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Foreword

As the second of a conference series in mathematics� Josai University sponsored

the Conference on Surgery and Geometric Topology during the week of September

�� � ��� ���	� The scienti�c program consisted of �� lectures� listed below� and there

was an excursion to Takaragawa� Gunma on the ��st�

This volume collects papers by participants� as well as some of the abstracts pre�

pared by the lecturers for the conference� The articles are also available electronically

on WWW from�

http���math�josai�ac�jp��yamasaki�conference�html

at least for several years�

We would like to thank Josai University� and Grant�in�Aid for Scienti�c Research


A�
�� of the Ministry of Education� Science� Sports and Culture of Japan� for their

generous �nancial support� Thanks are also due to the university sta� for their various

support� to the lecturers and to the participants of the conference�
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Sakado� Japan�
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COHOMOLOGY AND EULER CHARACTERISTICS

OF COXETER GROUPS

TOSHIYUKI AKITA

�� Introduction

Coxeter groups are familiar objects in many branches of mathematics� The
connections with semisimple Lie theory have been a major motivation for the study
of Coxeter groups� 
Crystallographic� Coxeter groups are involved in Kac�Moody
Lie algebras� which generalize the entire theory of semisimple Lie algebras� Coxeter
groups of �nite order are known to be �nite re�ection groups� which appear in
invariant theory� Coxeter groups also arise as the transformation groups generated
by re�ections on manifolds 
in a suitable sense�� Finally� Coxeter groups are classical
objects in combinatorial group theory�
In this paper� we discuss the cohomology and the Euler characteristics of 
�nitely

generated� Coxeter groups� Our emphasis is on the r�ole of the parabolic subgroups
of �nite order in both the Euler characteristics and the cohomology of Coxeter
groups�
The Euler characteristic is de�ned for groups satisfying a suitable cohomological

�niteness condition� The de�nition is motivated by topology� but it has applications
to group theory as well� The study of Euler characteristics of Coxeter groups was
initiated by J��P� Serre ����� who obtained the formulae for the Euler characteristics
of Coxeter groups� as well as the relation between the Euler characteristics and the
Poincar�e series of Coxeter groups� The formulae for the Euler characteristics of
Coxeter groups were simpli�ed by I� M� Chiswell ���� From his result� one knows
that the Euler characteristics of Coxeter groups can be computed in terms of the
orders of parabolic subgroups of �nite order�
On the other hand� for a Coxeter group W � the family of parabolic subgroups of

�nite order forms a �nite simplicial complex F
W �� In general� given a simplicial
complex K� the Euler characteristics of Coxeter groups W with F
W � � K are
bounded� but are not unique� However� it follows from the result of M� W� Davis
that e
W � � � if F
W � is a generalized homology �n�sphere 
Theorem ��� Inspired
by this result� the author investigated the relation between the Euler characteris�
tics of Coxeter groups W and the simplicial complexes F
W �� and obtained the
following results�

�� If F
W � is a PL�triangulation of some closed �n�manifold M � then

e
W � � �� �
M�

�
�

�� If F
W � is a connected graph� then e
W � � �
F
W ��� where �
�� denotes
the genus of the graph�

�



� TOSHIYUKI AKITA

See Theorem � and �� Conversely� given a PL�triangulation K of a closed �n�
manifoldM � we obtain an equation for the number of i�simplices of K 
� � i � �n�
by considering a Coxeter group W with K � F
W � 
Theorem 	 and its corollary��
The family of parabolic subgroups of �nite order is also important in understand�

ing the cohomology of a Coxeter group W � For instance� let k be a commutative
ring with unity� � a ring homomorphism

� � H�
W�k��
Y
WF

H�
WF � k��

induced by restriction maps� where WF ranges all the parabolic subgroups of �nite
order� Then u � ker � is nilpotent and cannot be detected by any �nite subgroup
of W � And we can say more about the homomorphism ��
We remark that� according to the results of D� Quillen ���� and K� S� Brown

���� the family of elementary abelian p�subgroups also plays an important r�ole�
However� it is p�local� The r�ole of the parabolic subgroups of �nite order is not
p�local� a phenomenon in which I am very interested�

Notation �� For a �nite set X � the cardinality of X is denoted by jX j� In partic�
ular� for a �nite group G� the order of G is denoted by jGj�

�� Definitions and Examples

In this section� we give the de�nition and elementary examples of Coxeter groups�

De�nition ���� Let S be a �nite set� Letm � S�S � N�f	g be a map satisfying
the following three conditions�

�� m
s� t� � m
t� s� for all s� t � S�
�� m
s� s� � � for all s � S�
�� � � m
s� t� � 	 for all distinct s� t � S�

The group W de�ned by the set of generators S and the fundamental relation

s 
 t�m�s�t� � � 
m
s� t� ��	� is called a Coxeter group� Some authors permit S to
be an in�nite set�

Remark �
 We frequently write 
W�S� or 
W�S�m� instead of W to emphasize S
and m� The pair 
W�S� is sometimes called a Coxeter system in the literature�

Remark �
 Each generator s � S is an element of order � in W � Hence W is
generated by involutions�

Example ���� Let 
W�S� be a Coxeter group with S � fs� tg� Ifm
s� t� �	� then
W is isomorphic to D�m�s�t�� the dihedral group of order �m
s� t�� If m
s� t� � 	�
then W is isomorphic to Z��Z�Z��Z� the free product of two copies of the cyclic
group of order ��

Example ���� A �nite re�ection group is a �nite subgroup of the orthogonal group
O
n� 
for some n� generated by orthogonal re�ections in the Euclidean space� A
�nite re�ection group is known to be a Coxeter group� i�e�� it admits a presentation
of Coxeter groups� Conversely� any Coxeter group of �nite order can be realized as
a �nite re�ection group� Hence one can identify Coxeter groups of �nite order with
�nite re�ection groups in this way�
For example� an elementary abelian ��group 
Z��Z�n and a symmetric group

�n can be regarded as Coxeter groups� Finite re�ection groups are completely
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classi�ed and their list is short� By using the list� it is easy to determine if a given
Coxeter group is of �nite order� See ���� ���� for details�

Example ���� Coxeter groups are closed under free products and direct products�

Example ��	 
Full triangular group�� Let p� q� r be integers greater than �� The
group T �
p� q� r� de�ned by the presentation

T �
p� q� r� �� s�� s�� s�js�i � 
s�s��p � 
s�s��q � 
s�s��r � � �
is called the full triangular group� It is obvious from the presentation that T �
p� q� r�
is a Coxeter group� The group T �
p� q� r� is known to be of �nite order if and only
if

�

p
�
�

q
�
�

r
� ��

The triangular group

T 
p� q� r� �� u� vjup � vq � 
uv�r � � �

is a subgroup of T �
p� q� r� of index � 
via u � s�s� and v � s�s���
The full triangular group T �
p� q� r� can be realized as a planar discontinuous

group acting on a sphere S� 
if ��p� ��q � ��r � ��� on the Euclidean plane E�


if ��p� ��q � ��r � ��� or on the hyperbolic plane H� 
if ��p� ��q � ��r � ���
The orbit space of the action of T �
p� q� r� on S�� E�� or H� is homeomorphic to a
disk D��

Example ��
� Given integers p� q� r greater than �� let O
p� q� r� be the orbifold
de�ned as follows� 
See ���� for the notion of orbifolds�� The underlying space of
O is a standard ��simplex ��� Vertices v	� v�� and v� of �

� are corner re�ection
points of order �p� �q� and �r� The points in the interior of edges are re�ection
points� while the points in the interior of the whole �� are manifold points�
The orbifold O
p� q� r� is uniformable 
i�e�� it has a manifold cover�� Indeed� the

orbifold O
p� q� r� comes from the orbit space of the action of the full triangular
group T �
p� q� r� on one of S�� E�� or H� mentioned in the bottom of Example ����
The orbifold fundamental group 	orb� 
O
p� q� r�� is isomorphic to T �
p� q� r��
Let O�
p� q� r� be the orbifold� whose underlying space is a ��sphere S�� with

three cone points of order p� q� and r� Then there is a double orbifold covering

O�
p� q� r�� O
p� q� r��

The orbifold fundamental group 	orb� 
O�
p� q� r�� is isomorphic to the triangular
group T 
p� q� r�� See ���� and ���� for the details�

Example ���� Example ��� and ��� are special cases of re�ection orbifolds and
groups generated by re�ections on a manifold� both of which are closely related to
Coxeter groups� See �
� and ��	� for the general theory�

�� Parabolic Subgroups

Let 
W�S�m� be a Coxeter group� For a subset T 
 S� de�ne WT to be the
subgroup of W generated by the elements of T 
i�e� WT �� T �� W �� In
particular� W� � f�g and WS � W � WT is called a parabolic subgroup 
or special
subgroup� of W � The subgroup WT is known to be a Coxeter group� Indeed�

WT � T�mjT � T � is a Coxeter group� It is obvious from the de�nition that the
number of parabolic subgroups of a Coxeter group is �nite�
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Example ���� Parabolic subgroups of the full triangular group T �
p� q� r� consist
of 
 subgroups� Namely�

�� The trivial subgroup f�g�
�� Three copies of a cyclic group of order � 
generated by single element��
�� Dihedral groups of order �p� �q� and �r 
generated by two distinct elements��
�� T �
p� q� r� itself�

The following observation asserts that the parabolic subgroups of �nite order are
maximal among the subgroups of �nite order in a Coxeter group�

Proposition � 
��� Lemma ������ Let W be a Coxeter group and H its �nite sub�
group
 Then there is a parabolic subgroup WF of �nite order and an element w �W
such that H 
 wWw��


�� Euler characteristics

In this section� we introduce the Euler characteristics of groups� First we intro�
duce the class of groups for which the Euler characteristic is de�ned�

Notation �� Let � be a group� Then Z� is the integral group ring of �� We regard
Z as a Z��module with trivial ��action�

De�nition 	��� A group � is said to be of type FL if Z admits a free resolution

over Z�� of �nite type� In other words� there is an exact sequence

�� Fn � Fn�� � 
 
 
 � F� � F	 � Z� ��

of �nite length such that each Fi is a �nitely generated free Z��module�

Remark 

 If � is a group of type FL� then cd� �	 and hence � is torsion�free�

De�nition 	��� A group � is said to be of type VFL if some subgroup of �nite
index is of type FL�

Now we de�ne the Euler characteristic of a group� Let � be a group of type FL�
and let

�� Fn � Fn�� � 
 
 
 � F� � F	 � Z� ��

b a free resolution of �nite length� The Euler characteristic e
�� of � is de�ned by

e
�� �
X
i


���irankZ�Fi�

Let � be a group of type VFL� Then its Euler characteristic e
�� is de�ned by

e
�� �
e
���


� � ���
� Q�

where �� is a subgroup of �nite index which is of type FL� The rational number
e
�� is independent of the choice of a subgroup ��� and we have

Proposition �� Let � be a group and �� a subgroup of �nite index
 Then � is of
type VFL if and only if �� is of type VFL
 If � is of type VFL� then

e
��� � 
� � ��� 
 e
���
We give some examples of groups of type VFL and their Euler characteristics�
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Example 	��� Any �nite group � is of type VFL� Its Euler characteristic is given
by

e
�� �
�

j�j �


Take �� to be a trivial group f�g��
Example 	��� Let K be a �nite aspherical polyhedron� Then its fundamental
group 	 � 	�
K� is of type FL� and

e
	� � �
K��

where �
K� is the Euler characteristic of K� The fact that the Euler characteristic
of a �nite aspherical polyhedron depends only on its fundamental group is the
motivation of the de�nition of Euler characteristics of groups�
For instance� the circle S� is aspherical and 	�
S

�� �� Z� hence
e
Z� � �
S�� � ��

Let �g be a closed orientable surface of genus g � �� Then �g is aspherical� proving

e
	�
�g�� � �
�g� � �� �g�
Example 	��� If ����� are groups of type VFL� then their free product �� � ��
and their direct product �� � �� are of type VFL� and

e
�� � ��� � e
��� � e
���� ��
e
�� � ��� � e
��� 
 e
����

As a consequence� a free group Fn and a free abelian group Zn are of type VFL 
in
fact type FL�� and we have

e
Fn� � �� n�

e
Zn� � ��

where Fn is the free group of rank n�

Example 	�	� The group SL
��Z� has a subgroup of index �� which is isomorphic
to the free group of rank �� Hence SL
��Z� is of type VFL� Using Example ��� and
���� one can compute the Euler characteristic of SL
��Z� as

e
SL
��Z�� �
e
F��

��
� � �

��
�

Example 	�
� The Euler characteristics of groups are closely related to the Euler
characteristics of orbifolds� 
See ���� or ���� for the de�nition of the orbifold Euler
characteristics�� Namely� let O be an orbifold such that

�� O has a �nite manifold coveringM � O for whichM has the homotopy type
of a �nite complex�

�� The universal cover of O is contractible�

Then the orbifold fundamental group 	 � 	orb� 
O� of O is of type VFL and one has

e
	� � �orb
O��

where �orb
O� is the orbifold Euler characteristic of O�




 TOSHIYUKI AKITA

Example 	��� Let � be a full triangular group T �
p� q� r� of in�nite order� Then�
as in Example ���� � is isomorphic to the orbifold fundamental group of the orbifold
O
p� q� r�� The orbifold O
p� q� r� satis�es the conditions � and � in Example ����
Hence the Euler characteristic of � is identi�ed with the orbifold Euler characteristic
of O
p� q� r�� Using this� one has

e
�� �
�

�

�
�

p
�
�

q
�
�

r
� �
�
�

Finally� we mention two properties of Euler characteristics of groups� Let G be
a group of type VFL�

Theorem � 
Gottlieb�Stallings ����� ������ If e
G� �� �� then the center of G is a
�nite subgroup


Theorem � 
Brown ����� Let p be a prime
 If pn divides the denominator of e
G��
then G has a subgroup of order pn


In view of Example ���� Theorem � is a generalization of 
a part of� Sylow�s theorem�

�� Euler characteristics of Coxeter groups �I�

J��P� Serre ���� proved that Coxeter groups are of �nite homological type� In
fact he proved that Coxeter groups satisfy a much stronger �niteness condition
than �nite homological type� called type WFL� He also provided the formulae for
the Euler characteristics of Coxeter groups�
The formulae of Euler characteristics of Coxeter groups were simpli�ed by I� M�

Chiswell ���� which we now quote� Before doing this� we remark that� if a Coxeter
group W is of �nite order� then its Euler characteristic is given by e
W � � ��jW j

Example ����� Hence we may assume a Coxeter group W to be of in�nite order�

Theorem � 
Chiswell ����� The Euler characteristic e
W � of a Coxeter group W
of in�nite order is given by

e
W � �
X
T�S

jWT j��


���jT je
WT � �
X
T�S

jWT j��


���jT j �

jWT j �
��

Thus the Euler characteristics of Coxeter groups are completely determined their
parabolic subgroups of �nite order� Since the order of a �nite re�ection group is
easy to compute� so is the Euler characteristic of a Coxeter group�
Serre also obtained in ���� the relation between the Euler characteristic of a

Coxeter group and the Poincar�e series� Namely� for a Coxeter group 
W�S�� de�ne

g
t� �
X
w�W

tl�w��

where l
w� is the minimum of the length of reduced words in S representing w�
The function g
t� is known to be a rational function and is called Poincar�e series
of 
W�S�� Serre proved

e
W � �
�

g
��
�

In general� Poincar�e series of arbitrary �nitely presented groups may not satisfy
this property� See �����



COXETER GROUPS �

	� Poset of Parabolic Subgroups of Finite Order

Before continuing the discussion of the Euler characteristics of Coxeter groups�
we introduce the simplicial complexes associated with Coxeter groups� Given a
Coxeter group 
W�S�� de�ne F
W � to be the poset of nontrivial subsets F � S
such that the order of the corresponding parabolic subgroup WF is of �nite order�
If there is no ambiguity we write F instead of F
W �� The poset F
W � can be
regarded as an 
abstract� simplicial complex with the set of vertices S�

Example ���� If 
W�S� is a �nite re�ection group with jSj � n� then any nontrivial
subset F 
 S belongs to F
W � and hence

F � �n���

the standard 
n� ���simplex�
Example ���� If 
W�S� is a full triangular group of in�nite order� then

F � 
���

the boundary of the standard ��simplex 
i�e� a triangle��

Example ���� The list of Coxeter groups with F
W � � 
�� can be found in �����

Example ��	� Let K be a �nite simplicial complex� A �nite simplicial complex
K is called a �ag complex if K satis�es the following condition� For any subset
V � fv	� 
 
 
 � vng of vertices of K� if any two element subset fvi� vjg of V form an
edge of K� then V � fv	� 
 
 
 � vng spans an n�simplex� A barycentric subdivision
SdK of a �nite simplicial complex K is an example of a �ag complex�
If K is a �ag complex� then there is a Coxeter group W for which F
W � � K�

Namely� let S be the set of vertices of K� De�ne m � S � S � N � f	g by

m
s�� s�� �

�����
� s� � s�

� fs�� s�g forms a ��simplex
	 otherwise�

The resulting Coxeter group 
W�S� satis�es F
W � � K� In particular� given a
�nite simplicial complex K� there is a Coxeter group W with F
W � � SdK�
De�nition ���� A Coxeter group 
W�S� with all m
s� t� � � or 	 for distinct
s� t � S is called right�angled Coxeter group�

Coxeter groups constructed in Example 	�� are examples of right�angled Coxeter
groups� Conversely� if W is a right�angled Coxeter group� then F
W � is a �ag
complex�

Remark �
 It is not known if there is a Coxeter group W for which F
W � � K for
a given �nite simplicial complex K�

�� Euler characteristics of Coxeter groups �II�

Now let us consider the Euler characteristic of W in terms of the structure of
F
W �� Proofs of statements of the following three sections will appear in ���� If

W�S� is a �nite re�ection group� then

jW j � �jSj�
��
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The equality holds if and only if W is isomorphic to the elementary abelian ��group

Z��Z�jSj of rank jSj� Now let K be a �nite simplicial complex� Then the Euler
characteristic of any Coxeter group W with K � F
W � must satisfy

��
X
i�even

fi
K�

�i��
� e
W � � � �

X
i�odd

fi
K�

�i��
�
��

where fi
K� is the number of i�simplices ofK� This follows from Theorem � and the
equation 
��� As in the following example� the inequality 
�� is not best possible�

Example ���� Suppose K � 
��� Then Coxeter groups W with F
W � � K are
precisely full triangular groups of in�nite order� The inequality 
�� implies

��
�
� e
W � � �

�
�

On the other hand� from the formula in Example ��	 one has

��
�
� e
W � � ��

which is best possible�

Example ��� shows that� for a �xed �nite simplicial complexK� Euler characteristics
of Coxeter groups with F
W � � K can vary� However� from the result of M� W�
Davis �
�� one has�

Theorem 	� Let W be a Coxeter group such that F
W � is a generalized homology
�n�sphere� then

e
W � � ��

Here a generalized homology �n�sphere is a simplicial complex K satisfying

�� K has the homology of a �n�sphere�
�� The link of an i�simplex of K has the homology of a 
�n� i� ���sphere�

A simplicial complex satisfying the condition � and � is also called a Cohen�
Macaulay complex� A triangulation of a homology sphere is an example of a gener�
alized homology sphere�
Note that Davis actually proved that� if W is a Coxeter group such that F
W �

is a generalized homology �n�sphere� then� for each torsion free subgroup � of �nite
index in W � there is a closed aspherical 
�n � ���manifold M with 	�
M� �� � �
�
Theorem ������ It follows that

e
W � �
e
��


W � ��
�

�
M�


W � ��
� ��

since M is odd dimensional and has homotopy type of a �nite simplicial complex�
We 
partially� generalize Theorem �� A �nite simplicial complex K is a PL�

triangulation of a closed M if� for each simplex T of K� the link of T in K is
a triangulation of 
dimM � dimT � ���sphere� If K is a PL�triangulation of a
homology sphere� then K is a generalized homology sphere�

Theorem 
 
T� Akita�� Let W be a Coxeter group such that F
W � is a PL�
triangulation of a closed �n�manifold� then

e
W � � �� �
F
W ��
�

�

where �
F
W �� is the Euler characteristic of the simplicial complex F
W �
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Remark 	
 Given a simplicial complex K� there is a Coxeter group W such that
F
W � agrees with the barycentric subdivision of K 
Example 	���� Hence there
are Coxeter groups for which Theorem � and Theorem � can be applied�

Remark �
 We should point out that the assumptions of Theorem � and � permit�
for instance� K to be an arbitrary triangulation of �n�sphere� The signi�cance
becomes clear if we compare with the case that K is a triangulation of a circle S��
Indeed� the Euler characteristics of Coxeter groups with F
W � a triangulation of a
circle S� can be arbitrary small�

Remark �
 Under the assumption of Theorem �� � 
 e
W � is an integer� On the
other hand� given a rational number q� there is a Coxeter group W with e
W � � q�


� Application of Theorem �

Let K be a �ag complex� Let 
W�S� be a Coxeter group with F
W � � K as
in Example 	��� Any parabolic subgroup WF of �nite order is isomorphic to the
elementary abelian ��group 
Z��Z�jF j of rank jF j� Hence the Euler characteristic
of W is determined by the number of simplices of K� Explicitly� let fi
K� be the
number of i�simplices of K� Then

e
W � � � �
X
i

�
��
�

�i��
fi
K��
��

Using this together with Theorem �� one obtains

Theorem � 
T� Akita�� Let K be a PL�triangulation of a closed �n�manifold
 As�
sume K is a �ag complex
 Then

�
K� �
X
i

�
��
�

�i
fi
K��

In particular� the barycentric subdivision of any �nite simplicial complex is a �ag
complex� Thus

Corollary � Let K be a PL�triangulation of a closed �n�manifold
 Let fi
SdK� is
the number of i�simplices of the barycentric subdivision SdK of K
 Then

�
SdK� �
X
i

�
��
�

�i
fi
SdK��

In general� if K is a triangulation of a closed n�manifold� then

�
K� �
X
i


���ifi
K�

fn��
K� �
n� �

�
fn
K�


��

hold� The equality in Theorem 	 is not the consequence of the equalities 
���
For a triangulation K of a sphere Sn 
for arbitrary n�� the Dehn�Sommerville

equations give a set of equations for the fi
K��s� It would be interesting to in�
vestigate the relation between the equation in Theorem 	 and Dehn�Somerville
equations�
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�� Euler Characteristics of Aspherical Coxeter Groups and the
Genus of a Graph

In this section� we consider the Euler characteristics of Coxeter groups W such
that F
W � is a graph 
��dimensional simplicial complex��
De�nition 
��� A Coxeter group 
W�S� is called aspherical 
in ��
�� if every three
distinct elements of S generate a parabolic subgroup of in�nite order�

In view of Example ���� a Coxeter group 
W�S� is aspherical if and only if for every
three distinct elements s� t� u � S�

�

mst
�

�

mtu
�

�

mus
� �

holds� where ��	 � � by the convention� It is easy to see that a Coxeter group W
is aspherical if and only if F
W � is a graph�
For a graph �� let E
�� be the set of edges of �� When 
W�S� is an aspherical

Coxeter group with � � F
W �� it follows from Chiswell�s formula 
�� that

�� jSj
�

� e
W � � �� jSj
�
�
jE
��j
�

�
	�

One has another inequality for e
W � using the genus of a graph� The genus of a
graph �� denoted by �
��� is the smallest number g such that the graph � imbeds in
the closed orientable surface of genus g� For instance� a graph � is a planar graph
if and only if �
�� � ��

Theorem � 
T� Akita�� Let 
W�S� be a Coxeter group for which F
W � is a con�
nected �nite graph
 Then

e
W � � �
F��
Example 
��� For any non�negative integer n� there is a Coxeter group W satis�
fying

�� F
W � is a graph of genus n�
�� e
W � � n�

The construction uses the complete bipartite graphs Km�n�
Recall that a graph � is a bipartite graph if its vertex set can be partitioned into

two subsets U and V such that the vertices in U are mutually nonadjacent and the
vertices in V are mutually nonadjacent� If every vertex of U is adjacent to every
vertex of V � then the graph is called completely bipartite on the sets U and V � A
complete bipartite graph on sets of m vertices and n vertices is denoted by Km�n�
Now the genus of the completely bipartite graph Km�n is given by

�
Km�n� �

�

m� ��
n� ��

�

	
�

See ���� Theorem ������� Now let S � S� t S� with jS�j � m� jS�j � n� De�ne
m � S � S � N � f	g by

m
s� t� �

�����
� s � t

� s � Si� t � Sj � i �� j

	 otherwise�
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Then the resulting Coxeter group 
W�S� is right�angled and satis�es F
W � � Km�n�
Its Euler characteristic is given by

e
W � �

m� ��
n� ��

�
�

Alternatively� one can construct similar examples by using complete graphs�

��� Cohomology of Coxeter Groups

In this section� we are concerned with the cohomology of Coxeter groups� The
content of this section extends the earlier papers ��� and ���� We restrict our atten�
tion to the relation between the cohomology of Coxeter groups and the cohomology
of parabolic subgroups of �nite order� Let 
W�S� be a Coxeter group� Let k be
a commutative ring with identity� regarded as a W �module with trivial W �action�
Set

H�
W�k� � lim��WF
H�
WF � k��

whereWF runs all 
possibly trivial� parabolic subgroups of �nite order� The inverse
limit is taken with respect to restriction maps H�
WF � � H�
W �

F � for F
� 
 F �

Let

� � H�
W�k�� H�
W�k�

be the ring homomorphism induced by the restriction mapsH�
W�k�� H�
WF � k��
The properties of � are the main topic of this section�
D� J� Rusin ����� M� W� Davis and T� Januszkiewicz ���� computed the mod �

cohomology ring of certain Coxeter groups�

Theorem � 
���� Corollary ����� Let W be a Coxeter group with hyperbolic signa�
ture� with all rank�� parabolic subgroups hyperbolic� and with even exponents m
s� t�

Then

H�
W� F� � �� F� �ur� ws�t� 
r� s� t � S�

with relations urws�t � � if r �� s and r �� t� wr�swt�u � � unless fr� sg � ft� ug�
and usut � � if � divides m
s� t� but usut � ws�t otherwise


Here we shall not explain the assumptions in Theorem 
� Instead we point out that
if all m
s� t� 
with s� t distinct� are large enough 
compared with the cardinality S��
then the resulting Coxeter group has hyperbolic signature and its rank � parabolic
subgroups are hyperbolic� Such a Coxeter group must be aspherical�

Theorem 
 
���� Theorem ������� Let W be a right�angled Coxeter group
 Then

H�
W� F� � �� F� �v�� 
 
 
 � vm��I�
where I is the ideal generated by all square free monomials of the form vi� 
 
 
 vin �
where at least two of the vij do not commute when regarded as elements of W 


See De�nition 	�� for the de�nition of right�angled Coxeter group� From their
results� one can show that � induces an isomorphism

H�
W� F� � �� H�
W� F� ��

for a Coxeter group W which satis�es the assumptions in Theorem 
 or �� Inspired
by this observation� we proved
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Theorem ��� Let W be a Coxeter group and k a commutative ring with identity

Let � � H�
W�k� � H�
W�k� be as above
 Then the kernel and the cokernel of �
consist of nilpotent elements


A homomorphism satisfying these properties is called an F�isomorphism in �����
Notice that� unlike the famous result of Quillen ���� concerning of the mod p co�
homology of groups of �nite virtual cohomological dimension� the coe cient ring k
can be the ring Z of rational integers�

Example ����� Let W be the full triangular group T �
�� �� ��� Its mod � coho�
mology ring is given by H�
W� F� � �� F� �u� v��
u��� where degu � � and deg v � �
���� p����� while H
W� F� � is isomorphic to F� �w� with degw � �� Then �
u� � �
and hence � has nontrivial kernel for k � F� � This shows the homomorphism � may
not be an isomorphism in general�

Unfortunately� we do not know whether � may have a non�trivial cokernel� We
give a su cient condition for � to be surjective�

Theorem ��� Suppose that W is an aspherical Coxeter group �see De�nition �
��

Then � is surjective for any abelian group A of coe�cients 
with trivial W �action�


For example� Coxeter groups satisfying the assumptions in Theorem 
 must be
aspherical�
In the case k � F� � there is more to say� By Theorem ��� the homomorphism

� induces the homomorphism H�
W�k��
p
� � H�
W�k��

p
�� where

p
� denotes

nilradical� Rusin proved that the mod � cohomology ring of any �nite Coxeter
group 
�nite re�ection group� has no nilpotent elements ���� Theorem ��� Hence
the nilradical of H�
W� F� � is trivial� From this� together with Theorem �� and ��
we obtain

Corollary � For any Coxeter group W � � induces a monomorphism

H�
W� F� ��
p
�� H�
W� F� ��

which is an isomorphism if W is aspherical


Remark �
 Another study of the relation between the cohomology of aspherical
Coxeter groups and their parabolic subgroups of �nite order can be found in ��
��

Now we turn to our attention to detection by �nite subgroups� An element
u � H�
W�k� is said to be detected by �nite subgroups if the image of u by the mapY

H

resWH � H�
W�k��
Y
H

H�
H� k�

is nontrivial� where H runs all the �nite subgroups of W � It would be of interest to
know which elements of H�
W�k� �H�
W�k� are detected by �nite subgroups� One
can reduce this question to the following proposition� which follows from Theorem
�� and Proposition ��

Proposition �� An element u � H�
W�k� is detected by �nite subgroups if and
only if u �� ker �

Finally� we give a example of elements of H�
W�k� which cannot be detected by

�nite subgroups�
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Example ����� Let W be the full triangular group T �
�� �� ��� Its mod � coho�
mology ring is given by in Example ����� One can check easily that uvn 
n � ��
is contained in ker ��� Thus uvn 
n � �� cannot be detected by �nite subgroups as
elements of H��n
W� F� ��

Remark �
 The virtual cohomological dimension of any Coxeter groupW is known

to be �nite ���� p� ����� and its Farrell�Tate cohomology� written �H�
W�k�� is
de�ned� For the Farrell�Tate cohomology� the analogues of Theorem �� and �� and
Proposition � are valid� See ��� and ��� for detail�

��� Outline of Proof

����� Actions of Coxeter groups� A suitable complex on which a Coxeter group
acts is used in the proof of Theorem ��� We recall how this goes� Let 
W�S� be a
Coxeter group� Let X be a topological space� 
Xs�s�S be a family of closed subsets
of X indexed by S� From these data� one can construct a space on which W acts
as follows� Set

S
x� � fs � S � x � Xsg�
and let U � U
X� � W �X� �� W being discrete� where the equivalence relation
� is de�ned by


w� x� � 
w�� x���� x � x�!w��w� � WS�x��

Then W acts on U
X� by w� 
 �w� x� � �w�w� x�� The isotropy subgroup of �w� x� is
wWS�x�w

���

����� Proof of Theorem �� �Outline�� Given a Coxeter group 
W�S�� let X
be the barycentric subdivision of c � F
W �� the cone of F
W � with the cone point
c� De�ne Xs to be the closed star of s � S 
here s � S is regarded as a vertex of
F
W � and hence a vertex of X�� Then one of the main results of M� W� Davis �
�
x����� asserts that U
X� is contractible�
Consider the spectral sequence of the form

Epq
� �

Y
���p

Hq
W� � k� �� Hp�q
W�k��

In the spectral sequence� one can prove that E	��
� is isomorphic to H�
W�k� and

the homomorphism � is identi�ed with the edge homomorphism H�
W�k�� E	��
� �

Observe that

�� Ep�	
� � � if p �� ��

�� There is a natural number n � � such that n 
Ep�q
r � � for all p and q � ��

Together with these observations� Theorem �� follows from the formal properties
of the di�erentials of the spectral sequence�
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COMPLETIONS OF STRATIFIED ENDS

FRANK CONNOLLY AND BOGDAN VAJIAC

�� Introduction

���� A famous result of L� Siebenmann characterizes those topological manifolds
which are the interiors of compact manifolds with boundary� Elsewhere we have
recently shown that his theorem generalizes to the context of strati�ed spaces� Our
purpose here is to explain the main results of our work brie�y� See ��� for the full
account�

�� Definitions

Let Xn� n � 	 be a tame ended topological n�manifold� Siebenmann proves that
there is a single obstruction �
X�� in "K	
Z	�� with the property that �
X� � � if
and only if Xn is the interior of a compact manifold with boundary� By the work of
Freedman and Quinn ��� one can also allow n � �� if 	 is not too complicated� The
group 	 denotes the fundamental group of the end of X � which can be described

as the Holink
 bX�	�# here bX denotes the one�point compacti�cation of X � The
space� Holink
X�A�� 
the $homotopy link$ of A in X�� is de�ned for any subspace
A of a topological space X as�

Holink
X�A� � f� � Map
��� ��� X� j ���
A� � �g�
It is given the compact�open topology� It comes with two maps�

A
pX�� Holink
X�A�

jX�� X �A � jX 
�� � �
��� pX 
�� � �
���

It is used by Quinn �	� as a homotopical analogue for the normal sphere bundle
of A in X �
F� Quinn generalizes Siebenmann�s result greatly� For any locally compact pair


X�A�� where A is closed and tame in X � X �A is an n�manifold 
 n � 	 � and A

is an ANR� Quinn ���������	� de�nes an obstruction� q	
X�A� � "Klf
	 
A� pX�� which

vanishes if and only if A has a mapping cylinder neighborhood in X � Here the map
pX � Holink
X�A�� A is the projection� This concept of tameness is discussed by
many others at this conference� The foundational concepts surrounding controlled
K�theory have recently been greatly clari�ed by the eminently readable paper of
Ranicki and Yamasaki ����

���� Quinn�s obstruction� q	
X�A� can be localized in the following way� let A be
a closed and tame subset of X � and X � an open subset of X � Then A� �� X � � A

is tame in X � and i�q	
X�A� � q	
X
�� A�� where i� � "Klf

	 
A� pX �� "Klf
	 
A

�� pX�� is
the restriction map� Using these maps one can de�ne� for every subset B 
 A�

Klf
	 

A� pX ��B�� � lim��Klf

	 
A
�� pX� jA��

First author partially supported by NSF Grant DMS 	
�������

��
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the direct limit is over the X� neighborhoods� X �� of B�� Then the image of

any one of the obstructions� q	
X
�� A�� in Klf

	 

A� pX��B�� is independent of the
X�neighborhood� X �� chosen� We will write this image q	

X�A��B���

���� In geometric topology� the strati�ed analogue of a topological manifold is a
strati�ed space� This concept was introduced by Quinn under the name %manifold
homotopy strati�ed set$# our terminology is due to Hughes and Weinberger�
A strati�ed space is a locally compact space� �nitely �ltered by closed subsets

X � Xn � Xn�� � 
 
 
 � X�� � �� Each stratum Xi �� X i � X i�� must be a
manifold� and the boundary of X� de�ned by the rule� 
X �� �i

Xi�� must be
closed in X� 
It is customary� to arrange the indexing so that dim
Xi� � i�� It is
also required that Xi must be tame in Xi � Xj for each j � i� The projection�

Holink
Xi �Xj � Xi�
p�� Xi must be a �bration� and the inclusion Holink

Xi �


Xj � 
Xi�� Holink
Xi �Xj � Xi�j�Xi
must be a �ber homotopy equivalence over


Xi�

�� Main results

Let X be a strati�ed space with empty boundary� We seek a completion of X �
i�e� a compact strati�ed space &X such that X � &X � 
 &X� and 
 &X has a collar
neighborhood in &X� It is easy to see that a necessary condition for X having a
completion is to be tame ended� This means that the one point compacti�cation

of X� bX �� X �	� is again a strati�ed space� The strati�cation of the one�point
compacti�cation is the following#bX	 � X	 �	# bXj � Xj � �j � ��
An equivalent formulation is that f	g is tame in Xj �f	g for each j� Notice that�
by reverse tameness each Xj can have only �nitely many ends�
A completion may not always exist# a weaker requirement would be an exhaustion

of X � This is de�ned to be an increasing sequence of compact strati�ed subspaces
of X � with bicollared boundaries in X � whose union is X � An exhaustion is also
obstructed in the category of strati�ed spaces�

Our main results� ���� ���� and ���� say that a completion 
or an exhaustion�
exists if a single obstruction vanishes�

���� The End Obstruction
 Let X be a tame ended strati�ed space� For each
integer m � � we de�ne� 
as in ���� above��

�m
X� � q	

 bXm� bXm������� � Klf
	 



bXm��� p bXm�����

As before� the map p bXm � Holink
 bXm� bXm��� � bXm�� denotes the Holink pro�
jection� Set also�

��
X� � �
m
�m
X� � �

m
Klf
	 



bXm��� p bXm������

���� Theorem� Suppose X is a strati�ed space� with empty boundary� which ad�
mits a completion
 Then ��
X� � �


���� Theorem� Let X be a tame ended strati�ed space with empty boundary
 Let
A be any closed pure subset of X� containing X�� such that A admits a completion�
&A
 Suppose ��
X� � �
 Then X admits a completion &X such that Cl �X
A� � &A
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A pure subset is one which is the union of components of strata��

��	� Note This result reduces to Siebenmann�s theorem when X has only one
stratum


��
� Note Following Weinberger� we say that a �nite group action on a manifold�

M�G� is a strati�ed G manifold if the �xed set of each subgroup�MH � is a manifold�
and MH is locally �at in MK for each K 
 H � By 
 ���� ��� and ��	 of �	��� this
is equivalent to saying that X �M�G is a strati�ed space when it is strati�ed by
its orbit type components� A corollary of our main theorem is an end�completion
result for G�manifolds�

Corollary ���� Let 
M�G� be a strati�ed G�manifold with 
M � �
 Then 
M�G�
is the interior of a compact strati�ed G�manifold with collared boundary iff X �
M�G is tame ended� ��
X� � �� and X� has a completion


The obstruction to �nding an exhaustion for the strati�ed space X turns out
to have the form 
��
X�� where 
 is a map we will not de�ne here in com�
plete generality� Instead we will give the de�nition of 
�n
X� in the special case
when Xn�� admits a completion� In this case an 	� neighborhood in Xn�� has
the form B � ���	�� for some strati�ed space B� Then the open cone of B�
OB which can be thought of as B � 
��	��B � 	 is a neighborhood of 	 inbXn��# moreover	 has a co�nal sequence of such neighborhoods� B� 
k�	��B�
	� k � �� �� �� � � � � The restriction maps connecting the K�theory of these are
isomorphisms� This implies that the obstruction ��
X� reduces to �n
X�� and

moreover� that "Klf
	 



bXn��� p bX������ can be identi�ed to "K
lf
	 
OB� p bX jOB�� where

Holink
 bX� bXn���jOB p �X jOB�� OB is the projection map� The inclusion map induces
a restriction map�

"Klf
	 
 OB� p� �� "Klf

	 
B � 
��	�� pjB��	����

which amounts then to a map�


n � K
lf
	 



bXn��� p bX������ K��
B� pB�

where pB denotes the restriction of the holink projection over B�
This is the map we seek� It turns out that 
n�n
X� � K��
B� pB� is the ob�

struction to �nding an exhaustion of X �

Theorem ��� 
Exhaustibility Theorem�� Let X be a tame ended n�dimensional
strati�ed space with empty boundary for which Xn�� admits a completion
 Assume
that 
�n
X� � �
 Then X admits an exhaustion


Conversely� if X admits an exhaustion� and all the fundamental groups of the

�bers of the map� Holink
X�Xn���
pX� Xn�� are good� then 
�n
X� � ��

���� We say a group G is good if Ki
Z�G�� � � for i � ���
No example of a group which is not good is known� Moreover� a recent theorem of
Farrell and Jones ��� shows that any subgroup of a uniform discrete subgroup of a
virtually connected Lie group must be good�

��
� There are strati�ed G�manifolds which are not exhaustable� but are tame
ended� In fact� there is a semifree action of G � Z�	ZonM �

� � R
�n���f�g� n � �

with �xed set R� � f�g� for which 
��n��
M�G� �� � in K��
ZG��K��
ZG��
K��
ZG� � K��
ZG�� Furthermore if M� � S�n � S� and M �

�
��� M� is the
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usual covering map� then 	 is equivariant with respect to a strati�ed G�action
on M�� This G�manifold� 
M�� G� is h�cobordant 
strati�ed and equivariant� to
some 
M	� G�� whose in�nite cyclic cover 
M

�
	� G� has the form 
V �f�g� G�� where


V�G� is a linear representation of G� This example and the more general question
of realizability of the obstruction ��
X� are thoroughly analyzed in the ���	 Ph�D�
thesis of B� Vajiac�
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THE BRAID STRUCTURE OF MAPPING CLASS GROUPS

Zbigniew Fiedorowicz and Yongjin Song

�� Introduction

It was shown by Stashe�
����� and MacLane
���� that monoidal categories give rise to
loop spaces� A recognition principle speci�es an internal structure such that a space X has
such a structure if and only if X is of the weak homotopy type of n�fold loop space� It
has been known for years that there is a relation between coherence problems in homotopy
theory and in categories� May�s recognition theorem
���� states that for little n�cube operad
Cn� n � �� every n�fold loop space is a Cn�space and every connected Cn�space has the weak
homotopy type of an n�fold loop space�
E� Miller
���� observed that there is an action of the little square operad on the disjoint

union of BDiff�
Sg����s extending the F �product which is induced by a kind of connected
sum of surfaces� We hence have that the group completion of qg		BDiff�
Sg��� is a double
loop space up to homotopy� Miller applied this result to the calculation of the homology
groups of mapping class groups� However his description of the action of the little square
operad is somewhat obscure� On the other hand the �rst author proved
���� that the group
completion of the nerve of a braided monoidal category is the homotopy type of a double loop
space� This result implies that there exists a strong connection between braided monoidal
category and the mapping class groups �g�� in view of Miller�s result�
We� in this paper� show that the disjoint union of �g���s is a braided monoidal category

with the product induced by the connected sum� Hence the group completion of qg		B�g��
is the homotopy type of a double loop space� We explicitly describe the braid structure
of qg		�g��� regarding �g�� as the subgroup of the automorphism group of 	�Sg�� that
consists of the automorphisms �xing the fundamental relator� We provide the formula for
the braiding 
Lemma ���� which is useful in dealing with the related problems� Using this
braiding formula 
����� we can make a correction on Cohen�s diagram� We also show that the
double loop space structure of the disjoint union of classifying spaces of mapping class groups
cannot be extended to the triple loop space structure 
Theorem ����� It seems important
to note the relation between the braid structure and the double loop space structure in an
explicit way�
Turaev and Reshetikhin introduced an invariant of ribbon graphs which is derived from

the theory of quantum groups and is a generalization of Jones polynomial� This invariant was
extended to those of ��manifolds and of mapping class groups
cf������������	��� The de�nitions
are abstract and a little complicated since they are de�ned through quantum groups� G�

The second author was partially supported by GARC�KOSEF�
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Wright
��	�� computed the Reshetikhin�Turaev invariant of mapping class group explicitly
in the case r � �� that is� at the sixteenth root of unity� For each h � �g�	 we can �nd
the corresponding 
colored� ribbon graph� whose Reshetikhin�Turaev invariant turns out to

be an automorphism of the ��dimensional summand of V k��V k�
��
 
 
 �V kg�V kg

�

which
we denote by Vr�g � We get this ribbon graph using the Heegaard splitting and the surgery
theory of ��manifolds� Wright showed as a result of her calculation that the restriction
of this invariant to the Torelli subgroup of �g�	 is equal to the sum of the Birman�Craggs
homomorphisms� dim
V��g� � �

g��
�g���� so the Reshetikhin�Turaev invariant of h � �g�	�
when r � �� is a �g��
�g�����g��
�g��� matrix with entries of complex numbers� Wright
proved a very interesting lemma that there is a natural one�to�one correspondence between
the basis vectors of V��g and the Z���quadratic forms of Arf invariant zero� It would be
interesting to check if the Reshetikhin�Turaev representation preserves the braid structure�

�� Mapping class groups and monoidal structure

Let Sg�k be an orientable surface of genus g obtained from a closed surface by removing
k open disks� The mapping class group �g�k is the group of isotopy classes of orientation
preserving self�di�eomorphisms of Sg�k �xing the boundary of Sg�k that consists of k disjoint
circles� Let Diff�
Sg�k� be the group of orientation preserving self�di�eomorphisms of Sg�k�
We also have the following alternative de�nition �

�g�k � 	oDiff�
Sg�k�

We will mainly deal with the case k � � and k � �� �g�� and �g�	 are generated by �g��
Dehn twists
cf������� There is a surjective map �g�� � �g�	�

Figure �� Dehn twists

Many topologists are interested in the homology of mapping class groups� An interesting
observation is that there is a product on the disjoint union of Diff�
Sg����s� It is known by
Stashe�
����� and MacLane
���� that if a category C has a monoidal structure then its clas�
sifying space gives rise to a space which has the homotopy type of a loop space� Fiedorowicz
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showed
���� that a braid structure gives rise to a double loop space structure� We now recall
the de�nition of 
strict� braided monoidal category�

De�nition ���� A �strict� monoidal �or tensor� category 
C� �� E� is a category C together
with a functor � � C � C � C 
called the product� and an object E 
called the unit object�
satisfying


a� � is strictly associative

b� E is a strict ��sided unit for �

De�nition ���� A monoidal category 
C� �� E� is called a �strict� braided monoidal category
if there exists a natural commutativity isomorphism CA�B � A�B � B�A satisfying

c� CA�E � CE�A � �A

d� The following diagrams commute�

A�B�C CA�B�C������ C�A�B

�A
CB�C � � CA�C
�B

A�C�B

A�B�C CA�B�C������ B�C�A

CA�B
�C � � �B
CA�C

B�A�C

The �rst author recently gave a proof of the following lemma
�����

Lemma ���� The group completion of the nerve of a braided monoidal category is the
homotopy type of a double loop space
 The converse is true


Miller claimed in ���� that there is an action of the little square operad of disjoint squares
in D� on the disjoint union of the B�g���s extending the F �product that is induced by the
connected sum� Here the F �product �g����h�� �� �g�h�� is obtained by attaching a pair of
pants 
a surfaces obtained from a sphere by removing three open disks� to the surfaces Sg��
and Sh�� along the �xed boundary circles and extending the identity map on the boundary
to the whole pants� Hence� according to May�s recognition theorem on the loop spaces
�����
the group completion of qg		B�g�� is homotopy equivalent to a double loop space� Miller�s
proposition seems correct� although the details are not so transparent� In view of lemma
���� the disjoint union of �g���s should be related to a braided monoidal category� Here we
regard qg		�g�� as a category whose objects are �g�� g � Z� and morphisms satisfy

Hom
�g�� �h�� �



�g�� if g � h

� if g �� h
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Without speaking of the action of little square operad� we are going to show that the
group completion of qg		B�g�� is homotopy equivalent to a double loop space by showing
that the disjoint union of �g���s is a braiding monoidal category�

Lemma ��	� The disjoint union of �g���s is a braided monoidal category with the product
induced by the F �product


Proof
 Let x�� y�� � � � � xg � yg be generators of the fundamental group of Sg�� which are induced
by the Dehn twists a�� b�� 
 
 
 � ag� bg� respectively� The mapping class group �g�� can be iden�
ti�ed with the subgroup of the automorphism group of the free group on x�� y�� 
 
 
 � xg � yg
that consists of the automorphisms �xing the fundamental relatorR � �x�� y���x�� y�� 
 
 
 �xg � yg��
The binary operation on qg	��g�� induced by the F �product can be identi�ed with the op�
eration taking the free product of the automorphisms� The 
r� s��braiding on the free group
on x�� y�� 
 
 
 � xg � yg can be expressed by�

x� ��� xs��

y� ��� ys��

���

xr ��� xs�r

yr ��� ys�r

xr�� ��� S��x�S

yr�� ��� S��y�S

���

xr�s ��� S��xsS

yr�s ��� S��ysS

where S � �xs��� ys����xs��� ys��� 
 
 
 �xs�r � ys�r��
It is easy to see that the 
r� s��braiding �xes the fundamental relator R
Moreover� the 
r� s��braiding makes the diagrams in 
d� of De�nition ��� commute� �

Lemma ��� explains the pseudo double loop space structure on the union of the classifying
spaces of the mapping class groups observed by E� Miller� Lemma ��� and Lemma ��� imply
the following�

Theorem ��
� The group completion of qg		B�g�� is the homotopy type of a double loop
space


�� Braid structure

Let Bn denote Artin�s braid group� Bn has n�� generators ��� 
 
 
 � �n�� and is speci�ed
by the following presentation�

�i�j ��j�j if ji� jj � �
�i�i���i ��i���i�i�� for i � �� 
 
 
 � n� �
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It has been observed for many years that there are certain connections between the braid
groups and the mapping class groups� In this section we introduce a new kind of braid
structure in the mapping class groups �g���s in an explicit form� This explicit expression
enables us to deal with a kind of Dyer�Lashof operation 
or Browder operation� in an explicit
form� It seems possible for us to get further applications of the formula of the braid structure
in the future� First let us express explicitly the 
�����braiding on genus � surface� ���� is
generated by the Dehn twists a�� b�� a�� b�� ��� Let x�� y�� x�� y� be generators of 	�Sg��
which are induced by a�� b�� a�� b�� respectively� Regard a�� b�� a�� b�� �� as automorphisms
on Ffx��y��x��y�g� Then we have

a� � y� ��� y�x
��
�

b� � x� ��� x�y�

a� � y� ��� y�x
��
�

b� � x� ��� x�y�

�� � x� ��� x��x�� y��x
��
� x�x��y�� x��x

��
�

y� ��� x��x�� y��x
��
� x��� x��y�� x��y�x��y�� x��x

��
�

y� ��� x��� x�x�y�x
��
�

These automorphisms �x the generators that do not appear in the above list�
The 
�����braiding in genus � should be expressed in terms of the elements a�� b�� a�� b�� ��

and should be speci�ed on the generators of 	�Sg�� by the formulas�

x� ��� x�

y� ��� y�

x� ��� �y�� x��x��x�� y��

y� ��� �y�� x��y��x�� y��

We need a hard calculation to get such a braiding� By using a computer program� we could
get the following explicit formula for the braid structure�

Lemma ���� The ������braiding for the monoidal structure in genus � is given by


� � 
b�a�a�b�a���
a�b�a��
��b�a��

��
a�b�a��
� 
����

The braid group of all braidings in the mapping class group of genus g is generated by


i � 
biaiaibiai�i
aibiai�
��bi��ai���

��
aibiai�
� 
����

for i � �� �� 
 
 
 � g � �� We can obtain the following formula for the 
r� s��braiding in terms
of the braiding generators�



r
r�� 
 
 

r�s���

r��
r 
 
 

r�s��� 
 
 
 

�
� 
 
 

s�
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or alternatively as



r
r�� 
 
 

��

r��
r 
 
 

�� 
 
 
 

r�s��
r�s�� 
 
 

s�

Remark ��	 The braid structure gives rise to the double loop space structure� so it is
supposed to be related to the Dyer�Lashof operation� Let D � B�g �� �g�� be the obvious
map given by

D
�i� �

�
b i��

�

if i is odd

� i
�

if i is even

F� Cohen in ��� dealt with this map D� He said that the homology homomorphism D�

induced by D is trivial� because D preserves the Dyer�Lashof operation� Precisely speaking�
he made a commutative diagram

Bp

R
B�g

������� B�pg

Bp

R
D

��y ��yD
Bp

R
�g��

������ �pg��

where � is the analogue of the Dyer�Lashof operation 
it should be rather Browder operation��
According to his de�nition� 
�# �� �� � B�

R
���� is mapped by � to ��b�b���� His de�nition

of �� however� is not well�de�ned� This can be detected by mapping ���� to Sp
�#Z�� Here
Sp
�#Z� is the automorphism group ofH�
Sg��#Z�� The map � � ���� � Sp
�#Z� is described
as follows�

a� �


B�
� �� � �
� � � �
� � � �
� � � �

�CA b� �


B�
� � � �
� � � �
� � � �
� � � �

�CA

a� �


B�
� � � �
� � � �
� � � ��
� � � �

�CA b� �


B�
� � � �
� � � �
� � � �
� � � �

�CA

�� �


B�
� �� � �
� � � �
� � � ��
� � � �

�CA

The map � sends ��b�b��� to


B�
� � � �
� � � �
� � � �
� � � �

�CA �

We have


��# �� ��
��
�# a�� ��
��# �� �� � 
�# �� a�� � 
��# �� ��
�# a�� ��
��# �� ��

��
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This element must commute with 
�# a�� ��� 
��# �� ��
��
�# a�� ��
��# �� �� is mapped to
B�

� � � �
� � � �
�� � � ��
� � � �

�CA and 
��# �� ��
�# a�� ��
��# �� ��
�� is mapped to


B�
� � � �
� � � ��
� � � ��
� � � �

�CA � How�

ever neither of these two matrices commutes with


B�
� �� � �
� � � �
� � � �
� � � �

�CA which corresponds to
a��

The braiding structure 
���� plays a key role in the correct formula for � which should be
the following�


��# �� ��
���� 
b�a�a�b�a���
a�b�a��

��b�a��
��
a�b�a��

�

Let Cn be the little n�cube operad� Let Y be an n�fold loop space� Then Y is a Cn�space�
so there is a map

Cn
��� Y � �� Y

It is known that Cn
�� has the same homotopy type as Sn��� Hence the above map induces
a homology operation

Hi
Y ��Hj
Y � �� Hi�j�n��
Y �

which is called the Browder operation� It is easy to see that if Y is a Cn���space� then the
Browder operation equals zero�

Let X be the group completion of qg		B�g��� Since X is homotopy equivalent to a
'��space� it is� up to homotopy� a C��space� It is natural to raise the question whether X is
a C��space� or not� The answer is negative� In the proof of the following theorem the braid
formula 
���� again plays a key role�

Theorem ��
� Let X be the group completion of qg		B�g��
 The double loop space
structure cannot be extended to the triple loop space structure


Proof
 We show that the Browder operation

�� � Hi
X��Hj
X� �� Hi�j��
X�

is nonzero for X � We have the map

� � C�
���X� �� X

Note that C�
�� has the same homotopy type as S�� By restricting the map � to each
connected component we get

S� �B�g�� �B�g�� �� B��g��
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This map is� in the group level� denoted by the map

� � B�

Z
�g�� �� ��g��

which is same as described in Remark ���� In order to show that �� is nonzero it su ces to
show that

"�� � H	
B������H	
B����� �� H�
B�����

is nonzero� The image of the map "�� equals the image of the homology homomorphism
� � H�
S

�� � H�
B����� induced by the map S� � B���� which is the restriction of
the map S� � B���� � B���� � B����� The map � sends the generator of H�
S

�� to the
abelianization class of


b�a�a�b�a���
a�b�a��
��b�a��

��
a�b�a��
�

which is nonzero� since the isomorphism H�
 � �� 
 �ab is natural� �
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CONTROLLED TOPOLOGICAL EQUIVALENCE OF MAPS

IN THE THEORY OF

STRATIFIED SPACES AND APPROXIMATE FIBRATIONS

Bruce Hughes

Abstract� Ideas from the theory of topological stability of smooth maps are trans�
ported into the controlled topological category� For example� the controlled topologi�
cal equivalence of maps is discussed� These notions are related to the classi�cation of
manifold approximate �brations and manifold strati�ed approximate �brations� In
turn� these maps form a bundle theory which can be used to describe neighborhoods
of strata in topologically strati�ed spaces�

�� Introduction

We explore some connections among the theories of topological stability of maps�
controlled topology� and strati�ed spaces� The notions of topological equivalence
of maps and locally trivial families of maps play an important role in the theory of
topological stability of smooth maps� We formulate the analogues of these notions in
the controlled topological category for two reasons� First� the notion of controlled
topological equivalence of maps is a starting point for formulating a topological
version of Mather�s theory of the topological stability of smooth maps� Recall that
Mather proved that the topologically stable maps are generic for the space of all
smooth maps 
with the C� topology� between closed smooth manifolds 
see Mather
����� Gibson� Wirthm(uller� du Plessis� and Looijenga ����� The hope is to identify an
analogous generic class for the space of all maps 
with the compact�open topology�
between closed topological manifolds� Controlled topology at least gives a place to
begin speculations� Second� the controlled analogue of local triviality for families
of maps is directly related to the classi�cation of approximate �brations between
manifolds due to Hughes� Taylor and Williams ����� ��
�� We elucidate that relation
in x
�
Another important topic in the theory of topological stability of smooth maps is

that of smoothly strati�ed spaces 
cf� Mather ������ Quinn ��	� initiated the study
of topologically strati�ed spaces and Hughes ����� ���� has shown that )manifold
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strati�ed approximate �brations� form the correct bundle theory for those spaces�
The classi�cation of manifold approximate �brations via controlled topology men�
tioned above extends to manifold strati�ed approximate �brations# hence� we have
another connection between controlled topology and strati�ed spaces� This classi�
�cation of manifold strati�ed approximate �brations is the main new result of this
paper�
Two essential tools in stability theory are Thom�s two isotopy lemmas ����� In

x� we formulate an analogue of the �rst of these lemmas for topologically strati�ed
spaces� A non�proper version is also stated�
It should be noted that in his address to the International Congress in ��
	�

Quinn predicted that controlled topology would have applications to the topolog�
ical stability of smooth maps ����� In particular� controlled topology should be
applicable to the problem of characterizing the topologically stable maps among
all smooth maps� More recently� Cappell and Shaneson ��� suggested that topo�
logically strati�ed spaces should play a role in the study of the local and global
topological type of topologically smooth maps 
the connection is via the mapping
cylinder of the smooth map�� While the speculations in this paper are related to
these suggestions� they di�er in that it is suggested here that controlled topology
might be used to study a generic class of topological� rather than smooth� maps�

�� Topological equivalence and locally trivial families of maps

We recall some de�nitions from the theory of topological stability of smooth
maps 
see Damon ���� du Plessis and Wall ���� Gibson� Wirthm(uller� du Plessis� and
Looijenga ���� Mather ����� ������

De�nition ���� Two maps p	 � X	 � Y	� p� � X� � Y� are topologically equivalent
if there exist homeomorphisms h � X	 � X� and g � Y	 � Y� such that p�h � gp	�
so that there is a commuting diagram�

X	
h����� X�

p�

��y ��yp�
Y	

g����� Y��

De�nition ���� A smooth map p	 � M � N between smooth manifolds is topo�
logically stable if there exists a neighborhood V of p	 in the space of all smooth
maps C�
M�N� such that for all p� � V � p	 is topologically equivalent to p��

The space C�
M�N� is given the Whitney C� topology� Thom conjectured
and Mather proved that the topologically stable maps are generic in C�
M�N�# in
fact� they form an open dense subset 
see ���� ����� ������ The proof yields a stronger
result� namely that the strongly topologically stable maps are dense 
see �����

De�nition ���� A smooth map p	 �M � N between smooth manifolds is strongly
topologically stable if there exists a neighborhood V of p	 in C�
M�N� such that
for all p� � V � there exists a 
topologically� trivial smooth one�parameter family
p � M � I � N joining p	 to p�� This means there exist continuous families
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fht �M �M j � � t � �g and fgt � N � N j � � t � �g of homeomorphisms such
that p	 � g��t � pt � ht for all t � I � so that there is a commuting diagram�

M
ht����� M

p�

��y pt

��y
N

gt����� N�

The notion of triviality for the one�parameter family of maps in the de�nition
above can be generalized to arbitrary families of maps� We now recall that de�nition
and the related notion of local triviality 
cf� ������

De�nition ��	� Consider a commuting diagram of spaces and maps�

E�
f����� E�

p�

��y ��yp�
B

idB����� B


�� f is trivial over B if there exist spaces F� and F�� a map q � F� � F� and
homeomorphisms h � E� � F��B� g � E� � F��B such that the following
diagram commutes�

B
p������ E�

f����� E�
p������ B

idB

��y h

��y g

��y ��yidB
B

proj����� F� �B
q�idB����� F� �B

proj����� B


�� f is locally trivial over B if for every x � B there exists an open neighbor�
hood U of x in B such that f j � p��� 
U�� p��� 
U� is trivial over U �


�� In either case� q � F� � F� is the model of the family f �

Remarks �
	



�� The model q � F� � F� is well�de�ned up to topological equivalence�

�� Both p� � E� � B and p� � E� � B are �bre bundle projections with �bre

F� and F�� respectively�

�� For every x � B� fx � f j � p��� 
x� � p��� 
x� is topologically equivalent to

q � F� � F��

�� One step in Mather�s proof that the topologically stable smooth maps form

an open dense subset is to show that certain families of maps are locally
trivial� Thom�s second isotopy lemma is used for this�

A �bre preserving map is a map which preserves the �bres of maps to a given
space� usually a k�simplex or an arbitrary space B� Speci�cally� if � � X � B and
� � Y � B are maps� then a map f � X � Y is �bre preserving over B if �f � ��
There is a notion of equivalence for families of maps over B�
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De�nition ����


�� Two locally trivial families of maps over B

E�
f����� E�

p�

��y ��yp�
B

idB����� B

and

E�
�

f ������ E�
�

p��

��y ��yp��
B

idB����� B

are topologically equivalent provided there exist homeomorphisms

h� � E� � E�
� and h� � E� � E�

�

which are �bre preserving over B and f �h� � h�f # that is� the following
diagram commutes�

B
p������ E�

f����� E�
p������ B

idB

��y h�

��y h�

��y ��yidB
B

p������� E�
�

f ������ E�
�

p������� B


�� Let A�
q� B� denote the set of topological equivalence classes of locally
trivial families of maps over B with model q � F� � F��

The set A�
q� B� can be interpreted as a set of equivalence classes of certain
�bre bundles over B as follows� Let TOP
q� be the topological group given by the
pull�back diagram

TOP
q� ����� TOP
F����y ��yq�
TOP
F��

q������ Map
F�� F��

where q�
h� � q � h and q�
g� � g � q� That is�
TOP
q� � f
h� g� � TOP
F��� TOP
F�� j qh � gqg�

Note that TOP
q� is naturally a subgroup of TOP
F�qF�� via 
h� g� �� hq g� Let
A�
q� B� denote the set of bundle equivalence classes of �bre bundles over B with
�bre F� q F� and structure group TOP
q��

Proposition ���� There is a bijection � � A�
q� B� � A�
q� B�
 In particular� if
B is a separable metric space� then there is a bijection A�
q� B�� �B�BTOP
q��


The function � is de�ned by sending a locally trivial family

E�
f����� E�

p�

��y ��yp�
B

idB����� B

to the �bre bundle p�q p� � E�qE� � B whose total space is the disjoint union of
E� and E�� The fact that � is a bijection is fairly straightforward to prove� At any
rate� it follows from a more general result in x� 
see Theorem ��� and the comments
following it��
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	� Controlled topological equivalence

We propose a de�nition of topological equivalence in the setting of controlled
topology and use it to make some speculations about generic maps between topo�
logical manifolds�
The mapping cylinder of a map p � X � Y is the space

cyl
p� � 
X � I q Y ��f
x� �� � p
x� j x � Xg�

There is a natural map 	 � cyl
p�� I de�ned by

	
�x� t�� � t� if 
x� t� � X � I

	
�y�� � �� if y � Y �

For clari�cation the map 	 will sometimes be denoted 	p � cyl
p�� I � If p � X � Y
and p� � X � � Y � are maps and 	p � cyl
p� � I and 	p� � cyl
p

�� � I are the
natural maps� then a homeomorphism h � cyl
p� � cyl
p�� is level if 	p � 	p�h�

Let TOPlevel
p� denote the simplicial group of level homeomorphisms from cyl
p�

onto itself� That is� a k�simplex of TOPlevel
p� consists of a �k�parameter family
of level homeomorphisms h � cyl
p� � �k � cyl
p� � �k� The group TOP
p� as
de�ned in the previous section has a simplicial version 
the singular complex of

the topological group� and� as such� is a simplicial subgroup of TOPlevel
p�� For
example� a pair of homeomorphisms 
h � X � X� g � Y � Y � such that ph � gp
induces a level homeomorphism

cyl
p�� cyl
p��



�x� t� �� �h
x�� t�� if x � X

�y� �� �g
y��� if y � Y

De�nition ���� Two maps p	 � X	 � Y	� p� � X� � Y� are controlled topologically
equivalent if there exists a level homeomorphism h � cyl
p	�� cyl
p���

Note that a level homeomorphism h � cyl
p	� � cyl
p�� induces 
by restriction�
a one�parameter family ht � X	 � X�� � � t � �� of homeomorphisms and a
homeomorphism g � Y	 � Y�� If all the spaces involved are compact metric� then

gp	 � lim
t��

p�ht

and such data is equivalent to having a level homeomorphism 
cf� ��	�� ����� �����
������ This formulation should be compared with the formulation of topological
equivalence in De�nition ����

De�nition ���� Two maps p	 � X	 � Y	� p� � X� � Y� between compact metric
spaces are weakly controlled topologically equivalent if there exist continuous families
fht � X	 � X� j � � t � �g and fgt � Y	 � Y� j � � t � �g of homeomorphisms
such that p	 � limt�� g

��
t � p� � ht�

The limit above is taken in the sup metric which is the metric for the compact�
open topology� The space C
X�Y � of maps from X to Y is given the compact�open
topology�
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De�nition ���� A map p	 � X � Y between compact metric spaces is weakly
controlled topologically stable if there exists a neighborhood V of p	 in C
X�Y �
such that for all p� � V and � � �� there exists a map p�� � X � Y such that p	 is
weakly controlled topologically equivalent to p�� and p�� is ��close to p��

Many of the results in the theory of singularities have a mixture of smooth and
topological hypotheses and conclusions� This is the case in Mather�s theorem on
the genericness of topologically stable maps among smooth maps� One direction
that controlled topology is likely to take is in �nding the topological underpinnings
in this area� The following speculation is meant to be a step towards formulating
what might be true�

Speculation ��	� If M and N are closed topological manifolds� then the weakly
controlled topologically stable maps from M to N are generic in C
M�N�


This might be established by showing that the strati�ed systems of approximate
�brations are dense and also weakly controlled topologically stable 
see Hughes ����
and Quinn ���� for strati�ed systems of approximate �brations�� As evidence for this
line of reasoning� note that Chapman�s work ��� shows that manifold approximate
�brations are weakly controlled topologically stable�
Another line of speculation concerns polynomial maps between euclidean spaces�

It is known that the classi�cation of polynomial maps up to smooth equivalence
di�ers from their classi�cation up to topological equivalence 
cf� Thom ����� Fakuda
�
�� Nakai ������ What can be said about the classi�cation of polynomial maps up
to controlled topological equivalence*


� Controlled locally trivial families of maps

Analogues in controlled topology of locally trivial families of maps are de�ned�
In fact� we de�ne a moduli space of all such families�

De�nition 	��� Consider a commuting diagram of spaces and maps�

E�
f����� E�

p�

��y ��yp�
B

idB����� B


�� f is controlled trivial over B if there exist spaces F� and F�� a map q � F� �
F� and a homeomorphism H � cyl
f�� cyl
q�� B such that the following
diagram commutes�

B
c����� cyl
f�

�f����� I

idB

��y H

��y ��yidI
B

proj����� cyl
q��B
��q����� I

where c � cyl
f�� B is given by

c
�x� t�� � p�
x� � p�f
x�� if 
x� t� � E� � I

c
�y�� � p�
y�� if y � E�
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and 	�q is the composition cyl
q��B
proj��� cyl
q�

�q�� I �

�� f is controlled locally trivial over B if for every x � B there exists an open

neighborhood U of x in B such that f j � p��� 
U� � p��� 
U� is controlled
trivial over U �


�� In either case� q � F� � F� is the model of the family f �

Remarks �
�



�� The model q � F� � F� is well�de�ned up to controlled topological equiva�
lence�


�� Both p� � E� � B and p� � E� � B are �bre bundle projections with �bre
F� and F�� respectively�


�� For every x � B� fx � f j � p��� 
x� � p��� 
x� is controlled topologically
equivalent to q � F� � F��

There is a notion of controlled equivalence for families of maps over B�

De�nition 	���


�� Two controlled locally trivial families of maps over B

E�
f����� E�

p�

��y ��yp�
B

idB����� B

and

E�
�

f ������ E�
�

p��

��y ��yp��
B

idB����� B

are controlled topologically equivalent provided there exists a level homeo�
morphism

H � cyl
f�� cyl
f ��

which is �bre preserving over B in the sense that the following diagram
commutes�

cyl
f�
H����� cyl
f ��

c

��y ��yc�
B

idB����� B

where c is given by

c
�x� t�� � p�f
x� � p�
x�� if 
x� t� � E� � I

c
�y�� � p�
y�� if y � E�

and c� is given by

c�
�x� t�� � p��f

�
x� � p��
x�� if 
x� t� � E�
� � I

c�
�y�� � p��
y�� if y � E�
��


�� Let B�
q� B� denote the set of controlled topological equivalence classes of
locally trivial families of maps over B with model q � F� � F��
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In the next section we will show that the set B�
q� B� can be interpreted as a set
of equivalence classes of certain �bre bundles over B in analogy with Proposition
��� 
see Theorem ����� But �rst we will de�ne the moduli space of all controlled
locally trivial families of maps over B with model q � F� � F�� This is done in the
setting of simplicial sets as follows�
De�ne a simplicial set B�
q� B� so that a typical k�simplex of B�
q� B� consists

of a commuting diagram

E�
f����� E�

p�

��y ��yp�
B ��k

id
B��k������ B ��k

which is a controlled locally trivial family of maps over B � �k with model q �
F� � F�� Thus� a vertex of B�
q� B� is a controlled locally trivial family of maps
over B with model q � F� � F�� 
As in ����� ��
� we also need to require that these
spaces are reasonably embedded in an ambient universe� but we will ignore that
technicality in this paper�� Face and degeneracy operations are induced from those
on the standard simplexes� As in ��
�� this simplicial set satis�es the Kan condition�

De�nition 	�	� The mapping cylinder construction � takes a controlled locally
trivial family of maps

E�
f����� E�

p�

��y ��yp�
B

idB����� B

to the mapping cylinder cyl
f� together with the natural map �
f� � cyl
f�� B�

Note that the controlled locally trivial condition on f means that �
f� � cyl
f��
B is a �bre bundle with �bre cyl
q� and structure group TOPlevel
q� where q is the
model of f � If

E�
�

f ������ E�
�

p��

��y ��yp��
B

idB����� B

is another controlled locally trivial family of maps over B with model q� then to
have a controlled topological equivalence H � cyl
f� � cyl
f �� as in De�nition ���
means precisely to have a bundle isomorphism from �
f� to �
f ���

Proposition 	�
� There is a bijection 		B�
q� B� � B�
q� B�

Proof
 In order to see that the natural function 		B�
q� B� � B�
q� B� is well�
de�ned� suppose

E�
f����� E�

p�

��y ��yp�
B ���

idB��������� B ���
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is a locally trivial family of maps with model q � F� � F�� Then by the remarks
above �
f� � cyl
f�� B��� is a �bre bundle with �bre cyl
q� and structure group

TOPlevel
q�� Thus� there is a bundle isomorphism from the restriction of �
f� over
B�f�g to the restriction of �
f� over B�f�g� and the remarks above further show
that this isomorphism gives a controlled topological equivalence from

p��� 
B � f�g� f j����� p��� 
B � f�g�
p�j

��y ��yp�j
B � f�g idB����� B � f�g

to

p��� 
B � f�g� f j����� p��� 
B � f�g�
p�j

��y ��yp�j
B � f�g idB����� B � f�g

showing that the function is well�de�ned� The function is obviously surjective� so
it remains to see that it is injective� To this end suppose that

E�
f����� E�

p�

��y ��yp�
B

idB����� B

and

E�
�

f ������ E�
�

p��

��y ��yp��
B

idB����� B

are controlled topologically equivalent with a level homeomorphism H � cyl
f� �
cyl
f �� as in De�nition ���� Let h	 � E� � E�

� and h� � E� � E�
� be the restrictions

of H to the top and bottom of the mapping cylinders� respectively� Then there is
an induced commutative diagram

cyl
h	� ����� cyl
h����y ��y
B ��� ����� B ���

which is a ��simplex in B�
q� B� from f to f �� �

�� Bundles with mapping cylinder fibres

In this section we show that controlled locally trivial families of maps over B
can be interpreted as �bre bundles over B with �bre the mapping cylinder of the
model� Reduced structure groups are discussed as well as a relative situation in
which the target bundle over B is �xed�
Let B be a �xed separable metric space� Let B�
q� B� denote the set of bundle

equivalence classes of �bre bundles over B with �bre cyl
q� and structure group

TOPlevel
q�� De�ne B�
q� B� to be the simplicial set whose k�simplices are �bre

bundles over B � �k with �bre cyl
q� and structure group TOPlevel
q�� The fol�
lowing result is well�known 
cf� ������

Proposition 
��� There are bijections

		B�
q� B� � B�
q� B� � �B�BTOPlevel
q���

The mapping cylinder construction of De�nition ��� has the following simplicial
version�
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De�nition 
��� The mapping cylinder construction is the simplicial map

� � B�
q� B�� B�
q� B�

de�ned by sending a diagram

E�
f����� E�

p�

��y ��yp�
B ��k

id
B��k������ B ��k

to cyl
f� � B � �k� Note that the local triviality condition on f implies that
cyl
f�� B ��k is a �bre bundle projection with �bre cyl
q� and structure group

TOPlevel
q��

The �rst part of the following result is proved in ��
�� The second part follows
from the �rst part together with Propositions ��� and ����

Theorem 
��� The mapping cylinder construction de�nes a homotopy equivalence
� � B�
q� B�� B�
q� B�
 In particular� B�
q� B� � B�
q� B� � �B�BTOPlevel
q��


Reduced structure groups� Let G be a simplicial subgroup of TOPlevel
q�� We
will now generalize the discussion above to the situation where the structure group
is reduced to G�

De�nition 
�	� Consider a controlled locally trivial family

E�
f������ E�

p�

��y ��yp�
B

idB����� B

with model q � F� � F�� Then f is G�locally trivial over B provided there exists
an open cover U of B such that f is controlled trivial over U for each U � U via a
trivializing homeomorphism

HU � cyl
f j � p��� 
U�� p��� 
U��� cyl
q� �B�

These trivializing homeomorphisms are required to have the property that if U� V �
U and x � U � V � then

HV �H��
U j � cyl
q�� fxg � cyl
q�� fxg

is an element of G�

Let B�
q� B�G� be the simplicial set whose k�simplices are the G�locally trivial
families of maps over B ��k with model q � F� � F�� For example�

B�
q� B�TOPlevel
q�� � B�
q� B��
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De�nition ��� can be extended in the obvious way to de�ne what it means for
two G�locally trivial families to be G�controlled topologically equivalent 
the home�
omorphism H is required to be a family of homeomorphisms in the group G� and
B�
q� B�G� denotes the set of equivalence classes� In analogy with Proposition ���
there is a bijection

		B�
q� B�G� � B�
q� B�G��

Likewise B�
q� B�G� denotes the set of bundle equivalence classes of �bre bundles
over B with �bre cyl
q� and structure group G� and B�
q� B�G� is the simplicial
set whose k�simplices are �bre bundles over B��k with �bre cyl
q� and structure
group G� In analogy with Proposition ��� there are bijections

		B�
q� B�G� � B�
q� B�G� � �B�BG��

Moreover� the proof of Theorem ��� can be seen to give a proof of the following
result 
cf� ��
� x����
Theorem 
�
� The mapping cylinder construction de�nes a homotopy equivalence
� � B�
q� B�G�� B�
q� B�G�
 In particular� B�
q� B�G� � B�
q� B�G� � �B�BG�


As an example� consider the group TOP
q� of x�� It was pointed out at the
beginning of x� that TOP
q� is naturally a subgroup of TOPlevel
q�� Note that
B�
q� B�TOP
q�� � A�
q� B� and B�
q� B�TOP
q�� � A�
q� B�� so that Proposition
��� follows directly from Theorem ����

Fixed target bundle� There are also relative versions of the preceding results in
which the bundle p� � E� � B is �xed� For example� B�
q rel p� � E� � B� is the
set of controlled locally trivial families of maps of the form

E�
f����� E�

p�

��y ��yp�
B

idB����� B�

Two such families f � E� � E� and f � � E�
� � E� are controlled topologically

equivalent rel p� if the homeomorphism H � cyl
f� � cyl
f �� of De�nition ��� is
required to be the identity on E�� There are analogous de�nitions of the following�


�� B�
q rel p� � E� � B��

�� B�
q rel p� � E� � B��

�� B�
q rel p� � E� � B��

De�nition 
��� The group of controlled homeomorphisms of q is the subgroup
TOPc
q� of TOPlevel
q� consisting of all level homeomorphisms h � cyl
q� ��k �
cyl
q���k such that hjF� ��k � idF���k �

Note that TOPc
q� is the kernel of the restriction homomorphism

TOPlevel
q�� TOP
F���
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Let bp� � B � BTOP
F�� be the classifying map for the bundle p�� Thus�
B�
q rel p� � E� � B� is in one�to�one correspondence with the set of vertical

homotopy classes of lifts of bp� � B � BTOP
F�� to BTOP
level
q�� BTOP
F���

BTOPlevel
q���y
B

cp������ BTOP
F���

The following result follows from the proofs of the preceding results�

Proposition 
���


�� 		B�
q rel p� � E� � B� � B�
q rel p� � E� � B��

�� 		B�
q rel p� � E� � B� � B�
q rel p� � E� � B��

�� the mapping cylinder construction de�nes a homotopy equivalence

� � B�
q rel p� � E� � B�� B�
q rel p� � E� � B��

Reduced structure group and �xed target bundle� There are versions of
these relative results when the structure groups are reduced to G as before� The
sets and simplicial sets involved are denoted as follows�


�� B�
q�G rel p� � E� � B��

�� B�
q�G rel p� � E� � B��

�� B�
q�G rel p� � E� � B��

�� B�
q�G rel p� � E� � B��

The following result records the analogous bijections and homotopy equivalences�

Proposition 
���


�� 		B�
q�G rel p� � E� � B� � B�
q�G rel p� � E� � B��

�� 		B�
q�G rel p� � E� � B� � B�
q�G rel p� � E� � B��

�� the mapping cylinder construction de�nes a homotopy equivalence

� � B�
q�G rel p� � E� � B�� B�
q�G rel p� � E� � B��

�� Manifold stratified spaces

There are many naturally occurring spaces which are not manifolds but which
are composed of manifold pieces� those pieces being called the strata of the space�
Examples include polyhedra� algebraic varieties� orbit spaces of many group actions
on manifolds� and mapping cylinders of maps between manifolds� Quinn ��	� has
introduced a class of strati�ed spaces called by him )manifold homotopically strat�
i�ed sets� with the objective )to give a setting for the study of purely topological
strati�ed phenomena� as opposed to the smooth and piecewise linear phenomena
previously studied�
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Roughly� the strati�ed spaces of Quinn are spaces X together with a �nite �l�
tration by closed subsets

X � Xm � Xm�� � 
 
 
 � X	 � X�� � ��
such that the strata Xi � X i nX i�� are manifolds with neighborhoods in Xi �Xk


for k � i� which have the local homotopy properties of mapping cylinders of
�brations� These spaces include the smoothly strati�ed spaces of Whitney �����
Thom ���� and Mather ���� 
for historical remarks on smoothly strati�ed spaces see
Goresky and MacPherson ����� as well as the locally conelike strati�ed spaces of
Siebenmann ���� and� hence� orbit spaces of �nite groups acting locally linearly on
manifolds�
Cappell and Shaneson ��� have shown that mapping cylinders of )smoothly strat�

i�ed maps� between smoothly strati�ed spaces are in this class of topologically
strati�ed spaces even though it is known that such mapping cylinders need not be
smoothly strati�ed 
see ��� and ������ Hence� the strati�ed spaces of Quinn arise
naturally in the category of smoothly strati�ed spaces� For a comprehensive survey
of the classi�cation and applications of strati�ed spaces� see Weinberger �����
Smoothly strati�ed spaces have the property that strata have neighborhoods

which are mapping cylinders of �bre bundles� a fact which is often used in arguments
involving induction on the number of strata� Such neighborhoods fail to exist in
general for Siebenmann�s locally conelike strati�ed spaces� For example� it is known
that a 
topologically� locally �at submanifold of a topological manifold 
which is
an example of a locally conelike strati�ed space with two strata� may fail to have
a tubular neighborhood 
see Rourke and Sanderson ��
��� However� Edwards �	�
proved that such submanifolds do have neighborhoods which are mapping cylinders
of manifold approximate �brations 
see also ��
��� On the other hand� examples
of Quinn ���� and Steinberger and West ���� show that strata in orbit spaces of
�nite groups acting locally linearly on manifolds may fail to have mapping cylinder
neighborhoods� In Quinn�s general setting� mapping cylinder neighborhoods may
fail to exist even locally�
The main result announced in ���� 
and restated here in x
� gives an e�ective

substitute for neighborhoods which are mapping cylinders of bundles� Instead of
�bre bundles� we use )manifold strati�ed approximate �brations�� and instead of
mapping cylinders� we use )teardrops�� This result should be thought of as a tubular
neighborhood theorem for strata in manifold strati�ed spaces�
We now recall the concepts needed to precisely de�ne the manifold strati�ed

spaces of interest 
see ��	�� ����� ����� ��	��� A subset Y � X is forward tame in X
if there exist a neighborhood U of Y in X and a homotopy h � U � I � X such
that h	 � inclusion � U � X � htjY � inclusion � Y � X for each t � I� h�
U� � Y �
and h

U n Y �� ��� ��� � X n Y�
De�ne the homotopy link of Y in X by

holink
X�Y � � f� � XI j �
t� � Y i� t � �g�
Evaluation at � de�nes a map q � holink
X�Y �� Y called holink evaluation�
Let X � Xm � Xm�� � 
 
 
 � X	 � X�� � � be a space with a �nite �ltration

by closed subsets� Then X i is the i�skeleton and the di�erence Xi � X i nX i�� is
called the i�stratum�
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A subset A of a �ltered space X is called a pure subset if A is closed and a union
of components of strata of X � For example� the skeleta are pure subsets�
The strati�ed homotopy link of Y in X � denoted holinks
X�Y � consists of all

� in holink
X�Y � such that �

�� ��� lies in a single stratum of X � The strati�ed
homotopy link has a natural �ltration with i�skeleton

holinks
X�Y �i � f� � holinks
X�Y � j �
�� � X ig�
The holink evaluation 
at �� restricts to a map q � holinks
X�Y �� Y �
If X is a �ltered space� then a map f � Z � A � X is stratum preserving along

A if for each z � Z� f
fzg �A� lies in a single stratum of X � In particular� a map
f � Z� I � X is a stratum preserving homotopy if f is stratum preserving along I �

De�nition ���� A �ltered space X is a manifold strati�ed space if the following
four conditions are satis�ed�


�� Manifold strata� X is a locally compact� separable metric space and each
stratum Xi is a topological manifold 
without boundary��


�� Forward tameness� For each k � i� the stratum Xi is forward tame in
Xi �Xk�


�� Normal �brations� For each k � i� the holink evaluation q � holink
Xi �
Xk� Xi�� Xi is a �bration�


�� Finite domination� For each i there exists a closed subset K of the
strati�ed homotopy link holinks
X�X i� such that the holink evaluation map
K � X i is proper� together with a stratum preserving homotopy

h � holinks
X�X i�� I � holinks
X�X i�

which is also �bre preserving over X i 
i�e�� qht � q for each t � I� such that
h	 � id and h�
holinks
X�X i�� � K�

�� Manifold stratified approximate fibrations

The de�nition of an approximate �bration 
as given in ����� was generalized in
���� to the strati�ed setting� Let X � Xm � 
 
 
 � X	 and Y � Y n � 
 
 
 � Y 	

be �ltered spaces and let p � X � Y be a map 
p is not assumed to be stratum
preserving�� Then p is said to be a strati�ed approximate �bration provided given
any space Z and any commuting diagram

Z
f����� X

�	

��y ��yp
Z � I

F����� Y

where F is a stratum preserving homotopy� there exists a strati�ed controlled so�
lution# i�e�� a map "F � Z � I � ��� �� � X which is stratum preserving along

I � ��� �� such that "F 
z� �� t� � f
z� for each 
z� t� � Z � ��� �� and the function
&F � Z�I� ��� ��� Y de�ned by &F jZ�I� ��� �� � p "F and &F jZ�I�f�g � F� idf�g
is continuous�
A strati�ed approximate �bration between manifold strati�ed spaces is a mani�

fold strati�ed approximate �bration if� in addition� it is a proper map 
i�e�� inverse
images of compact sets are compact��
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� Teardrop neighborhoods

Given spaces X � Y and a map p � X � Y �R� the teardrop of p 
see ��	�� is the
space denoted by X �p Y whose underlying set is the disjoint union X q Y with
the minimal topology such that


�� X � X �p Y is an open embedding� and

�� the function c � X �p Y � Y � 
�	��	� de�ned by

c
x� �



p
x�� if x � X


x��	�� if x � Y �

is continuous�

The map c is called the tubular map of the teardrop or the teardrop collapse� The
tubular map terminology comes from the smoothly strati�ed case 
see ���� �����
������ This is a generalization of the construction of the open mapping cylinder of

a map g � X � Y � Namely�
�
cyl
g� is the teardrop 
X � R� �g�id Y �

Theorem ���� If X and Y are manifold strati�ed spaces and p � X � Y � R is a
manifold strati�ed approximate �bration� then X �p Y is a manifold strati�ed space
with Y a pure subset


In this statement� Y � R and X �p Y are given the natural strati�cations�
The next result from ���� is a kind of converse to this proposition� First� some

more de�nitions� A subset Y of a space X has a teardrop neighborhood if there exist
a neighborhood U of Y in X and a map p � U n Y � Y � R such that the natural
function 
U n Y � �p Y � U is a homeomorphism� In this case� U is the teardrop
neighborhood and p is the restriction of the tubular map�

Theorem ��� �Teardrop Neighborhood Existence�� Let X be a manifold
strati�ed space such that all components of strata have dimension greater than ��
and let Y be a pure subset
 Then Y has a teardrop neighborhood whose tubular map

c � U � Y � 
�	��	�
is a manifold strati�ed approximate �bration


A complete proof of this result will be given in ����� but special cases are in ����
and ��	��
The next result from ���� concerns the classi�cation of neighborhoods of pure

subsets of a manifold strati�ed space� Given a manifold strati�ed space Y � a strat�
i�ed neighborhood of Y consists of a manifold strati�ed space containing Y as a
pure subset� Two strati�ed neighborhoods X�X � of Y are equivalent if there exist
neighborhoods U�U � of Y in X�X �� respectively� and a stratum preserving home�
omorphism h � U � U � such that hjY � id� A neighborhood germ of Y is an
equivalence class of strati�ed neighborhoods of Y �

Theorem ��� �Neighborhood Germ Classi�cation�� Let Y be a manifold
strati�ed space such that all components of strata have dimension greater than
�
 Then the teardrop construction induces a one�to�one correspondence from con�
trolled� stratum preserving homeomorphism classes of manifold strati�ed approxi�
mate �brations over Y � R to neighborhood germs of Y 
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�� Applications of Teardrop Neighborhoods

Teardrop neighborhoods can also be used in conjunction with the geometric
theory of manifold approximate �brations ���� to study the geometric topology of
manifold strati�ed pairs� Examples of results proved using teardrop technology are
stated in this section� Details will appear in �����

Theorem 
�� �Parametrized Isotopy Extension�� Let X be a manifold strati�
�ed space such that all components of strata have dimension greater than �� let Y be
a pure subset of X� let U be a neighborhood of Y in X� and let h � Y ��k � Y ��k

be a k�parameter stratum preserving isotopy
 Then there exists a k�parameter iso�
topy "h � X ��k � X ��k extending h and supported on U ��k


This generalizes results of Edwards and Kirby ���� Siebenmann ���� and Quinn
��	��
The next result is a topological analogue of Thom�s First Isotopy Theorem ����

and can be viewed as a �rst step towards a topological theory of topological stability�

Theorem 
�� �First Topological Isotopy�� Let X be a manifold strati�ed space
and let p � X � Rn be a map such that


i� p is proper�

ii� for each stratum Xi of X� pj � Xi � Rn is a topological submersion�

iii� for each t � Rn � the �ltration of X restricts to a �ltration of p��
t� giving

p��
t� the structure of a manifold strati�ed space such that all components
of strata have dimension greater than �


Then p is a bundle and can be trivialized by a stratum preserving homeomorphism�
that is� there exists a stratum preserving homeomorphism h � p��
�� � Rn � X
such that ph is projection


Here is a non�proper version of the preceding result�

Theorem 
�� �Non�proper First Topological Isotopy�� Let X be a manifold
strati�ed space and let p � X � Rn be a map such that


i� if � � X � ���	� is a proper map and p� � �� p � X � Rn � ���	�� then
the teardrop X �p� Rn is a manifold strati�ed space�


ii� for each stratum Xi of X� pj � Xi � Rn is a topological submersion�

iii� for each t � Rn � the �ltration of X restricts to a �ltration of p��
t� giving

p��
t� the structure of a manifold strati�ed space such that all components
of strata have dimension greater than �


Then p is a bundle and can be trivialized by a stratum preserving homeomorphism�
that is� there exists a stratum preserving homeomorphism h � p��
�� � Rn � X
such that ph is projection


��� Classifying manifold stratified approximate fibrations

Some applications of teardrop neighborhoods are combined with the material in
x� on bundles with mapping cylinder �bres in order to present a classi�cation of
manifold strati�ed approximate �brations� at least when the range is a manifold�
generalizing the classi�cation of manifold approximate �brations in ���� and ��
��
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For notation� let B be a connected i�manifold without boundary and let q � V �
Ri be a manifold strati�ed approximate �bration where all components of strata
of V have dimension greater than �� A strati�ed manifold approximate �bration
p � X � B has �bre germ q if there exists an embedding Ri � B such that pj �
p��
Ri � � Ri is controlled� stratum preserving homeomorphic to q# that is� there
exists a stratum preserving� level homeomorphism cyl
q�� cyl
pj � p��
Ri �� Ri �
where the mapping cylinders have the natural strati�cations�
The following result shows that �bre germs are essentially unique� For nota�

tion� let r � Ri � Ri be the orientation reversing homeomorphism de�ned by
r
x�� x�� � � � � xi� � 
�x�� x�� � � � � xi��
Theorem ����� Let p � X � B be a manifold strati�ed approximate �bration such
that all components of strata have dimension greater than �
 Let gk � Ri � B� k �
�� �� be two open embeddings
 Then pj � p��
g	
Ri ��� g	
Ri � is controlled� stratum
preserving homeomorphic to either pj � p��
g�
Ri ��� g�
Ri � or pj � p��
g�
Ri ���
rg�
Ri �


Proof
 The proof follows that of the corresponding result for manifold approxi�
mate �brations in ���� Cor� ���	�� The strati�ed analogues of the straightening
phenomena are consequences of the teardrop neighborhood results ����� ����� The
use of Siebenmann�s Technical Bundle Theorem is replaced with the non�proper
topological version of Thom�s First Isotopy Lemma in x�� �

There is a moduli space MSAF
B�q of all manifold strati�ed approximate ��
brations over B with �bre germ q� It is de�ned as a simplicial set with a typ�
ical k�simplex given by a map p � X � B � �k such that for each t � �k�
pj � p��
t�� B�ftg is a manifold strati�ed approximate �bration with �bre germ
q and there exists a stratum preserving homeomorphism p��
����k � X which is
�bre preserving over �k� 
There is also a technical condition giving an embedding
in an ambient universe# cf� ������
The proof of the next proposition follows that of the corresponding result for

manifold approximate �brations in ����� The necessary strati�ed versions of the
manifold approximate �bration tools are in ���� and ���� and follow from teardrop
technology�

Proposition ����� 		MSAF
B�q is in one�to�one correspondence with the set of
controlled� stratum preserving homeomorphism classes of strati�ed manifold approx�
imate �brations over B with �bre germ q


Let TOPlevels 
q� denote the simplicial group of self homeomorphisms of the map�
ping cylinder cyl
p� which preserve the mapping cylinder levels and are stratum
preserving with respect to the induced strati�cation of cyl
q�� Note that there is a

restriction homomorphism TOPlevels 
q�� TOPi�
Let �B � B denote the topological tangent bundle of B� Consider �B as an

open neighborhood of the diagonal in B � B so that �B � B is �rst coordinate
projection� As in x� we can form the simplicial set B�
q�TOP

level
s 
q� rel �B � B�

which we denote simply by B�
q�TOP
level
s 
q� rel �B��

The di�erential

d � MSAF
B�q � B�
q�TOP
level
s 
q� rel �B�
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is a simplicial map whose de�nition is illustrated on vertices as follows 
for higher
dimensional simplices� the construction is analogous# cf� ������ If p � X � B is a
vertex of MSAF
B�q � then form

idB �p � B �X � B � B

and let

�p � pj � E � p��
�B� � �B�

Thus� there is a commuting diagram

E
�p����� �B��y ��y

B
idB����� B�

It follows from the strati�ed straightening phenomena ���� that the local triviality
condition is satis�ed� so that the diagram is a vertex of

B�
q�TOP
level
s 
q� rel �B��

Once again the proof of the following result follows that of the corresponding man�
ifold approximate �bration result in ���� using the strati�ed results of ���� and
�����

Theorem ���� �MSAF Classi�cation�� The di�erential

d � MSAF
B�q � B�
q�TOP
level
s 
q� rel �B�

is a homotopy equivalence


Corollary ���	� Controlled� stratum preserving homeomorphism classes of strat�
i�ed manifold approximate �brations over B with �bre germ q are in one�to�one
correspondence with homotopy classes of lifts of the map � � B � BTOPi which
classi�es the tangent bundle of B� to BTOPlevels 
q��

BTOPlevels 
q���y
B

	����� BTOPi �

Proof
 Combine Theorem ����� Proposition ���� and Proposition ��
� �

Finally� observe that Corollary ���� can be combined with Theorem 
�� to give
a classi�cation of neighborhood germs of B with �xed local type�
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THE ASYMPTOTIC METHOD IN THE

NOVIKOV CONJECTURE

T�Kato

The famous Hirzebruch signature theorem asserts that the signature of a closed
oriented manifold is equal to the integral of the so called L�genus� An immediate
corollary of this is the homotopy invariance of � L
M�� �M � �� The L�genus is a
characteristic class of tangent bundles� so the above remark is a non�trivial fact�
The problem of higher signatures is a generalization of the above consideration�
Namely we investigate whether the higher signatures are homotopy invariants or
not� The problem is called the Novikov conjecture� The characteristic numbers are
closely related to the fundamental groups of manifolds�
There are at least two proofs of the signature theorem� One is to use the cobor�

dism ring� The other is to use the Atiyah�Singer index theorem� Recall that the
signature is equal to the index of the signature operators� The higher signatures
are formulated as homotopy invariants of bordism groups of B�� The problem was
solved using the Atiyah�Singer index theorem in many partial solutions� Here we
have the index�theoretic approach in mind when considering the higher signatures�
Roughly speaking� a higher signature is an index for a signature operator with
some coe cients� To interpret the number as a generalized signature� one consid�
ers homology groups with rational group ring coe cients� By doing surgery on the
homology groups� we obtain non degenerate symmetric form � � L
�� over the
group ring� It is called the Mishchenko�Ranicki symmetric signature� This element
is a homotopy invariant of manifolds� Mishchenko introduced Fredholm represen�
tations� obtaining a number �
F� from a Fredholm representation F and �� On
the other hand� one can construct a virtual bundle over K
�� �� from a Fredholm
representation� By pulling back the bundle through maps from the base mani�
folds to K
�� ��� we can make a signature operator with coe cients� Mishchenko
discovered the generalized signature theorem which asserts the coincidence of the
index of the operators and �
F�� Thus a higher signature coming from a Fredholm
representation is an oriented homotopy invariant�
In �CGM� the authors showed that all higher signatures come from Fredholm

representations for large class of discrete groups� including word hyperbolic groups�
They formulated the notion of a proper Lipschitz cohomology class in group coho�
mology� It corresponds to a Fredholm representation in K�theory� In fact for many
discrete groups� any class of group cohomology can be represented by a proper
Lipschitz cohomology class� Their method depends on the existence of �nite di�
mensional spaces of Q type K
�� ���
On the other hand for larger classes of discrete groups� we cannot expect existence

of such good spaces� In �G�� Gromov introduced a very large class of discrete groups�


�
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the quasi geodesic bicombing groups� This class is characterized by convexity of the
Cayley graph� Hyperbolic groups are contained in the class� For the class we cannot
ensure the existence of good spaces as above� Moreover it is unknown whether
Hn
�#Q� is zero for su ciently large n� To overcome this di culty� the following is
shown in �K�� We realize K
�� �� by in�nite dimensional space and approximate it
by a family of �nite dimensional spaces� By applying the method of �CGM� for �nite
dimensional spaces iteratively� it turns out that any cohomology class comes from
a Fredholm representation asymptotically� It su ces for the Novikov conjecture
because of �nite dimensionality of manifolds�

x� Geometric interpretation

To indicate the geometric features of higher signatures� let us consider signatures
of submanifolds
see�G���� Let � be a discrete group� M be a closed manifold and
f � M � K
�� �� be a smooth map� Let us assume that K
�� �� is realized by
a closed manifold V 
 dimM � dimV �� Then for a regular value m � V � the
cobordism class of W � f��
m� is de�ned uniquely up to homotopy class of f �
Moreover the Poincar�e dual class of �W � � H�
M� is f

�
�V �� where �V � � HdimV 
V �
is the fundamental cohomology class� Notice that the normal bundle ofW is trivial�
Thus

�
W � � � L
W �� �W � � � � L
M�� �W � � � � L
M�f�
�V ��� �M � � �

�
W � is a higher signature of M which we now de�ne as follows�

De�nition ���� Let M be a closed manifold and � be a discrete group� Then a
higher signature of M is a characteristic number

� L
M�f�
x�� �M � �

where f �M � K
�� �� is a continuous map and x � H�
�#Q��

It is conjectured that these characteristic numbers are all homotopy invariants�
Let us see another geometric interpretation� Let F � X �M be a smooth �ber

bundle overM and assume F is �k dimensional� Then the �at bundle induced from
the �bration H �M has a natural involution �� Thus H splits as H � H� �H�

and by the index theorem for families� it follows

�
X� � � L
M�ch
H� �H��� �M � � �

As a corollary� we see that the right hand side is a homotopy invariant of �ber
bundles over M
see�At���
It is not necessary to construct a �ber bundle corresponding to each higher

signature� To induce the homotopy invariance� we only need a �at bundle and
an involution over M � From the point of view� Lusztig succeeded in verifying
Novikov conjecture for free abelian groups by the analytic method 
�L��� Let Y
be a compact topological space and X be �k dimensional compact manifold� Let
� � Y � 	�
X�� U
p� q� be a family of U
p� q� representations of the fundamental
group of X � Then one can construct a vector bundle E over Y �X which is �at in
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the X direction� E is admitted a non degenerate hermitian form ��� and E splits
as E � E� �E�� Using the splitting� we obtain a family of quadratic forms

�y � H
k
X #E��Hk
X #E�� C �

Naturally there corresponds �
X� �� � K
Y � which is homotopy invariant of X �
Lusztig discovered the index theorem as follows� Let 	 � Y � X � Y be the
projection� Then

	�
L
X�ch
E� �E��� � ch
�
X� ����

In particular we can take as Y the representation space of the fundamental group of
X � In the special case of the free abelian group Zn� U
�� the representation space
is the dual torus which is topologically isomorphic to the torus Tn� In the case of
a single U
�� representation� one can only obtain the signature� However Lusztig

found the following� There exist bases faig and fbig of H��
Tn#Z� and H�n
 �Tn#Z�
such that

ch
�
X�L�� �
X
i

� L
X�f�
ai�� �X � � bi

where f � X � Tn induces an isomorphism of the fundamental groups� This is
enough to verify the Novikov conjecture for free abelian groups� In the case of
general noncommutative discrete groups� the representation space will be too com�
plicated and it will be very di cult to apply this method to general noncommutative
discrete groups�

x� Fredholm representation

Mishchenko discovered the in�nite dimensional version of the method of �at
vector bundles�

De�nition ���� Let � be a discrete group� Then a Fredholm representation of �
is a set 
H�� H�� ��� ��� F � where

�� H�� H� are Hilbert spaces�

�� F � H� � H� is a Fredholm map�

�� �i � �� U
Hi� Hi� is a unitary representation such that ��
��F � F��
�� is

a compact operator for any � � ��
Using a Fredholm representation� we can construct a virtual bundle overK
�� ��

as follows� From the condition 
��� we can construct an equivariant continuous map
f � E�� B
H�� H�� which satis�es

�� for some point x � E�� f
x� � F �

�� for any points x� y � E�� f
x�� f
y� is a compact operator�

Notice that f is unique up to homotopy� Then the virtual bundle is 
f � E���

H� � E��� H�� and we write

� � f Fredholm representations g� homotopy� Virtual bundles over B��
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Theorem ��� �Mishchenko�� Let f �M � B� be a continuous map
 Then

� L
M�f�
ch
�
F ���� �M � �

is an oriented homotopy invariant of M 


Let us interpret this theorem as an in�nite version of the one of Lusztig� By
doing surgery on the homology groups with local coe cient� we have the resulting
homology only on the middle dimension� Poincar�e duality on the homology gives a
symmetric form �� This is an element of the Wall L�group L
�� of the fundamen�
tal group �� represented by a group ring valued nondegenerate symmetric matrix�
If there is a unitary representation of �� then the matrix can be regarded as an
invertible self adjoint operator on an in�nite dimensional Hilbert space� The Fred�
holm operator F of a Fredholm representation decomposes into an operator valued
� by � matrix fFi�jgi�j���� corresponding to the decomposition of the Hilbert space
into positive and negative parts of the self adjoint operators� It turns out that the
diagonal parts F�� and F�� are also Fredholm operators and F��� F�� are compact
operators� This follows essentially from the almost commutativity of the unitary
representations and the Fredholm operator in the de�nition of Fredholm represen�
tation� Thus we obtain a number indexF�� � indexF��� Mishchenko discovered the
generalized signature theorem which asserts the coincidence of this number and the
characteristic number of the above theorem� The process is parallel to the signature
theorem in the case of the simply connected spaces�

x� Novikov conjecture for word hyperbolic groups

It is natural to ask how large ch�
�
 Fredholm representations �� is in H��
�#Q��
By a celebrated work by A�Connes� M�Gromov and H�Moscovici� it is shown that
if � is hyperbolic� then they occupy in H��
�#Q��
In some cases of discrete groups� Eilenberg�Maclane spaces are realized by 
com�

pact� smooth manifolds� In particular compact negatively curved manifolds them�
selves are Eilenberg�Maclane spaces� Hyperbolic groups are introduced by Gromov�
The class is characterized by the essential properties which are possessed by the
fundamental groups of compact negatively curved manifolds� Though the class is
very large� they have reasonable classifying spaces which are enough to work instead
of Eilenberg�Maclane spaces� at least for the Novikov conjecture� The spaces are
called Rips complexes�

Fact 
��
 Let � be a discrete group� Then there exists a family of �nite dimensional
simplicial complexes fPn
��g�
n� They satisfy the following�

�� � acts on each Pn
�� proper discontinuously with compact quotient�

�� if � is torsion free� then the action is also free�

�� P�
�� 
 
 
 
 
 Pn
�� 
 Pn��
�� � � � �

�� if � is hyperbolic� then Pn
�� is contractible for su ciently large n�

In particular� torsion free hyperbolic groups have B� represented by �nite di�
mensional simplicial complexes� In the following� we shall write "Pn�� as a tubular

neighborhood in an embedding Pn
���� � RN � "Pn�� is an open manifold with
the induced metric from RN � In the following� � is a hyperbolic group�
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Kasparov KK�groups�

Before explaining the method of �CGM�� we shall quickly review Kasparov�sKK�
theory� The KK�groups are used e�ectively to prove Novikov conjecture� KK is a
bifunctor from a pair of distinct spaces 
X�Y � to abelian groups which is covariant
on X and contravariant on Y � The KK�groups include both K�cohomology and
K�homology�
Roughly speaking K�homology consists of the set of Dirac operators on spaces�

Precisely an element of K	
X� is represented by 
M�E��� where

�� M is an even dimensional spinc manifold which need not be compact or

connected�

�� E is a complex vector bundle over M �

�� � is a proper map from M to X �
K	
X� is the set of the above triples quotiented by a certain equivalence relation�

It is dual to K�cohomology and the pairing is to take the index on twisted vector
bundles� Let S be the spinc vector bundle over M and DE � S� � E � S� � E
be the Dirac operator on M � Then the pairing of K theory is � F� 
M�E��� ��
indexDE
F �

Fact 
��
 There exists a Chern character isomorphism�

ch� � K	
X�� Q � H inf
�� 
X #Q�

by ��
ch
�
E�� td
M�� �M �� where H inf

� is the homology with locally �nite in�nite
support�
Roughly speaking KK
X�Y � is the set of sections over a family of elements of

K	
X� over Y � Thus if Y is a point�

KK�
X� pt� � K�
X��

There is an analytical interpretation of topological K�homology� Let C	
X� be the
set of the continuous functions on X vanishing at in�nity� C	
X� is C

� algebra

whose C� norm is to take pointwise supremum� The analytical K�homology �K
X�
is the set 
H	 �H�� �	� ��� T � quotiented by an equivalence relation� where

�� Hi is a Hilbert space�

�� �i � C	
X�� B
Hi� is a ��homomorphism�

�� T � H	 � H� is a bounded operator such that I � T �T � I � TT �� ��
a�T �

T�	
a�� are all compact operators�

The explicit map K	
X�� �K	
X� is to take L
� sections of twisted spinc vector

bundles� 
L�
M�S ��E�� DE � ��� Though DE is an unbounded operator� by making
pseudo di�erential calculus� we can construct a bounded operator� IfM is compact�

then it is DE
I �D�
EDE�

� �
� � As � is a proper map� it pulls back C	
X� to C	
M�

and the ��homomorphism is the multiplication by ��
a�� a � C	
X�� If X is

a point� then an element of �K	
X� is represented by a Fredholm operator over
Hilbert spaces� K	
 pt � is naturally isomorphic to Z by taking Fredholm indices�
KK
 pt � Y � is a family of Fredholm operators over Y � Thus

KK�
pt� Y � � K�
Y ��
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Now let us de�ne the KK�groups� First� let us recall the de�nition of the analytical
K homology 
��� 
��� 
�� and consider the family version� 
�� The set of sections over
the family of Hilbert spaces over Y admits a natural C	
Y ��module structure� 
��
As the ��homomorphism �i action is �berwise� it commutes with that of C	
Y ��

�� A family of compact operators will be formulated as an element of a norm
closure of �nite rank projections in the set of endomorphisms of the C	
Y ��module�
Soon we de�ne this precisely�

Let us consider the triple 
E� �� F � where

�� E is a Z��graded right C	
Y ��module with a C	
Y � valued inner product� It

is complete with respect to C� norm of C	
Y �� E is called a Hilbert module over
C	
Y ��

�� � is a degree � ��homomorphism from C	
X� to B
E� where B
E� is the

set of C	
Y ��module endomorphisms� C	
X� acts on E from the left�

�� F � B
E� is of degree � such that �F � F ���
a�� ��
a�� F � and 
F � � ���
a�

are all compact endomorphisms� A compact endomorphism is an element of B
E�
which lies in the closure of linear span of the rank one projections �x�y � B
E��
�x�y
z� � x � y� z �� We denote the set of compact endomorphisms by K
E�

If C	
Y � itself is considered as C	
Y ��module� then B
C	
Y �� is the set of
bounded continuous functions on Y � K
C	
Y �� is also C	
Y ��
Let us denote the set of the above triples 
E� �� F � by E
X�Y �� Notice that we

can replace C	
X� and C	
Y � by any C��algebras A� B and write E
A�B� for the
set of triples which satisfy the above 
��� 
��� 
�� replacing C	
X� by A and C	
Y �
by B�

Now let us introduce a homotopy equivalence relation as follows� 
E�� ��� F��
is equivalent to 
E�� ��� F�� if there exists 
E� �� F � � E
A�C
��� ��� B�� such that

E ��fiB� fi � �� 
fi��F � is isomorphic to 
Ei� �i� Fi� where fi � C
��� ��� B� � B is
the evaluation maps�

De�nition ���� KK
X�Y � � E
X�Y �� homotopy �

It turns out that KK
X�Y � is a group� KK
A�B� is de�ned similarly�
Notice that KK
 pt �Rn � is isomorphic to the K�homology of Rn with compact

support which is isomorphic to Z� The generator ofKK
 pt �Rn � is expressed using
Cli�ord algebra� Let n � �k be even� Then by identifying Rn with C k � any vector
in Rn acts on �C k by Cli�ord multiplication� Then the generator is

fC	
R
n ��C k �� F 
x� � x

� � jxj g

in KK
 pt �Rn ��
There is also equivariant KK�theory� Let A and B admit automorphisms of

�� If X and Y are � spaces� then C	
X� and C	
Y � have natural � actions� Let
E�
A�B� be the set of triples 
E� �� F � � E
A�B� such that there exists an action
of � on E which satisfy

�� g
a�b� � 
ga�
g��
gb�� � g�� g� � �� g � �� � � �

�� �
a�
gFg�� � F � is a compact endomorphism of E�

Homotopy equivalence is de�ned similarly�
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De�nition ��	� KK�
X�Y � � E�
X�Y �� homotopy �

Notice that KK�
pt� pt� is the set of Fredholm representations quotiented by
homotopy equivalence�
There is a very important operation in KK�theory� called the intersection prod�

uct pairing 
see �Bl��

KK�
X�Y ��KK�
Y� Z�� KK�
X�Z��

Lipschitz geometry�

In the essential step� �CGM� constructs an element � � KK�
pt� "Pn�� Roughly
speaking� the construction is as follows�
First of all� using the contractibility of "Pn� one constructs a map which induces

Poincar�e duality�
� � "Pn ��

"Pn � T "Pn���

Namely for 
 � H�
 "Pn��#Q�� z � H inf
� 
 "Pn��#Q��

�� � H inf
 "Pn��#Q� � H�
Pn��#Q�

� � 
z� �
Z
�z�� �


��

Proposition ��
�CGM�� If � is �berwise proper Lipschitz� then one can construct
�


Let � � "Pn��
"Pn � T "Pn�� � "Pn���RN be the �berwise proper Lipschitz map

which induces Poincar�e duality� Let us take e � "Pn and restrict � on "Pn � e� Then

� � fC	
 "Pn��CK �� �
x�

� � j�
x�j g

inKK�
 pt � "Pn� is the desired one� If � is not �berwise Lipschitz� then the above
� does not de�ne an element of the equivariantKK�group� To ensure �F����F is
a compact endomorphism� it is enough to see that j�F 
x���� � F 
x�j goes to zero
when x goes to in�nity� This follows� by simple calculation� from the Lipschitzness
of ��

A priori� we only have a �berwise proper map which induces Poincar�e duality�
It is natural to try to deform the map so that it becomes �berwise proper Lipschitz
by a proper homotopy� To do so� �rst using the hyperbolicity� we have the following
map�

Proposition ���� Let us take a su�ciently large n � � and a su�ciently small
constant � � � � �
 The there exists a map

F � "Pn ��
"Pn � "Pn ��

"Pn

such that
��� F is �berwise � Lipschitz�
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��� there exists a �berwise proper homotopy Ft which connects F to the identity


Remark 
��
 The existence of such F implies that "Pn must be contractible�

Let us take su ciently large r and put D � f
x� y� � "Pn��
"Pn# d
x� y� � rg� By

modifying � slightly� we may assume that ���� � F j�F���D� � �j�F���D��
Let us put

Bi � f
x� y� � "Pn ��
"Pn#F

i
x� y� � F � F � � � F 
x� y� � Dg

Di � Bi �Bi���

Let us de�ne
�� � "Pn ��

"Pn � T "Pn

��jDi
� ��i��� � F i���

It is not di cult to see that �� is �berwise proper Lipschitz and it is �berwise
proper homotopic to ��

Using the Kasparov intersection product� we have a map

� � KK�
 "Pn� pt �� KK�
 pt � pt �

�
x� � �� x�

Theorem ����CGM�� There exists the following commutative diagram


KK�
 "Pn
	��Q�
�������� K��
B����ych� ��ych�

H inf
�� 


"Pn
�����
PD����� H��
B��

where PD is the Poincare duality


In the case of cohomology groups of odd degrees� we can reduce to the case of
even ones by considering Z� �� Thus
Corollary ��
� Let � be a hyperbolic group and f �M � K
�� �� be a continuous
map
 Then � L
M�f�
x�� �M � � is an oriented homotopy invariant for any x �
H�
�#Q�
 Namely let p �M� �M� be an oriented homotopy equivalence
 Then

� L
M��
p � f��
x�� �M�� ��� L
M��f
�
x�� �M�� � �

Notice that in the case of hyperbolic groups� we have used the fact that K
�� ��
was realized by a �nite dimensional simplicial complex over Q� On the other hand�
we cannot expect it on more large classes of discrete groups� in particular quasi
geodesic bicombing groups which we shall treat in the next section� For the class�
we cannot expect even that the ranks of cohomology over Q are �nite�
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x� Quasi geodesic bicombing groups

In �ECHLPT�� a very large class of discrete groups is de�ned� The elements
of the class are called combing groups� It contains hyperbolic groups and quasi
geodesic bicombing groups de�ned later�

Theorem 	���ECHLPT�� If � is a combable group� then K
�� �� space can be
realized by a CW complex such that the number of cells in each dimension is �nite


As an immediate corollary of this� we can see that dimHn
�#Q� � 	 for each
n� Using this fact� in the following construction� we shall make an analogy of the
case of hyperbolic groups on spaces which approximates K
�� ���
A set of generators of a discrete group determines a � dimensional simplicial

complex called Cayley graph G
��� G
�� has a natural metric� Notice that the
universal covering spaces of non positively curved manifolds have the convex prop�
erty� With this in mind� we shall de�ne the following�

De�nition 	���G��� If � has the following properties� we call it a bicombing
group� Let us �x a generating set of �� Then there exists a continuous and �
equivariant map

S � �� �� ��� ��� G
��

such that for some k � �� C � �� it satis�es

S
��� ��� �� � ��� S
��� ��� �� � ���

d
St
��� ���� St
�
�
�� �

�
��� � k
td
��� �

�
�� � 
�� t�d
��� �

�
��� � C�

Though S
��� ��� � � ��� �� � G
	� connects �� and ��� we shall require bal�
anced curves�

De�nition 	���G��� Let � be bicombing� We say that � is bounded if for some
k � �� C � �� it satis�es

d
St
��� ���� St�
��� ���� � kjt� t�jd
��� ��� � C

De�nition 	�	� � � bounded bicombing is quasi geodesic if for every �� a su �
ciently small � and � � t � s � t � � � �� S
e� �� t� �� S
e� �� s�� Moreover let us
denote a unit speed path of S
e� �� � by �
 �

�
 � ��� jS
e� �� �j�� G
��� Then for d
��� ��� � ��

Ud
�
� � �
�� � suptd
�
�
t�� �
�
t�� � C�

jS
e� �� �j � kj�j� C

Furthermore� for some A � �� B � �� St satis�es
d
�� St
�� �

��� � Atd
�� ����B�

Using S� it is easy to prove the following lemma�
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Lemma 	�
�Al�� If � is a quasi geodesic bicombing group� then each Rips complex
Pi
�� is contractible in Pn
�� for large n � n
i�


From this� we see that for a torsion free quasi geodesic bicombing group ��
P�
�� � limiPi
�� is a realization of E�� Unlike to the case of hyperbolic groups�

we cannot make F � "Pn ��
"Pn
�� � "Pn ��

"Pn
�� as before� because Pn is not
contractible in itself� However we have the following family of maps�

Proposition 	��� Let us take an arbitrary family of small constants f�ig	
i� � ��
� � � �i �� �i�� 
 
 
 �� �	 � �
 Then for some family of Rips complexes fPn�i�g	
i�
there exists a family of maps

