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Sociology and topology

I It is a fact of sociology that topologists are interested in
quadratic forms (Serge Lang)

I The 8 in the title refers to the applications in topology of the
mod 8 properties of the signatures of integral symmetric
matrices, such as the celebrated 8× 8 matrix E8 with

signature(E8) = 8 ∈ Z .

I A compact oriented 4k-manifold with boundary has an
integral symmetric matrix of intersection numbers. The
signature of the manifold is defined by

signature(manifold) = signature(matrix) ∈ Z .

I Manifolds with intersection matrix E8 have been used to
distinguish the categories of differentiable, PL and topological
manifolds, and so are of particular interest to topologists!
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Quadratic forms and manifolds

I The algebraic properties of quadratic forms were already
studied in the 19th century: Sylvester, H.J.S. Smith, . . .

I Similarly, the study of the topological properties of manifolds
reaches back to the 19th century: Riemann, Poincaré, . . .

I The combination of algebra and topology is very much a 20th
century story. But in 1923 when Weyl first proposed the
definition of the signature of a manifold, topology was so
dangerous that he thought it wiser to write the paper in
Spanish and publish it in Spain. And this is his signature :
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Symmetric matrices

I R = commutative ring. Main examples today: Z, R, Z4, Z2.
I The transpose of an m × n matrix Φ = (Φij) with Φij ∈ R is

the n ×m matrix ΦT with

(ΦT )ji = Φij (1 6 i 6 m, 1 6 j 6 n) .

I Let Symn(R) be the set of n × n matrices Φ which are
symmetric ΦT = Φ.

I Φ,Φ′ ∈ Symn(R) are conjugate if Φ′ = ATΦA for an
invertible n × n matrix A ∈ GLn(R).

I Can also view Φ as a symmetric bilinear pairing on the
n-dimensional f.g. free R-module Rn

Φ : Rn×Rn → R ; ((x1, . . . , xn), (y1, . . . , yn)) 7→
n∑

i=1

n∑
j=1

Φijxiyj .

I Φ ∈ Symn(R) is unimodular if it is invertible, or equivalently
if det(Φ) ∈ R is a unit.
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The signature

I The signature of Φ ∈ Symn(R) is

σ(Φ) = p+ − p− ∈ Z

with p+ the number of eigenvalues > 0 and p− the number of
eigenvalues < 0.

I Law of Inertia (Sylvester 1853)
Symmetric matrices Φ,Φ′ ∈ Symn(R) are conjugate if and
only if

p+ = p′+ , p− = p′− .

I The signature of Φ ∈ Symn(Z)

σ(Φ) = σ(R⊗Z Φ) ∈ Z.

is an integral conjugacy invariant.
I The conjugacy classification of symmetric matrices is much

harder for Z than R. For example, can diagonalize over R but
not over Z.
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Type I and type II

I Φ ∈ Symn(Z) is of type I if at least one of the diagonal
entries Φii ∈ Z is odd.

I Φ is of type II if each Φii ∈ Z is even.
I Type I cannot be conjugate to type II. So unimodular type II

cannot be diagonalized, i.e. not conjugate to
⊕
n
±1.

I Φ is positive definite if n = p+, or equivalently if σ(Φ) = n.
Choosing an orthonormal basis for R⊗Z (Zn,Φ) defines an
embedding as a lattice (Zn,Φ) ⊂ (Rn, dot product). Lattices
(including E8) much used in coding theory.

I Examples
(i) Φ = (1) ∈ Sym1(Z) is unimodular, positive definite, type I,

signature 1.
(ii) Φ = (2) ∈ Sym1(Z) is positive definite, type II, signature 1.

(iii) Φ =

(
0 1
1 1

)
∈ Sym2(Z) is unimodular, type I, signature 0.

(iv) Φ =

(
0 1
1 0

)
∈ Sym2(Z) is unimodular, type II, signature 0.
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Characteristic elements and the signature mod 8

I An element u ∈ Rn is characteristic for Φ ∈ Symn(R) if

Φ(x , u)− Φ(x , x) ∈ 2R ⊆ R for all x ∈ Rn .

I Every unimodular Φ admits characteristic elements u ∈ Rn

which constitute a coset of 2Rn ⊆ Rn.

