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Foreword

As the second of a conference series in mathematics, Josai University sponsored
the Conference on Surgery and Geometric Topology during the week of September
17 — 21, 1996. The scientific program consisted of 13 lectures, listed below, and there
was an excursion to Takaragawa, Gunma on the 21st.

This volume collects papers by participants, as well as some of the abstracts pre-
pared by the lecturers for the conference. The articles are also available electronically
on WWW from:

http://math. josai.ac.jp/ yamasaki/conference.html
at least for several years.

We would like to thank Josai University, and Grant-in-Aid for Scientific Research
(A)(1) of the Ministry of Education, Science, Sports and Culture of Japan, for their
generous financial support. Thanks are also due to the university staff for their various

support, to the lecturers and to the participants of the conference.

Andrew Ranicki
(Edinburgh, Scotland)
Masayuki Yamasaki
(Sakado, Japan)
December, 1996
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COHOMOLOGY AND EULER CHARACTERISTICS
OF COXETER GROUPS

TOSHIYUKI AKITA

1. INTRODUCTION

Coxeter groups are familiar objects in many branches of mathematics. The
connections with semisimple Lie theory have been a major motivation for the study
of Coxeter groups. (Crystallographic) Coxeter groups are involved in Kac-Moody
Lie algebras, which generalize the entire theory of semisimple Lie algebras. Coxeter
groups of finite order are known to be finite reflection groups, which appear in
invariant theory. Coxeter groups also arise as the transformation groups generated
by reflections on manifolds (in a suitable sense). Finally, Coxeter groups are classical
objects in combinatorial group theory.

In this paper, we discuss the cohomology and the Euler characteristics of (finitely
generated) Coxeter groups. Our emphasis is on the role of the parabolic subgroups
of finite order in both the Euler characteristics and the cohomology of Coxeter
groups.

The Euler characteristic is defined for groups satisfying a suitable cohomological
finiteness condition. The definition is motivated by topology, but it has applications
to group theory as well. The study of Euler characteristics of Coxeter groups was
initiated by J.-P. Serre [22], who obtained the formulae for the Euler characteristics
of Coxeter groups, as well as the relation between the Euler characteristics and the
Poincaré series of Coxeter groups. The formulae for the Euler characteristics of
Coxeter groups were simplified by I. M. Chiswell [7]. From his result, one knows
that the Euler characteristics of Coxeter groups can be computed in terms of the
orders of parabolic subgroups of finite order.

On the other hand, for a Coxeter group W, the family of parabolic subgroups of
finite order forms a finite simplicial complex F(W). In general, given a simplicial
complex K, the Euler characteristics of Coxeter groups W with F(W) = K are
bounded, but are not unique. However, it follows from the result of M. W. Davis
that e(W) = 0 if F(W) is a generalized homology 2n-sphere (Theorem 4). Inspired
by this result, the author investigated the relation between the Euler characteris-
tics of Coxeter groups W and the simplicial complexes F (W), and obtained the
following results:

1. If (W) is a PL-triangulation of some closed 2n-manifold M, then

o) =1 - XD,
2
2. If F(W) is a connected graph, then e(W) > v(F(W)), where v(—) denotes

the genus of the graph.
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See Theorem 5 and 7. Conversely, given a PL-triangulation K of a closed 2n-
manifold M, we obtain an equation for the number of i-simplices of K (0 < i < 2n)
by considering a Coxeter group W with K = F (W) (Theorem 6 and its corollary).

The family of parabolic subgroups of finite order is also important in understand-
ing the cohomology of a Coxeter group W. For instance, let k£ be a commutative
ring with unity, p a ring homomorphism

p: H*(W,k) = [[ H* (W, k).
Wr
induced by restriction maps, where Wy ranges all the parabolic subgroups of finite
order. Then u € ker p is nilpotent and cannot be detected by any finite subgroup
of W. And we can say more about the homomorphism p.

We remark that, according to the results of D. Quillen [19] and K. S. Brown
[5], the family of elementary abelian p-subgroups also plays an important role.
However, it is p-local. The réle of the parabolic subgroups of finite order is not
p-local, a phenomenon in which I am very interested.

Notation 1. For a finite set X, the cardinality of X is denoted by |X|. In partic-
ular, for a finite group G, the order of G is denoted by |G|.

2. DEFINITIONS AND EXAMPLES
In this section, we give the definition and elementary examples of Coxeter groups.

Definition 2.1. Let S be a finite set. Let m : Sx.S — NU{oo} be a map satisfying
the following three conditions:

1. m(s,t) = m(t,s) for all s,t € S,

2. m(s,s)=1forall s € S,

3. 2 < m(s,t) < oo for all distinct s,t € S.

The group W defined by the set of generators S and the fundamental relation
(s-t)™H =1 (m(s,t) # 00) is called a Cozeter group. Some authors permit S to
be an infinite set.

Remark 1. We frequently write (W, S) or (W, S, m) instead of W to emphasize S
and m. The pair (W, S) is sometimes called a Cozeter system in the literature.

Remark 2. Each generator s € S is an element of order 2 in W. Hence W is
generated by involutions.

Example 2.1. Let (W, S) be a Coxeter group with S = {s,t}. If m(s,t) < oo, then
W is isomorphic to Dy, (s,¢), the dihedral group of order 2m(s,t). If m(s,t) = oo,
then W is isomorphic to Z /27 x 7 |27, the free product of two copies of the cyclic
group of order 2.

Example 2.2. A finite reflection group is a finite subgroup of the orthogonal group
O(n) (for some n) generated by orthogonal reflections in the Euclidean space. A
finite reflection group is known to be a Coxeter group, i.e., it admits a presentation
of Coxeter groups. Conversely, any Coxeter group of finite order can be realized as
a finite reflection group. Hence one can identify Coxeter groups of finite order with
finite reflection groups in this way.

For example, an elementary abelian 2-group (Z/2Z)" and a symmetric group
3, can be regarded as Coxeter groups. Finite reflection groups are completely
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classified and their list is short. By using the list, it is easy to determine if a given
Coxeter group is of finite order. See [4], [15] for details.

Example 2.3. Coxeter groups are closed under free products and direct products.

Example 2.4 (Full triangular group). Let p,g,r be integers greater than 1. The
group T*(p, q,r) defined by the presentation

T*(p,q,7) =< 51, 89,83]|57 = (5152)” = (8253)7 = (s351)" =1 >

is called the full triangular group. It is obvious from the presentation that T*(p, g, r)
is a Coxeter group. The group T*(p, q,) is known to be of finite order if and only
if

1 1 1

SH-+S>1

p q T
The triangular group

T(p,q,r) =< u,vju’ =v! = (uv)" =1 >

is a subgroup of T*(p, ¢,r) of index 2 (via u = s159 and v = s253).

The full triangular group T*(p,q,r) can be realized as a planar discontinuous
group acting on a sphere S? (if 1/p+ 1/q + 1/r > 1), on the Euclidean plane E?
(if 1/p+1/q+ 1/r = 1), or on the hyperbolic plane H? (if 1/p+ 1/q+ 1/r < 1).
The orbit space of the action of T*(p,q,r) on S?, E?, or H? is homeomorphic to a
disk D2,

Example 2.5. Given integers p, q,r greater than 1, let O(p,q,r) be the orbifold
defined as follows. (See [21] for the notion of orbifolds.) The underlying space of
O is a standard 2-simplex A2. Vertices vg, v1, and vy of A? are corner reflection
points of order 2p, 2¢, and 2r. The points in the interior of edges are reflection
points, while the points in the interior of the whole A? are manifold points.

The orbifold O(p, q,r) is uniformable (i.e., it has a manifold cover). Indeed, the
orbifold O(p,q,r) comes from the orbit space of the action of the full triangular
group T*(p, q,r) on one of S?, E2, or H? mentioned in the bottom of Example 2.4.
The orbifold fundamental group 7¢"(O(p, q,r)) is isomorphic to T*(p, q,r).

Let O'(p,q,r) be the orbifold, whose underlying space is a 2-sphere S?, with
three cone points of order p, ¢, and r. Then there is a double orbifold covering

O'(p,q,7) = O(p,q,7).

orb

The orbifold fundamental group #¢"*(O’(p,q,r)) is isomorphic to the triangular
group T'(p,q,r). See [17] and [21] for the details.

Example 2.6. Example 2.4 and 2.5 are special cases of reflection orbifolds and
groups generated by reflections on a manifold, both of which are closely related to
Coxeter groups. See [8] and [16] for the general theory.

3. PARABOLIC SUBGROUPS

Let (W, S, m) be a Coxeter group. For a subset T' C S, define Wy to be the
subgroup of W generated by the elements of T (i.e. Wpr =< T >C W). In
particular, Wy = {1} and Ws = W. Wy is called a parabolic subgroup (or special
subgroup) of W. The subgroup Wr is known to be a Coxeter group. Indeed,
(Wr,T,m|T x T) is a Coxeter group. It is obvious from the definition that the
number of parabolic subgroups of a Coxeter group is finite.
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Example 3.1. Parabolic subgroups of the full triangular group T*(p, ¢,r) consist
of 8 subgroups. Namely,

1. The trivial subgroup {1}.

2. Three copies of a cyclic group of order 2 (generated by single element).

3. Dihedral groups of order 2p, 2q, and 2r (generated by two distinct elements).
4. T*(p,q,r) itself.

The following observation asserts that the parabolic subgroups of finite order are
maximal among the subgroups of finite order in a Coxeter group.

Proposition 1 ([9, Lemma 1.3]). Let W be a Cozeter group and H its finite sub-
group. Then there is a parabolic subgroup Wg of finite order and an element w € W
such that H C wWw™!.

4. EULER CHARACTERISTICS

In this section, we introduce the Euler characteristics of groups. First we intro-
duce the class of groups for which the Euler characteristic is defined.

Notation 2. Let I' be a group. Then ZT is the integral group ring of I'. We regard
Z as a ZI'-module with trivial I'-action.

Definition 4.1. A group I is said to be of type FL if Z admits a free resolution
(over ZT) of finite type. In other words, there is an exact sequence

0—=F,—-F,1— - —>F—>F—>Z—0.
of finite length such that each Fj is a finitely generated free ZI'-module.
Remark 3. If I is a group of type FL, then cdI" < co and hence T is torsion-free.

Definition 4.2. A group I is said to be of type VFL if some subgroup of finite
index is of type FL.

Now we define the Euler characteristic of a group. Let I" be a group of type FL,
and let

0—=F,—-F,1— - —>F—>F—>Z—0.
b a free resolution of finite length. The Fuler characteristic e(T') of T is defined by
e(l) = Z(—l)irankZpFi.
Let T" be a group of type VFL. Then its Euler characteristic e(I") is defined by
e(T)
I =
‘D=7

where I is a subgroup of finite index which is of type FL. The rational number
e(T") is independent of the choice of a subgroup I, and we have

€Q

Proposition 2. Let ' be a group and I a subgroup of finite index. Then I is of
type VFL if and only if T is of type VFL. If T is of type VFL, then

e(l") = (0 : T') - e(I).

We give some examples of groups of type VFL and their Euler characteristics.
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Example 4.1. Any finite group I is of type VFL. Its Euler characteristic is given
by

1
el = —.
T
(Take I to be a trivial group {1}.)

Example 4.2. Let K be a finite aspherical polyhedron. Then its fundamental
group m = 7 (K) is of type FL, and
e(m) = x(K),

where y(K) is the Euler characteristic of K. The fact that the Euler characteristic
of a finite aspherical polyhedron depends only on its fundamental group is the
motivation of the definition of Euler characteristics of groups.

For instance, the circle S* is aspherical and 7;(S') = Z, hence

e(Z) = x(S') = 0.
Let X, be a closed orientable surface of genus g > 0. Then X, is aspherical, proving
e(m1(Zg)) = x(Zg) =2 - 2g.
Example 4.3. If 'y, T’y are groups of type VFL, then their free product I'y * 'y
and their direct product I'y x I's are of type VFL, and
e(T'y xTs) =e(T'y) +e(ls) — 1,
e(T'; x Ty) = e(Ty) - e(Ty).
As a consequence, a free group F), and a free abelian group Z" are of type VFL (in
fact type FL), and we have
e(Fp) =1-—n,
e(Z") =0,
where F}, is the free group of rank n.
Example 4.4. The group SL(2,Z) has a subgroup of index 24 which is isomorphic

to the free group of rank 3. Hence SL(2,Z) is of type VFL. Using Example 4.2 and
4.3, one can compute the Euler characteristic of SL(2,7Z) as
o 6(F3) o 1
e(SL(2,Z)) = o1 = 13°
Example 4.5. The Euler characteristics of groups are closely related to the Euler
characteristics of orbifolds. (See [24] or [21] for the definition of the orbifold Euler
characteristics.) Namely, let O be an orbifold such that

1. O has a finite manifold covering M — O for which M has the homotopy type
of a finite complex.
2. The universal cover of O is contractible.

Then the orbifold fundamental group 7 = 7{"*(O) of O is of type VFL and one has

e(m) = x*""(0),
where x°"?(O) is the orbifold Euler characteristic of O.
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Example 4.6. Let ' be a full triangular group T*(p, ¢, r) of infinite order. Then,
as in Example 2.4, T is isomorphic to the orbifold fundamental group of the orbifold
O(p,q,r). The orbifold O(p, q,r) satisfies the conditions 1 and 2 in Example 4.5.
Hence the Euler characteristic of I is identified with the orbifold Euler characteristic
of O(p, q,r). Using this, one has

1/1 1 1
C(F):§<5+a+;—l>.

Finally, we mention two properties of Euler characteristics of groups. Let G be
a group of type VFL.

Theorem 1 (Gottlieb-Stallings [12], [23]). If e(G) # 0, then the center of G is a
finite subgroup.

Theorem 2 (Brown [5]). Let p be a prime. If p™ divides the denominator of e(G),
then G has a subgroup of order p".

In view of Example 4.1, Theorem 2 is a generalization of (a part of) Sylow’s theorem.

5. EULER CHARACTERISTICS OF COXETER GROUPS (I)

J.-P. Serre [22] proved that Coxeter groups are of finite homological type. In
fact he proved that Coxeter groups satisfy a much stronger finiteness condition
than finite homological type, called type WFL. He also provided the formulae for
the Euler characteristics of Coxeter groups.

The formulae of Euler characteristics of Coxeter groups were simplified by I. M.
Chiswell [7], which we now quote. Before doing this, we remark that, if a Coxeter
group W is of finite order, then its Euler characteristic is given by e(W) = 1/|W|
(Example 4.1). Hence we may assume a Coxeter group W to be of infinite order.

Theorem 3 (Chiswell [7]). The Euler characteristic e(W) of a Cozeter group W
of infinite order is given by

1 e(W) = ) Tle(wy) = Lo
(1) (W) TZCS (=)™ le(Wr) TXC:S (-1) T
[Wr|<oo |Wr|<oco

Thus the Euler characteristics of Coxeter groups are completely determined their
parabolic subgroups of finite order. Since the order of a finite reflection group is
easy to compute, so is the Euler characteristic of a Coxeter group.

Serre also obtained in [22] the relation between the Euler characteristic of a
Coxeter group and the Poincaré series. Namely, for a Coxeter group (W, S), define

gty =Yt
weWw

where I(w) is the minimum of the length of reduced words in S representing w.
The function ¢(t) is known to be a rational function and is called Poincaré series
of (W, S). Serre proved

In general, Poincaré series of arbitrary finitely presented groups may not satisfy
this property. See [11].
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6. POSET oF PARABOLIC SUBGROUPS OF FINITE ORDER

Before continuing the discussion of the Euler characteristics of Coxeter groups,
we introduce the simplicial complexes associated with Coxeter groups. Given a
Coxeter group (W, S), define F(W) to be the poset of nontrivial subsets F' C S
such that the order of the corresponding parabolic subgroup W is of finite order.
If there is no ambiguity we write F instead of F(W). The poset F(W) can be
regarded as an (abstract) simplicial complex with the set of vertices S.

Example 6.1. If (W, S) is a finite reflection group with |S| = n, then any nontrivial
subset F' C S belongs to (W) and hence
F=A"1
the standard (n — 1)-simplex.
Example 6.2. If (W,S) is a full triangular group of infinite order, then
F = 0A?,
the boundary of the standard 2-simplex (i.e. a triangle).
Example 6.3. The list of Coxeter groups with F (W) = A3 can be found in [24].

Example 6.4. Let K be a finite simplicial complex. A finite simplicial complex
K is called a flag complezx if K satisfies the following condition: For any subset
V ={vg, - ,v,} of vertices of K, if any two element subset {v;,v;} of V form an
edge of K, then V = {vg,--+,v,} spans an n-simplex. A barycentric subdivision
Sd K of a finite simplicial complex K is an example of a flag complex.

If K is a flag complex, then there is a Coxeter group W for which F(W) = K.
Namely, let S be the set of vertices of K. Define m : S x S — NU {00} by

1 S1 = S2
m(s1,82) =2  {s1,s2} forms a 1-simplex
oo otherwise.

The resulting Coxeter group (W,S) satisfies (W) = K. In particular, given a
finite simplicial complex K, there is a Coxeter group W with F(W) = Sd K.

Definition 6.1. A Coxeter group (W,S) with all m(s,t) = 2 or oo for distinct
s,t € S is called right-angled Coxeter group.

Coxeter groups constructed in Example 6.4 are examples of right-angled Coxeter
groups. Conversely, if W is a right-angled Coxeter group, then F (W) is a flag
complex.

Remark 4. It is not known if there is a Coxeter group W for which F(W) = K for
a given finite simplicial complex K.
7. EULER CHARACTERISTICS OF COXETER GROUPS (II)

Now let us consider the Euler characteristic of W in terms of the structure of
F(W). Proofs of statements of the following three sections will appear in [3]. If
(W, S) is a finite reflection group, then

(2) W > 2151,
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The equality holds if and only if W is isomorphic to the elementary abelian 2-group
(Z/27,)!5! of rank |S|. Now let K be a finite simplicial complex. Then the Euler
characteristic of any Coxeter group W with K = F (W) must satisfy

(K (K
(3) 1—Zf()Se(W)51+Zf()

2i+1 9i+1 7’

iceven icodd

where f;(K) is the number of i-simplices of K. This follows from Theorem 3 and the
equation (2). As in the following example, the inequality (3) is not best possible.

Example 7.1. Suppose K = OA%. Then Coxeter groups W with F(W) = K are
precisely full triangular groups of infinite order. The inequality (3) implies

1 7
- < <.
pSe) =7
On the other hand, from the formula in Example 4.6 one has
1
—5 < C(W) S 0,
which is best possible.

Example 7.1 shows that, for a fixed finite simplicial complex K, Euler characteristics
of Coxeter groups with F(W) = K can vary. However, from the result of M. W.
Davis [8], one has:

Theorem 4. Let W be a Cozeter group such that F(W) is a generalized homology
2n-sphere, then

e(W) =0.

Here a generalized homology 2n-sphere is a simplicial complex K satisfying

1. K has the homology of a 2n-sphere.

2. The link of an i-simplex of K has the homology of a (2n — i — 1)-sphere.

A simplicial complex satisfying the condition 1 and 2 is also called a Cohen-
Macaulay complex. A triangulation of a homology sphere is an example of a gener-
alized homology sphere.

Note that Davis actually proved that, if W is a Coxeter group such that F(W)
is a generalized homology 2n-sphere, then, for each torsion free subgroup I' of finite
index in W, there is a closed aspherical (2n + 1)-manifold M with 7 (M) = T [8,
Theorem 10.1]. It follows that

e(l') x(M)
‘M=o~ w.n "
since M is odd dimensional and has homotopy type of a finite simplicial complex.

We (partially) generalize Theorem 4. A finite simplicial complex K is a PL-
triangulation of a closed M if, for each simplex T of K, the link of T" in K is
a triangulation of (dim M — dimT — 1)-sphere. If K is a PL-triangulation of a
homology sphere, then K is a generalized homology sphere.

Theorem 5 (T. Akita). Let W be a Coxzeter group such that F(W) is a PL-
triangulation of a closed 2n-manifold, then

_ . x(FW))
eW)=1- s

where x(F(W)) is the Euler characteristic of the simplicial complex F(W).
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Remark 5. Given a simplicial complex K, there is a Coxeter group W such that
F(W) agrees with the barycentric subdivision of K (Example 6.4). Hence there
are Coxeter groups for which Theorem 5 and Theorem 5 can be applied.

Remark 6. We should point out that the assumptions of Theorem 4 and 5 permit,
for instance, K to be an arbitrary triangulation of 2n-sphere. The significance
becomes clear if we compare with the case that K is a triangulation of a circle S*.
Indeed, the Euler characteristics of Coxeter groups with F (1) a triangulation of a
circle S can be arbitrary small.

Remark 7. Under the assumption of Theorem 5, 2 - e(WW) is an integer. On the
other hand, given a rational number ¢, there is a Coxeter group W with e(W) = q.

8. APPLICATION OF THEOREM 5

Let K be a flag complex. Let (W, S) be a Coxeter group with F(W) = K as
in Example 6.4. Any parabolic subgroup W of finite order is isomorphic to the
elementary abelian 2-group (Z/27)!F! of rank |F|. Hence the Euler characteristic
of W is determined by the number of simplices of K. Explicitly, let f;(K) be the
number of i-simplices of K. Then

(@) W) =1+ 3 (-2) 5o,

Using this together with Theorem 5, one obtains

Theorem 6 (T. Akita). Let K be a PL-triangulation of a closed 2n-manifold. As-
sume K is a flag complex. Then

=3 (<2) s

i
In particular, the barycentric subdivision of any finite simplicial complex is a flag
complex. Thus

Corollary . Let K be a PL-triangulation of a closed 2n-manifold. Let f;(Sd K) is
the number of i-simplices of the barycentric subdivision SAd K of K. Then

X(SAK) =) (—%)Zfi(Sd K).

i

In general, if K is a triangulation of a closed n-manifold, then

X(E) = (-1)'fi(K)
(5) ni+ 1

hold. The equality in Theorem 6 is not the consequence of the equalities (5).

For a triangulation K of a sphere S™ (for arbitrary n), the Dehn-Sommerville
equations give a set of equations for the f;(K)’s. It would be interesting to in-
vestigate the relation between the equation in Theorem 6 and Dehn-Somerville
equations.
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9. EULER CHARACTERISTICS OF ASPHERICAL COXETER (GROUPS AND THE
GENUS OF A GRAPH

In this section, we consider the Euler characteristics of Coxeter groups W such
that F(W) is a graph (1-dimensional simplicial complex).

Definition 9.1. A Coxeter group (W, S) is called aspherical (in [18]) if every three
distinct elements of S generate a parabolic subgroup of infinite order.

In view of Example 2.4, a Coxeter group (W, S) is aspherical if and only if for every

three distinct elements s,t,u € S,

1 1 1
+—+

Mst Mty Mays

<1

holds, where 1/c0 = 0 by the convention. It is easy to see that a Coxeter group W
is aspherical if and only if (W) is a graph.

For a graph I, let E(T') be the set of edges of I'. When (W, S) is an aspherical
Coxeter group with I' = F(W), it follows from Chiswell’s formula (1) that

5] 15| [ED)
12 <12t PR

(6) 5 <e(W) < 5 + 1

One has another inequality for e(W') using the genus of a graph. The genus of a
graph I, denoted by ~(T'), is the smallest number g such that the graph I' imbeds in
the closed orientable surface of genus g. For instance, a graph I' is a planar graph
if and only if v(I') = 0.

Theorem 7 (T. Akita). Let (W,S) be a Cozxeter group for which F(W) is a con-
nected finite graph. Then

e(W) > v(F).

Example 9.1. For any non-negative integer n, there is a Coxeter group W satis-
fying

1. F(W) is a graph of genus n.

2. e(W) =n.

The construction uses the complete bipartite graphs K, .

Recall that a graph T is a bipartite graph if its vertex set can be partitioned into
two subsets U and V such that the vertices in U are mutually nonadjacent and the
vertices in V' are mutually nonadjacent. If every vertex of U is adjacent to every
vertex of V', then the graph is called completely bipartite on the sets U and V. A
complete bipartite graph on sets of m vertices and n vertices is denoted by K, .

Now the genus of the completely bipartite graph K, , is given by

W) = =222,

See [13, Theorem 4.5.3]. Now let S = S; U Sy with |Si| = m, |S2| = n. Define
m:S xS — NU{oo} by

1 s=t
m(s,t) =<2 s€S;,te€S;,i#]
oo otherwise.
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Then the resulting Coxeter group (W, S) is right-angled and satisfies F (W) = K, .
Its Euler characteristic is given by

(m —2)(n — 2)

—

Alternatively, one can construct similar examples by using complete graphs.

e(W) =

10. COHOMOLOGY OF COXETER GROUPS

In this section, we are concerned with the cohomology of Coxeter groups. The
content of this section extends the earlier papers [1] and [2]. We restrict our atten-
tion to the relation between the cohomology of Coxeter groups and the cohomology
of parabolic subgroups of finite order. Let (W,S) be a Coxeter group. Let k be
a commutative ring with identity, regarded as a W-module with trivial W-action.
Set

H*(Wak) = @WFH*(WFak)a

where W runs all (possibly trivial) parabolic subgroups of finite order. The inverse
limit is taken with respect to restriction maps H*(Wr) — H*(W}) for F' C F.
Let

p: H*(W,k) = H*(W, k)

be the ring homomorphism induced by the restriction maps H* (W, k) — H*(Wg, k).
The properties of p are the main topic of this section.

D. J. Rusin [20], M. W. Davis and T. Januszkiewicz [10] computed the mod 2
cohomology ring of certain Coxeter groups.

Theorem 8 ([20, Corollary 30]). Let W be a Cozeter group with hyperbolic signa-
ture, with all rank-3 parabolic subgroups hyperbolic, and with even exponents m(s,t).
Then

H*(W,Fy) = Fo[uy, wsy] (r,s,t €5)

with relations uyws, = 0 if 7 # s and r # t, wyswi, = 0 unless {r,s} = {t,u},
and usuy = 0 if 4 divides m(s,t) but usu; = wy otherwise.

Here we shall not explain the assumptions in Theorem 8. Instead we point out that
if all m(s,t) (with s, distinct) are large enough (compared with the cardinality S),
then the resulting Coxeter group has hyperbolic signature and its rank 3 parabolic
subgroups are hyperbolic. Such a Coxeter group must be aspherical.

Theorem 9 ([10, Theorem 4.11]). Let W be a right-angled Cozeter group. Then
H*(WaFQ) = FQ[Ula e :Um]/I:

where I is the ideal generated by all square free monomials of the form v;, ---v; _,
where at least two of the v;; do not commute when regarded as elements of W.

See Definition 6.1 for the definition of right-angled Coxeter group. From their
results, one can show that p induces an isomorphism

H*(WaFQ) = H*(WaFQ)'

for a Coxeter group W which satisfies the assumptions in Theorem 8 or 9. Inspired
by this observation, we proved
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Theorem 10. Let W be a Cozeter group and k a commutative ring with identity.
Let p : H*(W, k) — H*(W, k) be as above. Then the kernel and the cokernel of p
consist of nilpotent elements.

A homomorphism satisfying these properties is called an F-isomorphism in [19].
Notice that, unlike the famous result of Quillen [19] concerning of the mod p co-
homology of groups of finite virtual cohomological dimension, the coefficient ring k
can be the ring Z of rational integers.

Example 10.1. Let W be the full triangular group 7%(3,3,3). Its mod 2 coho-
mology ring is given by H*(W,Fy) = Fy [u,v]/(u?), where degu = 2 and degv = 1
[20, p.52], while H(W,F;) is isomorphic to Fs[w] with degw = 1. Then p(u) = 0
and hence p has nontrivial kernel for k¥ = Fy. This shows the homomorphism p may
not be an isomorphism in general.

Unfortunately, we do not know whether p may have a non-trivial cokernel. We
give a sufficient condition for p to be surjective.

Theorem 11. Suppose that W is an aspherical Cozeter group (see Definition 9.1).
Then p is surjective for any abelian group A of coefficients (with trivial W -action).

For example, Coxeter groups satisfying the assumptions in Theorem 8 must be
aspherical.

In the case k = [y, there is more to say. By Theorem 10, the homomorphism
p induces the homomorphism H*(W,k)/v0 — H*(W,k)/+/0, where v/0 denotes
nilradical. Rusin proved that the mod 2 cohomology ring of any finite Coxeter
group (finite reflection group) has no nilpotent elements [20, Theorem 9]. Hence
the nilradical of H*(W,Fy) is trivial. From this, together with Theorem 10 and 11
we obtain

Corollary . For any Coxeter group W, p induces a monomorphism
H*(W,F2)/V0 = H* (W, F),
which is an isomorphism if W is aspherical.

Remark 8. Another study of the relation between the cohomology of aspherical
Coxeter groups and their parabolic subgroups of finite order can be found in [18].

Now we turn to our attention to detection by finite subgroups. An element
u € H*(W, k) is said to be detected by finite subgroups if the image of u by the map

[Lresit - H*(W,k) = [ H*(H, k)
H H

is nontrivial, where H runs all the finite subgroups of W. It would be of interest to
know which elements of H*(W, k) H*(W, k) are detected by finite subgroups. One
can reduce this question to the following proposition, which follows from Theorem
10 and Proposition 1.

Proposition 3. An element u € H*(W, k) is detected by finite subgroups if and
only if u & ker p.

Finally, we give a example of elements of H*(W, k) which cannot be detected by
finite subgroups.
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Example 10.2. Let W be the full triangular group 7%(3,3,3). Its mod 2 coho-
mology ring is given by in Example 10.1. One can check easily that uv™ (n > 1)
is contained in ker p. Thus uv™ (n > 1) cannot be detected by finite subgroups as
elements of H>T"(W,Fy).

Remark 9. The virtual cohomological dimension of any Coxeter group W is known
to be finite [22, p. 107], and its Farrell-Tate cohomology, written I:I*(W, k), is
defined. For the Farrell-Tate cohomology, the analogues of Theorem 10 and 11 and
Proposition 3 are valid. See [1] and [2] for detail.

11. OUTLINE OF PROOF

11.1. Actions of Coxeter groups. A suitable complex on which a Coxeter group
acts is used in the proof of Theorem 10. We recall how this goes. Let (W, S) be a
Coxeter group. Let X be a topological space, (Xs)ses be a family of closed subsets
of X indexed by S. From these data, one can construct a space on which W acts
as follows. Set

S(z)={s € S:z e X},

and let U = U(X) =W x X/ ~, W being discrete, where the equivalence relation
~ is defined by

(w,z) ~ (w',2') <= = =2'&w™'w' € Wg(,).

Then W acts on U(X) by w' - [w,z] = [w'w, z]. The isotropy subgroup of [w, z] is
wWS(I)w_l.

11.2. Proof of Theorem 10 (Outline). Given a Coxeter group (W,5), let X
be the barycentric subdivision of ¢ x F(W), the cone of F(WW) with the cone point
c. Define X to be the closed star of s € S (here s € S is regarded as a vertex of
F(W) and hence a vertex of X). Then one of the main results of M. W. Davis [8,
§13.5] asserts that U(X) is contractible.

Consider the spectral sequence of the form

EY = [ HY(W,, k) = H"™(W, k).
oEX,

In the spectral sequence, one can prove that Eg " is isomorphic to H*(W, k) and
the homomorphism p is identified with the edge homomorphism H*(W, k) — Eg -
Observe that

1. EPY =0if p #£0.

2. There is a natural number n > 0 such that n - E?7 = 0 for all p and g > 0.
Together with these observations, Theorem 10 follows from the formal properties
of the differentials of the spectral sequence.

REFERENCES

[1] T. Akita, On the cohomology of Coxeter groups and their finite parabolic subgroups, Tokyo
J. Math., 18 (1995), 151-158.

(2] , On the cohomology of Coxeter groups and their finite parabolic subgroups II,
preprint.

[3] , Euler characteristics of Coxeter groups, PL-triangulations of closed manifolds and
the genus of the graph, in preparation.

[4] N. Bourbaki, Groupes et algebres de Lie, Chapitres 4, 5 et 6, Hermann, Paris, 1968.




16

(5]

TOSHIYUKI AKITA

K. S. Brown, Euler characteristics of groups: The p-fractional part, Invent. Math. 29 (1975),
1-5.

, Cohomology of Groups, Graduate texts in mathematics, vol. 87, Springer-Verlag,
New York-Heidelberg-Berlin, 1982.

I. M. Chiswell, The Euler characteristic of graph products and of Coxeter groups, Discrete
groups and geometry (Birmingham, 1991), London Math. Soc. Lecture Notes 173, Cambridge
University Press, Cambridge, 1992, 3646,

M. W. Davis, Groups generated by reflections and aspherical manifolds not covered by Eu-
clidean space, Ann. of Math. 117 (1983), 293-324.

, Some aspherical manifolds, Duke Math. J. 55 (1987), 105-139.

, T. Januszkiewicz, Convex polytopes, Coxeter orbifolds and torus actions, Duke Math.
J. 62 (1991), 417-451.

W. J. Floyd, S. P. Plotnick, Growth functions on Fuchsian groups and the Euler character-
istics, Invent. Math. 86 (1987), 1-29.

D. H. Gottlieb, A certain subgroup of the fundamental group, Amer. J. Math 87 (1965),
840-856.

J. L. Gross, T. W. Tucker, Topological Graph Theory, A Wiley-Interscience Publication, John
Wiley & Sons, New York, 1987.

R. B. Howlett, On the Schur multipliers of Coxeter groups, J. London Math. Soc. 38 (1988),
263-279.

J. E. Humphreys, Reflection groups and Cozxeter groups, Cambridge studies in advanced
mathematics, vol. 29, Cambridge University Press, Cambridge, 1990.

M. Kato, On uniformization of orbifolds, Homotopy Theory and Related Topics, Advanced
Studies in Pure Math. 9, 1986, 149-172.

J. Milnor, On the 3-dimensional Brieskorn manifolds M(p,q,r), in Knots, groups and 3-
manifolds, Annals of Math. Studies 84, 1975, 175-225.

(18] S. J. Pride, R. St6hr, The (co)homology of aspherical Coxeter groups, J. London Math. Soc.

92 (1990), 49-63.

[19] D. Quillen, The spectrum of an equivariant cohomology ring, I, II, Ann. Math. 94 (1971),

549-572 and 573-602.

[20] D. J. Rusin, The cohomology of groups generated by involutions, Ph. D. thesis, Chicago

University, 1984.

[21] P. Scott, The geometry of 3-manifolds, Bull. London Math. Soc. 15 (1984), 401-487.
[22] J.-P. Serre, Cohomologie de groupes discrets, Ann. of Math. Studies, vol. 70, Princeton

University Press, Princeton, 1971, 77-169.

[23] J. Stallings, Centerless groups—an algebraic formulation of Gottlieb’s theorem, Topology 4

(1965), 129-134.

[24] W. Thurston, The geometry and topology of 3-manifolds, Princeton University (preprint

1978).

DEPARTMENT OF APPLIED MATHEMATICS, FUKUOKA UNIVERSITY, FUKUOKA 814-80, JAPAN
E-mail address: akita@ssat.fukuoka-u.ac.jp



COMPLETIONS OF STRATIFIED ENDS

FRANK CONNOLLY AND BOGDAN VAJIAC

1. INTRODUCTION

1.1. A famous result of L. Siebenmann characterizes those topological manifolds
which are the interiors of compact manifolds with boundary. Elsewhere we have
recently shown that his theorem generalizes to the context of stratified spaces. Our
purpose here is to explain the main results of our work briefly. See [1] for the full
account.

2. DEFINITIONS

Let X™, n > 6 be a tame ended topological n-manifold. Siebenmann proves that
there is a single obstruction ¢(X), in Ko(Z7), with the property that o(X) = 0 if
and only if X™ is the interior of a compact manifold with boundary. By the work of
Freedman and Quinn [3] one can also allow n > 5, if 7 is not too complicated. The
group 7w denotes the fundamental group of the end of X, which can be described
as the Holink()?, 00); here X denotes the one-point compactification of X. The
space, Holink(X, A), (the ”homotopy link” of A in X), is defined for any subspace
A of a topological space X as:

Holink(X, A) = {o € Map([0,1], X) | 0 ' (4) = 0}.
It is given the compact-open topology. It comes with two maps,
AL Holink(X,A) 25 X —A:  jx(0) = o(1),px (o) = 0(0).

It is used by Quinn [6] as a homotopical analogue for the normal sphere bundle
of Ain X.

F. Quinn generalizes Siebenmann’s result greatly. For any locally compact pair
(X, A), where A is closed and tame in X, X — A is an n-manifold (n >6 ) and A
is an ANR, Quinn [4],[5],[6] defines an obstruction, ¢o(X, A) € K(l)f (A,px), which
vanishes if and only if A has a mapping cylinder neighborhood in X . Here the map
px : Holink(X, A) — A is the projection. This concept of tameness is discussed by
many others at this conference. The foundational concepts surrounding controlled

K-theory have recently been greatly clarified by the eminently readable paper of
Ranicki and Yamasaki [7].

2.1. Quinn’s obstruction, ¢o(X, A) can be localized in the following way: let A be
a closed and tame subset of X, and X’ an open subset of X. Then A’ := X'N A
is tame in X’ and i*qo(X, A) = qo(X', A') where i* : K}/ (A4, px) = K (A, px/) is
the restriction map. Using these maps one can define, for every subset B C A,

K (A, px)(p)) = ling K¢/ (A’ px|A")

First author partially supported by NSF Grant DMS 95-04264.
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(the direct limit is over the X — neighborhoods, X', of B). Then the image of

any one of the obstructions, ¢o(X', A') in Kéf((A,pX)(B)) is independent of the
X-neighborhood, X', chosen. We will write this image ¢o((X, A)(B))-

2.2. In geometric topology, the stratified analogue of a topological manifold is a
stratified space. This concept was introduced by Quinn under the name “manifold
homotopy stratified set”; our terminology is due to Hughes and Weinberger.

A stratified space is a locally compact space, finitely filtered by closed subsets
X=X">X"1>5...5X1=40. Each stratum X; := X* — X*1 must be a
manifold, and the boundary of X, defined by the rule, 0X := U;(0X;), must be
closed in X. (It is customary, to arrange the indexing so that dim(X;) = ). It is
also required that X; must be tame in X; U X; for each j > ¢. The projection,
Holink(X; U X;,X;) 2, X; must be a fibration, and the inclusion Holink(dX; U
0X;,0X;) — Holink(X; U X;, X;)|ox, must be a fiber homotopy equivalence over
0X;.

3. MAIN RESULTS

Let X be a stratified space with empty boundary. We seek a completion of X,
i.e. a compact stratified space X such that X = X — 0X, and 0X has a collar
neighborhood in X. It is easy to see that a necessary condition for X having a
completion is to be tame ended. This means that the one point compactification
of X, X:=XU 00, is again a stratified space. The stratification of the one-point
compactification is the following;

Xo=XoUoo; X;=Xj,Vj>O0.

