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Homology manifolds were developed in the first half of the 20th century to give a precise
setting for Poincaré’s ideas on duality. Major results in the second half of the century
came from two different areas. Methods from the point-set tradition were used to study
homology manifolds obtained by dividing genuine manifolds by families of contractible
subsets. “Exotic” homology manifolds are ones that cannot be obtained in this way, and
these have been investigated using algebraic and geometric methods.

The Mini-Workshop brought together experts from both point-set and algebraic areas,
along with new Ph.D.’s and experts in related areas. This was the first time this was
done in a meeting focused only on homology manifolds. The 17 participants had 14 formal
lectures and a problem session. There was a particular focus on the proof, 10 years ago,
of the existence of exotic homology manifolds. This gave experts in each area an the
opportunity to learn more about details coming from the other area. There had also been
concerns about the correctness of one of the lemmas, and this was discussed in detail. One
of the high points of the conference was the discovery of a short and beautiful new proof
of this lemma. Extensive discussions of examples and problems have undoubtedly helped
prepare for future progress in the field.

The organizers plan to publish a proceedings for the meeting, including an article on the
history of the subject and a problem list.

There was also a wonderful interaction with the Mini-Workshop “Henri Poincaré and
topology” which was held in the same week. There was a joint discussion on the early
history of manifolds, and both groups offered evening lectures on topics of interest to
the other. Several of the daytime history lectures also drew large numbers of homology
manifold participants.
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Abstracts

DDP Resolutions of ANR Homology Manifolds

John L. Bryant

(joint work with S. Ferry, W. Mio, and S. Weinberger)

We outline a proof of the following:

Theorem. If X is a compact ANR homology n-manifold, n > 6, there is a cell-like map
φ : Y → X, where Y is an ANR homology n-manifold with the disjoint disks property.
The space Y is the inverse limit of a sequence of patch space approximations X1, X2, . . . to
X obtained by deforming the natural homotopy equivalence from each Xi+1 to Xi (through
X) first to a finer equivalence over Xi−1, using controlled surgery, and then to a UV 1 map.
Iterating this construction gives a sequence of maps of Y to X that converge to a cell-like
map.

Designer homology manifolds

Robert J. Daverman

The talk reviewed techniques, developed in collaborations with J. W. Cannon and J. J.
Walsh, for producing cell-like maps from a given n-manifold onto a homology n-manifold
X with various properties. Particular applications were outlined, including the controls
(from the collaboration with Cannon) leading to a cell-like map from the n-sphere onto
such an X, where no point of X has simply connected complement yet the product of X
with the reals is a manifold. Finally, also discussed were more general methods (from the
collaboration with Walsh) leading to another cell-like map from the n-sphere onto another
homology n-manifold X containing no embedded 2-disks.

Infinite dimensional homology manifolds

Alexander N. Dranishnikov

Infinite dimensional homology manifolds exist in dimension 5 and higher. All known
infinite dimensional homology manifolds are constructed as cell-like images of manifolds. A
map f : X → Y is called cell-like if all point pre-images f−1(x) are Čech contractible. Every
cell-like map of a closed manifold produce a homology manifold. If it raises the dimension
then it produces an infinite dimensional homology manifold. Dimension raising cell-like
maps were constructed by means of Edwards Resolution Theorem of infinite dimensional
compacta with finite cohomological dimension. Such compacta were constructed first by the
author for cohomological dimension 3 by means of K-theory. Using the Sullivan Conjecture
(= Miller’s theorem) Dydak and Walsh constructed such compacta with cohomological
dimension 2. Kozlowsky and Walsh proved that cell-like maps of 3-dimensional manifold
cannot raise the dimension. Whether there are dimension raising cell-like maps of 4-
manifolds is an open question.

Every finite n-dimensional homology manifold admits a degree one map onto Sn. Infinite
dimensional homology manifolds in dimension n constructed by the above procedure have
nowhere dense infinite dimensional singular sets. Therefore they also admit a degree one
map onto the n-sphere. We prove the following
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THEOREM 1. There are infinite dimensional homology manifolds in dimension 7 that
do not admit a map of degree one onto S7.

