1(X), w1(X)) .

By the surgery theory in the last section, the image of θ̂ is a single point,

denoted θ̂(X, rel h).

Theorem 12: TOP–structures for n = 4 . S̄TOP (X ; rel h) 6= ∅ if and

only if θ̂(X, rel h) is the 0 element in Q4. If the stable structure set is non–

empty, Q̄5(π1(X), w1(X), DX) acts freely on it. Choose a base point ∗ in
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it. Then NN(∗): S̄TOP (X; rel h) → [X/∂X; G/TOP ] induces a bijection

between the orbit space and the subgroup of H2(X;Z/2Z) which maps

onto K4(π1(X), w1(X)) ⊂ H2(Bπ1(X);Z/2Z).

Remark: If π1(X) is trivial, NN(∗) identifies S̄TOP (X; rel h) with H2(X;
Z/2Z). In Corollary 20 below, it is shown that although the structure set
can be large there is always just one or two distinct manifolds in it.

The 3–dimensional case is even easier.

Theorem 13: TOP–structures for n = 3 . S̄TOP (X; rel h) 6= ∅ if

and only if θ̂(X, rel h) is the 0 element in Q3. If the stable structure set

is non–empty, Q4(π1(X), w1(X)) acts freely on it. Choose a base point

∗ in it. Then NN(∗) induces a bijection between the orbit space and

K3(π1(X), w1(X)).

To analyze the stable smooth structure set, we need good criteria to
see if it is non–empty. Assuming S̄TOP (X; rel h) 6= ∅, the stable smooth-
ing obstruction is a function k: S̄TOP (X; rel h) → H4(X, ∂X;Z/2Z) and
S̄DIFF (X; rel h) 6= ∅ if and only if k−1(0) 6= ∅ (see Theorem 5). In partic-
ular, it is non–empty in the 3–dimensional case. In the simply connected,
4–dimensional, case, Freedman, [30], argues that k is constant if and only if
X is Spin, and he constructs examples where the constant is 0 and others
where the constant is 1. In the non–simply connected case, v2(X) = 0
still implies k constant, but life is more complicated when v2(X) 6= 0. To
describe the situation, let X̃ → X denote the universal cover. If X̃ is not
Spin, then k is not constant. If X̃ is Spin, then there exists a unique
class v ∈ H2(Bπ1(X);Z/2Z) such that u∗(v) = v2(X) under the map
u: X → Bπ1(X) which classifies the universal cover. Evaluation yields a
map ∩v:H2(Bπ1(X);Z/2Z) → Z/2Z.

Lemma 14. k is constant if and only if X̃ is Spin andK4(π1(X), w1(X)) ⊂
ker(∩v).

Remark: If π is finitely presented, any classes w ∈ H1(Bπ,Z/2Z) and
v ∈ H2(Bπ;Z/2Z) can be w1 and v2 for a manifold with universal cover
Spin. Hence, as soon as K4(π, w1) 6= H2(Bπ;Z/2Z), there are examples
of manifolds with constant k for which v2 6= 0. From Table 11, Z ⊕ Z
is such a group. For an explicit example, recall CP 2#C̄P

2 → S2 is a 2–
sphere bundle with w2 6= 0. Pull this bundle back over the degree one map
T 2 → S2 and let M4 denote the total space. Then M̃ is Spin, but M is
not: nevertheless, k is constant.

Theorem 15: DIFF–structures for n = 4 . If k−1(0) ⊂ S̄TOP (X; rel h)
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is non–empty, S̄DIFF (X; rel h) 6= ∅. The group γ̄(π1(X), w1(X), DX) acts

freely on S̄DIFF (X; rel h); the orbit space is the subset k−1(0).

Theorem 16: DIFF–structures for n = 3 . If S̄TOP (X; rel h) is non–

empty, then ρ: S̄DIFF (X; rel h) → S̄TOP (X; rel h) is onto. If w1(X)2 = 0,

ρ is 2 to 1; if w1(X)2 6= 0, ρ is a bijection.

Remark: By Poincaré duality,

H1(Bπ1(X);Z/2Z) = H1(X;Z/2Z) = H3(X, ∂X;Z/2Z),

so the action of γ̄ gives an action of H3(X, ∂X;Z/2Z) on S̄DIFF (X; rel h)
which is the Kirby and Siebenmann action as extended by Lashof and
Shaneson to dimension 4. In dimension 3, Z/2Z acts on S̄DIFF (X; rel h)
by forming the connected sum with the Poincaré sphere. If w1(X)2 6= 0,
this action is trivial, otherwise it is free.

The proofs of these results are fairly straightforward. The TOP–results
follow from the sequence (3) for TOP and the results from §5. The DIFF–
results follow from comparing the sequences (3) for DIFF and TOP using
the Kirby and Siebenmann action of [X/∂X, TOP/O ] on both the normal
maps and the structure sets Theorem 16 needs an additional remark. The
outline above shows that a quotient of H0(Bπ1;Z/2Z) acts freely on the
3–dimensional structure set and this quotient can be compared with the
quotient for fundamental group with Z/2Z and w1 non–trivial.

§5. A Construction of Novikov, Cochran and Habegger.

As we have seen above, the stable structure set in the simply connected
case, while finite, can be arbitrarily large. However, Freedman, [30], says
that there are either one or two manifolds in each homotopy type. The
resolution of this conundrum is the following.

Let HE
+
(X; rel ∂X) denote the group of degree one, simple homotopy

automorphisms of X, `: (X, ∂X) → (X, ∂X), with `|∂X = 1∂X . Let ` act
on f : (M, L) → (X, ∂X) ∈ SCAT (X; rel h) via composition:

` • f : (M,L)
f−→ (X, ∂X)

`−→ (X, ∂X) .

This group, HE
+
(X; rel ∂X), acts on the stable structure sets, and even on

each of the rS̃CAT (X; rel h), as follows. If ` ∈ HE
+
(X; rel ∂X), there is a

well–defined element in HE
+
(X#rS2×S2; rel ∂X), `#id: X#r(S2×S2) →

X#r(S2×S2) and we let ` act on f :M → X#r(S2×S2) in rS̃CAT (X; rel h)

as the composite ` • f : M
f−→ X#r(S2 × S2)

`#rid−−−−→ X#r(S2 × S2). The
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maps rS̃CAT (X; rel h) → r+1S̃CAT (X; rel h) and the maps from the DIFF
to the TOP structure sets are equivariant with respect to these actions, so
there are also actions on the stable structure sets.

The set of CAT–manifolds homotopy equivalent to X, rel h, is just
the orbit space of this action. The action preserves the stable triangulation
obstruction, so there is a set map

k:STOP (X; rel h)/HE
+
(X; rel ∂X) → Z/2Z

and Freedman’s classification follows from Corollary 20 below that k is
injective in the simply connected case plus the discussion of the image of
k in Lemma 14 above. Check that the embedding of HE

+
(X; rel ∂X) in

HE
+
(X#S2 × S2; rel ∂X) defined by ` 7→ `#1S2×S2 defines an action of

HE
+
(X; rel ∂X) on S̄CAT (X; rel h). Theorems 19 and 21 below give a

partial calculation of S̄CAT (X; rel h)/HE
+
(X; rel ∂X).

Let X be a CAT–manifold and use the identity as a base point in
SCAT (X; rel h). Brumfiel, [9], shows that, in [X/∂X, G/CAT ],

(17) NN1X
(` • f) = NN1X

(`) + (`−1)∗
(
NN1X

(f)
)

.