An equivalent formulation is that {oo} is tame in X; U{oo} for each j. Notice that,
by reverse tameness each X7 can have only finitely many ends.

A completion may not always exist; a weaker requirement would be an exhaustion
of X. This is defined to be an increasing sequence of compact stratified subspaces
of X, with bicollared boundaries in X, whose union is X. An exhaustion is also
obstructed in the category of stratified spaces.

Our main results, 3.2, 3.3, and 3.7, say that a completion (or an exhaustion)
exists if a single obstruction vanishes.

3.1. The End Obstruction. Let X be a tame ended stratified space. For each
integer m > 0 we define, (as in 2.1, above),
PP P
Y (X) = @o((X™, X" ) (50)) € K (X™7, pgm)(s0))
As before, the map pg,. : Holink(X™, X™=1) - X™=1 denotes the Holink pro-
jection. Set also:

%(X) = D3n(X) € GKY (K™, pgn)o0):

3.2. Theorem. Suppose X is a stratified space, with empty boundary, which ad-
mits a completion. Then v.(X) = 0.

3.3. Theorem. Let X be a tame ended stratified space with empty boundary. Let
4 be any closed pure subset of X, containing X°, such that A admits a completion,
A. Suppose v.(X) =0. Then X admits a completion X such that Clg(A) = A.



COMPLETIONS OF STRATIFIED ENDS 19

(A pure subset is one which is the union of components of strata.)

3.4. Note This result reduces to Siebenmann’s theorem when X has only one
stratum.

3.5. Note Following Weinberger, we say that a finite group action on a manifold,
(M, Q) is a stratified G manifold if the fixed set of each subgroup, M ¥ | is a manifold,
and M* is locally flat in M¥ for each K C H. By ( 1.4, 1.5 and 1.6 of [6]), this
is equivalent to saying that X = M /(G is a stratified space when it is stratified by
its orbit type components. A corollary of our main theorem is an end-completion
result for G-manifolds:

Corollary 3.6. Let (M,G) be a stratified G-manifold with OM = (. Then (M, Q)
is the interior of a compact stratified G-manifold with collared boundary iff X =
M /G is tame ended, ~v.(X) =0, and X® has a completion.

The obstruction to finding an exhaustion for the stratified space X turns out
to have the form 07.(X), where 0 is a map we will not define here in com-
plete generality. Instead we will give the definition of 97, (X) in the special case
when X"~! admits a completion. In this case an oco- neighborhood in X"~! has
the form B x [0,00), for some stratified space B. Then the open cone of B,
OB which can be thought of as B x (0,00],/B X oo is a neighborhood of oo in
)/(\'"*1; moreover oo has a cofinal sequence of such neighborhoods, B x (k, 00| /B x
oo, k = 0,1,2,.... The restriction maps connecting the K-theory of these are
isomorphisms. This implies that the obstruction ~,(X) reduces to v,(X), and
moreover, that Kéf(()?”_l,pg)(oo))) can be identified to K'(l)f(OB,pﬂOB), where

Holink()?, )?”’1)|OB PX9% OB is the projection map. The inclusion map induces
a restriction map:

Kyl (0B,p) — Ky (B % (0,0), plmx(0,5))
which amounts then to a map:
O+ K (X" pg)(00) = K_1(B,pp)
where pp denotes the restriction of the holink projection over B.

This is the map we seek. It turns out that 9,v,(X) € K_1(B,pg) is the ob-
struction to finding an exhaustion of X:

Theorem 3.7 (Exhaustibility Theorem). Let X be a tame ended n-dimensional
stratified space with empty boundary for which X"~ admits a completion. Assume
that 0v,(X) = 0. Then X admits an exhaustion.

Conversely, if X admits an exhaustion, and all the fundamental groups of the
fibers of the map, Holink(X, X"~ 1) 2% X"=1 gre good, then 8v,(X) = 0.

3.8. We say a group G is good if K;(Z[G]) =0 for i < —2.

No example of a group which is not good is known. Moreover, a recent theorem of
Farrell and Jones [2] shows that any subgroup of a uniform discrete subgroup of a
virtually connected Lie group must be good.

3.9. There are stratified G-manifolds which are not exhaustable, but are tame
ended. In fact, there is a semifree action of G = Z /6Z on M| = R>"*! —{0}, n > 2
with fixed set R! — {0}, for which 0vap11(M /G) #0in K_1(ZG)®d K_1(ZG) &
K_(ZG) ® K_,(ZG). Furthermore if M; = S?" x S* and M| = M, is the
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usual covering map, then 7 is equivariant with respect to a stratified G-action
on M;. This G-manifold, (M;,G) is h-cobordant (stratified and equivariant) to
some (Mp,G), whose infinite cyclic cover (M{, G) has the form (V — {0}, G), where
(V, Q) is a linear representation of G. This example and the more general question
of realizability of the obstruction ~.(X) are thoroughly analyzed in the 1996 Ph.D.
thesis of B. Vajiac.
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THE BRAID STRUCTURE OF MAPPING CLASS GROUPS

ZBIGNIEW FIEDOROWICZ AND YONGJIN SONG

0. Introduction

It was shown by Stasheff([13]) and MacLane([7]) that monoidal categories give rise to
loop spaces. A recognition principle specifies an internal structure such that a space X has
such a structure if and only if X is of the weak homotopy type of n-fold loop space. It
has been known for years that there is a relation between coherence problems in homotopy
theory and in categories. May’s recognition theorem([9]) states that for little n-cube operad
Cn, n > 2, every n-fold loop space is a C,-space and every connected C,-space has the weak
homotopy type of an n-fold loop space.

E. Miller([9]) observed that there is an action of the little square operad on the disjoint
union of BDif ft(S,,1)’s extending the F-product which is induced by a kind of connected
sum of surfaces. We hence have that the group completion of II;>oBDif fT(S, 1) is a double
loop space up to homotopy. Miller applied this result to the calculation of the homology
groups of mapping class groups. However his description of the action of the little square
operad is somewhat obscure. On the other hand the first author proved([4]) that the group
completion of the nerve of a braided monoidal category is the homotopy type of a double loop
space. This result implies that there exists a strong connection between braided monoidal
category and the mapping class groups I'y ; in view of Miller’s result.

We, in this paper, show that the disjoint union of I'y;’s is a braided monoidal category
with the product induced by the connected sum. Hence the group completion of I13>0BI; ¢
is the homotopy type of a double loop space. We explicitly describe the braid structure
of lg>ol'y 1, regarding I'y1 as the subgroup of the automorphism group of mS,: that
consists of the automorphisms fixing the fundamental relator. We provide the formula for
the braiding (Lemma 2.1) which is useful in dealing with the related problems. Using this
braiding formula (2.2), we can make a correction on Cohen’s diagram. We also show that the
double loop space structure of the disjoint union of classifying spaces of mapping class groups
cannot be extended to the triple loop space structure (Theorem 2.5). It seems important
to note the relation between the braid structure and the double loop space structure in an
explicit way.

Turaev and Reshetikhin introduced an invariant of ribbon graphs which is derived from
the theory of quantum groups and is a generalization of Jones polynomial. This invariant was
extended to those of 3-manifolds and of mapping class groups(cf.[11],[12],[6]). The definitions
are abstract and a little complicated since they are defined through quantum groups. G.

The second author was partially supported by GARC-KOSEF.
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22 ZBIGNIEW FIEDOROWICZ AND YONGJIN SONG

Wright([16]) computed the Reshetikhin-Turaev invariant of mapping class group explicitly
in the case r = 4, that is, at the sixteenth root of unity. For each h € I'jo we can find
the corresponding (colored) ribbon graph, whose Reshetikhin-Turaev invariant turns out to
be an automorphism of the 1-dimensional summand of VF1@V* @ ...@Vks@V*s" which
we denote by V. ;. We get this ribbon graph using the Heegaard splitting and the surgery
theory of 3-manifolds. Wright showed as a result of her calculation that the restriction
of this invariant to the Torelli subgroup of I'y o is equal to the sum of the Birman-Craggs
homomorphisms. dim(V}y,,) = 2971(29 + 1), so the Reshetikhin-Turaev invariant of h € T'y g,
when r = 4,is a 2971(29 +1) x 2971(29 + 1) matrix with entries of complex numbers. Wright
proved a very interesting lemma that there is a natural one-to-one correspondence between
the basis vectors of Vy 4, and the Z/2-quadratic forms of Arf invariant zero. It would be
interesting to check if the Reshetikhin-Turaev representation preserves the braid structure.

1. Mapping class groups and monoidal structure

Let S, 1, be an orientable surface of genus g obtained from a closed surface by removing
k open disks. The mapping class group I'y 1, is the group of isotopy classes of orientation
preserving self-diffeomorphisms of S, ; fixing the boundary of Sy that consists of £ disjoint
circles. Let Dif f*(Sy,x) be the group of orientation preserving self-diffeomorphisms of Sy .
We also have the following alternative definition :

Fg,k = 7T0Diff+(5g7k)

We will mainly deal with the case k = 1 and k = 0. I'y1 and I'y o are generated by 2g+1
Dehn twists(cf.[14]). There is a surjective map I'y; — T'g 0.

Figure 1. Dehn twists

Many topologists are interested in the homology of mapping class groups. An interesting
observation is that there is a product on the disjoint union of Dif f*(S,,1)’s. It is known by
Stasheff([13]) and MacLane([7]) that if a category C has a monoidal structure then its clas-
sifying space gives rise to a space which has the homotopy type of a loop space. Fiedorowicz
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showed([4]) that a braid structure gives rise to a double loop space structure. We now recall
the definition of (strict) braided monoidal category.

Definition 1.1. A (strict) monoidal (or tensor) category (C, ®, E) is a category C together
with a functor ® : C x C — C (called the product) and an object E (called the unit object)
satisfying

(a) ® is strictly associative
(b) E is a strict 2-sided unit for ®

Definition 1.2. A monoidal category (C, ®, E) is called a (strict) braided monoidal category
if there exists a natural commutativity isomorphism C4 p: ARB — B®A satisfying

(c) Cag=Cga=14
(d) The following diagrams commute:

CagB,C

A®B®C CRA®B
14®Cp.c N /' Cac®ls
A®C®B
A®B®C Camec, BoC®A
Cap®lc M /' 158Cac
B®ARC

The first author recently gave a proof of the following lemma([4]).

Lemma 1.3. The group completion of the nerve of a braided monoidal category is the
homotopy type of a double loop space. The converse is true.

Miller claimed in [10] that there is an action of the little square operad of disjoint squares
in D? on the disjoint union of the BTy ;’s extending the F-product that is induced by the
connected sum. Here the F-product I'y 1 xI'y, 1 — I'yyp.1 is obtained by attaching a pair of
pants (a surfaces obtained from a sphere by removing three open disks) to the surfaces Sy 1
and Sj,; along the fixed boundary circles and extending the identity map on the boundary
to the whole pants. Hence, according to May’s recognition theorem on the loop spaces([9]),
the group completion of 11,59 BI'y 1 is homotopy equivalent to a double loop space. Miller’s
proposition seems correct, although the details are not so transparent. In view of lemma
1.3, the disjoint union of I'y;’s should be related to a braided monoidal category. Here we
regard I1,>00; 1 as a category whose objects are [g], g € Z, and morphisms satisfy

Fg71 if g = h

Hom([g], [h]) = { 0 ifg 75 h
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Without speaking of the action of little square operad, we are going to show that the
group completion of II,>¢0BTy ; is homotopy equivalent to a double loop space by showing
that the disjoint union of I'y ;’s is a braiding monoidal category.

Lemma 1.4. The disjoint union of I'y1’s is a braided monoidal category with the product
induced by the F-product.

Proof. Let z1,y1,...,%4,Y, be generators of the fundamental group of S, ; which are induced
by the Dehn twists a1,b1,- -, ag, by, respectively. The mapping class group I'y ; can be iden-
tified with the subgroup of the automorphism group of the free group on z1,y1, -+ ,%4,Y4
that consists of the automorphisms fixing the fundamental relator R = [z1, y1][z2,y2] - - - [2g, Y]
The binary operation on I > I'g 1 induced by the F-product can be identified with the op-
eration taking the free product of the automorphisms. The (r, s)-braiding on the free group
on xi,Yi, - ,Te,Y, can be expressed by:
T > Ts41

Y1 = Ys+1

Tp = Ts4r
Yr > Ystr
Tpp1 — Stz S

Yrgp1 — Sty S

Tpps — S 1S
Yrgs — S 1y, S
where S = [Ts11,Ys+1][Ts12,Yst2] * [Tstr, Ystr]-

It is easy to see that the (r, s)-braiding fixes the fundamental relator R
Moreover, the (r, s)-braiding makes the diagrams in (d) of Definition 1.2 commute. O

Lemma 1.4 explains the pseudo double loop space structure on the union of the classifying
spaces of the mapping class groups observed by E. Miller. Lemma 1.3 and Lemma 1.4 imply
the following;:

Theorem 1.5. The group completion of 11,59BT'y 1 is the homotopy type of a double loop
space.

2. Braid structure

Let B,, denote Artin’s braid group. B,, has n — 1 generators oy, -- ,0,_1 and is specified
by the following presentation:

005 =040 if |Z—]|22

0i0i110; =0341030;41 fori=1,--+ ,n—2
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It has been observed for many years that there are certain connections between the braid
groups and the mapping class groups. In this section we introduce a new kind of braid
structure in the mapping class groups I'y ;’s in an explicit form. This explicit expression
enables us to deal with a kind of Dyer-Lashof operation (or Browder operation) in an explicit
form. It seems possible for us to get further applications of the formula of the braid structure
in the future. First let us express explicitly the (1,1)-braiding on genus 2 surface. I's; is
generated by the Dehn twists ai,b1,a2,b2,wi. Let x1,y1,22,y2 be generators of 7151
which are induced by aq, b1, as, ba, respectively. Regard ai, b1, a2,bs,w; as automorphisms

on Fiu, y, zs,y2}- Lhen we have

a1y — ylﬂffl
b1 :x1 — 2101
Qs : Y2 —> yﬂ;l
bo : Xy — Toys

wy 1Ty — xl[xg,y2]m;1m1x2[y2,a:2]a:1
g1 — w1 [, yols Ty T walys, walyi walys, walay !
Y — m{lwlmgygmgl
These automorphisms fix the generators that do not appear in the above list.

The (1,1)-braiding in genus 2 should be expressed in terms of the elements a1, by, as, b2, w;
and should be specified on the generators of 715, 1 by the formulas:

T —— I
Y1 == Y2
Ty > [y2, T2]z1 T2, Y2
Y2 > [y2, T2]y1[T2, y2]

We need a hard calculation to get such a braiding. By using a computer program, we could
get the following explicit formula for the braid structure.

Lemma 2.1. The (1,1)-braiding for the monoidal structure in genus 2 is given by

ﬂl = (blalal b1a1w1 (0,1 blal)_1b2a2)_3 (a1b1a1)4 (22)

The braid group of all braidings in the mapping class group of genus g is generated by
ﬂi - (biaiaibiaiwi(aibiai)_lbi+1ai+1)_3(aibiai)4 (23)

fori=1,2,---,9 — 1. We can obtain the following formula for the (r, s)-braiding in terms
of the braiding generators:

(ﬂrﬂr+1 te 'ﬂr+s—1)(ﬁr—1ﬁr te ﬁr+s_2) v (ﬂ1ﬂ2 e ﬂs)
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or alternatively as

(ﬂrﬂr—l ot ﬂl)(ﬂr+1ﬂr e ﬂ2) e (ﬂr+s—1ﬂr+s—2 ot ﬂs)

Remark 2.4 The braid structure gives rise to the double loop space structure, so it is
supposed to be related to the Dyer-Lashof operation. Let D : By, — I'y 1 be the obvious

map given by
bitn  if 7is odd
D(o;) = ’
wi if 7 is even

F. Cohen in [3] dealt with this map D. He said that the homology homomorphism D,
induced by D is trivial, because D preserves the Dyer-Lashof operation. Precisely speaking,
he made a commutative diagram

B, [ By, — Bspg

5,10] o

9
By [Tg1 —— Tyg

where @ is the analogue of the Dyer-Lashof operation (it should be rather Browder operation).
According to his definition, (0;1,1) € By [Ty ;1 is mapped by 6 to wibsbyw;. His definition
of #, however, is not well-defined. This can be detected by mapping I'> 1 to Sp(4;Z). Here
Sp(4; Z) is the automorphism group of Hq(Sg,1;Z). Themap ¢ : I's 1 — Sp(4;Z) is described
as follows:

1 -1 00 100 0
Lo 100 po (11000
“ 0 0 1 0 L 0010
0 0 0 1 000 1
1 00 0 100 0
w5 |0 L0 0 b [0 1 00
2 0 0 1 -1 2 0010
000 1 00 1 1
1 -1 0 1
L0 1t oo
“i 0 1 1 -1
0 00 1
0010
1 00 1
The map ¢ sends wybabiw; to (1 00 0
0110

We have

(0-1; 17 1)_1(17 ai, 1)(017 17 1) = (17 laal) = (Ul; 17 1)(17 ai, 1)(017 17 1)_1
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This element must commute with (1;a1,1). (o1;1,1)71(1;a1,1)(01;1,1) is mapped to

1 0 0 O 1 0 0 O
110 . . N 110 -1
10 1 1 and (o1;1,1)(1;a1,1)(01;1,1)~! is mapped to 1 o1 4l How-
0 0 0 1 0 0 0 1

ever neither of these two matrices commutes with which corresponds to

SO O
OO ==
o= OO
o O O

aj.

The braiding structure (2.2) plays a key role in the correct formula for § which should be
the following:

(01;1,1) N (b1a1a1b1a1w1(a1blal)_1b2a2)_3(a1b1a1)4

Let C,, be the little n-cube operad. Let Y be an n-fold loop space. Then Y is a C,-space,

so there is a map
Ch(2) xY? —Y

It is known that C,(2) has the same homotopy type as S"~!. Hence the above map induces

a homology operation
Hi(Y)® Hj(Y) — Hitjin-1(Y)

which is called the Browder operation. It is easy to see that if YV is a C,,41-space, then the

Browder operation equals zero.

Let X be the group completion of II;>oBIy ;. Since X is homotopy equivalent to a
O2-space, it is, up to homotopy, a Co-space. It is natural to raise the question whether X is
a Cz-space, or not. The answer is negative. In the proof of the following theorem the braid
formula (2.2) again plays a key role.

Theorem 2.5. Let X be the group completion of llg>oBTl'y 1.  The double loop space
structure cannot be extended to the triple loop space structure.

Proof. We show that the Browder operation
0. : Hi(X) ® Hj(X) — Hitj31(X)
is nonzero for X. We have the map
¢:Ca(2) x X2 — X

Note that C5(2) has the same homotopy type as S'. By restricting the map ¢ to each
connected component we get

S'x BT,y x BTy — BTy,
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This map is, in the group level, denoted by the map
g : BQ /FQJ — F2g71

which is same as described in Remark 2.4. In order to show that 6, is nonzero it suffices to
show that ~
9* : Ho(BFlyl) ® H[)(B].—‘l’l) — Hl(BFQ’l)

is nonzero. The image of the map 6, equals the image of the homology homomorphism
a : Hi(S') — Hi(Bl's,) induced by the map S' — BTy, which is the restriction of
the map S! x BT'1; x BT11 — BT3;. The map a sends the generator of Hy(S') to the
abelianization class of

(b1a1a1b1a1w1 (alblal)_1b2a2)_3(a1b1a1)4

which is nonzero, since the isomorphism Hy( ) = ( )4 is natural. O
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CONTROLLED TOPOLOGICAL EQUIVALENCE OF MAPS
IN THE THEORY OF
STRATIFIED SPACES AND APPROXIMATE FIBRATIONS

BRrRUCE HUGHES

ABSTRACT. Ideas from the theory of topological stability of smooth maps are trans-
ported into the controlled topological category. For example, the controlled topologi-
cal equivalence of maps is discussed. These notions are related to the classification of
manifold approximate fibrations and manifold stratified approximate fibrations. In
turn, these maps form a bundle theory which can be used to describe neighborhoods
of strata in topologically stratified spaces.

1. INTRODUCTION

We explore some connections among the theories of topological stability of maps,
controlled topology, and stratified spaces. The notions of topological equivalence
of maps and locally trivial families of maps play an important role in the theory of
topological stability of smooth maps. We formulate the analogues of these notions in
the controlled topological category for two reasons. First, the notion of controlled
topological equivalence of maps is a starting point for formulating a topological
version of Mather’s theory of the topological stability of smooth maps. Recall that
Mather proved that the topologically stable maps are generic for the space of all
smooth maps (with the C* topology) between closed smooth manifolds (see Mather
[22], Gibson, Wirthmiiller, du Plessis, and Looijenga [9]). The hope is to identify an
analogous generic class for the space of all maps (with the compact-open topology)
between closed topological manifolds. Controlled topology at least gives a place to
begin speculations. Second, the controlled analogue of local triviality for families
of maps is directly related to the classification of approximate fibrations between
manifolds due to Hughes, Taylor and Williams [17], [18]. We elucidate that relation
in §8.

Another important topic in the theory of topological stability of smooth maps is
that of smoothly stratified spaces (cf. Mather [21]). Quinn [26] initiated the study
of topologically stratified spaces and Hughes [12], [13] has shown that ‘manifold
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Key words and phrases. stratified space, approximate fibration, controlled topology, topologi-
cal stability of maps, strata, neighborhood germ, Thom'’s isotopy lemmas.
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stratified approximate fibrations’ form the correct bundle theory for those spaces.
The classification of manifold approximate fibrations via controlled topology men-
tioned above extends to manifold stratified approximate fibrations; hence, we have
another connection between controlled topology and stratified spaces. This classi-
fication of manifold stratified approximate fibrations is the main new result of this
paper.

Two essential tools in stability theory are Thom’s two isotopy lemmas [21]. In
89 we formulate an analogue of the first of these lemmas for topologically stratified
spaces. A non-proper version is also stated.

It should be noted that in his address to the International Congress in 1986,
Quinn predicted that controlled topology would have applications to the topolog-
ical stability of smooth maps [25]. In particular, controlled topology should be
applicable to the problem of characterizing the topologically stable maps among
all smooth maps. More recently, Cappell and Shaneson [1] suggested that topo-
logically stratified spaces should play a role in the study of the local and global
topological type of topologically smooth maps (the connection is via the mapping
cylinder of the smooth map). While the speculations in this paper are related to
these suggestions, they differ in that it is suggested here that controlled topology
might be used to study a generic class of topological, rather than smooth, maps.

2. TOPOLOGICAL EQUIVALENCE AND LOCALLY TRIVIAL FAMILIES OF MAPS

We recall some definitions from the theory of topological stability of smooth
maps (see Damon [3], du Plessis and Wall [5], Gibson, Wirthmiiller, du Plessis, and
Looijenga [9], Mather [21], [22]).

Definition 2.1. Two maps py : Xo — Yo, p1 : X1 — Y7 are topologically equivalent
if there exist homeomorphisms h : Xg — X7 and g : Yy — Y7 such that pih = gpo,
so that there is a commuting diagram:

XOL)Xl

m| |

Yo —2— v;.

Definition 2.2. A smooth map py : M — N between smooth manifolds is topo-
logically stable if there exists a neighborhood V' of py in the space of all smooth
maps C° (M, N) such that for all p; € V, pg is topologically equivalent to p;.

The space C*° (M, N) is given the Whitney C* topology. Thom conjectured
and Mather proved that the topologically stable maps are generic in C*° (M, N); in
fact, they form an open dense subset (see [9], [21], [22]). The proof yields a stronger
result, namely that the strongly topologically stable maps are dense (see [9]).

Definition 2.3. A smooth map pg : M — N between smooth manifolds is strongly
topologically stable if there exists a neighborhood V' of py in C*°(M, N) such that
for all p; € V, there exists a (topologically) trivial smooth one-parameter family
p: M x I — N joining py to p;. This means there exist continuous families
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{hi : M —->M|0<t<1}and {g:: N - N |0<t<1} of homeomorphisms such
that pg = gt_1 opg o hy for all £ € I, so that there is a commuting diagram:

M —M s p

w | n|

N —% 4 N.

The notion of triviality for the one-parameter family of maps in the definition
above can be generalized to arbitrary families of maps. We now recall that definition
and the related notion of local triviality (cf. [21]).

Definition 2.4. Consider a commuting diagram of spaces and maps:

E1 L}EQ

n| E

B idp B

(1) f is trivial over B if there exist spaces Fi and F», a map ¢ : F; — F» and
homeomorphisms h : By — F} X B, g : E5 — F> x B such that the following
diagram commutes:

B p1 B, f B, D2 B

an | ") | [

. i .
B pxB X5 pxB X, B

(2) f is locally trivial over B if for every x € B there exists an open neighbor-
hood U of z in B such that f|: p;*(U) — py ' (U) is trivial over U.
(3) In either case, ¢ : Fi — Fj is the model of the family f.

Remarks 2.5.

(1) The model ¢ : F; — F> is well-defined up to topological equivalence.

(2) Both py : By — B and ps : E2 — B are fibre bundle projections with fibre
F| and F5, respectively.

(3) For every = € B, f, = f| : p; (z) — p,*(z) is topologically equivalent to
q: F1 — FQ.

(4) One step in Mather’s proof that the topologically stable smooth maps form
an open dense subset is to show that certain families of maps are locally
trivial. Thom’s second isotopy lemma is used for this.

A fibre preserving map is a map which preserves the fibres of maps to a given
space, usually a k-simplex or an arbitrary space B. Specifically, if p : X — B and
0 :Y — B are maps, then a map f : X — Y is fibre preserving over B if of = p.

There is a notion of equivalence for families of maps over B.
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Definition 2.6.
(1) Two locally trivial families of maps over B

P l lpz and l l o
B idp B B idp B

are topologically equivalent provided there exist homeomorphisms
h11E1—>E'i and hQZEQ-}E’é

which are fibre preserving over B and f'hy = hsf; that is, the following
diagram commutes:

B« g L g 2 ,p

T

U U
Py )2
» B

B < e L g

(2) Let Ai(q, B) denote the set of topological equivalence classes of locally
trivial families of maps over B with model ¢ : F} — F5.

The set A; (g, B) can be interpreted as a set of equivalence classes of certain
fibre bundles over B as follows. Let TOP(g) be the topological group given by the

pull-back diagram
TOP(q) —— TOP(F2)

| |
TOP(F,) —%— Map(Fy, Fy)
where g;(h) = g o h and ¢*(g) = g o q. That is,
TOP(q) = {(h,9) € TOP(F1) x TOP(F3) | qh = gq}.
Note that TOP(q) is naturally a subgroup of TOP(F; II F3) via (h,g) — h1lg. Let

As (g, B) denote the set of bundle equivalence classes of fibre bundles over B with
fibre Fy 11 F5 and structure group TOP(q).

Proposition 2.7. There is a bijection o : Ay(q, B) — Ax(q,B). In particular, if
B is a separable metric space, then there is a bijection A;(q, B) — [B,BTOP(q)].

The function « is defined by sending a locally trivial family

E1 L)EQ

n| |

B &, B
to the fibre bundle p; I p» : Ey 11 E5 — B whose total space is the disjoint union of
E; and E5. The fact that a is a bijection is fairly straightforward to prove. At any
rate, it follows from a more general result in §5 (see Theorem 5.5 and the comments
following it).
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3. CONTROLLED TOPOLOGICAL EQUIVALENCE

We propose a definition of topological equivalence in the setting of controlled
topology and use it to make some speculations about generic maps between topo-
logical manifolds.

The mapping cylinder of a map p: X — Y is the space

cyl(p) = (X x TITY) /{(x,1) ~ p(z) | © € X}.
There is a natural map 7 : cyl(p) — I defined by

{ w([z,t]) =¢t, if (z,8) e X x T
m([y)) =1, ifyeY.

For clarification the map 7 will sometimes be denoted 7, : cyl(p) = I. If p: X - YV
and p' : X' — Y’ are maps and 7, : cyl(p) — I and 7y : cyl(p’) — I are the
natural maps, then a homeomorphism h : cyl(p) — cyl(p') is level if m, = mp h.
Let TOP'®¥®(p) denote the simplicial group of level homeomorphisms from cyl(p)
onto itself. That is, a k-simplex of TOP'*"*!(p) consists of a A¥—parameter family
of level homeomorphisms h : cyl(p) x A¥ — cyl(p) x A*¥. The group TOP(p) as
defined in the previous section has a simplicial version (the singular complex of
the topological group) and, as such, is a simplicial subgroup of TOP'®'®(p). For
example, a pair of homeomorphisms (h: X — X, g:Y — Y) such that ph = gp
induces a level homeomorphism

[z,8] = [h(z),8], ifzeX

cyl(p) — cyl(p), { [y] = [9(v)], ifyeY

Definition 3.1. Two maps pg : Xo — Yo, p1 : X1 — Y7 are controlled topologically
equivalent if there exists a level homeomorphism h : cyl(po) — cyl(p1).

Note that a level homeomorphism h : cyl(po) — cyl(p1) induces (by restriction)
a one-parameter family h; : Xg — X;,0 < t < 1, of homeomorphisms and a
homeomorphism g : Yy — Y;. If all the spaces involved are compact metric, then

gpo = lim p1hy
t—1

and such data is equivalent to having a level homeomorphism (cf. [16], [17], [19],
[20]). This formulation should be compared with the formulation of topological
equivalence in Definition 2.1.

Definition 3.2. Two maps pg : Xo — Yp, p1 : X1 — Y7 between compact metric
spaces are weakly controlled topologically equivalent if there exist continuous families
{ht : Xo = X; |]0<t<1}and {g:: Yo = Y1 | 0 <t < 1} of homeomorphisms
such that po = lim;_,q gt_1 opy o hy.

The limit above is taken in the sup metric which is the metric for the compact-
open topology. The space C'(X,Y") of maps from X to Y is given the compact-open
topology.
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Definition 3.3. A map pg : X — Y between compact metric spaces is weakly
controlled topologically stable if there exists a neighborhood V of pg in C'(X,Y)
such that for all p; € V and e > 0, there exists a map p] : X — Y such that pg is
weakly controlled topologically equivalent to pj and p} is e—close to p;.

Many of the results in the theory of singularities have a mixture of smooth and
topological hypotheses and conclusions. This is the case in Mather’s theorem on
the genericness of topologically stable maps among smooth maps. One direction
that controlled topology is likely to take is in finding the topological underpinnings
in this area. The following speculation is meant to be a step towards formulating
what might be true.

Speculation 3.4. If M and N are closed topological manifolds, then the weakly
controlled topologically stable maps from M to N are generic in C(M,N).

This might be established by showing that the stratified systems of approximate
fibrations are dense and also weakly controlled topologically stable (see Hughes [14]
and Quinn [27] for stratified systems of approximate fibrations). As evidence for this
line of reasoning, note that Chapman’s work [2] shows that manifold approximate
fibrations are weakly controlled topologically stable.

Another line of speculation concerns polynomial maps between euclidean spaces.
It is known that the classification of polynomial maps up to smooth equivalence
differs from their classification up to topological equivalence (cf. Thom [32], Fakuda
[8], Nakai [23]). What can be said about the classification of polynomial maps up
to controlled topological equivalence?

4. CONTROLLED LOCALLY TRIVIAL FAMILIES OF MAPS

Analogues in controlled topology of locally trivial families of maps are defined.
In fact, we define a moduli space of all such families.

Definition 4.1. Consider a commuting diagram of spaces and maps:

E; L)EQ

n| |

B 45, B

(1) f is controlled trivial over B if there exist spaces F} and Fy, amap ¢ : Fi —
F, and a homeomorphism H : cyl(f) — cyl(q) x B such that the following
diagram commutes:

B +—— ol(f) —s I

ol e

B ¥ yl(q) x B —y T
where ¢ : cyl(f) — B is given by
c([z,t]) = pr(z) = pof(x), if (z,t) € By x I
{ c(v]) = p2(y), if y € By



CONTROLLED TOPOLOGICAL EQUIVALENCE 37

and m; is the composition cyl(¢q) x B Lo, cyl(q) T4 7.

(2) f is controlled locally trivial over B if for every x € B there exists an open
neighborhood U of # in B such that f| : p; *(U) — p, *(U) is controlled
trivial over U.

(3) In either case, ¢ : Fi — Fj is the model of the family f.

Remarks 4.2.

(1) The model g : F; — F5 is well-defined up to controlled topological equiva-
lence.

(2) Both py : By — B and ps : E2 — B are fibre bundle projections with fibre
F; and F>, respectively.

(3) For every z € B, f, = f| : p;'(z) — p;'(x) is controlled topologically
equivalent to q : F| — F5.

There is a notion of controlled equivalence for families of maps over B.

Definition 4.3.

(1) Two controlled locally trivial families of maps over B

! !

E.— B, B . g
pll lpz and p;l lp,z
idp idp
B B B ¥, p

are controlled topologically equivalent provided there exists a level homeo-
morphism

H : cyl(f) = cyl(f')

which is fibre preserving over B in the sense that the following diagram
commutes:

eyl(f) —2— eyl(f)

| ¢
B idp B

—

where c is given by

{ c([z,t]) =p2f(x) = pi(x), if (z,t) € By x I
c([y]) = p2(v), if y € B,

and ¢’ is given by

{ c([z,t]) = pof'(x) = pi(x), if (v,t) € B} x T
c'([y]) = py(y), if y € Es.

(2) Let Bi(q, B) denote the set of controlled topological equivalence classes of
locally trivial families of maps over B with model q : F; — F5.
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In the next section we will show that the set B;(q, B) can be interpreted as a set
of equivalence classes of certain fibre bundles over B in analogy with Proposition
2.7 (see Theorem 5.5). But first we will define the moduli space of all controlled
locally trivial families of maps over B with model g : F; — F5. This is done in the
setting of simplicial sets as follows.

Define a simplicial set B, (g, B) so that a typical k—simplex of B, (g, B) consists
of a commuting diagram

E1 L} E2

m| E

id. ok
B x Ak EXa% B Ak

which is a controlled locally trivial family of maps over B x A¥ with model ¢ :
F, — F5. Thus, a vertex of B;(gq, B) is a controlled locally trivial family of maps
over B with model ¢ : F; — F5. (As in [17], [18] we also need to require that these
spaces are reasonably embedded in an ambient universe, but we will ignore that
technicality in this paper.) Face and degeneracy operations are induced from those
on the standard simplexes. As in [18], this simplicial set satisfies the Kan condition.

Definition 4.4. The mapping cylinder construction p takes a controlled locally

trivial family of maps

E1 L)EQ

n| |

B &, B
to the mapping cylinder cyl(f) together with the natural map u(f) : cyl(f) — B.

Note that the controlled locally trivial condition on f means that u(f) : cyl(f) —
B is a fibre bundle with fibre cyl(¢) and structure group TOP'®¥®!(¢) where ¢ is the
model of f. If
B, L B

p'll lpg
B idp B
is another controlled locally trivial family of maps over B with model ¢, then to

have a controlled topological equivalence H : cyl(f) — cyl(f’) as in Definition 4.3
means precisely to have a bundle isomorphism from u(f) to u(f’).

Proposition 4.5. There is a bijection moB1(q, B) =~ Bi(q, B).

Proof. In order to see that the natural function myBi(q, B) — Bi(g, B) is well-

defined, suppose

E1 L} E2

m| E

id
Bx Al ZEX2L By Al
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is a locally trivial family of maps with model ¢ : F; — F5. Then by the remarks
above u(f) : cyl(f) — B x Al is a fibre bundle with fibre cyl(g) and structure group
TOP'®"®(¢). Thus, there is a bundle isomorphism from the restriction of z(f) over
B x {0} to the restriction of u(f) over B x {1}, and the remarks above further show
that this isomorphism gives a controlled topological equivalence from

pr (B x{0}) —L pri(Bx{0})  pr'(Bx{1}) —L pr' (B x {1})
pl@ lm to pnl lp2|
Bx{0} 2, Bx{0} Bx{1} -2, Bx{1}

showing that the function is well-defined. The function is obviously surjective, so
it remains to see that it is injective. To this end suppose that

E, 1 B B 1 m
Pll lpz and p;l lp,z
B %, B B 2, B

are controlled topologically equivalent with a level homeomorphism H : cyl(f) —
cyl(f') as in Definition 4.3. Let ho : E; — Ef and hy : E; — E) be the restrictions
of H to the top and bottom of the mapping cylinders, respectively. Then there is
an induced commutative diagram

cyl(ho) —— cyl(hy)

! !

Bx Al — 5 Bx Al

which is a 1-simplex in By (g, B) from f to f'. O

5. BUNDLES WITH MAPPING CYLINDER FIBRES

In this section we show that controlled locally trivial families of maps over B
can be interpreted as fibre bundles over B with fibre the mapping cylinder of the
model. Reduced structure groups are discussed as well as a relative situation in
which the target bundle over B is fixed.

Let B be a fixed separable metric space. Let Bz(q, B) denote the set of bundle
equivalence classes of fibre bundles over B with fibre cyl(¢) and structure group
TOP**®!(¢). Define By(q, B) to be the simplicial set whose k-simplices are fibre
bundles over B x A* with fibre cyl(¢) and structure group TOP'**®!(¢). The fol-
lowing result is well-known (cf. [17]).

Proposition 5.1. There are bijections
TB2(g, B) ~ Ba(g, B) ~ [B, BTOP**(q)].

The mapping cylinder construction of Definition 4.4 has the following simplicial
version.
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Definition 5.2. The mapping cylinder construction is the simplicial map
p: Bi(g, B) = By(g, B)

defined by sending a diagram

E1 L} E2

m| E

id.
B x AF EX2% B o AR

to cyl(f) — B x AF. Note that the local triviality condition on f implies that
cyl(f) — B x A* is a fibre bundle projection with fibre cyl(q) and structure group
TOPlevel (q) .

The first part of the following result is proved in [18]. The second part follows
from the first part together with Propositions 4.5 and 5.1.

Theorem 5.3. The mapping cylinder construction defines a homotopy equivalence
1 : Bi(q, B) = Ba(q, B). In particular, Bi(q, B) = B2(q, B) = [B, BTOP'***(¢)].

Reduced structure groups. Let G be a simplicial subgroup of TOPlevel(q). We
will now generalize the discussion above to the situation where the structure group
is reduced to G.

Definition 5.4. Consider a controlled locally trivial family

E1 L)EQ

Pll lpz
B 45, B

with model q : Fi — F5. Then f is G-locally trivial over B provided there exists
an open cover 4 of B such that f is controlled trivial over U for each U € U via a
trivializing homeomorphism

Hy = eyl(f]: pr ' (U) = p; ' (U)) = cyl(g) x B.

These trivializing homeomorphisms are required to have the property that if U,V €
U and x €e UNV, then

Hy o Hy'| : eyl(g) x {z} — eyl(g) x {«}

is an element of G.