This manifold is constructed as the image of a cell-like map p : S7 → X that has a
nontrivial kernel for complex K-homology with Z/p coefficients. This homology manifold
was used by Ferry, Weinberger and the author do disprove some coarse conjectures due to
Gromov and Roe motivated by the Novikov Higher Signature Conjecture. Using similar
construction Steve Ferry and the author constructed examples of topologically different
closed manifolds M1 and M2 and cell-like maps f1 : M1 → X and f2 : M2 → X with the
same image. Thus, in the contrast to the case of finite dimensional homology manifolds
(Quinn’s Uniqueness of Resolution Theorem) in the realm of infinite dimensional homology
manifold there is no uniqueness of resolution.

Constructing compact spaces of finite integral dimension and infinite covering
dimension

Jerzy Dydak

The talk reviewed two constructions:

(a) (A.Dranishnikov) X such that dimZ(X) = 3 and dim(X) = ∞.
(b) (J.Dydak and J.Walsh) X such that dimZ(X) = 2 and dim(X) = ∞.

The main application of those two constructions for our conference is in creating an exotic
homology 5-manifold of infinite covering dimension. Construction (a) uses existence of a
generalized homology vanishing on K(Z, 3). Construction (b) uses a truncated cohomology
represented by loop spaces of S3. The Sullivan Conjecture (a theorem of H.Miller) shows
that this particular cohomology vanishes on K(Z, 2).

The Approximation Theorem

Robert D. Edwards

The talk discussed various issues related to the following “classical” result. It is stated
here for the empty-boundary case.
Theorem (rde, 1977) Suppose that f : M → X is a cell-like surjection (:= each f−1(x)
is a cell-like compactum) from a topological manifold-without-boundary M to a finite
dimensional space X, and suppose that dim M > 5. Then f is ABH (:= approximable
by homeomorphisms) ⇐⇒ X has the DDP (= disjoint discs property := any two maps
from a 2-disc to X are arbitrarily closely approximable by maps having disjoint images).

It is known that any finite dimensional image of a closed manifold under a cell-like-map,
such as X above, must in fact be an ENR homology manifold having the same dimension
as M .

Bizarre spaces whose product with a line is a manifold

Denise M. Halverson

The disjoint homotopies property, a general position property first proposed by Bob
Edwards, has proven highly effective in detecting non-manifold spaces of dimension n > 4
whose product with a line is a manifold. Such spaces are called codimension one manifold
factors. A space X has the disjoint homotopies property (DHP ) if for any pair of path
homotopies f, g : D × I → X where D = I = [0, 1], there are approximations f ′, g′ :
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D × I → X such that f ′(D × {t}) ∩ g′(D × {t}) = ∅ for all t ∈ I. If X is an ANR with
DHP , then X ×R has the disjoint disks property (DDP ). Hence resolvable generalized
n-manifolds with DHP , are codimension one manifold factors.

Spaces that have DHP include resolvable generalized n-manifolds, n > 4, that have the
plentiful 2-manifolds property. A space X has the plentiful 2-manifolds property (P2MP )
if any path α : D → X can be approximated by a path α′ : D → N ⊂ X where N is
a 2-manifold embedded in X. Examples of spaces that have P2MP include resolvable
generalized manifolds of dimension n > 4 that arise from a nested defining sequence and
carefully constructed k-ghastly spaces for 2 < k < n. A space is said to be k-ghastly if it
contains no embedded k-cells but does contain embedded (k− 1)-cells. Hence these spaces
are codimension one manifold factors.

Recently it has also been shown that there are also 2-ghastly spaces that have DHP .
The 2-ghastly spaces clearly do not satisfy P2MP . It has been shown previously that such
spaces can be constructed to be codimension one manifold factors. Thus, the fact that
2-ghastly spaces have DHP demonstrates that DHP is a fairly effective general position
property in characterizing codimension one manifold factors of dimension n > 4.