A similar formula holds for the action on the stable structure sets. Observe
that any ` ∈ HE

+
(X; rel ∂X) preserves w1(X) and so induces an automor-

phism of the Wall group L
s

n(Z[π1(X)], w1(X)). One can check that with
these definitions the sequences (3) are HE

+
(X; rel ∂X) equivariant.

There is a construction due to Novikov, [66], with the details finally
worked out by Cochran and Habegger, [19]. Given any α ∈ π2(X), let `α

denote the following composite

X → X ∨ S4
1X∨η2

−−−−→ X ∨ S2
1X∨α−−−−→ X

where η2 ∈ π4(S2) = Z/2Z denotes the non–trivial element and the map
X → X ∨S4 just pinches the boundary of a disk in the top cell to a point.

One point of Cochran and Habegger’s paper is to compute the normal
invariant of `α. This result requires no fundamental group hypotheses and
yields:

Theorem 18.
N1X

(`α) = (1 + 〈v2(X), α〉)ᾱ
where ᾱ ∈ [ X/∂X, G/TOP ] denotes the image of α in H2(X;Z/2Z) ⊂
[ X/∂X, G/TOP ] and 〈v2(X), α〉 ∈ Z/2Z denotes the evaluation of the

cohomology class on the homotopy class.
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Remarks: Since `α can be checked to induce the identity on [X/∂X,
G/CAT ], this formula and (17) determine the action of `α on the TOP–
normal maps. If X is oriented, the DIFF–normal maps are a subset of
the TOP ones, so this formula determines the action on the DIFF–normal
maps as well. In the non–orientable case, there is a Z/2Z in the kernel of
the map from the DIFF–normal maps to the TOP ones and the Novikov–
Cochran–Habegger formula does not determine the normal invariant.

Let HE
+

1 (X; rel ∂x) denote the subgroup of HE
+
(X; rel ∂X) generated

by the `α.

Theorem 19.

S̄TOP (X; rel h)/HE
+

1 (X; rel ∂X)
N−→

{
K4(π1(X), w1(X)) if v2(X̃) = 0
K4(π1(X), w1(X))⊕ Z/2Z if v2(X̃) 6= 0

is onto. In the second case, the stable triangulation obstruction is onto

the Z/2Z: in the first case, k may or may not be constant as discussed

in Lemma 14 above. Moreover Q̄5(π1(X), w1(X), DX) acts transitively on

the orbits of this map.

Remark: Theorem 19 shows that except for a Z/2Z related to stable
triangulation, there is an upper bound for S̄TOP (X; rel h)/HE

+

1 (X; rel ∂X)
which depends only on “fundamental group data”.

Corollary 20. Suppose that Q̄5(π1(X), w1(X), DX) = 0 and K4(π1(X),
w1(X)) = 0. Then the set

S̄TOP (X; rel h)/HE
+
(X; rel ∂X) = S̄TOP (X; rel h)/HE

+

1 (X; rel ∂X)

has one element if X̃ is Spin, and two elements with different triangulation

obstructions if it is not. Any simple homotopy equivalence f is homotopic

to the composition of a homeomorphism and an element in HE
+

1 .

Notice that the action of γ̄ on S̄DIFF preserves the HE
+

1 orbits, so

Theorem 21. The group γ̄ acts on S̄DIFF (X; rel h)/HE
+

1 (X; rel ∂X) and

the orbit space injects into S̄TOP (X; rel h)/HE
+

1 (X; rel ∂X).

The action by the full group, HE
+
, is more subtle and often involves

the homotopy of X, not just “fundamental group data”. Let X be a TOP–
manifold and define

HE
+

0 (X; rel ∂X) = {` ∈ HE
+
(X; rel ∂X) |NN(1X)(`) = 0 and `∗ = 1π1(X)} .
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It follows from Brumfiel’s formula (17) that HE
+

0 is a subgroup of HE
+
. Let

HE
+

% denote the subgroup of HE
+

generated by HE
+

1 and HE
+

0 . Theorems
19 and 21 continue to hold with HE

+

% replacing HE
+

1 . The actual homotopy
type of X can be seen to effect S̄CAT (X; rel h)/HE

+

%(X; rel ∂) via the
following observation. The evident map S̄CAT (X; rel h) → S̄CAT (X#S2×
S2; rel h) induces a map

ιX : S̄CAT (X; rel h)/HE
+

%(X; rel ∂)

→ S̄CAT (X#S2 × S2; rel h)/HE
+

%(X#S2 × S2; rel ∂).

Let WSECAT (X; rel h) denote the limit of the maps

ιX , ιX#S2×S2 , · · · , ιX#rS2×S2 , · · · .

Theorem 22. The evident quotient of the normal map,

WSETOP (X; rel h)
N−→

{
K4(π1(X), w1(X)) if v2(X̃) = 0
K4(π1(X), w1(X))⊕ Z/2Z if v2(X̃) 6= 0

is a bijection. If k−1(0) 6= ∅, then WSEDIFF (X; rel h) → k−1(0) is a

bijection.

Remarks: The stable triangulation obstruction is onto the Z/2Z if v2(X̃) 6=
0: otherwise, k may or may not be constant as discussed in Lemma 14
above. Note that K4 is always a Z/2Z vector space of dimension at most
H2(Bπ;Z/2Z) ⊕ Z/2Z, and hence finite. If Q̂5(π1(X), w1(X)) is finitely
generated, then there exists an r such that

S̄CAT (X#rS2×S2; rel h)/HE
+

%(X#rS2×S2; rel ∂X) → WSECAT (X; rel h)

is a bijection.

§6. Examples.

Here are some calculations for some specific manifolds. The quoted
values of Q̄5, K4 and γ̄ can be obtained from Table 11, after noting Propo-
sition 10 applies so Q̄5 = Q̂5 and γ̄ = γ̂.
Example: RP 4. Here π = Z/2Z and w1 is an isomorphism. Then Q̄5 =
0, K4 = Z/2Z and γ̄ = Z/2Z. For the normal maps, [RP 4, G/TOP ] =
Z/2Z⊕Z/2Z; [ RP 4, G/O ] = Z/4Z and it is a useful exercise to understand
how the DIFF and TOP versions of sequence (3) work in this case without
relying on the general theory.
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Hence S̄TOP (RP 4) = Z/2Z and k is a bijection. The non–triangulable
example was constructed by Ruberman, [72], using only Freedman’s simply
connected results. In the smooth case, S̄DIFF (RP 4) = Z/2Z as well, but
the map from the smooth to the topological sets takes both elements of the
smooth set to one element in the topological set. Cappell and Shaneson,
[12], constructed an element in SDIFF (RP 4) which hits the “other element”
in S̄DIFF (RP 4).

Example: S3 × S1. Here π = Z and w1 trivial. Then Q̄5 = 0, K4 = 0
and γ̄ = Z/2Z.

It follows that S̄TOP (S3 × S1) is one point and S̄DIFF (S3 × S1) is
two points. The “other element” in S̄DIFF (S3 × S1) was constructed in
1S̃CAT (S3×S1) by Scharlemann, [74]. It is an open question as to whether
this element is in the image from SDIFF (S3 × S1).

Example: S3×̃S1. Here π = Z and w1 non–trivial. Then K4 = 0,
Q̄5 = 0 and γ̄ = Z/2Z.