I Theorem (van der Blij, 1958) The mod 8 signature of a
unimodular Φ ∈ Symn(Z) is such that

σ(Φ) ≡ Φ(u, u) mod 8

for any characteristic element u ∈ Zn.

I Corollary A unimodular Φ ∈ Symn(Z) is of type II if and only
if u = 0 ∈ Zn is characteristic, in which case

σ(Φ) ≡ 0 mod 8 .
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The E8-form I.

I Theorem (H.J.S. Smith 1867, Korkine and Zolotareff 1873)
There exists an 8-dimensional unimodular positive definite
type II symmetric matrix

E8 =



2 1 0 0 0 0 0 0
1 2 1 0 0 0 0 0
0 1 2 1 0 0 0 0
0 0 1 2 1 0 0 0
0 0 0 1 2 1 0 1
0 0 0 0 1 2 1 0
0 0 0 0 0 1 2 0
0 0 0 0 1 0 0 2


∈ Sym8(Z) .

I E8 has signature
σ(E8) = 8 ∈ Z .
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The E8-form II.

I E8 ∈ Sym8(Z) is determined by the Dynkin diagram of the
simple Lie algebra E8

2 2 2 2 2 2 2

2

2 2 2 2 2 2 2

2

weighted by χ(S2) = 2 at each vertex, with

Φij =


1 if ith vertex is adjacent to jth vertex

2 if i = j

0 otherwise .

I Theorem (Mordell, 1938) Any unimodular positive definite
type II symmetric matrix Φ ∈ Sym8(Z) is conjugate to E8.
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The intersection matrix of a 4k-manifold

I The intersection matrix of a 4k-manifold with boundary
(M, ∂M) with respect to a basis (b1, b2, . . . , bn) for
H2k(M)/torsion ∼= Zn is the symmetric matrix

Φ(M) = (bi ∩ bj)16i ,j6n ∈ Symn(Z)

with bi ∩ bj ∈ Z the homological intersection number.
I If bi , bj are represented by disjoint closed 2k-submanifolds

Ni ,Nj ⊂ M which intersect transversely then bi ∩ bj ∈ Z is
the number of points in the actual intersection Ni ∩ Nj ⊂ M,
counted algebraically.

N

N

i

j

I A different basis gives a conjugate intersection matrix.
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(2k − 1)-connected 4k-manifolds

I A space M is 0-connected if it is connected.

I For j > 1 a space M is j-connected if it is connected, and
πi (M) = {1} for 1 6 i 6 j or equivalently if M is
simply-connected (π1(M) = {1}) and Hi (M) = 0 for
1 6 i 6 j .

I An m-manifold with boundary (M, ∂M) is j-connected if M
is j-connected and ∂M is (j − 1)-connected.

I Proposition If (M, ∂M) is a (2k − 1)-connected 4k-manifold
with boundary then

I H2k(M) is f.g. free,
I there is an exact sequence

0→ H2k(∂M)→ H2k(M)
Φ(M)

//// H2k(M)∗ → H2k−1(∂M)→ 0

with H2k(M)∗ = HomZ(H2k(M),Z).
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Homology spheres

I A homology `-sphere Σ is a closed `-manifold such that

H∗(Σ) = H∗(S
`) .

I An m-manifold with boundary (M, ∂M) is almost closed if

either M is closed, i.e. ∂M = ∅,
or ∂M is a homology (m − 1)-sphere

H∗(∂M) = H∗(S
m−1) .

I Proposition The intersection matrix Φ(M) ∈ Symn(Z) of a
(2k − 1)-connected 4k-dimensional manifold with boundary
(M, ∂M) with H2k(M) = Zn is unimodular if and only if
(M, ∂M) is almost closed.
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The 2kth Wu class of an almost closed (M4k , ∂M)

I Proposition For an almost closed (2k − 1)-connected
4k-manifold with boundary (M4k , ∂M) and intersection
matrix Φ(M) ∈ Symn(Z) the Poincaré dual of the 2kth Wu
characteristic class of the normal bundle νM

v2k(νM) ∈ H2k(M;Z2) ∼= H2k(M;Z2)

is characteristic for 1⊗ Φ(M) ∈ Symn(Z2). An element
u ∈ H2k(M) is characteristic for Φ(M) if and only if

[u] = v2k(νM) ∈ H2k(M)/2H2k(M) = H2k(M;Z2) .
.