Let By (¢, B,G) be the simplicial set whose k—simplices are the G-locally trivial
families of maps over B x A* with model ¢ : F; = F». For example,

B, ((b B: TOPlevel(q)) =B, (q> B)
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Definition 4.3 can be extended in the obvious way to define what it means for
two G—locally trivial families to be G—controlled topologically equivalent (the home-
omorphism H is required to be a family of homeomorphisms in the group G) and
Bi1(q, B,G) denotes the set of equivalence classes. In analogy with Proposition 4.5
there is a bijection

’/T()Bl(q)B)G) ~ Bl((bB:G)

Likewise B2 (g, B, G) denotes the set of bundle equivalence classes of fibre bundles
over B with fibre cyl(q) and structure group G, and Bz (¢, B, G) is the simplicial
set whose k-simplices are fibre bundles over B x AF with fibre cyl(¢) and structure
group G. In analogy with Proposition 5.1 there are bijections

W0B2(Q7B7G) ~ 82((],B,G) ~ [B)BG]

Moreover, the proof of Theorem 5.3 can be seen to give a proof of the following
result (cf. [18, §2]).

Theorem 5.5. The mapping cylinder construction defines a homotopy equivalence
u:Bi(q,B,G) = Ba(q, B,G). In particular, B1(q, B,G) = B2(q, B,G) =~ [B,Bd].

As an example, consider the group TOP(q) of §2. It was pointed out at the
beginning of §3 that TOP(q) is naturally a subgroup of TOP'®"®!(¢). Note that
Bi(q, B,TOP(q)) = A1 (¢, B) and B2(q, B, TOP(q)) = A2(q, B), so that Proposition
2.7 follows directly from Theorem 5.5.

Fixed target bundle. There are also relative versions of the preceding results in
which the bundle ps : E2 — B is fixed. For example, B;(q rel ps : B> — B) is the
set, of controlled locally trivial families of maps of the form

E1 L}EQ

n| E

B 45, p

Two such families f : By — E» and f' : E{ — E, are controlled topologically
equivalent rel py if the homeomorphism H : cyl(f) — cyl(f’) of Definition 4.3 is
required to be the identity on E». There are analogous definitions of the following:

(1) Bi(g rel p» : E» — B),

(2) Ba(q rel po: E5 — B),

(3) Ba(q rel py: E; — B).

Definition 5.6. The group of controlled homeomorphisms of q is the subgroup
TOP®(q) of TOP'®*®(¢) consisting of all level homeomorphisms & : cyl(q) x A¥ —
cyl(g) x A¥ such that h|F> x A =idp , ax-

Note that TOP(q) is the kernel of the restriction homomorphism

TOP'**®(¢) — TOP(F).
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Let p» : B — BTOP(F,) be the classifying map for the bundle ps. Thus,
B2(q rel p2 : E2 — B) is in one-to-one correspondence with the set of vertical
homotopy classes of lifts of 5 : B — BTOP(Fy) to BTOP'®*®(q) - BTOP(F}):

BTOPlevel (q)

!

B — BTOP(E).

The following result follows from the proofs of the preceding results.

Proposition 5.7.

(1) 7By (q rel py : B2 — B) =~ By(q rel p» : E2 — B),
(2) mBa(q rel py : Es — B) ~ Bs(q rel ps : E2 — B),
(3) the mapping cylinder construction defines a homotopy equivalence

w:Bi(grel po: Es — B) = By(q rel po : Es — B).

Reduced structure group and fixed target bundle. There are versions of
these relative results when the structure groups are reduced to G as before. The
sets and simplicial sets involved are denoted as follows:

(1) Bl(Q;GTQIPZ :E2_>B)7
(2) Bl((bGrelpZ :E2_>B))
(3) B2((],G rel p2 E2 — B),
(4) Ba(q,G rel ps : E2 — B).

The following result records the analogous bijections and homotopy equivalences.

Proposition 5.8.

(1) mB1(q,G rel po : Ey — B) = B1(q,G rel p» : E2 — B),
(2) mB2(q,G rel po : Ey — B) = Ba(q,G rel py : E2 — B),
(3) the mapping cylinder construction defines a homotopy equivalence

w:Bi(q,G rel ps : Ex - B) = Ba(q,G rel py : E5 — B).

6. MANIFOLD STRATIFIED SPACES

There are many naturally occurring spaces which are not manifolds but which
are composed of manifold pieces, those pieces being called the strata of the space.
Examples include polyhedra, algebraic varieties, orbit spaces of many group actions
on manifolds, and mapping cylinders of maps between manifolds. Quinn [26] has
introduced a class of stratified spaces called by him ‘manifold homotopically strat-
ified sets’ with the objective ‘to give a setting for the study of purely topological
stratified phenomena’ as opposed to the smooth and piecewise linear phenomena
previously studied.
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Roughly, the stratified spaces of Quinn are spaces X together with a finite fil-
tration by closed subsets

X=X"2X™'2.-.2X"2X "=,

such that the strata X; = X\ X*~! are manifolds with neighborhoods in X; U X},
(for k > i) which have the local homotopy properties of mapping cylinders of
fibrations. These spaces include the smoothly stratified spaces of Whitney [35],
Thom [31] and Mather [21] (for historical remarks on smoothly stratified spaces see
Goresky and MacPherson [10]) as well as the locally conelike stratified spaces of
Siebenmann [29] and, hence, orbit spaces of finite groups acting locally linearly on
manifolds.

Cappell and Shaneson [1] have shown that mapping cylinders of ‘smoothly strat-
ified maps’ between smoothly stratified spaces are in this class of topologically
stratified spaces even though it is known that such mapping cylinders need not be
smoothly stratified (see [1] and [32]). Hence, the stratified spaces of Quinn arise
naturally in the category of smoothly stratified spaces. For a comprehensive survey
of the classification and applications of stratified spaces, see Weinberger [34].

Smoothly stratified spaces have the property that strata have neighborhoods
which are mapping cylinders of fibre bundles, a fact which is often used in arguments
involving induction on the number of strata. Such neighborhoods fail to exist in
general for Siebenmann’s locally conelike stratified spaces. For example, it is known
that a (topologically) locally flat submanifold of a topological manifold (which is
an example of a locally conelike stratified space with two strata) may fail to have
a tubular neighborhood (see Rourke and Sanderson [28]). However, Edwards [6]
proved that such submanifolds do have neighborhoods which are mapping cylinders
of manifold approximate fibrations (see also [18]). On the other hand, examples
of Quinn [24] and Steinberger and West [30] show that strata in orbit spaces of
finite groups acting locally linearly on manifolds may fail to have mapping cylinder
neighborhoods. In Quinn’s general setting, mapping cylinder neighborhoods may
fail to exist even locally.

The main result announced in [12] (and restated here in §8) gives an effective
substitute for neighborhoods which are mapping cylinders of bundles. Instead of
fibre bundles, we use ‘manifold stratified approximate fibrations,” and instead of
mapping cylinders, we use ‘teardrops’. This result should be thought of as a tubular
neighborhood theorem for strata in manifold stratified spaces.

We now recall the concepts needed to precisely define the manifold stratified
spaces of interest (see [26], [12], [15], [16]). A subset Y C X is forward tame in X
if there exist a neighborhood U of YV in X and a homotopy h : U x I — X such
that ho = inclusion : U — X, h|Y =inclusion: Y — X foreacht € I, (U) =Y,
and h(U\Y) x [0,1)) C X \ Y.

Define the homotopy link of Y in X by

holink(X,Y) = {w € X | w(t) € Yiff t = 0}.

Evaluation at 0 defines a map ¢ : holink(X,Y) — Y called holink evaluation.

Let X=XmDX™12...2X%D> X! =0 be a space with a finite filtration
by closed subsets. Then X is the i-skeleton and the difference X; = X\ X! is
called the i-stratum.
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A subset A of a filtered space X is called a pure subset if A is closed and a union
of components of strata of X. For example, the skeleta are pure subsets.

The stratified homotopy link of Y in X, denoted holinks(X,Y") consists of all
w in holink(X,Y") such that w((0,1]) lies in a single stratum of X. The stratified
homotopy link has a natural filtration with i—skeleton

holinks (X, Y)" = {w € holink(X,Y) | w(1) € X}.

The holink evaluation (at 0) restricts to a map ¢ : holinks(X,Y) = V.

If X is a filtered space, then a map f: Z x A — X is stratum preserving along
A if for each z € Z, f({z} x A) lies in a single stratum of X. In particular, a map
f:ZxI — X is a stratum preserving homotopy if f is stratum preserving along I.

Definition 6.1. A filtered space X is a manifold stratified space if the following
four conditions are satisfied:

(1) Manifold strata. X is a locally compact, separable metric space and each
stratum X is a topological manifold (without boundary).

(2) Forward tameness. For each k > i, the stratum X; is forward tame in
X; U X,.

(3) Normal fibrations. For each k£ > i, the holink evaluation ¢ : holink(X; U
Xi, X;) = X, is a fibration.

(4) Finite domination. For each i there exists a closed subset K of the
stratified homotopy link holinks (X, X?) such that the holink evaluation map
K — X' is proper, together with a stratum preserving homotopy

h : holink (X, X?) x T — holinks (X, X?)

which is also fibre preserving over X (i.e., gh; = ¢ for each ¢ € I) such that
ho = id and h; (holinks (X, X?)) C K.

7. MANIFOLD STRATIFIED APPROXIMATE FIBRATIONS

The definition of an approximate fibration (as given in [17]) was generalized in
[12] to the stratified setting. Let X = X™ D --- D X%and Y =Y"* D ..- D Y?
be filtered spaces and let p : X — Y be a map (p is not assumed to be stratum
preserving). Then p is said to be a stratified approzimate fibration provided given
any space Z and any commuting diagram

z L x

<] E

ZxI — 5 v

where F' is a stratum preserving homotopy, there exists a stratified controlled so-
lution; ie., a map F : Z x I x [0,1) — X which is stratum preserving along
I x [0,1) such that F(z,0,t) = f(z) for each (z,t) € Z x [0,1) and the function
F:ZxIx[0,1] =Y defined by F|ZxIx[0,1) = pF and F|Z xI x {1} = F xidy,
is continuous.

A stratified approximate fibration between manifold stratified spaces is a mani-
fold stratified approzimate fibration if, in addition, it is a proper map (i.e., inverse
images of compact sets are compact).
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8. TEARDROP NEIGHBORHOODS

Given spaces X, Y and amap p: X — Y x R, the teardrop of p (see [16]) is the
space denoted by X U, Y whose underlying set is the disjoint union X II'Y with
the minimal topology such that

(1) X C X U,Y is an open embedding, and
(2) the function ¢: X Up Y = Y X (—o00, +00] defined by

_ [ p(x), ifeeX
(@) = { (z,+0), ifzeY.

is continuous.

The map c is called the tubular map of the teardrop or the teardrop collapse. The
tubular map terminology comes from the smoothly stratified case (see [4], [21],
[33]). This is a generalization of the construction of the open mapping cylinder of

amap g: X =Y. Namely, cyl(g) is the teardrop (X x R) Ugxia Y.

Theorem 8.1. If X and Y are manifold stratified spaces and p: X - Y xR is a
manifold stratified approximate fibration, then X U, Y is a manifold stratified space
with Y a pure subset.

In this statement, ¥ x R and X U, Y are given the natural stratifications.

The next result from [12] is a kind of converse to this proposition. First, some
more definitions. A subset Y of a space X has a teardrop neighborhood if there exist
a neighborhood U of Y in X and amap p: U \Y — Y x R such that the natural
function (U \Y)U, Y — U is a homeomorphism. In this case, U is the teardrop
neighborhood and p is the restriction of the tubular map.

Theorem 8.2 (Teardrop Neighborhood Existence). Let X be a manifold
stratified space such that all components of strata have dimension greater than 4,
and let Y be a pure subset. ThenY has a teardrop neighborhood whose tubular map

c:U—=Y x (—o00, +0]
is a manifold stratified approximate fibration.

A complete proof of this result will be given in [13], but special cases are in [15]
and [16].

The next result from [12] concerns the classification of neighborhoods of pure
subsets of a manifold stratified space. Given a manifold stratified space Y, a strat-
ified neighborhood of Y consists of a manifold stratified space containing Y as a
pure subset. Two stratified neighborhoods X, X’ of Y are equivalent if there exist
neighborhoods U, U’ of Y in X, X', respectively, and a stratum preserving home-
omorphism h : U — U’ such that h|Y = id. A neighborhood germ of Y is an
equivalence class of stratified neighborhoods of Y.

Theorem 8.3 (Neighborhood Germ Classification). Let Y be a manifold
stratified space such that all components of strata have dimension greater than
4. Then the teardrop construction induces a one-to-one correspondence from con-
trolled, stratum preserving homeomorphism classes of manifold stratified approxi-
mate fibrations over Y x R to neighborhood germs of Y.
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9. APPLICATIONS OF TEARDROP NEIGHBORHOODS

Teardrop neighborhoods can also be used in conjunction with the geometric
theory of manifold approximate fibrations [11] to study the geometric topology of
manifold stratified pairs. Examples of results proved using teardrop technology are
stated in this section. Details will appear in [13].

Theorem 9.1 (Parametrized Isotopy Extension). Let X be a manifold strati-
fied space such that all components of strata have dimension greater than 4, let Y be
a pure subset of X, let U be a neighborhood of Y in X, and let h : Y x AF — YV x A¥
be a k-parameter stratum preserving isotopy. Then there exists a k-parameter iso-
topy h: X x A¥ o X x Ak extending h and supported on U x AF.

This generalizes results of Edwards and Kirby [7], Siebenmann [29] and Quinn
[26].

The next result is a topological analogue of Thom’s First Isotopy Theorem [31]
and can be viewed as a first step towards a topological theory of topological stability.

Theorem 9.2 (First Topological Isotopy). Let X be a manifold stratified space
and let p: X — R™ be a map such that
(i) p is proper,
(ii) for each stratum X; of X, p|: X; = R" is a topological submersion,
(iii) for eacht € R™, the filtration of X restricts to a filtration of p~*(t) giving
pL(t) the structure of a manifold stratified space such that all components
of strata have dimension greater than 4.

Then p is a bundle and can be trivialized by a stratum preserving homeomorphism;
that is, there exists a stratum preserving homeomorphism h : p~1(0) x R* — X
such that ph is projection.

Here is a non-proper version of the preceding result.

Theorem 9.3 (Non-proper First Topological Isotopy). Let X be a manifold
stratified space and let p: X — R™ be a map such that
(i) ifp: X = [0,00) is a proper map andp' = pxp: X = R x [0,00), then
the teardrop X U, R™ is a manifold stratified space,
(ii) for each stratum X; of X, p|: X; = R" is a topological submersion,
(iii) for eacht € R™, the filtration of X restricts to a filtration of p~*(t) giving
pL(t) the structure of a manifold stratified space such that all components
of strata have dimension greater than 4.

Then p is a bundle and can be trivialized by a stratum preserving homeomorphism;
that is, there exists a stratum preserving homeomorphism h : p~1(0) x R* — X
such that ph is projection.

10. CLASSIFYING MANIFOLD STRATIFIED APPROXIMATE FIBRATIONS

Some applications of teardrop neighborhoods are combined with the material in
§5 on bundles with mapping cylinder fibres in order to present a classification of
manifold stratified approximate fibrations, at least when the range is a manifold,
generalizing the classification of manifold approximate fibrations in [17] and [18].
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For notation, let B be a connected i-manifold without boundary and let ¢ : V' —
R’ be a manifold stratified approximate fibration where all components of strata
of V have dimension greater than 4. A stratified manifold approximate fibration
p: X — B has fibre germ q if there exists an embedding R C B such that p| :
p~1(R) — R is controlled, stratum preserving homeomorphic to ¢; that is, there
exists a stratum preserving, level homeomorphism cyl(q) — cyl(p| : p~}(RY) — R?)
where the mapping cylinders have the natural stratifications.

The following result shows that fibre germs are essentially unique. For nota-
tion, let r : R® — R! be the orientation reversing homeomorphism defined by
(1, @2, ..., @) = (=1, %2, -, T;i)-

Theorem 10.1. Let p: X — B be a manifold stratified approximate fibration such
that all components of strata have dimension greater than 4. Let g, : R* — B, k =
1,2, be two open embeddings. Then p| : p~*(go(R?)) — go(R?) is controlled, stratum
preserving homeomorphic to either p| : p~1(g1(RY)) — g1 (R¥) or p| : p~ (g1 (RY)) —
rgi(R").

Proof. The proof follows that of the corresponding result for manifold approxi-
mate fibrations in [17, Cor. 14.6]. The stratified analogues of the straightening
phenomena are consequences of the teardrop neighborhood results [12], [13]. The
use of Siebenmann’s Technical Bundle Theorem is replaced with the non-proper
topological version of Thom’s First Isotopy Lemma in §9. O

There is a moduli space MSAF(B), of all manifold stratified approximate fi-
brations over B with fibre germ ¢. It is defined as a simplicial set with a typ-
ical k-simplex given by a map p : X — B x AF such that for each t € A*,
p|l:p~1(t) = B x {t} is a manifold stratified approximate fibration with fibre germ
q and there exists a stratum preserving homeomorphism p~!(0) x A¥ — X which is
fibre preserving over A¥. (There is also a technical condition giving an embedding
in an ambient universe; cf. [17]).

The proof of the next proposition follows that of the corresponding result for
manifold approximate fibrations in [17]. The necessary stratified versions of the
manifold approximate fibration tools are in [12] and [13] and follow from teardrop
technology.

Proposition 10.2. my MSAF(B), is in one-to-one correspondence with the set of
controlled, stratum preserving homeomorphism classes of stratified manifold approz-
imate fibrations over B with fibre germ q.

Let TOPLevel(q) denote the simplicial group of self homeomorphisms of the map-
ping cylinder cyl(p) which preserve the mapping cylinder levels and are stratum
preserving with respect to the induced stratification of cyl(g). Note that there is a
restriction homomorphism TOP*'®(¢) — TOP;.

Let 7B — B denote the topological tangent bundle of B. Consider 7B as an
open neighborhood of the diagonal in B x B so that 7B — B is first coordinate
projection. As in §5 we can form the simplicial set By (g, TOPlsevel(q) rel 7B — B)
which we denote simply by By (g, TOP*¥®!(¢) rel 7B).

The differential

d : MSAF(B), — By (g, TOP***(¢) rel 7B)
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is a simplicial map whose definition is illustrated on vertices as follows (for higher
dimensional simplices, the construction is analogous; cf. [17]). If p: X — Bisa
vertex of MSAF(B),, then form

idpxp:BxX - BxB

and let
p=p|:E :p_l(TB) — 7B.

Thus, there is a commuting diagram

E—2 B
! !
B 4z, B

It follows from the stratified straightening phenomena [13] that the local triviality
condition is satisfied, so that the diagram is a vertex of

B (¢, TOP¥®(¢) rel 7B).

Once again the proof of the following result follows that of the corresponding man-
ifold approximate fibration result in [17] using the stratified results of [12] and
[13].

Theorem 10.3 (MSAF Classification). The differential
d : MSAF(B), — B (q, TOP¥*(¢) rel 7B)

s a homotopy equivalence.

Corollary 10.4. Controlled, stratum preserving homeomorphism classes of strat-
ifted manifold approzimate fibrations over B with fibre germ q are in one-to-one
correspondence with homotopy classes of lifts of the map 7 : B — BTOP; which
classifies the tangent bundle of B, to BTOP!*®!(¢):

BTOP*(¢)

!

B ——— BTOP;.

Proof. Combine Theorem 10.3, Proposition 10.2 and Proposition 5.8. O

Finally, observe that Corollary 10.4 can be combined with Theorem 8.3 to give
a classification of neighborhood germs of B with fixed local type.
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THE ASYMPTOTIC METHOD IN THE
NOVIKOV CONJECTURE

T.KaTO

The famous Hirzebruch signature theorem asserts that the signature of a closed
oriented manifold is equal to the integral of the so called L-genus. An immediate
corollary of this is the homotopy invariance of < L(M),[M] >. The L-genus is a
characteristic class of tangent bundles, so the above remark is a non-trivial fact.
The problem of higher signatures is a generalization of the above consideration.
Namely we investigate whether the higher signatures are homotopy invariants or
not. The problem is called the Novikov conjecture. The characteristic numbers are
closely related to the fundamental groups of manifolds.

There are at least two proofs of the signature theorem. One is to use the cobor-
dism ring. The other is to use the Atiyah-Singer index theorem. Recall that the
signature is equal to the index of the signature operators. The higher signatures
are formulated as homotopy invariants of bordism groups of BI'. The problem was
solved using the Atiyah-Singer index theorem in many partial solutions. Here we
have the index-theoretic approach in mind when considering the higher signatures.
Roughly speaking, a higher signature is an index for a signature operator with
some coefficients. To interpret the number as a generalized signature, one consid-
ers homology groups with rational group ring coefficients. By doing surgery on the
homology groups, we obtain non degenerate symmetric form o € L(T") over the
group ring. It is called the Mishchenko-Ranicki symmetric signature. This element
is a homotopy invariant of manifolds. Mishchenko introduced Fredholm represen-
tations, obtaining a number o(F) from a Fredholm representation F and o. On
the other hand, one can construct a virtual bundle over K (T',1) from a Fredholm
representation. By pulling back the bundle through maps from the base mani-
folds to K(T',1), we can make a signature operator with coefficients. Mishchenko
discovered the generalized signature theorem which asserts the coincidence of the
index of the operators and o(F). Thus a higher signature coming from a Fredholm
representation is an oriented homotopy invariant.

In [CGM] the authors showed that all higher signatures come from Fredholm
representations for large class of discrete groups, including word hyperbolic groups.
They formulated the notion of a proper Lipschitz cohomology class in group coho-
mology. It corresponds to a Fredholm representation in K-theory. In fact for many
discrete groups, any class of group cohomology can be represented by a proper
Lipschitz cohomology class. Their method depends on the existence of finite di-
mensional spaces of Q type K(T,1).

On the other hand for larger classes of discrete groups, we cannot expect existence
of such good spaces. In [G], Gromov introduced a very large class of discrete groups,
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the quasi geodesic bicombing groups. This class is characterized by convexity of the
Cayley graph. Hyperbolic groups are contained in the class. For the class we cannot
ensure the existence of good spaces as above. Moreover it is unknown whether
H™(T; Q) is zero for sufficiently large n. To overcome this difficulty, the following is
shown in [K]. We realize K (T', 1) by infinite dimensional space and approximate it
by a family of finite dimensional spaces. By applying the method of [CGM] for finite
dimensional spaces iteratively, it turns out that any cohomology class comes from
a Fredholm representation asymptotically. It suffices for the Novikov conjecture
because of finite dimensionality of manifolds.

§1 GEOMETRIC INTERPRETATION

To indicate the geometric features of higher signatures, let us consider signatures
of submanifolds(see[G2]). Let I' be a discrete group, M be a closed manifold and
f: M — K(I',1) be a smooth map. Let us assume that K(T',1) is realized by
a closed manifold V' ( dimM > dimV ). Then for a regular value m € V', the
cobordism class of W = f~!(m) is defined uniquely up to homotopy class of f.
Moreover the Poincaré dual class of [W] € H,(M) is f*([V]) where [V] € HEmY (V)
is the fundamental cohomology class. Notice that the normal bundle of W is trivial.
Thus

o(W) = <L(W),[W]> = < L(M),[W|> = < L(M)f*([V]),[M] > .

o(W) is a higher signature of M which we now define as follows.

Definition 1-1. Let M be a closed manifold and I" be a discrete group. Then a
higher signature of M is a characteristic number

< L(M)f* (), [M] >

where f: M — K(T',1) is a continuous map and z € H*(T'; Q).

It is conjectured that these characteristic numbers are all homotopy invariants.

Let us see another geometric interpretation. Let FF — X — M be a smooth fiber
bundle over M and assume F' is 4k dimensional. Then the flat bundle induced from
the fibration H — M has a natural involution *. Thus H splits as H = H; & H_
and by the index theorem for families, it follows

o(X) = < L(M)ch(H, — H_),[M] > .

As a corollary, we see that the right hand side is a homotopy invariant of fiber
bundles over M (see[At]).

It is not necessary to construct a fiber bundle corresponding to each higher
signature. To induce the homotopy invariance, we only need a flat bundle and
an involution over M. From the point of view, Lusztig succeeded in verifying
Novikov conjecture for free abelian groups by the analytic method ([L]). Let YV
be a compact topological space and X be 2k dimensional compact manifold. Let
p:Y xm(X) = U(p,q) be a family of U(p, q) representations of the fundamental
group of X. Then one can construct a vector bundle E over Y x X which is flat in
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the X direction. E is admitted a non degenerate hermitian form <, > and E splits
as E = E, @ E_. Using the splitting, we obtain a family of quadratic forms

o, H*(X;E) x H*(X;E) - C.

Naturally there corresponds o(X,p) € K(Y) which is homotopy invariant of X.
Lusztig discovered the index theorem as follows. Let # : ¥ x X — Y be the
projection. Then

. (L(X)eh(Es — E)) = ch(o(X,p)).

In particular we can take as Y the representation space of the fundamental group of
X. In the special case of the free abelian group Z", U(1) the representation space
is the dual torus which is topologically isomorphic to the torus T™. In the case of
a single U(1) representation, one can only obtain the signature. However Lusztig
found the following. There exist bases {a;} and {b;} of H**(T™;Z) and H*>"(1™;7)
such that
ch(o(X,L)) = > < L(X)f*(a:),[X] > b;
13

where f : X — T"™ induces an isomorphism of the fundamental groups. This is
enough to verify the Novikov conjecture for free abelian groups. In the case of
general noncommutative discrete groups, the representation space will be too com-
plicated and it will be very difficult to apply this method to general noncommutative
discrete groups.

§2 FREDHOLM REPRESENTATION

Mishchenko discovered the infinite dimensional version of the method of flat
vector bundles.

Definition 2-1. Let ' be a discrete group. Then a Fredholm representation of I
is a set, (Hl, HQ,pl,pQ,F) where

(1) Hy, H, are Hilbert spaces,

(2) F : HA — H, is a Fredholm map,

(3) pi : I' = U(H;, H;) is a unitary representation such that pa(v)F — Fpy(7) is
a compact operator for any v € T'.

Using a Fredholm representation, we can construct a virtual bundle over K (T, 1)
as follows. From the condition (3), we can construct an equivariant continuous map
f: ET — B(H;, Hy) which satisfies

(1) for some point z € ET, f(z) = F,

(2) for any points z,y € ET, f(z) — f(y) is a compact operator.

Notice that f is unique up to homotopy. Then the virtual bundle is (f : ET xp
H, — ET xp H,) and we write

i : { Fredholm representations }/ homotopy — Virtual bundles over BT



54 T.KATO
Theorem 2-2 (Mishchenko). Let f: M — BT be a continuous map. Then

< L(M) f*(ch(u(F))), [M] >
is an oriented homotopy invariant of M.

Let us interpret this theorem as an infinite version of the one of Lusztig. By
doing surgery on the homology groups with local coefficient, we have the resulting
homology only on the middle dimension. Poincaré duality on the homology gives a
symmetric form o. This is an element of the Wall L-group L(T") of the fundamen-
tal group T, represented by a group ring valued nondegenerate symmetric matrix.
If there is a unitary representation of I', then the matrix can be regarded as an
invertible self adjoint operator on an infinite dimensional Hilbert space. The Fred-
holm operator F' of a Fredholm representation decomposes into an operator valued
2 by 2 matrix {Fj ;}i j=1,2 corresponding to the decomposition of the Hilbert space
into positive and negative parts of the self adjoint operators. It turns out that the
diagonal parts Fi; and Fo are also Fredholm operators and Fio, F5; are compact
operators. This follows essentially from the almost commutativity of the unitary
representations and the Fredholm operator in the definition of Fredholm represen-
tation. Thus we obtain a number indexF]; — indexF5. Mishchenko discovered the
generalized signature theorem which asserts the coincidence of this number and the
characteristic number of the above theorem. The process is parallel to the signature
theorem in the case of the simply connected spaces.

§3 NOVIKOV CONJECTURE FOR WORD HYPERBOLIC GROUPS

It is natural to ask how large ch*(u( Fredholm representations )) is in H?*(T; Q).
By a celebrated work by A.Connes, M.Gromov and H.Moscovici, it is shown that
if T' is hyperbolic, then they occupy in H**(T'; Q).

In some cases of discrete groups, Eilenberg-Maclane spaces are realized by (com-
pact) smooth manifolds. In particular compact negatively curved manifolds them-
selves are Eilenberg-Maclane spaces. Hyperbolic groups are introduced by Gromov.
The class is characterized by the essential properties which are possessed by the
fundamental groups of compact negatively curved manifolds. Though the class is
very large, they have reasonable classifying spaces which are enough to work instead
of Eilenberg-Maclane spaces, at least for the Novikov conjecture. The spaces are
called Rips complexes.

Fact 3-1. Let I be a discrete group. Then there exists a family of finite dimensional
simplicial complexes {P, (') }1<y. They satisfy the following:
(1) T acts on each P,(T") proper discontinuously with compact quotient,
(2) if T is torsion free, then the action is also free,
(3) Po(T) C -~ C Py(T) C Py (T).....,
(4)if T is hyperbohc then P, (T") is contractible for sufficiently large n.

In particular, torsion free hyperbolic groups have BT represented by finite di-
mensional simplicial complexes. In the following, we shall write P, /T as a tubular
neighborhood in an embedding P, (I')/T — RY. P,/T is an open manifold with
the induced metric from RY. In the following, I is a hyperbolic group.
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Kasparov K K-groups.

Before explaining the method of [CGM], we shall quickly review Kasparov’s K K -
theory. The K K-groups are used effectively to prove Novikov conjecture. KK is a
bifunctor from a pair of distinct spaces (X,Y") to abelian groups which is covariant
on X and contravariant on Y. The K K-groups include both K-cohomology and
K-homology.

Roughly speaking K-homology consists of the set of Dirac operators on spaces.
Precisely an element of Ko(X) is represented by (M, E, @) where

(1) M is an even dimensional spin® manifold which need not be compact or
connected,

(2) E is a complex vector bundle over M,

(3) ¢ is a proper map from M to X.

K(X) is the set of the above triples quotiented by a certain equivalence relation.
It is dual to K-cohomology and the pairing is to take the index on twisted vector
bundles. Let S be the spin® vector bundle over M and Dg : S @ E - S_ ® E
be the Dirac operator on M. Then the pairing of K theory is < F, (M, E,p) >=
indexDE®F.

Fact 3-2. There exists a Chern character isomorphism,
che : Ko(X) ® Q = HyY (X;Q)

by . (ch*(E)Utd(M)N[M]) where HI* is the homology with locally finite infinite
support.

Roughly speaking K K(X,Y) is the set of sections over a family of elements of
Ky(X) over Y. Thus if Y is a point,

KK, (X,pt) = K.(X).

There is an analytical interpretation of topological K-homology. Let Cp(X) be the
set of the continuous functions on X vanishing at infinity. Co(X) is C* algebra
whose C* norm is to take pointwise supremum. The analytical K-homology K (X)
is the set (Ho @ Hi, po, p1,T) quotiented by an equivalence relation, where

(1) H; is a Hilbert space,

(2) pi : Co(X) — B(H;) is a *—homomorphism,

(3) T : Hy — H; is a bounded operator such that [ — T*T, I —TT*, py(a)T —
Tpo(a), are all compact operators.

The explicit map Ko(X) = Ko(X) is to take L? sections of twisted spin® vector
bundles, (L?(M,S®E), Dg, ). Though Dg is an unbounded operator, by making
pseudo differential calculus, we can construct a bounded operator. If M is compact,
then it is Dg(I + D% Dg) 2. As ¢ is a proper map, it pulls back Co(X) to Co(M)
and the *—homomorphism is the multiplication by ¢*(a), a € Co(X). If X is
a point, then an element of Ky(X) is represented by a Fredholm operator over
Hilbert spaces. Ko( pt ) is naturally isomorphic to Z by taking Fredholm indices.
KK(pt,Y)is afamily of Fredholm operators over Y. Thus

KK,(pt,Y) = K*(Y).
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Now let, us define the K K-groups. First, let us recall the definition of the analytical
K homology (1), (2), (3) and consider the family version. (1) The set of sections over
the family of Hilbert spaces over ¥ admits a natural Co(Y")-module structure. (2)
As the *—homomorphism p; action is fiberwise, it commutes with that of Co(Y).
(3) A family of compact operators will be formulated as an element of a norm
closure of finite rank projections in the set of endomorphisms of the Cy(Y")-module.
Soon we define this precisely.

Let us consider the triple (E, ¢, F') where

(1) E is a Zy-graded right Cy(Y")-module with a Cy(Y") valued inner product. It
is complete with respect to C* norm of Cy(Y'). E is called a Hilbert module over
Co(Y).

(2) ¢ is a degree 0 x—homomorphism from Cy(X) to B(E) where B(E) is the
set of Cp(Y)-module endomorphisms. Co(X) acts on E from the left.

(3) F € B(E) is of degree 1 such that [F — F*]¢(a), [#(a), F] and (F? —1)¢(a
are all compact endomorphisms. A compact endomorphism is an element of B(E
which lies in the closure of linear span of the rank one projections 6, , € B(E),
0:,y(2) = <y,z >. We denote the set of compact endomorphisms by K (E)

If Co(Y) itself is considered as Cp(Y)-module, then B(Co(Y)) is the set of
bounded continuous functions on Y. K(Cy(Y")) is also Co(Y').

Let us denote the set of the above triples (E, ¢, F') by E(X,Y’). Notice that we
can replace Cy(X) and Co(Y) by any C*-algebras A, B and write E(A, B) for the
set of triples which satisfy the above (1), (2), (3) replacing Co(X) by A and Co(Y)
by B.

~— —

Now let us introduce a homotopy equivalence relation as follows. (Ei, ¢, Fy)
is equivalent to (Ea, ¢2, F2) if there exists (E, ¢, F') € E(A,C([0,1], B)) such that
(E®¢, B, fi o ¢,(fi)«F) is isomorphic to (E;, ¢;, F;) where f; : C([0,1], B) — B is
the evaluation maps.

Definition 3-3. KK (X,Y) = E(X,Y)/ homotopy .

It turns out that KK (X,Y) is a group. KK (A, B) is defined similarly.

Notice that K K( pt ,R™) is isomorphic to the K-homology of R" with compact
support which is isomorphic to Z. The generator of K K ( pt , R") is expressed using
Clifford algebra. Let n = 2k be even. Then by identifying R* with C*, any vector
in R? acts on AC* by Clifford multiplication. Then the generator is

n k _ z
{C'O(]R 7/\(C ),F(ZE) - 1+ |£L‘|}
in KK ( pt ,R").

There is also equivariant K K-theory. Let A and B admit automorphisms of
. If X and Y are I" spaces, then Co(X) and Cp(Y") have natural I" actions. Let
Er(A, B) be the set of triples (E, ¢, F') € E(A, B) such that there exists an action
of I" on E which satisfy

(1) g(acd) = (g9a)(g¢)(gb), < g¢,9¢" >=g <, (" >

(2) ¢(a)(gFg~! — F) is a compact endomorphism of E.

Homotopy equivalence is defined similarly.
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Definition 3-4. KK (X,Y) = Er(X,Y)/ homotopy .

Notice that K Ky (pt,pt) is the set of Fredholm representations quotiented by
homotopy equivalence.

There is a very important operation in K K-theory, called the intersection prod-
uct pairing (see [Bl])

KKp(X,Y) x KKr(Y,Z) » KKr(X, Z).

Lipschitz geometry.

In the essential step, [CGM] constructs an element ¢ € K Kr(pt, P,). Roughly
speaking, the construction is as follows.
First of all, using the contractibility of P,, one constructs a map which induces
Poincaré duality,
a: P, xp P, — T[N’n/F.

Namely for 3 € H*(P,/T;Q), z € H™(P,/T;Q),

an: Hi“f(IBn/F;Q) - H*(P,/T;Q)
N = .
“ (Z) /ZXFéa

Proposition 3-5[CGM]. If « is fiberwise proper Lipschitz, then one can construct
©.

Let a: P, xp P, — T]Bn/I‘ = Pn/F x RV be the fiberwise proper Lipschitz map
which induces Poincaré duality. Let us take e € P, and restrict @ on P,, X e. Then

a(r)

# = {Co(Pa, NC), 10

}

in KKr( pt I3n) is the desired one. If « is not fiberwise Lipschitz, then the above
¢ does not define an element of the equivariant K K-group. To ensure yFy ! — F is
a compact endomorphism, it is enough to see that |yF(x)y ! — F(z)| goes to zero
when z goes to infinity. This follows, by simple calculation, from the Lipschitzness
of a.

A priori, we only have a fiberwise proper map which induces Poincaré duality.
It is natural to try to deform the map so that it becomes fiberwise proper Lipschitz
by a proper homotopy. To do so, first using the hyperbolicity, we have the following
map.

Proposition 3-6. Let us take a sufficiently large n > 0 and a sufficiently small
constant 0 < u < 1. The there exists a map

F:an[‘Pn—)anFpn

such that
(1) F is fiberwise p Lipschitz,
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(2) there ezists a fiberwise proper homotopy Fy which connects F' to the identity.
Remark 3-7. The existence of such F implies that P, must be contractible.
Let us take sufficiently large r and put D = {(z,y) € P, xp Pn;d(z,y) < r}. By

modifying « slightly, we may assume that p~'a o Flyp-1(py = alsp-1(p)-
Let us put

B; = {(z,y) € Py xr Pp; F'(z,y) = Fo F...F(z,y) € D}

Di = Bz — Bi—l-

Let us define } R }
Qoo : Py Xr P, — TP,

D = 'uferla o szl‘

Qoo

It is not difficult to see that a., is fiberwise proper Lipschitz and it is fiberwise
proper homotopic to a.

Using the Kasparov intersection product, we have a map

¢ : KKr(P,, pt ) = KKr(pt, pt)
p(z) = x .
Theorem 3-8 CGM]. There ezists the following commutative diagram.

KKr(Po(r),Q —2 K2*(BT)

lch* lch*

3! (Py(D)/T) 2= H?(BI)
where PD is the Poincare duality.

In the case of cohomology groups of odd degrees, we can reduce to the case of
even ones by considering Z x I'. Thus

Corollary 3-9. Let T be a hyperbolic group and f : M — K(I',1) be a continuous
map. Then < L(M)f*(x),[M] > is an oriented homotopy invariant for any x €
H*(T;Q). Namely let p: My — M be an oriented homotopy equivalence. Then

< L(My)(po f)*(z), [Mi] >=< L(Ms) f*(x), [M5] > .

Notice that in the case of hyperbolic groups, we have used the fact that K (T, 1)
was realized by a finite dimensional simplicial complex over Q. On the other hand,
we cannot expect it on more large classes of discrete groups, in particular quasi
geodesic bicombing groups which we shall treat in the next section. For the class,
we cannot expect even that the ranks of cohomology over QQ are finite.
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§4 QUASI GEODESIC BICOMBING GROUPS

In [ECHLPT], a very large class of discrete groups is defined. The elements
of the class are called combing groups. It contains hyperbolic groups and quasi
geodesic bicombing groups defined later.