Hence S̄TOP (S3×̃S1) consists of one point, while S̄DIFF (S3×̃S1) con-
sists of two points, distinguished by the smooth normal invariant. In this
case, Akbulut, [1], constructed the “other element” in 1S̃DIFF (S3×̃S1).

Remark: If one could find a manifold to show ψDIFF were onto for
S3×̃S1, Lashof and Taylor, [57], observed that γ̄ would act freely on
SDIFF (X; rel h) as soon as this structure set is non–empty. It does act
freely on

SDIFF (X#S2 × S2; rel h).

Cappell and Shaneson’s work [12] shows that γ̄ acts freely on SDIFF (X; rel h)
if π1(X) = Z/2Z and w1 is non–trivial.

Example: RP 3 × S1. Here π = Z/2Z × Z and w1 is trivial. Then
K4 = Z/2Z⊕ Z/2Z, Q̄5 = Z and γ̄ = Z/2Z.

The manifold RP 3×S1 is Spin, so S̄DIFF (RP 3×S1) → S̄TOP (RP 3×
S1) is onto. There are two elements in S̄DIFF (RP 3×S1) over each element
of S̄TOP (RP 3 × S1). Each orbit of the Wall group has countable many
elements falling into 4 orbits, distinguished by the normal invariant. For
some r, S̄CAT (RP 3 × S1#rS2 × S2)/HE

+
(RP 3 × S1#rS2 × S2) contains

at most 4 elements.

§7. The Topological Case in General.

In a series of papers, Freedman, [30], [31], [32], showed that the high
dimensional theory of surgery and the high dimensional s–cobordism the-
orem hold in the TOP–category in dimension 4 for certain fundamental
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groups. As of this writing, there are no known failures of either surgery
theory or the s–cobordism theorem in the TOP–category in dimension 4.

We say CAT–surgery works in dimension n for fundamental group π,
provided that, for any n–dimensional Poincaré space X with fundamental
group π, the map

ψCAT :SCAT (X; rel h) → S̄CAT (X; rel h)

is a surjection; we say the CAT–s–cobordism works in dimension n for

fundamental group π, provided that, for any n–dimensional Poincaré space
X with fundamental group π, the map

ψCAT :SCAT (X; rel h) → S̄CAT (X; rel h)

is an injection.
The first of Freedman’s theorems is

Theorem. TOP–surgery and the TOP–s–cobordism theorem work in di-

mension 4 for trivial fundamental group.

It took some work to get to this statement. Freedman began with the
simply connected, smooth case, building on work of Casson, [14]. By show-
ing that Casson handles were topologically standard, Freedman showed
that surgery theory and the h–cobordism theorem held topologically for
simply connected, smooth manifolds.

Quinn melded these results with his controlled results to prove

πi(TOP (4)/O(4)) = 0, i = 0, 1, 2;

i = 0 is the annulus conjecture in dimension 4. Lashof and Taylor, [57],
showed π3(TOP (4)/O(4)) = Z/2Z and reproved Quinn’s result for i = 2.
Finally, Quinn, [68], showed π4(TOP (4)/O(4)) = 0, thus computing the
last of the “geometrically interesting” homotopy groups. Using these re-
sults, Quinn, [32], then went on to show that transversality works inside
of topological 4–manifolds. Freedman had already completed a program
of Scharlemann, [73], by showing that transversality worked in other di-
mensions when the expected dimension of the result was 4. After this, the
standard geometric tools were available in dimension 4 and TOP–surgery
and the TOP–s–cobordism theorem now worked for trivial fundamental
group.

Freedman, [31], then introduced capped–grope theory which he used
to extend the fundamental groups for which TOP–surgery theory and the
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TOP–s–cobordism theorem work. There is a nice general result, explained
in [34]. Following that exposition, we say that a group, π, is NDL, for Null

Disk Lemma, provided that, for any height 2 capped grope, G, and any
homomorphism, ψ: π1(G) → π, we can find an immersed core disk, so that
all the double point loops map to 0 under ψ.

Theorem 23. If π is an NDL group, then TOP–surgery and the TOP–s–

cobordism theorem work in dimension 4 for π.

Freedman and Teichner, [34], check that any extension of an NDL
group by another NDL group is itself NDL, and they check that a direct
limit of NDL groups is NDL. Transparently, subgroups of NDL groups are
NDL, and, since π1(G) is a free group, quotients of NDL groups are NDL.
Hence subquotients of NDL groups are NDL and a group is NDL if and
only if all its finitely–generated subgroups are. Finally, the main result of
[34], is

Theorem 24. Groups of subexponential growth are NDL.

It is possible that all groups are NDL. Since any finitely–generated
group is a subquotient of the free group on 2 generators, all groups are NDL
if and only if the free group on 2 generators is. An equivalent formulation,
which might make the result seem less likely, is that all groups are NDL if
and only if each height 2 capped grope has an immersed core disk with all
double point loops null homotopic.

Among the groups satisfying NDL are the finite groups, Z, Q and
nilpotent groups. There do exist nilpotent groups of exponential growth
[47, Problem 4.6 ].

Free groups on more than one generator are not known to be NDL and
this causes a great many other geometrically interesting groups to be on
the unknown list. Surface groups for genus 2 or more are examples of such
groups. The free product of two groups, neither of which is trivial, is either
Z/2Z∗Z/2Z = Z×Z/2Z (and is NDL) or has a free subgroup of rank 2 (and
is not known to be NDL). Hence the fundamental groups of most connected
sums of 3–manifolds are not known to be NDL. Among the irreducible 3–
manifolds, many are hyperbolic by Thurston, [82], and many of these have
incompressible surfaces: the fundamental groups of such manifolds are not
known to be NDL. Even if some group fails to be NDL, it is not clear
that TOP–surgery must therefore fail for it. In Freedman and Quinn [32]
there is a different condition whose truth would yield surgery and the s–
cobordism theorem. It is possible that this condition could yield results
even if the Null Disk Lemma were to fail. Quinn [69] has a nice discussion
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of the current state of affairs regarding the groups for which surgery and/or
the s–cobordism theorem works.

In dimension 3, TOP–surgery sometimes holds for trivial reasons: for
fundamental group trivial, Z (with either w1) or groups satisfying the
Borel conjecture (which is conjectured to hold for all irreducible 3–manifold
groups), the stable TOP structure set is trivial and so TOP–surgery holds.
For non–trivial, finite fundamental group, TOP–surgery fails for closed
manifolds. As an example S̄TOP (RP 3) = Z but Casson, [3], shows that
ψTOP :STOP (RP 3) → S̄TOP (RP 3) cannot hit an element of odd order
since the double cover of any such element would be a homotopy 3–sphere
of Rochlin invariant 1. This line of argument works for any other finite fun-
damental group. The DIFF–case is even worse since S̄DIFF (S3) = Z/2Z
and the result of Casson’s used above also shows that ψDIFF is not onto.

To say that the s–cobordism theorem holds in dimension 3 is a bit
of a misnomer. If TOP–surgery works for π1(X), then two elements in
STOP (X; rel h) which hit the same element in S̄TOP (X; rel h) differ by an
s–cobordism. However, as we saw above, we do not know whether TOP–
surgery holds for many 3–manifold groups and hence we do not usually
know that there is an s–cobordism between the two elements. Still, we
retain the terminology despite its drawbacks.