Fi � "Pn�	� ��
"Pn�i� � "Pn�	� ��

"Pn�i���

such that
��� Fi is �berwise �i Lipschitz�
��� Fi is �berwise proper homotopic to the inclusion


Let �	 � "Pn�	���
"Pn�	� � RN be a �berwise proper map which induces Poincar�e

duality� Using the above family of maps� we can construct the following commuta�
tive diagram of maps�

"P	 ��
"P	

������� RN�

incl

��y ��yincl
"P	 ��

"P�
������� RN�

incl

��y ��yincl
� � � ����� � � �

To produce a proper Lipschitz map� we need to control growth of these maps
at in�nity� In this case� we can construct �i which satisfy the following� There
exist families of constants fCig� faig such that the Lipschitz constant of �i on
Ni
r� � f
x� y�jx � "P	� y � "Pi� di
x� y� � rg� for su ciently large r� is bounded by
CiH
air� where H is a Lipschitz function on ���	��
Proposition 	��� Using these maps� we have

�� � "Pn�	� ��
"Pn�	� � R�

which is �berwise proper homotopic to �
 Moreover let

pr � R� � RN � N � dim "Pn�	��

Then pr � �� is �berwise proper Lipschitz


Let us recall that homology commutes with spaces under the direct limit opera�
tion� Thus H�
P���� � limnH�
Pn����With the fact that the rank of HN 
Pn���
is �nite for every N � we have
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Lemma 	��� Let us take any large N 
 Then for � � N � there exists n such that

i� � H�
Pn��#Q� � H�
P���#Q�

is surjective where i � Pn
	��	 � P�
	��	 is the inclusion


As before� we can construct � � KK�
 pt � "Pn��

Theorem 	�
� The following diagram commutes


KK�
 "Pn� pt �
�������� K��
B����ych� ��yi��ch�

H inf
�� 


"Pn���
PD����� H��
Pn����

We cannot construct the homotopy between pr��� and �	 through the map to
RN � Let �K � N and Z � "Pn�	��Pn�	�� To show the commutativity of the diagram�
we construct a homotopy between the following two elements in KK
 pt � Z��

��	

� � fC	
Z��CK �� F	
x� � �	
x�

� � j�	
x�j g


 pr � ����

� � fC	
Z��CK �� F�
x� � pr � ��
x�
� � jpr � ��
x�j g�

Let �N � �CN � Then there are natural inclusions �N 
 �N�� 
 � � � which
preserves the metrics� Let ��C�� be the in�nite dimensional Hilbert space which
is the completion of the union� By adding degenerate elements� we can express

��	

� � fC	
Z� ��C� ��� F	 �G	g

 pr ���

�

� � fC	
Z� ��C� ��� F� �G�g

Using the proper homotopy between �	 and pr��� through maps to R� � we can
construct the homotopy between the elements in KK
 pt � Z��

Corollary 	���� Let � be a torsion free quasi geodesic bicombing group
 Then for
arbitrary large N and x � H��
B�#Q�� there exists a Fredholm representation F
such that x� ch
�
F �� � H�
B�#Q�� � � N 


Corollary 	���� For torsion free quasi geodesic bicombing groups� the higher sig�
natures are oriented homotopy invariants
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A NOTE ON EXPONENTIALLY NASH G

MANIFOLDS AND VECTOR BUNDLES

Tomohiro Kawakami

Department of Liberal Arts� Osaka Prefectural
College of Technology� Neyagawa Osaka ���� Japan

�� Introduction�
Nash manifolds have been studied for a long time and there are many brilliant

works 
e�g� ���� ���� ����� ����� ����� ����� ����� ������

The semialgebraic subsets of Rn are just the subsets of Rn de�nable in the
standard structure Rstan �� 
R� ���� 
� �� �� of the �eld R of real numbers �����
However any non�polynomially bounded function is not de�nable in Rstan� where
a polynomially bounded function means a function f � R �� R admitting an
integer N � N and a real number x	 � R with jf
x�j � xN � x � x	� C� Miller
���� proved that if there exists a non�polynomially bounded function de�nable in
an o�minimal expansion 
R� ���� 
� �� �� ����� of Rstan� then the exponential function
exp � R �� R is de�nable in this structure� Hence Rexp �� 
R� ���� 
� exp� �� �� is
a natural expansion of Rstan� There are a number of results on Rexp 
e�g� �����
����� ����� ����� ��	��� Note that there are other structures with properties similar
to those of Rexp 
���� �	�� ������

We say that a Cr manifold 
� � r � �� is an exponentially Cr Nash manifold
if it is de�nable inRexp 
See De�nition ����� Equivariant such manifolds are de�ned
in a similar way 
See De�nition ��	��
In this note we are concerned with exponentially Cr Nash manifolds and equi�

variant exponentially Cr Nash manifolds�

Theorem ���� Any compact exponentially Cr Nash manifold 
� � r �	� admits
an exponentially Cr Nash imbedding into some Euclidean space


Note that there exists an exponentially C� Nash manifold which does not admit
any exponentially C� imbedding into any Euclidean space �
�� Hence an exponen�
tially C� Nash manifold is called affine if it admits an exponentially C� Nash
imbedding into some Euclidean space 
See De�nition ����� In the usual Nash cat�
egory� Theorem ��� is a fundamental theorem and it holds true without assuming
compactness of the Nash manifold �����
Equivariant exponentially Nash vector bundles are de�ned as well as Nash ones


See De�nition ��
��

�		� Mathematics Subject Classi�cation� ��P��� ��P�
� ��P��� 
�S�
� 
�S�
� 

A���

��
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Theorem ���� Let G be a compact a�ne Nash group and let X be a compact a�ne
exponentially C� Nash G manifold with dimXG � �
 Then for any C�G vector
bundle � of positive rank over X� there exist two exponentially C� Nash G vector
bundle structures of � such that they are exponentially C� Nash G vector bundle
isomorphic but not exponentially C� Nash G vector bundle isomorphic


Theorem ���� Let G be a compact a�ne exponentially Nash group and let X be
a compact C�G manifold
 If dimX � � and dimXG � �� then X admits two
exponentially C� Nash G manifold structures which are exponentially C� Nash G
di�eomorphic but not exponentially C� Nash G di�eomorphic


In the usual equivariant Nash category� any C� Nash G vector bundle isomor�
phism is a C� Nash G one� and moreover every C� Nash G di�eomorphism is a
C� Nash G one� Note that Nash structures of C�G manifolds and C�G vector
bundles are studied in ��� and ���� respectively�
In this note� all exponentially Nash Gmanifolds and exponentially Nash G vector

bundles are of class C� and manifolds are closed unless otherwise stated�

�� Exponentially Nash G manifolds and exponentially Nash G vector
bundles�
Recall the de�nition of exponentially Nash G manifolds and exponentially Nash

G vector bundles �
� and basic properties of exponentially de�nable sets and expo�
nentially Nash manifolds �
��

De�nition �
�
 
�� An Rexp�term is a �nite string of symbols obtained by repeated
applications of the following two rules�
��� Constants and variables are Rexp�terms�
��� If f is an m�place function symbol of Rexp and t�� � � � � tm are Rexp�terms� then
the concatenated string f
t�� � � � � tm� is an Rexp�term�

�� An Rexp�formula is a �nite string of Rexp�terms satisfying the following three
rules�
��� For any two Rexp�terms t� and t�� t� � t� and t� � t� are Rexp�formulas�
��� If � and � are Rexp�formulas� then the negation  �� the disjunction � ! �� and
the conjunction � � � are Rexp�formulas�
��� If � is an Rexp�formula and v is a variable� then 
"v�� and 
�v�� are Rexp�
formulas�

�� An exponentially definable set X 
 Rn is the set de�ned by an Rexp�formula

with parameters��

�� Let X 
 Rn and Y 
 Rm be exponentially de�nable sets� A map f � X �� Y
is called exponentially definable if the graph of f 
 Rn � Rm is exponentially
de�nable�

On the other hand� using ���� any exponentially de�nable subset of Rn is the
image of an Rn�m�semianalytic set by the natural projection Rn � Rm �� Rn for
some m� Here a subset X of Rn is called Rn�semianalytic if X is a �nite union of
sets of the following form�

fx � Rn jfi
x� � �� gj
x� � �� � � i � k� � � j � lg�
where fi� gj � R�x� � � � � � xn� exp
x��� � � � � exp
xn���
The following is a collections of properties of exponentially de�nable sets 
cf�

�
���
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Proposition ��� �cf� ����� ��� Any exponentially de�nable set consists of only
�nitely many connected components


Let X 
 Rn and Y 
 Rm be exponentially de�nable sets

���The closure Cl
X� and the interior Int
X� of X are exponentially de�nable

�
� The distance function d
x�X� from x to X de�ned by d
x�X� � inffjjx�yjjjy �
Xg is a continuous exponentially de�nable function� where jj
jj denotes the standard
norm of Rn 

��� Let f � X �� Y be an exponentially de�nable map
 If a subset A of X is
exponentially de�nable then so is f
A�� and if B 
 Y is exponentially de�nable
then so is f��
B�

�	� Let Z 
 Rl be an exponentially de�nable set and let f � X �� Y and h � Y ��
Z be exponentially de�nable maps
 Then the composition h � f � X �� Z is also
exponentially de�nable
 In particular for any two polynomial functions f� g � R ��
R� the function h � R � ff � �g �� R de�ned by h
x� � eg�x��f�x� is exponentially
de�nable

��� The set of exponentially de�nable functions on X forms a ring

��� Any two disjoint closed exponentially de�nable sets X and Y 
 Rn can be
separated by a continuous exponentially de�nable function
 �

Let U 
 Rn and V 
 Rm be open exponentially de�nable sets� A Cr 
� � r � ��
map f � U �� V is called an exponentially Cr Nash map if it is exponentially
de�nable� An exponentially Cr Nash map g � U �� V is called an exponentially Cr

Nash diffeomorphism if there exists an exponentially Cr Nash map h � V �� U
such that g � h � id and h � g � id� Note that the graph of an exponentially Cr

Nash map may be de�ned by an Rexp�formula with quanti�ers�

Theorem ��� ��	�� Let S�� � � � � Sk 
 Rn be exponentially de�nable sets
 Then
there exists a �nite family W � f�d�g of subsets of Rn satisfying the following four
conditions�
��� �d� are disjoint� Rn � ���d�d� and Si � �f�d�j�d� � Si �� �g for � � i � k


��� Each �d� is an analytic cell of dimension d


�
� �d� � �d� is a union of some cells �e
 with e � d


��� If �d���
e

 � W��e
 
 �d� � �d� then 
�d���

e

� satis�es Whitney�s conditions �a�

and �b� at all points of �e

 �

Theorem ��� allows us to de�ne the dimension of an exponentially de�nable set
E by

dimE � maxfdim�j� is an analytic submanifold contained in Eg�

Example �
�
 
�� The C� function � � R �� R de�ned by

�
x� �



� if x � �
e����x� if x � �

is exponentially de�nable but not exponentially Nash� This example shows that
an exponentially de�nable C� map is not always analytic� This phenomenon does
not occur in the usual Nash category� We will use this function in section ��
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�� The Zariski closure of the graph of the exponential function exp � R �� R in
R� is the whole space R� � Hence the dimension of the graph of exp is smaller than
that of its Zariski closure�

�� The continuous function h � R �� R de�ned by

h
x� �



ex�n if n � x � n� �

en���x if n� � � x � n� �
� for n � �Z�

is not exponentially de�nable� but the restriction of h on any bounded exponentially
de�nable set is exponentially de�nable� �

De�nition �
	
 Let r be a non�negative integer� 	 or ��

�� An exponentially Cr Nash manifold X of dimension d is a Cr manifold
admitting a �nite system of charts f�i � Ui �� Rdg such that for each i and j �i
Ui�
Uj� is an open exponentially de�nable subset of Rd and the map �j����i j�i
Ui�Uj� �
�i
Ui � Uj� �� �j
Ui � Uj� is an exponentially Cr Nash di�eomorphism� We call
these charts exponentially Cr Nash� A subset M of X is called exponentially
definable if every �i
Ui �M� is exponentially de�nable�

�� An exponentially de�nable subset of Rn is called an exponentially Cr Nash
submanifold of dimension d if it is a Cr submanifold of dimension d of Rn � An
exponentially Cr 
r � �� Nash submanifold is of course an exponentially Cr Nash
manifold �
��

�� Let X 
resp� Y � be an exponentially Cr Nash manifold with exponentially Cr

Nash charts f�i � Ui �� Rngi 
resp� f�j � Vj �� Rmgj�� A Cr map f � X �� Y
is said to be an exponentially Cr Nash map if for any i and j �i
f

��
Vj� �Ui� is

open and exponentially de�nable in Rn � and that the map �j �f ����i � �i
f
��
Vj��

Ui� �� Rm is an exponentially Cr Nash map�

�� Let X and Y be exponentially Cr Nash manifolds� We say that X is exponen�
tially Cr Nash diffeomorphic to Y if one can �nd exponentially Cr Nash maps
f � X �� Y and h � Y �� X such that f � h � id and h � f � id�

�� An exponentially Cr Nash manifold is said to be affine if it is exponentially
Cr Nash di�eomorphic to some exponentially Cr Nash submanifold of Rl �

	� A group G is called an exponentially Nash group 
resp� an affine exponen�
tially Nash group� if G is an exponentially Nash manifold 
resp� an a ne expo�
nentially Nash manifold� and that the multiplication G�G �� G and the inversion
G �� G are exponentially Nash maps�

De�nition �
�
 Let G be an exponentially Nash group and let � � r � ��

�� An exponentially Cr Nash submanifold in a representation of G is called an
exponentially Cr Nash G submanifold if it is G invariant�

�� An exponentially Cr Nash manifold X is said to be an exponentially Cr Nash
G manifold if X admits a G action whose action map G�X �� X is exponentially
Cr Nash�

�� Let X and Y be exponentially Cr Nash G manifolds� An exponentially Cr Nash
map f � X �� Y is called an exponentially Cr Nash G map if it is a G map� An
exponentially Cr Nash G map g � X �� Y is said to be an exponentially Cr Nash
G diffeomorphism if there exists an exponentially Cr Nash G map h � Y �� X
such that g � h � id and h � g � id�
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�� We say that an exponentially Cr Nash Gmanifold is affine if it is exponentially
Cr Nash G di�eomorphic to an exponentially Cr Nash G submanifold of some
representation of G�

We have the following implications on groups�

an algebraic group��an a ne Nash group��an a ne exponentially Nash group
�� an exponentially Nash group �� a Lie group �

Let G be an algebraic group� Then we obtain the following implications on G
manifolds�

a nonsingular algebraic G set �� an a ne Nash G manifold

�� an a ne exponentially Nash G manifold �� an exponentially

Nash G manifold �� a C�G manifold �

Moreover� notice that a Nash G manifold is not always an a ne exponentially Nash
G manifold�
In the equivariant exponentially Nash category� the equivariant tubular neigh�

borhood result holds true �
��

Proposition ��� ���� Let G be a compact a�ne exponentially Nash group and let
X be an a�ne exponentially Nash G submanifold possibly with boundary in a repre�
sentation ' of G
 Then there exists an exponentially Nash G tubular neighborhood

U� p� of X in '� namely U is an a�ne exponentially Nash G submanifold in '
and the orthogonal projection p � U �� X is an exponentially Nash G map
 �

De�nition �
�
 Let G be an exponentially Nash group and let � � r � ��

�� A CrG vector bundle 
E� p�X� of rank k is said to be an exponentially Cr

Nash G vector bundle if the following three conditions are satis�ed�

a� The total space E and the base space X are exponentially Cr Nash G
manifolds�


b� The projection p is an exponentially Cr Nash G map�

c� There exists a family of �nitely many local trivializations fUi� �i � Ui�

Rk �� p��
Ui�gi such that fUigi is an open exponentially de�nable
covering of X and that for any i and j the map ���i ��j j
Ui �Uj��Rk �

Ui � Uj�� Rk �� 
Ui � Uj�� Rk is an exponentially Cr Nash map�

We call these local trivializations exponentially Cr Nash�

�� Let � � 
E� p�X� 
resp� � � 
F� q�X�� be an exponentially Cr Nash G vector
bundle of rank n 
resp� m�� Let fUi� �i � Ui � Rn �� p��
Ui�gi 
resp� fVj � �j �
Vj � Rm �� q��
Vj�gj� be exponentially Cr Nash local trivializations of � 
resp�
��� A CrG vector bundle map f � � �� � is said to be an exponentially Cr Nash
G vector bundle map if for any i and j the map 
�j�

�� � f � �ij
Ui � Vj� � Rn �

Ui � Vj� � Rn �� 
Ui � Vj� � Rm is an exponentially Cr Nash map� A CrG

section s of � is called exponentially Cr Nash if each ���i � sjUi � Ui �� Ui � Rn
is exponentially Cr Nash�

�� Two exponentially Cr Nash G vector bundles � and � are said to be exponen�
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tially Cr Nash G vector bundle isomorphic if there exist exponentially Cr Nash G
vector bundle maps f � � �� � and h � � �� � such that f �h � id and h � f � id�

Recall universal G vector bundles 
cf� �����

De�nition �
�
 Let ' be an n�dimensional representation of G and B the represen�
tation map G �� GLn
R� of '� Suppose that M
'� denotes the vector space of
n� n�matrices with the action 
g�A� � G�M
'� �� B
g���AB
g� �M
'�� For
any positive integer k� we de�ne the vector bundle �
'� k� � 
E
'� k�� u�G
'� k��
as follows�

G
'� k� � fA �M
'�jA� � A�A � A�� T rA � kg�
E
'� k� � f
A� v� � G
'� k��'jAv � vg�
u � E
'� k� �� G
'� k� � u

A� v�� � A�

where A� denotes the transposed matrix of A and TrA stands for the trace of A�
Then �
'� k� is an algebraic set� Since the action on �
'� k� is algebraic� it is an
algebraic G vector bundle� We call it the universal G vector bundle associated
with ' and k� Since G
'� k� and E
'� k� are nonsingular� �
'� k� is a Nash G
vector bundle� hence it is an exponentially Nash one�

De�nition �
��
 An exponentially Cr Nash G vector bundle � � 
E� p�X� of rank
k is said to be strongly exponentially Cr Nash if the base space X is a ne and
that there exist some representation ' of G and an exponentially Cr Nash G map
f � X �� G
'� k� such that � is exponentially Cr Nash G vector bundle isomorphic
to f�
�
'� k���

Let G be a Nash group� Then we have the following implications on G vector
bundles over an a ne Nash G manifold�

a Nash G vector bundle �� an exponentially Nash G vector bundle �� a

C�G vector bundle� and

a strongly Nash G vector bundle �� a strongly exponentially Nash G vector

bundle �� an exponentially Nash G vector bundle�

�� Proof of results�
A subset of Rn is called locally closed if it is the intersection of an open set 
 Rn

and a closed set 
 Rn �
To prove Theorem ���� we recall the following�

Proposition ��� ���� Let X 
 Rn be a locally closed exponentially de�nable set
and let f and g be continuous exponentially de�nable functions on X with f��
�� 

g��
��
 Then there exist an integer N and a continuous exponentially de�nable
function h � X �� R such that gN � hf on X
 In particular� for any compact
subset K of X� there exists a positive constant c such that jgN j � cjf j on K �

Proof of Theorem �
�
 Let X be an exponentially Cr Nash manifold� If dim X � �
then X consists of �nitely many points� Thus the result holds true�
Assume that dim X � �� Let f�i � Ui �� Rmgli�� be exponentially Cr Nash

charts of X � Since X is compact� shrinking Ui� if necessarily� we may assume that
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every �i
Ui� is the open unit ball of Rm whose center is the origin� Let f be

the function on Rm de�ned by f
x� � jjxjj � �� Then f��
�� � �i
Ui� � �i
Ui��
Hence replacing the graph of ��f on �i
Ui� by �i
Ui�� each �i
Ui� is closed in Rm �
Consider the stereographic projection s � Rm �� Sm 
 Rm � R� Composing �i
and s� we have an exponentially C� Nash imbedding ��i � �i
Ui� �� Rm

�

such that

the image is bounded in Rm
�

and

��i � �i
Ui�� ��i � �i
Ui�
consists of one point� say �� Set

� � Rm
� �� Rm

�

� �
x�� � � � � xm�� � 

m�X
j��

x�kj x�� � � � �
m�X
j��

x�kj xm���

gi � Ui �� Rm
�

� � � ��i � �i�
for a su ciently large integer k� Then gi is an exponentially C

r Nash imbedding of
Ui into Rm

�

� Moreover the extension "gi � X �� R of gi de�ned by "gi � � on X�Ui�
We now prove that "gi is of class exponentially C

r Nash� It is su cient to see this on
each exponentially Cr Nash coordinate neighborhood of X � Hence we may assume
that X is open in Rm � We only have to prove that for any sequence fajg�j�� in Ui
convergent to a point of X � Ui and for any � � Nm with j�j � r� fD�gi
aj�g�j��
converges to �� On the other hand gi � 


Pm�

j�� �
�k
ij �i�� 
 
 


Pm�

j�� �
�k
ij �im��� where

��i � �i � 
�i�� � � � � �im� �� Each �ij is bounded� and every f�ij
ai�g�i�� converges to
zero� and

jD�
��kij �is�j � j
X


�
��


�+�

+�+��D
��kij D

�isj �

C
X


������
l��
���
i ��	

j��k�l�ij D
��ij 
 
 
D
l��ijD

�isj � C �j��k�
ij j��

where C�C � are constants� and � is the positive continuous exponentially de�nable
function de�ned by

�
x� � maxf��
X


������
l��
��

jD
��ij
x� 
 
 
D
l��ij
x�D

�is
x�jg�

De�ne

�ij
x� �



minfj�ij
x�j� ���
x�g on Ui

� on X � Ui�
"�ij �



�ij on Ui

� on X � Ui�

Then �ij and "�ij are continuous exponentially de�nable functions on X such that

X � Ui 
 ���ij 
�� �
"�ij
��

���

Hence by Proposition ��� we have j "�ij l
��

j � d�ij on some open exponentially de�n�
able neighborhood V of X � Ui in X for some integer l��� where d is a constant�
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On the other hand� by the de�nition of �ij j��ij j � �� Hence the above argument
proves that

jD�
��kij �is�j � c�j��k�r�l��ij j
on Ui � V � where c� is a constant and we take k such that �k � r � l�� � �� Hence
each "gi is of class exponentially Cr Nash� It is easy to see that

lY
i��

"gi � X �� Rlm
�

is an exponentially Cr Nash imbedding� �

By the similar method of ���� we have the following�

Theorem ��� ���� Let G be a compact a�ne exponentially Nash group and let X
be a compact a�ne exponentially Nash G manifold

��� For every C�G vector bundle � over X� there exists a strongly exponentially
Nash G vector bundle � which is C�G vector bundle isomorphic to �

��� For any two strongly exponentially Nash G vector bundles over X� they are
exponentially Nash G vector bundle isomorphic if and only if they are C	G vector
bundle isomorphic
 �

We prepare the following results to prove Theorem ����

Proposition ��� ���� Let M be an a�ne exponentially Nash G manifold in a
representation ' of G

��� The normal bundle 
L� q�M� in ' realized by

L � f
x� y� �M �'jy is orthogonal to TxMg� q � L ��M� q
x� y� � x

is an exponentially Nash G vector bundle

��� If M is compact� then some exponentially Nash G tubular neighborhood U of M
in ' obtained by Proposition �
� is exponentially Nash G di�eomorphic to L
 �

Proposition ��	 ���� Let G be a compact a�ne exponentially Nash group and let
� � 
E� p� Y � be an exponentially Nash G vector bundle of rank k over an a�ne
exponentially Nash G manifold Y 
 Then � is strongly exponentially Nash if and
only if E is a�ne
 �

Lemma ��
� Let D� and D� be open balls of Rn which have the same center x	�
and let a �resp
 b� be the radius of D� �resp
 D�� with a � b
 Suppose that A and
B are two real numbers
 Then there exists a C� exponentially de�nable function
f on Rn such that f � A on D� and f � B on Rn �D�


Proof
 We can assume that A � �� B � � and x	 � ��
At �rst we construct such a function when n � �� Then we may assume that

D� � 
�a� a� andD� � 
�b� b� be open intervals� Recall the exponentially de�nable
C� function � de�ned in Example ���� The function � � R �� R de�ned by

�
x� � �
b� x��
b � x��
�
b� x��
b � x� � �
x� � a���
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is the desired function� Therefore f � Rn �� R� f
x� � �
jxj� is the required
function� where jxj denotes the standard norm of Rn � �

proof of Theorem �
�
 By Theorem ��� we may assume that � is a strongly expo�
nentially C� Nash G vector bundle� We only have to �nd an exponentially C� Nash
G vector bundle � which is exponentially C� Nash G vector bundle isomorphic to
� but not exponentially C� Nash G vector bundle isomorphic to ��
As well as the usual equivariant Nash category� XG is an exponentially Nash G

submanifold of X � Take an open exponentially de�nable subset U of X such that
�jU is exponentially C� Nash vector bundle isomorphic to the trivial bundle and
that XG � U �� �� Since dimXG � �� there exists a one�dimensional exponentially
Nash G submanifold S of U which is exponentially Nash di�eomorphic to the unit
circle S� in R� � Moreover there exist two open G invariant exponentially de�nable
subsets V� and V� of U such that V��V� � S and V��V� consists of two open balls Z�
and Z�� We de�ne the exponentially C

� Nash G vector bundle � � �� 
E� r� V� �V��
over V� � V� to be the bundle obtained by the coordinate transformation

g�� � V� � V� �� GL
,�� g�� �



I on Z�


� � ��I on Z��

where I denotes the unit matrix� � � � is su ciently small and , stands for the
�ber of �jU � This construction is inspired by the proof of ����
 �����
Let �i � Vi�, �� p��
Vi�� i � �� � be exponentially NashG coordinate functions

of � �� Consider an extension of the exponentially C� Nash section f on S�V� de�ned
by ���� � f
x� � 
x� I�� If we extend f through Z�� then the analytic extension "f

to S � V� satis�es �
��
� � "f � 
x� I�� x � S � V�� However the analytic extension "f to

S �V� through Z� satis�es �
��
� � "f � 
x� ��
�� ��I�� Thus the smallest analytic set

containing the graph of f spins in�nitely over S� Hence � �jS is not exponentially
C� Nash G vector bundle isomorphic to �jS� By Theorem ��� � �jS is not strongly
exponentially C� Nash� Thus the exponentially C� Nash G vector bundle � over
X obtained by replacing �jV� � V� by � � is not exponentially C� Nash G vector
bundle isomorphic to ��
On the other hand� by Lemma ��� we can construct an exponentially C� Nash

G map H from a G invariant exponentially de�nable neighborhood of U � XG in
U to GL
,� such that H jZ� � 
� � ��I and H � I outside of some G invariant
exponentially de�nable neighborhood of Z�� Since � is su ciently small� using this
map� we get an exponentially C� Nash G vector bundle isomorphism � �� �� �

Proof of Theorem �


 By the proof of Theorem � 
�� ���� X is C�G di�eomorphic
to some a ne exponentially Nash G manifold� Hence we may assume that X is an
a ne exponentially C� Nash G manifold�
Since XG is an exponentially C� Nash G submanifold of X � there exists an

exponentially Nash G tubular neighborhood 
T� q� of XG in X by Proposition ����
Moreover we may assume that T is exponentially C� Nash G di�eomorphic to the
total space of the normal bundle � of XG in X because of Proposition ���� Note
that � is a strongly exponentially C� Nash G vector bundle over XG and that each
�ber is a representation of G� Take an open G invariant exponentially de�nable
subset U ofXG such that �jU is exponentially C� Nash G vector bundle isomorphic
to the trivial bundle U � ,� where , denotes the �ber of �jU �
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By the proof of Theorem ���� there exists an exponentially C� Nash G vector
bundle �� over U such that �� is not exponentially C� Nash G vector bundle iso�
morphic to �jU and that there exists an exponentially C� Nash G vector bundle
isomorphism H � �jU �� �� such that H is the identity outside of some open G
invariant exponentially de�nable set�
Replacing the total space of �jU by that of ��� we have an exponentially C�

Nash G manifold Y which is not exponentially C� Nash G di�eomorphic to X �
Moreover using H � one can �nd an exponentially C� Nash G di�eomorphism from
X to Y � �

Note that Y is not exponentially C� Nash G a ne but exponentially C� Nash
G a ne by Proposition ����

	� Remarks�
It is known in ��� that every compact Lie group admits one and exactly one

algebraic group structure up to algebraic group isomorphism� Hence it admits an
a ne Nash group structure� Notice that all connected one�dimensional Nash groups
and locally Nash groups are classi�ed by ��	� and ����� respectively� In particular�
the unit circle S� in R� admits a nona ne Nash group structure�
But the analogous result concerning nona ne exponentially Nash group struc�

tures of centerless Lie groups does not hold�

Remark 	��� Let G be a compact centerless Lie group
 Then G does not admit
any nona�ne exponentially Nash group structure


Proof
 Let G� be an exponentially Nash group which is isomorphic to G as a Lie
group� Then the adjoint representation Ad � G� �� Gln
R� is exponentially de�n�
able by the similar method of Lemma ��� ���� and it is C� � where n denotes the
dimension of G� Hence Ad is an exponentially Nash one and its kernel is the center
of G�� Therefore the image G$ of Ad is an a ne exponentially Nash group and Ad
is an exponentially Nash group isomorphism from G� to G$� �

It is known that any two disjoint closed semialgebraic sets X and Y in Rn can
be separated by a C� Nash function on Rn ��
�� namely there exists a C� Nash
function f on Rn such that

f � � on X and f � � on Y�

The following is a weak equivariant version of Nash category and exponentially
Nash category�

Remark 	��� Let G be a compact a�ne Nash �resp
 a compact a�ne exponen�
tially Nash � group
 Then any two disjoint closed G invariant semialgebraic �resp

disjoint closed G invariant exponentially de�nable� sets in a representation ' of G
can be separated by a G invariant continuous semialgebraic �resp
 a G invariant
continuous exponentially de�nable� function on '


Proof
 By the distance d
x�X� of x betweenX is semialgebraic 
resp� exponentially
de�nable�� Since G is compact� d
x�X� is equivariant� Hence F � ' �� R� F 
x� �
d
x� Y �� d
x�X� is the desired one� �
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Remark 	��� Under the assumption of �
�� if one of the above two sets is com�
pact� then they are separated by a G invariant entire rational function on '� where
an entire rational function means a fraction of polynomial functions with nowhere
vanishing denominator


Proof
 Assume that X is compact and Y is noncompact� Let s � ' �� S 
 '� R
be the stereographic projection and let S � ' � f	g� Since X is compact� s
X�
and s
Y � � f	g are compact and disjoint� Applying Remark ���� we have a G
invariant continuous semialgebraic 
resp� a G invariant continuous exponentially
de�nable� function f on '�R� By the classical polynomial approximation theorem
and Lemma ��� ���� we get a G invariant polynomial F on ' � R such that F jS
is an approximation of f � Since s
X� and s
Y � � f	g are compact� F � s is the
required one� �

Remark 	�	� Let X 
 Rn be an open �resp
 a closed� exponentially de�nable set

Suppose that X is a �nite union of sets of the following form�

fx � Rn jf�
x� � 
 
 
 � fi
x� � �� g�
x� � �� � � � � gj
x� � �g�


resp
 fx � Rn jf�
x� � 
 
 
 � fi
x� � �� g�
x� � �� � � � � gj
x� � �g� �
where f�� � � � � fi and g�� � � � � gj are exponentially Nash functions on Rn 
 Then X is
a �nite union of sets of the following form�

fx � Rn jh�
x� � �� � � � � hk
x� � �g�


resp
 fx � Rn jh�
x� � �� � � � � hk
x� � �g� �
where h�� � � � � hi are exponentially Nash functions on Rn 


Note that any exponentially de�nable set in Rn can be described as a �nite union
of sets of the following form �
��

fx � Rn jF�
x� � 
 
 
 � Fs
x� � �� G�
x� � �� � � � � Gt
x� � �g�

Here each of F�� � � � � Fs and G�� � � � � Gt is an exponentially Nash function de�ned on
some open exponentially de�nable subset of Rn � however its domain is not always
the whole space Rn �
We de�ne expn
x� for n � N and x � R by exp	
x� � x and expn��
x� �

exp
expn
x��� The following is a bound of the growth of continuous exponentially
de�nable functions

Proposition 	�
 ���� Let F be a closed exponentially de�nable set in Rk and let
f � F �� R be a continuous exponentially de�nable function
 Then there exist
c � �� n�m � N such that

jf
x�j � c
� � expn
jjxjjm�� for any x � F�

where jj 
 jj denotes the standard norm of Rk 
 �

Proof of Remark �
�
 It su ces to prove the result when X is open because the
other case follows by taking complements�
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Let

B � fx � Rn jf�
x� � 
 
 
 � fu
x� � �� g�
x� � �� � � � � gv
x� � �g�
where all fi and all gj are exponentially Nash functions on Rn � Set f �� f���
 
 
�f�u
and g
x� ��

Qv
i��
jgi
x�j�gi
x��� On Rn�X � g
x� � � if f
x� � �� By Proposition

��� there exists an integer N and a continuous exponentially de�nable function h
on Rn �X such that gN � hf on Rn �X � By Proposition ��� we have some c � R
and some m�n � N such that jh
x�j � c
� � expn
jjxjjm� on Rn �X � De�ne B� �
fx � Rn jcf
x�
� � expn
jjxjjm�� � 
�m

Qm
i�� gi
x��

N � g�
x� � �� � � � � gm
x� � �g�
Then B 
 B� 
 X � Therefore replacing B by B�� we have the required union� �
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ON FIXED POINT DATA OF SMOOTH ACTIONS ON SPHERES

Masaharu Morimoto

We report results obtained jointly with K� Pawa-lowski�
There are two fundamental questions about smooth actions on manifolds� Let

G be a �nite group and M a manifold�

Question �� Which manifolds F can be the G��xed point sets of G�actions onM �
i�e� MG � F *

Question �� WhichG�vector bundles � over F can be theG�tubular neighborhoods

i�e� G�normal bundles� of F �MG in M*

If � can be realized as a subset of M in the way above� we say that 
F� �� occurs as
the G��xed point data inM � If for a real G�moduleW withWG � �� 
F� ���WM �
occurs as the G��xed point data in M then we say that 
F� �� stably occurs as the
G��xed point data in M � These questions were studied by B� Oliver �O�� in the
case where G is not of prime power order and M is a disk or a Euclidean space�
The topic of the current talk is the case where G is an Oliver group and M is a
sphere�
Let G be a �nite group not of prime power order� A G�action on M is called

P�proper if MP � MG for any Sylow subgroup P of G� There are necessary
conditions for 
F� �� to stably occur as the G��xed point data of a P�proper G�
action on a sphere�


F�� 
Oliver Condition� �
F � # �
M� mod nG 
where nG is the integer called
Oliver�s number �O����


B�� 
Product Bundle Condition� �F � � � � in gKO
F ��


B�� 
Smith Condition� For each prime p and any Sylow p�subgroup P of G�

�F � � � � in gKOP 
F ��p��

By Oliver �O��� Conditions 
F��� 
B�� and 
B�� are also necessary�su cient condi�
tions for 
F� �� to stably occur as the G��xed point data in a disk� By �O��� nG is
equal to � if and only if there are no normal series P �H�G such that jP j � ps� H�P
is cyclic� and jG�H j � qt 
s� t � ��� A group G with nG � � is called an Oliver
group� Clearly any nonsolvable group is an Oliver group� A nilpotent group is an
Oliver group if and only if it has at least three noncyclic Sylow subgroups� In the
case where G is an Oliver group� Condition 
F�� provides no restriction�
We begin the preparation for our su cient conditions� For a �nite group G and

a prime p� let Gp denote the minimal normal subgroup of G such that G�Gp is of

��
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p�power order 
possibly Gp � G�� Let L
G� denote the set of all subgroups H of G
such that H � Gp for some prime p� Let P
G� denote the set of all subgroups P
of G such that jP j is a prime power 
possibly jP j � ��� A G�action on M is said to
be 
P �L��proper if the action is P�proper and if any connected component of XH


H � L
G�� does not contain a connected component of MG as a proper subset� If
G is an Oliver group then the G�action on

V 
G� � 
R�G� � R� �
M
pnjGj


R�G�Gp �� R�

is 
P �L��proper 
�LM��� A �nite group G is said to be admissible if there is a real
G�module V such that dimV P � � dimV H for any P � P
G� and any H � G with
H � P � and dim V H � � for any H � L
G��

Theorem 
M�M��M� Yanagihara �MY������ Let G be an Oliver group
 If G� � G
or Gp �� G for at least � distinct odd primes then G is admissible
 In particular�
an Oliver group G is admissible in each case� G is nilpotent� G is perfect


The symmetric group of degree 	 is not admissible


K� H� Dovermann�M� Herzog recently proved that Sn 
n � 	� are admissible�

Our main result is�

Theorem A� Let G be an admissible Oliver group 
resp
 an Oliver group� 
 Let
F be a closed manifold 
resp
 a �nite discrete space� and let � be a real G�vector
bundle over F such that dim �H � � whenever H � L
G�
 Then the following

���
�� are equivalent�


�� 
F� �� stably occurs as the G��xed point data of a 
P �L��proper G�action on a
sphere



�� 
F� �� stably occurs as the G��xed point data in a disk



�� �M � � satis�es 
B���
B��


A �nite group not of prime power order belongs to exactly one of the following
six classes 
�O����

A� G has a dihedral subquotient of order �n for a composite integer n�

B� G �� A and G has a composite order element conjugate to its inverse�

C� G �� A � B� G has a composite order element and the Sylow ��subgroups are
not normal in G�

C�� G has a composite order element and the Sylow ��subgroup is normal in G�

D� G has no elements of composite order and the Sylow ��subgroups are not normal
in G�

D�� G has no elements of composite order and the Sylow ��subgroup is normal in
G�
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Corollary B� Let G be a nontrivial perfect group and F a closed manifold
 Then
F occurs as the G��xed point set of a P�proper G�action on a sphere if and only if
F occurs as the G��xed point set in a disk 
in other words�

G � A� there is no restriction


G � B� cR
��F �� � cH 
�KSp
F �� � Tor
 eK
F ��
G � C� ��F � � rC 
 eK
F �� � Tor
gKO
F ��

G � D� ��F � � Tor
gKO
F ��
 �

Theorem C� Let G be a nilpotent Oliver group and F a closed manifold
 Then
the following 
���
�� are equivalent



�� F occurs as the G��xed point set of a P�proper G�action on a sphere



�� �F is stably complex



�� F occurs as the G��xed point set of a G�action on a disk


Our basic methods are�


�� An extension of the method of equivariant bundles in �O�� 
with modi�cations��


�� The equivariant thickening of �P��


�� The equivariant surgery results of �M�����
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SOME RESULTS ON KNOTS AND LINKS IN ALL DIMENSIONS
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An �oriented� �ordered� m�component n��dimensional� link is a smooth� oriented
submanifold L � fK�� � � � �Kmg of Sn��� which is the ordered disjoint union of m
manifolds� each PL homeomorphic to the standard n�sphere� 
If m � �� then L is
called a knot�� We say that m�component n�dimensional links� L	 and L�� are �link�

�concordant or �link��cobordant if there is a smooth oriented submanifold eC�fC�

� � � � �Cmg of Sn�� � ��� ��� which meets the boundary transversely in 
 eC� is PL
homeomorphic to L	 � ��� �� and meets Sn�� � flg in Ll 
l � �� ���

We work in the smooth category�

x�
Let S�� and S

�
� be ��spheres embedded in the ��sphere S

� and intersect transversely�
Then the intersection C is a disjoint collection of circles� Thus we obtain a pair of
��links C in S�i � and a pair of ��knots S

�
i in S��

Conversely let 
L�� L�� be a pair of ��links and 
X�� X�� be a pair of ��knots� It is
natural to ask whether 
L�� L�� is obtained as the intersection of X� and X��

In this paper we give a complete answer to the above question�

De�nition� 
L�� L�� X�� X�� is called a quadruple of links if the following conditions

��� 
�� and 
�� hold�

�� Li � 
Ki�� � � � �Kimi

� is an oriented ordered mi�component ��dimensional link

i � �� ��� 
�� m� � m�� 
�� Xi is an oriented ��knot�

De�nition�A quadruple of links 
L�� L�� X�� X�� is said to be realizable if there exists
a smooth transverse immersion f � S��

�
S�� � S� satisfying the following conditions�


�� f jS�i is a smooth embedding and de�nes the ��knot Xi
i � �� �� in S��

�� For C � f
S��� � f
S���� the inverse image f

��
C� in S�i de�nes the ��link Li
i �

This research was partially suppported by Research Fellowships of the Promotion of Science for
Young Scientists�
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�� ��� Here� the orientation of C is induced naturally from the preferred orientations
of S�� � S

�
� � and S�� and an arbitrary order is given to the components of C�

The following theorem characterizes the realizable quadruples of links�

Theorem ���� A quadruple of links 
L�� L�� X�� X�� is realizable if and only if 
L�� L��
X�� X�� satis�es one of the following conditions �i� and �ii�


�i� Both L� and L� are proper links� and

Arf
L�� � Arf
L���

�ii� Neither L� nor L� is proper� and

lk
K�j � L� �K�j� # lk
K�j � L� �K�j� mod � for all j�

Let f � S� � S� be a smooth transverse immersion with a connected self�intersec�
tion C in S�� Then the inverse image f��
C� in S� is a knot or a ��component link�
For a similar realization problem� we have�

Theorem ����
��� All ��component links are realizable as above

��� All knots are realizable as above


Remark� By Theorem ��� a quadruple of links 
L�� L�� X�� X�� with K� being the
trivial knot and K� being the trefoil knot is not realizable� But by Theorem ���� the
two component split link of the trivial knot and the trefoil knot is realizable as the
self�intersection of an immersed ��sphere�

x�
We discuss the high dimensional analogue of x��

De�nition� 
K��K�� is called a pair of n�knots if K� and K� are n�knots�

K��K�� X�� X�� is called a quadruple of n�knots and 
n � ���knots or a quadruple
of 
n� n����knots if K� and K� constitute a pair of n�knots 
K��K�� and X� and X�

are di�eomorphic to the standard 
n� ���sphere�

De�nition� A quadruple of 
n� n����knots 
K��K�� X�� X�� is said to be realizable
if there exists a smooth transverse immersion f � Sn���

�
Sn��� � Sn�� satisfying the

following conditions�


�� f jSn��i de�nes Xi 
i������


�� The intersection � � f
Sn��� ��f
Sn��� � is PL homeomorphic to the standard
sphere�


�� f��
�� in Sn��i de�nes an n�knot Ki 
i � �� ���

A pair of n�knots 
K��K�� is said to be realizable if there is a quadruple of 
n� n����
knots 
K��K�� X�� X�� which is realizable�

The following theorem characterizes the realizable pairs of n�knots�
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Theorem ���� A pair of n�knots 
K��K�� is realizable if and only if 
K��K��
satis�es the condition that�����

K��K�� is arbitrary if n is even�

Arf
K�� � Arf
K�� if n � �m� ��

�
K����
K�� if n � �m� ��

�m � ��m � Z�


There exists a mod � periodicity in dimension similar to the periodicity of high�
dimensional knot cobordism and surgery theory� 
�CS���� and �L������

We have the following results on the realization of a quadruple of 
n� n����knots�

Theorem ���� A quadruple of �n� n� ���knots T � 
K��K�� X�� X�� is realizable if
K� and K� are slice


Kervaire proved that all even dimensional knots are slice 
�Ke��� Hence we have�

Corollary ���� If n is even� an arbitrary quadruple of �n� n����knots T � 
K��K�� X��
X�� is realizable


In order to prove Theorem ���� we introduce a new knotting operation for high
dimensional knots� high dimensional pass�moves� The ��dimensional case of De�nition
��� is discussed on p���	 of �K���

De�nition� Let 
�k � ���knot K be de�ned by a smooth embedding g � ��k�� ��
S�k��� where ��k�� is PL homeomorphic to the standard 
�k � ���sphere� 
k �
��� Let Dk��

x �f
x�� � � � � xk���j �x�i� �g and Dk��
y �f
y�� � � � � yk���j �y�i� �g� Let

Dk��
x 
r��f
x� � � � � � xk���j �x�i� r�g and Dk��

y 
r��f
y� � � � � � yk���j �y�i� r�g� A
local chart 
U� �� of S�k�� is called a pass�move�chart of K if it satis�es the following
conditions�


�� �
U� �� R�k��� 
�� ���Dk��
x �Dk��

y


�� �
g
S�k��� � U� � �f ��g �Dk��
x � 
Dk��

y 
 �� �� q �f ��g � 
Dk��
x 
 �� ��Dk��

y �

Let gU � �
�k�� �� S�k�� be an embedding such that�


�� gjf��k�� � g��
U�g � gU jf��k�� � g��
U�g� and

�� �
gU 
�

�k��� � U� � �f ��g �Dk��
x � 
Dk��

y 
 �� �� q
�f ��g � 
Dk��

x 
 �� �� 
Dk��
y �Dk��

y 
 �� ���

� �� �� � �� �� 
Dk��
x 
 �� �� 
Dk��

y 
 �� ��

� �f ��g � 
Dk��
x 
 �� ��Dk��

y 
 �� �g�
Let KU be the 
�k����knot de�ned by gU � Then we say that KU is obtained from K
by the �high dimensional� pass�move in U 
 We say that 
�k � ���knot K and K � are
�high dimensional� pass�move equivalent if there exist 
�k � ���knots K�� � � � �Kq��

and pass�move charts Ui 
i � �� � � � � q� of K� such that 
�� K� � K� Kq�� � K �� and

�� Ki�� is obtained from Ki by the high dimensional pass�move in Ui�

High dimensional pass�moves have the following relation with the Arf invariant and
the signature of knots�
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Theorem ��	� For simple 
�k � ���knots K� and K�� the following two conditions
are equivalent
 �k � �
�


�� K� is pass�move equivalent to K�



�� K� and K� satisfy the condition that



Arf
K�� � Arf
K�� when k is even

�
K�� � �
K�� when k is odd


See �L�� for simple knots�

Theorem ��
� For 
�k����knots K� and K�� the following two conditions are equiv�
alent
 �k � �
�


�� There exists a 
�k � ���knot K� which is pass�move equivalent to K� and
cobordant to K�



�� K� and K� satisfy the condition that



Arf
K�� � Arf
K�� when k is even

�
K�� � �
K�� when k is odd


The case k � � of Theorem ��� follows from �K����K���

x�
We discuss the case when three spheres intersect in a sphere�

Let Fi be closed surfaces 
i � �� �� � � � � ��� A surface�
F�� F�� � � � � F���link is a
smooth submanifold L � 
K��K�� � � � �K�� of S

�� where Ki is di�eomorphic to Fi� If
Fi is orientable we assume that Fi is oriented andKi is an oriented submanifold which
is orientation preserving di�eomorphic to Fi� If � � �� we call L a surface�F��knot�

An 
F�� F���link L � 
K��K�� is called a semi�boundary link if

�Ki� � � � H�
S
� �Kj #Z� 
i �� j�

following �S��

An 
F�� F���link L � 
K��K�� is called a boundary link if there exist Seifert hyper�
surfaces Vi for Ki 
i � �� �� such that V� � V����

An 
F�� F���link 
K��K�� is called a split link if there exist B
�
� and B�

� in S� such
that B�

��B�
� � � and Ki 
 B�

i �

De�nition� Let L� � 
K���K���� L� � 
K���K���� and L� � 
K���K��� be surface�
links� 
L�� L�� L�� is called a triple of surface�links if Kij is di�eomorphic to Kji�


i� j��
�����
�����
������ 
Note that the knot type of Kij is di�erent from that of
Kji��

De�nition� Let L� � 
K���K���� L� � 
K���K���� and L� � 
K���K��� be surface�
links� A triple of surface�links 
L�� L�� L�� is said to be realizable if there exists a trans�
verse immersion f � S�� q S�� q S�� � S
 such that 
��f jS�i is an embedding
i��������
and 
�� 
f��
f
S�i � � f
S�j ��� f

��
f
S�i � � f
S�k�� � in S�i is Li� 
 
i� j� k��
�������

������� 
��������

Note� If 
L�� L�� L�� is realizable� thenKij are orientable and are given an orientation
naturally� From now on we assume that� when we say a triple of surface�links� the
triple of surface�links consists of oriented surface�links�

We state the main theorem�
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Theorem ���� Let Li �i � �� �� �� be semi�boundary surface�links
 Suppose the triple
of surface�links 
L�� L�� L�� is realizable
 Then we have the equality



L�� � 

L�� � 

L�� � ��

where 

Li� is the Sato�Levine invariant of Li


Refer to �S� for the Sato�Levine invariant� Since there exists a triple of surface�links

L�� L�� L�� such that 

L����� 

L���� and 

L���� 
�R� and �S��� we have�

Corollary ���� Not all triples of oriented surface�links are realizable


We have su cient conditions for the realization�

Theorem ���� Let Li �i � �� �� �� be split surface�links
 Then the triple of surface�
links 
L�� L�� L�� is realizable


Theorem ��	� Suppose Li are 
S
�� S���links
 If Li are slice links�i � �� �� ��� then

the triple of surface�links 
L�� L�� L�� is realizable


It is well known that there exists a slice�link which is neither a boundary link nor
a ribbon link� Hence we have�

Corollary ��
� There exists a realizable triple of surface�links 
L�� L�� L�� such that
neither Li are boundary links and all Li are semi�boundary links


Besides the above results� we prove the following triple are realizable�

Theorem ���� There exists a realizable triple of surface�links 
L�� L�� L�� such that
neither Li are semi�boundary links


Here we state�

Problem ���� Suppose 

L���

L���

L����
 Then is the triple of surface�links

L�� L�� L�� realizable�

Using a result of �O�� we can make another problem from Problem 
���

Problem ���� Is every triple of 
S�� S���links realizable�

Note� By Theorem ���� if the answer to Problem 
�� is negative� then the answer to
an outstanding problem� %Is every 
S�� S���link slice*$ is %no�$ 
Refer �CO� to the
slice problem��

x	
An �oriented� n��dimensional� knot K is a smooth oriented submanifold of Rn��

� R which is PL homeomorphic to the standard n�sphere� We say that n�knots K�

and K� are equivalent if there exists an orientation preserving di�eomorphism f �
Rn�� � R � Rn�� � R such that f
K���K� and f jK�

� K� � K� is an orientation
preserving di�eomorphism� Let 	� Rn�� � R � Rn�� be the natural projection
map� A subset P of Rn�� is called the projection of an n�knot K if there exists an
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orientation preserving di�eomorphism 
 � X� K and a smooth transverse immersion
� � X � Rn�� such that 	jK � 
�� and 	jK � 

K���
X��P � The singular point
set of the projection of an n�knot is the set f x � 	jK 
K� j � 
	jK� ��
x�� �� g�
It is well�known that the projection of any ��dimensional knot is the projection of

a ��knot equivalent to the trivial knot� This fact is used in a way to de�ne the Jones
polynomial and in another way to de�ne the Conway�Alexander polynomial�

We consider the following problem�

Problem� 
�� Let K be an n�knot di�eomorphic to the standard sphere� Let P be
the projection of K� Is P the projection of an n�knot equivalent to the trivial knot*


�� Furthermore� suppose that the singular point set of P consists of double points�
Is P the projection of an n�knot equivalent to the trivial knot*

The author proved that the answer to Problem 
�� in the case of n � � is negative
and hence that the answer to Problem 
�� in the case of n � � is also negative� We
prove�

Theorem 	��� Let n be any integer greater than two
 There exists an n�knot K such
that the projection P has the following properties



�� P is not the projection of any knot equivalent to the trivial knot


�� The singular point set of P consists of double points


�� K is di�eomorphic to the standard sphere


Note� Problem 
�� in the case of n � � remains open� Dr� Taniyama has informed
that the answer to Problem 
�� in the case of n � � is positive� that the proof is easy�
but that he has not published the proof�

x

We have the following outstanding open problems�

Problem ���� Classify n�links up to link concordance for n � �


Problem ���� Is every even dimensional link slice�

Problem ���� Is every odd dimensional link concordant to �a sublink of� a homology
boundary link�

The author has modi�ed Problem 
�� to formulate the following Problem 
��� We
consider the case of ��component links� Let L � 
K��K�� 
 Sn�� 
 Bn�� be a
�m�link 
 �m � ��� By Kervaire�s theorem in �Ke� there exist D�m��

i 
i � �� ��

embedded in B�m�� such that D�m��
i � S�m���
D�m��

i �Ki� Then D�m��
� and

D�m��
� intersect mutually in general� Furthermore D�m��

� � D�m��
� in D�m��

i de�nes

�m� ���link�
Problem �	�� Can we remove the above intersection D�m��

� � D�m��
� by modifying

embedding of D�m��
� and D�m��

� �

If the answer to Problem 
�� is positive� the answer to Problem 
�� is positive�

Here we make another problem from Problem 
���
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Problem �
�� What is obtained as a pair of 
�m � ���links �D�m��
� � D�m��

� in

D�m��
� � D�m��

� � D�m��
� in D�m��

� � by modifying embedding of D�m��
� and D�m��

� �

We have the following theorem� which is an answer to Problem 
���

Theorem 
��� For all ��component �m�link L � 
K��K�� �m � ��� there exist
D�m��
� and D�m��

� as above such that each of 
�m � ���links D�m��
� � D�m��

� in

D�m��
� and D�m��

� � D�m��
� in D�m��

� is the trivial knot


We have the following Theorem ���� We say that n�dimensional knots� K and K ��
are �link��concordant or �link��cobordant if there is a smooth oriented submanifold C
of Sn��� ��� ��� which meets the boundary transversely in 
C� is PL homeomorphic to
L	���� ��� and meets Sn���flg in Ll 
l � �� ��� Then we call C a concordance�cylinder
of K and K ��

Theorem 
��� For all ��component n�link L � 
K��K�� �n � ��� there exist a
boundary link L� � 
K �

��K
�
�� satisfying that K

�
i is concordant to Ki and a concordance�

cylinder



C�

C�

of



K�

K �
�

and



K�

K �
�

such that each of 
n� ���links� C� � C� in C�

and C� � C� in C�� is the trivial knot


When n is even� Theorem ��� is Theorem ���� Because all even dimensional bound�
ary links are slice�

By the following exciting theorem of Cochran and Orr� when n is odd� Theorem
��� is best possible from a viewpoint�

Theorem� �CO� Not all ��component odd dimensional links are concordant to bound�
ary links


x�
Let Dn

� � D
n
� � D

n
� be submanifolds of S

n�� di�eomorphic to the n�disc such that
Int 
Dn

i � � Int 
Dn
j ��� 
for i �� j� and 
Dn

�� 
Dn
��
D

n
� � Then Dn

� � Dn
� � Dn

�

is called an n�dimensional ��curve in Rn�� � The set of the constituent knots of an
n�dimensional ��curve � in Rn�� is a set of three n�knots in Sn��� which are made
from Dn

� � Dn
� � D

n
� � Dn

� � and Dn
� � Dn

� �

The de�nitions in the case of the PL category are written in �Y��

Problem� Take any set of three n�knots� Is it the set of the constituent knots of an
n�dimensional ��curve*

In �Y� it is proved that if K�� K�� and K� are ribbon n�knots� then the set

K��K��K�� is the set of the constituent knots of an n�dimensional ��curve�

We discuss the case of non�ribbon knots� The following theorems hold both in the
smooth category and in the PL category�

We have the following theorems�
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Theorem ���� Let n be any positive integer
 Let K� and K� be trivial knots

There exist an n�dimensional ��curve � in Rn�� and a non�ribbon knot K� such
that 
K��K��K�� is the set of the constituent knots of the n�dimensional ��curve � in
Rn�� 


Furthermore we have the following�

Theorem ���� Let m be any odd positive integer
 Let K� and K� be trivial knots


��� There exist m�dimensional ��curves � in Rm�� and a non�ribbon and non�slice
knot K� such that 
K��K��K�� is the set of the constituent knots of the m�dimensional
��curve � in Rm�� 


��� There exist m�dimensional ��curves � in Rm�� and a non�ribbon and slice knot
K� such that 
K��K��K�� is the set of the constituent knots of the m�dimensional
��curve � in Rm�� 


We have the following�

Theorem ���� When n � �m� �
m � ��� there exists a set of three n�knots which
is never the set of the constituent knots of any ��curve


The above problem remains open�

x�
We use Theorem ��� in x� to give an answer to a problem of Fox�
In �F� Fox submitted the following problem about ��links� Here� note that %slice

link$ in the following problem is now called %ordinary sense slice link�$ and %slice
link in the strong sense$ in the following problem is now called %slice link$ by knot
theorists�

Problem �� of �F�� Find a necessary condition for L to be a slice link# a slice link
in the strong sense�

Our purpose is to give some answers to the former part of this problem� The latter
half is not discussed here� The latter half seems discussed much more often than the
former half� See e�g� �CO�� �L��� etc�

We review the de�nition of ordinary sense slice links and that of slice links� which
we now use�

We suppose m�component ��links are oriented and ordered�

Let L � 
K�� � � � �Km� be an m�component ��link in S� � 
B�� L is called a slice
��link� which is %a slice link in the strong sense$ in the sense of Fox� if there exist
��discs D�

i 
i � �� � � � �m� in B� such that D�
i � 
B� �
D�

i � D
�
i � D�

j��
i �� j�� and



D�
�� � � � � 
D

�
m� in 
B� de�nes L�

Take a ��link L in S�� Take S� and regard S� as 
R� � R� � f	g� Regard the
��sphere S� as R� � f	g in S�� L is called an ordinary sense slice ��link� which is %a
slice link$ in the sense of Fox� if there exists an embedding f � S� �� R� �R such that
f is transverse to R� �f�g and f
S�� � 
R� � f�g� in R� �f�g de�nes L� Suppose f
de�nes a ��knot X � Then L is called a cross�section of the ��knot X �



SOME RESULTS ON KNOTS AND LINKS IN ALL DIMENSIONS 
	

From now on we use the terms in the ordinary sense now current�

Ordinary sense slice ��links have the following properties�

Theorem ���� Let L be a ��dimensional ordinary sense slice link
 Then the follow�
ings hold



�� L is a proper link


�� Arf
L� � �


x�
Let K� and K� be smooth submanifolds of S

n�� di�eomorphic to an n�dimensional
closed smooth manifold M � The notion of cobordism between K� and K� is de�ned
naturally� A Seifert surface of Ki and a Seifert matrix of Ki are de�ned naturally�
The notion of matrix cobordism between two Seifert matrices is de�ned naturally�

It is also natural to ask the following problem�

Problem� Are K� and K� as above cobordant*

The author thinks that there exists a kind of surgery exact sequence�

The author obtained the following results�

Theorem ���� There exist a 
�n� ���dimensional closed oriented smooth manifold
M and smooth submanifolds K� and K� of S�n�� di�eomorphic to M such that ���
K� and K� are not cobordant� and ��� the Seifert matrices of K� and K� are matrix
cobordant


Theorem ���� There exist a �n�dimensional closed oriented smooth manifold M and
smooth submanifolds K� and K� of S�n�� di�eomorphic to M such that K� and K�

are not cobordant

In the both cases the obstructions live in certain homotopy groups�
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CONTROLLED ALGEBRA AND TOPOLOGY

ERIK KJ"R PEDERSEN

Let R be a ring and 
X� 
X� a pair of compact Hausdor� spaces� We assume
X � X � 
X is dense in X �

De�nition �� The continuously controlled category B
X� 
X #R� has objects A �
fAxgx�X � Ax a �nitely generated free R�module� satisfying that fxjAx �� �g is
locally �nite in X �
Given a subset U in X we de�ne AjU by


AjU�x �
�
Ax if x � U �X

� if x �� U �X

A morphism � � B
X� 
X #R�� is an R�module morphism � � �Ax � �By satisfy�
ing a continuously controlled condition�

�z � 
X��U open in X� z � U� "V open in X� z � V

such that �
AjV � 
 AjU and �
AjX � U� 
 AjX � V

Clearly B
X� 
X #R� is an additive category with 
A�B�x � Ax �Bx as direct
sum�
If A is an object of B
X� 
X #R�� then fxjAx �� �g has no limit point in X � all

limit points must be in 
X � We denote the set of limit points by supp�
A�� The
full subcategory of B
X� 
X #R� on objects A with

supp�
A� 
 Z 
 
X

is denoted by B
X� 
X #R�Z � Putting U � B
X� 
X #R� and A � B
X� 
X #R�Z �
this is a typical example of an A��ltered additive category U in the sense of Karoubi
�	�� The quotient category U�A has the same objects as U � but two morphisms are
identi�ed if the di�erence factors through an object of A� In the present example
this means two morphisms are identi�ed if they agree on the object restricted to a
neighborhood of 
X�Z� We denote U�A in this case by B
X� 
X #R��X�Z � Given
an object A and a neighborhood W of 
X �Z we have A �� AjW in this category�
If R is a ring with involution these categories become additive categories with

involution in the sense of Ranicki ���� It was proved in ��� that

Theorem �� There is a �bration of spectra

Lk 
A�� Lh 
U�� Lh 
U�A�
where k consists of projectives� i
e
 objects in the idempotent completion of A� that
become free in U � i
e
 stably� by adding objects in U become isomorphic to an object
of U 
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Indication of proof
 Using the bordism de�nition of L�spectra of Quinn and Ran�
icki� it is immediate that we have a �bration of spectra

Lh 
A�� Lh 
U�� Lh 
U �A�
An element in Lhn
U �A�� the n�th homotopy group of Lh 
U �A� is a pair of chain
complexes with boundary in A and a quadratic Poincar�e structure� The boundary
is isomorphic to � in U�A since all A�objects are isomorphic to � in U�A� This
produces a map

Lh 
U �A�� Lh 
U�A�
which we ideally would like to be a homotopy equivalence� Given a quadratic
Poincar�e complex in U�A� it is easy to lift the chain complex to a chain complex
in U � and to lift the quadratic structure� but it is no longer a Poincar�e quadratic
structure� We may use �
� Prop� ����� to add a boundary so that we lift to a Poincar�e
pair� It follows that the boundary is contractible in U�A� It turns out that a chain
complex in U is contractible in U�A if and only if the chain complex is dominated
by a chain complex in A� and such a chain complex is homotopy equivalent to
a chain complex in the idempotent completion of A� This is the reason for the
variation in the decorations in this theorem� See ��� for more details�

Lemma �� If 
X� 
X� is a compact pair then

B
X� 
X #R� �� B
C
X� 
X #R�

Proof
 The isomorphism is given by moving the modules Ax� x � X to point in
C
X � the same module� and if two are put the same place we take the direct sum�
On morphisms the isomorphism is induced by the identity� so we have to ensure the
continuously controlled condition is not violated� Choose a metric on X so that all
distances are � �� Given z � X � let y be a point in 
X closest to z� and send z to

�� d
z� y��y� Clearly� as z approaches the boundary it is moved very little� In the
other direction send t 
 y to a point in B
y# �� t�� the ball with center y and radius
�� t� which is furthest away from 
X � Again moves become small as t approaches
� or equivalently as the point approaches 
X �

Lemma 	� Lh 
B
X� 
X #R��� $ �
Proof
 The �rst � denotes a point in 
X and the second that the spectrum is
contractible� The proof is an Eilenberg swindle towards the point�

Theorem 
� ��� The functor

Y � Lh�
B
CY� Y #Z��

is a generalized homology theory on compact metric spaces

Proof
 We have a �bration

Lh 
B
CY� Y #Z��Z � Lh 
B
CY� Y #Z��� Lh 
B
CY� Y #Z��Y�Z

But an argument similar to the one used in Lemma � shows

B
CY� Y #Z�Z �� B
CZ�Z#Z��

When everything is away from Z it does not matter if we collapse Z so we have

B
CY� Y #Z�Y�Z �� B

CY ��Z� Y�Z#Z�Y�Z�Z�Z�
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but Y�Z � Z�Z is only one point from Y�Z so by Lemma � the L�spectrum is
homotopy equivalent to L

CY ��Z� Y�Z#Z�� Finally Lemma � shows that

B
CY�Z� Y�Z#Z��� B
C
Y�Z�� Y�Z�#Z��

and we are done�

Consider a compact pair 
X�Y � so that X�Y is a CW�complex� If we subdivide
so that cells in X�Y become small near Y � the cellular chain complex C�
X�Y #Z�
may be thought of as a chain complex in B
X�Y #Z� simply by choosing a point in
each cell 
 a choice which is no worse than the choice of the cellular structure�� If
we have a strict map


f� �Y � � 
W�Y �� 
X�Y �


meaning f��
X�Y � 
W�Y � it is easy to see that given appropriate local simple
connectedness conditions� this map is a strict homotopy equivalence 
homotopies
through strict maps� if and only if the induced map is a homotopy equivalence
of chain complexes in B
X�Y #Z�� If the fundamental group of X � Y is 	 and
the universal cover satis�es the appropriate simply connectedness conditions� strict
homotopy equivalence is measured by chain homotopy equivalences in B
X�Y #Z	��
We have the ingredients of a surgery theory which may be developed along the lines
of ��� with a surgery exact sequence

� Lhn��
B
X�Y #Z	��� Shcc
�
X�Y
�
X

�
� �X � Y #F�Top��

We will use this sequence to discuss a question originally considered in ����
Suppose a �nite group 	 acts freely on Sn�k �xing Sk��� a standard k � ��

dimensional subsphere� We may suspend this action to an action on Sn�k�� �xing
Sk and the question arises whether a given action can be desuspended� Notice this
question is only interesting in the topological category� In the PL or di�erentiable
category it is clear that all such actions can be maximally desuspended� by taking
a link or by an equivariant smooth normal bundle consideration�
Denoting 
Sn�k � Sk����	 by X � X is the homotopy type of a Swan complex


a �nitely dominated space with universal cover homotopy equivalent to a sphere��
The strict homotopy type of 
Sn�k�	� Sk��� can be seen to be 
X�Sk��� Sk���� ����
and if we have a strict homotopy equivalence from a manifold to X � Sk�� � Sk��

it is easy to see that we may complete to get a semifree action on a sphere �xing
a standard subsphere� This means that this kind of semifree action is classi�ed by
the surgery exact sequence

� Ln��
B
Dk� Sk��#Z	��� Shcc
�
X�Sk���Sk��

�

X�Sk��

�
� �X�F�Top��

Now let C
Rn #R� denote the subcategory of B
Rn � �#R� where the morphisms are
required to be bounded i� e� � � A � B has to satisfy that there exists k � k
��
so that �yx � � if jx � yj � k� Radial shrinking de�nes a functor C
Rn � R� �
B
Dn� Sn��#R�� and it is easy to see by the kind of arguments developed above
that this functor induces isomorphism in L�theory� We get a map from the bounded
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surgery exact sequence to the continuously controlled surgery exact sequence

�� Lhn��
C
Rk #Z	�� ��

��

Shb
�
X�Rk

�

R
k

�
��

��

�X�F�Top� ��

�� Lhn��
B
Dk� Sk��#Z	�� �� Shcc
�
X�Sk���Sk��

�

Dk

�
�� �X�F�Top� ��

which is an isomorphism on two out of three terms� hence also on the structure set�
This is useful because we can not de�ne an operation corresponding to suspension
of the action on the continuously controlled structure set� An attempt would be
to cross with an open interval� but an open interval would have to have a speci�c
cell structure to get a controlled algebraic Poincar�e structure on the interval� but
then we would lose control along the suspension lines� In the bounded context
suspension corresponds precisely to crossing with the reals� and giving the reals a
bounded triangulation we evidently have no trouble getting a map corresponding
to crossing with R� Since crossing with R kills torsion 
think of crossing with R
as crossing with S� and pass to the universal cover�� we get a map from the h�
structure set to the s�structure set� The desuspension problem is now determined
by the diagram

�� Lhn��
C
Rk #Z	�� ��

��

Shb
�
X�Rk

�

R
k

�
��

��

�X�F�Top� ��

�� Lsn��
C
Rk�� #Z	�� �� Ssb
�
X�Rk��

�

R
k��

�
�� �X�F�Top� ��

with two out of three maps isomorphisms once again� This shows we may desuspend
if and only if the element in the structure set can be thought of as a simple structure�
i�e� if and only if an obstruction in

Wh
C
Rk�� #Z	�� � K�
C
Rk�� #Z	���f%	g� K�k
Z	�

vanishes� Since K�k
Z	� � � for k � � ���� this means we can always desuspend
untill we have a �xed circle� but then we encounter a possible obstruction� The
computations in ��� show these obstructions are realized�
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PROBLEMS IN LOW�DIMENSIONAL TOPOLOGY

Frank Quinn

Introduction

Four�dimensional topology is in an unsettled state� a great deal is known� but
the largest�scale patterns and basic unifying themes are not yet clear� Kirby has
recently completed a massive review of low�dimensional problems �Kirby�� and many
of the results assembled there are complicated and incomplete� In this paper the
focus is on a shorter list of %tool$ questions� whose solution could unify and clarify
the situation� However we warn that these formulations are implicitly biased toward
positive solutions� In other dimensions tool questions are often directly settled one
way or the other� and even a negative solution leads to a general conclusion 
eg�
surgery obstructions� Whitehead torsion� characteristic classes� etc�� In contrast�
failures in dimension four tend to be indirect inferences� and study of the failure
leads nowhere� For instance the failure of the disk embedding conjecture in the
smooth category was inferred from Donaldson�s nonexistence theorems for smooth
manifolds� And although some direct information about disks is now available� eg�
�Kr�� it does not particularly illuminate the situation�
Topics discussed are� in section �� embeddings of ��disks and ��spheres needed for

surgery and s�cobordisms of ��manifolds� Section � describes uniqueness questions
for these� arising from the study of isotopies� Section � concerns handlebody struc�
tures on ��manifolds� Finally section � poses a triangulation problem for certain
low�dimensional strati�ed spaces�
This paper was developed from a lecture given at the International Conference

on Surgery and Controlled Topology� held at Josai University in September ���	� I
would like to express my thanks to the organizers� particularly Masayuki Yamasaki�
and to Josai University for their great hospitality�

�� ��disks and spheres in 
�manifolds

The target results here are surgery and the s�cobordism theorem� In general
these are reduced� via handlebody theory� to questions about disks and spheres in
the middle dimension of the ambient manifold� The tool results� hence the targets�
are known in the topological category for ��manifolds when the fundamental group
is %small$� �FQ� FT��� but are unsettled in general�
Two n�dimensional submanifolds of a manifold of dimension �n will usually in�

tersect themselves and each other in isolated points� The %Whitney trick$ uses an
isotopy across an embedded ��disk to simplify these intersections� Roughly speak�
ing this reduces the study of n�dimensional embeddings to embeddings of ��disks�
But this is not a reduction when the dimension is �� the ��disks themselves are

	�
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middle�dimensional� so trying to embed them encounters exactly the same prob�
lems they are supposed to solve� This is the phenomenon that separates dimension
� from others� The central conjecture is that some embeddings exist in spite of this
problem�

��� Disk conjecture� Suppose A is an immersion of a ��disk into a ��manifold�
boundary going to boundary� and there is a framed immersed ��sphere B with trivial
algebraic selfintersection and algebraic intersection � with A
 Then there is an
embedded ��disk with the same framed boundary as A

If this were true then the whole apparatus of high�dimensional topology would
apply in dimension �� There are very interesting generalizations� which for example
ask about the minimal genus of an embedded surface with a given boundary� or
in a given homology class 
cf� �Kirby� Problem ���	��� However the data in ���
is available in the Whitney disk applications� so its inclusion re�ects the %tool$
orientation of this paper�
The conjecture is very false for smooth embeddings� since it would imply exis�

tence and uniqueness results that are known to be false �Kirby Problems ���� ��	��
It may be true for topological 
locally �at� embeddings� The current best results
are by Freedman and Teichner �FT�� FT��� In �FT�� they show that the conjec�
ture as stated holds if the fundamental group of the ��manifold has %subexponential
growth�$ while �FT�� gives a technical but useful statement about embeddings when
the ��manifold changes slightly� We brie�y discuss the proofs�
For surfaces in ��manifolds here is a correspondence between intersections and

fundamental group of the image� adding an intersection point enlarges the fun�
damental group of the image by one free generator 
if the image is connected��
Freedman�s work roughly gives a converse� in order to remove intersections in M �
it is su cient to kill the image of the fundamental group of the data� in the fun�
damental group of M � More precisely� if we add the hypothesis that A � B is a
single point� and 	� of the image A�B is trivial in 	�M then there is an embedded
disk� However applications of this depend on the technology for reducing images in
fundamental groups� Freedman�s earlier work showed 
essentially� how to change
A and B so the fundamental group image becomes trivial under any � � 	�M � G�
where G is poly�
�nite or cyclic�� �FT� improves this to allow G of subexponential
growth� Quite a lot of e�ort is required for this rather minute advance� giving the
impression that we are near the limits of validity of the theorem� In a nutshell�
the new ingredient is the use of 
Milnor� link homotopy� Reduction of fundamental
group images is achieved by trading an intersection with a nontrivial loop for a
great many intersections with trivial� or at least smaller� loops� The delicate point
is to avoid reintroducing big loops through unwanted intersections� The earlier
argument uses explicit moves� The approach in �FT�� uses a more e cient abstract
existence theorem� The key is to think of a collection of disks as a nullhomotopy of
a link� Sel�ntersections are harmless� while intersections between di�erent compo�
nents are deadly� Thus the nullhomotopies needed are exactly the ones studied by
Milnor� and existence of the desired disks can be established using link homotopy
invariants�
While the conjecture is expected to be false for arbitrary fundamental groups�

no proof is in sight� Constructing an invariant to detect failure is a very delicate
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limit problem� The fundamental group of the image of the data can be compressed
into arbitrarily far�out terms in the lower central series of the fundamental group of
M � If it could be pushed into the intersection the general conjecture would follow�

This is because it is su cient to prove the conjecture forM with free fundamental
group� eg� a regular neighborhood of the data� and the intersection of the lower
central series of a free group is trivial�� One approach is to develop a notion of
nesting of data so that the intersection of an in�nite nest gives something useful�
Then in order for the theorem to fail there must be data with no properly nested
subdata� and maybe this can be detected�

There is a modi�cation of the conjecture� in which we allow the ambient manifold
to change by s�cobordism� This form implies that %surgery$ works� but not the s�
cobordism theorem� �FQ� 	� shows that if the fundamental group of the image of
the data of ��� is trivial in the whole manifold� then there is an embedding up to
s�cobordism� This di�ers from the hypothesis of the version above in that A � B
is not required to be one point� just algebraically �� The improvement of �FT�� is
roughly that in�nitesimal holes are allowed in the data� A regular neighborhood of
the data gives a ��manifold with boundary� and carrying certain homology classes�
In the regular neighborhood the homology class is represented by a sphere� since a
sphere is given in the data� The improvement relaxes this� the homology class is
required to be in a certain subgroup of H�� but not necessarily in the image of 	��
Heuristically we can drill a hole in the sphere� as long as it is small enough not to
move it too far out of 	� 
technically� still in the � term of Dwyer�s �ltration on
H���

The improved version has applications� but again falls short of the full conjecture�
Again it is a limit problem� we can start with arbitrary data and drill very small
holes to get the image 	� trivial in M � The holes can be made %small$ enough
that the resulting homology classes are in an arbitrarily far�out term in the Dwyer
�ltration� but maybe not in the in�nite intersection�

There is still room for hope that this form of the conjecture is true� but it may
require a more elaborate construction or another in�nite process� A %shell game$
approach would begin with arbitrary data� introduce some S� � S� summands�
and use them as gently as possible to represent the original data as a 	��trivial
submanifold with homology in Dwyer�s � term� The S��S��s are now messed up�
and to repair this we want to represent them also with 	��trivial submanifolds with
���ltration homology� The new advantage is that the data is no longer random�
given by an abstract existence theorem� but is obtained from an embedding by
carefully controlled damage done in the �rst step� An in�nite swindle would involve
introducing in�nitely many copies of S� � S� and moving the damage down the
line� The objective would be to do this with control on sizes� so the construction
will converge in an appropriate sense 
see �BFMW��� The limit should be an ANR
homology ��manifold� but this can be resolved to regain a topological manifold �Q���

�� Uniqueness

The uniqueness question we want to address is� when are two homeomorphisms
of a ��manifold topologically isotopic* This is known for compact ��connected ��
manifolds �Q��� but not for nontrivial groups even in the good class for surgery�
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Neither is there a controlled version� not even in the ��connected case� The con�
trolled version may be more important than general fundamental groups� since it
is the main missing ingredient in a general topological isotopy extension theorem
for strati�ed sets �Q���
The study of isotopies is approached in two steps� First determine if two home�

omorphisms are concordant 
pseudoisotopic�� then see if the concordance is an iso�
topy� The �rst step still works for ��manifolds� since it uses ��dimensional surgery�
The high�dimensional approach to the second step �HW� reduces it to a %tool$ ques�
tion� However the uniqueness tool question is not simply the uniqueness analog of
the existence question� In applications Conjecture ��� would be used to �nd Whit�
ney disks to manipulate ��spheres� The tool question needed to analyse isotopies
directly concerns these Whitney disks�

Conjecture ���� Suppose A and B� are framed embedded families of ��spheres�
and V � W are two sets of Whitney disks for eliminating AB intersections
 Each
set of Whitney disks reduces the intersections to make the families transverse� the
spheres in A and B are paired� and the only intersections are a single point between
each pair
 Then the sets V � W equivalent up to isotopy and disjoint replacement