Theorem 4-1[ECHLPT]. If T is a combable group, then K(T',1) space can be
realized by a CW complex such that the number of cells in each dimension is finite.

As an immediate corollary of this, we can see that dimH™(T'; Q) < oo for each
n. Using this fact, in the following construction, we shall make an analogy of the
case of hyperbolic groups on spaces which approximates K (T',1).

A set of generators of a discrete group determines a 1 dimensional simplicial
complex called Cayley graph G(I'). G(I') has a natural metric. Notice that the
universal covering spaces of non positively curved manifolds have the convex prop-
erty. With this in mind, we shall define the following.

Definition 4-2[G1]. If T has the following properties, we call it a bicombing
group. Let us fix a generating set of I'. Then there exists a continuous and T’
equivariant map

S:TxIx]0,1] =G

such that for some k > 1,C > 0, it satisfies

5(71)7270):717 5(71772)1):7%
d(S¢(71,72),8:(71,72)) < k(td(v2,75) + (1 = t)d(v1,71)) + C.

Though S(v1,7%, ) :[0,1] = G(w) connects v; and 72, we shall require bal-
anced curves.

Definition 4-3[G1]. Let ' be bicombing. We say that I' is bounded if for some
k>1,C >0, it satisfies

d(Se(71,72), Se(1,72)) < klt = t|d(v1,72) + C
Definition 4-4. T" : bounded bicombing is quasi geodesic if for every -, a suffi-
ciently small e and 0 <t < s <t+e <1, S(e,v,t) # S(e,,s). Moreover let us

denote a unit speed path of S(e,y, ) by w,.
wy 1 [0,|S(e,y, )|] = G(T). Then for d(vi,72) <1,

Ud(wey, , wrys) = suprd(wa, (1), w4, (1)) < C,
1S(e,y, )l <kly[+C

Furthermore, for some A > 0, B > 0, S; satisfies

d(v,St(v,7")) > Atd(v,~') — B.

Using S, it is easy to prove the following lemma.
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Lemma 4-5[Al]. IfT is a quasi geodesic bicombing group, then each Rips complex
P;(T) is contractible in P, (T") for large n = n(i).

From this, we see that for a torsion free quasi geodesic bicombing group T,
P (') = lim;P;(T) is a realization of ET. Unlike to the case of hyperbolic groups,

we cannot make F : P, Xr P,(T) —» P, xr Pn(I‘) as before, because P, is not
contractible in itself. However we have the following family of maps.

Proposition 4-6. Let us take an arbitrary family of small constants {p; }o<i, 1 >>
ooy >> iy >> pig > 0. Then for some family of Rips compleves { P to<i,
there exists a family of maps

F; - pn(O) X pn(z) — I:)n(O) Xr Pn(i—i—l)

such that
(1) F; is fiberwise p; Lipschitz,
(2) F; is fiberwise proper homotopic to the inclusion.

Let ag : IBH(O) X f’n(o) — R" be a fiberwise proper map which induces Poincaré
duality. Using the above family of maps, we can construct the following commuta-
tive diagram of maps.

ﬁo X1 ﬁg — 2, RMo

incll lincl

pg X1 151 2, RN

incll lincl

—

To produce a proper Lipschitz map, we need to control growth of these maps
at infinity. In this case, we can construct a; which satisfy the following. There
exist families of constants {C;}, {a;} such that the Lipschitz constant of a; on
Ni(r) = {(z,y)|z € Py,y € P;,d;(z,y) < r}, for sufficiently large r, is bounded by
C;H (a;r) where H is a Lipschitz function on [0, 00).

Proposition 4-7. Using these maps, we have
Qoo ]5”(0) X ]5”(0) — R*®
which is fiberwise proper homotopic to a. Moreover let
pr:R® — RV, N = dimf’n(o).
Then pr o ay is fiberwise proper Lipschitz.
Let us recall that homology commutes with spaces under the direct limit opera-

tion. Thus H,(Px /I') = lim, H.(P,/T"). With the fact that the rank of Hy(P,/T")
is finite for every IV, we have
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Lemma 4-8. Let us take any large N. Then for x < N, there exists n such that
it Ho(P /T;Q) = Ho(Poo /T5Q)

is surjective where i : Pp(m)/m — Poo(m) /7 is the inclusion.

As before, we can construct ¢ € KKp( pt , Py).

Theorem 4-9. The following diagram commutes.

KKr(B,, pt) —2%% K?*(BI)

J«Ch* J,i*OCh*
H (Po/T) =2 H?*(Po/T).
We cannot construct the homotopy between proa, and ag through the map to

RV. Let2K = Nand Z = ]5”(0) X Pp(0)- To show the commutativity of the diagram,
we construct a homotopy between the following two elements in K K( pt , Z).

. B . pr o oo ()
(pr oax)*(B) ={Cv(Z, /\(CK):FOO(ZE) = m}

}

Let Ay = ACN. Then there are natural inclusions Ay C Axy; C ... which
preserves the metrics. Let [AC°] be the infinite dimensional Hilbert space which
is the completion of the union. By adding degenerate elements, we can express

ag(B) = {Co(Z,[NC?]), Fo ® Go}
(pr aco)*(8) = {Co(Z,[NC?)), Foo ® Goo}

Using the proper homotopy between oy and proa., through maps to R>*, we can
construct the homotopy between the elements in KK ( pt ,Z).

Corollary 4-10. Let T’ be a torsion free quasi geodesic bicombing group. Then for
arbitrary large N and x € H?*(BT';Q), there exists a Fredholm representation F
such that © — ch(u(F)) € H*(BT;Q), * > N.

Corollary 4-11. For torsion free quasi geodesic bicombing groups, the higher sig-
natures are oriented homotopy invariants.
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1. Introduction.

Nash manifolds have been studied for a long time and there are many brilliant
works (e.g. [2], [3], [10], [19], [20], [21], [22], [23]).

The semialgebraic subsets of R” are just the subsets of R™ definable in the
standard structure Rgan = (R, <,+,-,0,1) of the field R of real numbers [24].
However any non-polynomially bounded function is not definable in R4y, where
a polynomially bounded function means a function f : R — R admitting an
integer N € N and a real number 7o € R with |f(z)| < 2V, z > zo. C. Miller
[17] proved that if there exists a non-polynomially bounded function definable in
an o-minimal expansion (R, <,+,-,0,1,....) of Rgtan, then the exponential function
exp : R — R is definable in this structure. Hence Rezp := (R, <, 4+, -, exp,0,1) is
a natural expansion of Rgten. There are a number of results on Reyp (e.g. [11],
[12], [13], [14], [26]). Note that there are other structures with properties similar
to those of Regp ([5], [6], [25])-

We say that a C" manifold (0 < r < w) is an exponentially C"™ Nash manifold
if it is definable in R.;;, (See Definition 2.5). Equivariant such manifolds are defined
in a similar way (See Definition 2.6).

In this note we are concerned with exponentially C" Nash manifolds and equi-
variant exponentially C™ Nash manifolds.

Theorem 1.1. Any compact exponentially C* Nash manifold (0 < r < 00) admits
an exponentially C” Nash imbedding into some FEuclidean space.

Note that there exists an exponentially C* Nash manifold which does not admit
any exponentially C* imbedding into any Euclidean space [8]. Hence an exponen-
tially C* Nash manifold is called af fine if it admits an exponentially C“ Nash
imbedding into some Euclidean space (See Definition 2.5). In the usual Nash cat-
egory, Theorem 1.1 is a fundamental theorem and it holds true without assuming
compactness of the Nash manifold [19].

Equivariant exponentially Nash vector bundles are defined as well as Nash ones
(See Definition 2.8).

1991 Mathematics Subject Classification. 14P10, 14P15, 14P20, 57505, 57515, 58 A07.
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Theorem 1.2. Let G be a compact affine Nash group and let X be a compact affine
exponentially C¥ Nash G manifold with dim X > 2. Then for any C°G vector
bundle n of positive rank over X, there exist two exponentially C¥ Nash G vector
bundle structures of 1 such that they are exponentially C*° Nash G vector bundle
isomorphic but not exponentially C¥ Nash G vector bundle isomorphic.

Theorem 1.3. Let G be a compact affine exponentially Nash group and let X be
a compact C®G manifold. If dim X > 3 and dim X& > 2, then X admits two
exponentially C¥ Nash G manifold structures which are exponentially C*° Nash G
diffeomorphic but not exponentially C¥ Nash G diffeomorphic.

In the usual equivariant Nash category, any C*° Nash G vector bundle isomor-
phism is a C Nash G one, and moreover every C'*° Nash G diffeomorphism is a
C“ Nash G one. Note that Nash structures of C°°G manifolds and C>°G vector
bundles are studied in [9] and [7], respectively.

In this note, all exponentially Nash G manifolds and exponentially Nash G vector
bundles are of class C“ and manifolds are closed unless otherwise stated.

2. Exponentially Nash G manifolds and exponentially Nash G vector
bundles.

Recall the definition of exponentially Nash G manifolds and exponentially Nash
G vector bundles [8] and basic properties of exponentially definable sets and expo-
nentially Nash manifolds [8].

Definition 2.1. (1) An Rep-term is a finite string of symbols obtained by repeated
applications of the following two rules:

[1] Constants and variables are Regp-terms.

[2] If f is an m-place function symbol of Ry and ¢y, ..., ¢, are Reyp-terms, then
the concatenated string f(t1,...,tm) is an Regp-term.

(2) An Re;p-formula is a finite string of Re,p-terms satisfying the following three
rules:

[1] For any two Regp-terms ¢ and ¢a, t1 = ¢2 and t1 > t2 are Reyp-formulas.

[2] If ¢ and ¢ are R.,,-formulas, then the negation —¢, the disjunction ¢V ¢, and
the conjunction ¢ A ¢ are R.,p,-formulas.

[3] If ¢ is an Reyp-formula and v is a variable, then (Jv)¢ and (Vv)é are Regzp-
formulas.

(3) An exponentially definable set X C R" is the set defined by an R.,p-formula
(with parameters).

(4) Let X C R™ and Y C R™ be exponentially definable sets. A map f: X — Y
is called exponentially definable if the graph of f C R™ x R™ is exponentially
definable.

On the other hand, using [12] any exponentially definable subset of R is the
image of an MR, ,-semianalytic set by the natural projection R” x R™ — R" for
some m. Here a subset X of R” is called R,-semianalytic if X is a finite union of
sets of the following form:

where f;,g; € Rlz1,..., 2,0, exp(z1),. .., exp(z,)].
The following is a collections of properties of exponentially definable sets (cf.

[8])-



EXPONENTIALLY NASH G MANIFOLDS AND VECTOR BUNDLES 65

Proposition 2.2 (cf. [8]). (1) Any ezponentially definable set consists of only
finitely many connected components.

Let X CR" and Y C R™ be exponentially definable sets.
(2)The closure Cl1(X) and the interior Int(X) of X are exponentially definable.
(8) The distance function d(x, X) from x to X defined by d(x, X) = inf{||z—yl||ly €
X1} is a continuous exponentially definable function, where ||-|| denotes the standard
norm of R™.
(4) Let f : X — Y be an exponentially definable map. If a subset A of X is
exponentially definable then so is f(A), and if B C Y is exponentially definable
then so is f~*(B).
(5) Let Z C R be an exponentially definable set and let f : X — Y and h:Y —
Z be exponentially definable maps. Then the composition ho f : X — Z is also
exponentially definable. In particular for any two polynomial functions f,g: R —
R, the function h: R — {f = 0} — R defined by h(z) = e9®)/1(®) js exponentially
definable.
(6) The set of exponentially definable functions on X forms a ring.
(7) Any two disjoint closed exponentially definable sets X and Y C R™ can be
separated by a continuous exponentially definable function. O

Let U C R® and V C R™ be open exponentially definable sets. A C" (0 <r < w)
map f : U — V is called an exponentially C" Nash map if it is exponentially
definable. An exponentially C" Nash map g : U — V is called an exponentially C"
Nash dif feomorphism if there exists an exponentially C" Nash map h: V — U
such that g o h = id and h o g = id. Note that the graph of an exponentially C”
Nash map may be defined by an Re.p-formula with quantifiers.

Theorem 2.3 [14]. Let Si,...,Sr C R"® be exponentially definable sets. Then
there exists a finite family 20 = {T'%} of subsets of R" satisfying the following four
conditions:

(1) T2 are disjoint, R* = Uy 4T'% and S; = U{T4|T4 N S; # 0} for 1 <i <k.

(2) Each T2 is an analytic cell of dimension d.

(8) T4 — T4 is a union of some cells L'y with e < d.

(4) If Fg,I‘% €W, I'; C Td —T? then (Fg,F%) satisfies Whitney’s conditions (a)
and (b) at all points of T'. O

Theorem 2.3 allows us to define the dimension of an exponentially definable set
E by

dim F = max{dim ['|T" is an analytic submanifold contained in E}.

Ezample 2.4. (1) The C* function A : R — R defined by

Az) { 0 if <0
xTr) =
eV i >0

is exponentially definable but not exponentially Nash. This example shows that
an exponentially definable C°° map is not always analytic. This phenomenon does
not occur in the usual Nash category. We will use this function in section 3.
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(2) The Zariski closure of the graph of the exponential function ezp : R — R in
R? is the whole space R?. Hence the dimension of the graph of exp is smaller than
that of its Zariski closure.
(3) The continuous function h : R — R defined by
r—n M
h(a:):{en+2_x %f nsesntl , for n € 27,
e if n+l1<z<n+2

is not exponentially definable, but the restriction of A on any bounded exponentially
definable set is exponentially definable. [

Definition 2.5. Let r be a non-negative integer, co or w.

(1) An exponentially C™ Nash manifold X of dimension d is a C" manifold
admitting a finite system of charts {¢; : U; — R?} such that for each i and j ¢;(U;N
U;) is an open exponentially definable subset of R? and the map ¢; oqb;l |¢: (U;NU;) -
¢:(U;iNU;) — ¢;(U; N U;) is an exponentially C™ Nash diffeomorphism. We call
these charts exponentially C™ Nash. A subset M of X is called exponentially
de finable if every ¢;(U; N M) is exponentially definable.

(2) An exponentially definable subset of R” is called an exponentially C™ Nash
submanifold of dimension d if it is a C" submanifold of dimension d of R”. An
exponentially C" (r > 0) Nash submanifold is of course an exponentially C" Nash
manifold [8].

(3) Let X (resp. Y') be an exponentially C" Nash manifold with exponentially C"
Nash charts {¢; : Uy — R*}; (resp. {¢; : V; — R™};). AC"map f: X — Y
is said to be an exponentially C™ Nash map if for any i and j ¢;(f~1(V;) NU;) is
open and exponentially definable in R”, and that the map ¢jo fop; ' : ¢;(f~1(V;)N
U;) — R™ is an exponentially C" Nash map.

(4) Let X and Y be exponentially C" Nash manifolds. We say that X is exponen-
tially C" Nash dif feomorphic to Y if one can find exponentially C" Nash maps
f: X —Yand h:Y — X such that foh =id and ho f = id.

(5) An exponentially C" Nash manifold is said to be af fine if it is exponentially
C" Nash diffeomorphic to some exponentially C” Nash submanifold of R'.

(6) A group G is called an exponentially Nash group (resp. an af fine exponen-
tially Nash group) if G is an exponentially Nash manifold (resp. an affine expo-
nentially Nash manifold) and that the multiplication G x G — G and the inversion
G — G are exponentially Nash maps.

Definition 2.6. Let G be an exponentially Nash group and let 0 < r < w.

(1) An exponentially C™ Nash submanifold in a representation of G is called an
exponentially C" Nash G submanifold if it is G invariant.

(2) An exponentially C" Nash manifold X is said to be an exponentially C™ Nash
G manifoldif X admits a G action whose action map G x X — X is exponentially
C™ Nash.

(3) Let X and Y be exponentially C" Nash G manifolds. An exponentially C" Nagh
map f: X — Y is called an exponentially C™ Nash G map if it is a G map. An
exponentially C” Nash G map g : X — Y is said to be an exponentially C" Nash
G dif feomorphism if there exists an exponentially C” Nash G map h: Y — X
such that g o h = id and h o g = id.
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(4) We say that an exponentially C" Nash G manifold is a f fine if it is exponentially
C" Nash @ diffeomorphic to an exponentially C” Nash G submanifold of some
representation of G.

We have the following implications on groups:

an algebraic group=—=>an affine Nash group=—-an affine exponentially Nash group
= an exponentially Nash group = a Lie group .

Let G be an algebraic group. Then we obtain the following implications on G
manifolds:

a nonsingular algebraic G set = an affine Nash G manifold
—> an affine exponentially Nash G manifold = an exponentially
Nash G manifold =— a C°°G manifold .

Moreover, notice that a Nash G manifold is not always an affine exponentially Nash
G manifold.

In the equivariant exponentially Nash category, the equivariant tubular neigh-
borhood result holds true [8].

Proposition 2.7 [8]. Let G be a compact affine exponentially Nash group and let
X be an affine exponentially Nash G submanifold possibly with boundary in a repre-
sentation 2 of G. Then there exists an exponentially Nash G tubular neighborhood
(U,p) of X in Q, namely U is an affine exponentially Nash G submanifold in Q
and the orthogonal projection p: U — X is an exponentially Nash G map. O

Definition 2.8. Let G be an exponentially Nash group and let 0 < r < w.
(1) A C"G vector bundle (E,p, X) of rank k is said to be an exponentially C"
Nash G vector bundle if the following three conditions are satisfied:
(a) The total space E and the base space X are exponentially C" Nash G
manifolds.
(b) The projection p is an exponentially C" Nash G map.
(c) There exists a family of finitely many local trivializations {U;, ¢; : U; x
RF —s p~1(U;)}; such that {U;}; is an open exponentially definable
covering of X and that for any i and j the map (;Si_l 0¢;|(U;NU;) x RE
(U;NU;) x R¥ — (U; N U;) x R* is an exponentially C” Nash map.
We call these local trivializations exponentially C" Nash.
(2) Let n = (E,p,X) (resp. ¢ = (F,q,X)) be an exponentially C" Nash G vector
bundle of rank n (resp. m). Let {U;, ¢; : U; x R* — p~1(U;)}; (resp. {Vj,; :
Vi x R™ — ¢~ 1(V;)};) be exponentially C" Nash local trivializations of n (resp.
¢). A C"G vector bundle map f: n — ( is said to be an exponentially C™ Nash
G vector bundle map if for any i and j the map (¢;)~" o f o ¢;|(U;NV;) x R™ :
U;NV;) x R* — (U; NV;) x R™ is an exponentially C" Nash map. A C"G
section s of 7 is called exponentially C" Nash if each ngi_l os|U; : U; — Uy x R
is exponentially C™ Nash.
(3) Two exponentially C™ Nash G vector bundles n and ¢ are said to be exponen-
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tially C" Nash G vector bundle isomorphic if there exist exponentially C" Nash G
vector bundle maps f : ) — ¢ and h : ( — 7 such that foh =id and ho f = id.

Recall universal G vector bundles (cf. [7]).

Definition 2.9. Let Q be an n-dimensional representation of G and B the represen-
tation map G — GL,(R) of Q. Suppose that M () denotes the vector space of
n x n-matrices with the action (g, 4) € G x M(Q) — B(g)"'AB(g) € M(Q). For
any positive integer k, we define the vector bundle v(Q, k) = (E(Q, k), u, G(Q, k))
as follows:

G(Lk)={Ae M(Q)|A*> =A, A=A TrA =k},

E( k) ={(A,v) € G, k) x QAv = v},
u: E(Q k) — G(Q,k) :u((4,v)) = A,

where A’ denotes the transposed matrix of A and TrA stands for the trace of A.
Then (£, k) is an algebraic set. Since the action on (£, k) is algebraic, it is an
algebraic G vector bundle. We call it the universal G vector bundle associated
with @ and k. Since G(Q,k) and E(Q, k) are nonsingular, v(Q, k) is a Nash G
vector bundle, hence it is an exponentially Nash one.

Definition 2.10. An exponentially C™ Nash G vector bundle n = (E,p, X) of rank
k is said to be strongly exponentially C™ Nash if the base space X is affine and
that there exist some representation {2 of G and an exponentially C” Nash G map
f: X — G(Q, k) such that 7 is exponentially C" Nash G vector bundle isomorphic
to £*(v( k).

Let G be a Nash group. Then we have the following implications on G vector
bundles over an affine Nash G manifold:

a Nash G vector bundle = an exponentially Nash G vector bundle = a
C“@ vector bundle, and

a strongly Nash G vector bundle = a strongly exponentially Nash G vector
bundle = an exponentially Nash G vector bundle.

3. Proof of results.

A subset of R™ is called locally closed if it is the intersection of an open set C R"”
and a closed set C R™.

To prove Theorem 1.1, we recall the following.

Proposition 3.1 [8]. Let X C R™ be a locally closed exponentially definable set
and let f and g be continuous exponentially definable functions on X with f~1(0) C
g 2(0). Then there exist an integer N and a continuous exponentially definable
function h : X — R such that gV = hf on X. In particular, for any compact
subset K of X, there exists a positive constant ¢ such that |g™| < c|f| on K O

Proof of Theorem 1.1. Let X be an exponentially C” Nash manifold. If dim X =0
then X consists of finitely many points. Thus the result holds true.

Assume that dim X > 1. Let {¢; : U; — R™}._, be exponentially C" Nash
charts of X. Since X is compact, shrinking U;, if necessarily, we may assume that
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every ¢;(U;) is the open unit ball of R™ whose center is the origin. Let f be
the function on R™ defined by f(z) = ||z|| — 1. Then f~*(0) = ¢;(U;) — ¢:(U;).
Hence replacing the graph of 1/f on ¢;(U;) by ¢;(U;), each ¢;(U;) is closed in R™.
Consider the stereographic projection s : R — S™ C R™ x R. Composing ¢;
and s, we have an exponentially C* Nash imbedding ¢} : ¢;(U;) — R™ such that

the image is bounded in R™ and

¢} 0 ¢i(Ui) — ¢ 0 ¢4(Us)

consists of one point, say 0. Set
m' m'
. ! ! _ 2k 2k
n:R™ — R™ n(x1,...,T;m) = (ZxJ ml,...,ij Tt ),
j=1 j=1

gi : Uy — R™ ,no ;o
for a sufficiently large integer k. Then g; is an exponentially C™ Nash imbedding of
U; into R™ . Moreover the extension g; : X — R of g; defined by §; = 0 on X —U;.
We now prove that g; is of class exponentially C" Nash. It is sufficient to see this on
each exponentially C" Nash coordinate neighborhood of X. Hence we may assume
that X is open in R™. We only have to prove that for any sequence {a; };‘;1 in U;
convergent to a point of X — U; and for any a € N™ with |a| < r, {D%gi(a;)}32,
converges to 0. On the other hand g; = (Z;”zll ¢?}“¢i1, e Z;’il (ﬁfd)im,), where
@0 = (Pi1,s ..., Pim ). Each ¢;; is bounded, and every {¢;;(a;)}32, converges to
zero, and
D (93 dis)l =1 Y (al/(B))D 67} D7 is| <
Bt+v=a
_r , 2k —
c > (63 D% iy - DM i D | < Ol 0,
Brtorok B +y=a,B: £0

where C, C" are constants, and v is the positive continuous exponentially definable
function defined by

¥(z) = max{1, > |DPij(x) - - DV ¢35 () D7 s ()}

Brt 4By +r=a
Define

oy min{|¢g(@)], 1/¢(x)} on U; - f b on U;
0ij(z) = 0 bij =
on X —Uj;, 0 on X —U;.

Then 6;; and ngNij are continuous exponentially definable functions on X such that
_ ~ —1
X-U; C Oijl(O) = ¢yj (0).

- ll!
Hence by Proposition 3.1 we have |¢;; | < df;; on some open exponentially defin-
able neighborhood V' of X — U; in X for some integer [", where d is a constant.
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On the other hand, by the definition of ;; [¢6;;| < 1. Hence the above argument
proves that

D (@) < g

on U; NV, where ¢’ is a constant and we take k such that 2k > r + 1" + 1. Hence
each g; is of class exponentially C" Nash. It is easy to see that

1
II6:x — =™

i=1
is an exponentially C" Nash imbedding. O

By the similar method of [7], we have the following.

Theorem 3.2 [8]. Let G be a compact affine exponentially Nash group and let X
be a compact affine exponentially Nash G manifold.

(1) For every C®G wvector bundle n over X, there exists a strongly exponentially
Nash G vector bundle ¢ which is C*°G vector bundle isomorphic to 1.

(2) For any two strongly exponentially Nash G wvector bundles over X, they are
exponentially Nash G vector bundle isomorphic if and only if they are C°G vector
bundle isomorphic. O

We prepare the following results to prove Theorem 1.2.

Proposition 3.3 [8]. Let M be an affine exponentially Nash G manifold in a
representation Q0 of G.
(1) The normal bundle (L,q, M) in Q realized by

L ={(z,y) € M x Qly is orthogonal to T,M},q: L — M,q(z,y) ==z

is an exponentially Nash G vector bundle.
(2) If M is compact, then some exponentially Nash G tubular neighborhood U of M
in Q obtained by Proposition 2.7 is exponentially Nash G diffeomorphic to L. O

Proposition 3.4 [8]. Let G be a compact affine exponentially Nash group and let
n = (E,p,Y) be an exponentially Nash G wvector bundle of rank k over an affine
exponentially Nash G manifold Y. Then n is strongly exponentially Nash if and
only if E is affine. 0O

Lemma 3.5. Let Dy and Dy be open balls of R"* which have the same center x,
and let a (resp. b) be the radius of Dy (resp. D2) with a <b. Suppose that A and
B are two real numbers. Then there exists a C'°° exponentially definable function
f on R" such that f = A on Dy and f = B on R* — Ds.

Proof. We can assume that A =1, B =0 and zo = 0.

At first we construct such a function when n = 1. Then we may assume that
D, = (—a,a) and Dy = (—b,b) be open intervals. Recall the exponentially definable
C*° function A defined in Example 2.4. The function ¢ : R — R defined by

6(z) = A(b— 2)Ab + 2)/ (A — 2)A(D +2) + Aa® — a?)
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is the desired function. Therefore f : R* — R, f(z) = ¢(|z|) is the required
function, where |z| denotes the standard norm of R*. O

proof of Theorem 1.2. By Theorem 3.2 we may assume that 7 is a strongly expo-
nentially C“ Nash G vector bundle. We only have to find an exponentially C* Nash
G vector bundle ¢ which is exponentially C* Nash G vector bundle isomorphic to
1 but not exponentially C* Nash G vector bundle isomorphic to 7.

As well as the usual equivariant Nash category, X is an exponentially Nash G
submanifold of X. Take an open exponentially definable subset U of X such that
n|U is exponentially C* Nash vector bundle isomorphic to the trivial bundle and
that X¢ NU # 0. Since dim X > 2, there exists a one-dimensional exponentially
Nash G submanifold S of U which is exponentially Nash diffeomorphic to the unit
circle S' in R?. Moreover there exist two open G invariant exponentially definable
subsets V; and V5 of U such that VUV, D S and VyNV; consists of two open balls Z
and Z;. We define the exponentially C* Nash G vector bundle (' := (E,r, Vi UV3)
over V1 U V5 to be the bundle obtained by the coordinate transformation

1 on Z1

:VinNVy, — GL(E), =
grz - il (), 912 {(l—l—e)[ on Zs,

where I denotes the unit matrix, € > 0 is sufficiently small and = stands for the
fiber of n|U. This construction is inspired by the proof of 4.2.8 [23].

Let ¢; : VixZ — p~1(V;), i = 1,2 be exponentially Nash G coordinate functions
of {'. Consider an extension of the exponentially C* Nash section f on SNV defined
by ¢; %o f(x) = (z,I). If we extend f through Z;, then the analytic extension f
to SNV, satisfies ¢, ' o f = (z,I),z € SNV,. However the analytic extension f to
SN Vs through Z, satisfies ¢5 ' o f = (z,1/(1 +€)I). Thus the smallest analytic set
containing the graph of f spins infinitely over S. Hence (’|S is not exponentially
C*¥ Nash G vector bundle isomorphic to n|S. By Theorem 3.2 ('|S is not strongly
exponentially C“ Nash. Thus the exponentially C¥ Nash G vector bundle ( over
X obtained by replacing 5|V UV, by ¢’ is not exponentially C¥ Nash G vector
bundle isomorphic to 7.

On the other hand, by Lemma 3.5 we can construct an exponentially C'* Nash
G map H from a G invariant exponentially definable neighborhood of U N X% in
U to GL(E) such that H|Z» = (1 + €)I and H = I outside of some G invariant
exponentially definable neighborhood of Z,. Since ¢ is sufficiently small, using this
map, we get an exponentially C* Nash G vector bundle isomorphism n — (. O

Proof of Theorem 1.3. By the proof of Theorem 1 (1) [9], X is C*°G diffeomorphic
to some affine exponentially Nash G manifold. Hence we may assume that X is an
affine exponentially C“ Nash G manifold.

Since X is an exponentially C* Nash G submanifold of X, there exists an
exponentially Nash G’ tubular neighborhood (T, ¢) of X% in X by Proposition 2.7.
Moreover we may assume that T is exponentially C* Nash G diffeomorphic to the
total space of the normal bundle n of X% in X because of Proposition 3.3. Note
that 7 is a strongly exponentially C* Nash G vector bundle over X and that each
fiber is a representation of G. Take an open @ invariant exponentially definable
subset U of X such that n|U is exponentially C* Nash G vector bundle isomorphic
to the trivial bundle U x =, where = denotes the fiber of n|U.
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By the proof of Theorem 1.2, there exists an exponentially C“ Nash G vector
bundle 7’ over U such that ' is not exponentially C* Nash G vector bundle iso-
morphic to n|U and that there exists an exponentially C* Nash G vector bundle
isomorphism H : n|U — n' such that H is the identity outside of some open G
invariant exponentially definable set.

Replacing the total space of n|U by that of n', we have an exponentially C*
Nash G manifold Y which is not exponentially C¥ Nash G diffeomorphic to X.
Moreover using H, one can find an exponentially C'*° Nash G diffeomorphism from
XtoY. O

Note that Y is not exponentially C* Nash G affine but exponentially C'*° Nash
G affine by Proposition 3.4.

4. Remarks.

It is known in [1] that every compact Lie group admits one and exactly one
algebraic group structure up to algebraic group isomorphism. Hence it admits an
affine Nash group structure. Notice that all connected one-dimensional Nash groups
and locally Nash groups are classified by [16] and [22], respectively. In particular,
the unit circle S' in R? admits a nonaffine Nash group structure.

But the analogous result concerning nonaffine exponentially Nash group struc-
tures of centerless Lie groups does not hold.

Remark 4.1. Let G be a compact centerless Lie group. Then G does not admit
any nonaffine exponentially Nash group structure.

Proof. Let G' be an exponentially Nash group which is isomorphic to G as a Lie
group. Then the adjoint representation Ad : G' — GI,,(R) is exponentially defin-
able by the similar method of Lemma 2.2 [15] and it is C*, where n denotes the
dimension of G. Hence Ad is an exponentially Nash one and its kernel is the center
of G'. Therefore the image G” of Ad is an affine exponentially Nash group and Ad
is an exponentially Nash group isomorphism from G’ to G”. O

It is known that any two disjoint closed semialgebraic sets X and Y in R™ can
be separated by a C*“ Nash function on R" [18], namely there exists a C* Nash
function f on R™ such that

f>0on X and f<OonY.

The following is a weak equivariant version of Nash category and exponentially
Nash category.

Remark 4.2. Let G be a compact affine Nash (resp. a compact affine exponen-
tially Nash ) group. Then any two disjoint closed G invariant semialgebraic (resp.
disjoint closed G invariant exponentially definable) sets in a representation Q0 of G
can be separated by a G invariant continuous semialgebraic (resp. a G invariant
continuous exponentially definable) function on Q.

Proof. By the distance d(x, X) of z between X is semialgebraic (resp. exponentially
definable). Since G is compact, d(z, X) is equivariant. Hence F': Q@ — R, F(z) =
d(z,Y) — d(z, X) is the desired one. O
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Remark 4.3. Under the assumption of 4.2, if one of the above two sets is com-
pact, then they are separated by a G invariant entire rational function on ), where
an entire rational function means a fraction of polynomial functions with nowhere
vanishing denominator.

Proof. Assume that X is compact and Y is noncompact. Let s: Q@ — S C QO x R
be the stereographic projection and let S = QU {oo}. Since X is compact, s(X)
and s(Y) U {oo} are compact and disjoint. Applying Remark 4.2, we have a G
invariant continuous semialgebraic (resp. a G invariant continuous exponentially
definable) function f on 2 x R. By the classical polynomial approximation theorem
and Lemma 4.1 [4], we get a G invariant polynomial F' on Q x R such that F|S
is an approximation of f. Since s(X) and s(Y) U {oco} are compact, F o s is the
required one. [

Remark 4.4. Let X C R™ be an open (resp. a closed) exponentially definable set.
Suppose that X is a finite union of sets of the following form:

{r eR"|fi(z) == fi(x) = 0,91(2) >0,...,g;(x) >0},

(resp. {x € R*|fi(x) =--- = fi(z) =0,q1(x) >0,...,g;(z) >0},)

where fi,..., f; and g1,...,g; are exponentially Nash functions on R*. Then X is
a finite union of sets of the following form:

{z € R"|h1(z) > 0,...,hg(z) > 0},

(resp. {o € R"|hy(2) > 0,..., hy(x) > 0},)
where hy, ..., h; are exponentially Nash functions on R™.

Note that any exponentially definable set in R” can be described as a finite union
of sets of the following form [8]:

{z e R*|Fi(z) =+ = Fs(z) =0,G1(z) > 0,...,G(x) > 0}.

Here each of Fi,..., Fs and G, ..., G} is an exponentially Nash function defined on
some open exponentially definable subset of R, however its domain is not always
the whole space R™.

We define exp,(x) for n € N and ¢ € R by expo(z) = = and exppii(z) =
exp(expn(z)). The following is a bound of the growth of continuous exponentially
definable functions

Proposition 4.5 [8]. Let F be a closed exponentially definable set in R* and let
f : F — R be a continuous exponentially definable function. Then there exist
c>0,n,m €N such that

|f(@)] < (1 + expn(||2||™)) for any = € F,

where || - || denotes the standard norm of R¥. O

Proof of Remark 4.4. It suffices to prove the result when X is open because the
other case follows by taking complements.
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Let

B={z e R*|fi(z) ="+ = fulz) =0,91(z) > 0,...,g,(x) >0},

where all f; and all g; are exponentially Nash functions on R". Set f := fZ+---+f2
and g(z) == [I;_, (lgi(z)|+gi(2)). OnR* =X, g(z) = 0if f(z) = 0. By Proposition
3.1 there exists an integer N and a continuous exponentially definable function h
on R® — X such that ¢V = hf on R* — X. By Proposition 4.5 we have some ¢ € R
and some m,n € N such that |h(z)| < ¢(1 + exp,(||z||™) on R* — X. Define B; =
{z € R7cf(n)(1 + expa(llzll™) < @™ 11 g:@)™,g1(@) > 0, gm(x) > O}.
Then B C By C X. Therefore replacing B by B;, we have the required union. O

10.

11.

12.
13.

14.
15.

16.

17.
18.
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20.
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ON FIXED POINT DATA OF SMOOTH ACTIONS ON SPHERES
MASAHARU MORIMOTO

We report results obtained jointly with K. Pawalowski.
There are two fundamental questions about smooth actions on manifolds. Let
G be a finite group and M a manifold.

Question 1. Which manifolds F' can be the G-fixed point sets of G-actions on M,
ie. MG = F?

Question 2. Which G-vector bundles v over F' can be the G-tubular neighborhoods
(i.e. G-normal bundles) of F = M% in M?

If v can be realized as a subset of M in the way above, we say that (F,v) occurs as
the G-fixed point data in M. If for a real G-module W with W& = 0, (F,v @)
occurs as the G-fixed point data in M then we say that (F,v) stably occurs as the
G-fixed point data in M. These questions were studied by B. Oliver [O2] in the
case where (G is not of prime power order and M is a disk or a Euclidean space.
The topic of the current talk is the case where G is an Oliver group and M is a
sphere.

Let G be a finite group not of prime power order. A G-action on M is called
P-proper if MY O MY for any Sylow subgroup P of G. There are necessary
conditions for (F,v) to stably occur as the G-fixed point data of a P-proper G-
action on a sphere.

(F1) (Oliver Condition) x(F) = x(M) mod ng (where ng is the integer called
Oliver’s number [O1]).

(B1) (Product Bundle Condition) 77 @ v =0 in I?O(F)

(B2) (Smith Condition) For each prime p and any Sylow p-subgroup P of G,
T v =0in KOP(F)(p).

By Oliver [02], Conditions (F1), (B1) and (B2) are also necessary—sufficient condi-
tions for (F,v) to stably occur as the G-fixed point data in a disk. By [01], ng is
equal to 1 if and only if there are no normal series P<H <G such that |P| = p*, H/P
is cyclic, and |G/H| = ¢* (s, t > 0). A group G with ng = 1 is called an Oliver
group. Clearly any nonsolvable group is an Oliver group. A nilpotent group is an
Oliver group if and only if it has at least three noncyclic Sylow subgroups. In the
case where G is an Oliver group, Condition (F1) provides no restriction.

We begin the preparation for our sufficient conditions. For a finite group G and
a prime p, let GP denote the minimal normal subgroup of G such that G/G? is of

7
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p-power order (possibly GP = G). Let £(G) denote the set of all subgroups H of G
such that H D GP for some prime p. Let P(G) denote the set of all subgroups P
of G such that |P| is a prime power (possibly |P| = 1). A G-action on M is said to
be (P, £)-proper if the action is P-proper and if any connected component of X
(H € £(G)) does not contain a connected component of M as a proper subset. If
G is an Oliver group then the G-action on

V(G) = (RG] - R) - (P (RIG/G?] - R)

p\|G|

is (P, £)-proper ([LM]). A finite group G is said to be admissible if there is a real
G-module V such that dim V¥ > 2dim V¥ for any P € P(G) and any H < G with
H D P, and dim VH =0 for any H € L(G).

Theorem (M.M.-M. Yanagihara [MY1-2]). Let G be an Oliver group. If G* = G
or GP # G for at least 2 distinct odd primes then G is admissible. In particular,
an Oliver group G is admissible in each case: G is nilpotent; G is perfect.

The symmetric group of degree 5 is not admissible.

K. H. Dovermann—M. Herzog recently proved that S, (n = 6) are admissible.

Our main result is:

Theorem A. Let G be an admissible Oliver group (resp. an Oliver group) . Let
F be a closed manifold (resp. a finite discrete space) and let v be a real G-vector
bundle over F such that dimv? = 0 whenever H € L(G). Then the following
(1)=(3) are equivalent:

(1) (F,v) stably occurs as the G-fized point data of a (P, L)-proper G-action on a
sphere.