For π trivial, the s–cobordism theorem holds in dimension 3 if and
only if the Poincaré conjecture holds. In general, the s–cobordism fails in
the strict sense that there are 4–dimensional TOP–s–cobordisms which are
not products. The first such examples are due to Cappell and Shaneson,
[13], with a much larger collection of examples worked out by Kwasik and
Schultz, [55]. Surprisingly, there are no counterexamples known to us of the
smooth s–cobordism theorem failing in dimension 4, but this is probably
due to our inability to construct smooth s–cobordisms.

It may be worth remarking that two 4–dimensional results from the
past now can be pushed down one dimension. Barden’s old observation
that an h–cobordism from S4 to itself is a smooth product can be made
again to observe any h–cobordism from S3 to itself is a topological product.
Thomas’s techniques, [80], can be applied to show that any 4–dimensional
s–cobordism with NDL fundamental group is invertible.

There has been a great deal of work using Freedman’s ideas to at-
tack old problems in four manifolds. A complete survey of such results
would require more than our allotted space. Here are some examples which
have lead to further work. Hambleton, Kreck and Teichner classify non–
orientable 4–manifolds with fundamental group Z/2Z, [42]. Hambleton and
Kreck also classify orientable 4–manifolds with fundamental group Z/NZ,
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[41], as the start of a general program to extend Freedman’s simply con-
nected classification to manifolds with finite fundamental group. Kreck’s
reformulation of surgery theory works very well here, [51].

Lee and Wilczynski, [59], have largely solved the problem of finding
a minimal genus surface representing a 2–dimensional homology class in a
simply connected 4-manifold. Askitas [4] and [5] considers some cases of
trying to represent several homology classes at once.

The slicing of knots and links is an active area as well. The first results
here were negative. Casson and Gordon’s examples [15] [16] of algebraically
slice knots that were not slice showed that there does not exist enough
embedding theory in dimension four to do Γ–group surgery in the style of
Cappell and Shaneson [11].

One of Freedman’s striking results [31] is that knots of Alexander poly-
nomial 1 are topologically slice. Casson and Freedman [17] found links
which would be slice if and only if surgery theory worked in dimension 4
for all groups.

On the other hand, it was known in the 1970’s to Casson (and others?)
that in a smooth 4-manifold M with no 1-handles, the only obstruction to
representing a characteristic class of square one by a PL embedded 2-sphere
with one singularity with link a knot of Alexander polynomial one, was the
Arf invariant of the knot (that is, σM ≡ 1 mod 16). Once Donaldson
showed that non-diagonal definite forms were not realized by smooth 4-
manifolds, then in CP 2 blown up at 16 points, any characteristic class of
square 1 cannot be represented by a smoothly embedded 2-sphere. Hence
there must be an Alexander polynomial one knot which is not smoothly
slice in a homology 4-ball. (See Problem 1.37, page 61 in [47])

§8. The Smooth Case in Dimension 4.

Shortly after Freedman’s breakthrough in 1981, Donaldson made spec-
tacular progress in the smooth case. We soon learned that neither DIFF–
surgery nor the DIFF–s–cobordism theorem holds, even for simply con-
nected smooth manifolds. In the next fifteen years, we learned a great deal
more, but the overall situation has only become more complex from the
point of view of surgery theory.

Existence: Donaldson’s first big theorem, [22], severely limited the forms
which could be the intersection form of a smooth, simply connected 4-
manifold. Any form can be stably realized and as soon as the form is
indefinite, they are completely classified. In the Spin case, the forms are
2mE8⊕rH2 where E8 is the famous definite even form of signature 8 and H2

is the dimension 2 hyperbolic. Donaldson, [23], proved that if m = 1, then
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r ≥ 3, and there is a conjecture, the 11/8–th’s conjecture (b2/|σ| ≥ 11/8),
which says that r ≥ 3m in general. At this time Furuta, [36], has proved
the 10/8–th’s conjecture, which says that r ≥ 2m. See [47], Problems 4.92
and 4.93. In particular, there exists a simply connected, TOP manifold,
M2mE8 with form 2mE8; from Theorem 15, S̄DIFF (M2mE8) = 16m(Z/2Z),
but rS̃DIFF (M2mE8) = ∅ for r < 2m. In the simply connected case, we
also know that, for each integer r ≥ 0, either rS̃DIFF (M) = ∅ or else
ψr

DIFF : rS̃DIFF (M) → S̄DIFF (M) is onto.
Scharlemann, [74], showed ψ1

DIFF : 1S̃DIFF (S3 × S1) → S̄DIFF (S3 ×
S1) = Z/2Z is onto: SDIFF (S3 × S1) is certainly non–empty, but as of
this writing, ψDIFF is not known to be onto. Wall, [85, §16 ], shows all
homotopy equivalences are homotopic to diffeomorphisms, so HE

+
(S3 ×

S1) acts trivially on the smooth structure set. Interestingly, a folk result
of R. Lee, [10], says that HE

+
(S3 × S1#S2 × S2) acts transitively on

1S̃DIFF (S3 × S1).
The above gives many examples of simply connected smooth mani-

folds which topologically decompose as connected sums, but have no cor-
responding smooth decomposition. Works of Freedman and Taylor, [33],
and Stong, [76], show that one can still mimic this decomposition by de-
composing along homology 3–spheres into simply connected pieces.

Uniqueness: Donaldson, [24], also proved that the h–cobordism theo-
rem fails for smooth, 5–dimensional, simply connected h–cobordisms. Note
however that a smooth h-cobordism between simply connected 4-manifolds
is unique up to diffeomorphism, [49]. There is another classification the-
orem of simply connected h–cobordism due to Curtis, Freedman, Hsiang
and Stong, [20], in terms of Akbulut’s corks, [46], [2], [63].

We know of no case in which ψDIFF is not ∞–to–one and we know
of no case where all the elements in SDIFF (M) have been described. The
smooth Poincaré conjecture, unresolved at the time of this writing, says
SDIFF (S4) has one element. The uniqueness result for R4 is known to
fail spectacularly, [38], [21]. In contrast to the existence question, where
we know examples for which we need arbitrarily many S2 × S2’s before a
particular stable element exists, for all we know, rS̃DIFF (M) → S̄DIFF (M)
and rS̃DIFF (M) → r+1S̃DIFF (M) have the same image. Some works of
Mandelbaum and Moishezon, [62], and Gompf, [39], give many examples
in which this one–fold stabilization suffices.

It follows from Cochran and Habegger, [19], that the group of homo-
topy automorphisms of a closed, simply connected 4–manifold, M , is the
semidirect product of the Novikov maps, HE

+

1 (M), and the automorphisms
of H2(M ;Z) which preserve the intersection form. Moreover, Cochran
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and Habegger show that all the non–trivial elements of HE
+

1 (M) are de-
tected by normal invariants and so are not homotopic to homeomorphisms.
Now it follows, as observed by Freedman, [30], that the automorphisms of
H2(M ;Z) which preserve the intersection form are realized by homeomor-
phisms, unique up to homotopy. Further work by Quinn, [68], shows that
they are in fact unique up to isotopy.

When M is also smooth and of the form P#S2 × S2, Wall, [83], and
Freedman and Quinn, [32], showed that any homeomorphism is isotopic
to a diffeomorphism. But when M is not of the form P#S2 × S2, then
there are often severe restrictions on realizing a homotopy equivalence by
a diffeomorphism due to the existence of basic classes in H2(M,Z). These
classes were defined for Donaldson theory by Kronheimer and Mrowka,
[52], [53]. Conjecturally equivalent basic classes were also defined using
Seiberg-Witten invariants, [86], and these classes were shown to be equiv-
alent by Taubes, [78], to classes defined via Gromov’s pseudoholomorphic
curves. Although the set of basic classes can be as simple as the zero
class in H2(M,Z) for the K3 surface, the classes can be as complicated as
Alexander polynomials are, [29]. The isometry induced on H2(M ;Z) by a
diffeomorphism must take each basic class to ±( a, possibly different, basic
class).