The B.F.M.W.-construction of generalized manifolds

Friedrich Hegenbarth

The lecture reviewed the systematic construction of generalized manifolds of dimension
greater or equal to six given by J.Bryant, S.Ferry, M.Mio and S.Weinberger (Ann. of Math.
143 (1996), 435-476). The generalized manifold to be constructed can be considered as a
limit of well-controlled Poincaré complexes and maps. It begins with a topological closed
n-manifold M together with an element u of the nth L-homology group of M . Depend-
ing on the element u the resulting generalized manifold X can be homotopy equivalent
to M or of general type. If the fundamental group of M is such that the assembly map
is injective one obtains generalized manifolds which do not have the homotopy type of
any topological manifold. The main ingredient to construct the controlled sequence of
Poincaré complexes is the controlled surgery sequence established by E.Pedersen, F.Quinn
and A.Ranicki (see ”Controlled surgery with trivial local fundamental groups”, available
under arXiv:math.GT/0111269v1). The construction consists in plugging into the man-
ifold M a well-controlled realization V of the element u to obtain a complex X ′ with a
controlled Poincaré structure. This construction is repeated infinitely many times with
better and better control. The resulting limit space is a generalized n-manifold. To show
this one proves that X is an ANR and that the boundary of a regular neighbourhood is
an approximate fibration (see R.J.Daverman, L.Husch: Decompositions and approximate
fibrations, Mich. Math. J. 31 (1984), 197-214). Then Quinn’s resolution obstruction i(X)
(see F.Quinn: An obstruction to the resolution of homology manifolds, Mich. Math. J. 34
(1987), 285-292) depends on the choice of u so it can be chosen to be 1 + 8k, k arbitrary.
Hence this construction produces generalized manifolds which cannot be homeomorphic to
topological manifolds.
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Transversality Obstructions

Heather M. Johnston

The multiplicativity of the Quinn Index implies that transversality for homology mani-
folds fails in general. Let Rk

i denote a contractible homology manifold of Quinn Index i, and
Xj a homology manifold of Quinn Index j. If f : X → Rk

i is transverse to a point x, then
I(f−1(x) × Rn

i ) = I(Xj) implies i|j. The surgery exact sequence for homology manifolds
of Bryant, Ferry, Mio and Weinberger can be used to obtain transversality for homology
manifolds when possible. In joint work with Andrew Ranicki, we show that there are no
obstructions to transversality for f : Xn → (M, N) where Xn is a homology manifold and
(M, N) is a manifold pair such that N has locally trivial normal bundle neighbourhood
ν(N) ⊂ M and n−codim(M, N) > 7, i.e., any such f is s-cobordant to a map g : X ′ → M
such that g−1(N) = Z is a homology manifold and g|g−1(ν(N)) : ν(Z) → ν(N) is a bundle
map.

Given f : Xn → Rk
i , if p = n − k > 7, then there is no obstruction to Poincaré

transversality. If f is assumed to be Poincaré transverse to a point x, i.e. f = g ◦ h for a
Poincaré space P p, a homotopy equivalence h : X → (P ×Dk

i )∪V and g : (P ×Dk
i )∪V →

Rn
i such that g|P × Dk

i is projection followed by inclusion, then there is an obstruction
σ(f) ∈ Hp(P ; L/iL) which vanishes iff f is ε-s-cobordant to a transverse map for any ε < ε0

where ε0 depends on h.

UV k Maps on Homology Manifolds with the Disjoint Disks Property

Washington Mio

The study of control improvement for maps defined on homology manifolds with the
disjoint disks property (DDP ) is essential in the investigation of the (local) geometric
topology of these spaces. In this talk, we outline a proof of the following result. Let B
be a compact metric ANR and n > 6. Given ε > 0, there is δ > 0 such that if Xn is a
compact ENR homology n-manifold with the DDP and f : X → B is a δ-UV k map, then
f is ε-homotopic to a UV k map, provided that 0 < 2k + 3 6 n.