(3) (F,v) stably occurs as the G-fixed point data in a disk.
(3) Tm D v satisfies (B1)—(B2).
A finite group not of prime power order belongs to exactly one of the following
six classes ([02]):
A: G has a dihedral subquotient of order 2n for a composite integer n.
B: G ¢ A and G has a composite order element conjugate to its inverse.

C: G ¢ AUDB, G has a composite order element and the Sylow 2-subgroups are
not normal in G.

Cy: G has a composite order element and the Sylow 2-subgroup is normal in G.

D: G has no elements of composite order and the Sylow 2-subgroups are not normal

in G.

Ds: G has no elements of composite order and the Sylow 2-subgroup is normal in

G.



ON FIXED POINT DATA OF SMOOTH ACTIONS ON SPHERES 79

Corollary B. Let G be a nontrivial perfect group and F a closed manifold. Then
F occurs as the G-fized point set of a P-proper G-action on a sphere if and only if
F occurs as the G-fized point set in a disk (in other words,

G € A: there is no restriction.

G € B: ca([rr]) € cu(KSp(F)) + Tor(K (F))
G eC: [rr] € re(K(F)) + Tor(KO(F))

G € D: [rr] € Tor(KO(F)). )

Theorem C. Let G be a nilpotent Oliver group and F a closed manifold. Then
the following (1)—(3) are equivalent.

(1) F occurs as the G-fized point set of a P-proper G-action on a sphere.

(2) T is stably complex.

(3) F occurs as the G-fized point set of a G-action on a disk.

Our basic methods are:

(1) An extension of the method of equivariant bundles in [02] (with modifications).

(2) The equivariant thickening of [P].

(3) The equivariant surgery results of [M1-2].

(BM]
[LM]
[M1]
[M2]
MY1]
MY?2]
[01]
[02]

(P]

References

Bak, A. and Morimoto, M., Equivariant surgery with middle dimensional singular sets. I,
Forum Math. 8 (1996), 267-302.

Laitinen, E. and Morimoto. M., Finite groups with smooth one fized point actions on
spheres, Reports Dept. Math. Univ. Helsinki no. 25 (1993).

Morimoto, M., FEquivariant surgery theory: Construction of equivariant mormal maps,
Publ. Res. Inst. Math. Sci. Kyoto Univ. 31 (1995), 145-167.

———, Equivariant surgery theory: Deleting-inserting theorem of fized point sets on
spheres, Preprint April 1996.

Morimoto, M. and Yanagihara, M., On gap conditions of finite group actions, Preprint
January 1995.

———, The gap conditions for S5 and GAP programs, J. Fac. Env.Sci. Tech., Okayama
University 1 (1996), 1-13.

Oliver, R., Fized-point sets of group actions on finite acyclic compleres, Comment. Math.
Helvetici 50 (1975), 155-177.

Oliver, B., Fized point sets and tangent bundles of actions on disks and Fuclidean spaces,
to appear in Topology.

Pawatowski, K., Fized point sets of smooth group actions on disks and Fuclidean spaces,
Topology 28 (1989), 273-28.

DEPARTMENT OF ENVIRONMENTAL AND MATHEMATICAL SCIENCES, OKAYAMA UNIVERSITY,
OKAYAMA, JAPAN
E-mail address: morimoto@math.ems.okayama-u.ac.jp



SOME RESULTS ON KNOTS AND LINKS IN ALL DIMENSIONS
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An (oriented) (ordered) m-component n-(dimensional) link is a smooth, oriented
submanifold L = {Kji,..., Ky} of S"*2  which is the ordered disjoint union of m
manifolds, each PL homeomorphic to the standard n-sphere. (If m = 1, then L is
called a knot.) We say that m-component n-dimensional links, Ly and Ly, are (link-
)eoncordant or (link-)cobordant if there is a smooth oriented submanifold C={C}
y oo ,Cm} of 8"2 x [0,1], which meets the boundary transversely in 85, is PL
homeomorphic to Ly x [0,1] and meets S"*2 x {I} in L; (I =0, 1).

We work in the smooth category.

81

Let S} and S35 be 3-spheres embedded in the 5-sphere S° and intersect transversely.
Then the intersection C' is a disjoint collection of circles. Thus we obtain a pair of
1-links C in S?, and a pair of 3-knots S} in S°.

Conversely let (L1, L) be a pair of 1-links and (X7, X2) be a pair of 3-knots. It is
natural to ask whether (L, L) is obtained as the intersection of X; and Xo.

In this paper we give a complete answer to the above question.
Definition. (L, Ly, X1, X5) is called a quadruple of links if the following conditions
(1), (2) and (3) hold.
(1) L; = (Ki,...,Kin,;) is an oriented ordered m;-component 1-dimensional link
(1=1,2). (2) my = ms. (3) X; is an oriented 3-knot.

Definition.A quadruple of links (L1, L2, X1, X2) is said to be realizable if there exists
a smooth transverse immersion f : S7 [[ S5 & S° satisfying the following conditions.
(1) f|S? is a smooth embedding and defines the 3-knot X;(i = 1,2) in S°.

(2) For C' = f(S%) N £(S3), the inverse image f~1(C) in S} defines the 1-link L;(i =

This research was partially suppported by Research Fellowships of the Promotion of Science for
Young Scientists.
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1,2). Here, the orientation of C' is induced naturally from the preferred orientations
of S3,53, and S®, and an arbitrary order is given to the components of C.

The following theorem characterizes the realizable quadruples of links.

Theorem 1.1. A quadruple of links (L1, Lo, X1, X2) is realizable if and only if (Ly, Lo,
X1,X5) satisfies one of the following conditions (i) and (ii).

(i) Both Ly and Lo are proper links, and

Arf(Ll) = AI‘f(LQ)
(i) Neither Ly nor Lo is proper, and

lk(Klj,Ll — Klj) = lk‘(KQj,LQ — KQj) mod 2 for all ]

Let f: S % S5 be a smooth transverse immersion with a connected self-intersec-
tion C' in S°. Then the inverse image f~1(C) in S? is a knot or a 2-component link.
For a similar realization problem, we have:

Theorem 1.2.
(1) All 2-component links are realizable as above.
(2) All knots are realizable as above.

Remark. By Theorem 1.1 a quadruple of links (L;, Ly, X1, X5) with K; being the
trivial knot and K> being the trefoil knot is not realizable. But by Theorem 1.2, the
two component split link of the trivial knot and the trefoil knot is realizable as the
self-intersection of an immersed 3-sphere.
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We discuss the high dimensional analogue of §1.
Definition. (K1, K>,) is called a pair of n-knots if K; and K. are m-knots.
(K1, K2, X4, X5) is called a quadruple of n-knots and (n + 2)-knots or a quadruple

of (n,n+2)-knots if K; and K constitute a pair of n-knots (K, K») and X; and X»
are diffeomorphic to the standard (n + 2)-sphere.

Definition. A quadruple of (n,n + 2)-knots (K, K2, X1, X») is said to be realizable
if there exists a smooth transverse immersion f : ST [ Sy+? 9 S satisfying the
following conditions.
(1) f|SP*? defines X; (i=1,2).
(2) The intersection ¥ = f(ST*?)N f(S5*?) is PL homeomorphic to the standard
sphere.
(3) f7Y) in S*? defines an n-knot K; (i = 1,2).

A pair of n-knots (K7, K2) is said to be realizable if there is a quadruple of (n,n+ 2)-
knots (K, K2, X1, X»2) which is realizable.

The following theorem characterizes the realizable pairs of n-knots.
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Theorem 2.1. A pair of n-knots (K1, K>) is realizable if and only if (K, K»)
satisfies the condition that

(K1, K>) is arbitrary if n is even,

Arf(Ky) = Arf(K2)  ifn=4m+1, (m20,m € Z).

U(Kl):U(KQ) zfn:4m+3,

There exists a mod 4 periodicity in dimension similar to the periodicity of high-
dimensional knot cobordism and surgery theory. ([CS1,2] and [L1,2].)

We have the following results on the realization of a quadruple of (n,n + 2)-knots.

Theorem 2.2. A quadruple of (n,n + 2)-knots T = (K1, K2, X1, X2) is realizable if
K, and K5 are slice.

Kervaire proved that all even dimensional knots are slice ([Ke]). Hence we have:

Corollary 2.3. Ifn is even, an arbitrary quadruple of (n,n+2)-knots T = (K, K, X1,
Xo) is realizable.

In order to prove Theorem 2.1, we introduce a new knotting operation for high
dimensional knots, high dimensional pass-moves. The 1-dimensional case of Definition
2.1 is discussed on p.146 of [K1].

Definition. Let (2k + 1)-knot K be defined by a smooth embedding g : ¥£2¢+1 —
S2k+3 - where %21 is PL homeomorphic to the standard (2k + 1)-sphere. (k >
0) Let D§+1:{($1, ce- ,$k+1)| Z$?< 1} and D§+1:{(y1, - ,yk+1)| 2y3< 1} Let
Dyt (r)={(z1 ,...,zk41)| Z2i< r’} and Dy (r)={(y1 ,-..,y1)] DyPS 12} A
local chart (U, ¢) of S?#+3 is called a pass-move-chart of K if it satisfies the following
conditions.
(1) ¢(U) = R2k+3=(0,1) x D+ x D’;“
(2) d(g(S*T1)NU) = [{3} x DFT x dDGT ()] I [{3} x OD;+(5) x Dy*]
Let gy : ©2k+1 <y G2k+3 be an embedding such that:
(1) g{=* ! — g1 (U)} = gu{T**! — g7 (U)}, and
(2) dlgu(E*)NU) = [{3} x Dyt x D+ (5)] I
[{3} x 0DF ' (5)x (Dy*! — Dyt (3))]
U [[5, 3] x 9D (5) x ODy(3)]
U [{2) x ODEH(3) x DEH ()}
Let Ky be the (2k + 1)-knot defined by gy. Then we say that Ky is obtained from K
by the (high dimensional) pass-move in U. We say that (2k + 1)-knot K and K' are
(high dimensional) pass-move equivalent if there exist (2k + 1)-knots Ki,..., K41
and pass-move charts U; (i =1,...,¢q) of K; such that (1) K3 = K, K,41 = K', and
(2) K41 is obtained from K; by the high dimensional pass-move in U;.

High dimensional pass-moves have the following relation with the Arf invariant and
the signature of knots.
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Theorem 2.4. For simple (2k + 1)-knots K, and K, the following two conditions
are equivalent. (k2 1.)

(1) K, is pass-move equivalent to K.

. . Arf(K,) = Arf(K3) when k is even
(2) K, and Ky satisfy the condition that

o(Ky) = o(K>) when k is odd.
See [L2] for simple knots.

Theorem 2.5. For (2k+1)-knots K, and K, the following two conditions are equiv-
alent. (k=0.)
(1) There exists a (2k + 1)-knot K3 which is pass-move equivalent to K, and
cobordant to K.

] » Arf(K,) = Arf(K>) when k is even
(2) Ki and K> satisfy the condition that

o(K1) = o(K>) when k is odd.
The case k = 0 of Theorem 2.5 follows from [K1],[K2].

§3

We discuss the case when three spheres intersect in a sphere.

Let F; be closed surfaces (i = 1,2,...,u). A surface-(Fi, Fs,...,F,)-link is a
smooth submanifold L = (K1, K>, ...,K,) of S*, where K is diffeomorphic to F;. If
Fj; is orientable we assume that Fj is oriented and Kj; is an oriented submanifold which
is orientation preserving diffeomorphic to F;. If u = 1, we call L a surface-F}-knot.

An (Fy, F>)-link L = (K1, K>) is called a semi-boundary link if
[Ki] =0 € Hao(S* — Kj3Z) (i # j)

following [S].

An (Fy, F»)-link L = (K, K>) is called a boundary link if there exist Seifert hyper-
surfaces V; for K; (i = 1,2) such that V; N Vo=¢.

An (Fy, Fy)-link (K1, K>3) is called a split link if there exist Bf and B3 in S* such
that BfNB3 = ¢ and K; C B}.

Definition. Let L1 = (K12,K13), LQ = (K23,K21), and L3 = (K31,K32) be surface-
links. (L1, Lo, L3) is called a triple of surface-links if K;; is diffeomorphic to Kj;.
((4,5)=(1,2),(2,3),(3,1).) (Note that the knot type of Kj; is different from that of
Kji.)

Definition. Let L1 = (K12,K13), LQ = (K23, K21), and L3 = (K31, K32) be surface-
links. A triple of surface-links (L;, Lo, L3) is said to be realizable if there exists a trans-
verse immersion f : S} 11 .83 IT S5 & S® such that (1)f|S} is an embedding(i=1,2,3),
and (2) (f7H(f(S{) N f(S7)), fFH(f(ST) N f(S)) ) in S is Li. ( (3,4, k)=(1,2,3),
(2,3,1), (3,1,2).)

Note. If (L1, L2, L3) is realizable, then K;; are orientable and are given an orientation
naturally. From now on we assume that, when we say a triple of surface-links, the
triple of surface-links consists of oriented surface-links.

We state the main theorem.
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Theorem 3.1. Let L; (i = 1,2,3) be semi-boundary surface-links. Suppose the triple
of surface-links (L1, Lo, L3) is realizable. Then we have the equality

B(Ly) + B(L2) + B(Ls) =0,
where B(L;) is the Sato-Levine invariant of L;.

Refer to [S] for the Sato-Levine invariant. Since there exists a triple of surface-links
(L1, Lo, L3) such that 5(L1)=0, B(L2)=0 and B(L3)=1 ([R] and [S]), we have:

Corollary 3.2. Not all triples of oriented surface-links are realizable.
We have sufficient conditions for the realization.

Theorem 3.3. Let L; (i = 1,2,3) be split surface-links. Then the triple of surface-
links (L1, Lo, L3) is realizable.

Theorem 3.4. Suppose L; are (S%,S5%)-links. If L; are slice links(i = 1,2,3), then
the triple of surface-links (L1, Lo, L3) is realizable.

It is well known that there exists a slice-link which is neither a boundary link nor
a ribbon link. Hence we have:

Corollary 3.5. There exists a realizable triple of surface-links (Ly, Lo, L3) such that
neither L; are boundary links and all L; are semi-boundary links.

Besides the above results, we prove the following triple are realizable.

Theorem 3.6. There exists a realizable triple of surface-links (L1, L2, L3) such that
neither L; are semi-boundary links.

Here we state:

Problem (1). Suppose B(L1)+B(L2)+B(L3)=0. Then is the triple of surface-links
(L1, La, L3) realizable?

Using a result of [O], we can make another problem from Problem (1).
Problem (2). Is every triple of (S?,S?)-links realizable?

Note. By Theorem 3.4, if the answer to Problem (2) is negative, then the answer to
an outstanding problem: “Is every (5%, 5?)-link slice?” is “no.” (Refer [CO] to the
slice problem.)
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An (oriented) n-(dimensional) knot K is a smooth oriented submanifold of R*+!
X R which is PL homeomorphic to the standard n-sphere. We say that n-knots K3
and Ky are equivalent if there exists an orientation preserving diffeomorphism f :
R x R — R x R such that f(K;)=K> and f|k, : K; — K> is an orientation
preserving diffeomorphism. Let m: R®™! x R — R"*! be the natural projection
map. A subset P of R**! is called the projection of an n-knot K if there exists an
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orientation preserving diffeomorphism g : X — K and a smooth transverse immersion
v : X — R such that 7|k o B=7 and 7|k o B(K)=7y(X)=P. The singular point
set of the projection of an n-knot is the set { = € 7|x (K) | § (7|x) ~'(z)= 2. }.

It is well-known that the projection of any 1-dimensional knot is the projection of
a 1-knot equivalent to the trivial knot. This fact is used in a way to define the Jones
polynomial and in another way to define the Conway-Alexander polynomial.

We consider the following problem.

Problem. (1) Let K be an n-knot diffeomorphic to the standard sphere. Let P be
the projection of K. Is P the projection of an n-knot equivalent to the trivial knot?

(2) Furthermore, suppose that the singular point set of P consists of double points.
Is P the projection of an n-knot equivalent to the trivial knot?

The author proved that the answer to Problem (2) in the case of n 2 3 is negative
and hence that the answer to Problem (1) in the case of n 2 3 is also negative. We
prove:

Theorem 4.1. Letn be any integer greater than two. There exists an n-knot K such
that the projection P has the following properties.

(1) P is not the projection of any knot equivalent to the trivial knot.
(2) The singular point set of P consists of double points.
(3) K is diffeomorphic to the standard sphere.

Note. Problem (1) in the case of n = 2 remains open. Dr. Taniyama has informed
that the answer to Problem (2) in the case of n = 2 is positive, that the proof is easy,
but that he has not published the proof.

§5

We have the following outstanding open problems.
Problem (1). Classify n-links up to link concordance for n 2 1.
Problem (2). Is every even dimensional link slice?

Problem (3). Is every odd dimensional link concordant to (a sublink of ) a homology
boundary link?

The author has modified Problem (2) to formulate the following Problem (4). We
consider the case of 2-component links. Let L = (K, Ks) C S™"2 C B"" be a
2m-link ( 2m > 2). By Kervaire’s theorem in [Ke] there exist D! (i = 1,2)
embedded in B?>™*3 such that D™t N §2m+2=9D?™*'=K;. Then Di™*' and
D3™ %! intersect mutually in general. Furthermore D3™*! N D3™*! in D™ defines
(2m — 1)-link.

Problem (4). Can we remove the above intersection D™ 0 D™ by modifying
embedding of D™ and D3 T2

If the answer to Problem (4) is positive, the answer to Problem (2) is positive.

Here we make another problem from Problem (4).
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Problem (5). What is obtained as a pair of (2m — 1)-links (DI™' N D™t in
DmHl pimtl n DIt n DY) by modifying embedding of D™ and D3t 2

We have the following theorem, which is an answer to Problem (5).

Theorem 5.1. For all 2-component 2m-link L = (K;,K,) (m > 0), there exist
D™ and D™ as above such that each of (2m — 1)-links D¥™*! N DI™*! in
D™ and D™ 0 D3™ Y in DI s the trivial knot.

We have the following Theorem 5.2. We say that n-dimensional knots, K and K,
are (link-)concordant or (link-)cobordant if there is a smooth oriented submanifold C
of §™*2 %[0, 1], which meets the boundary transversely in C', is PL homeomorphic to
Lox[0,1], and meets S" ™2 x {l}in L; (I = 0,1). Then we call C a concordance-cylinder
of K and K'.

Theorem 5.2. For all 2-component n-link L = (Ky,K>) (n > 1), there exist a

boundary link L' = (K1, K}) satisfying that K| is concordant to K; and a concordance-
C K K

cylinder { ! of{ } and { ? such that each of (n — 1)-links, C1 N Cs in Cy
Cy K! K}

and C; N Cs in Cy, is the trivial knot.

When n is even, Theorem 5.2 is Theorem 5.1. Because all even dimensional bound-
ary links are slice.

By the following exciting theorem of Cochran and Orr, when n is odd, Theorem
5.2 is best possible from a viewpoint.

Theorem. [CO] Not all 2-component odd dimensional links are concordant to bound-
ary links.

56

Let D7, D%, D% be submanifolds of "2 diffeomorphic to the n-disc such that
Int (D}') N Int (D})=¢ (for i # j) and D= dD3=0D%. Then DI U D3 U D¥
is called an n-dimensional 8-curve in R**2. The set of the constituent knots of an
n-dimensional 0-curve 0 in R"*2 is a set of three n-knots in S"*2, which are made
from D} U D}, DY U D}, and D} U D¥.

The definitions in the case of the PL category are written in [Y].

Problem. Take any set of three n-knots. Is it the set of the constituent knots of an
n-dimensional f-curve?

In [Y] it is proved that if K, K,, and K3 are ribbon n-knots, then the set
(K1, K,, K3) is the set of the constituent knots of an n-dimensional #-curve.

We discuss the case of non-ribbon knots. The following theorems hold both in the
smooth category and in the PL category.

We have the following theorems.
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Theorem 6.1. Let n be any positive integer. Let Ki and Ko be trivial knots.
There ezist an n-dimensional 8-curve 0 in R**2 and a non-ribbon knot Ks such

that (K1, Ko, K3) is the set of the constituent knots of the n-dimensional 0-curve 0 in
R +2,

Furthermore we have the following.

Theorem 6.2. Let m be any odd positive integer. Let K1 and Ko be trivial knots.
(1) There exist m-dimensional 8-curves 6 in R™2 and a non-ribbon and non-slice
knot K3 such that (K1, Ko, K3) is the set of the constituent knots of the m-dimensional
0-curve 6§ in R™T2.
(2) There exist m-dimensional -curves 8 in R™2 and a non-ribbon and slice knot
K3 such that (K1, K, K3) is the set of the constituent knots of the m-dimensional
0-curve § in R™T2.

We have the following.

Theorem 6.3. When n = 2m + 1(m > 1), there exists a set of three n-knots which
is never the set of the constituent knots of any 6-curve.

The above problem remains open.
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We use Theorem 1.1 in §1 to give an answer to a problem of Fox.

In [F] Fox submitted the following problem about 1-links. Here, note that “slice
link” in the following problem is now called “ordinary sense slice link,” and “slice

link in the strong sense” in the following problem is now called “slice link” by knot
theorists.

Problem 26 of [F]. Find a necessary condition for L to be a slice link; a slice link
in the strong sense.

Our purpose is to give some answers to the former part of this problem. The latter
half is not discussed here. The latter half seems discussed much more often than the
former half. See e.g. [COJ, [L3], etc.

We review the definition of ordinary sense slice links and that of slice links, which
Wwe now use.

We suppose m-component 1-links are oriented and ordered.

Let L = (Ky,...,Ky) be an m-component 1-link in S® = 9B*. L is called a slice
1-link, which is “a slice link in the strong sense” in the sense of Fox, if there exist
2-discs D7(i = 1,...,m) in B* such that D} N 9B* =8D37, D} N D?=¢(i # j), and
(0D3,...,0D2)) in OB* defines L.

Take a 1-link L in S3. Take S* and regard S* as (R* x R) U {cc}. Regard the
3-sphere S? as R® U {oo} in S*. L is called an ordinary sense slice 1-link, which is “a
slice link” in the sense of Fox, if there exists an embedding f : S < R® x R such that
f is transverse to R® x {0} and f(S?) N (R* x {0}) in R?® x {0} defines L. Suppose f
defines a 2-knot X. Then L is called a cross-section of the 2-knot X.
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From now on we use the terms in the ordinary sense now current.

Ordinary sense slice 1-links have the following properties.

Theorem 7.1. Let L be a 1-dimensional ordinary sense slice link. Then the follow-
ings hold.

(1) L is a proper link.
(2) Arf(L) =0.

88

Let K; and K be smooth submanifolds of S™t2 diffeomorphic to an n-dimensional
closed smooth manifold M. The notion of cobordism between K; and K5 is defined
naturally. A Seifert surface of K; and a Seifert matrix of K; are defined naturally.
The notion of matrix cobordism between two Seifert matrices is defined naturally.

It is also natural to ask the following problem.
Problem. Are K; and K> as above cobordant?

The author thinks that there exists a kind of surgery exact sequence.

The author obtained the following results.

Theorem 8.1. There exist a (2n + 1)-dimensional closed oriented smooth manifold
M and smooth submanifolds Ki and Ko of S>3 diffeomorphic to M such that (1)
K1 and K are not cobordant, and (2) the Seifert matrices of K1 and Ko are matrix
cobordant.

Theorem 8.2. There exist a 2n-dimensional closed oriented smooth manifold M and
smooth submanifolds K, and Ks of S?"t2 diffeomorphic to M such that K, and K»
are not cobordant

In the both cases the obstructions live in certain homotopy groups.
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CONTROLLED ALGEBRA AND TOPOLOGY

ERIK KJAR PEDERSEN

Let R be a ring and (X,0X) a pair of compact Hausdorff spaces. We assume
X =X — 90X is dense in X.

Definition 1. The continuously controlled category B(X,8X; R) has objects A =
{As}zex, Az a finitely generated free R-module, satisfying that {z|A, # 0} is
locally finite in X.

Given a subset U in X we define A|U by

A, fzelUNnX

(A0 = {0 ifrdUNX

A morphism ¢ € B(X,0X;R), is an R-module morphism ¢ : ®A, — @B, satisfy-
ing a continuously controlled condition:

Yz € 0X,VYU openin X,z € U,3V openin X,z € V
such that ¢(A|V) C A|U and ¢(A|X —U) CA|X -V

Clearly B(X,0X; R) is an additive category with (4 ® B), = A, ® B, as direct
sum.
If A is an object of B(X,0X;R), then {z|4, # 0} has no limit point in X, all
limit points must be in 9X. We denote the set of limit points by supp, (4). The
full subcategory of B(X,0X; R) on objects A with

supp..(4) C Z Cc 0X

is denoted by B(X,0X;R)z. Putting U = B(X,0X;R) and A = B(X,0X;R)z,
this is a typical example of an A-filtered additive category U in the sense of Karoubi
[6]. The quotient category U /A has the same objects as U, but two morphisms are
identified if the difference factors through an object of A. In the present example
this means two morphisms are identified if they agree on the object restricted to a
neighborhood of X — Z. We denote I/ /A in this case by B(X,0X; R)?X~%. Given
an object A and a neighborhood W of 90X — Z we have A = A|W in this category.

If R is a ring with involution these categories become additive categories with
involution in the sense of Ranicki [7]. It was proved in [2] that

Theorem 2. There is a fibration of spectra
L¥(A) = L"(U) — L"(U/A)

where k consists of projectives, i.e. objects in the idempotent completion of A, that
become free in U, i.e. stably, by adding objects in U become isomorphic to an object

of U.

The author was partially supported by NSF grant DMS 9104026.
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Indication of proof. Using the bordism definition of L-spectra of Quinn and Ran-
icki, it is immediate that we have a fibration of spectra

LM (A) = Lh(U) — L (U, A)

An element in L (U, A), the n-th homotopy group of L" (U, A) is a pair of chain
complexes with boundary in A and a quadratic Poincaré structure. The boundary
is isomorphic to 0 in U/ A since all A-objects are isomorphic to 0 in &//A. This
produces a map
L' (U, A) — L"(U/A)

which we ideally would like to be a homotopy equivalence. Given a quadratic
Poincaré complex in U/ A, it is easy to lift the chain complex to a chain complex
in U, and to lift the quadratic structure, but it is no longer a Poincaré quadratic
structure. We may use [8, Prop. 13.1] to add a boundary so that we lift to a Poincaré
pair. It follows that the boundary is contractible in ¢//A. It turns out that a chain
complex in U is contractible in ¢/ /A if and only if the chain complex is dominated
by a chain complex in A4, and such a chain complex is homotopy equivalent to
a chain complex in the idempotent completion of A. This is the reason for the
variation in the decorations in this theorem. See [2] for more details. (|

Lemma 3. If (X,0X) is a compact pair then
B(X,0X;R) = B(C8X,0X;R)

Proof. The isomorphism is given by moving the modules 4,, x € X to point in
C0X, the same module, and if two are put the same place we take the direct sum.
On morphisms the isomorphism is induced by the identity, so we have to ensure the
continuously controlled condition is not violated. Choose a metric on X so that all
distances are < 1. Given z € X, let y be a point in 0X closest to z, and send z to
(1 —d(z,y))y. Clearly, as z approaches the boundary it is moved very little. In the
other direction send ¢ -y to a point in B(y; 1 —t), the ball with center y and radius
1 — ¢, which is furthest away from 0X. Again moves become small as ¢ approaches
1 or equivalently as the point approaches 0.X. O

Lemma 4. L"(B(X,0X;R).) ~ *

Proof. The first x denotes a point in 0X and the second that the spectrum is
contractible. The proof is an Eilenberg swindle towards the point. O

Theorem 5. [2] The functor
Y = LMB(CY,Y;7Z))
s a generalized homology theory on compact metric spaces
Proof. We have a fibration
LM(B(CY,Y ;7)) 7 — LM(B(CY,Y; 7)) = LMN(B(CY,Y; 7)Y =%
But an argument similar to the one used in Lemma 3 shows
B(CY,Y;Z), =2 B(CZ,Z;7).
When everything is away from Z it does not matter if we collapse Z so we have

B(CY,Y;2)Y~% = B(CY)/2,Y]Z;7)Y/?~%/%
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but Y/Z — Z/Z is ounly one point from Y/Z so by Lemma 4 the L-spectrum is
homotopy equivalent to L((CY')/Z,Y/Z;Z). Finally Lemma 3 shows that

B(CY]Z,Y]|Z;2) = B(C(Y/Z),Y/|Z); ).

and we are done. O

Consider a compact pair (X,Y") so that X —Y is a CW-complex. If we subdivide
so that cells in X —Y become small near Y, the cellular chain complex Cy(X —Y;Z)
may be thought of as a chain complex in B(X,Y’;Z) simply by choosing a point in
each cell ( a choice which is no worse than the choice of the cellular structure.) If
we have a strict map

(f: ]-Y) : (va) - (va)

(meaning f~1(X —Y) C W —Y) it is easy to see that given appropriate local simple
connectedness conditions, this map is a strict homotopy equivalence (homotopies
through strict maps) if and only if the induced map is a homotopy equivalence
of chain complexes in B(X,Y;Z). If the fundamental group of X — Y is 7 and
the universal cover satisfies the appropriate simply connectedness conditions, strict
homotopy equivalence is measured by chain homotopy equivalences in B(X,Y’; Z).
We have the ingredients of a surgery theory which may be developed along the lines
of [4] with a surgery exact sequence

> L BV 2m) - S (T1) = [X = V5 F/ Top] -
X

We will use this sequence to discuss a question originally considered in [1].

Suppose a finite group 7 acts freely on S"** fixing S*¥~!, a standard k — 1-
dimensional subsphere. We may suspend this action to an action on S*t*+! fixing
Sk and the question arises whether a given action can be desuspended. Notice this
question is only interesting in the topological category. In the PL or differentiable
category it is clear that all such actions can be maximally desuspended, by taking
a link or by an equivariant smooth normal bundle consideration.

Denoting (S"t*F — S*¥=1) /7 by X, X is the homotopy type of a Swan complex
(a finitely dominated space with universal cover homotopy equivalent to a sphere).
The strict homotopy type of (S™** /7, Sk¥~1) can be seen to be (X xSkt Sk=1) [1],
and if we have a strict homotopy equivalence from a manifold to X % §*~ — §k—1
it is easy to see that we may complete to get a semifree action on a sphere fixing
a standard subsphere. This means that this kind of semifree action is classified by
the surgery exact sequence

Xxgk—t_ght
— L1 (B(D®,S*=1: 771)) — St ( v ) — [X, F/ Top] —
XxSk-1

Now let C(R™; R) denote the subcategory of B(R™, }; R) where the morphisms are
required to be bounded i. e. ¢ : A — B has to satisfy that there exists k = k(¢)
so that ¢¥ = 0 if | — y| > k. Radial shrinking defines a functor C(R*, R) —
B(D",S™"1: R), and it is easy to see by the kind of arguments developed above
that this functor induces isomorphism in L-theory. We get a map from the bounded



94 ERIK KJER PEDERSEN
surgery exact sequence to the continuously controlled surgery exact sequence

M (C(RF; Z)) ——> 8] <XX¢R ) X, F/Top] —~

) H
k—1 k—1
= D (B4 84z =t () e Top]

D
which is an isomorphism on two out of three terms, hence also on the structure set.
This is useful because we can not define an operation corresponding to suspension
of the action on the continuously controlled structure set. An attempt would be
to cross with an open interval, but an open interval would have to have a specific
cell structure to get a controlled algebraic Poincaré structure on the interval, but
then we would lose control along the suspension lines. In the bounded context
suspension corresponds precisely to crossing with the reals, and giving the reals a
bounded triangulation we evidently have no trouble getting a map corresponding
to crossing with R. Since crossing with R kills torsion (think of crossing with R
as crossing with S and pass to the universal cover), we get a map from the h-
structure set to the s-structure set. The desuspension problem is now determined
by the diagram

X xR*
- Ll (€@ Zm) ——= 5t (1) [ Top] —
Rk

.

X xRF+H!
—— L% L,(C(RM; Zm)) ——= S < 1 ) — [X, F/ Top] ——

RE+L
with two out of three maps isomorphisms once again. This shows we may desuspend

if and only if the element in the structure set can be thought of as a simple structure,
i.e. if and only if an obstruction in

Wh(C(RFL; Z7)) = Ky (C(RFL; Zn)) /{£7} = K_1(Z7)

vanishes. Since K_(Z7) = 0 for k > 2 [3], this means we can always desuspend
untill we have a fixed circle, but then we encounter a possible obstruction. The
computations in [5] show these obstructions are realized.
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PROBLEMS IN LOW-DIMENSIONAL TOPOLOGY

FRANK QUINN

INTRODUCTION

Four-dimensional topology is in an unsettled state: a great deal is known, but
the largest-scale patterns and basic unifying themes are not yet clear. Kirby has
recently completed a massive review of low-dimensional problems [Kirby], and many
of the results assembled there are complicated and incomplete. In this paper the
focus is on a shorter list of “tool” questions, whose solution could unify and clarify
the situation. However we warn that these formulations are implicitly biased toward
positive solutions. In other dimensions tool questions are often directly settled one
way or the other, and even a negative solution leads to a general conclusion (eg.
surgery obstructions, Whitehead torsion, characteristic classes, etc). In contrast,
failures in dimension four tend to be indirect inferences, and study of the failure
leads nowhere. For instance the failure of the disk embedding conjecture in the
smooth category was inferred from Donaldson’s nonexistence theorems for smooth
manifolds. And although some direct information about disks is now available, eg.
[Kr], it does not particularly illuminate the situation.

Topics discussed are: in section 1, embeddings of 2-disks and 2-spheres needed for
surgery and s-cobordisms of 4-manifolds. Section 2 describes uniqueness questions
for these, arising from the study of isotopies. Section 3 concerns handlebody struc-
tures on 4-manifolds. Finally section 4 poses a triangulation problem for certain
low-dimensional stratified spaces.

This paper was developed from a lecture given at the International Conference
on Surgery and Controlled Topology, held at Josai University in September 1996. I
would like to express my thanks to the organizers, particularly Masayuki Yamasaki,
and to Josai University for their great hospitality.

1: 2-DISKS AND SPHERES IN 4-MANIFOLDS

The target results here are surgery and the s-cobordism theorem. In general
these are reduced, via handlebody theory, to questions about disks and spheres in
the middle dimension of the ambient manifold. The tool results, hence the targets,
are known in the topological category for 4-manifolds when the fundamental group
is “small”, [FQ, FT1], but are unsettled in general.

Two n-dimensional submanifolds of a manifold of dimension 2n will usually in-
tersect themselves and each other in isolated points. The “Whitney trick” uses an
isotopy across an embedded 2-disk to simplify these intersections. Roughly speak-
ing this reduces the study of n-dimensional embeddings to embeddings of 2-disks.
But this is not a reduction when the dimension is 4: the 2-disks themselves are

97
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middle-dimensional, so trying to embed them encounters exactly the same prob-
lems they are supposed to solve. This is the phenomenon that separates dimension
4 from others. The central conjecture is that some embeddings exist in spite of this
problem.

1.1 Disk conjecture. Suppose A is an immersion of a 2-disk into a 4-manifold,
boundary going to boundary, and there is a framed immersed 2-sphere B with trivial
algebraic selfintersection and algebraic intersection 1 with A. Then there is an
embedded 2-disk with the same framed boundary as A

If this were true then the whole apparatus of high-dimensional topology would
apply in dimension 4. There are very interesting generalizations, which for example
ask about the minimal genus of an embedded surface with a given boundary, or
in a given homology class (cf. [Kirby, Problem 4.36]). However the data in 1.1
is available in the Whitney disk applications, so its inclusion reflects the “tool”
orientation of this paper.

The conjecture is very false for smooth embeddings, since it would imply exis-
tence and uniqueness results that are known to be false [Kirby Problems 4.1, 4.6].
It may be true for topological (locally flat) embeddings. The current best results
are by Freedman and Teichner [FT1, FT2]. In [FT1] they show that the conjec-
ture as stated holds if the fundamental group of the 4-manifold has “subexponential
growth,” while [F'T2] gives a technical but useful statement about embeddings when
the 4-manifold changes slightly. We briefly discuss the proofs.

For surfaces in 4-manifolds here is a correspondence between intersections and
fundamental group of the image: adding an intersection point enlarges the fun-
damental group of the image by one free generator (if the image is connected).
Freedman’s work roughly gives a converse: in order to remove intersections in M,
it is sufficient to kill the image of the fundamental group of the data, in the fun-
damental group of M. More precisely, if we add the hypothesis that AN B is a
single point, and 7y of the image AU B is trivial in 71 M then there is an embedded
disk. However applications of this depend on the technology for reducing images in
fundamental groups. Freedman’s earlier work showed (essentially) how to change
A and B so the fundamental group image becomes trivial under any ¢: 1M — G,
where G is poly-(finite or cyclic). [FT] improves this to allow G of subexponential
growth. Quite a lot of effort is required for this rather minute advance, giving the
impression that we are near the limits of validity of the theorem. In a nutshell,
the new ingredient is the use of (Milnor) link homotopy. Reduction of fundamental
group images is achieved by trading an intersection with a nontrivial loop for a
great many intersections with trivial, or at least smaller, loops. The delicate point
is to avoid reintroducing big loops through unwanted intersections. The earlier
argument uses explicit moves. The approach in [FT1] uses a more efficient abstract
existence theorem. The key is to think of a collection of disks as a nullhomotopy of
a link. Selfintersections are harmless, while intersections between different compo-
nents are deadly. Thus the nullhomotopies needed are exactly the ones studied by
Milnor, and existence of the desired disks can be established using link homotopy
invariants.

While the conjecture is expected to be false for arbitrary fundamental groups,
no proof is in sight. Constructing an invariant to detect failure is a very delicate
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limit problem. The fundamental group of the image of the data can be compressed
into arbitrarily far-out terms in the lower central series of the fundamental group of
M. If it could be pushed into the intersection the general conjecture would follow.
(This is because it is sufficient to prove the conjecture for M with free fundamental
group, eg. a regular neighborhood of the data, and the intersection of the lower
central series of a free group is trivial). One approach is to develop a notion of
nesting of data so that the intersection of an infinite nest gives something useful.
Then in order for the theorem to fail there must be data with no properly nested
subdata, and maybe this can be detected.

There is a modification of the conjecture, in which we allow the ambient manifold
to change by s-cobordism. This form implies that “surgery” works, but not the s-
cobordism theorem. [FQ, 6] shows that if the fundamental group of the image of
the data of 1.1 is trivial in the whole manifold, then there is an embedding up to
s-cobordism. This differs from the hypothesis of the version above in that A N B
is not required to be one point, just algebraically 1. The improvement of [FT2] is
roughly that infinitesimal holes are allowed in the data. A regular neighborhood of
the data gives a 4-manifold with boundary, and carrying certain homology classes.
In the regular neighborhood the homology class is represented by a sphere, since a
sphere is given in the data. The improvement relaxes this: the homology class is
required to be in a certain subgroup of Hs, but not necessarily in the image of 5.
Heuristically we can drill a hole in the sphere, as long as it is small enough not to
move it too far out of m (technically, still in the w term of Dwyer’s filtration on
H,).