There can be further restrictions, beyond those determined by the
basic classes, to realizing homotopy equivalences by diffeomorphisms. For
example, any K3 surface has additional restrictions, see [25, Corollary 9.14,
p.345 ]. The homeomorphism of K3 which is the identity except on an
S2 × S2 summand and is antipodal × antipodal on the S2 × S2 summand
cannot be realized by a diffeomorphism. However, it follows from [35], that
a subgroup of finite index in the group of isometries of the intersection form
of K3 is realized by diffeomorphisms.

As of this writing, work in the smooth case is continuing at a feverish
pace and is hardly ripe for a survey. For many smooth manifolds we now
know the minimal genus smooth embeddings representing any homology
class; see Kuga [54], Li and Li [60][61], Kronheimer and Mrowka [52], and
Morgan, Szabó and Taubes [65]. Some work on simultaneous representa-
tion of several classes in the smooth case is in [4]. The xxx Mathematics
Archive at Los–Alamos (see http://front.math.ucdavis.edu/ ) is a use-
ful resource for those wishing to remain current.
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Problems in 4-dimensional topology

Frank Quinn

Introduction

The early 1980’s saw enormous progress in understanding 4-manifolds:
the topological Poincaré and annulus conjectures were proved, many cases
of surgery and the s-cobordism theorem were settled, and Donaldson’s work
showed that smooth structures are stranger than anyone had imagined. Big
gaps remained: topological surgery and s-cobordisms with arbitrary fun-
damental group, and general classification results for smooth structures.
Since then the topological work has been refined and applied, but the big
problems are still unsettled. Gauge theory has flowered, but has had more
to say about geometric structures (esp. complex or symplectic) than ba-
sic smooth structures. So on the foundational questions not much has
happened in the last fifteen years. We might hope that this has been a
period of consolidation, providing foundations for the next generation of
breakthroughs.

Kirby has recently completed a massive review of low-dimensional prob-
lems [Kirby]. Here the focus is on a shorter list of “tool” questions, whose
solution could unify and clarify the situation. These are mostly well-known,
and are repeated here mainly to give a context for comments and status
reports. We warn that these formulations are implicitly biased toward pos-
itive solutions. In other dimensions when tool questions turn out to be
false they still frequently lead to satisfactory solutions of the original prob-
lems in terms of obstructions (eg. surgery obstructions, Whitehead torsion,
characteristic classes, etc). In contrast, failures in dimension four tend to
be indirect inferences, and study of the failure leads nowhere. For instance
the failure of the disk embedding conjecture in the smooth category was
inferred from Donaldson’s nonexistence theorems for smooth manifolds.
Some direct information about disks is now available, eg. [Kr], but it does
not particularly illuminate the situation.

Topics discussed are: in section 1, embeddings of 2-disks and 2-spheres
needed for surgery and s-cobordisms of 4-manifolds. Section 2 describes
uniqueness questions for these, arising from the study of isotopies. Sec-
tion 3 concerns handlebody structures on 4-manifolds. Section 4 concerns
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invariants. Finally section 5 poses a triangulation problem for certain low-
dimensional stratified spaces.

I would like to expand on the dedication of this paper to C. T. C. Wall.
When I joined the mathematical community in the late 1960s the develop-
ment of higher-dimensional topology was in full swing. Surgery was hot:
“everybody” seemed to be studying Wall’s monograph [W1], the solution
of the Hauptvermutung was just around the corner, and the new methods
were revolutionizing the study of transformation groups. However little or
none of it applied to low dimensions. Few people seemed to be bothered by
excluding dimensions below 5, 6 or 7, and in some quarters there was even
disdain for them as an old-fashioned distraction from the “big picture.”
Wall, in contrast, systematically explored low-dimensional consequences of
each new technique. His work, for instance the stable 5-dimensional s-
cobordism theorem, or the results on diffeomorphisms of connected sums,
exposed the key problems and showed progress was possible. This made a
lasting impression on the students then studying high-dimensional topol-
ogy, and prepared us for our later focus on low dimensions. Without Wall
we might very well still be wondering about the 4-dimensional Poincaré
conjecture.

An early version of this paper appeared in the proceedings of the In-
ternational Conference on Surgery and Controlled Topology, held at Josai
University in September 1996 [Q5].

1: 2-disks and spheres in 4-manifolds

The target results here are surgery and the s-cobordism theorem. In
general these are reduced, via handlebody theory, to questions about disks
and spheres in the middle dimension of the ambient manifold. Two n-
dimensional submanifolds of a manifold of dimension 2n will usually in-
tersect themselves and each other in isolated points. The “Whitney trick”
uses an isotopy across an embedded 2-disk to simplify these intersections.
Roughly speaking this reduces the study of n-dimensional embeddings to
embeddings of 2-disks. But this is not a reduction when the dimension is
4: the 2-disks themselves are middle-dimensional, so trying to embed them
encounters exactly the same problems they are supposed to solve. This
is the phenomenon that separates dimension 4 from others. The central
conjecture is that some embeddings exist in spite of this problem.

1.1 Disk conjecture. Suppose A is an immersion of a 2-disk into a 4-
manifold, boundary going to boundary, and there is a framed immersed
2-sphere B with trivial algebraic selfintersection and algebraic intersection
1 with A. Then there is a topologically embedded 2-disk with the same
framed boundary as A.
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If this were true as stated then the whole apparatus of high-dimensional
topology would apply in dimension 4. It is known when the fundamental
group is “small”, [FQ, FT1]. It is expected to be false for other fundamental
groups, but no demonstration is in sight. It is false for smooth embeddings,
since it would imply existence and uniqueness results that are known to be
false [Kirby 4.1, 4.6].

There are very interesting generalizations of 1.1, which for example ask
about the minimal genus of an embedded surface with a given boundary, or
in a given homology class (cf. [Kirby, 4.36]), or drop the hypothesis about
a dual sphere B. However the data in 1.1 is available in the Whitney disk
applications, so its inclusion reflects the “tool” orientation of this paper.

The current best results on 1.1 are by Freedman and Teichner [FT1],
who show it holds if the fundamental group of the 4-manifold has “subex-
ponential growth.” We briefly discuss the proof. For surfaces in 4-manifolds
here is a correspondence between intersections and fundamental group of
the image: adding an intersection point enlarges the fundamental group of
the image by one free generator (if the image is connected). Freedman’s
work roughly gives a converse: in order to remove intersections in M , it is
sufficient to kill the image of the fundamental group of the data, in the fun-
damental group of M . More precisely, if we add the hypothesis that A∩B
is a single point, and π1 of the image A∪B is trivial in π1M then there is an
embedded disk. However applications of this depend on the technology for
reducing images in fundamental groups. Freedman’s earlier work showed
(essentially) how to change A and B so the fundamental group image be-
comes trivial under any φ : π1M → G, where G is poly-(finite or cyclic).
[FT1] improves this to allow G of subexponential growth. Quite a lot of
effort is required for this rather minute advance, giving the impression that
we are near the limits of validity of the theorem. In a nutshell, the new
ingredient is the use of (Milnor) link homotopy. Reduction of fundamental
group images is achieved by trading an intersection with a nontrivial loop
for a great many intersections with trivial, or at least smaller, loops. The
delicate point is to avoid reintroducing big loops through unwanted inter-
sections. The earlier argument uses explicit moves. The approach in [FT1]
uses an abstract existence theorem. The key is to think of a collection
of disks as a nullhomotopy of a link. Selfintersections are harmless, while
intersections between different components are deadly. Thus the nullho-
motopies needed are exactly the ones studied by Milnor, and existence of
the desired disks can be established using link homotopy invariants.