I Φ(M) is of type II if and only if v2k(νM) = 0.
I By van der Blij’s theorem, for any lift u ∈ H2k(M) of v2k(νM).

σ(M) ≡ Φ(u, u) mod 8 .

I If (M4k , ∂M) is framed, i.e. νM is trivial, then

v2k(νM) = 0 , u = 0 and σ(M) ≡ 0 (mod8) .
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The Poincaré homology 3-sphere and E8

I Poincaré (1904) constructed a differentiable homology
3-sphere

Σ3 = dodecahedron/opposite faces

with π1(Σ3) = binary icosahedral group of order 120 6= {1}.
This disproved the naive Poincaré conjecture that every
homology 3-sphere is homeomorphic to S3.

I Modern construction: Σ3 = ∂M is the boundary of the
1-connected framed differentiable 4-manifold with boundary
(M4, ∂M) with intersection matrix Φ(M) = E8 obtained by
the “geometric plumbing” of 8 copies of τS2 using the E8 tree.
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Exotic spheres and E8

I An exotic `-sphere Σ` is a differentiable `-manifold which is
homeomorphic but not diffeomorphic to S`.

I Milnor (1956) constructed the first exotic spheres, Σ7, using
the Hirzebruch signature theorem (1953) to detect
non-standard differentiable structure.

I Kervaire and Milnor (1963) classified exotic `-spheres Σ` for
all ` > 7, involving the finite abelian groups Θ` of
differentiable structures on S`.

I The subgroup bP4k ⊆ Θ4k−1 consists of the exotic
(4k − 1)-spheres Σ4k−1 = ∂M which are the boundary of a
framed (2k − 1)-connected 4k-manifold (M4k , ∂M) obtained
by geometric plumbing, with Φ(M) =

⊕
E8.

I In particular, the Brieskorn (1965) exotic spheres arising in
algebraic geometry are such boundaries, including the
Poincaré homology 3-sphere Σ3 as a special case.
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bP4k

I The subgroup bP4k ⊆ Θ4k−1 of diffeomorphism classes of the
bounding exotic spheres Σ4k−1 = ∂M is a finite cyclic group
Zbp4k

, with an isomorphism

bP4k
∼= // Zbp4k

; Σ4k−1 = ∂M 7→ σ(M)/8 .

I The order |bP4k | = bp4k is related to the numerators of the
Bernoulli numbers.

I The group
bP8 = Θ7 = Z28

of 28 differentiable structures on S7 is generated by Σ7 = ∂M
with Φ(M) = E8.
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PL manifolds without differentiable structure I.

I Cairns (1935) proved that a differentiable manifold has a
canonical PL structure.

I If (Lm, ∂L) is a differentiable m-manifold with boundary
∂L = Σm−1 an exotic (m − 1)-sphere then

Km = Lm ∪Σ cone(Σ)

is a closed PL m-manifold without a differentiable structure.

∂L = ΣL cone(Σ)
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PL manifolds without differentiable structure II.

I The first PL manifold without a differentiable structure was
the closed 4-connected PL 10-manifold constructed by
Kervaire (1960)

K 10 = L10 ∪∂L c∂L

using a framed differentiable 4-connected 10-manifold
(L10, ∂L) with boundary an exotic 9-sphere ∂L, obtained by
plumbing two τS5 ’s. The corresponding Z2-valued quadratic
form on H5(K ;Z2) = Z2 ⊕ Z2 has Arf invariant 1 ∈ Z2.

I The E8-plumbing (M8, ∂M) gives a closed 3-connected PL
8-manifold M8 ∪∂M c∂M without a differentiable structure.

I In fact, there is a close connection between the Z8-valued
signature mod 8 and the Z2-valued Arf invariant, which is
best understood using symmetric matrices in Z4.
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The classification of 1-connected 4-manifolds

I Milnor (1958) proved that M4 7→ Φ(M) defines a bijection

{homotopy equivalence classes of closed

1-connected differentiable 4-manifolds M4}
∼= //

{conjugacy classes of unimodular integral symmetric matrices Φ} .
I Diagonalisation Theorem (Donaldson 1982) If M4 is a

closed 1-connected differentiable 4-manifold and Φ(M) is
positive definite then Φ(M) is diagonalizable over Z.