The improved version has applications, but again falls short of the full conjecture.
Again it is a limit problem: we can start with arbitrary data and drill very small
holes to get the image m; trivial in M. The holes can be made “small” enough
that the resulting homology classes are in an arbitrarily far-out term in the Dwyer
filtration, but maybe not in the infinite intersection.

There is still room for hope that this form of the conjecture is true, but it may
require a more elaborate construction or another infinite process. A “shell game”
approach would begin with arbitrary data, introduce some S? x $? summands,
and use them as gently as possible to represent the original data as a m-trivial
submanifold with homology in Dwyer’s w term. The S? x S$?’s are now messed up,
and to repair this we want to represent them also with 7;-trivial submanifolds with
w-filtration homology. The new advantage is that the data is no longer random,
given by an abstract existence theorem, but is obtained from an embedding by
carefully controlled damage done in the first step. An infinite swindle would involve
introducing infinitely many copies of S% x S? and moving the damage down the
line. The objective would be to do this with control on sizes, so the construction
will converge in an appropriate sense (see [BFMW]). The limit should be an ANR
homology 4-manifold, but this can be resolved to regain a topological manifold [Q1].

2: UNIQUENESS

The uniqueness question we want to address is: when are two homeomorphisms
of a 4-manifold topologically isotopic? This is known for compact 1-connected 4-
manifolds [Q2], but not for nontrivial groups even in the good class for surgery.
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Neither is there a controlled version, not even in the 1-connected case. The con-
trolled version may be more important than general fundamental groups, since it
is the main missing ingredient in a general topological isotopy extension theorem
for stratified sets [Q4].

The study of isotopies is approached in two steps. First determine if two home-
omorphisms are concordant (pseudoisotopic), then see if the concordance is an iso-
topy. The first step still works for 4-manifolds, since it uses 5-dimensional surgery.
The high-dimensional approach to the second step [HW] reduces it to a “tool” ques-
tion. However the uniqueness tool question is not simply the uniqueness analog of
the existence question. In applications Conjecture 1.1 would be used to find Whit-
ney disks to manipulate 2-spheres. The tool question needed to analyse isotopies
directly concerns these Whitney disks.

Conjecture 2.1. Suppose A and B, are framed embedded families of 2-spheres,
and V., W are two sets of Whitney disks for eliminating AB intersections. Each
set of Whitney disks reduces the intersections to make the families transverse: the
spheres in A and B are paired, and the only intersections are a single point between
each pair. Then the sets V., W equivalent up to isotopy and disjoint replacement.

“Isotopic” means there is an ambient isotopy that preserves the spheres A, B
setwise, and takes one set of disks to the other. Note that A N B must be point-
wise fixed under such an isotopy. “Disjoint replacement” means we declare two
sets to be equivalent if the only intersections are the endpoints (in A N B). Ac-
tually there are further restrictions on framings and 72 homotopy classes, related
to Hatcher’s secondary pseudoisotopy obstruction [HW]. In practice these do not
bother us because the work is done in a relative setting that encodes a vanishing
of the high-dimensional obstruction: we try to show that a 4-dimensional concor-
dance is an isotopy if and only if the product with a disk is an isotopy. In [Q2]
this program is reduced to conjecture 2.1. The conjecture itself is proved for simply
connected manifolds and A, B each a single sphere.

Consider the boundary arcs of the disks V' and W, on A and B. These fit together
to form circles and arcs: each intersection point in A N B is an endpoint of exactly
one arc in each of VN A and W N A unless it is one of the special intersections
left at the end of one of the deformations. Thus there is exactly one arc on each
sphere. The proof of [Q1] works on the arcs. Focus on a single pair of spheres.
The 1-connectedness is used to merge the circles into the arc. Intersections among
Whitney disks strung out along the arc are then “pushed off the end” of the arc.
This makes the two sets of disks equivalent in the sense of 2.1, and allows them to be
cancelled from the picture. Finitely many pairs can be cancelled by iterating this,
but this cannot be done with control since each cancellation will greatly rearrange
the remaining spheres. To get either nontrivial fundamental groups or control will
require dealing directly with the circles of Whitney arcs.

3: 4-DIMENSIONAL HANDLEBODIES

Handlebody structures on 4-manifolds correspond exactly to smooth structures.
The targets in studying handlebody structures are therefore the detection and ma-
nipulation of smooth structures. However these are much more complicated than
in other dimensions, and we are not yet in a position to identify tool questions
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that might unravel them. Consequently the questions in this section suggest useful
directions rather than specific problems.

The first problem concerns detection of structures. The Donaldson and Seiberg-
Witten invariants are defined using global differential geometry. But since a han-
dlebody structure determines a smooth structure, these invariants are somehow
encoded in the handle structure. There can be no direct topological understanding
of these structures until we learn to decode this.

3.1: Problem. Find a combinatorially-defined topological quantum field theory
that detects exotic smooth structures.

Three-dimensional combinatorial field theories were pioneered by Reshetikhin
and Turaev [RT]. They attracted a lot of attention for a time but have not yet led to
anything really substantial. Four-dimensional attempts have not gotten anywhere,
cf. [CKY]. The Donaldson and Seiberg-Witten invariants do not satisfy the full set
of axioms currently used to define a “topological quantum field theory”, so there is
no guarantee that working in this framework will ever lead anywhere. Nonetheless
this is currently our best hope, and a careful exploration of it will probably be
necessary before we can see something better.

4-dimensional handlebodies are described by their attaching maps, embeddings
of circles and 2-spheres in 3-manifolds. The dimension is low enough to draw
explicit pictures of many of these. Kirby developed notations and a “calculus”
of such pictures for 1- and 2-handles, cf. [HKK]. This approach has been used
to analyse specific manifolds; a good example is Gompf’s identification of some
homotopy spheres as standard [Gf]. However this approach has been limited even
in the study of examples because:

(1) it only effectively tracks 1- and 2-handles, and Gompf’s example shows one
cannot afford to ignore 3-handles;

(2) it is a non-algorithmic “art form” that can hide mistakes from even skilled
practitioners; and

(3) there is no clue how the pictures relate to effective (eg. Donaldson and
Seiberg-Witten) invariants.

The most interesting possibility for manipulating handlebodies is suggested by
the work of Poenaru on the 3-dimensional Poincaré conjecture. The following is
suggested as a test problem to develop the technique:

3.2 Conjecture. A 4-dimensional (smooth) s-cobordism without I-handles is a
product.

Settling this would be an important advance, but a lot of work remains be-
fore it would have profound applications. To some extent it would show that the
real problem is getting rid of 1-handles ([Kirby Problems 4.18, 4.88, 4.89]). It
might have some application to this: if we can arrange that some subset of the
2-handles together with the 1-handles forms an s-cobordism, then the dual han-
dlebody structure has no 1-handles and the conjecture would apply. Replacing
these 1- and 2-handles with a product structure gives a new handlebody without
1-handles. The problem encountered here is control of the fundamental group of
the boundary above the 2-handles. The classical manipulations produce a homol-
ogy s-cobordism (with Z[m] coefficients), but to get a genuine s-cobordism we need
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for the new boundary to have the same 7;. Thus to make progress we would have
to understand the relationship between things like Seiberg-Witten invariants and
restrictions on fundamental groups of boundaries of sub-handlebodies.

To analyse the conjecture consider the level between the 2- and 3-handles in
the s-cobordism. The attaching maps for the 3-handles are 2-spheres, and the
dual spheres of the 2-handles are circles. The usual manipulations arrange the
algebraic intersection matrix between these to be the identity. In other dimensions
the next step is to realize this geometrically: find an isotopy of the circles so each
has exactly one point of intersection with the family of spheres. But the usual
methods fail miserably in this dimension. V. Poenaru has attacked this problem in
the special case of A x I, where A is a homotopy 3-ball, [P, Gi]. The rough idea
is an infinite process in which one repeatedly introduces new cancelling pairs of 2-
and 3-handles, then damages these in order to fix the previous ones. The limit has
an infinite collections of circles and spheres with good intersections. Unfortunately
this limit is a real mess topologically, in terms of things converging to each other.
The goal is to see that, by being incredibly clever and careful, one can arrange
the spheres to converge to a singular lamination with control on the fundamental
groups of the complementary components. As an outline this makes a lot of sense.
Unfortunately Poenaru’s manuscript is extremely long and complicated, and as a
result of many years of work without feedback from the rest of the mathematical
community, is quite idiosyncratic. It would probably take years of effort to extract
clues from this on how to deal with the difficult parts.

4: STRATIFIED SPACES

A class of stratified spaces with a relatively weak relationship between the strata
has emerged as the proper setting for purely topological stratified questions, see
eg. [Q3, W]. The analysis of these sets, to obtain results like isotopy extension
theorems, uses a great deal of handlebody theory, etc., so often requires the as-
sumption that all strata have dimension 5 or greater. This restriction is acceptable
in some applications, for example in group actions, but not in others like smooth
singularity theory, algebraic varieties, and limit problems in differential geometry.
The suggestion here is that many of the low-dimensional issues can be reduced to
(much easier) PL and differential topology. The conjecture, as formulated, is a
tool question for applications of stratified sets. After the statement we discuss it’s
dissection into topological tool questions.

4.1: Conjecture. A three-dimensional homotopically stratified space with mani-
fold strata is triangulable. A J-dimensional space of this type is triangulable in the
complement of a discrete set of points.

As stated this implies the 3-dimensional Poincaré conjecture. To avoid this as-
sume either that there are no fake 3-balls below a certain diameter, or change the
statement to “obtained from a polyhedron by replacing sequences of balls converg-
ing to the 2-skeleton by fake 3-balls.” The “Hauptvermutung” for 3-dimensional
polyhedra [Papa] asserts that homeomorphisms are isotopic to PL homeomor-
phisms. This reduces the 3-dimensional version to showing that stratified spaces
are locally triangulable. The 2-skeleton and its complement are both triangulable,
so the problem concerns how the 3-dimensional part approaches neighborhoods of
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points in the 2-skeleton. Consider a manifold point in the skeleton; a neighborhood
in the skeleton is isomorphic with R for n = 0,1, or 2. Near this the 3-stratum
looks locally homotopically like a fibration over R with fiber a Poincaré space of
dimension 3 — n — 1. We can reduce to the case where the fiber is connected by
considering components of the 3-stratum one at a time. If n = 2 then the fiber
is a point, and the union of the two strata is a homology 3-manifold with R? as
boundary. Thus the question: is this union a manifold, or equivalently, is the RZ
collared in the union? If n = 1 then the fiber is S!, and the union gives an arc
homotopically tamely embedded in the interior of a homology 3-manifold. Is it
locally flat? Finally if n = 0 then the fiber is a surface (2-dimensional Poincaré
spaces are surfaces, [EL]). This is an end problem: if a 3-manifold has a tame end
homotopic to S xR, S a surface, is the end collared? Answers to these are probably
known. The next step is to consider a point in the closure of strata of three differ-
ent dimensions. There are three cases: (0,1,3), (0,2,3) and (1,2,3). Again each
case can be described quite explicitly, and should either be known or accessible to
standard 3-manifold techniques.

Now consider 4-dimensional spaces. 4-manifolds are triangulable in the com-
plement of a discrete set, so again the question concerns neighborhoods of the
3-skeleton. In dimension 4 homeomorphism generally does not imply PL isomor-
phism, so this does not immediately reduce to a local question. However the ob-
jective is to construct bundle-like structures in a neighborhood of the skeleton, and
homeomorphism of total spaces of bundles in most cases will imply isomorphism of
bundles. So the question might be localized in this way, or just approached glob-
ally using relative versions of the local questions. As above we start with manifold
points in the skeleton. If the point has a 2- or 3-disk neighborhood then the question
reduces to local flatness of boundaries or 2-manifolds in a homology 4-manifold, see
[Q2, FQ 9.3A]. If the point has a 1-disk neighborhood then a neighborhood looks
homotopically like the mapping cylinder of a surface bundle over R. This leads
to the question: is it homeomorphic to such a mapping cylinder? If the surface
fundamental group has subexponential growth then this probably can be settled
by current techniques, but the general case may have to wait on solution of the
conjectures of section 1. Finally neighborhoods of isolated points in the skeleton
correspond exactly to tame ends of 4-manifolds. Some of these are known not to be
triangulable, so these would have to be among the points that the statement allows
to be deleted. From here the analysis progresses to points in the closure of strata
of three or four different dimensions. Again there are a small number of cases, each
of which has a detailed local homotopical description.
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45 SLIDES ON CHAIN DUALITY

ANDREW RANICKI

Abstract The texts of 45 slides’ on the applications of chain duality to the ho-
mological analysis of the singularities of Poincaré complexes, the double points of
maps of manifolds, and to surgery theory.

1. INTRODUCTION

e Poincaré duality
H™*(M) = H.(M)

is the basic algebraic property of an n-dimensional manifold M.
e A chain complex C with n-dimensional Poincaré duality

H"™*(C) = H.(C)

is an algebraic model for an n-dimensional manifold, generalizing the intersection
form.

e Spaces with Poincaré duality (such as manifolds) determine Poincaré dual-
ity chain complexes in additive categories with chain duality, giving rise to
interesting invariants, old and new.

2. WHAT IS CHAIN DUALITY?

e A = additive category.
e B(A) = additive category of finite chain complexes in A .
e A contravariant additive functor T': A — B(A) extends to

T:B(A) = B(A) ; C - T(C)

by the total double complex

T(C)n = Z T(Cp)q -

p+g=n

¢ Definition: A chain duality (7, e) on A is a contravariant additive functor
T : A — B(A), together with a natural transformatione : T2 — 1: A — B(A)
such that for each object A in A :
—e(T(A)).T(e(A)) = 1: T(A) — T(4),
— e(A): T?(A) — A is a chain equivalence.

IThe lecture at the conference on Surgery and Geometric Topology, Josai University, Japan
on 17 September, 1996 used slides 1.—36.

105
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3. PROPERTIES OF CHAIN DUALITY

The dual of an object A is a chain complex T'(A4).

The dual of a chain complex C is a chain complex T'(C).
Motivated by Verdier duality in sheaf theory.

A.Ranicki, Algebraic L-theory and topological manifolds,
Tracts in Mathematics 102, Cambridge (1992)

4. INVOLUTIONS

An involution (T,e) on an additive category A is a chain duality such that
T(A) is a 0-dimensional chain complex (= object) for each object A in A,
with e(A) : T?(A) — A an isomorphism.
Example: An involution R — R;r — T on aring R determines the involution
(T, e) on the additive category A(R) of f.g. free left R-modules:

— T(A) = Homg (A, R)

— RXT(4) 5 T(4) 5 (r,f) = (& > f@)7)

—e(A) LA THA) ; 2= (f = f(2).

5. MANIFOLDS AND HOMEOMORPHISMS UP TO HOMOTOPY

Traditional questions of surgery theory:
— Is a space with Poincaré duality homotopy equivalent to a
manifold?
— Is a homotopy equivalence of manifolds homotopic to a
homeomorphism?
Answered for dimensions > 5 by surgery exact sequence in terms of the

assembly map

A Ho(X;Lo(Z)) = Lu(Z[m(X)]) -

L-theory of additive categories with involution suffices for surgery groups
L (Z]m(X)]).
Need chain duality for the generalized homology groups H.(X;Le(Z)) and A.

6. MANIFOLDS AND HOMEOMORPHISMS

Will use chain duality to answer questions of the type:
— Is a space with Poincaré duality a manifold?
— Is a homotopy equivalence of manifolds a homeomorphism?

7. CONTROLLED TOPOLOGY

Controlled topology (Chapman-Ferry-Quinn) considers:
— the approximation of manifolds by Poincaré complexes,
— the approximation of homeomorphisms of manifolds by homotopy equiv-
alences.

Philosophy of controlled topology, with control map 1: X — X :

— A Poincaré complex X is a homology manifold if and only if it is an
e-controlled Poincaré complex for all € > 0.

— A map of homology manifolds f : M — X has contractible point inverses
if and only if it is an e-controlled homotopy equivalence for all € > 0.
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8. SIMPLICIAL COMPLEXES

In dealing with applications of chain duality to topology will only work with
(connected, finite) simplicial complexes and (oriented) polyhedral homology
manifolds and Poincaré complexes.
Can also work with A-sets and topological spaces, using the methods of:

— M.Weiss, Visible L-theory, Forum Math. 4, 465-498 (1992)

— S.Hutt, Poincaré sheaves on topological spaces, Trans. A.M.S. (1996)

9. SIMPLICIAL CONTROL

Additive category A(Z, X) of X-controlled Z-modules for a simplicial complex
X.
— A .Ranicki and M.Weiss, Chain complexes and assembly, Math. Z. 204,
157-186 (1990)
Will use chain duality on A(Z, X) to obtain homological obstructions for de-
ciding:
— Is a simplicial Poincaré complex X a homology manifold?
(Singularities)
— Does a degree 1 map f : M — X of polyhedral homology manifolds have
acyclic point inverses? (Double points)

Acyclic point inverses H,(f!(z)) = 0 is analogue of homeomorphism in the

world of homology.

10. THE X-CONTROLLED Z-MODULE CATEGORY A(Z, X)

e X = simplicial complex.
e A (Z,X)-module is a finitely generated free Z-module A with direct sum

decomposition

A= A).

ceX
A (Z, X)-module morphism f: A — B is a Z-module morphism such that

f(A(0)) €Y B(7).

Proposition: A (Z, X)-module chain map f : C' — D is a chain equivalence
if and only if the Z-module chain maps

flo,0) : C(l6) = D(o) (6 € X)

are chain equivalences.

11. FUNCTORIAL FORMULATION

Regard simplicial complex X as the category with:
— objects: simplexes o € X
— morphisms: face inclusions o < 7.

A (Z,X)-module A = Y A(o) determines a contravariant functor
geX

[A] : X — A(Z) = {f.g. free abelian groups} ; o — [A][o] = Z A(r) .

T>0



108

ANDREW RANICKI

The (Z, X)-module category A(Z, X) is a full subcategory of the category of
contravariant functors X — A(Z).
12. DUAL CELLS

The barycentric subdivision X' of X is the simplicial complex with one n-
simplex gy01 ...0, for each sequence of simplexes in X

op<o1 << 0p -
The dual cell of a simplex o € X is the contractible subcomplex
D(0,X) = {6¢01...0n|0 <00} C X',
with boundary
0D(0,X) = {6001...0n|0 <09} C D(0,X) .

e Introduced by Poincaré to prove duality.
e A simplicial map f : M — X' has acyclic point inverses if and only if

(D)« - Hi(f~'D(0, X)) = H.(D(0, X)) (0 € X) .

13. WHERE DO (Z, X )-MODULE CHAIN COMPLEXES COME FROM?

For any simplicial map f : M — X' the simplicial chain complex A(M) is a
(Z, X)-module chain complex:

A(M)(0) = A(f7'D(0, X), f~10D(0, X))
with a degreewise direct sum decomposition
=Y AM)(r) = A(f'D(0, X)) -
T>0

The simplicial cochain complex A(X)™* is a (Z, X)-module chain complex
with:

Z ifr=—|o

0 otherwise.

14. THE (Z,X)-MODULE CHAIN DUALITY

Proposition: The additive category A(Z, X) of (Z, X)-modules has a chain
duality (T, e) with

Z omyz(A(7),Z) ifr = —|o]

0 it r # —|o|
T(C) ~z Hom(z x)(C,A(X"))™* ~z Homz(C,Z)~*
T(A(X')) ~@z,x) AX)™

Terminology T( )" * = T(Ciyn) (n >0)
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15. ProbpucTs

The product of (Z, X)-modules A, B is the (Z, X)-module

A®@z.x)B= Z A\ @z B(p) CA®z B,
A uEX ANu#D
AsenBo)= Y AN @B .
AMpeEX , ANp=0c

o ( ®(Z,X) A(X’) ~(z,X) C.
e T(C) ®z,x) D ~z Hom(Z’X)(C', D).
For simplicial maps f: M — X', g: N - X'

— A(M) ®z,x) AN) =@z x) A((f x 9) 'Ax)

— TAM) ®z,x) TA(N) =~z A(M x N, M x N\(f x g) tAx)*.

16. CAP PRODUCT
The Alexander-Whitney diagonal chain approximation

A:AX) = AX') 0z AX")

n
(Zo...Zn) = Y (To.. Ti) ® (Ti-..Tn)
i=0

is the composite of a chain equivalence
AX) =@z,x) AX) ®z,x) AXT)
and the inclusion
A(X") ®z,x) A(X") CAX') @z A(X') .

Homology classes [X] € H,(X) are in one-one correspondence with the chain
homotopy classes of (Z, X)-module chain maps

[X]N— : AX)"™ — A(X).

17. HOMOLOGY MANIFOLDS

Definition: A simplicial complex X is an n-dimensional homology manifold
if

Z ifx=n

eX).
0 otherwise (o )

H.(X,X\o) = {
Proposition: A simplicial complex X is an n-dimensional homology manifold
if and only if there exists a homology class [X] € H,,(X) such that the cap
product

[X]Nn— : AX)"™™* = A(X')
is a (Z, X)-module chain equivalence.
Proof: For any simplicial complex X

H.(X,X\o0) = H,_|,(D(0,X),0D(0,X)) ,
Z ifx=n

. (ceX).
0 otherwise

H"™(D(0, X)) = {
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18. POINCARE COMPLEXES

Definition: An n-dimensional Poincaré complex X is a simplicial complex
with a homology class [X] € H,(X) such that

[X]N - H"*(X) 2= H,(X) .

Poincaré duality theorem: An n-dimensional homology manifold X is an
n-dimensional Poincaré complex.
Proof: A (Z,X)-module chain equivalence

[X]N—: AX)"™ = A(X')

is a Z-module chain equivalence.
There is also a Z[m1(X)]-version.

19. McCRORY’S THEOREM

X = n-dimensional Poincaré complex
— X x X is a 2n-dimensional Poincaré complex.
— Let V € H*(X x X) be the Poincaré dual of A,[X] € H,(X x X).
— Exact sequence

H™MX x X, X x X\Ax) = H"(X x X) = H"(X x X\Ax) .

Theorem (McCrory) X is an n-dimensional homology manifold if and

only if V has image 0 € H"(X x X\Ax).

e A characterization of homology manifolds, J. Lond. Math. Soc. 16 (2), 149-

159 (1977)

20. CHAIN DUALITY PROOF OF MCcCRORY’S THEOREM

e V has image 0 € H™"(X x X\Ax) if and only if there exists U € H"(X x

X, X x X\Ax) with image V.

e U is a chain homotopy class of (Z, X)-module chain maps A(X') — A(X)"*,

since

H'(X x X, X x X\Ax) = Hy(TA(X) ®z.x) TA(X))
= Hy(Homz x)(A(X"), A(X)"*)) .

e U is a chain homotopy inverse of

¢=[X]N—-:AX)"* =5 A(X')
with
oU =1¢€ HO(Hom(Z’X)(A(X'),A(X’))) =H'(X),
6=T0, (TU)p = (TU)(T$) = T($U) =1
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21. THE HOMOLOGY TANGENT BUNDLE

The tangent bundle 7x of a manifold X is the normal bundle of the diagonal
embedding

A XX xX; z— (z,2) .
The homology tangent bundle 7x of an n-dimensional homology manifold X
is the fibration

(X, X\{¥}) —— (X x X, X x X\Ay) —— X

with X x X — X (z,y) — z.
Thom space of Tx

T(rx) = (X x X)/(X x X\Ax) .

Thom class of Tx
Ue H'(T(rx)) = H*(X x X, X x X\Ax)
has image V € H*(X x X).
22. EULER

The Euler characteristic of a simplicial complex X is

o0

X(X) = (=) dimg H,(X;R) € Z .

r=0
For an n-dimensional Poincaré complex X
x(X)=A"(V)e H"(X)=7Z.
The Euler class of n-plane bundle n over X
e(n) = [U] € im(A"(T(n)) —» H"(X)) .

Reformulation of McCrory’s Theorem:
an n-dimensional Poincaré complex X is a homology manifold if and only if
V € H"(X x X) is the image of Thom class U € H"(T(7x)), in which case

X(X)=e(rx) e HY(X) =17 .

23. DEGREE 1 MAPS
A map f: M — X of n-dimensional Poincaré complexes has degree 1 if
folM] =[X] € Hp(X) .

e A homology equivalence has degree 1.

e The Umkehr Z-module chain map of a degree 1 map f: M — X

FUAX) > A L Ay~ A(M)

is such that ff'~1:A(X) = A(X).
A degree 1 map f is a homology equivalence if and only if

flf~1:AM) = AM),
if and only if
('@ fHALX] = AJM] € Ho(M x M) .
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24. THE DOUBLE POINT SET

e Does a degree 1 map of n-dimensional homology manifolds f : M — X have
acyclic point inverses?
e Obstruction in homology of double point set

(f x )" Ax = {(z,y) € M x M| f(z) = f(y) € X}.
e Define maps
i: M= (fx ) Ax; a— (a,a),
Jo(fx T Ax = X5 (2,y) = f(z) = f(y)

such that f =ji: M — X.
e The Umkehr map

i HL(X) 2 HY(X x X, X x X\Ax)
— H"(M x M, M x M\(f x f)"*Ax)
~ H,((f x f)"'Ax) (Lefschetz duality)

is such that j,j' = 1.

25. LEFSCHETZ

o Lefschetz duality: If W is an m-dimensional homology manifold and A C W
is a subcomplex then

H* (W, W\A) = Hy,_(A) .

e Proof: For any regular neighbourhood (V,0V) of A in W there are defined
isomorphisms

H*(W,W\A) = H*(W,W\V) (homotopy invariance)
>~ H*(W,W\V) (collaring)
=~ H*(V,0V) (excision)
= H,,— (V) (Poincaré-Lefschetz duality)
= H,,—«(A) (homotopy invariance).

e Alexander duality is the special case W = S™.

26. AcycLic PoOINT INVERSE THEOREM

Theorem A degree 1 map f: M — X of n-dimensional homology
manifolds has acyclic point inverses if and only if

ix[M] = j'[X] € Ha((f x f)~'Ax) .

e Equivalent conditions:
it Hy(M) 2 Ho((f x f)~'Ax) |
i HA(M) = Ho((F x f) 1Ax)
— HJ((f x /) ' Ax\Aw) = 0.
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e Conditions satisfied if f : M — X is injective, with
(fx ) 'Ax =Ay .
e In general, i, # j'f. and i.[M] # j'[X] .

27. PROOF OF THEOREM - PART I

e A simplicial map f : M — X' has acyclic point inverses if and only if f :
A(M) — A(X'") is a (Z, X)-module chain equivalence.

e For degree 1 map f : M — X' of n-dimensional homology manifolds define
the Umkehr (Z, X)-module chain map

oA = A L A~ AM)
e f'is a chain homotopy right inverse for f
ffle1: AKX - AX) .
e f'is also a chain homotopy left inverse for f if and only if

fif=1¢ Ho(Hom gz, x)(A(M),A(M))) .

28. PROOF OF THEOREM - PART II
e Use the (Z, X)-Poincaré duality
AMY ™ ~ A(M)
and the properties of chain duality in A(Z, X) to identify
1 = i[M], f'f = j'[X]€ Ho(Homz, x)(A(M), A(M)))

= Ho(Homz,x)(A(M)"=*, A(M)))
= Hp(A(M) ®z,x) A(M))

= Ho((f x )" Ax)

29. COHOMOLOGY VERSION OF THEOREM

Theorem™* A degree 1 map f : M — X of n-dimensional homology
manifolds has acyclic point inverses if and only if the Thom classes Ups €

H™(M x M,M x M\Ayp), Ux € H"(X x X, X x X\Ax) have the same
image in H™(M x M, M x M\(f x f)"tAx).

e Same proof as homology version, after Lefschetz duality identifications
Uy =[M]e H* (M x M,M x M\Ay) =H,(M)
Ux =[X]e H"(X x X, X x X\Ax) = H,(X),
H™(M x M, M x M\(f x f)""Ax) = Ha((f x f)"Ax) .
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30. THE DOUBLE POINT OBSTRUCTION

The double point obstruction of a degree 1 map f : M — X of homology
manifolds

in[M] = j[X] € Ha((f x f)"'Ax)
is 0 if and only if f has acyclic point inverses.
The obstruction has image

X(M) —x(X) e H*(M) =7 .
If f is covered by a map of homology tangent bundles
b: (M xM,Mx M\Apy) = (X x X, X x X\Ax)
then

— Uy =b"Ux € H*(M x M, M x M\Ay),
— the double point obstruction is 0, and f has acyclic point inverses.

31. NORMAL MAPS

A degree 1 map f: M — X of n-dimensional homology manifolds is normal
if it is covered by a map b : 7ar €™ — Tx D €™ of the stable tangent bundles.
The stable map of Thom spaces
T(b): T (tapr) = T (1x)
induces a map in cohomology
T(b)* : H*(T(rx)) = H*(X x X, X x X\Ax)
— H™(T(rar)) = H(M x M, M x M\Ay)

which sends the Thom class Ux to Ujy.
However, Theorem™ may not apply to a normal map (f,b) : M — X, since in
general

(f x f)* # (inclusion)*T (b)* : H"(T(rx))
— H™(M x M, M x M\(f x f)"'Ax)
(dual of 3, # j'f.).

32. THE SURGERY OBSTRUCTION

The Wall surgery obstruction of a degree 1 normal map (f,b) : M — X of
n-dimensional homology manifolds

0.(f,b) € Ln(Z[m(X)])

is 0 if (and for n > 5 only if) (f,b) is normal bordant to a homotopy equiva-
lence.

A degree 1 map f: M — X with acyclic point inverses is a normal map with
zero surgery obstruction.

What is the relationship between the double point obstruction of a degree 1
normal map (f,b) : M — X and the surgery obstruction?

Use chain level surgery obstruction theory:

A.Ranicki, The algebraic theory of surgery, Proc. Lond. Math. Soc. (3) 40,
87-283 (1980)
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33. QUADRATIC POINCARE COMPLEXES

The simply-connected surgery obstruction o, (f,b) € L, (Z) is the cobordism
class of the n-dimensional quadratic Poincaré complex

(C,9) = (C(f"), (e @ e)yy)

where
— e: A(M) — C(f") is the inclusion in the algebraic mapping cone of the
Z-module chain map f': A(X) — A(M),
— the quadratic structure v is the image of

Yy € Hy(EXy x5, (M x M)) = H, (W ®z[s,) (A(M) @z A(M))) ,
— EY5 = §°°, a contractible space with a free ¥s-action,

There is also a Z[mr1(X)]-version.
34. THE DOUBLE POINT AND SURGERY OBSTRUCTIONS - PART I

For any degree 1 map f : M — X of n-dimensional homology manifolds the
composite of

ift =7 Ho(X) = Ho((f x f) " Ax)
and H,((f x f) 'Ax) = H,(M x M) is
A= (f'ofHA,  Ho (X)) —» H (M x M) .
For a degree 1 normal map (f,b) : M — X
Hy((f x /)™M Ax) = Hp(M x M)
sends the double point obstruction i.[M] — j'[X] to
(1+T)pp = Au[M] = (f' @ fHALX] € Ho(M x M) .

(1+ T)yp =0 if and only if f is a homology equivalence.

35. THE DOUBLE POINT AND SURGERY OBSTRUCTIONS - PART II

A degree 1 normal map (f,b) : M — X of n-dimensional homology manifolds
determines the X-controlled quadratic structure

VYo,x € Hy(ESy xsx, (f x f)7 Ax)
= H, (W ®z[5, (A(M) @z, x) A(M))) .

Yy, x has images
— the quadratic structure

[thp.x] = thp € Hn(EX x5, (M x M)) ,

— the double point obstruction

(14 ), x =ix[M] - j'[X] € Ha((f x f)7'Ax)
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36. THE NORMAL INVARIANT

e The X-controlled quadratic Poincaré cobordism class
aX(f,0) = (C(f"), (e ® e)yon,x) € Ln(A(Z, X)) = Hn(X;Le(Z))

is the normal invariant of an n-dimensional degree 1 normal map (f,b) : M —
X.

e 0:X(f,b) = 0if (and for n > 5 only if) (f,b) is normal bordant to a map with
acyclic point inverses.

e The non-simply-connected surgery obstruction of (f,b) is the assembly of the
normal invariant

0.(f,0) = Ao (f,b) € La(Z[m(X)]) -

37. HoMm AND DERIVED HOM

e For (Z, X)-modules A, B the additive group Homz x)(4, B) does not have a
natural (Z, X)-module structure, but the chain duality determines a natural
(Z, X )-module resolution.

e Derived Hom of (Z, X)-module chain complexes C, D

RHOHI(ZX)(C,D) = T(C) ®(Z,X) D .
e Adjoint properties:
RHOH’I(ZJ()(C, D) =~z HOI’II(ZJ()(C, D)
RHOHI(ZJ()(T(C), D) Z(Z,X) C ®(Z,X) D .

e D = A(X') is the dualizing complex for chain duality
T(C) ~(z,x) RHom(z x)(C, A(X"))

as for Verdier duality in sheaf theory.

38. WHEN IS A POINCARE COMPLEX HOMOTOPY EQUIVALENT TO A MANIFOLD?

e Every n-dimensional topological manifold is homotopy equivalent to an n-
dimensional Poincaré complex

e Isevery n-dimensional Poincaré complex homotopy equivalent to an n-dimensional
topological manifold?

e Fromnowonn >5

e Browder-Novikov-Sullivan-Wall obstruction theory has been reformulated in
terms of chain duality

— the total surgery obstruction.

39. BROWDER-NOVIKOV-SULLIVAN-WALL THEORY

e An n-dimensional Poincaré complex X is homotopy equivalent to an n-dimensional
topological manifold if and only if
1. the Spivak normal fibration of X admits a topological reduction,
2. there exists a reduction such that the corresponding normal map (f,b) :
M — X has surgery obstruction

0.(f,b) = 0 € Ln(Z[m(X)]) -



45 SLIDES ON CHAIN DUALITY 117

40. ALGEBRAIC POINCARE COBORDISM

e A = ring with involution.
e L, (A) = Wall surgery obstruction group
= the cobordism group of n-dimensional quadratic Poincaré
complexes over A
— n-dimensional f.g. free A-module chain complexes C' with

H™*(0) 2 H.(C) ,
— uses ordinary duality

C"* = Homa(C,A)srn .

41. ASSEMBLY

e X = connected simplicial complex
- X = universal cover
— p: X — X covering projection.
e Assembly functor

A AZ,X)={(Z,X)-modules} - A(Z[m (X)]) = {Z[m1(X)]-modules} ;

M=y M) M(X)= Y, M(@p5).
oeX Fex
e The assembly A(T'(M)) of dual (Z, X )-module chain complex

T(M) ~z Homz x)(M,A(X"))
is chain equivalent to dual Z[m(X)]-module
M(X)* = Homgz, x)(M(X), Z[m (X)]) .
42. THE ALGEBRAIC SURGERY EXACT SEQUENCE
e For any simplicial complex X exact sequence
- = H,(X;Le (Z)) A L,(Z[m(X)]) = Su(X) = H,—1(X;Le (Z)) — ...
with
e A = assembly,
e L, (Z) = the 1-connective simply-connected surgery spectrum
— Tu(Le(Z)) = L.(Z) ,
e H,(X;Ls(Z)) = generalized homology group
— cobordism group of n-dimensional quadratic Poincaré (Z, X )-module com-

plexes C ~ T(C)"*
— uses chain duality

T(C)ni* Z(Z,X) RHOH’I(Z’)()(C,A(X’))*_” .

43. THE STRUCTURE GROUP

e X = simplicial complex.
e S,(X) = structure group.
Sn(X) = cobordism group of
— (n — 1)-dimensional quadratic Poincaré (Z, X )-module complexes
— with contractible Z[m(X)]-module assembly.
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44. LOCAL AND GLOBAL POINCARE DUALITY

e X = n-dimensional Poincaré complex.
e The cap product [X]N—: A(X)"* = A(X'):
— is a (%, X)-module chain map,
— assembles to Z[r1(X)]-module chain equivalence

[X]N—: AX)" ™ — AX') .
e The algebraic mapping cone
C = C([XINn—=:AX)" " - AX")w_1

— is an (n — 1)-dimensional quadratic Poincaré (Z, X )-module
complex,
— with contractible Z[m(X)]-assembly.
e X is a homology manifold if and only if C' is (Z, X)-contractible.

45. THE TOTAL SURGERY OBSTRUCTION

e X = n-dimensional Poincaré complex.
e The total surgery obstruction of X is the cobordism class
s(X) = C(IX]N —)sz1 € Sp(X) .

e Theorem 1: X is homotopy equivalent to an n-dimensional topological man-
ifold if and only if s(X) = 0 € S,(X).

e Theorem 2: A homotopy equivalence f : M — N of n-dimensional topolog-
ical manifolds has a total surgery obstruction s(f) € S,+1(IV) such that f is
homotopic to a homeomorphism if and only if s(f) = 0.

— Should also consider Whitehead torsion.
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Controlled L-Theory

(Preliminary announcement)

A. Ranicki and M. Yamasaki

Introduction.

This is a preliminary announcement of a controlled algebraic surgery theory, of
the type first proposed by Quinn [1]. We define and study the e-controlled L-groups
L,.(X,px,e€), extending to L-theory the controlled K-theory of Ranicki and Yamasaki
[4].

The most immediate application of the algebra to controlled geometric surgery
is the controlled surgery obstruction: a normal map (f,b) : K — L from a closed
n-dimensional manifold to a é-controlled Poincaré complex determines an element

o%(f,b) € L,(X,1x,1000) .

(The construction in Ranicki and Yamasaki [3] can be used to produce a 6e n-
dimensional quadratic Poincaré structure on an (n + 1)-dimensional chain complex.
There is a chain equivalence from this to an n-dimensional chain complex with a 100
n-dimensional quadratic Poincaré structure, and o?(f,b) is the cobordism class of
this complex in L, (X,1x,1000).) A relative construction shows that if (f,b) can be
made into a d-controlled homotopy equivalence by d-controlled surgery then

o%(f,0) = 0 € L,(X,1x,1000) .
Conversely, if n > 5 and (f,b) is such that
od(f,b) =0 € L,(X, 1x,1006)

then (f,b) can be made into an e-controlled homotopy equivalence by e-controlled
surgery, where ¢ = C' x 1004 for a certain constant C' > 1 that depends on n. Proofs
of difficult results and the applications of the algebra to topology are deferred to the
final account.

The algebraic properties required to obtain these applications include the con-
trolled L-theory analogues of the homology exact sequence of a pair (3.1, 3.2) and
the Mayer-Vietoris sequence (3.3, 3.4).

The limit of the controlled L-groups

L4(X31x) = limlimim{L,(X,1x,8) — La(X,1x,€)}

lim
F
€ 5

is the obstruction group for controlled surgery to e-controlled homotopy equivalence
for all € > 0.