%Isotopic$ means there is an ambient isotopy that preserves the spheres A� B
setwise� and takes one set of disks to the other� Note that A � B must be point�
wise �xed under such an isotopy� %Disjoint replacement$ means we declare two
sets to be equivalent if the only intersections are the endpoints 
in A � B�� Ac�
tually there are further restrictions on framings and 	� homotopy classes� related
to Hatcher�s secondary pseudoisotopy obstruction �HW�� In practice these do not
bother us because the work is done in a relative setting that encodes a vanishing
of the high�dimensional obstruction� we try to show that a ��dimensional concor�
dance is an isotopy if and only if the product with a disk is an isotopy� In �Q��
this program is reduced to conjecture ���� The conjecture itself is proved for simply
connected manifolds and A� B each a single sphere�
Consider the boundary arcs of the disks V andW � on A and B� These �t together

to form circles and arcs� each intersection point in A�B is an endpoint of exactly
one arc in each of V � A and W � A unless it is one of the special intersections
left at the end of one of the deformations� Thus there is exactly one arc on each
sphere� The proof of �Q�� works on the arcs� Focus on a single pair of spheres�
The ��connectedness is used to merge the circles into the arc� Intersections among
Whitney disks strung out along the arc are then %pushed o� the end$ of the arc�
This makes the two sets of disks equivalent in the sense of ���� and allows them to be
cancelled from the picture� Finitely many pairs can be cancelled by iterating this�
but this cannot be done with control since each cancellation will greatly rearrange
the remaining spheres� To get either nontrivial fundamental groups or control will
require dealing directly with the circles of Whitney arcs�

	� 
�dimensional handlebodies

Handlebody structures on ��manifolds correspond exactly to smooth structures�
The targets in studying handlebody structures are therefore the detection and ma�
nipulation of smooth structures� However these are much more complicated than
in other dimensions� and we are not yet in a position to identify tool questions
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that might unravel them� Consequently the questions in this section suggest useful
directions rather than speci�c problems�
The �rst problem concerns detection of structures� The Donaldson and Seiberg�

Witten invariants are de�ned using global di�erential geometry� But since a han�
dlebody structure determines a smooth structure� these invariants are somehow
encoded in the handle structure� There can be no direct topological understanding
of these structures until we learn to decode this�

���� Problem� Find a combinatorially�de�ned topological quantum �eld theory
that detects exotic smooth structures


Three�dimensional combinatorial �eld theories were pioneered by Reshetikhin
and Turaev �RT�� They attracted a lot of attention for a time but have not yet led to
anything really substantial� Four�dimensional attempts have not gotten anywhere�
cf� �CKY�� The Donaldson and Seiberg�Witten invariants do not satisfy the full set
of axioms currently used to de�ne a %topological quantum �eld theory$� so there is
no guarantee that working in this framework will ever lead anywhere� Nonetheless
this is currently our best hope� and a careful exploration of it will probably be
necessary before we can see something better�
��dimensional handlebodies are described by their attaching maps� embeddings

of circles and ��spheres in ��manifolds� The dimension is low enough to draw
explicit pictures of many of these� Kirby developed notations and a %calculus$
of such pictures for �� and ��handles� cf� �HKK�� This approach has been used
to analyse speci�c manifolds# a good example is Gompf�s identi�cation of some
homotopy spheres as standard �Gf�� However this approach has been limited even
in the study of examples because�


�� it only e�ectively tracks �� and ��handles� and Gompf�s example shows one
cannot a�ord to ignore ��handles#


�� it is a non�algorithmic %art form$ that can hide mistakes from even skilled
practitioners# and


�� there is no clue how the pictures relate to e�ective 
eg� Donaldson and
Seiberg�Witten� invariants�

The most interesting possibility for manipulating handlebodies is suggested by
the work of Poenaru on the ��dimensional Poincar�e conjecture� The following is
suggested as a test problem to develop the technique�

��� Conjecture� A ��dimensional �smooth� s�cobordism without ��handles is a
product


Settling this would be an important advance� but a lot of work remains be�
fore it would have profound applications� To some extent it would show that the
real problem is getting rid of ��handles 
�Kirby Problems ���
� ��

� ��
���� It
might have some application to this� if we can arrange that some subset of the
��handles together with the ��handles forms an s�cobordism� then the dual han�
dlebody structure has no ��handles and the conjecture would apply� Replacing
these �� and ��handles with a product structure gives a new handlebody without
��handles� The problem encountered here is control of the fundamental group of
the boundary above the ��handles� The classical manipulations produce a homol�
ogy s�cobordism 
with Z�	�� coe cients�� but to get a genuine s�cobordism we need
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for the new boundary to have the same 	�� Thus to make progress we would have
to understand the relationship between things like Seiberg�Witten invariants and
restrictions on fundamental groups of boundaries of sub�handlebodies�
To analyse the conjecture consider the level between the �� and ��handles in

the s�cobordism� The attaching maps for the ��handles are ��spheres� and the
dual spheres of the ��handles are circles� The usual manipulations arrange the
algebraic intersection matrix between these to be the identity� In other dimensions
the next step is to realize this geometrically� �nd an isotopy of the circles so each
has exactly one point of intersection with the family of spheres� But the usual
methods fail miserably in this dimension� V� Poenaru has attacked this problem in
the special case of � � I � where � is a homotopy ��ball� �P� Gi�� The rough idea
is an in�nite process in which one repeatedly introduces new cancelling pairs of ��
and ��handles� then damages these in order to �x the previous ones� The limit has
an in�nite collections of circles and spheres with good intersections� Unfortunately
this limit is a real mess topologically� in terms of things converging to each other�
The goal is to see that� by being incredibly clever and careful� one can arrange
the spheres to converge to a singular lamination with control on the fundamental
groups of the complementary components� As an outline this makes a lot of sense�
Unfortunately Poenaru�s manuscript is extremely long and complicated� and as a
result of many years of work without feedback from the rest of the mathematical
community� is quite idiosyncratic� It would probably take years of e�ort to extract
clues from this on how to deal with the di cult parts�


� Stratified spaces

A class of strati�ed spaces with a relatively weak relationship between the strata
has emerged as the proper setting for purely topological strati�ed questions� see
eg� �Q�� W�� The analysis of these sets� to obtain results like isotopy extension
theorems� uses a great deal of handlebody theory� etc�� so often requires the as�
sumption that all strata have dimension � or greater� This restriction is acceptable
in some applications� for example in group actions� but not in others like smooth
singularity theory� algebraic varieties� and limit problems in di�erential geometry�
The suggestion here is that many of the low�dimensional issues can be reduced to

much easier� PL and di�erential topology� The conjecture� as formulated� is a
tool question for applications of strati�ed sets� After the statement we discuss it�s
dissection into topological tool questions�

	��� Conjecture� A three�dimensional homotopically strati�ed space with mani�
fold strata is triangulable
 A ��dimensional space of this type is triangulable in the
complement of a discrete set of points


As stated this implies the ��dimensional Poincar�e conjecture� To avoid this as�
sume either that there are no fake ��balls below a certain diameter� or change the
statement to %obtained from a polyhedron by replacing sequences of balls converg�
ing to the ��skeleton by fake ��balls�$ The %Hauptvermutung$ for ��dimensional
polyhedra �Papa� asserts that homeomorphisms are isotopic to PL homeomor�
phisms� This reduces the ��dimensional version to showing that strati�ed spaces
are locally triangulable� The ��skeleton and its complement are both triangulable�
so the problem concerns how the ��dimensional part approaches neighborhoods of
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points in the ��skeleton� Consider a manifold point in the skeleton# a neighborhood
in the skeleton is isomorphic with Rn for n � �� �� or �� Near this the ��stratum
looks locally homotopically like a �bration over Rn with �ber a Poincar�e space of
dimension � � n � �� We can reduce to the case where the �ber is connected by
considering components of the ��stratum one at a time� If n � � then the �ber
is a point� and the union of the two strata is a homology ��manifold with R� as
boundary� Thus the question� is this union a manifold� or equivalently� is the R�

collared in the union* If n � � then the �ber is S�� and the union gives an arc
homotopically tamely embedded in the interior of a homology ��manifold� Is it
locally �at* Finally if n � � then the �ber is a surface 
��dimensional Poincar�e
spaces are surfaces� �EL��� This is an end problem� if a ��manifold has a tame end
homotopic to S�R� S a surface� is the end collared* Answers to these are probably
known� The next step is to consider a point in the closure of strata of three di�er�
ent dimensions� There are three cases� 
�� �� ��� 
�� �� �� and 
�� �� ��� Again each
case can be described quite explicitly� and should either be known or accessible to
standard ��manifold techniques�

Now consider ��dimensional spaces� ��manifolds are triangulable in the com�
plement of a discrete set� so again the question concerns neighborhoods of the
��skeleton� In dimension � homeomorphism generally does not imply PL isomor�
phism� so this does not immediately reduce to a local question� However the ob�
jective is to construct bundle�like structures in a neighborhood of the skeleton� and
homeomorphism of total spaces of bundles in most cases will imply isomorphism of
bundles� So the question might be localized in this way� or just approached glob�
ally using relative versions of the local questions� As above we start with manifold
points in the skeleton� If the point has a �� or ��disk neighborhood then the question
reduces to local �atness of boundaries or ��manifolds in a homology ��manifold� see
�Q�� FQ ���A�� If the point has a ��disk neighborhood then a neighborhood looks
homotopically like the mapping cylinder of a surface bundle over R� This leads
to the question� is it homeomorphic to such a mapping cylinder* If the surface
fundamental group has subexponential growth then this probably can be settled
by current techniques� but the general case may have to wait on solution of the
conjectures of section �� Finally neighborhoods of isolated points in the skeleton
correspond exactly to tame ends of ��manifolds� Some of these are known not to be
triangulable� so these would have to be among the points that the statement allows
to be deleted� From here the analysis progresses to points in the closure of strata
of three or four di�erent dimensions� Again there are a small number of cases� each
of which has a detailed local homotopical description�
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 SLIDES ON CHAIN DUALITY

ANDREW RANICKI

Abstract The texts of �� slides� on the applications of chain duality to the ho�
mological analysis of the singularities of Poincar�e complexes� the double points of
maps of manifolds� and to surgery theory�

�� Introduction

& Poincar�e duality
Hn��
M� �� H�
M�

is the basic algebraic property of an n�dimensional manifold M �
& A chain complex C with n�dimensional Poincar�e duality

Hn��
C� �� H�
C�

is an algebraic model for an n�dimensional manifold� generalizing the intersection
form�

& Spaces with Poincar�e duality 
such as manifolds� determine Poincar�e dual�
ity chain complexes in additive categories with chain duality� giving rise to
interesting invariants� old and new�

�� What is chain duality�

& A � additive category�
& B 
A � � additive category of �nite chain complexes in A �
& A contravariant additive functor T � A � B 
A � extends to

T � B 
A � � B 
A � # C � T 
C�

by the total double complex

T 
C�n �
X

p�q�n

T 
C�p�q �

& De�nition� A chain duality 
T� e� on A is a contravariant additive functor
T � A � B 
A �� together with a natural transformation e � T � � � � A � B 
A �
such that for each object A in A �
� e
T 
A�� � T 
e
A�� � � � T 
A� � T 
A� �
� e
A� � T �
A�� A is a chain equivalence�

�The lecture at the conference on Surgery and Geometric Topology� Josai University� Japan
on �� September� �		� used slides ������

�	�
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�� Properties of chain duality

& The dual of an object A is a chain complex T 
A��
& The dual of a chain complex C is a chain complex T 
C��
& Motivated by Verdier duality in sheaf theory�
& A�Ranicki� Algebraic L�theory and topological manifolds�
Tracts in Mathematics ���� Cambridge 
�����

�� Involutions

& An involution 
T� e� on an additive category A is a chain duality such that
T 
A� is a ��dimensional chain complex 
� object� for each object A in A �
with e
A� � T �
A�� A an isomorphism�

& Example� An involution R� R# r � r on a ring R determines the involution

T� e� on the additive category A 
R� of f�g� free left R�modules�
� T 
A� � HomR
A�R�
� R� T 
A�� T 
A� # 
r� f�� 
x� f
x�r�

� e
A��� � A� T �
A� # x� 
f � f
x���

�� Manifolds and homeomorphisms up to homotopy

& Traditional questions of surgery theory�
� Is a space with Poincar�e duality homotopy equivalent to a
manifold*

� Is a homotopy equivalence of manifolds homotopic to a
homeomorphism*

& Answered for dimensions � � by surgery exact sequence in terms of the
assembly map

A � H�
X #L� 
Z��� L�
Z�	�
X��� �

& L�theory of additive categories with involution su ces for surgery groups
L�
Z�	�
X����

& Need chain duality for the generalized homology groups H�
X #L� 
Z�� and A�

	� Manifolds and homeomorphisms

& Will use chain duality to answer questions of the type�
� Is a space with Poincar�e duality a manifold*
� Is a homotopy equivalence of manifolds a homeomorphism*

�� Controlled topology

& Controlled topology 
Chapman�Ferry�Quinn� considers�
� the approximation of manifolds by Poincar�e complexes�
� the approximation of homeomorphisms of manifolds by homotopy equiv�
alences�

& Philosophy of controlled topology� with control map � � X � X �
� A Poincar�e complex X is a homology manifold if and only if it is an

��controlled Poincar�e complex for all � � ��
� A map of homology manifolds f �M � X has contractible point inverses
if and only if it is an ��controlled homotopy equivalence for all � � ��
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� Simplicial complexes

& In dealing with applications of chain duality to topology will only work with

connected� �nite� simplicial complexes and 
oriented� polyhedral homology
manifolds and Poincar�e complexes�

& Can also work with ��sets and topological spaces� using the methods of�
� M�Weiss� Visible L�theory� Forum Math� �� �	����
 
�����
� S�Hutt� Poincar�e sheaves on topological spaces� Trans� A�M�S� 
���	�

�� Simplicial control

& Additive category A 
Z� X� ofX�controlled Z�modules for a simplicial complex
X �
� A�Ranicki and M�Weiss� Chain complexes and assembly� Math� Z� ����

�����
	 
�����
& Will use chain duality on A 
Z� X� to obtain homological obstructions for de�
ciding�
� Is a simplicial Poincar�e complex X a homology manifold*

Singularities�

� Does a degree � map f �M � X of polyhedral homology manifolds have
acyclic point inverses* 
Double points�

& Acyclic point inverses eH�
f
��
x�� � � is analogue of homeomorphism in the

world of homology�

��� The X�controlled Z�module category A 
Z� X�

& X � simplicial complex�
& A 
Z� X��module is a �nitely generated free Z�module A with direct sum
decomposition

A �
X
��X

A
�� �

& A 
Z� X��module morphism f � A� B is a Z�module morphism such that

f
A
��� �
X
		�

B
�� �

& Proposition� A 
Z� X��module chain map f � C � D is a chain equivalence
if and only if the Z�module chain maps

f
�� �� � C
�� � D
�� 
� � X�

are chain equivalences�

��� Functorial formulation

& Regard simplicial complex X as the category with�
� objects� simplexes � � X
� morphisms� face inclusions � � � �

& A 
Z� X��module A � P
��X

A
�� determines a contravariant functor

�A� � X � A 
Z� � ff�g� free abelian groupsg # � � �A���� �
X
		�

A
�� �



�	
 ANDREW RANICKI

& The 
Z� X��module category A 
Z� X� is a full subcategory of the category of
contravariant functors X � A 
Z��

��� Dual cells

& The barycentric subdivision X � of X is the simplicial complex with one n�
simplex b�	b�� � � � b�n for each sequence of simplexes in X

�	 � �� � 
 
 
 � �n �

& The dual cell of a simplex � � X is the contractible subcomplex

D
��X� � fb�	b�� � � � b�n j� � �	g � X � �

with boundary


D
��X� � fb�	b�� � � � b�n j� � �	g � D
��X� �

& Introduced by Poincar�e to prove duality�
& A simplicial map f �M � X � has acyclic point inverses if and only if


f j�� � H�
f
��D
��X�� �� H�
D
��X�� 
� � X� �

��� Where do 
Z� X��module chain complexes come from�

& For any simplicial map f � M � X � the simplicial chain complex �
M� is a

Z�X��module chain complex�

�
M�
�� � �
f��D
��X�� f��
D
��X��

with a degreewise direct sum decomposition

��
M����� �
X
		�

�
M�
�� � �
f��D
��X�� �

& The simplicial cochain complex �
X��� is a 
Z� X��module chain complex
with�

�
X���
��r �

�
Z if r � �j�j
� otherwise�

��� The 
Z� X��module chain duality

& Proposition� The additive category A 
Z� X� of 
Z� X��modules has a chain
duality 
T� e� with

T 
A� � HomZ
Hom�Z�X�
�
X�
��� A��Z�

& TA
�� � �A����j�j��

& T 
A�r
�� �

���
P
		�

HomZ
A
���Z� if r � �j�j
� if r �� �j�j

& T 
C� $ZHom�Z�X�
C��
X
����� $ZHomZ
C�Z���

& T 
�
X ��� $�Z�X� �
X�
��

& Terminology T 
C�n�� � T 
C��n� 
n � ��



�� SLIDES ON CHAIN DUALITY �	�

��� Products

& The product of 
Z� X��modules A�B is the 
Z� X��module
A��Z�X�B �

X
����X�������

A
�� �ZB
�� � A�ZB �


A��Z�X�B�
�� �
X

����X������

A
�� �ZB
�� �

& C ��Z�X��
X
�� $�Z�X� C �

& T 
C���Z�X�D $ZHom�Z�X�
C�D� �
& For simplicial maps f �M � X �� g � N � X �

� �
M���Z�X��
N� $�Z�X� �

f � g����X�

� T�
M���Z�X� T�
N� $Z�
M �N�M �Nn
f � g����X�
�� �

�	� Cap product

& The Alexander�Whitney diagonal chain approximation
� � �
X �� � �
X ���Z�
X �� #


bx	 � � � bxn�� nX
i�	


bx	 � � � bxi�� 
bxi � � � bxn�
is the composite of a chain equivalence

�
X �� $�Z�X� �
X
����Z�X��
X

��

and the inclusion

�
X ����Z�X��
X
�� � �
X ���Z�
X �� �

& Homology classes �X � � Hn
X� are in one�one correspondence with the chain
homotopy classes of 
Z� X��module chain maps

�X � � � � �
X�n�� � �
X �� �

��� Homology manifolds

& De�nition� A simplicial complex X is an n�dimensional homology manifold
if

H�
X�Xnb�� � �
Z if � � n

� otherwise

� � X� �

& Proposition� A simplicial complexX is an n�dimensional homology manifold
if and only if there exists a homology class �X � � Hn
X� such that the cap
product

�X � �� � �
X�n�� � �
X ��

is a 
Z� X��module chain equivalence�
& Proof� For any simplicial complex X

H�
X�Xnb�� � H��j�j
D
��X�� 
D
��X�� �

Hn��
D
��X�� �

�
Z if � � n

� otherwise

� � X� �



��	 ANDREW RANICKI

�
� Poincar�e complexes

& De�nition� An n�dimensional Poincar�e complex X is a simplicial complex
with a homology class �X � � Hn
X� such that

�X � � � � Hn��
X� �� H�
X� �

& Poincar�e duality theorem� An n�dimensional homology manifold X is an
n�dimensional Poincar�e complex�

& Proof� A 
Z� X��module chain equivalence

�X � � � � �
X�n�� � �
X ��

is a Z�module chain equivalence�
& There is also a Z�	�
X���version�

��� McCrory�s Theorem

& X � n�dimensional Poincar�e complex
� X �X is a �n�dimensional Poincar�e complex�
� Let V � Hn
X �X� be the Poincar�e dual of ���X � � Hn
X �X��
� Exact sequence

Hn
X �X�X �Xn�X�� Hn
X �X�� Hn
X �Xn�X� �

Theorem 
McCrory� X is an n�dimensional homology manifold if and
only if V has image � � Hn
X �Xn�X��

& A characterization of homology manifolds� J� Lond� Math� Soc� �	 
��� ����
��� 
�����

��� Chain duality proof of McCrory�s Theorem

& V has image � � Hn
X � Xn�X� if and only if there exists U � Hn
X �
X�X �Xn�X� with image V �

& U is a chain homotopy class of 
Z� X��module chain maps �
X ��� �
X�n���
since

Hn
X �X�X �Xn�X� � Hn
T�
X���Z�X� T�
X��

� H	
Hom�Z�X�
�
X
����
X�n���� �

& U is a chain homotopy inverse of

� � �X � � � � �
X�n�� � �
X ��

with

�U � � � H	
Hom�Z�X�
�
X
����
X ���� � H	
X� �

� � T� � 
TU�� � 
TU�
T�� � T 
�U� � � �
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��� The homology tangent bundle

& The tangent bundle �X of a manifold X is the normal bundle of the diagonal
embedding

� � X � X �X # x� 
x� x� �

& The homology tangent bundle �X of an n�dimensional homology manifold X
is the �bration


X�Xnf�g� ����� 
X �X�X �Xn�X� ����� X

with X �X � X # 
x� y�� x�
& Thom space of �X

T 
�X� � 
X �X��
X �Xn�X� �

& Thom class of �X
U � eHn
T 
�X�� � Hn
X �X�X �Xn�X�

has image V � Hn
X �X��

��� Euler

& The Euler characteristic of a simplicial complex X is

�
X� �

�X
r�	


��rdimRHr
X #R� � Z �

& For an n�dimensional Poincar�e complex X

�
X� � ��
V � � Hn
X� � Z �

& The Euler class of n�plane bundle � over X
e
�� � �U � � im
 eHn
T 
���� Hn
X�� �

& Reformulation of McCrory�s Theorem�
an n�dimensional Poincar�e complex X is a homology manifold if and only if

V � Hn
X �X� is the image of Thom class U � eHn
T 
�X��� in which case

�
X� � e
�X� � Hn
X� � Z �

��� Degree � maps

& A map f �M � X of n�dimensional Poincar�e complexes has degree � if

f��M � � �X � � Hn
X� �

& A homology equivalence has degree ��
& The Umkehr Z�module chain map of a degree � map f �M � X

f � � �
X� $ �
X�n�� f������ �
M�n�� $ �
M�
is such that ff � $ � � �
X�� �
X��

& A degree � map f is a homology equivalence if and only if

f �f $ � � �
M�� �
M� �

if and only if


f � � f �����X � � ���M � � Hn
M �M� �



��� ANDREW RANICKI

��� The double point set

& Does a degree � map of n�dimensional homology manifolds f � M � X have
acyclic point inverses*

& Obstruction in homology of double point set

f � f����X � f
x� y� �M �M j f
x� � f
y� � Xg�

& De�ne maps
i �M � 
f � f����X # a� 
a� a� �

j � 
f � f����X � X # 
x� y�� f
x� � f
y�

such that f � ji �M � X �
& The Umkehr map

j � � Hn
X� �� Hn
X �X�X �Xn�X�

� Hn
M �M�M �Mn
f � f����X �

�� Hn

f � f����X � 
Lefschetz duality�

is such that j�j
� � ��

��� Lefschetz

& Lefschetz duality� If W is an m�dimensional homology manifold and A � W
is a subcomplex then

H�
W�WnA� �� Hm��
A� �

& Proof� For any regular neighbourhood 
V� 
V � of A in W there are de�ned
isomorphisms

H�
W�WnA� �� H�
W�WnV � 
homotopy invariance�
�� H�
W�WnV � 
collaring�
�� H�
V� 
V � 
excision�

�� Hm��
V � 
Poincar�e�Lefschetz duality�

�� Hm��
A� 
homotopy invariance��

& Alexander duality is the special case W � Sm�

�	� Acyclic Point Inverse Theorem

Theorem A degree � map f �M � X of n�dimensional homology
manifolds has acyclic point inverses if and only if

i��M � � j ��X � � Hn

f � f����X� �

& Equivalent conditions�
� i� � Hn
M� �� Hn

f � f����X� �
� i� � H�
M� �� H�

f � f����X� �

� H lf
� 

f � f����Xn�M � � � �
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& Conditions satis�ed if f �M � X is injective� with


f � f����X � �M �

& In general� i� �� j �f� and i��M � �� j ��X � �

��� Proof of Theorem � Part I

& A simplicial map f � M � X � has acyclic point inverses if and only if f �
�
M�� �
X �� is a 
Z� X��module chain equivalence�

& For degree � map f � M � X � of n�dimensional homology manifolds de�ne
the Umkehr 
Z� X��module chain map

f � � �
X �� $ �
X ��n��
f������ �
M�n�� $ �
M� �

& f � is a chain homotopy right inverse for f

ff � $ � � �
X ��� �
X �� �

& f � is also a chain homotopy left inverse for f if and only if

f �f � � � H	
Hom�Z�X�
�
M���
M��� �

�
� Proof of Theorem � Part II

& Use the 
Z� X��Poincar�e duality
�
M�n�� $ �
M�

and the properties of chain duality in A 
Z� X� to identify

� � i��M � � f �f � j ��X � � H	
Hom�Z�X�
�
M���
M���

� H	
Hom�Z�X�
�
M�
n����
M���

� Hn
�
M���Z�X��
M��

� Hn

f � f����X� �

��� Cohomology version of Theorem

Theorem� A degree � map f � M � X of n�dimensional homology
manifolds has acyclic point inverses if and only if the Thom classes UM �
Hn
M �M�M �Mn�M�� UX � Hn
X �X�X�Xn�X� have the same
image in Hn
M �M�M �Mn
f � f����X��

& Same proof as homology version� after Lefschetz duality identi�cations
UM � �M � � Hn
M �M�M �Mn�M � � Hn
M� �

UX � �X � � Hn
X �X�X �Xn�X� � Hn
X� �

Hn
M �M�M �Mn
f � f����X� � Hn

f � f����X � �
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��� The double point obstruction

& The double point obstruction of a degree � map f � M � X of homology
manifolds

i��M �� j ��X � � Hn

f � f����X�

is � if and only if f has acyclic point inverses�
& The obstruction has image

�
M�� �
X� � Hn
M� � Z �

& If f is covered by a map of homology tangent bundles
b � 
M �M�M �Mn�M �� 
X �X�X �Xn�X�

then
� UM � b�UX � Hn
M �M�M �Mn�M ��
� the double point obstruction is �� and f has acyclic point inverses�

��� Normal maps

& A degree � map f � M � X of n�dimensional homology manifolds is normal
if it is covered by a map b � �M ��� � �X��� of the stable tangent bundles�

& The stable map of Thom spaces
T 
b� � ��T 
�M �� ��T 
�X�

induces a map in cohomology

T 
b�� � eHn
T 
�X�� � Hn
X �X�X �Xn�X�

� eHn
T 
�M �� � Hn
M �M�M �Mn�M �

which sends the Thom class UX to UM �
& However� Theorem� may not apply to a normal map 
f� b� �M � X � since in
general


f � f�� �� 
inclusion��T 
b�� � eHn
T 
�X��

� Hn
M �M�M �Mn
f � f����X�


dual of i� �� j �f���

��� The surgery obstruction

& The Wall surgery obstruction of a degree � normal map 
f� b� � M � X of
n�dimensional homology manifolds

��
f� b� � Ln
Z�	�
X���

is � if 
and for n � � only if� 
f� b� is normal bordant to a homotopy equiva�
lence�

& A degree � map f �M � X with acyclic point inverses is a normal map with
zero surgery obstruction�

& What is the relationship between the double point obstruction of a degree �
normal map 
f� b� �M � X and the surgery obstruction*

& Use chain level surgery obstruction theory�
A�Ranicki� The algebraic theory of surgery� Proc� Lond� Math� Soc� 
�� ���


���
� 
��
��
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��� Quadratic Poincar�e complexes

& The simply�connected surgery obstruction ��
f� b� � Ln
Z� is the cobordism
class of the n�dimensional quadratic Poincar�e complex


C��� � 
C
f ��� 
e� e��b�

where
� e � �
M� � C
f �� is the inclusion in the algebraic mapping cone of the
Z�module chain map f � � �
X�� �
M��

� the quadratic structure � is the image of

�b � Hn
E�� ��� 
M �M�� � Hn
W �Z���� 
�
M� �Z�
M��� �
� E�� � S�� a contractible space with a free ���action�
� W � �
E����

& There is also a Z�	�
X���version�

��� The double point and surgery obstructions � Part I

& For any degree � map f � M � X of n�dimensional homology manifolds the
composite of

i�f
� � j � � H�
X�� H�

f � f����X�

and H�

f � f����X�� H�
M �M� is

��f
� � 
f � � f ���� � H�
X�� H�
M �M� �

& For a degree � normal map 
f� b� �M � X

Hn

f � f����X �� Hn
M �M�

sends the double point obstruction i��M �� j ��X � to


� � T ��b � ���M �� 
f � � f �����X � � Hn
M �M� �

& 
� � T ��b � � if and only if f is a homology equivalence�

��� The double point and surgery obstructions � Part II

& A degree � normal map 
f� b� �M � X of n�dimensional homology manifolds
determines the X�controlled quadratic structure

�b�X � Hn
E�� ��� 
f � f����X�

� Hn
W �Z���� 
�
M� ��Z�X��
M��� �

& �b�X has images
� the quadratic structure

��b�X � � �b � Hn
E�� ��� 
M �M�� �

� the double point obstruction


� � T ��b�X � i��M �� j ��X � � Hn

f � f����X� �
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�	� The normal invariant

& The X�controlled quadratic Poincar�e cobordism class
�X� 
f� b� � 
C
f

��� 
e� e��b�X� � Ln
A 
Z� X�� � Hn
X #L� 
Z��

is the normal invariant of an n�dimensional degree � normal map 
f� b� �M �
X �

& �X� 
f� b� � � if 
and for n � � only if� 
f� b� is normal bordant to a map with
acyclic point inverses�

& The non�simply�connected surgery obstruction of 
f� b� is the assembly of the
normal invariant

��
f� b� � A�X� 
f� b� � Ln
Z�	�
X��� �

��� Hom and Derived Hom

& For 
Z� X��modules A�B the additive group Hom�Z�X�
A�B� does not have a
natural 
Z� X��module structure� but the chain duality determines a natural

Z�X��module resolution�

& Derived Hom of 
Z� X��module chain complexes C�D
RHom�Z�X�
C�D� � T 
C���Z�X�D �

& Adjoint properties�
RHom�Z�X�
C�D� $ZHom�Z�X�
C�D�

RHom�Z�X�
T 
C�� D� $�Z�X� C ��Z�X�D �

& D � �
X �� is the dualizing complex for chain duality

T 
C� $�Z�X� RHom�Z�X�
C��
X
���

as for Verdier duality in sheaf theory�

�
� When is a Poincar�e complex homotopy equivalent to a manifold�

& Every n�dimensional topological manifold is homotopy equivalent to an n�
dimensional Poincar�e complex

& Is every n�dimensional Poincar�e complex homotopy equivalent to an n�dimensional
topological manifold*

& From now on n � �
& Browder�Novikov�Sullivan�Wall obstruction theory has been reformulated in
terms of chain duality
� the total surgery obstruction�

��� Browder�Novikov�Sullivan�Wall theory

& An n�dimensional Poincar�e complexX is homotopy equivalent to an n�dimensional
topological manifold if and only if
�� the Spivak normal �bration of X admits a topological reduction�
�� there exists a reduction such that the corresponding normal map 
f� b� �

M � X has surgery obstruction

��
f� b� � � � Ln
Z�	�
X��� �
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��� Algebraic Poincar�e cobordism

& / � ring with involution�
& Ln
/� � Wall surgery obstruction group

� the cobordism group of n�dimensional quadratic Poincar�e
complexes over /

� n�dimensional f�g� free /�module chain complexes C with

Hn��
C� �� H�
C� �

� uses ordinary duality

Cn�� � Hom�
C�/���n �

��� Assembly

& X � connected simplicial complex

� eX � universal cover
� p � eX � X covering projection�

& Assembly functor

A � A 
Z� X� � f
Z�X��modulesg � A 
Z�	�
X��� � fZ�	�
X���modulesg #

M �
P
��X

M
���M
 eX� � P
e�� eX

M
pe�� �
& The assembly A
T 
M�� of dual 
Z� X��module chain complex

T 
M� $Z Hom�Z�X�
M��
X ���

is chain equivalent to dual Z�	�
X���module

M
 eX�� � HomZ����X��
M
 eX��Z�	�
X��� �
��� The algebraic surgery exact sequence

& For any simplicial complex X exact sequence


 
 
 � Hn
X #L� 
Z��
A� Ln
Z�	�
X���� Sn
X�� Hn��
X #L� 
Z��� � � �

with
& A � assembly�
& L� 
Z� � the ��connective simply�connected surgery spectrum

� 	�
L� 
Z�� � L�
Z� �
& Hn
X #L� 
Z�� � generalized homology group

� cobordism group of n�dimensional quadratic Poincar�e 
Z� X��module com�
plexes C $ T 
C�n��

� uses chain duality

T 
C�n�� $�Z�X� RHom�Z�X�
C��
X
�����n �

��� The structure group

& X � simplicial complex�
& Sn
X� � structure group�
& Sn
X� � cobordism group of

� 
n� ���dimensional quadratic Poincar�e 
Z� X��module complexes
� with contractible Z�	�
X���module assembly�
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��� Local and global Poincar�e duality

& X � n�dimensional Poincar�e complex�
& The cap product �X � � � � �
X�n�� � �
X ���

� is a 
Z� X��module chain map�
� assembles to Z�	�
X���module chain equivalence

�X � �� � �
 eX�n�� � �
 eX �� �

& The algebraic mapping cone
C � C
�X � � � � �
X�n�� � �
X ������

� is an 
n� ���dimensional quadratic Poincar�e 
Z� X��module
complex�

� with contractible Z�	�
X���assembly�
& X is a homology manifold if and only if C is 
Z� X��contractible�

��� The total surgery obstruction

& X � n�dimensional Poincar�e complex�
& The total surgery obstruction of X is the cobordism class

s
X� � C
�X � � ����� � Sn
X� �
& Theorem �� X is homotopy equivalent to an n�dimensional topological man�
ifold if and only if s
X� � � � Sn
X��

& Theorem �� A homotopy equivalence f �M � N of n�dimensional topolog�
ical manifolds has a total surgery obstruction s
f� � Sn��
N� such that f is
homotopic to a homeomorphism if and only if s
f� � ��
� Should also consider Whitehead torsion�

University of Edinburgh� Edinburgh� Scotland� UK

E
mail address� aar�maths�ed�ac�uk



Controlled L�Theory
�Preliminary announcement�

A� Ranicki and M� Yamasaki

Introduction�

This is a preliminary announcement of a controlled algebraic surgery theory� of

the type �rst proposed by Quinn ���� We de�ne and study the ��controlled L�groups

Ln
X� pX � ��� extending to L�theory the controlledK�theory of Ranicki and Yamasaki

����

The most immediate application of the algebra to controlled geometric surgery

is the controlled surgery obstruction� a normal map 
f� b� � K � L from a closed

n�dimensional manifold to a ��controlled Poincar�e complex determines an element

���
f� b� � Ln
X� �X � ����� �


The construction in Ranicki and Yamasaki ��� can be used to produce a 	� n�

dimensional quadratic Poincar�e structure on an 
n � ���dimensional chain complex�

There is a chain equivalence from this to an n�dimensional chain complex with a ����

n�dimensional quadratic Poincar�e structure� and ���
f� b� is the cobordism class of

this complex in Ln
X� �X � ����� �� A relative construction shows that if 
f� b� can be

made into a ��controlled homotopy equivalence by ��controlled surgery then

���
f� b� � � � Ln
X� �X � ����� �

Conversely� if n � � and 
f� b� is such that

���
f� b� � � � Ln
X� �X � �����

then 
f� b� can be made into an ��controlled homotopy equivalence by ��controlled

surgery� where � � C � ���� for a certain constant C � � that depends on n� Proofs

of di cult results and the applications of the algebra to topology are deferred to the

�nal account�

The algebraic properties required to obtain these applications include the con�

trolled L�theory analogues of the homology exact sequence of a pair 
���� ���� and

the Mayer�Vietoris sequence 
���� �����

The limit of the controlled L�groups

Lcn
X # �X� � lim��
�

lim��
�

imfLn
X� �X � �� ��� Ln
X� �X � ��g

is the obstruction group for controlled surgery to ��controlled homotopy equivalence

for all � � ��

���
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Theorem� 
����� Fix a compact polyhedron X and an integer n
� ��� There exist
numbers �	 � � and � � �	 � � such that

Lcn
X # �X� � imfLn
X� �X � �� ��� Ln
X� �X � ��g

for every � � �	 and every � � �	��

Throughout this paper all the modules are assumed to be �nitely generated unless

otherwise stated explicitly� But note that all the de�nitions and the constructions are

valid also for possibly�in�nitely�generated modules and chain complexes� Actually we

heavily use �nite dimensional but in�nitely generated chain complexes in the later

part of the paper� 
That is where the bounded�control over R comes into the game��
So we �rst pretend that everything is �nitely generated� and later we introduce a

possibly�in�nitely�generated analogue without any details�

�� Epsilon�controlled L�groups�

In this section we introduce ��controlled L�groups Ln
X� pX � �� and Ln
X�Y� pX � �� for

pX �M � X � Y 
 X � n � �� � � �� These are de�ned using geometric module chain
complexes with quadratic Poincar�e structures� which were discussed in Yamasaki ����

We use the convention in Ranicki and Yamasaki ��� for radii of geometric mor�

phisms� etc� The dual of a geometric module is the geometric module itself� and the

dual of a geometric morphism is de�ned by reversing the orientation of paths� Note

that if f has radius � then so does its dual f� and that f �� g implies f
� �� g

�� by

our convention� For a geometric module chain complex C� its dual Cn�� is de�ned

using the sign convention used in Ranicki ����

For a subset S of a metric space X � S� will denote the closed � neighborhood of

S in X when � � �� When � � �� S� will denote the set X � 
X � S����

Let C be a free chain complex on pX � M � X � An n�dimensional � quadratic

structure � on C is a collection f�sjs � �g of geometric morphisms

�s � Cn�r�s � 
Cn�r�s�
� � Cr 
r � Z�

of radius � such that


�� d�s � 
��r�sd� � 
��n�s��
�s�� � 
��s��T�s��� ��� � � C
n�r�s�� � Cr�

for s � �� An n�dimensional free � chain complex C on pX equipped with an n�

dimensional � quadratic structure is called an n�dimensional � quadratic complex on

pX � 
Here� a complex C is n�dimensional if Ci � � for i � � and i � n��
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Next let f � C � D be a chain map between free chain complexes on pX � An


n����dimensional � quadratic structure 
��� �� on f is a collection f��s� �sjs � �g
of geometric morphisms