I Non-diagonalisation Theorem (Freedman 1982) Every
unimodular matrix Φ ∈ Symn(Z) is realized as Φ = Φ(M) for
a closed 1-connected topological 4-manifold M4. If Φ is of
type II and M has a PL structure then σ(M) ≡ 0(mod16)
(Rochlin 1952).

I Nontriangulable manifolds Casson (1990) : M4 with
Φ(M) = E8 is nontriangulable. Manolescu (2013) : there are
nontriangulable topological m-manifolds Mm for all m > 4.
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Which integral symmetric matrices are realized as
intersection matrices of manifolds? I.

I Adams (1962) proved that there exists a map S4k−1 → S2k of
Hopf invariant 1 if and only if k = 1, 2, 4. It followed that
there exists a closed differentiable (2k − 1)-connected
4k-manifold M4k with intersection matrix Φ(M) of type I if
and only if k = 1, 2, 4.

I The standard examples of (2k − 1)-connected M4k with

(H2k(M),Φ(M)) = (Z, 1)

of type I :
(i) k = 1 : the complex projective plane CP2,

(ii) k = 2 : the quaternionic projective plane HP (Hamilton),
(iii) k = 4 : the octonionic projective plane OP (Cayley).
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Which integral symmetric matrices are realized as
intersection matrices of manifolds? II.

I Theorem (Milnor, Hirzebruch 1962) For every symmetric
matrix Φ ∈ Symn(Z) of type II and every k > 1 there exists a
differentiable (2k − 1)-connected 4k-manifold (M, ∂M) with
intersection matrix Φ(M) = Φ.

I (M, ∂M) is constructed by the “geometric plumbing” of a
sequence of n oriented 2k-plane bundles over S2k

R2k → E (wi )→ S2k (1 6 i 6 n)

classified by wi ∈ π2k(BSO(2k)), with Euler numbers
χ(wi ) = Φii ∈ 2Z ⊂ Z.

I The geometry reflects the way in which Φ is built up from 0
by the “algebraic plumbing” of its n principal minors

(Φ11) ,

(
Φ11 Φ12

Φ21 Φ22

)
,

Φ11 Φ12 Φ13

Φ21 Φ22 Φ23

Φ31 Φ32 Φ33

 , . . . , Φ
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Algebraic plumbing

I Definition The algebraic plumbing of a symmetric n × n
matrix Φ ∈ Symn(Z) with respect to v ∈ Zn, w ∈ Z is the
symmetric (n + 1)× (n + 1) matrix

Φ′ =

(
Φ vT

v w

)
∈ Symn+1(Z) .

I Let Φ = Φ(M) ∈ Symn(Z) is the intersection matrix of a
(2k − 1)-connected 4k-manifold with boundary (M, ∂M),
taken to be (D4k ,S4k−1) if n = 0. It is frequently possible to
realize the algebraic plumbing Φ 7→ Φ′ by a geometric
plumbing

(M, ∂M) 7→ (M ′, ∂M ′) , Φ(M ′) = Φ′ ∈ Symn+1(Z)

and (M ′, ∂M ′) also (2k − 1)-connected.
I Need k = 1, 2, 4 for type I. All k > 1 possible for type II.

For k = 1 have to distinguish differentiable and topological
categories.
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Geometric plumbing I.

I Input (i) A 4k-manifold with boundary (M, ∂M),
(ii) an embedding v : (D2k × D2k , S2k−1 × D2k) ⊆ (M, ∂M)

Input

Output

d M
∂MM

D2k × D2k

S2k−1 × D2k

(iii) a map w : S2k−1 → SO(2k), the clutching map of the
oriented 2k-plane bundle over S2k = D2k ∪S2k−1 D2k classified
by w ∈ π2k−1(SO(2k)) = π2k(BSO(2k))

R2k → E (w) = D2k × R2k ∪f (w) D
2k × R2k → S2k

f (w) : S2k−1 × R2k → S2k−1 × R2k ; (x , y) 7→ (x ,w(x)(y)) .