While the conjecture is expected to be false for arbitrary fundamental
groups, no proof is in sight. Constructing an invariant to detect failure
is a delicate limit problem. The fundamental group of the image of the
data can be compressed into arbitrarily far-out terms in the lower central
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series of the fundamental group of M . If it could be pushed into the
intersection of all terms then the general conjecture would follow. (This is
because it is sufficient to prove the conjecture for M with free fundamental
group, eg. by restricting to a regular neighborhood of the data, and the
intersection of the lower central series of a free group is trivial). So we
need an invariant that prevents descent to the intersection but not to any
finite stage. Determined efforts to modify traditional link invariants to do
this have failed so far. The smooth invariants (Donaldson, Seiberg-Witten,
“quantum”) do not apply directly since this is a purely topological question.
There are smooth reformulations [F], but so far these give little indication
of making contact with the invariants.

There is a modification of the conjecture, in which we allow the ambi-
ent manifold to change by s-cobordism. This form implies that “surgery”
works, but not the s-cobordism theorem. I personally believe this one is
true.

1.2 Embedding up to s-cobordism. Suppose the embedding data of 1.1
is given in a 4-manifold M . Then there is a topological s-cobordism with
a product structure on the boundary, to a manifold N with a topologically
embedded 2-disk with the same framed boundary as A.

Partial results are in [FQ , FT2]. [FQ, §6] shows that if the fundamental
group of the image of the data of 1.1 is trivial in the whole manifold, then
there is an embedding up to s-cobordism. This differs from the partial
result on 1.1 in that A∩B is not required to be one point, just algebraically
1. This modest relaxation has applications, but does not give surgery for
a larger class of fundamental groups. Application to surgery still depends
on the technology for reducing the fundamental group of the image, and
the weaker hypotheses have not helped with this.

The improvement of [FT2] over the earlier result is roughly that infini-
tesimal holes are allowed in the data. A regular neighborhood of the data
gives a 4-manifold with boundary, and carrying certain homology classes.
In the regular neighborhood the homology class is represented by a sphere,
since a sphere is given in the data. The improvement relaxes this: the
homology class is required to be in a certain subgroup of H2, but not nec-
essarily in the image of π2. Heuristically we can drill a hole in the sphere,
as long as it is small enough not to move the homology class too far out of
π2 (technically, still in the ω term of Dwyer’s filtration on H2).

The improved version has applications, but again falls short of the full
conjecture. Again it is a limit problem: they show that one can start with
arbitrary data and drill very small holes to get the image π1 trivial in M .
The holes can be made “small” enough that the resulting homology classes
are in an arbitrarily far-out term in the Dwyer filtration, but maybe not in
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the infinite intersection.
Here is a suggestion for a new approach. The old approach combines

many parallel copies of the data in careful ways to get improvement. It
is a bit like winding a spring up until something snaps. Unfortunately,
years of winding has failed to produce any snaps when the fundamental
group is large. Maybe instead of winding tighter we should be trying to
spread things out. Consider a selfintersection point x of A (or technically,
caps in a grope representing A) with a non-trivial loop passing through
it. Change A to remove the intersection, at the cost of introducing a new
sphere Ax. The union A∪Ax still contains the loop, but it passes through
Ax. Persistent iteration is supposed to give a great many spheres with the
property that a nontrivial loop in the union must pass through at least n
of the spheres. Think of these as located on a wedge of circles, and so small
that it takes n of them to go around a circle. Technically we would want to
get a family of spheres “controlled” over the wedge of circles in the sense
of [Q1] or [FQ 5.4]. A controlled embedding theorem should then provide
the desired embeddings.

2: Uniqueness

The uniqueness question we want to address is: when are two homeo-
morphisms of a 4-manifold topologically isotopic? The answer is is known
for compact 1-connected 4-manifolds [Q2], but not for nontrivial groups
even in the good class for surgery. Neither is there a controlled version,
not even in the 1-connected case. The controlled version may be more
important than general fundamental groups, since it is the main missing
ingredient in a general topological isotopy extension theorem for stratified
sets [Q3].

The study of isotopies is approached in two steps. First determine if
two homeomorphisms are concordant (pseudoisotopic), then see if the con-
cordance is an isotopy. The first step still works for 4-manifolds, since it
uses 5-dimensional surgery. The high-dimensional approach to the second
step [HW] reduces it to a “tool” question. However the uniqueness tool
question is not simply the uniqueness analog of the existence question. In
applications Conjecture 1.1 would be used to find Whitney disks to ma-
nipulate 2-spheres. The tool question needed to analyse isotopies directly
concerns these Whitney disks.

Conjecture 2.1. Suppose A and B, are framed embedded families of 2-
spheres, and V , W are two sets of Whitney disks for eliminating AB in-
tersections. Each set of Whitney disks reduces the intersections to make
the families transverse: the spheres in A and B are paired, and the only
intersections are a single point between each pair. Then the sets V , W are
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equivalent up to isotopy and disjoint replacement.

“Isotopic” means there is an ambient isotopy that preserves the spheres
A, B setwise, and takes one set of disks to the other. Note that A ∩ B
must be pointwise fixed under such an isotopy. “Disjoint replacement”
means we declare two sets to be equivalent if the only intersections are the
endpoints (in A ∩ B). Actually there are further restrictions on framings
and π2 homotopy classes, related to Hatcher’s secondary pseudoisotopy
obstruction [HW]. In practice these do not bother us because the work is
done in a relative setting that encodes a vanishing of the high-dimensional
obstruction: we try to show that a 4-dimensional concordance is an isotopy
if and only if the product with a disk is an isotopy. In [Q2] this program
is reduced to conjecture 2.1, and the conjecture itself is proved for simply
connected manifolds and A, B each a single sphere.

The (classical) reduction of the pseudoisotopy problem to the conjecture
goes as follows: a pseudoisotopy is an isomorphism of M × I with itself.
Think of this as two handlebody structures on M × I, both without any
handles (a handlebody is a collar M × I with handles attached to it). Join
these by a 1-parameter family of handlebody structures. This family can
be visualized as follows: begin with the collar on one end. Change the
handlebody structure (not the manifold) by introducing lots of handles,
and let them interact in elaborate ways. Finally they all cancel to leave
us with the second collar structure. There is also an isotopy of the base
collars. If we can deform this family to get one with no handles at all
then what is left is an isotopy of the base collar structures, and thus of the
original isomorphisms. In (base) dimension four the family of handlebodies
can be deformed to a more restrained one: first a lot of disjoint cancelling
pairs of 2- and 3-handles appear. Next, in the level between the 2- and
3-handles the attaching maps of the 3-handles are isotoped (all together)
by doing finger moves to introduce new intersections with the dual spheres
of the 2-handles. Then there is the inverse of such a move: all the 3-handle
attaching spheres are moved by pushing across Whitney disks to get back
a geometrically cancelling situation. Finally these are cancelled. The view
at the center point is: we have a family A of dual spheres of the 2-handles,
a family B of attaching spheres for the 3-handles, and two complete sets of
Whitney disks (V and W ) that eliminate extra intersections in two different
ways. We would like to eliminate the handles completely, to show there is
a 1-parameter family without handles. We could do this if the two sets of
disk were disjoint except for mandatory intersections in A ∩ B, or at the
other extreme, if the two sets were equal.