��s � D
n���r�s � Dr � �s � C

n�r�s � Cr 
r � Z�
of radius � such that the following holds in addition to 
���

d
��s� � 
��r
��s�d� � 
��n�s
��s�� � 
��s��T��s��� � 
��nf�sf� ��� �

� Dn�r�s � Dr 
s � �� �
An � chain map f � C � D between an n�dimensional free � chain complex C on pX
and an 
n� ���dimensional free � chain complex D on pX equipped with an 
n� ���

dimensional � quadratic structure is called an 
n����dimensional � quadratic pair on

pX � Obviously its boundary 
C��� is an n�dimensional � quadratic complex on pX �

An � cobordism of n�dimensional � quadratic structures � on C and �� on C �

is an 
n � ���dimensional � quadratic structure 
��� � � ���� on some chain map
C�C � � D� An � cobordism of n�dimensional � quadratic complexes 
C���� 
C �� ���

on pX is an 
n� ���dimensional � quadratic pair on pX



 f f � � � C � C � � D� 
��� � ������
with boundary 
C � C �� � � ����� The union of adjoining cobordisms are de�ned
using the formula in Chapter ��� of Ranicki ���� The union of adjoining � cobordisms

is a �� cobordism�

�C and 'C will denote the suspension and the desuspension of C respectively�

and C
f� will denote the algebraic mapping cone of a chain map f �

De�nition� Let W be a subset of X � An n�dimensional � quadratic structure � on

C is � Poincar�e �over W � if the algebraic mapping cone of the duality �� chain map

D� � 
� � T ��	 � C
n�� ����� C

is �� contractible 
overW �� A quadratic complex 
C��� is � Poincar�e �over W � if � is

� Poincar�e 
over W �� Similarly� an 
n� ���dimensional � quadratic structure 
��� ��

on f � C � D is � Poincar�e �over W � if the algebraic mapping cone of the duality ��

chain map

D������ � 

� � T ���	 f
� � T ��	� � C
f�n���� ����� D

is �� contractible 
overW � 
or equivalently the algebraic mapping cone of the �� chain

map

&D������ �

�

� � T ���	


��n���r
� � T ��	f
�

�
� Dn���r � C
f�r � Dr � Cr��

is �� contractible 
overW �� and � is � Poincar�e 
overW �� A quadratic pair 
f� 
��� ���

is � Poincar�e �over W � if 
��� �� is � Poincar�e 
overW �� We will also use the notation

D�� � 
� � T ���	� although it does not de�ne a chain map from Dn���� to D in

general�
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De�nition� 
�� A positive geometric chain complex C 
Ci � � for i � �� is �

connected if there exists a �� morphism h � C	 � C� such that dh �
� �C� �


�� A chain map f � C � D of positive chain complexes is � connected if C
f� is �
connected�


�� A quadratic complex 
C��� is � connected if D� is � connected�


�� A quadratic pair 
f � C � D� 
��� ��� is � connected if D� and D������ are �

connected�

Now we de�ne the ��controlled L�groups� Let Y be a subset of X �

De�nition� For n � � and � � �� Ln
X�Y� pX � �� is de�ned to be the equivalence

classes of n�dimensional � connected � quadratic complexes on pX that are � Poincar�e

over X � Y � The equivalence relation is generated by � connected � cobordisms that

are � Poincar�e over X � Y � For Y � � write
Ln
X� pX � �� � Ln
X� �� pX � �� �

Remarks� 
�� We use only n�dimensional complexes and not the complexes chain

equivalent to n�dimensional ones in order to make sure we have size control on some

constructions�


�� The � connectedness condition is automatic for complexes that are � Poincar�e over

X � Connectedness condition is used to insure that the boundary 
C � 'C
D�� is

chain equivalent to a positive one� There is a quadratic structure 
� for 
C so that



C� 
�� is Poincar�e 
Ranicki �����


�� Using locally��nitely generated chain complexes on M � one can similarly de�ne

��controlled locally��nite L�groups Llf
n
X�Y� pX � ��� All the results in sections � � �

are valid for locally��nite L�groups�

Proposition ���� The direct sum


C��� � 
C �� ��� � 
C � C �� � � ���

induces an abelian group structure on Ln
X�Y� pX � ��� Furthermore� if

�C��� � �C �� ��� � Ln
X�Y� pX � �� �

then there is a ���� connected �� cobordism between 
C��� and 
C �� ��� that is ����

Poincar�e over X � Y �		��

Next we study the functoriality� A map between control maps pX �M � X and

pY � N � Y means a pair of continuous maps 
f �M � N� &f � X � Y � which makes

the following diagram commute�

M ��
f

��

pX

N

��

pY

X ��

�f
Y�
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For example� given a control map pY � N � Y and a subset X 
 Y � let us denote the

control map pY jp��Y 
X� � p��Y 
X� � X by pX � M � X � Then the inclusion maps

j �M � N � &j � X � Y form a map form pX to pY �

Epsilon controlled L�groups are functorial with respect to maps and relaxation

of control in the following sense�

Proposition ���� Let F � 
f� &f� be a map from pX � M � X to pY � N � Y � and

suppose that &f is Lipschitz continuous with Lipschitz constant �� i
e
� there exists a

constant � � � such that

d
 &f
x��� &f
x��� � �d
x�� x�� 
x�� x� � X��

Then F induces a homomorphism

F� � Ln
X�X �� pX � �� ����� Ln
Y� Y
�� pY � ��

if � � �� and &f
X �� 
 Y �� If two maps F � 
f� &f� and G � 
g� &g� are homotopic

through maps Ht � 
ht� &ht� such that each &ht is Lipschitz continuous with Lipschitz

constant �� � � ��� �� � �� and &ht
X
�� 
 Y �� then the following two compositions are

the same	

Ln
X�X �� pX � ��
F��� Ln
Y� Y

�� pY � �� ����� Ln
Y� Y
�� pY � �

��

Ln
X�X �� pX � ��
G���� Ln
Y� Y

�� pY � �� ����� Ln
Y� Y
�� pY � �

��

Proof� The direct image construction for geometric modules and morphisms ��� p���

can be used to de�ne the direct images f�
C��� of quadratic complexes and the direct

images of cobordism� And this induces the desired F�� The �rst part is obvious� For

the second part� split the homotopy in small pieces to construct small cobordisms�

The size of the cobordism may be slightly bigger than the size of the object itself�

Remark� The above is stated for Lipschitz continuous maps to simplify the state�

ment� For a speci�c � and a speci�c �� the following condition� instead of the Lipschitz

condition above� is su cient for the existence of F� �

d
 &f 
x��� &f
x��� � k� whenever d
x�� x�� � k��

for a certain �nite set of integers k 
more precisely� for k � �� �� �� 
�

and similarly for the isomorphism in the second part� When X is compact and � is

given� the continuity of &f implies that this condition is satis�ed for su ciently small

��s� �Use the continuity of the distance function d � X �X � R and the compactness
of the diagonal set � 
 X � X �� And� in the second half of the proposition� there

are cases when the equality F� � G� holds without composing with the relax�control

map# e
g
� see ����
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We are interested in the %limit$ of ��controlled L�groups�

De�nition� Let pX �M � X be a control map�


�� Let �� � be positive numbers such that � � �� We de�ne�

L�n
X� pX � �� � imfLn
X� pX � �����Ln
X� pX � ��g�


�� For � � �� we de�ne the stable ��controlled L�group of X with coe
cient pX by�

L�n
X # pX� ��
�

	����

L�n
X� pX � ���


�� The controlled L�group with coe
cient pX is de�ned by�

Lcn
X # pX� �� lim��
�

L�n
X # pX��

where the limit is taken with respect to the obvious relax�control maps�

L�
�

n 
X # pX� ��� L�n
X # pX�� 
�� � ���

In section �� we study a certain stability result for the controlled L�groups in

some special case�

�� Epsilon�controlled projective L�groups�

Fix a subset Y of X � and let F be a family of subsets of X such that Z � Y

for each Z � F � In this section we introduce intermediate ��controlled L�groups

LFn 
Y� pX � ��� which will appear in the stable�exact sequence of a pair and also in

the Mayer�Vietoris sequence� Roughly speaking� these are de�ned using %controlled

projective quadratic chain complexes$ 

C� p�� �� with vanishing ��controlled reduced

projective class �C� p� � � � eK	
Z� pZ � n� �� 
Ranicki and Yamasaki ���� for each

Z � F � Here pZ denotes the restriction pX jp��X 
Z� � p��X 
Z� � Z of pX as in the

previous section�

For a projective module 
A� p� on pX � its dual 
A� p�
� is the projective module


A�� p�� on pX � If f � 
A� p� � 
B� q� is an � morphism 
����� then f� � 
B� q�� �

A� p�� is also an � morphism� For an � projective chain complex on pX


C� p� � � � � ��� 
Cr � pr�
dr�� 
Cr��� pr���

dr������ � � �

in the sense of ���� 
C� p�n�� will denote the � projective chain complex on pX de�ned

by�
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� � � ��� 
Cn�r� p�n�r�
���rd�n�r���������� 
Cn�r��� p�n�r��� ��� � � � �

An n�dimensional � quadratic structure on a projective chain complex 
C� p� on

pX is an n�dimensional � quadratic structure � on C 
in the sense of x�� such that
�s � 
C

n�r�s� p�� � 
Cr � p� is an � morphism for every s � � and r � Z� Similarly�
an 
n � ���dimensional � quadratic structure on a chain map f � 
C� p� � 
D� q�

is an 
n � ���dimensional � quadratic structure 
��� �� on f � C � D such that

��s � 
D
n���r�s� q�� � 
Dr� q� and �s � 
C

n�r�s� p�� � 
Cr� p� are � morphisms for

every s � � and r � Z� An n�dimensional � projective chain complex 
C� p� on pX
equipped with an n�dimensional � quadratic structure is called an n�dimensional �

projective quadratic complex on pX � and an � chain map f � 
C� p�� 
D� q� between

an n�dimensional � projective chain complex 
C� p� on pX and an 
n����dimensional

� projective chain complex 
D� q� on pX equipped with an 
n � ���dimensional �

quadratic structure is called an 
n����dimensional � projective quadratic pair on pX �

An � cobordism of n�dimensional � projective quadratic complexes 

C� p�� ���



C �� p��� ��� on pX is an 
n� ���dimensional � projective quadratic pair on pX



 f f � � � 
C� p� � 
C �� p�����
D� q�� 
��� � ������

with boundary 

C� p� � 
C �� p��� � ������
An n�dimensional � quadratic structure � on 
C� p� is � Poincar�e if



C� p� � 'C

� � T ��	 � 
C
n��� p�����
C� p��

is �� contractible� 

C� p�� �� is � Poincar�e if � is � Poincar�e� Similarly� an 
n � ���

dimensional � quadratic structure 
��� �� on f � 
C� p�� 
D� q� is � Poincar�e if 

C� p�

and



D� q� � 'C


� � T ���	 f
� � T ��	� � C
f�n�������
D� q��

are both �� contractible� A pair 
f� 
��� ��� is � Poincar�e if 
��� �� is � Poincar�e�

Let Y and be a subset of X and F be a family of subsets of X such that Z � Y

for every Z � F �
De�nition� Let n � � and � � �� LFn 
Y� pX � �� is the equivalence classes of n�

dimensional � Poincar�e � projective quadratic complexes 

C� p�� �� on pY such that

�C� p� � � in eK	
Z� pZ � n� �� for each Z � F � The equivalence relation is generated by
� Poincar�e � cobordisms 

 f f � � � 
C� p� � 
C �� p�� � 
D� q�� 
��� � � ����� on pY
such that �D� q� � � in eK	
Z� pZ � n� �� �� for each Z � F � When F � fXg� we omit
the braces and write LXn 
Y� pX � �� instead of L

fXg
n 
Y� pX � ��� When F � f g� then we

use the notation Lpn
Y� pY � ��� since it depends only on pY �
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Proposition ���� Direct sum induces an abelian group structure on LFn 
Y� pX � ���

Furthermore� if

�
C� p�� �� � �
C �� p��� ��� � LFn 
Y� pX � �� �

then there is a ���� Poincar�e �� cobordism on pY



 f f � � � 
C� p� � 
C �� p��� 
D� q�� 
��� � ������
such that �D� q� � � in eK	
Z� pZ � n� �� ��� for each Z � F �

A functoriality with respect to maps and relaxation of control similar to ��� holds

for epsilon controlled projective L�groups�

Proposition ���� Let F � 
f� &f� be a map from pX � M � X to pY � N � Y � and

suppose that &f is Lipschitz continuous with Lipschitz constant �� i
e
� there exists a

constant � � � such that

d
 &f
x��� &f
x��� � �d
x�� x�� 
x�� x� � X��

If � � ��� &f
A� 
 B� and there exists a Z � F satisfying &f
Z� 
 Z � for each Z � � F ��

then F induces a homomorphism

F� � LFn 
A� pX � �� ����� LF
�

n 
B� pY � ���

Remark� As in the remark to ���� for a speci�c � and a �� we do not need the full

Lipschitz condition to guarantee the existence of F��

There is an obvious homomorphism

�� � Ln
Y� pY � �� ����� LFn 
Y� pX � ��# �C��� �� �
C� ��� ���

On the other hand� the controlled K�theoretic condition posed in the de�nition can

be used to construct a homomorphism from a projective L�group to a free L�group�

Proposition ���� There exist a constant � � � such that the following holds true	

for any control map pX � M � X � any subset Y 
 X � any family of subsets F of X

containing Y � any element Z of F � any number n � �� and any positive numbers ��

� such that � � ��� there is a well�de�ned homomorphism functorial with respect to

relaxation of control	


iZ�� � LFn 
Y� pX � �� ����� Ln
Z� pZ � ��

such that the following compositions are equal to the maps induced from inclusion

maps	

LFn 
Y� pX � ��
�iZ ������ Ln
Z� pZ � ��

���� LfZgn 
Z� pZ � �� �

Ln
Y� pY � ��
���� LFn 
Y� pX � ��

�iZ������ Ln
Z� pZ � �� �

Remark� Actually � � ����� works�

�� Stably�exact sequences�
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In this section we describe two )stably�exact� sequences� The �rst is the stably�exact

sequence of a pair�

����� LXn 
Yn� pX � ��
i������ Ln
X� pX � ��

j��� Ln
X�Y� pX � ��
����� LXn��
Y� pX � ��

i������ 

where the dotted arrows are only )stably� de�ned� The precise meaning will be ex�

plained below� The second is the Mayer�Vietoris�type stably�exact sequence�

����� LFn 
C� pX � ��
i������ Ln
A� pA� ���Ln
B� pB � ��

j���� Ln
X� pX � ��

����� LFn��
C� pX � ��
i������ 

where X � A � B� C � A � B� and F � fA�Bg�
Fix an integer n � �� let Yn� Zn be subsets of X � and let �n� �n� �n be three

positive numbers satisfying

�n � �n� �n � ��n

where � is the number 
� �� posited in ���� Then there is a sequence

LXn 
Yn� pX � �n�
i���iX ��������� Ln
X� pX � �n�

j��� Ln
X�Zn� pX � �n��

where i� is the homomorphism given in ��� and j� is the homomorphism induced by

the inclusion map and relaxation of control� 
The subscripts are there just to remind

the reader of the degrees of the relevant L�groups��

Theorem ���� There exist constants !	� !�� !�� � � � 
� �� which do not depend on

pX such that


�� if n � �� Zn � Y �n�n
n � and �n � !n�n� then the following composition j�i� is

zero	

j�i� � � � LXn 
Yn� pX � �n�
i��� Ln
X� pX � �n�

j��� Ln
X�Zn� pX � �n��


�� if n � �� Yn�� � Z�n�n
n and �n�� � !n�n� then there is a connecting homomor�

phism


 � Ln
X�Zn� pX � �n� ����� LXn��
Yn��� pX � �n����

such that the following composition 
j� is zero	


j� � � � Ln
X� pX � �n�
j��� Ln
X�Zn� pX � �n�

���� LXn��
Yn��� pX � �n����

and� if �n�� � ��n�� �so that the homomorphism i� is well�de�ned�� the following

composition i�
 is zero	

i�
 � � � Ln
X�Zn� pX � �n�
���� LXn��
Yn��� pX � �n���

i��� Ln��
X� pX � �n����
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Theorem ���� There exist constants �	� ��� ��� � � � 
� �� which do not depend on

pX such that


�� if n � �� �n � ��n �so that i� is well�de�ned�� ��n�� � �n�n� Z
�
n�� � Y �n�n

n �

Y �
n � Z �n��

�n���
�
n�� and ��n � !n���

�
n�� �so that 
� is well�de�ned�� then the

image of the kernel of i� in LXn 
Y
�
n� pX � ��n� is in the image of 
�	

LXn 
Yn� pX � �n� ��
i�

��

Ln
X� pX � �n�

Ln��
X�Z �n��� pX � ��n��� ��
��

LXn 
Y
�
n� pX � ��n�


�� if n � �� �n � �n �so that j� is well�de�ned�� Y �
n � Z�n�n

n � ��n � �n�n� and

��n � ���n �so that i�� is well�de�ned�� then the image of the kernel of j� in

Ln
X� pX � �
�
n� is in the image of i��	

Ln
X� pX � �n� � �
j�

��

Ln
X�Zn� pX � �n�

LXn 
Y
�
n� pX � ��n�

��
i��

Ln
X� pX � ��n�


�� if n � �� �n�� � !n�n �so that 
 is well�de�ned�� ��n � �n�n��� and Z �n �
Y
�n
n��
n�� � then the image of the kernel of 
 in Ln
X�Z �n� pX � ��n� is in the image

of j��	

Ln
X�Zn� pX � �n� ��
�

��

LXn��
Yn��� pX � �n���

Ln
X� pX � ��n� ��
j��

Ln
X�Z �n� pX � ��n�

Here the vertical maps are the homomorphisms induced by inclusion maps and relax�

ation of control�

Next we investigate the Mayer�Vietoris�type stably�exact sequence� Fix an inte�

ger n � �� and assume that X is the union of two closed subsets An and Bn with

intersection Cn � An � Bn� Suppose three positive numbers �n� �n� �n satisfy

�n � ��n� �n � �n�

and de�ne a family Fn to be fAn� Bng� Then we have a sequence

LFnn 
Cn� pX � �n�
i��� Ln
An� pAn

� �n�� Ln
Bn� pBn
� �n�

j��� Ln
X� pX � �n��
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Theorem ���� There exist constants !	� !�� !�� � � � 
� �� which do not depend on

pX such that


�� if n � � and �n � !n�n� then the following composition j�i� is zero	

LFnn 
Cn� pX � �n�
i��� Ln
An� pAn

� �n�� Ln
Bn� pBn
� �n�

j��� Ln
X� pX � �n��


�� if n � �� Cn�� � C�n�n
n � �n�� � !n�n� and if we set

Fn�� � fAn�� � An � Cn��� Bn�� � Bn � Cn��g�
then there is a connecting homomorphism


 � Ln
X� pX � �n� ����� L
Fn��
n�� 
Cn��� pX � �n����

such that the following composition 
j� is zero	

Ln
An� p� �n�� Ln
Bn� p� �n�
j��� Ln
X� pX � �n�

���� L
Fn��
n�� 
Cn��� pX � �n����

and� if �n�� � ��n�� �so that the homomorphism i� is well�de�ned�� the following

composition i�
 is zero	

Ln
X� pX � �n�
���� L

Fn��
n�� 
Cn���pX � �n���

i���Ln��
An��� p� �n���� Ln��
Bn��� p� �n����

Theorem ��	� There exist constants �	� ��� ��� � � � 
� �� which do not depend on

pX such that


�� if n � �� �n � ��n �so that i� is well�de�ned�� ��n�� � �n�n� C �
n � C�n�n

n �

��n � !n���
�
n�� �so that 
� is well�de�ned�� then the image of the kernel of i� in

L
F �n��
n�� 
C

�
n��� pX � ��n��� is in the image of 
�	

LFnn 
Cn� pX � �n�
��

i�

��

Ln
An� p� �n�� Ln
Bn� p� �n�

Ln��
X� pX � ��n��� ��
��

L
F �n
n 
C �

n� pX � �
�
n�


�� if n � �� �n � �n �so that j� is well�de�ned�� C
�
n � C�n�n

n � ��n � �n�n� �
�
n � ���n

�so that i�� is well�de�ned�� and F �
n � fA�n � An � C �

n� B
�
n � Bn � C �

ng� then the

image of the kernel of j� in Ln
A
�
n� p� �

�
n�� Ln
B

�
n� p� �

�
n� is in the image of i��	

Ln
An� p� �n�� Ln
Bn� p� �n� ��
j�

��

Ln
X� pX � �n�

L
F �n
n 
C �

n� pX � ��n�
��

i��
Ln
A

�
n� p� �

�
n�� Ln
B

�
n� p� �

�
n�
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�� if n � �� Cn�� � C�n�n
n � �n�� � !n�n �so that 
 is well�de�ned�� ��n � �n�n���

C �
n � C

�n
n��
n�� � A�n � An � C �

n� and B�
n � Bn � C �

n� then the image of the kernel

of 
 in Ln
X� pX � �
�
n� is in the image of j��	

Ln
X� pX � �n� ��
�

��

L
Fn��
n�� 
Cn��� pX � �n���

Ln
A
�
n� p� �

�
n�� Ln
B

�
n� p� �

�
n� ��

j��
Ln
X� pX � ��n�

Here the vertical maps are the homomorphisms induced by inclusion maps and relax�

ation of control�

Theorems ��� � ��� are all straightforward to prove�

	� Locally��nite analogues�

Up to this point� we considered only �nitely generated modules and chain complexes�

To study the behaviour of controlled L�groups� we need to use in�nitely generated

objects# such objects arise naturally when we take the pullback of a �nitely generated

object via an in�nite�sheeted covering map�

Consider a control map pX �M � X � and take the product with another metric

space N �

pX � �N � M �N���X �N�

Here we use the maximum metric on the product X �N �

De�nition� 
Ranicki and Yamasaki ��� p����� A geometric module on the product

space M � N is said to be M ��nite if� for any y � N � there is a neighbourhood U

of y in N such that M � U contains only �nitely many basis elements# a projective

module 
A� p� on M � N is said to be M ��nite if A is M ��nite# a projective chain

complex 
C� p� on M � N is M ��nite if each 
Cr� pr� is M ��nite� � In ���� we used

the terminology %M �locally �nite$� but this does not sound right and we decided to

use %M ��nite$ instead� %N �locally M ��nite$ may be describing the meaning better�

but it is too long�� When M is compact� M ��niteness is equivalent to the ordinary

locally��niteness�

De�nition� Using this notion� one can de�neM ��nite ��controlled L�groups LMn 
X�
N� Y �N� pX��N � ��� andM ��nite ��controlled projective L�groups LM�F

n 
Y �N� pX�
�N � �� by requiring that every chain complexes concerned are M ��nite�

Consider the case when N � R� We would like to apply the M ��nite version

of the Mayer�Vietoris�type stable exact sequence with respect to the splitting R �

�	� �� � ���	�� The following says that one of the three terms in the sequence
vanishes�
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Proposition 	��� Let pX �M � X be a control map� For any � � � and r � R�

LMn 
X � 
	� r�� pX � �� �� � LMn 
X � �r�	�� pX � �� �� � ��eKM
	 
X � 
	� r�� pX � �� n� �� � eKM

	 
X � �r�	�� pX � �� n� �� � ��

Proof� This is done using repeated shifts towards in�nity and the )Eilenberg Swindle��

Let us consider the case of LMn 
X � �r�	�� pX � �� ��� Let J � �r�	� and de�ne
T �M�J �M�J by T 
x� t� � 
x� t���� Take an element �c� � LMn 
X�J� pX��� ���
It is zero� because there exist M ��nite � Poincar�e cobordisms�

c � c� 
T�
�c�� T �
�
c�� � 
T �

�
�c�� T �
�
c��� � � �

� 
c� T�
�c��� 
T �
�
c�� T �

�
�c��� � � � � � �

Thus� the Mayer�Vietoris stably�exact sequence reduces to�

� ��� LMn 
X � R� pX � �R� ��
���� Lpn��
X � I� pX � �I � �� ��� ��

where � � !n�� I � ���� ��� for some � � �� A diagram chase shows that there exists

a well�de�ned homomorphism�


 � Lpn��
X � I� pX � �I � �� ��� LMn 
X � R� pX � �R� ����

where ��� � �n!n�n����� The homomorphisms 
 and 
 are stable inverses of each

other# the compositions



 � LMn 
X � R� pX � �R� �� ����� LMn 
X � R� pX � �R� ���


 � Lpn��
X � I� pX � �I � �� ����� Lpn��
X � I� pX � �I � !n���

are both relax�control maps�

Note that� for any �� a projective L�group analogue of ��� gives an isomorphism�

Lpn��
X � I� pX � �I � �� �� Lpn��
X � f�g� pX � ���

In this case� no composition with relax�control map is necessary� because X � I is

given the maximum metric� Thus� we have obtained�

Theorem 	��� There is a stable isomorphism	

LMn 
X � R� pX � �R� �� ����� Lpn��
X� pX � ���

Similarly� we have�
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Theorem 	��� There is a stable isomorphism	

Llf
n
X � R� pX � �R� �� ����� Lp�lfn��
X� pX � ���


� Stability in a special case�

In this section we treat the special case when the control map is the identity map�

The following can be used to replace the controlled projective L�group terms in the

previous section by controlled L�groups�

Proposition 
��� Suppose that Y 

 X� is a compact polyhedron or a compact

metric ANR embedded in the Hilbert cube and that pY is the identity map �Y on Y �

Then for any � � � and n� there exists a �	 � � such that for any positive number

� satisfying � � �	 there is a well�de�ned homomorphism functorial with respect to

relaxation of control	

���� � LFn 
Y� pX � �� ����� Ln
Y� �Y � ��

such that the compositions

LFn 
Y� pX � ��
	������ Ln
Y� �Y � ��

���� LFn 
Y� pX � ��

Ln
Y� �Y � ��
���� LFn 
Y� pX � ��

	������ Ln
Y� �Y � ��

are both relax�control maps� In particular Lpn
Y� �Y � �� and Ln
Y� �Y � �� are stably

isomorphic�

Proof� Let �� � ���� where � is the positive number posited in ���� By 
�� and 
��

of ���� there exists a �	 � � such that the following map is a zero map�

eK	
Y� �Y � n� �	� ����� eK	
Y� �Y � n� ���# �C� p� �� �C� p��

Therefore� if � � �	� there is a homomorphism

LFn 
Y� pX � �� ����� LF�fY gn 
Y� pX � ���# �
C� p�� �� �� �
C� p�� ���

The desired map ���� is obtained by composing this with the map


iY �� � LF�fY gn 
Y� pX � �� ����� Ln
Y� �X � ��

corresponding to the subspace Y �

Remark� If Y is a compact polyhedron� then there is a constant !Yn � � which

depends on n and Y such that �	 above can be taken to be ���!
Y
n � For this we need

to change the statement and the proof of 
�� of ��� like those of ��� below�
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Recall that in our Mayer�Vietoris�type stably�exact sequence� each piece of space

tends to get bigger in the process� The following can be used to remedy this in certain

cases� 
It is stated here for the identity control map� but there is an obvious extension

to general control maps��

Proposition 
��� Let r � X � A be a strong deformation retraction� with a Lips�

chitz continuous strong deformation of Lipschitz constant �� and i � A � X be the

inclusion map� Then r and i induce %stable$ isomorphisms of controlled L�groups in

the following sense� if � � �� then for any � 
 � � � � ���� the compositions

Ln
X� �X � ��
r��� Ln
A� �A� ��

i��� Ln
X� �X � ��

Ln
A� �A� ��
i��� Ln
X� �X � ��

r��� Ln
A� �A� ��

are relax�control maps�

Proof� Obvious from ����

Theorem 
��� Fix a compact polyhedron X and an integer n � �� Then there exist

numbers �� � �� ! � � and � � � �which depend on n� X � and the triangulation�

such that� for any subpolyhedrons A and B of X � any integer k � �� and any number

� � � � ��� there exists a ladder	

Llf
n
C � Rk � �� �� ��

i�

��

Llf
n
A� Rk � �� ��� Llf

n
B � Rk � �� �� ��
j�

��

Llf
n
K � Rk � �� ��

��

Llf
n
C � Rk � �� ��� ��

i�
Llf
n
A� Rk � �� ���� Llf

n
B � Rk � �� ��� ��

j�
Llf
n
K � Rk � �� ���

��
�

Llf
n
C � Rk�� � �� !�� ��

i�

��

Llf
n
A� Rk�� � �� !��� Llf

n
B � Rk�� � �� !��

��

��

�
Llf
n
C � Rk�� � �� !��� ��

i�
Llf
n
A� Rk�� � �� !���� Llf

n
B � Rk�� � �� !���

which is stably�exact in the sense that


�� the image of a horizontal map is contained in the kernel of the next map� and


�� the relax�control image in the second row of the kernel of a map in the �rst row

is contained in the image of a horizontal map from the left�

where C � A � B and K � A �B� and the vertical maps are relax�control maps�

Proof� This is obtained from the locally��nite versions of ���� ��� combined with

���� ���� and ��� 
the strong deformations of the neighbourhoods of A and B in K

can be chosen to be PL and hence Lipschitz�� Since there are only �nitely many

subpolyhedrons of X 
with a �xed triangulation�� we may choose constants ! and �

independent of A and B�
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Theorem 
�	� Suppose X is a compact polyhedron and n � � is an integer� Then

there exist numbers �	 � � and � � �	 � � which depend on X and n such that

L�n
X� �X � �� � Lcn
X # �X�

for every � � �	 and every � � �	��

Proof� We inductively construct sequences of positive numbers

�� � �� � �� � � � � 
� ��


� �� �� � �� � �� � � � � 
� ��

such that for any subcomplex K of X with the number of simplices � l�


�� if � � � � �l� � � � � �l�� and k � �� then
Llf��
n 
K � Rk � �K � �� �� � Llf��

n 
K � Rk � �K � �� �l���

and


�� if � � � � �l� then the homomorphism

Llf��
n 
K � Rk # �K � �� ����� Llf��l

n 
K � Rk # �K � ��
is injective�

Here Rk is given the maximum metric�
First suppose l � � 
i
e
 K is a single point�� Any object with bounded control

on Rk can be squeezed to obtain an arbitrarily small control# therefore�

�� � the number posited in ���� �� � �

works�

Next assume we have constructed �i and �i for i � l� We claim that

�l�� � minf�l
�
�
�

!
g�l� �l�� �

��l
�!

satisfy the required condition� Suppose the number of simplices of K is less than or

equal to l� �� Choose a simplex of K of the highest dimension� and call the simplex


viewed as a subpolyhedron� A� and let B � K � intA� Suppose � � � � �l�� and

� � � � �l�� A diagram chase starting from an element of

Llf
n
K � Rk � �� �l����

in the following diagram establishes the property 
��� Here the entries in each of the

columns are

Llf
n
A� Rk � �� ��� Llf

n
B � Rk � �� �� � Llf
n
C � Rk � �� ��

Llf
n
K � Rk � �� �� � and Llf

n
A� Rk�� � �� ��� Llf
n
B � Rk�� � �� �� �
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for various ��s speci�ed in the diagram�

Llf
n
A � � ��� Llf

n
B � � �� Llf
n
K � � �� Llf

n
C � � �� Llf
n
A � � ��� Llf

n
B � � ��

�l
�
�

��

��

�l
�
�

��

�
�

��

��

�
�

��

�

��

�� � ��

��

!�
��

�l��� ��

��

!�l���

��
�l��
�l

� ��

��

!�l���l
� �� !�l���l

�

�!�l���l
� � �l� ��

��

�l�

��

� �� �

Next suppose � � � � �l��� A diagram chase starting from an element of

Llf
n
K � Rk � �� �l����

representing an element of

kerfLlf��
n 
K � Rk # �� ��� Llf��l

n 
K � Rk # ��g

establishes 
���

Llf
n
C � � �� Llf

n
A � � ��� Llf
n
B � � �� Llf

n
K � � �� Llf
n
C � � ��

�l��� �
��l
�� �

��

��

��l
� �

��
�l
�� �

��

��

�l
� �

��

�l�

��

�� �l�

��

�� �l�

��

� ��

��

�
��

�� �
��

�l��
��

�� �l�� �� !�l��

��l��
��

�� ��l��
��

�
�l
��l�� �� �

�l
��l��
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NOTES ON SURGERY AND C��ALGEBRAS

JOHN ROE

�� Introduction

A C��algebra is a complex Banach algebra A with an involution �� which satis�es
the identity

kx�xk � kxk� �x � A�

The study of C��algebras seems to belong entirely within the realm of functional
analysis� but in the past twenty years they have played an increasing r�ole in geo�
metric topology� The reason for this is that C��algebra K�theory is a natural
receptacle for )higher indices� of elliptic operators� including the )higher signatures�
which feature as surgery obstructions� The )big picture� was originated by Atiyah
��� �� and Connes ��� 	�# in these notes� based on my talk at the Josai conference� I
want to explain part of the connection with particular reference to surgery theory�
For more details one could consult �����

�� About C��algebras

The following are key examples of C��algebras

& The algebraC
X� of continuous complex�valued functions on a compact Haus�
dor� space X �

& The algebra B
H� of bounded linear operators on a Hilbert space H �
Gelfand and Naimark 
about ����� proved� Any commutative C��algebra with

unit is of the form C
X�# any C��algebra is a subalgebra of some B
H��
Let A be a unital C��algebra� Let x � A be normal� that is xx� � x�x� Then x

generates a commutative C��subalgebra of A which must be of the form C
X�� In
fact we can identify X as the spectrum

X � �
x� � f� � C � x� �� has no inverseg
with x itself corresponding to the canonical X � C �
Hence we get the Spectral Theorem� for any � � C
�
x�� we can de�ne �
x� � A

so that the assignment � �� �
x� is a ring homomorphism�
If x is self adjoint 
x � x��� then �
x� � R�
One can de�ne K�theory groups for C��algebras� For A unital

& K	
A� � Grothendieck group of f�g� projective A�modules
& K�
A� � 		GL�
A�

with a simple modi�cation for non�unital A� These groups agree with the ordinary
topologicalK�theory groups of the spaceX in case A is the commutative C��algebra
C
X��
For any integer i de�ne Ki � Ki��� Then to any short exact sequence of C

��
algebras

The hospitality of Josai University is gratefully acknowledged�

���
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�� J � A� A�J � �

there is a long exact K�theory sequence

� � �Ki
J�� Ki
A�� Ki
A�J�� Ki��
J� � � �

The ��periodicity is a version of the Bott periodicity theorem� Notice that algebraic
K�theory does not satisfy Bott periodicity# analysis is essential here�
A good reference for this material is ��	��
Classical Fredholm theory provides a useful example of C��algebra K�theory at

work� Recall that an operator T on a Hilbert space H is called Fredholm if it has
�nite�dimensional kernel and cokernel� Then the index of T is the di�erence of the
dimensions of the kernel and cokernel�

����� Definition� The algebra of compact operators� K
H�� is the C��algebra
generated by the operators with �nite�dimensional range


Compact and Fredholm operators are related by Atkinson�s Theorem� which
states that T � B
H� is Fredholm if and only if its image in B
H��K
H� is
invertible�
Thus a Fredholm operator T de�nes a class �T � in K�
B�K�� Under the connect�

ing map this passes to 
�T � � K	
K� � Z# this is the index�

�� Abstract signatures

Recall that in symmetric L�theory we have isomorphisms L	
Z� � L	
R� � Z�
The second map associates to a nonsingular real symmetric matrix its signature �

Number of positive eigenvalues� � 
Number of negative eigenvalues��
Can we generalize this to other rings*
If M is a nonsingular symmetric matrix over a C��algebra A we can use the

spectral theorem to de�ne projections p� and p� corresponding to the positive and
negative parts of the spectrum� Their di�erence is a class in K	
A��
This procedure de�nes a map Lp	
A� � K	
A� for every C��algebra A� and it

can be shown that this map is an isomorphism ����� There is a similar isomorphism
on the level of L��
Now let � be a discrete group� The group ring Z� acts faithfully by convolution

on the Hilbert space "��� The C��subalgebra of B
"��� generated by Z� acting in
this way is called the group C��algebra� C�

r��
We have a map L	
Z��� K	
C

�
r���

Gelfand and Mishchenko ���� observed that this map is a rational isomorphism
for � free abelian� 
Then C�

r� � C
T k� by Fourier analysis��

Remark� Our map from L	 toK	 is special to C
��algebras# if it extended naturally

to a map on all rings� we would have for a free abelian group � a diagram

L	
Z�� ��

��

L	
C
�
r��

��
K	
Z�� �� K	
C

�
r��
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Going round the diagram via the top right we get Gelfand and Mishchenko�s map� a
rational isomorphism� But the bottom left�hand group is of rank one� by the Bass�
Heller�Swan theorem ��� Chapter XII�� This contradiction shows that the left�hand
vertical map cannot exist�

�� The signature operator

Let M be a complete oriented Riemannian manifold of even dimension 
for

simplicity�� De�ne the operator F � D
� �D���
�
� on L� di�erential forms� where

D � d� d�� d �exterior derivative� d� � its adjoint�
F is graded by an involution � � i�� 
here i � p�� and the power * depends

on the dimension and the degree of forms� see ��� for the correct formula�� Thus
graded it is called the signature operator�
If M is compact� then F is Fredholm� Moreover the index of F is the signature

of M � This is a simple consequence of Hodge theory ����

Remark� The choice of normalizing function �
x� � x
� � x���
�
� in F � �
D�

does not matter as long as it has the right asymptotic behaviour�

Consider now the signature operator on the universal cover fM of a compact
manifold M � F belongs to the algebra A of � � 	�M equivariant operators� More�
over it is invertible modulo the ideal J of � equivariant locally compact operators�
This follows from the theory of elliptic operators�
Thus via the connecting map 
 � K�
A�J�� K	
J� we get an )index� in K	
J��

�	��� Lemma� J # C�
r�� K
 Consequently K	
J� � K	
C

�
r��


We have de�ned the analytic signature of M as an element of K	
C
�
r��� In

general it can be de�ned in Ki
M� where i is the dimension of M mod ��

�	��� Proposition� The analytic signature is the image of the Mishchenko�
Ranicki symmetric signature under the map L	 � K	


�	��� Corollary� The analytic signature is invariant under orientation preserv�
ing homotopy equivalence


Direct proofs of this can be given �����
We can now de�ne an )analytic surgery obstruction� 
� di�erence of analytic

signatures� for a degree one normal map�
Can we mimic the rest of the surgery exact sequence*

�� K�homology

Let A be a C��algebra� A Fredholm module for A is made up of the following
things�

& A representation � � A� B
H� of A on a Hilbert space
& An operator F � B
H� such that for all a � A the operators