Input

Output

d M

D2k × D2k

S2k−1 × D2k S2k−1 × D2k
D2k × D2k

f (w)
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Geometric plumbing II.

I Output The plumbed 4k-manifold with boundary

(M ′, ∂M ′)

= (M ∪f (w) D
2k × D2k , cl.(∂M\S2k−1 × D2k) ∪ D2k × S2k−1) .

Input

Output

d M

∂M ′M ′

I M ′ is obtained from M by attaching a 2k-handle D2k × D2k

at S2k−1 × D2k ⊂ ∂M.

I ∂M ′ is obtained from ∂M by surgery on S2k−1 × D2k ⊂ ∂M.
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The algebraic effect of geometric plumbing

I Proposition If (M4k , ∂M) has symmetric intersection matrix
Φ(M) ∈ Symn(Z) the geometric plumbing (M ′, ∂M ′) has the
symmetric intersection matrix given by algebraic plumbing

Φ(M ′) =

(
Φ(M) vT

v χ(w)

)
∈ Symn+1(Z)

with

v = v [D2k × D2k ] ∈ H2k(M, ∂M) = H2k(M)∗ = Zn ,

χ(w) = degree(S2k−1 →w SO(2k)→ S2k−1) ∈ Z ,

SO(2k)→ S2k−1 ; A 7→ A(0, . . . , 0, 1) .
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Graph manifolds

I A graph manifold is a differentiable 4k-manifold with
boundary constructed from (D4k ,S4k−1) by the geometric
plumbing of n oriented 2k-plane bundles wi ∈ π2k(BSO(2k))
over S2k , using a graph with vertices i = 1, 2, . . . , n and
weights χi = χ(wi ) ∈ Z.

I Theorem (Milnor 1959, Hirzebruch 1961) Let Φ ∈ Symn(Z).
If Φ is of type I assume k = 1, 2 or 4.
If Φ is of type II take any k > 1.
Then Φ is the intersection matrix of a graph 4k-manifold with
boundary (M, ∂M) such that

(H2k(M),Φ(M)) = (Zn,Φ) .

I If the graph is a tree then (M, ∂M) is (2k − 1)-connected,
and if Φ is unimodular then (M, ∂M) is almost closed.
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The A2 graph manifold

I The Dynkin diagram of the simple Lie algebra A2 is the tree

• • • • • •

•

•
2 2 2 2 2 2

2

2

1

2 2

which is here weighted by χ(S2) = 2 at each vertex.
I The corresponding symmetric matrix of type II

A2 =

(
2 1
1 2

)
∈ Sym2(Z)

is the intersection matrix Φ(M) of the graph 1-connected
4-manifold with boundary (M, ∂M) obtained by plumbing two
copies of τS2 , with ∂M = S3/Z3 = L(3, 2) a lens space.



28

The E8 graph manifold

I Geometric plumbing using Φ = E8 ∈ Sym8(Z) and the Dynkin
diagram of E8 gives for each k > 1 a (2k − 1)-connected
graph 4k-manifold (M, ∂M) with

(H2k(M),Φ(M)) = (Z8,E8) .

I The boundary ∂M = Σ4k−1 is one of the interesting homology
(4k − 1)-spheres discussed already!
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A doughnut of genus 2
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The multiplicativity mod 8 signature of fibre bundles

I Convention: σ(M) = 0 ∈ Z for a (4j + 2)-manifold M.
I What is the relationship between the signatures
σ(E ), σ(B), σ(F ) ∈ Z of the manifolds in a fibre bundle

F 2m → E 4k → B2n ?

I Theorem (Chern, Hirzebruch, Serre 1956)
If π1(B) acts trivially on H∗(F ;R) then

σ(E ) = σ(B)σ(F ) ∈ Z .

I Kodaira, Atiyah and Hirzebruch (1970) constructed examples
with σ(E ) 6= σ(B)σ(F ) ∈ Z.

I Theorem (Meyer 1972 for k = 1 using the first Chern class,
Hambleton, Korzeniewski, Ranicki 2004 for all k > 1)

σ(E ) ≡ σ(B)σ(F ) mod 4 .

I What about mod 8? What is (σ(E )− σ(B)σ(F ))/4 mod 2 ?
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Symmetric forms over Z2

I A symmetric form over Z2 (V , λ) is a finite-dimensional
vector space V over Z2 together with bilinear pairing

λ : V × V → Z2 ; (x , y) 7→ λ(x , y) .