Squeezing

Erik Kjær Pedersen

Let K be a finite complex embedded in Sn for some large n. Choose a disjoint base
point + in Sn. The open cone O(K+) is the set {t · x ∈ Rn+1|x ∈ K+}.

The bounded category parametrized by a metric space M with coefficients in a ring
R, denoted CM(R), has objects based R-modules with a proper map from the basis to
M . Morphisms are required to be bounded in the sense that a morphism applied to a
basis elements only involves basis elements within a k-ball. Here k only depends on the
morphism, not the given basis element. The boundedness condition is only relevant when
M is non-compact, but we always obtain a filtered category this way.

We show that K2(CO(K+)(R)) codifies a sequence of ever smaller automorphisms in
CK(R), thus providing a categorical basis for squeezing. In joint work with Quinn and
Ranicki we obtain a similar result in L-theory when R = Z using the principle that ”split-
ting implies squeezing”. The restriction R = Z has recently been removed in joint work
with M. Yamasaki.

5



History of manifolds and homology manifolds

Frank S. Quinn

This lecture described the main developments in the theory, from Poincaré to the present
day.

The early period was from the initiation by Poincaré in 1895 to 1932 when the modern
definition using coordinate charts was formulated by Whitehead and Veblen. This period
was better described in the “Poincaré and topology” workshop lecture of E. Scholz.

Analysis of the duality structure was developed by Lefschetz, Alexander, Čech in the 30s
and 40s, and brought to essential completion by Wilder in the 40s and early 50s, though an
important simplification was contributed by Bredon in the early 60s. After this the main
stream in the study of manifolds concerned properties of smooth manifolds, as exemplified
by the work of Whitney.

Study of wild and point-set properties of manifolds continued in the 1950s-70s primarily
in the “Bing school”, focused on cell-like quotients of manifolds. Contributors included
Bing, Bryant, Lacher, Cannon, Seebeck, Daverman, Walsh, and Edwards. There were
also important contributions by Chernavski and Homma. A culmination was reached
in Edwards’ theorem on homeomorphism approximation of manifold resolutions of ANR
homology manifolds with the “disjoint disks property” (DDP ).

The next major ingredient was Quinn’s use, in the early 1980s, of surgery to construct
resolutions. One outcome was a characterization of topological manifolds in terms of homol-
ogy manifolds, the resolution obstruction, and the DDP . The existence of nonresolvable
homology manifolds was shown in the early 1990s by Bryant, Ferry, Mio, and Weinberger.
This proof and its elaborations was a major topic at the Workshop.

The resolution obstruction

Andrew A. Ranicki

The algebraic theory of bounded surgery allows the Quinn obstruction to the resolution of
a compact connected n-dimensional ANR homology manifold X

i(X) ∈ L0(Z) = Z
to be interpreted as the Rn-bounded surgery obstruction

i(X) = σb
∗(f) ∈ Ln(CRn(Z)) = L0(Z)

of an Rn-bounded proper degree 1 normal map f : X1 → Rn on an open neighbourhood
X1 ⊂ X of a point x ∈ X. See the book ”Lower K- and L-theory” (Cambridge, 1992) for
an exposition of bounded L-theory.