119
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Theorem. (5.4.) Fix a compact polyhedron X and an integer n(> 0). There exist
numbers €y > 0 and 0 < pup < 1 such that

for every € < €¢p and every 6 < pge.

Throughout this paper all the modules are assumed to be finitely generated unless
otherwise stated explicitly. But note that all the definitions and the constructions are
valid also for possibly-infinitely-generated modules and chain complexes. Actually we
heavily use finite dimensional but infinitely generated chain complexes in the later
part of the paper. (That is where the bounded-control over R comes into the game.)
So we first pretend that everything is finitely generated, and later we introduce a
possibly-infinitely-generated analogue without any details.

1. Epsilon-controlled L-groups.

In this section we introduce e-controlled L-groups L, (X, px,€) and L, (X,Y, px,€) for
px : M — X,Y CX,n >0,e>0. These are defined using geometric module chain
complexes with quadratic Poincaré structures, which were discussed in Yamasaki [5].

We use the convention in Ranicki and Yamasaki [4] for radii of geometric mor-
phisms, etc. The dual of a geometric module is the geometric module itself, and the
dual of a geometric morphism is defined by reversing the orientation of paths. Note
that if f has radius e then so does its dual f* and that f ~. g implies f* ~. g*, by
our convention. For a geometric module chain complex C, its dual C™™* is defined
using the sign convention used in Ranicki [2].

For a subset S of a metric space X, S¢ will denote the closed e neighborhood of
Sin X when € > 0. When € < 0, S¢ will denote the set X — (X — S)°.

Let C be a free chain complex on px : M — X. An n-dimensional € quadratic
structure 1 on C is a collection {15|s > 0} of geometric morphisms

s OV = (Cpers)™ = Cr (rei)
of radius € such that
(%) dips + (=) sd” + (=) T Wpr + (2) T Tpsp) ~3e 0: O 5 O
for s > 0. An n-dimensional free € chain complex C' on px equipped with an n-

dimensional € quadratic structure is called an n-dimensional € quadratic complex on
px- (Here, a complex C' is n-dimensional if C; =0 for i < 0 and 7 > n.)
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Next let f : C' = D be a chain map between free chain complexes on px. An
(n + 1)-dimensional € quadratic structure (6¢,1) on f is a collection {Jvs,¢¥s|s > 0}
of geometric morphisms

§ths : D"TITTTS 5 D ah: CTTTF 5 O (r€Z)
of radius € such that the following holds in addition to (x):

d(6hs) + (=) (6hs)d™ + (=)"*(Osg1 + (=) T Tsi1) + (=) fs f* ~3 O
D" 5 D, (s>0).

An € chain map f: C — D between an n-dimensional free € chain complex C on px
and an (n + 1)-dimensional free € chain complex D on px equipped with an (n + 1)-
dimensional € quadratic structure is called an (n + 1)-dimensional € quadratic pair on
px - Obviously its boundary (C,)) is an n-dimensional € quadratic complex on px.

An e cobordism of n-dimensional € quadratic structures 1) on C and %’ on C'
is an (n + 1)-dimensional € quadratic structure (d,1 & —¢') on some chain map
C®»C'" — D. An e cobordism of n-dimensional € quadratic complexes (C, ), (C', ")
on px is an (n + 1)-dimensional ¢ quadratic pair on px

((f f):CalC' =D, (y,v&—y)

with boundary (C & C',4 & —¢'). The union of adjoining cobordisms are defined
using the formula in Chapter 1.7 of Ranicki [2]. The union of adjoining e cobordisms
is a 2¢e cobordism.

¥C and QC will denote the suspension and the desuspension of C' respectively,
and C(f) will denote the algebraic mapping cone of a chain map f.

Definition. Let W be a subset of X. An n-dimensional € quadratic structure ¢ on
C is € Poincaré (over W) if the algebraic mapping cone of the duality 3e chain map

Dy=01+T)p:C"" —— C
is 4e contractible (over W). A quadratic complex (C, ) is € Poincaré (over W) if 1) is
¢ Poincaré (over W). Similarly, an (n 4+ 1)-dimensional € quadratic structure (§1,v)

on f:C — D is € Poincaré (over W) if the algebraic mapping cone of the duality 4e
chain map

Dsyp) = (L+ D)3y f1+T)to) : C(f)™ " —— D
is 4¢ contractible (over W) (or equivalently the algebraic mapping cone of the 4¢ chain
map
Disy,u) = ( L
’ ()" (A + T)iho f*
is 4e contractible (over W)) and ¢ is € Poincaré (over W). A quadratic pair (f, (¢, )
is € Poincaré (over W) if (61, %)) is € Poincaré (over W'). We will also use the notation

Dsy = (1 4 T)dvo, although it does not define a chain map from D"*'=* to D in
general.

) : DT 5 (), = Dy @ Cpy
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Definition. (1) A positive geometric chain complex C' (C; = 0 for i < 0) is €
connected if there exists a 4¢ morphism h : Cy — C; such that dh ~g. 1¢,.

(2) A chain map f : C — D of positive chain complexes is € connected if C(f) is €
connected.

(3) A quadratic complex (C, ) is € connected if Dy, is € connected.

(4) A quadratic pair (f : C — D, (d,9)) is € connected if Dy and D5y ) are €
connected.

Now we define the e-controlled L-groups. Let Y be a subset of X.

Definition. For n > 0 and € > 0, L,(X,Y,px,€) is defined to be the equivalence
classes of n-dimensional € connected € quadratic complexes on px that are € Poincaré
over X —Y. The equivalence relation is generated by e connected € cobordisms that
are € Poincaré over X — Y. For Y = ) write

Ln(X,px,E) = Ln(Xv(b:pX7€) .

Remarks. (1) We use only n-dimensional complexes and not the complexes chain
equivalent to n-dimensional ones in order to make sure we have size control on some
constructions.

(2) The € connectedness condition is automatic for complexes that are € Poincaré over
X. Connectedness condition is used to insure that the boundary 0C = QC(Dy) is
chain equivalent to a positive one. There is a quadratic structure 9y for 9C' so that
(0C, 0v) is Poincaré (Ranicki [2]).

(3) Using locally-finitely generated chain complexes on M, one can similarly define
e-controlled locally-finite L-groups L¥(X,Y,px,€). All the results in sections 1 — 3
are valid for locally-finite L-groups.

Proposition 1.1. The direct sum
C)e(C,y) = (Cal vay)
induces an abelian group structure on L, (X,Y,px,¢€). Furthermore, if
[Cog] = [C"¢'] € Ln(X, Y, px,€)
then there is a 100e connected 2¢ cobordism between (C, ) and (C',4'") that is 100e

Poincaré over X — Y'100¢,

Next we study the functoriality. A map between control maps px : M — X and
py : N = Y means a pair of continuous maps (f : M — N, f: X — Y) which makes
the following diagram commute:

M%N
J/ \LPY
X —Y.
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For example, given a control map py : N — Y and a subset X C Y, let us denote the
control map py |p{/1 (X) : p;,l (X) > X by px : M — X. Then the inclusion maps
j:M — N,j:X =Y form a map form px to py.

Epsilon controlled L-groups are functorial with respect to maps and relaxation
of control in the following sense.

Proposition 1.2. Let F = (f, f) be a map from px : M — X topy : N - Y, and
suppose that f is Lipschitz continuous with Lipschitz constant ), i.e., there exists a
constant A > 0 such that

d(f(z1), f(22)) < Ad(z1,22) (z1,72 € X).

Then F' induces a homomorphism
F* : Ln(X7 Xlaan 6) —— Ln(Y7 YI:pY: 6)

ife >\ and f(X') C Y'. If two maps F = (f,f) and G = (g,3) are homotopic
through maps H; = (hy, hy) such that each hy is Lipschitz continuous with Lipschitz
constant \, € > X3, € > ¢, and hy(X') C Y, then the following two compositions are
the same:

F.

Ln(XaXlaants) — Ln(Y) YI:pYae) - Ln(Ya Y’)pY;el)
G

Ln(XaXlaants) — Ln(Y) Y’:pY:G) O Ln(Ya Y’)pY;el)

Proof: The direct image construction for geometric modules and morphisms [4, p.7]
can be used to define the direct images fx(C, 1) of quadratic complexes and the direct
images of cobordism. And this induces the desired F,. The first part is obvious. For
the second part, split the homotopy in small pieces to construct small cobordisms.
The size of the cobordism may be slightly bigger than the size of the object itself. []

Remark. The above is stated for Lipschitz continuous maps to simplify the state-
ment. For a specific § and a specific €, the following condition, instead of the Lipschitz
condition above, is sufficient for the existence of F :

d(f(z1), f(z2)) < ke whenever d(z,2s) < k6,

for a certain finite set of integers k (more precisely, for k =1, 3, 4, 8)

and similarly for the isomorphism in the second part. When X is compact and € is
given, the continuity of f implies that this condition is satisfied for sufficiently small
0’s. [Use the continuity of the distance function d : X x X — R and the compactness
of the diagonal set A C X x X.] And, in the second half of the proposition, there
are cases when the equality F, = G, holds without composing with the relax-control
map; e.g., see 4.1.
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We are interested in the “limit” of e-controlled L-groups.

Definition. Let px : M — X be a control map.
(1) Let €, 0 be positive numbers such that § < e. We define:

LZ(Xaan 6) = lm{Ln(X,an 6)—>Ln(XapX7 6)}
(2) For e > 0, we define the stable e-controlled L-group of X with coefficient px by:

L:L(X’px) = ﬂ L;(X,px,(S)
0<d<e

(3) The controlled L-group with coefficient px is defined by:
Ly (X;px) = &i%nLZ(X;px),
where the limit is taken with respect to the obvious relax-control maps:
Ly (Xipx) — Ly(Xipx), (€ <e).

In section 5, we study a certain stability result for the controlled L-groups in
some special case.

2. Epsilon-controlled projective L-groups.

Fix a subset Y of X, and let F be a family of subsets of X such that Z D Y
for each Z € F. In this section we introduce intermediate e-controlled L-groups
L7 (Y,px,€), which will appear in the stable-exact sequence of a pair and also in
the Mayer-Vietoris sequence. Roughly speaking, these are defined using “controlled
projective quadratic chain complexes” ((C,p), ) with vanishing e-controlled reduced
projective class [C,p] = 0 € Ko(Z,pz,n,e) (Ranicki and Yamasaki [4]) for each
Z € F. Here pz denotes the restriction px|p%'(Z) : px' (Z) = Z of px as in the
previous section.

For a projective module (4, p) on px, its dual (A4,p)* is the projective module
(A*,p*) on px. If f: (A,p) = (B,q) is an € morphism ([4]), then f* : (B,q)* —
(A, p)* is also an € morphism. For an € projective chain complex on px

dy dr_1
(Cp) : ... — (Cr,pr) — (Crotypre1) — ...

in the sense of [4], (C, p)™* will denote the € projective chain complex on px defined
by:
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g
e () I o ey s

An n-dimensional € quadratic structure on a projective chain complex (C,p) on
px is an n-dimensional € quadratic structure ¢ on C (in the sense of §1) such that
Ys : (C™" "%, p*) — (C,,p) is an € morphism for every s > 0 and r € Z. Similarly,
an (n + 1)-dimensional e quadratic structure on a chain map f : (C,p) — (D,q)
is an (n + 1)-dimensional e quadratic structure (6¢,%) on f : C — D such that
Sps + (DT85 ¢*) — (D,,q) and 1 : (C™ "% p*) — (C,,p) are € morphisms for
every s > 0 and r € Z. An n-dimensional e projective chain complex (C,p) on px
equipped with an n-dimensional e quadratic structure is called an n-dimensional €
projective quadratic complex on px, and an € chain map f : (C,p) = (D, q) between
an n-dimensional € projective chain complex (C,p) on px and an (n + 1)-dimensional
€ projective chain complex (D,q) on px equipped with an (n + 1)-dimensional e
quadratic structure is called an (n + 1)-dimensional € projective quadratic pair on px .

An e cobordism of n-dimensional € projective quadratic complexes ((C,p), ),
((C",p'),¢") on px is an (n + 1)-dimensional e projective quadratic pair on px

((f fl) : (C,p)@(Cl,pl)—)(D’q),((sd),dj@—1/}’))

with boundary ((C,p) ® (C',p'),¥ & —¢').
An n-dimensional € quadratic structure ¢ on (C,p) is ¢ Poincaré if

A(C,p) = QC((1+ T)tho : (C"77,p")—(C, p))

is 4e contractible. ((C,p),) is € Poincaré if ¢ is € Poincaré. Similarly, an (n + 1)-
dimensional € quadratic structure (d¢, %) on f : (C,p) — (D, q) is € Poincaréif 9(C, p)
and

A(D,q) = (L +T)dvo  fF(1+T)ho) : C(f)" 7 —(D,q))
are both 4e contractible. A pair (f, (0¢,4)) is € Poincaré if (61),1) is € Poincaré.

Let Y and be a subset of X and F be a family of subsets of X such that Z DY
for every Z € F.

Definition. Let n > 0 and € > 0. L7 (Y,px,e) is the equivalence classes of n-
dimensional € Poincaré e projective quadratic complexes ((C,p),¥) on py such that
[C,p] =0in I?O(Z, pz,n,¢) for each Z € F. The equivalence relation is generated by
e Poincaré € cobordisms ((f f'): (C,p) & (C',p") = (D,q), (61, & —1')) on py
such that [D,q] = 0 in I?O(Z,pz,n + 1,¢) for each Z € F. When F = {X}, we omit
the braces and write LX (Y, px, €) instead of L;{LX}(Y, px,€). When F = { }, then we
use the notation L2(Y,py,€), since it depends only on py.
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Proposition 2.1. Direct sum induces an abelian group structure on L7 (Y,px,¢).
Furthermore, if

[(C)p)vdj] = [(Clapl)ﬂ/},] € Lf(Y,pX,e) )
then there is a 100e Poincaré 2e cobordism on py

((f f1):(Cp) @& (C".p) = (D,q), (69, ¢ & —¢"))
such that [D,q] =0 in I?O(Z,pz,n +1,9¢) for each Z € F.

A functoriality with respect to maps and relaxation of control similar to 1.2 holds
for epsilon controlled projective L-groups.

Proposition 2.2. Let F = (f, f) be a map from px : M — X topy : N - Y, and
suppose that f is Lipschitz continuous with Lipschitz constant ), i.e., there exists a
constant A > 0 such that

d(f(z1), f(z2)) < Md(zy1,72) (z1,22 € X).
Ife > )5, f(A) C B, and there exists a Z € F satisfying f(Z) C Z' for each Z' € F',
then F' induces a homomorphism
F. : L7(A,px,0) —— Lf(B,py,e).

Remark. As in the remark to 1.2, for a specific § and a €, we do not need the full
Lipschitz condition to guarantee the existence of F.

There is an obvious homomorphism
Le Ln(Y)pY>€) —_— Li(yvav 6); [07 dj] — [(Ca 1))1/1]

On the other hand, the controlled K-theoretic condition posed in the definition can
be used to construct a homomorphism from a projective L-group to a free L-group:

Proposition 2.3. There exist a constant a > 1 such that the following holds true:
for any control map px : M — X, any subset Y C X, any family of subsets F of X
containing Y , any element Z of F, any number n > 0, and any positive numbers 9,
€ such that € > ad, there is a well-defined homomorphism functorial with respect to
relaxation of control:

(iZ)* : Lf(Y>pX>6) - Ln(Z;pZ;G)

such that the following compositions are equal to the maps induced from inclusion

maps:

(iz )« Le
Li(Y,px,(S) — Ln(ZapZae) — LELZ}(Z:I)Z:G) )

Ly F (iZ)*
Ln(Y,py,(S) — Ln (YapX76) E— Ln(ZapZ7€) .

Remark. Actually a = 30000 works.

3. Stably-exact sequences.
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In this section we describe two ‘stably-exact’ sequences. The first is the stably-exact
sequence of a pair:

0 i Jx 2]
e Lﬁ(Yn)ane) """ > Ln(X>pX;€) _>Ln(X7Y7pX)€) e Lf—l(Y)pre) """ >

where the dotted arrows are only ‘stably’ defined. The precise meaning will be ex-
plained below. The second is the Mayer-Vietoris-type stably-exact sequence:

iy

o Jx
=D LZ;(Caane) """ > Ln(AapA7€)®Ln(BapBae) — Ln(Xaane)
8[> Lffl(c,px,tf) l*[>
where X = AUB,C = ANB, and F = {4, B}.

Fix an integer n > 0, let Y,,, Z, be subsets of X, and let v, d,, €, be three
positive numbers satisfying

€n 2 0n,  On > am
where « is the number (> 1) posited in 2.3. Then there is a sequence

te=(tx )

Jx
Lf(Yn;pX;’Yn) —_— Ln(XapX>6n) — Ln(X7 Zn>pX)€n))

where i, is the homomorphism given in 2.3 and j, is the homomorphism induced by
the inclusion map and relaxation of control. (The subscripts are there just to remind
the reader of the degrees of the relevant L-groups.)

Theorem 3.1. There exist constants kg, K1, K2, ...(> 1) which do not depend on

px such that

(1) ifn >0, Z, D er"‘sn, and €, > k.0, then the following composition j.i. is
zero:

.. T Jx
Jule =0 Lf(Ynaan'Yn) — Ln(X:pX:(sn) — Ln(Xa Zn:anen)a

(2) ifn >1,Y,—1 D Zr* and yp_1 > Kné€p, then there is a connecting homomor-
phism
8 . Ln(X7 Znaanen) —— Lg—l(yn—laan’Yn—l)a

such that the following composition 3j, is zero:

. j* 9]
a]* =0: Ln(XapX;(Sn) — Ln(X; Znapren) — L§_1(Yn71;pX77n71)7

and, if 0,—1 > ayp—1 (so that the homomorphism i, is well-defined), the following
composition 1,0 is zero:

o -
ix0=0 : Lp(X, Zn,px,€n) — Ly 1 (Yno1,PX,Yn=1) — Ln—1(X,px,0n_1).
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Theorem 3.2. There exist constants Ag, A1, A2, ...(> 1) which do not depend on

px such that

(1) if n >0, 6, > ay, (so that i, is well-defined), €, > A\pdy, Z}y D Y00,
Y, D Z, "ttt and ), > Kpyi€,,q (so that 8" is well-defined), then the
image of the kernel of i, in L:X (Y,!,px,~.) is in the image of §':

l

8’
Ln+1(X7 Z;H—laan 6In—l—l) — Lg (Yriava 7'2)

(2) if n > 0, €, > 6, (50 that j, is well-defined), Y;! D ZM ~! > \,e,, and
0, > av), (so that i’ is well-defined), then the image of the kernel of j,. in
L,(X,px,d,) is in the image of i’,:

Ln(XapX76n) L) L’n(X7 Z’rLaan en)

J

i
LX(Ylaan’Y;L) —_— Ln(XapX76;L)

n n

(3) if n > 1, yu—1 > Kn€n (so that O is well-defined), €, > Ap,yn—1, and Z|, D

n

Y"1 then the image of the kernel of 0 in L,(X, Z},,px,€,,) is in the image

n—1

of ji:
Ln(X7 Zn)anen) L> L§_1(Yn71>PX>'7nfl)
Ln(Xaaneln) L} Ln(X7 Z;upX>€{n)

Here the vertical maps are the homomorphisms induced by inclusion maps and relax-
ation of control.

Next we investigate the Mayer-Vietoris-type stably-exact sequence. Fix an inte-
ger n > 0, and assume that X is the union of two closed subsets A, and B, with
intersection C,, = A,, N B,,. Suppose three positive numbers ~,, d,, €, satisfy

On > QAYn, €n > 6n:

and define a family F,, to be {A,, B, }. Then we have a sequence

[ Js
Lfn (Cn:an 'Yn) — Ln(AnapAn ) 6n) 5] Ln(Bnaan , 6n) — Ln(X:an €n)-
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Theorem 3.3. There exist constants kg, K1, K2, ...(> 1) which do not depend on
px such that
(1) if n > 0 and €, > K0y, then the following composition j.i. is zero:

LT (Cos 2, 70) 2 (s P 0) & L(Bos b, 0) < La(X, o, en).
(2) ifn>1,Ch1 D CE " yp_1 > Knep, and if we set
Frno1={An-1=4,UC,_1,Bp_1 =B, UCy_1},
then there is a connecting homomorphism
9 Ln(X,px,en) — L™ (Co1px, 90 1),

such that the following composition 0j, is zero:

Js o
Ln(An:pa 6n) 52 Ln(Bnapa 5n) — Ln(Xaan €n) — Lfiil (Cn—l ,PX, 'Yn—l)a
and, if 0,,—1 > ary,_1 (so that the homomorphism i, is well-defined), the following
composition i,0 is zero:
9 Fn-1
L’n(Xaan en) — Ln—l (Cn—l 7pX7'7n—1)
_*>Ln71(An71;p7 6n71) S Lnfl(anlyp; 6n71)-

Theorem 3.4. There exist constants Ao, A1, A2, ...(> 1) which do not depend on

px such that

(1) if n > 0, 8, > av, (so that i, is well-defined), €, ., > A\pd,, C), D Cpnon,
Yy, > Knt1€y4 (S0 that 0" is well-defined), then the image of the kernel of i, in

F! . .
L, "7 (Cl_1,px,7h_1) Is in the image of 0"

L'ZL:" (Cnaan ’Yn) l—*> Ln(An:pa 6n) @ Ln(Bn:pa 6n)

|

Y '
Lot (X px5 €010) = L™ (Ch, px, 73)
(2) ifn >0, €, > 6, (so that j. is well-defined), C!, D Cnen v > \pen, 8 > av!,

(so that i’ is well-defined), and F|, = {A!, = A, UC), B! = B, UC!}, then the
image of the kernel of j, in L,(A!,,p,d!) ® Ln(B.,,p, 6’) is in the image of i’ :

Ln(Anap; 6n) D Ln(Bn;pv 6n) L> Ln(Xpra en)

|

T (C P )—>L (A, p,0;,) © Ln(By,, p, dy,)
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(3) ifn>1,Ch_q1 DCE vy 1 > Knep (so that O is well-defined), €}, > A Yn—1,
Cl D C:L‘i}"’l, Al =A,UC!, and B!, = B,, UC],, then the image of the kernel
of @ in L,(X,px,e€l,) is in the image of j.:

o
Ln(X,pX, 6”) — Lr];iil (Cn,1 ,px,’7n71)

|

Ln(AL,p,€,) & Lo(Bl,p,e\) —— Ln(X, px,€,)

Here the vertical maps are the homomorphisms induced by inclusion maps and relax-
ation of control.

Theorems 3.1 — 3.4 are all straightforward to prove.

4. Locally-finite analogues.

Up to this point, we considered only finitely generated modules and chain complexes.
To study the behaviour of controlled L-groups, we need to use infinitely generated
objects; such objects arise naturally when we take the pullback of a finitely generated
object via an infinite-sheeted covering map.

Consider a control map px : M — X, and take the product with another metric
space IN:
px X1y : M x N—X x N.

Here we use the maximum metric on the product X x V.

Definition. (Ranicki and Yamasaki [4, p.14]) A geometric module on the product
space M x N is said to be M-finite if, for any y € N, there is a neighbourhood U
of y in N such that M x U contains only finitely many basis elements; a projective
module (4,p) on M x N is said to be M-finite if A is M-finite; a projective chain
complex (C,p) on M x N is M-finite if each (C,,p,) is M-finite. [ In [4], we used
the terminology “M-locally finite”, but this does not sound right and we decided to
use “M-finite” instead. “N-locally M-finite” may be describing the meaning better,
but it is too long.] When M is compact, M-finiteness is equivalent to the ordinary
locally-finiteness.

Definition. Using this notion, one can define M-finite e-controlled L-groups LM (X x
N,Y xN,px x1y,€), and M-finite e-controlled projective L-groups L7 (Y x N, px x
1n,€) by requiring that every chain complexes concerned are M-finite.

Consider the case when N = R. We would like to apply the M-finite version
of the Mayer-Vietoris-type stable exact sequence with respect to the splitting R =
(=00,0] U [1,00). The following says that one of the three terms in the sequence
vanishes.
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Proposition 4.1. Let px : M — X be a control map. For any € > 0 and r € R,

LM(X x (00,7],px x 1,€) = LM(X x [r,00),px x 1,€) = 0.
IN(éV[(X x (00,7],px X 1,n,€) :IN(é”(X x [r,00),px x 1,n,€) = 0.

Proof: This is done using repeated shifts towards infinity and the ‘Eilenberg Swindle’.
Let us consider the case of LM (X x [r,00),px x 1,€). Let J = [r,00) and define
T:MxJ— MxJbyT(z,t) = (x,t+¢). Take an element [c] € LM (X x J, px x 1,¢€).
It is zero, because there exist M-finite ¢ Poincaré cobordisms:

c ~ cdTy(—c)® Ti(c)) ® (Ti(—c) ® T;i(c)) D...
= (c®Tu(—c)® (Th(c)®Th(—c) ®... ~ 0.

U
Thus, the Mayer-Vietoris stably-exact sequence reduces to:
a
0 — LM(X xR px x Ip,e) — L2 _ (X x I,px x 11,7) — 0,
where v = kpe, I = [—4, 4], for some § > 0. A diagram chase shows that there exists

a well-defined homomorphism:
ﬂ : Lfl—l(X X IapX X 1]7'7) — L%(X X ]RapX X lRael)a

where €/ = A\pknAp_1ay. The homomorphisms @ and 3 are stable inverses of each
other; the compositions

B0 : L)X x Rpx x 1p,€) — L) (X x R,px x Ig,¢€)
aﬁ : szfl(X X IapX X 11)7) — Lflfl(X X I:pX X ]-Iannel)

are both relax-control maps.
Note that, for any -, a projective L-group analogue of 1.2 gives an isomorphism:

LP (X xI,px x11,7) = LP_ (X x {0},px,7).

In this case, no composition with relax-control map is necessary, because X x [ is
given the maximum metric. Thus, we have obtained:

Theorem 4.2. There is a stable isomorphism:
LnM(X X ]R7pX X IR,E) - Lfl—l(XapX7’Y)‘

Similarly, we have:
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Theorem 4.3. There is a stable isomorphism:

LY(X x R px x 1p,e) — LPY (X, px, 7).

5. Stability in a special case.

In this section we treat the special case when the control map is the identity map.
The following can be used to replace the controlled projective L-group terms in the
previous section by controlled L-groups.

Proposition 5.1. Suppose that Y(C X) is a compact polyhedron or a compact
metric ANR embedded in the Hilbert cube and that py is the identity map 1y on Y.
Then for any € > 0 and n, there exists a dgp > 0 such that for any positive number
0 satisfying § < dg there is a well-defined homomorphism functorial with respect to
relaxation of control:

Tes + LT (Y,px,8) —— L,(Y,1ly,e)
such that the compositions
LE(Y, px.8) —5 Lo(Y, 1y, €) -5 LT (Y, px, €)
La(Y, 1y,8) 25 LT (Y, px,6) —5 Lo(Y, 1y, €)

are both relax-control maps. In particular L2 (Y,1y,6) and L,(Y,1y,€) are stably
isomorphic.

Proof: Let §; = ¢/a, where « is the positive number posited in 2.3. By 8.2 and 8.3
of [4], there exists a dy > 0 such that the following map is a zero map:

Ko(Y,1y,n,8) — Ko(V,1y,n,61);  [C,p] = [C,p]-
Therefore, if 6 < dg, there is a homomorphism
L} (Y,px,0) —— LYV px,61);  [(C,p),¢] = [(C,p), ).
The desired map 7. s is obtained by composing this with the map
(iv)e = LEYYHY, px,0) —— L,(Y,1x,¢)

corresponding to the subspace Y. ]

Remark. If Y is a compact polyhedron, then there is a constant kY > 1 which
depends on n and Y such that &y above can be taken to be §; /) . For this we need
to change the statement and the proof of 8.1 of [4] like those of 5.4 below.
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Recall that in our Mayer-Vietoris-type stably-exact sequence, each piece of space
tends to get bigger in the process. The following can be used to remedy this in certain
cases. (It is stated here for the identity control map, but there is an obvious extension
to general control maps.)

Proposition 5.2. Let r : X — A be a strong deformation retraction, with a Lips-
chitz continuous strong deformation of Lipschitz constant A, and i : A — X be the
inclusion map. Then r and i induce “stable” isomorphisms of controlled L-groups in
the following sense: if € > 0, then for any d ( 0 < 6 < ¢/A) the compositions

Ln(X7 ]-X:(S) i) Ln(A> ]-Aae) i) Ln(X) ]-Xae)
Ln(A,14,8) =5 Lo(X,1x,08) — Ln(A,14,€)

are relax-control maps.
Proof: Obvious from 1.2. O

Theorem 5.3. Fix a compact polyhedron X and an integer n > 0. Then there exist
numbers € > 0, kK > 1 and A\ > 1 (which depend on n, X, and the triangulation)
such that, for any subpolyhedrons A and B of X, any integer k > 0, and any number
0 < € < €1, there exists a ladder:

LY(C x RF,1,¢) — LI(A x R, 1,¢) @ LY(B x R*,1,¢) —— LY(K x R*,1,¢)

| | J

LY(C x RE 1, \e) - LY(Ax RF 1, Xe) ® LY (B x R* |1, \e) = LYK x R* 1, \e)

2, LY(C x RFL 1, ke) SN LY(A x RF1 1, ke) © LY (B x R¥1 1, ke)

| l

— LI(C x R, 1, k0e) — LY(A x R¥1,1,506) © LY(B x R, 1, k)

which is stably-exact in the sense that

(1) the image of a horizontal map is contained in the kernel of the next map, and

(2) the relax-control image in the second row of the kernel of a map in the first row
is contained in the image of a horizontal map from the left,

where C = AN B and K = AU B, and the vertical maps are relax-control maps.

Proof: This is obtained from the locally-finite versions of 3.3, 3.4 combined with
4.3, 5.1, and 5.2 (the strong deformations of the neighbourhoods of A and B in K
can be chosen to be PL and hence Lipschitz). Since there are only finitely many
subpolyhedrons of X (with a fixed triangulation), we may choose constants x and A
independent of A and B. ]
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Theorem 5.4. Suppose X is a compact polyhedron and n > 0 is an integer. Then
there exist numbers €9 > 0 and 0 < o < 1 which depend on X and n such that

L;(X) 1x, 6) = L?L(X’ ]-X)
for every € < g and every 6 < €.

Proof: We inductively construct sequences of positive numbers

61262263>... (>0)

A>)m > p2 > p3 > ... (>0)

such that for any subcomplex K of X with the number of simplices <[,
(1) if0<e<e¢,0<6 < e, and k > 0, then

LYK x RF 15 x1,6) = LYK x RE 15 x 1, we),

and
(2) if 0 < € < ¢, then the homomorphism

LK x R 1x x 1) —— LE9(K x R 1k x 1)

is injective.
Here R* is given the maximum metric.

First suppose I = 1 (i.e. K is a single point). Any object with bounded control
on R can be squeezed to obtain an arbitrarily small control; therefore,

€; = the number posited in 5.2, pu; =1

works.

Next, assume we have constructed ¢; and p; for i <I. We claim that
€l+1 = min{ﬂa l}617 Hi+1 = I'L_l2
Ak AR

satisfy the required condition. Suppose the number of simplices of K is less than or
equal to [ + 1. Choose a simplex of K of the highest dimension, and call the simplex
(viewed as a subpolyhedron) A, and let B = K — intA. Suppose 0 < € < ¢4 and
0 < 0 < pe. A diagram chase starting from an element of

LZ(K X Rk: ]-)/J/l+16)

in the following diagram establishes the property (1). Here the entries in each of the
columns are
LIA xR, Ly @ LI(B x R, 1,9) , LI(C xR, 1,7)
LIK xR, 1,9), and LJ(A x R, 1,9) & LIB < R, 1,9)
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for various 7’s specified in the diagram.

LYA. . )eLYB..) LYK ..) LYc..) LYA..)e LYB...
s >
1 S
3 y 9
A (DN
1l
) > 0 > KO
1 1
Hi41€ ——— KH+1€
1 1
Hiya o s gt o g gL o
I 4 ul ’ uz

Next suppose 0 < € < ¢41. A diagram chase starting from an element of
LYK x R, 1, pyyr€)
representing an element of
ker{L%¢(K x R¥;1) — LY (K x R¥;1)}

establishes (2).

LZ(C’) LZ(A)@LQ:(B) LZ(K) LZ(C’)
Wi1€ = ;‘—’e E— L;\’ze
4 4
Le— 3 He
4
e > € > L€
4 1 4
€ > € > €
d 4
€1+1 > €141 > KE€+1
1

A ———————————— €1
1 1
Iy ———5 Le
122 + 224 +
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NOTES ON SURGERY AND C*-ALGEBRAS

JOHN ROE

1. INTRODUCTION

A C*-algebra is a complex Banach algebra A with an involution %, which satisfies

the identity
lz*z|| = ||z||> Vz € A.

The study of C*-algebras seems to belong entirely within the realm of functional
analysis, but in the past twenty years they have played an increasing role in geo-
metric topology. The reason for this is that C*-algebra K-theory is a natural
receptacle for ‘higher indices’ of elliptic operators, including the ‘higher signatures’
which feature as surgery obstructions. The ‘big picture’ was originated by Atiyah
[1, 2] and Connes [5, 6]; in these notes, based on my talk at the Josai conference, I
want to explain part of the connection with particular reference to surgery theory.
For more details one could consult [24].

2. ABoUT C*-ALGEBRAS

The following are key examples of C*-algebras

e The algebra C(X) of continuous complex-valued functions on a compact Haus-
dorff space X.
e The algebra B(H) of bounded linear operators on a Hilbert space H.

Gelfand and Naimark (about 1950) proved: Any commutative C*-algebra with
unit is of the form C'(X); any C*-algebra is a subalgebra of some B(H).

Let A be a unital C*-algebra. Let 2 € A be normal, that is zz* = 2*2. Then z
generates a commutative C*-subalgebra of A which must be of the form C(X). In
fact we can identify X as the spectrum

X =o(z) = {X € C: 2z — Al has no inverse}

with z itself corresponding to the canonical X — C.

Hence we get the Spectral Theorem: for any ¢ € C(o(x)) we can define p(z) € A
so that the assignment ¢ — ¢(z) is a ring homomorphism.

If x is self adjoint (x = z*), then o(z) C R.

One can define K-theory groups for C*-algebras. For A unital

e Ky(A) = Grothendieck group of f.g. projective A-modules

o Kl(A) = ’/T()GLOO(A)
with a simple modification for non-unital A. These groups agree with the ordinary
topological K-theory groups of the space X in case A is the commutative C*-algebra
C(X).

For any integer i define K; = K;+y. Then to any short exact sequence of C*-
algebras

The hospitality of Josai University is gratefully acknowledged.
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0-J—>A—-A/J—=0

there is a long exact K-theory sequence

The 2-periodicity is a version of the Bott periodicity theorem. Notice that algebraic
K-theory does not satisfy Bott periodicity; analysis is essential here.

A good reference for this material is [26].

Classical Fredholm theory provides a useful example of C*-algebra K-theory at
work. Recall that an operator T on a Hilbert space H is called Fredholm if it has
finite-dimensional kernel and cokernel. Then the indez of T is the difference of the
dimensions of the kernel and cokernel.

(2.1) DEFINITION:  The algebra of compact operators, R(H), is the C*-algebra
generated by the operators with finite-dimensional range.

Compact and Fredholm operators are related by Atkinson’s Theorem, which
states that T € B(H) is Fredholm if and only if its image in B(H)/R(H) is
invertible.

Thus a Fredholm operator T defines a class [T'] in K3 (%5/RK). Under the connect-
ing map this passes to 0[T] € Ko(R) = Z; this is the index.

3. ABSTRACT SIGNATURES

Recall that in symmetric L-theory we have isomorphisms L°(Z) — L°(R) — Z.
The second map associates to a nonsingular real symmetric matrix its signature =
(Number of positive eigenvalues) — (Number of negative eigenvalues).

Can we generalize this to other rings?

If M is a nonsingular symmetric matrix over a C*-algebra A we can use the
spectral theorem to define projections p; and p_ corresponding to the positive and
negative parts of the spectrum. Their difference is a class in Ko(A).

This procedure defines a map Lf(A) — Ko(A) for every C*-algebra A, and it
can be shown that this map is an isomorphism [25]. There is a similar isomorphism
on the level of L;.

Now let I be a discrete group. The group ring ZI" acts faithfully by convolution
on the Hilbert space ¢2T'. The C*-subalgebra of B(¢*T") generated by ZI" acting in
this way is called the group C*-algebra, C;T.

We have a map Lo(ZT') —» Ko(CxT).

Gelfand and Mishchenko [10] observed that this map is a rational isomorphism
for ' free abelian. (Then CT = C(T*) by Fourier analysis.)

REMARK: Our map from Ly to K is special to C*-algebras; if it extended naturally
to a map on all rings, we would have for a free abelian group I' a diagram

Lo(ZI') —— Lo(C;T)

.

Ko(ZT) — Ko(C:T)
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Going round the diagram via the top right we get Gelfand and Mishchenko’s map, a
rational isomorphism. But the bottom left-hand group is of rank one, by the Bass-
Heller-Swan theorem [4, Chapter XII]. This contradiction shows that the left-hand
vertical map cannot exist.

4. THE SIGNATURE OPERATOR

Let M be a complete oriented Riemannian manifold of even dimension (for
simplicity). Define the operator F' = D(1 + D2)’% on L? differential forms, where
D = d + d*, d =exterior derivative, d* = its adjoint.

F is graded by an involution ¢ = i’% (here i = /=1 and the power ? depends
on the dimension and the degree of forms, see [3] for the correct formula). Thus
graded it is called the signature operator.

If M is compact, then F' is Fredholm. Moreover the index of F' is the signature
of M. This is a simple consequence of Hodge theory [3].

REMARK: The choice of normalizing function o(z) = z(1 + 22)"2 in F = (D)
does not matter as long as it has the right asymptotic behaviour.

Consider now the signature operator on the universal cover M of a compact
manifold M. F belongs to the algebra A of I' = w1 M equivariant operators. More-
over it is invertible modulo the ideal J of [' equivariant locally compact operators.
This follows from the theory of elliptic operators.

Thus via the connecting map 9: K1(A/J) = Ko(J) we get an ‘index’ in Ko(.J).
(4.1) LEMMA: J = CiT ® R. Consequently Ko(J) = Ko(CxT).

We have defined the analytic signature of M as an element of Ky(CT). In
general it can be defined in K;(M) where i is the dimension of M mod 2.

(4.2) PROPOSITION: The analytic signature is the image of the Mishchenko-
Ranicki symmetric signature under the map L° — K.

(4.3) COROLLARY: The analytic signature is invariant under orientation preseruv-
ing homotopy equivalence.

Direct proofs of this can be given [13].

We can now define an ‘analytic surgery obstruction’ (= difference of analytic
signatures) for a degree one normal map.