I The form is nonsingular if the adjoint Z2-linear map

λ : V → V ∗ = HomZ2(V ,Z2)

is an isomorphism.

I A nonsingular (V , λ) has a unique characteristic element
v ∈ V such that

λ(x , x) = λ(x , v) ∈ Z2 (x ∈ V ) .

I (V , λ) is isotropic if v = 0, and anisotropic if v 6= 0.
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Z4-quadratic enhancements

I Let (V , λ) be a nonsingular symmetric form over Z2.

I A Z4-quadratic enhancement of (V , λ) is a function
q : V → Z4 such that for all x , y ∈ V

q(x + y)− q(x)− q(y) = 2λ(x , y) ∈ Z4 ,

[q(x)] = λ(x , x) ∈ Z2 .

I Every (V , λ) admits Z4-quadratic enhancements q.

I Example (V , λ) = (Z2, 1) has two Z4-quadratic
enhancements

q+(1) = 1 ∈ Z4 and q−(1) = − 1 ∈ Z4 .
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The Brown-Kervaire invariant

I The Brown-Kervaire invariant (1972) of a nonsingular
symmetric form (V , λ) over Z2 with a Z4-quadratic
enhancement q is the Gauss sum

BK(V , λ, q) =
1√
|V |

∑
x∈V

eπiq(x)/2

∈ Z8 = {eighth roots of unity} ⊂ C .

I The Brown-Kervaire invariant has mod 4 reduction

[BK(V , λ, q)] = q(v) ∈ Z4

where v ∈ V is the characteristic element for (V , λ).
I The exact sequence

0 // Z2
4 // Z8

// Z4
// 0

identifies a Brown-Kervaire invariant which has mod 4
reduction 0 ∈ Z4 with a Z2-valued Arf invariant.
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The Brown-Kervaire invariant of a symmetric matrix over Z

I A unimodular symmetric matrix Φ ∈ Symn(Z) determines

(V , λ, q) = ((Z2)n, [Φ], [x ] 7→ [Φ(x , x)]) .

I Any lift of the characteristic element v ∈ (Z2)n for
[Φ] ∈ Symn(Z2) is a characteristic element u ∈ Zn for Φ.

I The Brown-Kervaire invariant is the mod 8 reduction of the
signature

BK(V , λ, q) = [σ(Φ)] = [Φ(u, u)] ∈ Z8 .

I Example The unimodular symmetric matrix
Φ = 1 ∈ Sym1(Z) determines

(V , λ, q) = (Z2, 1, 1) , u = 1 ∈ Z ,

BK(V , λ, q) = 1 ∈ Z8 .



35

The Brown-Kervaire invariant of a symmetric matrix over Z4

I A unimodular symmetric matrix Φ ∈ Symn(Z4) with mod 2
reduction [Φ] ∈ Symn(Z2) determines

(V , λ, q) = ((Z2)n, [Φ], [x ] 7→ Φ(x , x)) .

I Any lift of the characteristic element v ∈ V for
[Φ] ∈ Symn(Z2) is a characteristic element u ∈ (Z4)n for Φ.

I The mod 4 reduction of the Brown-Kervaire invariant is

[BK(V , λ, q)] = q(v) = Φ(u, u) ∈ Z4

for any characteristic element u ∈ (Z4)n for Φ.
I Example The unimodular symmetric matrix

Φ = 1 ∈ Sym1(Z4) has

(V , λ, q) = (Z2, 1, 1) , u = 1 ,

BK(V , λ, q) = 1 ∈ Z8 .
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The Brown-Kervaire invariant of A2

I The unimodular symmetric matrix over Z4

A2 =

(
2 1
1 2

)
∈ Sym2(Z4)

has characteristic element u = 0 ∈ (Z4)2 .