Each disk in V or W has boundary given as two arcs, one on A and
one on B, and the endpoints of these arcs are intersection points in A∩B.
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Focus on the arcs on A. An intersection point is the endpoint of a V arc
if the intersection is eliminated by pushing across the V disks. Similarly
it is a W endpoint if it is eliminated by the other move. This means each
intersection point is an endpoint of at most two of these arcs. Therefore the
two families of arcs fit together to form circles and arcs, and the endpoints
of the arcs are A ∩ B intersections that are not eliminated in one or the
other move. Since each family has exactly one such special intersection
point on each sphere, there is exactly one union arc on each sphere.

The proof of [Q2] employs the arcs of boundary V ∪W curves. Focus
on a single pair of spheres. The 1-connectedness is used to merge the
circles into the arc. Intersections among Whitney disks strung out along
the arc are then “pushed off the end” of the arc. This makes the two sets
of disks equivalent in the sense of 2.1, and allows the pair of handles to be
eliminated from the 1-parameter family. This process can be iterated to
eliminate finitely many pairs, and the compact 1-connected case follows.

This iterative procedure cannot be done with control since each cancel-
lation will greatly rearrange the remaining spheres. It cannot be done with
nontrivial fundamental group because the circles of V ∪W curves cannot
be absorbed into the arcs. To treat either nontrivial fundamental groups or
control will require dealing directly with the circles of Whitney arcs. But
the proof of [Q2] gets stuck because circles have no ends to push things
off. Still, they can be manipulated quite a bit, and it may well be possible
to extract an invariant from them. The best current guess is that such an
invariant will show the conjecture is false.

3: 4-dimensional handlebodies

Handlebody structures on 4-manifolds correspond exactly to smooth
structures. The targets in studying handlebody structures are therefore
the detection and manipulation of smooth structures. However these are
much more complicated than in other dimensions, and not well enough
understood even to confidently identify tool questions that might unravel
them.

4-dimensional handlebodies are described by their attaching maps, em-
beddings of circles and 2-spheres in 3-manifolds. The dimension is low
enough to draw explicit pictures of many of these. Kirby developed nota-
tions and a “calculus” of such pictures for 1- and 2-handles. This approach
has been used to analyse specific manifolds: see [HKK] for pictures of
complex surfaces, and Gompf’s identification of some homotopy spheres as
standard [Gf]. It was also used in Freedman’s original proof of the disk
embedding theorem. However it has been limited even in the study of
examples because:
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(1) it only effectively tracks 1- and 2-handles, and Gompf’s example
shows one cannot afford to ignore 3-handles;

(2) it is a non-algorithmic “art form” that can hide mistakes from even
skilled practitioners; and

(3) there is little clue how the pictures relate to effective (eg. Donaldson
and Seiberg-Witten) invariants.

The most interesting possibility for manipulating handlebodies is sug-
gested by the work of Poenaru on the 3-dimensional Poincaré conjecture.
The following is suggested as a test problem to develop the technique:

3.2 Conjecture. A 4-dimensional (smooth) s-cobordism without 1-han-
dles is a product.

Settling this would be an important advance, but a lot of work remains
before it would have profound applications. To some extent it would show
that the real problem is getting rid of 1-handles ([Kirby 4.18, 4.88, 4.89]; see
below). It might have some application to this: if we can arrange that some
subset of the 2-handles together with the 1-handles forms an s-cobordism,
then the dual handlebody structure has no 1-handles and the conjecture
would apply. Replacing these 1- and 2-handles with a product structure
gives a new handlebody without 1-handles. The problem encountered here
is control of the fundamental group of the boundary above the 2-handles.
The classical manipulations produce a homology s-cobordism (with Z[π1]
coefficients), but to get a genuine s-cobordism we need the new boundary to
have the same π1. Thus to make progress we would have to understand the
relationship between things like Seiberg-Witten invariants and restrictions
on fundamental groups of boundaries of sub-handlebodies.

To analyse the conjecture consider the level between the 2- and 3-handles
in the s-cobordism. The attaching maps for the 3-handles are 2-spheres,
and the dual spheres of the 2-handles are circles. The usual manipulations
arrange the algebraic intersection matrix between these to be the identity.
In other dimensions the next step is to realize this geometrically: find an
isotopy of the circles so each has exactly one point of intersection with the
family of spheres. But the usual methods fail miserably in this dimension.
V. Poenaru has attacked this problem in the special case of ∆×I, where ∆
is a homotopy 3-ball, [Po, Gi]. The rough idea is an infinite process in which
one repeatedly introduces new cancelling pairs of 2- and 3-handles, then
damages these in order to fix the previous ones. The limit has an infinite
collections of circles and spheres with good intersections. Unfortunately
this limit is a real mess topologically, in terms of things converging to each
other. The goal is to see that, by being incredibly clever and careful, one can
arrange the spheres to converge to a singular lamination with control on the
fundamental groups of the complementary components. As an outline this
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makes a lot of sense. Unfortunately Poenaru’s manuscript is extremely long
and complicated and, as a result of many years of work without feedback
from the rest of the mathematical community, quite idiosyncratic. It would
probably take years of effort to extract clues on how to deal with the difficult
parts.

We end the section with an historical note continuing the theme of the
dedication. Wall extracted a clean statement of what is essentially the
induction hypothesis in the proof of the s-cobordism theorem, in his pa-
per [Wa2]. Suppose M is a manifold and W ⊂ ∂M is a codimension-0
submanifold. Wall showed that if (M, W ) is homotopically r-connected
with r ≤ dim(M)− 4 then it is geometrically r-connected in that it has a
handlebody structure without handles of index ≤ r. In typical fashion he
investigated consequences of the techniques in low dimensions. [Wa3] gives
a version for 3-manifolds. A third preprint in the series asserted that a 1-
connected 4-manifold pair has a handlebody structure without 1-handles.
Unfortunately this relied on an attractive and oft-rediscovered error, and
had to be withdrawn. Nonetheless the paper made a big impression on
many of us, and posed what has turned out to be one of the key problems
in the area.

4: Invariants

Some compact topological 4-manifolds have infinitely many smooth
structures, and many non-compact ones have uncountably many. At pre-
sent this is inferred from Donaldson and Seiberg-Witten invariants, defined
using global differential geometry. Since a handlebody structure deter-
mines a smooth structure these invariants are somehow encoded in the
handle structure, and for a “topological” understanding we would need to
decode some of this. We already know that the tools that work in higher
dimensions — homology, characteristic classes, etc. — are too simple for
dimension 4. The invariants we know do work lie at the other extreme:
behavior with respect to geometric decompositions is still largely unclear
but already too complicated for a useful topological theory. The best hope
seems to be with a class of theories of intermediate complexity:

4.1: Problem. Find a combinatorially-defined “topological quantum field
theory” that detects exotic smooth structures.

Three-dimensional combinatorial field theories were pioneered by Reshe-
tikhin and Turaev [RT], followed by [KM, L] and many others. A number
of axiom systems have been proposed; the mathematically precise versions
(cf. [Q4], [Kl]) are fairly complicated but have enough interesting structure
to suggest that they may be both useful and comprehensible. Originally it
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was hoped that this would provide a context for the Donaldson (and later,
Seiberg-Witten) invariants, but unfortunately they are yet more compli-
cated.