For any space X there is defined a commutative braid of exact sequences

Hn(X; L•)

%%KKKKKKKKKK

A

''
Ln(Z[π1(X)])

%%KKKKKKKKKK

''

Sn(X)

Hn(X; L•)

A
99ssssssssss

%%KKKKKKKKKK
Sn(X)

99ssssssssss

%%KKKKKKKKKK

Sn+1(X)

99ssssssssss

77
Hn(X; L0(Z))

99ssssssssss

77
Hn−1(X; L•)
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with L• (resp. L•) the 1- (resp. 0-) connective quadratic L-spectrum of Z such that

L0 ' G/TOP (resp. L0 ' L0(Z)×G/TOP )

with A (resp. A) the assembly map to the Wall surgery obstruction group of Z[π1(X)].
For a finite n-dimensional Poincaré complex X and n > 5 (resp. 6) the total surgery
obstruction s(X) ∈ Sn(X) (resp. the 4-periodic version s(X) = [s(X)] ∈ Sn(X)) is such
that s(X) = 0 (resp. s(X) = 0) if and only if X is homotopy equivalent to a compact
n-dimensional topological manifold (resp. ANR homology manifold) M . For any such
M Sn+1(M) = STOP (M) (resp. Sn+1(M) = SH(M)) is the topological (resp. homology)
manifold structure set. The total surgery obstruction of a homology manifold M is the
image of the resolution obstruction

s(M) = [i(M)] ∈ im(Hn(M ; L0(Z)) → Sn(M)) = ker(Sn(M) → Sn(M)) .

See the book ”Algebraic L-theory and topological manifolds” (Cambridge, 1992) for the
exposition of the total surgery obstructions.

Homology 3-manifolds

Dusan Repovš

Dimension 3 is in many respects peculiar for generalized manifolds:

(1) This is the lowest dimension when genuine singularities appear;
(2) Unlike higher dimensions, generalized 3-manifolds cannot have ”cone” singularities;

and
(3) The unresolved status of the Poincaré conjecture represents a significant obstruction

to recognizing topological 3-manifolds.

In this talk we centred the discussion on the history of the Recognition problem for 3-
manifolds. According to Cannon’s program, one should first address the Resolution prob-
lem for generalized 3-manifolds - given a generalized 3-manifold, blow it up via a cell-like
map into a genuine 3-manifold. Initially, we looked at examples, of various degrees of
sophistication, which can be constructed if fake cubes exist (Wilder, Brin, Brin-McMillan,
Jakobsche, and Jakobsche-Repovš). Modulo the Poincaré conjecture, there are now several
partial results concerning resolvability of generalized 3-manifolds X, with various condi-
tions on X, most of the time on the dimension of the singular set S(X) (Bryant-Lacher,
Lacher-Repovš, Brin, Brin-McMillan, Thickstun, and Daverman-Thickstun). Moving on
to the second (and final) step of Cannon’s program, the General position problem - find
simple ”homotopical” properties which detect manifolds, we studied various appropriate
3-dimensional ”analogues” of Cannon’s Disjoint disks property (DDP ) which - as Edwards
has shown so dramatically, works perfectly in higher dimensions: we proposed the Dehn
lemma property (DLP ), the Map separation property (MSP ), the Light map separation
property (LMSP ), the Spherical simplicial approximation property (SSAP ), and the Rel-
ative simplicial approximation property (RSAP ). They were introduced at various times
by different people and they produced with different degree of success, ”shrinking” the-
orems for the corresponding cell-like upper semicontinuous decompositions of topological
3-manifolds, which in turn were constructed as cell-like resolutions of given generalized
3-manifolds (Lacher-Repovš, Daverman-Repovš, and Daverman-Thickstun). Several open
problems and conjectures regarding generalized 3-manifolds were also formulated.
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Squeezing in L-theory

Masayuki Yamasaki

Let X be a subcomplex of the standard N -simplex in RN+1 and let n > 0 be an integer.
Then there exist constants ε0 > 0 and κ > 1 such that any R-coefficient quadratic Poincaré
complex on a fibration p : E → X with radius ε ≤ ε0 is κε-cobordant to an arbitrarily
small quadratic Poincaré complex. Here R is a ring with involution. There is also a relative
version of this, and we can conclude that, for all ε > 0 and δ > 0 satisfying κε ≤ δ ≤ ε0,
the controlled Ln-groups Ln(p; R, ε, δ) are all naturally isomorphic.

Edited by Frank Quinn and Andrew Ranicki
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