I A2 determines

(V , λ, q)

= (Z2 ⊕ Z2,

(
2 1
1 2

)
, (x , y) 7→ 2(x2 + xy + y2)) ,

v = 0 ∈ V ,

BK(V , λ, q) = 4 ∈ im(4 : Z2 → Z8) = ker(Z8 → Z4) .
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Brown-Kervaire = signature mod 8

I Theorem (Morita 1974) A closed oriented 4k-manifold M
determines a nonsingular symmetric form (H2k(M;Z2), λM)
over Z2, with

λM(x , y) = 〈x ∪ y , [M]〉 ∈ Z2

and characteristic element v = v2k(νM) ∈ H2k(M;Z2).
The Pontrjagin square is a Z4-quadratic refinement

qM = P2k : H2k(M;Z2)→ H4k(M;Z4) = Z4

with Brown-Kervaire invariant = the mod 8 reduction of the
signature

BK(H2k(M;Z2), λM , qM) = [σ(M)] ∈ Z8

and mod 4 reduction

qM(v) = [[σ(M)]] ∈ Z4 .
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The Arf invariant I.

I Let (V , λ) be a nonsingular symmetric form over Z2.
I A Z2-quadratic enhancement of (V , λ) is a function

h : V → Z2 such that

h(x + y)− h(x)− h(y) = λ(x , y) ∈ Z2 (x , y ∈ V ) .

I (V , λ) admits an h if and only if λ is isotropic, in which case
there exists a basis (b1, b2, . . . , bn) for V with n even, such
that

λ(bi , bj) =

{
1 if (i , j) = (1, 2) or (2, 1) or (3, 4) or (4, 3) . . .

0 otherwise.

I The Arf invariant of (V , λ, h) is defined using any such basis

Arf(V , λ, h) =

n/2∑
i=1

h(b2i−1)h(b2i ) ∈ Z2 .
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The Arf invariant II.

I Let (V , λ) be a nonsingular symmetric form over Z2.
I A Z2-quadratic enhancement h : V → Z2 determines a

Z4-quadratic enhancement

q = 2h : V → Z4 ; x 7→ q(x) = 2h(x)

such that

BK(V , λ, q) = 4 Arf(V , λ, h) ∈ 4Z2 ⊂ Z8 .

I A Z4-quadratic enhancement q : V → Z4 is such that
q(V ) ⊆ 2Z2 ⊂ Z4 if and only if (V , λ) is isotropic, and

h = q/2 : V → Z2 ; x 7→ h(x) = q(x)/2

is a Z2-quadratic enhancement as above.
I Example For the symmetric form A2 ∈ Sym2(Z4)

(V , λ, q) = (Z2 ⊕ Z2,

(
0 1
1 0

)
, q(x , y) = 2(x2 + xy + y2))

BK(V , λ, q) = 4 ∈ Z8 , Arf(V , λ, h) = 1 ∈ Z2 .
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Carmen Rovi’s Edinburgh thesis I.

I Theorem (CR 2015)
(i) Let (V , λ) be a nonsingular symmetric form over Z2 with a
Z4-quadratic enhancement q : V → Z4, and characteristic
element v ∈ V .
The Brown-Kervaire invariant BK(V , λ, q) ∈ Z8 has mod 4
reduction [BK(V , λ, q)] = 0 ∈ Z4 if and only if q(v) = 0 ∈ Z4.
In this case λ(v , v) = 0 ∈ Z2 and the maximal isotropic
nonsingular subquotient of (V , λ, q)

(V ′, λ′, q′) = ({x ∈ V |λ(x , v) = 0 ∈ Z2}/{v}, [λ], [q])

has Z2-quadratic enhancement h′ = q′/2 : V ′ → Z2 such that

BK(V , λ, q) = BK(V ′, λ′, q′) = 4 Arf(V ′, λ′, h′)

∈ im(4 : Z2 → Z8) = ker(Z8 → Z4) .
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Carmen Rovi’s Edinburgh thesis II.

I (ii) For any fibre bundle F 2m → E 4k → B2n

(σ(E )− σ(B)σ(F ))/4 = Arf(V ′, λ′, h′) ∈ Z2

with

(V , λ, q)

= (H2k(E ;Z2), λE , qE )⊕ (H2k(B × F ;Z2),−λB×F ,−qB×F ) .

I (iii) If the action of π1(B) on (Hm(F ;Z)/torsion)⊗ Z4 is
trivial then the Arf invariant in (ii) is 0 and

σ(E ) ≡ σ(B)σ(F ) mod 8 .
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