Can we mimic the rest of the surgery exact sequence?

5. K-HOMOLOGY

Let A be a C*-algebra. A Fredholm module for A is made up of the following
things.

e A representation p: A — B(H) of A on a Hilbert space

e An operator F' € B(H) such that for all a € A the operators

Fp(a) = p(@)F, (F* =1)p(a), (F = F*)p(a)
belong to K(H).

The signature operator is an example with A = Cy(M).

One can define both ‘graded’ and ‘ungraded’ Fredholm modules. These objects
can be organized into Grothendieck groups to obtain Kasparov’s K -homology groups
K¥(A) [15]. (i = 0 for graded and i = 1 for ungraded modules). They are
contravariant functors of A.
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REMARK: The critical condition in the definition is that [F), p(a)] € R for all a. One
should regard this as a continuous control condition. In fact, if A is commutative it
was shown by Kasparov that the condition is equivalent to p(f)Fp(g) € & whenever
f and ¢ have disjoint supports — which is to say that F' has ‘only finite rank
propagation’ between open sets with disjoint closures.

Kasparov proved that the name ‘K-homology’ is justified.

(5.1) THEOREM: [15, 16] Let A = C(X) be a commutative C*-algebra. Then
Ki(A) is naturally isomorphic to H;(X;K(C)), the topological K-homology of X .

We assume that X is metrizable here. If X is a ‘bad’ space (not a finite complex)
then H refers to the Steenrod extension of K-homology [14, 9]; if X is only locally
compact and we take A = Cp(X) (the continuous functions vanishing at infinity),
then we get locally finite K-homology.

Kasparov’s definition was reformulated in the language of ‘duality’ by Paschke
[20] and Higson. For a C*-algebra A and ideal J define the algebra ¥(A//J) to
consist of those T' € *B(H) such that

o [T,p(a)) e RVa € A, and
e Tp(j)e AVjeJ

where p is a good (i.e. sufficiently large) representation of A on H.
(5.2) PROPOSITION: (PASCHKE DUALITY THEOREM) There is an isomorphism
K'(A) = K1 (9(A4//0)/®(A//4))

for all separable C*-algebras A.

Let us introduce some notation. For a locally compact space X, write ¥°(X)
for ¥(Cy(X)//0) (we call this the algebra of pseudolocal operators), and ¥ (X))
for U(Co(X)//Co(X)) (the algebra of locally compact operators).

Now let X = M, the universal cover of a compact manifold M as above, and
consider the exact sequence

0— UM - WO (M)T - O M)/ T (M) — 0.

The superscript I' denotes the I'-equivariant part of the algebra. We have incor-
porated into the sequence the fundamental isomorphism

vO(M)" /e (M) = WO (M) /e (M)

which exists because both sides consist of local objects — ‘formal symbols’ in some
sense — and there is no difficulty in lifting a local object from a manifold to its
universal cover.

Note that ¥~'(M) = locally compact operators. Thus, applying the K-theory
functor, we get a boundary map

A: KY (M) = Kip 1 (9°(M) /T (M) — K;(C:T).

This analytic assembly map takes the homology class of the signature operator F’
to the analytic signature.
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6. ON THE NOVIKOV CONJECTURE

We use the above machinery to make a standard reduction of the Novikov
conjecture. Assume BT is compact and let f: M — BT'. Consider the diagram

H,(M;Q) < — K, (M) — K,(C:T)

|

H,(BT;Q) <"— K.(BI)

By the Atiyah-Singer index theorem f,(ch[F]) is Novikov’s higher signature (the
push forward of the Poincaré dual of the L-class). So, if A: K. (BT") — K,(CT)
is injective, the Novikov conjecture is true for I'.
This has led to a number of partial solutions to the Novikov conjecture using
analysis. Methods used have included
e Cyclic cohomology [8, 7, 19] — pair K,(C}T') with H*(BI';R). Need suitable
dense subalgebras — very delicate.

e Kasparov K K -theory [16, 17] — sometimes allows one to construct an inverse
of the assembly map as an ‘analytic generalized transfer’.

e Controlled C*-algebra theory [11] — parallel development to controlled topol-
ogy, see later.

7. THE ANALYTIC STRUCTURE SET

Recall the exact sequence
Kip1(CiT) = K (3°(M)F) - K{(M) - K;(CT)

The analogy with the surgery exact sequence suggests that we should think of

K. (UO(M)T) as the ‘analytic structure set’ of M.
EXAMPLE: Suppose M is spin. Then one has the Dirac operator D and one can
normalize as before to get a homology class

If M has a metric of positive scalar curvature, then by Lichnerowicz there is a
gap in the spectrum of D near zero. Thus we can choose the normalizing function

¢ so that F? = 1 ezactly. Then [F] € K.(¥°(M)T) gives the structure invariant of
the positive scalar curvature metric.

Notice that Lichnerowicz’ vanishing theorem [18] now follows from exactness in
the analytic surgery sequence.

It is harder to give a map from the usual structure set to the analytic one! In
the same way that the positive scalar curvature invariant gives a ‘reason’ for the
Lichnerowicz vanishing theorem, we want an invariant which gives a ‘reason’ for
the homotopy invariance of the symmetric signature.

Here is one possibility. Recall Pedersen’s description (in these proceedings) of
the structure set STOF (M), as the L-theory of the category

B(M x I, M x 1;Z)".
Replacing Z by C we have a category

e whose objects can be completed to Hilbert spaces with C’O(M )-action
e whose morphisms are pseudolocal
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Using Voiculescu’s theorem (which says that all the objects can be embedded
more or less canonically in a single ‘sufficiently large’ representation of Co(1M))
we should get a map from the structure set to K*(¥°(M)T). However, there is
a significant problem: Are the morphisms bounded operators? Similar questions
seem to come up elsewhere if one tries to use analysis to study homeomorphisms,

and one needs some kind of torus trick to resolve them (compare [21]).

8. CONTROLLED C*-ALGEBRAS

A more direct approach can be given [12] to obtaining a map from SPIEF(M).
Let W be a metric space (noncompact) and suppose p: Co(W) — B(H) as usual.
An operator T on H is boundedly controlled if there is R = R(T) such that
p(p)Tp(yp) = 0 whenever distance from Support ¢ to Support ¢ is greater than R.

ExampLE: If D is a Dirac-type operator on complete Riemannian M, and ¢ has
compactly supported Fourier transform, then ¢(D) is boundedly controlled [23].

Define \Ific(W), j = 0,—1, to be the C* subalgebras generated by boundedly
controlled elements. Then from the above one has that a Dirac type operator
on a complete Riemannian manifold W has a ‘boundedly controlled index’ in
K. (T, (7).

In fact all elliptic operators have boundedly controlled indices: in full generality
one has a bounded assembly map A: K (W) — K.(9;'(W)), and

the assembly of the signature operator is the bounded analytic signature.

This bounded analytic signature can also be defined for suitable (‘bounded,
bounded’) Poincaré complexes (bounded in both the analytic and geometric senses).

If W has a compactification X = W UY which is ‘small at infinity’, then there
is a close relation between bounded and continuously controlled C*-algebra theory
[11].

In fact, consider a metrizable pair (X,Y), let W = X \'Y. We can define
continuously controlled C*-algebras, ¥/ _.(W). Then one has

(8.1) ProposITION: [11] We have

o WP (W) =¥0(X) =¥(C(X)//0)

o W HW) =W (C(X)//Co(W))

The result for U_} (W) is an analytic counterpart to the theorem ‘control means
homology at infinity’ (compare [22]).

Now we can define our map from the structure set; for simplicity we work in
the simply connected case. Given a homotopy equivalence f: M' — M, form the
‘double trumpet space’ W, consisting of open cones on M and M’ joined by the
mapping cylinder of f (there is a picture in [24]). This is a ‘bounded, bounded’
Poincaré space with a map to M x R, continuously controlled by M x S°.

Thus we have the analytic signature in K,(¥_}(X x R)). Map this by the
composite

UH(X xR) = U9 (X x R) = UO(X x I) —» ¥O(X)

using the preceding proposition. The image is the desired structure invariant.

The various maps we have defined fit into a diagram relating the geometric and
C* surgery exact sequences [12]. The diagram commutes up to some factors of 2,
arising from the difference between the Dirac and signature operators.
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9. FINAL REMARKS

C*-surgery can produce some information in a wide range of problems.
Surjectivity of C*-assembly maps is related to representation theory.

Some techniques for Novikov are only available in the C*-world.

But We don’t understand well how to do analysis on topological manifolds.
Topologists construct; analysts only obstruct.
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CHARACTERIZATIONS OF INFINITE-DIMENSIONAL
MANIFOLD TUPLES AND THEIR APPLICATIONS TO
HOMEOMORPHISM GROUPS

TATSUHIKO YAGASAKI

Chapter 1. Characterization of (s, S, ,S;)-manifolds

The purpose of this article is to survey tuples of infinite-dimensional topological
manifolds and their application to the homeomorphism groups of manifolds.

1. (s,S1, -+ ,S;)-MANIFOLDS

A topological E-manifold is a space which is locally homeomorphic to a space E.
In this article all spaces are assumed to be separable and metrizable. In infinite-
dimensional topological manifold theory, we are mainly concerned with the following
model spaces F:

(i) (the compact model) the Hilbert cube: @ = [—o0, 00]*.
(i) (the complete linear model) the Hilbert space: £2.

The Hilbert space £2, or more generally any separable Frechet space is homeo-
morphic to s = (—o00,00)* ([1]). If we regard s as a linear space of sequences of
real numbers, then it contains several natural (incomplete) linear subspaces:

(iii) the big sigma: ¥ = {(z,) € s : sup, |z,| < oo} (the subspace of bounded
sequences).

(iv) the small sigma: o = {(z,,) € s : z, = 0 for almost all n} (the subspace of
finite sequences).

The main sources of infinite-dimensional manifolds are various spaces of func-
tions, embeddings and homeomorphisms. In Chapter 2 we shall consider the group
of homeomorphisms of a manifold. When M is a PL-manifold, the homeomorphism
group H (M) contains the subgroup H"" (M) consisting of PL-homeomorphisms of
M, and we can ask the natural question: How is HFY(M) sited in the ambient
group H(M)? This sort of question leads to the following general definition. An
(14 1)-tuple of spaces means a tuple (X, Xy,---, X;) consisting of an ambient space
X and [ subspaces X; D --- D Xj.

1991 Mathematics Subject Classification. 57TN15, 57N20.
Key words and phrases. Infinite-dimensional manifolds, Strong universality, Homeomorphism
groups, Topological manifolds.
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Definition. A tuple (X, X;,---,X;) is said to be an (E, E,--- , E;)-manifold if
for every point z € X there exist an open neighborhood U of z in X and an open
set V of E such that (U,UNXy,---,UNX;) = (V,VNE,---,VNE).

In this article we shall consider the general model tuple of the form: (s, Sy,---,S;),
where S; D - -+ D S; are linear subspaces of s. Some typical examples are:
(v) the pairs: (s, X), (s,0),
(vi) the triples: (s,%,0), (52,5 x 0,07), (5%,X%°,X%), and (5%°,0%,0%°).
where (a) s°°, £°°, 0> are the countable product of s, ¥ and o respectively,
(b) X% = {(zn) € ¥*° : z, = 0 for almost all n}, 03° = {(z,) € 0> : z,, =0 for
almost all n}.
Note that (1) (s*°,0%°) = (s,0), (2) (5, E7°,07°) = (s,%,0) and (3) (s*°, X%, 0%°)
= (5%,0%,0%°). The statements (2) and (3) follow from the characterizations of
manifolds modeled on these triples (§4.2.2, Theorems 3.11 - 3.14). In Section 4.2.1
we shall give a general characterization of (s, Sy, --- ,S;)-manifold under some nat-

ural conditions on the model (s, Sy,---,S5)).

2. BASIC PROPERTIES OF INFINITE-DIMENSIONAL MANIFOLDS

In this section we will list up some fundamental properties of infinite-dimensional
manifolds. We refer to [10, 11, 24] for general references in infinite-dimensional
manifold theory.

2.1. Stability.

Since s is a countable product of the interval (—oo,00), it is directly seen that
s? = 5. Applying this argument locally, it follows that X x s = X for every s-
manifold X (cf.[25]). More generally, it has been shown that if (X, X1, X53) is an
(s, X, 0)-manifold, then (X x s,X; x ¥, X» x 0) = (X, X1, X2) [27]. This property
is one of characteristic properties of infinite-dimensional manifolds. To simplify the

notation we shall use the following terminology:

Definition. We say that (X, Xy,---, X)) is (E, Ey,--- , Ej)-stable if (X x E, X; x
El)"' 7Xl X El) = (Xyle"' 7Xl)-

2.2. Homotopy negligibility.

Definition. A subset B of Y is said to be homotopy negligible (h.n.) in Y if there
exists a homotopy ¢: : ¥ — Y such that ¢9 = id and ¢:(Y) C Y \ B (0 <t <1).
In this case, we say that Y\ B has the homotopy negligible (h.n.) complement in
Y.

When Y is an ANR, B is homotopy negligible in Y iff for every open set U
of Y, the inclusion U \ B C U is a weak homotopy equivalence. Again using the
infinite coordinates of s, we can easily verify that ¢ has the h.n. complement in
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s. Therefore, it follows that if (X, X) is an (s,o)-manifold, then X; has the h.n.

complement in X.

2.3. General position property — Strong universality.

2.3.1. Z-embedding approximation in s-manifolds.

The most basic notion in infinite-dimensional manifolds is the notion of Z-sets:

Definition. A closed set Z of X is said to be a Z-set (a strong Z-set) of X if
for every open cover U of X there is a map f : X — X such that f(X)NZ =0
(df(X)NZ=0) and (f,idx) <U.

Here, for an open cover V of Y, two map f, g : X — Y are said to be V-close
and written as (f,g) < V if for every x € X there exists a V € V with f(z),
g(z) € V. Using the infinite coordinates of s, we can show the following general
position property of s-manifolds:

Facts 2.1. Suppose Y is an s-manifold. Then for every map f: X — Y from a
separable completely metrizable space X and for every open cover U of Y, there
exists a Z-embedding g : X — Y with (f,g) < U. Furthermore, if K is a closed
subset of X and f|lx : K — Y is a Z-embedding, then we can take g so that

9k = flk.

2.3.2. Strong universality.

To treat various incomplete submanifolds of s-manifolds (o-manifolds, ¥-mani-
folds, etc.), we need to restrict the class of domain X in the above statement. Let

C be a class of spaces.

Definition. (M. Bestvina - J. Mogilski [5], et. al.)

A space Y is said to be strongly C-universal if for every X € C, every closed subset
K of X, every map f : X — Y such that f|g : K = Y is a Z-embedding and
for every open cover U of Y, there exists a Z-embedding g : X — Y such that
9lk = flk and (f,g) <U.

In some cases, the above embedding approximation conditions can be replaced

by the following disjoint approximation conditions.

Definition. We say that a space X has the strong discrete approximation property
(or the disjoint discrete cells property) if for every map f : @;>1Q; — X of a
countable disjoint union of Hilbert cubes into X and for every open cover U of X
there exists a map g : ®;>1 Q; — X such that (f,g9) < U and {g(Q;)}; is discrete
in X.
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2.3.3. Strong universality of tuples. (R. Cauty [6], J. Baars-H. Gladdines-J. van
Mill [3], et. al.)

A map of tuples f: (X, Xy, -+, X)) = (Y, Y1,---,Y)) is said to be layer preserv-
ing if f(X;1\X;) CY;1\Y;foreveryi=1,---,l+1, where Xy = X, X;;1 = 0.
Let M be a class of (I + 1)-tuples of spaces.

Definition. An (I 4+ 1)-tuple (Y,Y7,---,Y]) is said to be strongly M-universal if
it satisfies the following condition:

(x) for every tuple (X, Xy,---X;) € M, every closed subset K of X, every
map f : X = Y such that flg : (K, KNXy,---KNX;) — (Y,Y1,---,Y)) is a
layer preserving Z-embedding, and every open cover U of Y, there exists a layer
preserving Z-embedding g : (X, X1,--- X;) = (Y, Y1, -+ ,Y]) such that g|x = f|x
and (f,g9) <U.

In Section 4.2.1 we shall see that the stability + h.n. complement implies the

strong universality.
2.4. Uniqueness properties of absorbing sets.

The notion of h.n. complement can be regarded as a homotopical absorbing
property of a subspace in an ambient space. The notion of strong universality of
tuples also can be regarded as a sort of absorption property combined with the
general position property. Roughly speaking, for a class M, an M-absorbing set of
an s-manifold X is a subspace A of X such that (i) A has an absorption property in
X for the class M, (ii) A has a general position property for M and (iii) A “belongs”
to the class M. The notion of strong universality of tuples realizes the conditions
(i) and (ii) simultaneously. The condition (iii) usually appears in the form: A4 is a
countable union of Z-sets of A which belong to M. The most important property
of absorbing sets is the uniqueness property. This property will play a key role in
the characterizations of tuples of infinite-dimensional manifolds.

2.4.1. Capsets and fd capsets. (R.D. Anderson and T.A. Chapman [9])

The most basic absorbing sets are capsets and fd capsets. A space is said to be
o-compact (o-fd-compact) if it is a countable union of compact (finite-dimensional

compact) subsets.

Definition. Suppose X is a Q-manifold or an s-manifold. A subset A of X is said
to be a (fd) capset of X if A is a union of (fd) compact Z-sets A, (n > 1) which
satisfy the following condition: for every € > 0, every (fd) compact subset K of X
and every n > 1 there exist an m > n and an embedding h : K — A,, such that
(i) d(h,idk) < € and (ii) h =1id on A, N K.

For example ¥ is a capset of s and o is fd capset of s. The (fd) capsets have the
following uniqueness property:
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Theorem 2.1. If A and B are (fd) capsets of X, then for every open cover U of
X there exists a homeomorphism f : (X, A) = (X, B) with (f,idx) <U.

2.4.2. Absorbing sets in s-manifolds.

The notion of (fd) capsets works only for the class of o-(fd-)compact subsets. To
treat other classes of subsets we need to extend this notion.

Definition. A class C of spaces is said to be

(i) topological if D = C € C implies D € C.

(ii) additive if C' € C whenever C = AU B, A and B are closed subsets of C, and
A, BecC.

(iii) closed hereditary if D € C whenever D is a closed subset of a space C € C.

[1] The non-ambient case: (M. Bestvina - J. Mogilski [5])

Let C be a class of spaces.

Definition. A subset A of an s-manifold X is said to be a C-absorbing set of X if
(i) A has the h.n. complement in X,

(ii) A is strongly C-universal,

(ili) A =U%2, A, where each A, is a Z-set of A and A,, € C.

Theorem 2.2. Suppose a class C is topological, additive and closed hereditary. If
A and B are two C-absorbing sets in an s-manifold X, then every open cover U
of X there exists a homeomorphism h : X — Y which is U-close to the inclusion
ACX.

In general, h cannot be extended to any ambient homeomorphism of X.

[2] The ambient case: (J. Baars-H. Gladdines-J. van Mill [3], R. Cauty [6], T.
Yagasaki [32], et.al.)

Let M be a class of (I + 1)-tuples. We assume that M is topological, additive
and closed hereditary. We consider the following condition (I):

The condition (I)
(I-1) (X, X4,---,X;) is strongly M-universal,
(I-2) there exist Z-sets Z,, (n > 1) of X such that
(i) X1 CU,Z, and (ii) (Zn,Z, N X1, -, Z,NX) EM (n>1).

In this case we have ambient homeomorphisms:

Theorem 2.3. ([6, 32]) Suppose E is an s-manifold and (14 1)-tuples (E, Xy, -+,
X;) and (E,Y1,---, Y1) satisfy the condition (I). Then for any open cover U of E
there exists a homeomorphism f : (E,Xy,---, X)) = (E,Y1,---,Y]) with (f,idg) <
Uu.
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2.5. Homotopy invariance.

Classification of infinite-dimensional manifolds is rather simple. Q-manifolds are
classified by simple homotopy equivalence (T.A. Chapman [10]) and s-manifolds
are classified by homotopy equivalence (D. W. Henderson and R. M. Schori [18]).

Theorem 2.4. Suppose X and Y are s-manifolds. Then X =Y iff X ~ Y (ho-

motopy equivalence).

3. CHARACTERIZATION OF INFINITE-DIMENSIONAL MANIFOLDS IN TERM OF
GENERAL POSITION PROPERTY AND STABILITY

3.1. Edwards’ program.

There is a general method, called as Edwards’ program, of detecting topological
E-manifolds. For infinite-dimensional topological manifolds, it takes the following
form: Let X be an ANR.

(i) Construct a fine homotopy equivalence from an E-manifold to the target X.
(ii) Show that f can be approximated by homeomorphisms under some general
position property of X.

This program yields basic characterizations of (-manifolds, s-manifolds and
other incomplete manifolds.

3.2. The complete cases:

(1) @-manifolds:

Theorem 3.1. ([10]) A space X is an Q-manifold iff
(i) X is a locally compact separable metrizable ANR
(ii) X has the disjoint cells property.

(2) s-manifolds:

Theorem 3.2. ([30]) A space X is an s-manifold iff
(i) X is a separable completely metrizable ANR
(ii) X has the strong discrete approzimation property.

Since the @Q-stability implies the disjoint cells property and the s-stability implies
the strong discrete approximation property, we can replace the condition (ii) by

(ii") X is Q-stable (respectively s-stable)

3.3. The incomplete cases:

M. Bestvina-J. Mogilski [5] has shown that in the incomplete case the above
program is formulated in the following form:
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Theorem 3.3. (M. Bestvina-J. Mogilski [5])

Suppose C is a class of spaces which is topological, additive and closed hereditary.
(i) For every ANR X there exists an s-manifold M such that for every C-absorbing
set Q) in M there exists a fine homotopy equivalence f : Q2 — X.

(ii) Suppose (a) X is a strongly C-universal ANR and (b) X = U, X;, where
each X; is a strong Z-set in X and X; € C. Then every fine homotopy equivalence
f:Q = X from any C-absorbing set Q in an s-manifold can be approzimated by
homeomorphisms.

Example: Y-manifolds and o-manifolds
Let C. (Cyqc) denote the class of all (finite dimensional) compacta.

Theorem 3.4. (M. Bestvina-J. Mogilski [5, 23])

A space X is a X-manifold (o-manifold) iff

(i) X is a separable ANR and o-compact (o-fd compact),
(ii) X is strongly C.-universal (strongly Cqc-universal),
(ili) X = U2, X,,, where each Xy, is a strong Z-set in X .

The condition (iii) can be replaced by
(iii") X satisfies the strong discrete approximation property.

In [28] H. Toruriczyk has obtained a characterization of o-manifolds in term of
stability.
Theorem 3.5. ([29])

X is a o-manifold iff X is (i) a separable ANR, (ii) o-fd-compact and (iii) o-
stable.

4. CHARACTERIZATIONS OF (s, Si,---,S;)-MANIFOLDS

In this section we will investigate the problem of detecting (s, Si,--- ,S;)-mani-
folds. Since we have obtained a characterization of s-manifolds (Theorem 3.2),
the remaining problem is how to compare a tuple (X, Xy, -+, X)) locally with
(s,S1, -+ ,S5;) when X is an s-manifold. For this purpose we will use the uniqueness
property of absorbing sets in s-manifolds (§2.4). Since s-manifolds are homotopy
invariant (Theorem 2.4), at the same time we can show the homotopy invariance
of (s,S1, - ,.S;)-manifolds.

4.1. Characterizations of manifold tuples in term of the absorbing sets.
4.1.1. Characterizations in term of capsets and fd-capsets.

Theorem 4.1. (T.A. Chapman [9])
(1) (X, X1) is an (s, X)-manifold ((s,o)-manifold) iff
(i) X is an s-manifold,

(ii) Xy is a capset (a fd capset).
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(2) Suppose (X, X1) and (Y,Y1) are (s, X)-manifolds ( (s,o)-manifolds ). Then
(X, X)) iff X ~Y.

Theorem 4.2. (K. Sakai-R.Y. Wong [27])
(1) (X, X1, X5) is an (s, X, 0)-manifold iff
(i) X is an s-manifold,

(ii) (X1, X2) is a (cap, fd cap)-pair in X.

(2) Suppose (X, X1, X2) and (Y,Y1,Y3) are (s, X, 0)-manifolds. Then (X, X1, Xo) =
(V,Y1,Ys) iff X ~ Y.

4.1.2. Characterizations in term of strong universality.

We assume that (s, Sy, -+ ,S;) satisfies the condition (I) in Section 2.4.2.[2].

Theorem 4.3. (1) (X, Xy,---,X;) is an (s,S1, -+ ,S;)-manifold iff

(i) X is an s-manifold,

(i) (X, Xy, -+, X)) satisfies the condition (I).

(2) Suppose (X, X1,---,X;) and (Y, Y1,---,Y])) are (s,S1,- -+, S;)-manifolds. Then
(X, X1, X)) = (Y, Y1, V) iff X~ Y.

4.2. Characterization in term of stability and homotopy negligible com-

plement.
4.2.1. General characterization theorem.

We can show that the stability + h.n. complement implies the strong univer-
sality. This leads to a characterization based upon the stability condition. We
consider the following condition (II).

The condition (II):

(II-1) S; is contained in a countable union of Z-sets of s,

(II-2) S; has the h.n. complement in s,

(I1-3) (Infinite coordinates) There exists a sequence of disjoint infinite subsets 4,, C
N (n > 1) such that for each i = 1,--- ,l and n > 1, (a) S; = 74, (S:) X ™ 4, (S:)
and (b) (ma, (s),7a, (S1),-+, ma, (S1)) = (s,S1, -+ ,S).

Here for a subset A of N, 4 : s = [[,c4 (—00,00) denotes the projection onto the
A-factor of s.

Assumption. We assume that (s, S1,---,S;) satisfies the condition (II):

Notation. Let M = M(s, S1,---,S;) denote the class of (I+1)-tuples (X, Xy, -+,
X;) which admits a layer preserving closed embedding h : (X, X;,---,X;) —
(3)517 T 7Sl)

Theorem 4.4. (T.Yagasaki [32], R.Cauty, et. al.)
Suppose (Y,Y1,---,Y1) satisfies the following conditions:
(i) Y is a completely metrizable ANR,
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(ii) Y, has the h.n. complement in' Y
(iii) (Y, Y1,---,Y)) is (s,S1, -+ ,S;)-stable.
Then (Y,Y1,---,Y)) is strongly M(s,S1,--- ,Si)-universal.

From Theorems 4.3, 4.4 we have:

Theorem 4.5. (1) (X, Xy,---,X;) is an (s, 51, -, S;)-manifold iff
(i) X is a completely metrizable ANR,
(i) (X, X1, - ,Xp) € M(s,51,--+,95)),

(iii) X; has the h.n. complement in X,

(iv) (X, Xy, -+ ,Xy) is (s, 51, -, S;)-stable.

(2) Suppose (X, X1,---,X;) and (Y,Y1,---,Y)) are (s,S1,- -+, S;)-manifolds. Then
(X, Xy,--, X)) =Y,)Y,-- V) iff X =Y.

4.2.2. Ezxamples.

To apply Theorem 4.5 we must distinguish the class M(s, Sy, ,S;). This can
be done for the triples: (s,%,0), (s*,5 X 0,07), (s°,0%°,0%), and (5>, 5>, TF).

This leads to the practical characterizations of manifolds modeled on these triples.

[1] (5,2, 0):
M(s,%, o) = the class of triples (X, X, X») such that
(a) X is completely metrizable, (b) X7 is o-compact, and (c) X» is o-fd-compact.

Theorem 4.6.
(X, X1,X>) is an (s, X, o)-manifold iff
(i) X is a separable completely metrizable ANR,
(ii) X, is o-compact, X5 is o-fd-compact,
(iii) X2 has the h.n. complement in X,
) (X, X1, X5) is (s,%, 0)-stable.

(iv
[2] (s%,s x 0,0?%):
M(s%, s x 0,0%) = the class of triples (X, X1, X») such that
(a) X is completely metrizable, (b) X; is F, in X, (¢) X, is o-fd-compact.

Theorem 4.7.
(X, X1, X>) is an (52,5 x 0,02)-manifold iff

(i) X is a separable completely metrizable ANR,
(ii) X is an F,-subset of X, Xy is o-fd-compact,
(iii) Xy has the h.n. complement in X,
(iv) (X, X1, X>2) is (s%, s x 0,0%)-stable.

[3] (5%,0%,0%°):
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M(s"o,a‘x’,a;ﬁo) = the class of triples (X, X1, X3) such that

(a) X is completely metrizable, (b) X is F,s in X, (¢) X is o-fd-compact.

Theorem 4.8.
(X, X1, X2) is an (s°°,0°°, 0%°)-manifold iff
(i) X is a separable completely metrizable ANR,
(i)
(iii) X2 has the h.n. complement in X
(iv) (X, X1, X>) is (s%°,0°,0%°)-stable.

Xy is an Fy5-subset of X, Xo is o-fd-compact,

[4] (SOO,ZOO,ZJOP):

M(s%°, 5, E;O) = the class of triples (X, X1, X5) such that
(a) X is completely metrizable, (b) X is F,s in X, (¢) X2 is o-compact.

Theorem 4.9.
(X, X1, Xo) is an (5%, X%, X9°)-manifold iff

(i) X is a separable completely metrizable ANR,
(ii) X is an F,s-subset of X, X is o-compact,
(iii) Xo has the h.n. complement in X,

(iv) (X, X1, Xo) 15 (5%°,5°, £7°)-stable.

In the next chapter these characterizations will be applied to determine the local
topological types of some triples of homeomorphism groups of manifolds.

Chapter 2. Applications to homeomorphism groups of manifolds

5. MAIN PROBLEMS

Notation.

(i) H(X) denotes the homeomorphism group of a space of X with the compact-open
topology.

(ii) When X has a fixed metric, ¥ (X) denotes the subgroup of locally LIP-
homeomorphisms of X.

(iii) When X is a polyhedron, H""(X) denotes the subgroup of PL-homeomorphisms
of X.

We shall consider the following problem:

Problem.
Determine the local and global topological types of groups: H(M), H¥ (M),
HPL (M), ete. and tuples: (H (M), HP¥(M)), (H(M), HY'Y (M), HPV(M)), ete.
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In the analogy with diffeomorphism groups, when X is a topological manifold,
we can expect that these groups are topological manifold modeled on some typical
infinite-dimensional spaces. In fact, R.D. Anderson showed that:

Facts 5.1. (]2]) :
(i) M (R) = 5.
(ii) If G is a finite graph, then H(G) is an s-manifold.

After this result it was conjectured that
Conjecture. H(M) is an s-manifold for any compact manifold M.

This basic conjecture is still open for n > 3 and this imposes a large restriction
to our work since most results in Chapter 1 works only when ambient spaces are
s-manifolds. Thus in the present situation, in order to obtain some results in
dimension n > 3, we must assume that H (M) is an s-manifold. On the other hand
in dimension 1 or 2 we can obtain concrete results due to the following fact:

Theorem 5.1. (R. Luke - W.K. Mason [22], W. Jakobsche [19])
If X is a 1 or 2-dimensional compact polyhedron, then H(X) is an s-manifold.

Below we shall follow the next conventions: For a pair (X, 4), let H(X,A) ={f €
H(X) : f(A) = A}. When (X, A) is a polyhedral pair, let HFV (X, A) = H(X, A)N
HPL(X) and H(X;PL(A)) = {f € H(X,A) : fis PL on A}. The superscript “c”
denotes “compact supports”, the subscript “4+” means “orientation preserving”,
and “0” denotes “the identity connected components” of the corresponding groups.
An Euclidean PL-manifold means a PL-manifold which is a subpolyhedron of some
Euclidean space R and has the standard metric induced from R".

6. STABILITY PROPERTIES OF HOMEOMORPHISM GROUPS OF POLYHEDRA

First we shall summarize the stability properties of various triples of homeo-
morphism groups of polyhedra. These properties will be used to determine the
corresponding model spaces.

(1) Basic cases: (R. Geoghegan [14, 15], J. Keesling-D. Wilson [20, 21], K. Sakai-
R.Y. Wong [26])

(i) If X is a topological manifold, then H(X) is s-stable.

(ii) If X is a locally compact polyhedron, then the pair (H(X), HFP*(X)) is (s,0)-
stable.

(iii) If X is a Euclidean polyhedron with the standard metric, then the triple
(H(X), HMP(X), HPL(X)) is (s, 3, 0)-stable.

(iv) (T. Yagasaki [32]) If (X, K) is a locally compact polyhedral pair such that
dimK > 1 and dim (X \ K) > 1, then (H(X,K), H(X;PL(K)),H* (X, K)) is
(s?,s x 0,0?)-stable.
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(2) Noncompact cases: (T. Yagasaki [32])

(i) If X is a noncompact, locally compact polyhedron, then the triple (H(X), HF*(X),
HPLC(X)) is (s%,0°,0%°)-stable.

(ii) If X is a noncompact Euclidean polyhedron with the standard metric, then the
triple (H(X), HMP(X), H"P¢(X)) is (5°°, 2%, B7°)-stable.

We can also consider the spaces of embeddings. Suppose X and Y are Euclidean
polyhedra. Let £(X,Y) denote the spaces of embeddings of X into Y with the
compact-open topology, and let E“F(X,Y) and £PV(X,Y) denote the subspaces
of locally Lipschitz embeddings and PL-embeddings respectively.

(3) Embedding case: (K. Sakai-R.Y. Wong [26], cf. [32])
The triple (£(X,Y),EMP(X,Y), EFY(X,Y)) is (s, T, 0)-stable.

These stability property are verified by using the Morse length of the image of
a fixed segment under the homeomorphisms.

7. Tue TRIPLE (H(M), HMF(X), HPL(X))
[1] H(M)
Suppose M™ is a compact n-dimensional manifold. Since H(M) is s-stable, by
the characterization of s-manifold (Theorem 3.2), H(M) is an s-manifold iff it is

an ANR. Here we face with the difficulty of detecting infinite-dimensional ANR’s.
A.V. Cernavskii [8] and R.D. Edwards - R.C. Kirby [12] have shown:

Theorem 7.1. (Local contractibility): H(M) is locally contractible.

[2] HPH (M)

Suppose M™ is a compact n-dimensional PL-manifold.

Basic Facts.

(1) (J. Keesling-D. Wilson [21]) (H(M), HFE(M)) is (s,o)-stable.

(2) (D. B. Gauld [13]) HFY(M) is locally contractible.

(3) (R. Geoghegan [15]) HFL(M) is o-fd-compact.

(4) (W.E. Haver [17]) A countable dimensional metric space is an ANR iff it is

locally contractible.

From (2),(3),(4) it follows that HF"(M) is always an ANR. Hence by the char-
acterization of o-manifold (Theorem 3.5), we have:

Main Theorem. (J. Keesling-D. Wilson [21]) HFY(M) is an o-manifold.

Let H(M)* = cl HFE(M). Consider the condition:
(x) n#4and OM =0 for n = 5.
Under this condition H(M)* is the union of some components of H(M).
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Theorem 7.2. (R. Geoghegan, W. E. Haver [16])
If H(X) is an s-manifold and M satisfies (x), then (H(X)*, H V(X)) is an (s,0)-
manifold.

[3] HMP (M) (K. Sakai-R.Y. Wong [26])
Suppose M™ is a compact n-dimensional Euclidean PL-manifold.
Basic Facts. ([26])
(1) (H(M),HMP (M) is (s, X)-stable.
(2) HMP (M) is o-compact.
Theorem 7.3. ([26])
If H(X) is an s-manifold and M satisfies (%), then (H(X), H"'F (X)) is an (s,%)-
manifold.
[4] The triple (H(X), HMP(X), HMP(M)) (T. Yagasaki [32])
Suppose M™ is a compact n-dimensional Euclidean PL-manifold.

Basic Facts.

(1) (K. Sakai-R. Y. Wong [26]) (H (M), HVP (M), HP¥(M)) is (s, ¥, )-stable.

Let HM'P(X)* = HMP(X)N clHPY(M). From Theorem 7.2, Basic Facts and the
characterization of (s, ¥, 0)-manifolds (Theorem 4.6) it follows that:

Theorem 7.4. ([32])

(1) If H(X) is an s-manifold and M satisfies (), then (H(X)*, H'P (X)*, HPL (X))
is an (s,X, 0)-manifold.

(2) If X is a 1 or 2-dimensional compact Euclidean polyhedron with the standard
metric, then (H(X), HYP (X), HPY (X)) is (s, , o)-manifold.

8. OTHER TRIPLES
[1] The triple (H(X, K), H(X;PL(K)), HPY (X, K)) (T. Yagasaki [32])
Theorem 8.1.
(i) Suppose M™ is a compact PL n-manifold with OM # 0. Ifn > 2, n # 4,5
and H(M) is an s-manifold, then (H(M), H(M;PL(OM)), HFE(M)) is an (s%, s x
o,0?)-manifold.
(i) Suppose (X, K) is a compact polyhedral pair such that dim X = 1,2, dim K > 1
and dim (X \ K) > 1. Then (H(X, K),H(X;PL(K)),H (X, K)) is an (s, s x
o,0%)-manifold.
[2] The triples (H(X), HFL(X), HPL¢(X)) and (H(X), HUP (X)), HUP¢(X)) (T.
Yagasaki [33])
(1) 1-dim. case: (H(R), HE™ (R), HP™¢(R)) (5,0%,0%).
(2) 2-dim. case:
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Theorem 8.2. If M is a noncompact connected PL 2-manifold, then (H(M)o,
HYL(M)o, HELC(M)o) is an (s%,0°°, 0%°)-manifold.

Corollary 8.1.
(i) If M 2 R2,S' xR, St x [0,1), P2R\ 1pt, then (H(M)o, HFE(M)o, HFC(M)o) =
St x (8%,0%,0%)

(ii) In the remaining cases, (H(M)o, HFV(M)o, HPLC(M)g) =2 (8%,0%,0%)

(3) There exist a (LIP, ¥)-version of the (PL, o)-case.

[3] The group of quasiconformal (QC-)homeomorphisms of a Riemann surface (T.
Yagasaki [34])

Suppose M is a connected Riemann surface. Let H2C(M) denote the subgroup
of QC-homeomorphisms of M.

Theorem 8.3.
(i) If M is compact, then (Hy (M), HRC(M)) is an (s, X)-manifold.
(ii) If M is noncompact, then (H(M)o, HRC(M)o) is an (s, X)-manifold

[4] The space of embeddings (T. Yagasaki [33])
Suppose M is a Euclidean PL 2-manifold.

Theorem 8.4. If X is a compact subpolyhedron of M, then (£(X, M), Y'Y (X, M),
EPL(X, M) is an (s, 3, 0)-manifold.

Example. The case X =1 =0, 1]:
(E(I, M), M7 (1, M), 7M1, M) = S(TM) x (s,,0)
where S(T' M) is the sphere bundle of the tangent bundle of M with respect to some

Riemannian metric.
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