F�
a�� �
a�F� 
F � � ���
a�� 
F � F ���
a�

belong to K
H��

The signature operator is an example with A � C	
M��
One can de�ne both )graded� and )ungraded� Fredholm modules� These objects

can be organized into Grothendieck groups to obtain Kasparov�sK�homology groups
Ki
A� ����� 
i � � for graded and i � � for ungraded modules�� They are
contravariant functors of A�
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Remark� The critical condition in the de�nition is that �F� �
a�� � K for all a� One
should regard this as a continuous control condition� In fact� if A is commutative it
was shown by Kasparov that the condition is equivalent to �
f�F�
g� � K whenever
f and g have disjoint supports 0 which is to say that F has )only �nite rank
propagation� between open sets with disjoint closures�

Kasparov proved that the name )K�homology� is justi�ed�

�
��� Theorem� ���� �	� Let A � C
X� be a commutative C��algebra
 Then
Ki
A� is naturally isomorphic to Hi
X #K 
C ��� the topological K�homology of X


We assume that X is metrizable here� If X is a )bad� space 
not a �nite complex�
then H refers to the Steenrod extension of K�homology ���� ��# if X is only locally
compact and we take A � C	
X� 
the continuous functions vanishing at in�nity��
then we get locally �nite K�homology�
Kasparov�s de�nition was reformulated in the language of )duality� by Paschke

���� and Higson� For a C��algebra A and ideal J de�ne the algebra 1
A��J� to
consist of those T � B
H� such that

& �T� �
a�� � K �a � A � and
& T�
j� � K �j � J

where � is a good 
i�e� su ciently large� representation of A on H �

�
��� Proposition� �Paschke duality theorem� There is an isomorphism

Ki
A� � Ki��
1
A�����1
A��A��

for all separable C��algebras A


Let us introduce some notation� For a locally compact space X � write 1	
X�
for 1
C	
X����� 
we call this the algebra of pseudolocal operators�� and 1

��
X�
for 1
C	
X���C	
X�� 
the algebra of locally compact operators��

Now let X � fM � the universal cover of a compact manifold M as above� and
consider the exact sequence

�� 1��
fM�� � 1	
fM�� � 1	
M��1��
M�� ��

The superscript � denotes the ��equivariant part of the algebra� We have incor�
porated into the sequence the fundamental isomorphism

1	
fM���1��
fM�� � 1	
M��1��
M�
which exists because both sides consist of local objects 0 )formal symbols� in some
sense 0 and there is no di culty in lifting a local object from a manifold to its
universal cover�
Note that 1��
fM� � locally compact operators� Thus� applying the K�theory

functor� we get a boundary map

A � Ki
M� � Ki��
1
	
M��1��
M��� Ki
C

�
r���

This analytic assembly map takes the homology class of the signature operator F
to the analytic signature�
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	� On the Novikov conjecture

We use the above machinery to make a standard reduction of the Novikov
conjecture� Assume B� is compact and let f � M � B�� Consider the diagram

H�
M #Q�

��
f�

K�
M�oo ch ��

��
f�

K�
C
�
r��

H�
B�#Q� K�
B��oo ch

��
r
r
r
r
r
r
r
r
r
r

By the Atiyah�Singer index theorem f�
ch�F �� is Novikov�s higher signature 
the
push forward of the Poincar�e dual of the L�class�� So� if A � K�
B�� � K�
C

�
r��

is injective� the Novikov conjecture is true for ��
This has led to a number of partial solutions to the Novikov conjecture using

analysis� Methods used have included

& Cyclic cohomology �
� �� ��� 0 pair K�
C
�
r�� with H�
B�#R�� Need suitable

dense subalgebras 0 very delicate�
& Kasparov KK�theory ��	� ��� 0 sometimes allows one to construct an inverse
of the assembly map as an )analytic generalized transfer��

& Controlled C��algebra theory ���� 0 parallel development to controlled topol�
ogy� see later�

�� The analytic structure set

Recall the exact sequence

Ki��
C
�
r��� Ki
1

	
fM���� Ki
M�� Ki
C
�
r��

The analogy with the surgery exact sequence suggests that we should think of

K�
1
	
fM��� as the )analytic structure set� of M �

Example� Suppose M is spin� Then one has the Dirac operator D and one can
normalize as before to get a homology class
�F �� F � �
D��
If M has a metric of positive scalar curvature� then by Lichnerowicz there is a

gap in the spectrum of D near zero� Thus we can choose the normalizing function

� so that F � � � exactly� Then �F � � K�
1
	
fM��� gives the structure invariant of

the positive scalar curvature metric�

Notice that Lichnerowicz� vanishing theorem ��
� now follows from exactness in
the analytic surgery sequence�
It is harder to give a map from the usual structure set to the analytic one+ In

the same way that the positive scalar curvature invariant gives a )reason� for the
Lichnerowicz vanishing theorem� we want an invariant which gives a )reason� for
the homotopy invariance of the symmetric signature�
Here is one possibility� Recall Pedersen�s description 
in these proceedings� of

the structure set STOP 
M�� as the L�theory of the category
B
fM � I�fM � �#Z���

Replacing Z by C we have a category

& whose objects can be completed to Hilbert spaces with C	
fM��action
& whose morphisms are pseudolocal
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Using Voiculescu�s theorem 
which says that all the objects can be embedded

more or less canonically in a single )su ciently large� representation of C	
fM��
we should get a map from the structure set to K�
1	
fM���� However� there is
a signi�cant problem� Are the morphisms bounded operators* Similar questions
seem to come up elsewhere if one tries to use analysis to study homeomorphisms�
and one needs some kind of torus trick to resolve them 
compare ������


� Controlled C��algebras

A more direct approach can be given ���� to obtaining a map from SDIFF 
M��
LetW be a metric space 
noncompact� and suppose � � C	
W �� B
H� as usual�
An operator T on H is boundedly controlled if there is R � R
T � such that

�
��T�
�� � � whenever distance from Support � to Support � is greater than R�

Example� If D is a Dirac�type operator on complete Riemannian M � and � has
compactly supported Fourier transform� then �
D� is boundedly controlled �����

De�ne 1jbc
W �� j � ����� to be the C� subalgebras generated by boundedly
controlled elements� Then from the above one has that a Dirac type operator
on a complete Riemannian manifold W has a )boundedly controlled index� in
K�
1

��
bc 
W ���

In fact all elliptic operators have boundedly controlled indices� in full generality

one has a bounded assembly map A � Klf
� 
W �� K�
1

��
bc 
W ��� and

the assembly of the signature operator is the bounded analytic signature�
This bounded analytic signature can also be de�ned for suitable 
)bounded�

bounded�� Poincar�e complexes 
bounded in both the analytic and geometric senses��
If W has a compacti�cation X � W � Y which is )small at in�nity�� then there

is a close relation between bounded and continuously controlled C��algebra theory
�����
In fact� consider a metrizable pair 
X�Y �� let W � X n Y � We can de�ne

continuously controlled C��algebras� 1jcc
W �� Then one has

����� Proposition� ���� We have

& 1	cc
W � � 1	
X� � 1
C
X�����
& 1��cc 
W � � 1
C
X���C	
W ��

The result for 1��cc 
W � is an analytic counterpart to the theorem )control means
homology at in�nity� 
compare ������
Now we can de�ne our map from the structure set# for simplicity we work in

the simply connected case� Given a homotopy equivalence f � M � � M � form the
)double trumpet space� W � consisting of open cones on M and M � joined by the
mapping cylinder of f 
there is a picture in ������ This is a )bounded� bounded�
Poincar�e space with a map to M � R� continuously controlled by M � S	�
Thus we have the analytic signature in K�
1

��
cc 
X � R��� Map this by the

composite

1��cc 
X � R�� 1	cc
X � R� � 1	
X � I�� 1	
X�

using the preceding proposition� The image is the desired structure invariant�
The various maps we have de�ned �t into a diagram relating the geometric and

C� surgery exact sequences ����� The diagram commutes up to some factors of ��
arising from the di�erence between the Dirac and signature operators�
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�� Final remarks

& C��surgery can produce some information in a wide range of problems�
& Surjectivity of C��assembly maps is related to representation theory�
& Some techniques for Novikov are only available in the C��world�
& But We don�t understand well how to do analysis on topological manifolds�
& Topologists construct# analysts only obstruct�
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CHARACTERIZATIONS OF INFINITE�DIMENSIONAL

MANIFOLD TUPLES AND THEIR APPLICATIONS TO

HOMEOMORPHISM GROUPS

TATSUHIKO YAGASAKI

Chapter �� Characterization of 
s� S�� 
 
 
 � Sl��manifolds

The purpose of this article is to survey tuples of in�nite�dimensional topological

manifolds and their application to the homeomorphism groups of manifolds�

�� 
s� S�� 
 
 
 � Sl��manifolds
A topological E�manifold is a space which is locally homeomorphic to a space E�

In this article all spaces are assumed to be separable and metrizable� In in�nite�

dimensional topological manifold theory� we are mainly concerned with the following

model spaces E�


i� 
the compact model� the Hilbert cube� Q � ��	�	���

ii� 
the complete linear model� the Hilbert space� "��

The Hilbert space "�� or more generally any separable Frechet space is homeo�

morphic to s # 
�	�	�� 
����� If we regard s as a linear space of sequences of

real numbers� then it contains several natural 
incomplete� linear subspaces�


iii� the big sigma� � � f
xn� � s � supn jxnj � 	g 
the subspace of bounded
sequences��


iv� the small sigma� � � f
xn� � s � xn � � for almost all ng 
the subspace of
�nite sequences��

The main sources of in�nite�dimensional manifolds are various spaces of func�

tions� embeddings and homeomorphisms� In Chapter � we shall consider the group

of homeomorphisms of a manifold� WhenM is a PL�manifold� the homeomorphism

group H
M� contains the subgroup HPL
M� consisting of PL�homeomorphisms of

M � and we can ask the natural question� How is HPL
M� sited in the ambient

group H
M�* This sort of question leads to the following general de�nition� An

l����tuple of spaces means a tuple 
X�X�� 
 
 
 � Xl� consisting of an ambient space

X and l subspaces X� � 
 
 
 � Xl�

�		� Mathematics Subject Classi�cation� 
�N�
� 
�N���
Key words and phrases� In�nite�dimensional manifolds� Strong universality� Homeomorphism

groups� Topological manifolds�

���
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De�nition� A tuple 
X�X�� 
 
 
 � Xl� is said to be an 
E�E�� 
 
 
 � El��manifold if

for every point x � X there exist an open neighborhood U of x in X and an open

set V of E such that 
U�U �X�� 
 
 
 � U �Xl� �� 
V� V �E�� 
 
 
 � V �El��

In this article we shall consider the general model tuple of the form� 
s� S�� 
 
 
 � Sl��
where S� � 
 
 
 � Sl are linear subspaces of s� Some typical examples are�


v� the pairs� 
s���� 
s� ���


vi� the triples� 
s��� ��� 
s�� s� �� ���� 
s�������f �� and 
s
�� ��� ��f ��

where 
a� s�� ��� �� are the countable product of s� � and � respectively�


b� ��f � f
xn� � �� � xn � � for almost all ng� ��f � f
xn� � �� � xn � � for

almost all ng�
Note that 
�� 
s�� ��f �

�� 
s� ��� 
�� 
s����f � ��f �
�� 
s��� �� and 
�� 
s����� ��f �

�� 
s�� ��� ��f �� The statements 
�� and 
�� follow from the characterizations of

manifolds modeled on these triples 
x������ Theorems ���� � ������ In Section �����
we shall give a general characterization of 
s� S�� 
 
 
 � Sl��manifold under some nat�
ural conditions on the model 
s� S�� 
 
 
 � Sl��

�� Basic properties of infinite�dimensional manifolds

In this section we will list up some fundamental properties of in�nite�dimensional

manifolds� We refer to ���� ��� ��� for general references in in�nite�dimensional

manifold theory�

���� Stability�

Since s is a countable product of the interval 
�	�	�� it is directly seen that
s� �� s� Applying this argument locally� it follows that X � s �� X for every s�

manifold X 
cf������� More generally� it has been shown that if 
X�X�� X�� is an


s��� ���manifold� then 
X � s�X� ��� X� � �� �� 
X�X�� X�� ����� This property

is one of characteristic properties of in�nite�dimensional manifolds� To simplify the

notation we shall use the following terminology�

De�nition� We say that 
X�X�� 
 
 
 � Xl� is 
E�E�� 
 
 
 � El��stable if 
X �E�X��
E�� 
 
 
 � Xl �El� �� 
X�X�� 
 
 
 � Xl��

���� Homotopy negligibility�

De�nition� A subset B of Y is said to be homotopy negligible 
h�n�� in Y if there

exists a homotopy �t � Y � Y such that �	 � id and �t
Y � 
 Y n B 
� � t � ���
In this case� we say that Y n B has the homotopy negligible 
h�n�� complement in
Y �

When Y is an ANR� B is homotopy negligible in Y i� for every open set U

of Y � the inclusion U n B 
 U is a weak homotopy equivalence� Again using the

in�nite coordinates of s� we can easily verify that � has the h�n� complement in
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s� Therefore� it follows that if 
X�X�� is an 
s� ���manifold� then X� has the h�n�

complement in X �

���� General position property � Strong universality�

������ Z�embedding approximation in s�manifolds


The most basic notion in in�nite�dimensional manifolds is the notion of Z�sets�

De�nition� A closed set Z of X is said to be a Z�set 
a strong Z�set� of X if

for every open cover U of X there is a map f � X � X such that f
X� � Z � �

cl f
X� � Z � �� and 
f� idX� � U �

Here� for an open cover V of Y � two map f � g � X � Y are said to be V�close
and written as 
f� g� � V if for every x � X there exists a V � V with f
x��

g
x� � V � Using the in�nite coordinates of s� we can show the following general

position property of s�manifolds�

Facts ���� Suppose Y is an s�manifold� Then for every map f � X � Y from a

separable completely metrizable space X and for every open cover U of Y � there
exists a Z�embedding g � X � Y with 
f� g� � U � Furthermore� if K is a closed

subset of X and f jK � K � Y is a Z�embedding� then we can take g so that

gjK � f jK �

������ Strong universality


To treat various incomplete submanifolds of s�manifolds 
��manifolds� ��mani�

folds� etc��� we need to restrict the class of domain X in the above statement� Let

C be a class of spaces�

De�nition� 
M� Bestvina � J� Mogilski ���� et� al��

A space Y is said to be strongly C�universal if for every X � C� every closed subset
K of X � every map f � X � Y such that f jK � K � Y is a Z�embedding and

for every open cover U of Y � there exists a Z�embedding g � X � Y such that

gjK � f jK and 
f� g� � U �

In some cases� the above embedding approximation conditions can be replaced

by the following disjoint approximation conditions�

De�nition� We say that a space X has the strong discrete approximation property


or the disjoint discrete cells property� if for every map f � �i	�Qi � X of a

countable disjoint union of Hilbert cubes into X and for every open cover U of X
there exists a map g � �i	�Qi � X such that 
f� g� � U and fg
Qi�gi is discrete
in X �
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������ Strong universality of tuples
 
R� Cauty �	�� J� Baars�H� Gladdines�J� van

Mill ���� et� al��

A map of tuples f � 
X�X�� 
 
 
 � Xl�� 
Y� Y�� 
 
 
 � Yl� is said to be layer preserv�
ing if f
Xi�� nXi� 
 Yi�� n Yi for every i � �� 
 
 
 � l��� where X	 � X � Xl�� � ��
LetM be a class of 
l � ���tuples of spaces�

De�nition� An 
l � ���tuple 
Y� Y�� 
 
 
 � Yl� is said to be strongly M�universal if
it satis�es the following condition�


�� for every tuple 
X�X�� 
 
 
Xl� � M� every closed subset K of X � every

map f � X � Y such that f jK � 
K�K � X�� 
 
 
K � Xl� � 
Y� Y�� 
 
 
 � Yl� is a
layer preserving Z�embedding� and every open cover U of Y � there exists a layer
preserving Z�embedding g � 
X�X�� 
 
 
Xl� � 
Y� Y�� 
 
 
 � Yl� such that gjK � f jK
and 
f� g� � U �

In Section ����� we shall see that the stability � h�n� complement implies the

strong universality�

���� Uniqueness properties of absorbing sets�

The notion of h�n� complement can be regarded as a homotopical absorbing

property of a subspace in an ambient space� The notion of strong universality of

tuples also can be regarded as a sort of absorption property combined with the

general position property� Roughly speaking� for a classM� anM�absorbing set of
an s�manifold X is a subspace A of X such that 
i� A has an absorption property in

X for the classM� 
ii� A has a general position property forM and 
iii� A %belongs$

to the classM� The notion of strong universality of tuples realizes the conditions

i� and 
ii� simultaneously� The condition 
iii� usually appears in the form� A is a

countable union of Z�sets of A which belong toM� The most important property
of absorbing sets is the uniqueness property� This property will play a key role in

the characterizations of tuples of in�nite�dimensional manifolds�

������ Capsets and fd capsets
 
R�D� Anderson and T�A� Chapman ����

The most basic absorbing sets are capsets and fd capsets� A space is said to be

��compact 
��fd�compact� if it is a countable union of compact 
�nite�dimensional

compact� subsets�

De�nition� Suppose X is a Q�manifold or an s�manifold� A subset A of X is said

to be a 
fd� capset of X if A is a union of 
fd� compact Z�sets An 
n � �� which
satisfy the following condition� for every � � �� every 
fd� compact subset K of X

and every n � � there exist an m � n and an embedding h � K � Am such that


i� d
h� idK� � � and 
ii� h � id on An �K�

For example � is a capset of s and � is fd capset of s� The 
fd� capsets have the

following uniqueness property�
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Theorem ���� If A and B are 
fd� capsets of X� then for every open cover U of

X there exists a homeomorphism f � 
X�A�� 
X�B� with 
f� idX� � U 


������ Absorbing sets in s�manifolds


The notion of 
fd� capsets works only for the class of ��
fd��compact subsets� To

treat other classes of subsets we need to extend this notion�

De�nition� A class C of spaces is said to be

i� topological if D �� C � C implies D � C�

ii� additive if C � C whenever C � A � B� A and B are closed subsets of C� and

A� B � C�

iii� closed hereditary if D � C whenever D is a closed subset of a space C � C�

��� The non�ambient case� 
M� Bestvina � J� Mogilski ����

Let C be a class of spaces�

De�nition� A subset A of an s�manifold X is said to be a C�absorbing set of X if


i� A has the h�n� complement in X �


ii� A is strongly C�universal�

iii� A � ��n��An� where each An is a Z�set of A and An � C�

Theorem ���� Suppose a class C is topological� additive and closed hereditary
 If

A and B are two C�absorbing sets in an s�manifold X� then every open cover U
of X there exists a homeomorphism h � X � Y which is U�close to the inclusion

A 
 X


In general� h cannot be extended to any ambient homeomorphism of X �

��� The ambient case� 
J� Baars�H� Gladdines�J� van Mill ���� R� Cauty �	�� T�

Yagasaki ����� et�al��

LetM be a class of 
l � ���tuples� We assume thatM is topological� additive

and closed hereditary� We consider the following condition 
I��

The condition �I�


I��� 
X�X�� 
 
 
 � Xl� is stronglyM�universal�


I��� there exist Z�sets Zn 
n � �� of X such that


i� X� 
 �nZn and 
ii� 
Zn� Zn �X�� 
 
 
 � Zn �Xl� � M 
n � ���
In this case we have ambient homeomorphisms�

Theorem ���� 
�	� ���� Suppose E is an s�manifold and 
l����tuples 
E�X�� 
 
 
 �
Xl� and 
E� Y�� 
 
 
 � Yl� satisfy the condition 
I�
 Then for any open cover U of E

there exists a homeomorphism f � 
E�X�� 
 
 
 � Xl�� 
E� Y�� 
 
 
 � Yl� with 
f� idE� �
U 
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���� Homotopy invariance�

Classi�cation of in�nite�dimensional manifolds is rather simple� Q�manifolds are

classi�ed by simple homotopy equivalence 
T�A� Chapman ����� and s�manifolds

are classi�ed by homotopy equivalence 
D� W� Henderson and R� M� Schori ��
���

Theorem ��	� Suppose X and Y are s�manifolds
 Then X �� Y i� X $ Y 
ho�

motopy equivalence�


�� Characterization of infinite�dimensional manifolds in term of

general position property and stability

���� Edwards� program�

There is a general method� called as Edwards� program� of detecting topological

E�manifolds� For in�nite�dimensional topological manifolds� it takes the following

form� Let X be an ANR�


i� Construct a �ne homotopy equivalence from an E�manifold to the target X �


ii� Show that f can be approximated by homeomorphisms under some general

position property of X �

This program yields basic characterizations of Q�manifolds� s�manifolds and

other incomplete manifolds�

���� The complete cases�


�� Q�manifolds�

Theorem ���� 
����� A space X is an Q�manifold i�


i� X is a locally compact separable metrizable ANR


ii� X has the disjoint cells property



�� s�manifolds�

Theorem ���� 
����� A space X is an s�manifold i�


i� X is a separable completely metrizable ANR


ii� X has the strong discrete approximation property


Since the Q�stability implies the disjoint cells property and the s�stability implies

the strong discrete approximation property� we can replace the condition 
ii� by


ii�� X is Q�stable 
respectively s�stable�

���� The incomplete cases�

M� Bestvina�J� Mogilski ��� has shown that in the incomplete case the above

program is formulated in the following form�
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Theorem ���� 
M� Bestvina�J� Mogilski ����

Suppose C is a class of spaces which is topological� additive and closed hereditary



i� For every ANR X there exists an s�manifold M such that for every C�absorbing
set ' in M there exists a �ne homotopy equivalence f � '� X



ii� Suppose 
a� X is a strongly C�universal ANR and 
b� X � ��i��Xi� where

each Xi is a strong Z�set in X and Xi � C
 Then every �ne homotopy equivalence

f � ' � X from any C�absorbing set ' in an s�manifold can be approximated by

homeomorphisms


Example� ��manifolds and ��manifolds

Let Cc 
Cfdc� denote the class of all 
�nite dimensional� compacta�
Theorem ��	� 
M� Bestvina�J� Mogilski ��� ����

A space X is a ��manifold 
��manifold� i�


i� X is a separable ANR and ��compact 
��fd compact��


ii� X is strongly Cc�universal 
strongly Cfdc�universal��

iii� X � ��n��Xn� where each Xn is a strong Z�set in X


The condition 
iii� can be replaced by


iii�� X satis�es the strong discrete approximation property�

In ��
� H� Toru�nczyk has obtained a characterization of ��manifolds in term of

stability�

Theorem ��
� 
�����

X is a ��manifold i� X is 
i� a separable ANR� 
ii� ��fd�compact and 
iii� ��

stable


�� Characterizations of 
s� S�� 
 
 
 � Sl��manifolds
In this section we will investigate the problem of detecting 
s� S�� 
 
 
 � Sl��mani�

folds� Since we have obtained a characterization of s�manifolds 
Theorem �����

the remaining problem is how to compare a tuple 
X�X�� 
 
 
 � Xl� locally with


s� S�� 
 
 
 � Sl� when X is an s�manifold� For this purpose we will use the uniqueness
property of absorbing sets in s�manifolds 
x����� Since s�manifolds are homotopy
invariant 
Theorem ����� at the same time we can show the homotopy invariance

of 
s� S�� 
 
 
 � Sl��manifolds�
���� Characterizations of manifold tuples in term of the absorbing sets�

������ Characterizations in term of capsets and fd�capsets


Theorem 	��� 
T�A� Chapman ����


�� 
X�X�� is an 
s����manifold 

s� ���manifold� i�


i� X is an s�manifold�


ii� X� is a capset 
a fd capset�
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�� Suppose 
X�X�� and 
Y� Y�� are 
s����manifolds 
 
s� ���manifolds �
 Then


X�X�� �� 
Y� Y�� i� X $ Y 


Theorem 	��� 
K� Sakai�R�Y� Wong �����


�� 
X�X�� X�� is an 
s��� ���manifold i�


i� X is an s�manifold�


ii� 
X�� X�� is a 
cap� fd cap��pair in X



�� Suppose 
X�X�� X�� and 
Y� Y�� Y�� are 
s��� ���manifolds
 Then 
X�X�� X�� ��

Y� Y�� Y�� i� X $ Y 


������ Characterizations in term of strong universality


We assume that 
s� S�� 
 
 
 � Sl� satis�es the condition 
I� in Section ����������
Theorem 	��� 
�� 
X�X�� 
 
 
 � Xl� is an 
s� S�� 
 
 
 � Sl��manifold i�


i� X is an s�manifold�


ii� 
X�X�� 
 
 
 � Xl� satis�es the condition 
I�



�� Suppose 
X�X�� 
 
 
 � Xl� and 
Y� Y�� 
 
 
 � Yl� are 
s� S�� 
 
 
 � Sl��manifolds
 Then


X�X�� 
 
 
 � Xl� �� 
Y� Y�� 
 
 
 � Yl� i� X $ Y 


���� Characterization in term of stability and homotopy negligible com�

plement�

������ General characterization theorem


We can show that the stability � h�n� complement implies the strong univer�

sality� This leads to a characterization based upon the stability condition� We

consider the following condition 
II��

The condition �II��


II��� S� is contained in a countable union of Z�sets of s�


II��� Sl has the h�n� complement in s�


II��� 
In�nite coordinates� There exists a sequence of disjoint in�nite subsets An 

N 
n � �� such that for each i � �� 
 
 
 � l and n � �� 
a� Si � 	An


Si�� 	NnAn

Si�

and 
b� 
	An

s�� 	An


S��� 
 
 
 � 	An

Sl�� �� 
s� S�� 
 
 
 � Sl��

Here for a subset A of N� 	A � s�
Q
k�A 
�	�	� denotes the projection onto the

A�factor of s�

Assumption� We assume that 
s� S�� 
 
 
 � Sl� satis�es the condition 
II��

Notation� LetM#M
s� S�� 
 
 
 � Sl� denote the class of 
l����tuples 
X�X�� 
 
 
 �
Xl� which admits a layer preserving closed embedding h � 
X�X�� 
 
 
 � Xl� �

s� S�� 
 
 
 � Sl�
Theorem 	�	� 
T�Yagasaki ����� R�Cauty� et� al��

Suppose 
Y� Y�� 
 
 
 � Yl� satis�es the following conditions�


i� Y is a completely metrizable ANR�
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ii� Yl has the h
n
 complement in Y


iii� 
Y� Y�� 
 
 
 � Yl� is 
s� S�� 
 
 
 � Sl��stable

Then 
Y� Y�� 
 
 
 � Yl� is strongly M
s� S�� 
 
 
 � Sl��universal


From Theorems ���� ��� we have�

Theorem 	�
� 
�� 
X�X�� 
 
 
 � Xl� is an 
s� S�� 
 
 
 � Sl��manifold i�


i� X is a completely metrizable ANR�


ii� 
X�X�� 
 
 
 � Xl� �M
s� S�� 
 
 
 � Sl��

iii� Xl has the h
n
 complement in X�


iv� 
X�X�� 
 
 
 � Xl� is 
s� S�� 
 
 
 � Sl��stable


�� Suppose 
X�X�� 
 
 
 � Xl� and 
Y� Y�� 
 
 
 � Yl� are 
s� S�� 
 
 
 � Sl��manifolds
 Then


X�X�� 
 
 
 � Xl� �� 
Y� Y�� 
 
 
 � Yl� i� X $ Y 


������ Examples


To apply Theorem ��� we must distinguish the classM
s� S�� 
 
 
 � Sl�� This can
be done for the triples� 
s��� ��� 
s�� s� �� ���� 
s�� ��� ��f �� and 
s

�������f ��

This leads to the practical characterizations of manifolds modeled on these triples�

��� 
s��� ���

M
s��� �� � the class of triples 
X�X�� X�� such that


a�X is completely metrizable� 
b�X� is ��compact� and 
c� X� is ��fd�compact�

Theorem 	���


X�X�� X�� is an 
s��� ���manifold i�


i� X is a separable completely metrizable ANR�


ii� X� is ��compact� X� is ��fd�compact�


iii� X� has the h
n
 complement in X�


iv� 
X�X�� X�� is 
s��� ���stable


��� 
s�� s� �� ����

M
s�� s� �� ��� � the class of triples 
X�X�� X�� such that


a� X is completely metrizable� 
b� X� is F� in X � 
c� X� is ��fd�compact�

Theorem 	���


X�X�� X�� is an 
s
�� s� �� ����manifold i�


i� X is a separable completely metrizable ANR�


ii� X� is an F��subset of X� X� is ��fd�compact�


iii� X� has the h
n
 complement in X�


iv� 
X�X�� X�� is 
s
�� s� �� ����stable


��� 
s�� ��� ��f ��
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M
s�� ��� ��f � � the class of triples 
X�X�� X�� such that


a� X is completely metrizable� 
b� X� is F�� in X � 
c� X� is ��fd�compact�

Theorem 	���


X�X�� X�� is an 
s
�� ��� ��f ��manifold i�


i� X is a separable completely metrizable ANR�


ii� X� is an F���subset of X� X� is ��fd�compact�


iii� X� has the h
n
 complement in X


iv� 
X�X�� X�� is 
s
�� ��� ��f ��stable


�	� 
s�������f ��

M
s�������f � � the class of triples 
X�X�� X�� such that


a� X is completely metrizable� 
b� X� is F�� in X � 
c� X� is ��compact�

Theorem 	�
�


X�X�� X�� is an 
s
�������f ��manifold i�


i� X is a separable completely metrizable ANR�


ii� X� is an F���subset of X� X� is ��compact�


iii� X� has the h
n
 complement in X�


iv� 
X�X�� X�� is 
s
�������f ��stable


In the next chapter these characterizations will be applied to determine the local

topological types of some triples of homeomorphism groups of manifolds�

Chapter �� Applications to homeomorphism groups of manifolds

�� Main problems

Notation�


i� H
X� denotes the homeomorphism group of a space of X with the compact�open
topology�


ii� When X has a �xed metric� HLIP
X� denotes the subgroup of locally LIP�

homeomorphisms of X �


iii� WhenX is a polyhedron�HPL
X� denotes the subgroup of PL�homeomorphisms

of X �

We shall consider the following problem�

Problem�

Determine the local and global topological types of groups� H
M�� HLIP
M��

HPL
M�� etc� and tuples� 
H
M��HPL
M��� 
H
M��HLIP
M�� HPL
M��� etc�
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In the analogy with di�eomorphism groups� when X is a topological manifold�

we can expect that these groups are topological manifold modeled on some typical

in�nite�dimensional spaces� In fact� R�D� Anderson showed that�

Facts 
��� 
���� �


i� H�
R� �� s�


ii� If G is a �nite graph� then H
G� is an s�manifold�

After this result it was conjectured that

Conjecture� H
M� is an s�manifold for any compact manifold M �

This basic conjecture is still open for n � � and this imposes a large restriction
to our work since most results in Chapter � works only when ambient spaces are

s�manifolds� Thus in the present situation� in order to obtain some results in

dimension n � �� we must assume that H
M� is an s�manifold� On the other hand

in dimension � or � we can obtain concrete results due to the following fact�

Theorem 
��� 
R� Luke � W�K� Mason ����� W� Jakobsche �����

If X is a � or ��dimensional compact polyhedron� then H
X� is an s�manifold


Below we shall follow the next conventions� For a pair 
X�A�� letH
X�A� � ff �
H
X� � f
A� � Ag� When 
X�A� is a polyhedral pair� let HPL
X�A� � H
X�A��
HPL
X� and H
X # PL
A�� � ff � H
X�A� � f is PL on Ag� The superscript %c$
denotes %compact supports$� the subscript %�$ means %orientation preserving$�

and %�$ denotes %the identity connected components$ of the corresponding groups�

An Euclidean PL�manifold means a PL�manifold which is a subpolyhedron of some

Euclidean space Rn and has the standard metric induced from Rn �

	� Stability properties of homeomorphism groups of polyhedra

First we shall summarize the stability properties of various triples of homeo�

morphism groups of polyhedra� These properties will be used to determine the

corresponding model spaces�

��� Basic cases� 
R� Geoghegan ���� ���� J� Keesling�D� Wilson ���� ���� K� Sakai�

R�Y� Wong ��	��


i� If X is a topological manifold� then H
X� is s�stable�

ii� If X is a locally compact polyhedron� then the pair 
H
X��HPL
X�� is 
s� ���

stable�


iii� If X is a Euclidean polyhedron with the standard metric� then the triple


H
X��HLIP
X�� HPL
X�� is 
s��� ���stable�


iv� 
T� Yagasaki ����� If 
X�K� is a locally compact polyhedral pair such that

dimK � � and dim 
X n K� � �� then 
H
X�K��H
X # PL
K���HPL
X�K�� is


s�� s� �� ����stable�
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��� Noncompact cases� 
T� Yagasaki �����


i� IfX is a noncompact� locally compact polyhedron� then the triple 
H
X��HPL
X��

HPL�c
X�� is 
s�� ��� ��f ��stable�


ii� If X is a noncompact Euclidean polyhedron with the standard metric� then the

triple 
H
X��HLIP
X��HLIP�c
X�� is 
s�������f ��stable�

We can also consider the spaces of embeddings� Suppose X and Y are Euclidean

polyhedra� Let E
X�Y � denote the spaces of embeddings of X into Y with the

compact�open topology� and let ELIP
X�Y � and EPL
X�Y � denote the subspaces

of locally Lipschitz embeddings and PL�embeddings respectively�

��� Embedding case� 
K� Sakai�R�Y� Wong ��	�� cf� �����

The triple 
E
X�Y �� ELIP
X�Y �� EPL
X�Y �� is 
s��� ���stable�

These stability property are veri�ed by using the Morse length of the image of

a �xed segment under the homeomorphisms�

�� The triple �H
M�� HLIP
X�� HPL
X��

��� H
M�
Suppose Mn is a compact n�dimensional manifold� Since H
M� is s�stable� by

the characterization of s�manifold 
Theorem ����� H
M� is an s�manifold i� it is

an ANR� Here we face with the di culty of detecting in�nite�dimensional ANR�s�

A�V� 2Cernavski2i �
� and R�D� Edwards � R�C� Kirby ���� have shown�

Theorem ���� 
Local contractibility�� H
M� is locally contractible


��� HPL
M�

Suppose Mn is a compact n�dimensional PL�manifold�

Basic Facts�


�� 
J� Keesling�D� Wilson ����� 
H
M��HPL
M�� is 
s� ���stable�


�� 
D� B� Gauld ����� HPL
M� is locally contractible�


�� 
R� Geoghegan ����� HPL
M� is ��fd�compact�


�� 
W�E� Haver ����� A countable dimensional metric space is an ANR i� it is

locally contractible�

From 
���
���
�� it follows that HPL
M� is always an ANR� Hence by the char�

acterization of ��manifold 
Theorem ����� we have�

Main Theorem� 
J� Keesling�D� Wilson ����� HPL
M� is an ��manifold


Let H
M�� � clHPL
M�� Consider the condition�


�� n �� � and 
M � � for n � ��
Under this condition H
M�� is the union of some components of H
M��
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Theorem ���� 
R� Geoghegan� W� E� Haver ��	��

If H
X� is an s�manifold and M satis�es 
��� then 
H
X���HPL
X�� is an 
s� ���

manifold


��� HLIP
M� 
K� Sakai�R�Y� Wong ��	��

Suppose Mn is a compact n�dimensional Euclidean PL�manifold�

Basic Facts� 
��	��


�� 
H
M��HLIP
M�� is 
s����stable�


�� HLIP
M� is ��compact�

Theorem ���� 
��	��

If H
X� is an s�manifold and M satis�es 
��� then 
H
X��HLIP
X�� is an 
s����

manifold


�	� The triple 
H
X��HLIP
X��HLIP
M�� 
T� Yagasaki �����

Suppose Mn is a compact n�dimensional Euclidean PL�manifold�

Basic Facts�


�� 
K� Sakai�R� Y� Wong ��	�� 
H
M��HLIP
M��HPL
M�� is 
s��� ���stable�

Let HLIP
X�� � HLIP
X�� clHPL
M�� From Theorem ���� Basic Facts and the

characterization of 
s��� ���manifolds 
Theorem ��	� it follows that�

Theorem ��	� 
�����


�� If H
X� is an s�manifold and M satis�es 
��� then 
H
X���HLIP
X���HPL
X��

is an 
s��� ���manifold



�� If X is a � or ��dimensional compact Euclidean polyhedron with the standard

metric� then 
H
X��HLIP
X��HPL
X�� is 
s��� ���manifold



� Other triples

��� The triple 
H
X�K��H
X # PL
K���HPL
X�K�� 
T� Yagasaki �����

Theorem ����


i� Suppose Mn is a compact PL n�manifold with 
M �� �
 If n � �� n �� �� �
and H
M� is an s�manifold� then 
H
M��H
M # PL

M���HPL
M�� is an 
s�� s�
�� ����manifold



ii� Suppose 
X�K� is a compact polyhedral pair such that dimX � �� �� dimK � �
and dim 
X n K� � �
 Then 
H
X�K��H
X # PL
K���HPL
X�K�� is an 
s�� s �
�� ����manifold


��� The triples 
H
X��HPL
X��HPL�c
X�� and 
H
X��HLIP
X��HLIP�c
X�� 
T�

Yagasaki �����


�� ��dim� case� 
H�
R��HPL
� 
R��HPL�c
R�� �� 
s�� ��� ��f ��


�� ��dim� case�
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Theorem ���� If M is a noncompact connected PL ��manifold� then 
H
M�	�
HPL
M�	� HPL�c
M�	� is an 
s

�� ��� ��f ��manifold


Corollary ����


i� If M �� R� �S��R�S�� ��� ���P�Rn�pt� then 
H
M�	�HPL
M�	�HPL�c
M�	� ��
S�� 
s�� ��� ��f �


ii� In the remaining cases� 
H
M�	�HPL
M�	�HPL�c
M�	� �� 
s�� ��� ��f �


�� There exist a 
LIP� ���version of the 
PL� ���case�

��� The group of quasiconformal 
QC��homeomorphisms of a Riemann surface 
T�

Yagasaki �����

Suppose M is a connected Riemann surface� Let HQC
M� denote the subgroup

of QC�homeomorphisms of M �

Theorem ����


i� If M is compact� then 
H�
M��HQC
M�� is an 
s����manifold



ii� If M is noncompact� then 
H
M�	�HQC
M�	� is an 
s����manifold

�	� The space of embeddings 
T� Yagasaki �����

Suppose M is a Euclidean PL ��manifold�

Theorem ��	� If X is a compact subpolyhedron of M � then 
E
X�M�� ELIP
X�M��

EPL
X�M�� is an 
s��� ���manifold


Example� The case X � I # ��� ���

E
I�M�� ELIP
I�M�� EPL
I�M�� �� S
TM�� 
s��� ��

where S
TM� is the sphere bundle of the tangent bundle ofM with respect to some

Riemannian metric�
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