The phrase “combinatorially-defined” in 4.1 should be interpreted loose-
ly. Field theories involve cutting manifolds into pieces. “Modular” field
theories involve cutting boundaries of these pieces, so cutting to codimen-
sion 2 in the original manifold. Bimodular theories go to codimension 3,
etc. Deep structure provides good tools but rules out many theories: few
general theories are modular, and fewer yet are bimodular. Taken literally
the “combinatorial” in 4.1 might suggest definition in terms of simplices, ie.
cutting to codimension 4. There has been quite a bit of work on this (“solv-
ing the simplex equations”), but early indications [CKY] suggest that only
the classical invariants survive such deep cuts. Bimodular theories (cutting
to down to circles, in codimension 3) are next. Some abstract work has
been done, but so far no serious examples have been developed.

Returning to our historical subtheme, “Novikov additivity” of the signa-
ture describes field-like behavior with respect to cutting to codimension 1.
Wall’s analysis of the signature when cutting to codimension 2 [W4] seems
to be the first foreshadowing of modular field theories.

5: Stratified spaces

A class of stratified spaces with a relatively weak relationship between
the strata has emerged as the proper setting for purely topological stratified
questions, see eg. [Q3, We]. The analysis of these sets, to obtain results like
isotopy extension theorems, uses a great deal of handlebody theory, and as
a result often requires the assumption that all strata have dimension 5 or
greater. This restriction is acceptable in some applications, for example in
group actions, but not in others like smooth singularity theory, algebraic
varieties, and limit problems in Riemannian geometry. The suggestion
here is that many of the low-dimensional issues can be reduced to (usually
easier) PL and differential topology. The conjecture, as formulated, is a
tool question for applications of stratified sets. After the statement we
discuss the dissection into topological tool questions.

5.1: Conjecture. A three-dimensional homotopically stratified space with
manifold strata is triangulable. A 4-dimensional space of this type is trian-
gulable in the complement of a discrete set of points.

As stated this implies the 3-dimensional Poincaré conjecture. To avoid
this assume either that there are no fake 3-balls below a certain diame-
ter, or change the statement to “obtained from a polyhedron by replacing
sequences of balls converging to the 2-skeleton by fake 3-balls.”
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The “Hauptvermutung” for 3-dimensional polyhedra [Pa] asserts that
homeomorphisms are isotopic to PL homeomorphisms. This reduces the
3-dimensional version to showing that stratified spaces are locally trian-
gulable. The 2-skeleton and its complement are both triangulable, so the
problem concerns how the 3-dimensional part approaches neighborhoods of
points in the 2-skeleton.

We begin with a manifold point in the skeleton, so a neighborhood in
the skeleton is isomorphic with Rn for n = 0, 1, or 2. Near this the 3-
stratum looks locally homotopically like a fibration over Rn with fiber a
Poincaré space of dimension 3 − n − 1. We can reduce to the case where
the fiber is connected by considering components of the 3-stratum one at a
time. If n = 2 then the fiber is a point, and the union of the two strata is a
homology 3-manifold with R2 as boundary. Thus the question: is this union
a manifold, or equivalently, is the R2 collared in the union? This is a very
classical question, and may already be known. If n = 1 then the fiber is S1,
and the union gives an arc homotopically tamely embedded in the interior
of a homology 3-manifold. Is it locally flat? Finally if n = 0 then the
fiber is a surface (2-dimensional Poincaré spaces are surfaces, [EL]). This
is an end problem: if a 3-manifold has a tame end homotopic to S × R, S
a surface, is the end collared? This seems to follow easily from standard
embedded surface theory, but I do not know a reference. The next step is
to consider a point in the closure of strata of three different dimensions.
There are three cases: (0, 1, 3), (0, 2, 3) and (1, 2, 3). Again each case can
be described quite explicitly, and should either be known or accessible to
standard 3-manifold techniques.

Now consider 4-dimensional spaces. 4-manifolds are triangulable in the
complement of a discrete set, so again the question concerns neighborhoods
of the 3-skeleton. In dimension 4 homeomorphism generally does not imply
PL isomorphism, so this does not immediately reduce to a local question.
However the objective is to construct bundle-like structures in a neighbor-
hood of the skeleton, and homeomorphism of total spaces of bundles in
most cases will imply isomorphism of bundles. So the question might be
localized in this way, or just approached globally using relative versions of
the local questions.

As above we start with manifold points in the skeleton. If the point has
a 2- or 3-disk neighborhood then the question reduces to local flatness of
boundaries or 2-manifolds in a homology 4-manifold, see [Q2, FQ 9.3A]. If
the point has a 1-disk neighborhood then a neighborhood looks homotopi-
cally like the mapping cylinder of a surface bundle over R. This leads to
the question: is it homeomorphic to such a mapping cylinder? If the sur-
face fundamental group has subexponential growth (ie. the surface is S2,
RP2, T 2, or the Klein bottle) then this probably can be settled by current
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techniques, but the general case may have to wait on solution of the conjec-
tures of section 1. Finally neighborhoods of isolated points in the skeleton
correspond exactly to tame ends of 4-manifolds. Some of these are known
not to be triangulable, so these would have to be among the points that the
statement allows to be deleted. From here the analysis progresses to points
in the closure of strata of three or four different dimensions. Again there
are a small number of cases, each of which has a detailed local homotopical
description.

We close with another historical note. After topology and algebra Wall
progressed to the study of singularities of smooth maps. This area depends
heavily on understanding stratified sets, and Wall’s interest in character-
izing topological stability [dPW] was a major motivation for conjecture
5.1.
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1–154.

[Po] V. Poenaru, The strange compactification theorem, unpublished
manuscript.

[Q1] F. Quinn, Ends of maps III: Dimensions 4 and 5, J. Diff. Ge-
ometry 17 (1982), 503–521.

[Q2] , Isotopy of 4-manifolds, J. Diff. Geometry 24 (1986),
343–372.

[Q3] , Homotopically stratified sets, J. Amer. Math Soc 1
(1988), 441–499.

[Q4] , Lectures on axiomatic topological quantum field theory,
Park City/ IAS Mathematical Series (D. Freed and K. Uhlen-
beck, ed.), vol. 1, Amer. Math Soc., 1995, pp. 323–459.

[Q5] , Problems in low-dimensional topology, Science Bulletin
of Josai University 2 (1997), 97–104.

[RT] N. Yu. Reshetikhin and V. G. Turaev, Invariants of 3-manifolds
via link polynomials and quantum groups, Invent. Math. 103
(1991), 547–598.

[W1] C. T. C. Wall, Surgery on compact manifolds, London Math.
Soc. Monographs, vol. 1, Academic Press 1970. 2nd Edition,
Math. Surveys and Monographs, vol. 69, Amer. Math. Soc.,
1999.

[W2] , Geometrical Connectivity I, J. London Math. Soc 3
(1971), 597–604.

[W3] , Geometrical Connectivity II, J. London Math. Soc 3
(1971), 605–608.

[W4] , Nonadditivity of the signature, Inventiones Math. 7
(1969), 268–274.

[We] S. Weinberger, The topological classification of stratified spaces,



436 Frank Quinn

University of Chicago Press, 1994.

Department of Mathematics
Virginia Polytech Institute & State University
Blacksburg, VA 24061-0123, USA
E-mail address: quinn@math.vt.edu


